28.01.2015 Views

Enhancing Efficiency and Economics in Process ... - ForteBio

Enhancing Efficiency and Economics in Process ... - ForteBio

Enhancing Efficiency and Economics in Process ... - ForteBio

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Enhanc<strong>in</strong>g</strong> <strong>Efficiency</strong> <strong>and</strong> <strong>Economics</strong> <strong>in</strong> <strong>Process</strong> Development <strong>and</strong> Manufactur<strong>in</strong>g of Biotherapeutics<br />

Prote<strong>in</strong> Quantitation of 70 Complex Samples<br />

Octet Systems<br />

Sample <strong>and</strong><br />

<strong>in</strong>strument prep<br />

30 m<strong>in</strong><br />

Data analysis<br />

10 m<strong>in</strong><br />

60 m<strong>in</strong> total assay time<br />

40 m<strong>in</strong> operator h<strong>and</strong>s-on time<br />

Sample run time<br />

20 m<strong>in</strong><br />

HPLC<br />

Sample <strong>and</strong><br />

<strong>in</strong>strument prep<br />

4 hr<br />

Sample <strong>in</strong>jection <strong>and</strong> run time<br />

18 hr<br />

Data analysis<br />

50 m<strong>in</strong><br />

23 hr total assay time<br />

5 hr operator h<strong>and</strong>s-on time<br />

ELISA<br />

B<strong>in</strong>d capture<br />

antigen to plate<br />

Overnight (16 hr)<br />

Sample <strong>and</strong><br />

<strong>in</strong>strument prep<br />

1 hr<br />

Sample run time<br />

4 hr<br />

Data analysis<br />

30 m<strong>in</strong><br />

21.5 hr total assay time<br />

5.5 hr operator h<strong>and</strong>s-on time<br />

Figure 2: Comparison of prote<strong>in</strong> quantitation <strong>in</strong> complex matrices us<strong>in</strong>g Octet systems <strong>and</strong> alternative methods.<br />

ADVANTAGES OVER ELISA AND HPLC<br />

The pr<strong>in</strong>ciples of concentration measurement with an Octet system<br />

are similar to established immunoassays such as ELISA <strong>and</strong><br />

HPLC. However, prote<strong>in</strong> quantitation protocols on the Octet platform<br />

provide several advantages. The Octet platform monitors<br />

b<strong>in</strong>d<strong>in</strong>g of prote<strong>in</strong>s from solution to a biosensor surface <strong>in</strong> real<br />

time, without need for labels or other detection reagents. This<br />

real-time monitor<strong>in</strong>g of b<strong>in</strong>d<strong>in</strong>g <strong>in</strong>teractions enables clear<br />

discrim<strong>in</strong>ation between specific <strong>and</strong> non-specific b<strong>in</strong>d<strong>in</strong>g<br />

signals, which can shorten assay development times dramatically.<br />

Octet assays are also much faster: quantitation of a 96-well<br />

plate requires 15 – 30 m<strong>in</strong>utes, or 60 m<strong>in</strong>utes for a 384-well<br />

plate, depend<strong>in</strong>g on the <strong>in</strong>strument model. Figure 2 provides a<br />

comparison of analysis times. Analysis of 70 samples on an Octet<br />

RED96 system requires as little as 55 m<strong>in</strong>utes <strong>in</strong>clud<strong>in</strong>g operator<br />

h<strong>and</strong>s-on time, whereas ELISA or HPLC assays require at least 22<br />

hours <strong>in</strong>clud<strong>in</strong>g several hours of analyst <strong>in</strong>volvement. Samples<br />

run on Octet systems are also recoverable, so that researchers<br />

may save <strong>and</strong> reuse precious samples for other experiments. In<br />

addition, Octet assays are not affected by absorption <strong>in</strong>terferences<br />

<strong>in</strong> colored samples or by light scatter<strong>in</strong>g with turbid samples,<br />

enabl<strong>in</strong>g measurement of analyte concentration <strong>in</strong> crude matrices<br />

such as cell culture supernatant, cell lysate <strong>and</strong> serum. Octet<br />

concentration assays are complemented by the platform’s ability<br />

to measure functional activity. For example, titer for a monoclonal<br />

antibody (mAb) can be determ<strong>in</strong>ed us<strong>in</strong>g biosensors coated<br />

with Prote<strong>in</strong> A, while the functional activity of the mAb can be<br />

assessed <strong>in</strong> a second assay step <strong>in</strong>volv<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g to its specific<br />

antigen. In contrast, HPLC <strong>and</strong> A280 spectroscopy can determ<strong>in</strong>e<br />

only the total prote<strong>in</strong> concentration of a sample, <strong>and</strong> separate<br />

assays must be used to measure biological activity.<br />

BIO-LAYER INTERFEROMETRY TECHNOLOGY (BLI)<br />

BLI technology monitors <strong>and</strong> analyzes the <strong>in</strong>terference pattern<br />

generated from the reflection of white light from two different<br />

surfaces: a layer of immobilized prote<strong>in</strong> on the biosensor tip <strong>and</strong> an<br />

<strong>in</strong>ternal reference layer (Figure 3). Any <strong>in</strong>crease or decrease <strong>in</strong> the<br />

number of b<strong>in</strong>d<strong>in</strong>g molecules on the biosensor surface produces<br />

a change <strong>in</strong> optical thickness that causes a shift <strong>in</strong> the <strong>in</strong>terference<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!