28.01.2015 Views

PDF of Lecture Notes - School of Mathematical Sciences

PDF of Lecture Notes - School of Mathematical Sciences

PDF of Lecture Notes - School of Mathematical Sciences

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1. DISTRIBUTION THEORY<br />

If we take Z = BX, we have<br />

( ( ( Z B 0<br />

= X + ∼ N<br />

Y)<br />

A)<br />

b)<br />

by Theorem 1.10.1.<br />

([ ] [ ])<br />

Bµ + 0 BΣB<br />

T<br />

BΣA<br />

,<br />

T<br />

Aµ + b AΣB T AΣA T<br />

Hence, from Theorem 1.10.4, the marginal distribution for Y is<br />

N p (Aµ + b, AΣA T ).<br />

1.10.1 The multivariate normal MGF<br />

The multivariate normal moment generating function for a random vector X ∼ N(µ, Σ)<br />

is given by<br />

M X (t) = e tT µ+ 1 2 tT Σt<br />

Prove this result as an exercise!<br />

The characteristic function <strong>of</strong> X is<br />

E[exp(it T X)] = exp<br />

(<br />

it T µ − 1 )<br />

2 tT Σt<br />

The marginal distribution <strong>of</strong> X 1 (or X 2 ) is easy to derive using the multivariate normal<br />

MGF.<br />

Let<br />

t =<br />

(<br />

t1<br />

t 2<br />

)<br />

, µ =<br />

(<br />

µ1<br />

µ 2<br />

)<br />

.<br />

Then the marginal distribution <strong>of</strong> X 1 is obtained by setting t 2 = 0 in the expression<br />

for the MGF <strong>of</strong> X.<br />

Pro<strong>of</strong>:<br />

(<br />

M X (t) = exp t T µ + 1 )<br />

2 tT Σt<br />

= exp<br />

(t T 1 µ 1 + t T 2 µ 2 + 1 2 t 1 T Σ 11 t 1 + t T 1 Σ 12 t 2 + 1 )<br />

2 t 2 T Σ 22 t 2 .<br />

Now,<br />

( )<br />

t1<br />

M X1 (t 1 ) = M X = exp<br />

(t T<br />

0<br />

1 µ 1 + 1 )<br />

2 t 1 T Σ 11 t 1 ,<br />

64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!