20.02.2015 Views

Shefrin - Behavioral & Neoclassical asset pricing theories - 2008

Shefrin - Behavioral & Neoclassical asset pricing theories - 2008

Shefrin - Behavioral & Neoclassical asset pricing theories - 2008

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Behavioural and <strong>Neoclassical</strong><br />

Asset Pricing Theories: Combining<br />

the Best of Both<br />

Oxford-Man Behavioural Finance Conference<br />

Hersh <strong>Shefrin</strong><br />

Mario L. Belotti Professor of Finance<br />

Santa Clara University


Outline<br />

<br />

<br />

<br />

Looking back.<br />

<strong>Neoclassical</strong> and behavioural <strong>asset</strong> <strong>pricing</strong><br />

<strong>theories</strong><br />

<br />

strengths and weaknesses.<br />

Behaviourally-based SDF approach.<br />

<br />

<br />

<br />

Formal definition of sentiment.<br />

How sentiment is manifest within <strong>asset</strong> prices.<br />

Unified treatment of behavioural beliefs and<br />

behavioural preferences.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

1


<strong>Neoclassical</strong><br />

Asset Pricing Theory<br />

<br />

Modern <strong>asset</strong> <strong>pricing</strong> theory is based on the<br />

SDF.<br />

<strong>Neoclassical</strong> treatment in Cochrane (2005).<br />

<br />

<br />

Strength of approach is power of analytical<br />

techniques in unified, coherent framework.<br />

Weakness is unrealistic rationality<br />

assumptions and the absence of<br />

psychologically realistic assumptions.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

2


Behavioural<br />

Asset Pricing Theories<br />

<br />

<br />

Behavioural <strong>asset</strong> <strong>pricing</strong> models involve<br />

assumptions that reflect human psychology.<br />

Strength of behavioural models is focus on<br />

rich features such as:<br />

<br />

<br />

<br />

Heuristics and biases such as overconfidence,<br />

gambler’s fallacy and hot hand fallacy<br />

Fundamental attribution error<br />

Gains/losses, conditional risk tolerance, probability<br />

weighting<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

3


Weaknesses in Behavioural<br />

Asset Pricing Literature<br />

The behavioural <strong>asset</strong> <strong>pricing</strong> journal<br />

literature lacks a well-defined formal<br />

definition of sentiment.<br />

Models largely restricted to one risk-free<br />

<strong>asset</strong> and one risky <strong>asset</strong>.<br />

Psychological assumptions vary<br />

considerably from model to model.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

4


Best of Both Worlds<br />

<br />

I argue that going forward <strong>asset</strong> <strong>pricing</strong> theory<br />

will bring together psychologically-based<br />

assumptions from behavioural finance and the<br />

rigorous, integrated SDF-based methodology<br />

from neoclassical finance.<br />

<br />

<br />

Behavioural features will improve upon the<br />

neoclassical assumption of perfect rationality.<br />

<strong>Neoclassical</strong> methodology will improve upon the ad<br />

hoc, fragmented approach that is characteristic of<br />

the current behavioural <strong>asset</strong> <strong>pricing</strong> journal<br />

literature.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

5


BAAP 2e<br />

The rest of my talk will describe<br />

the elements of a behavioural<br />

SDF-based approach.<br />

This is the approach described in<br />

BAAP.<br />

2 nd edition just out.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

6


Quick Survey<br />

What is your expectation for the return<br />

to the S&P 500 over the next 12<br />

months?<br />

Quick tally.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

7


Heterogeneity is Behavioural<br />

Challenge is Market Aggregation<br />

Distribution of Average of Survey Expected Returns 1998 - 2001<br />

35%<br />

30%<br />

1998 2001<br />

Relative Frequency<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

30%<br />

Expected Return<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

8


Behavioural Aggregation<br />

Begin with neoclassical EU model with<br />

CRRA preferences and complete<br />

markets.<br />

In respect to judgments, markets<br />

aggregate pdfs, not moments.<br />

Generalized Hölder average theorem.<br />

In respect to preferences, markets<br />

aggregate coefficients of risk tolerance<br />

(inverse of CRRA).<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

9


Representative Investor Models<br />

Many <strong>asset</strong> <strong>pricing</strong> theorists, from both<br />

neoclassical and behavioural camps,<br />

assume a representative investor in<br />

their models.<br />

Aggregation theorem suggests that the<br />

representative investor assumption is<br />

typically invalid.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

10


Representativeness Bias<br />

In Academic Research<br />

It is typically invalid to assume the<br />

existence of a representative investor<br />

with expected utility preferences and<br />

correct beliefs.<br />

It is typically invalid to assume the<br />

existence of a representative investor<br />

with prospect theory preferences whose<br />

beliefs exhibit common behavioural<br />

biases.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

11


Simple Example of T14.1<br />

Errors in First Moments Only<br />

Complete markets, 2 investors<br />

equal wealth.<br />

CRRA = 1, log-utility.<br />

One investor is excessively bullish<br />

about mean returns, the other is<br />

excessively bearish.<br />

Correct beliefs about volatility.<br />

How does the market aggregate the<br />

different investor judgments?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

12


Market (Red) Aggregates pdfs<br />

Blue Aggregates Moments<br />

Underlying Probability Density Functions<br />

0.045<br />

0.040<br />

0.035<br />

0.030<br />

0.025<br />

0.020<br />

0.015<br />

Bearish Density<br />

Objective Density<br />

Bullish Density<br />

Equilibrium Density<br />

0.010<br />

0.005<br />

0.000<br />

96%<br />

97%<br />

98%<br />

100%<br />

101%<br />

102%<br />

103%<br />

105%<br />

106%<br />

Consumption Growth g (Gross Rate)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

13


Defining Sentiment Intuitively<br />

In these examples, sentiment is a<br />

function that indicates by what % the<br />

market’s (equilibrium) probability density<br />

exceeds the objective probability density.<br />

Market efficiency Sentiment = 0<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

14


Sentiment<br />

Probability<br />

0.045<br />

6<br />

0.040<br />

0.035<br />

0.030<br />

5<br />

0.025<br />

Bearish Density<br />

Bullish Density<br />

0.020<br />

Objective Density ¬<br />

0.015<br />

Equilibrium Density PM<br />

4<br />

0.010<br />

0.005<br />

3<br />

0.000<br />

96%<br />

97%<br />

98%<br />

100%<br />

101%<br />

102%<br />

103%<br />

105%<br />

106%<br />

Consumption Growth g (Gross Rate)<br />

2<br />

1<br />

0<br />

96%<br />

97%<br />

98%<br />

100%<br />

101%<br />

102%<br />

103%<br />

105%<br />

106%<br />

-1<br />

Consumption Growth Rate g (Gross)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

15


Formally Defining Sentiment Λ<br />

General Model<br />

Measured by the random variable<br />

Λ = ln(P R (x t ) / Π(x t )) + ln(δ R / δ R , Π )<br />

<br />

<br />

δ R , Π is the δ R that results when all traders hold<br />

objective beliefs<br />

Sentiment is not a scalar, but a stochastic<br />

process < Λ, Π>, involving a log-change of<br />

measure.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

16


Market Efficiency<br />

Sentiment Λ = 0<br />

The market is efficient when the<br />

representative trader, aggregating the<br />

beliefs of all traders, holds objective<br />

beliefs.<br />

<br />

and<br />

i.e., efficiency iff P R = Π<br />

When all investors hold objective beliefs<br />

Φ = (P R /Π) (δ R / δ R , Π ) = 1<br />

Λ = ln(Φ) = 0<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

17


When is Sentiment = 0?<br />

Consider the illustrative example.<br />

There are effectively two conditions<br />

required for market efficiency.<br />

Errors are unsystematic, meaning average<br />

error across the investor population is zero.<br />

Error-wealth covariance = 0, meaning<br />

errors are not concentrated in the investor<br />

population.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

18


What is the Shape of<br />

the Sentiment Function?<br />

Begin with case when investors have<br />

log-normal beliefs and log-utility.<br />

Mistakes about 1 st moments but not<br />

about 2 nd moments.<br />

Here are some examples of shapes and<br />

what they reflect.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

19


106.19%<br />

105.82%<br />

105.46%<br />

Shape of Sentiment Function<br />

Optimism - Bullishness<br />

105.10%<br />

Sentiment Function<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

20<br />

104.74%<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

102.96%<br />

103.32%<br />

103.67%<br />

104.03%<br />

104.38%<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Consumption Growth Rate g (Gross)


Change of Measure is Log-linear<br />

Typical for a variance preserving, right<br />

shift in mean for normally distributed<br />

variable.<br />

This function applies to sentiment of<br />

individual investor as well as to<br />

sentiment of the market.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

21


106.19%<br />

105.82%<br />

105.46%<br />

105.10%<br />

104.74%<br />

Bearishness - Pessimism<br />

104.38%<br />

Sentiment Function<br />

0.8<br />

0.6<br />

22<br />

0.4<br />

0.2<br />

0<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

102.96%<br />

103.32%<br />

104.03%<br />

103.67%<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Consumption Growth Rate g (Gross)


106.19%<br />

105.82%<br />

105.46%<br />

105.10%<br />

104.74%<br />

Mix of Bulls and Bears<br />

104.38%<br />

Sentiment Function<br />

23<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

104.03%<br />

102.96%<br />

103.32%<br />

103.67%<br />

-0.05<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Consumption Growth Rate g (Gross)


Mistakes About 2 nd Moments<br />

Suppose that investor make mistakes<br />

about 2 nd moments.<br />

The most likely mistake stems from<br />

investor overconfidence.<br />

This means that investors<br />

underestimate the 2 nd moment.<br />

What shape will the sentiment function<br />

assume?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

24


106.19%<br />

Overconfidence With Homogeneous<br />

Errors About 1 st Moments<br />

Sentiment Function<br />

0.5<br />

0<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

102.96%<br />

103.32%<br />

103.67%<br />

104.03%<br />

104.38%<br />

104.74%<br />

105.10%<br />

105.46%<br />

105.82%<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

25<br />

-2.5<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Consumption Growth Rate g (Gross)


106.19%<br />

Mix of Underconfident Pessimist<br />

and Overconfident Optimist<br />

Sentiment Function<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

26<br />

0.2<br />

0.1<br />

0<br />

105.82%<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

102.96%<br />

103.32%<br />

103.67%<br />

104.03%<br />

104.38%<br />

104.74%<br />

105.10%<br />

105.46%<br />

-0.1<br />

-0.2<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Consumption Growth Rate g (Gross)


Empirical Evidence<br />

on Investor Mix<br />

Several sources for return expectations<br />

UBS/Gallup for individual investors<br />

Livingston data for professional forecasters<br />

Wall $treet Week for analysts, strategists,<br />

and money managers<br />

BusinessWeek for market strategists.<br />

What do the distributions look like?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

27


Histogram Return Expectations December 1998 for 1999<br />

40%<br />

35%<br />

UBS<br />

30%<br />

Livingston<br />

Relative Frequency<br />

25%<br />

20%<br />

15%<br />

W$W<br />

BusinessWeek<br />

10%<br />

5%<br />

0%<br />

30%<br />

Percent Change<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

28


Distribution of Average of Survey Expected Returns 1998 - 2001<br />

35%<br />

30%<br />

1998 2001<br />

25%<br />

Relative Frequency<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

30%<br />

Expected Return<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

29


Pricing Kernel (SDF)<br />

Stochastic discount factor is a state<br />

price per unit probability.<br />

SDF version 1 M = ν/Π<br />

SDF version 2 <br />

M = ν/P R<br />

Both different routes to studying the effect<br />

of sentiment Λ on prices.<br />

Price of any one-period security Z is<br />

q Z = νZ = E π {MZ}<br />

E t [R i,t+1 M t+1 ] = 1<br />

30<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong>


T16.1. Decomposition of SDF<br />

m ≡ ln(M)<br />

m = Λ - γ R ln(g) + ln(δ R,Π )<br />

Process <br />

Note: In CAPM with market<br />

efficiency, M is linear in g with a<br />

negative coefficient.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

31


106.19%<br />

105.82%<br />

105.46%<br />

105.10%<br />

104.74%<br />

104.38%<br />

60.00%<br />

50.00%<br />

40.00%<br />

30.00%<br />

ln(SDF)<br />

20.00%<br />

10.00%<br />

ln SDF & Sentiment<br />

104.03%<br />

Sentiment<br />

Function<br />

32<br />

0.00%<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

103.67%<br />

102.96%<br />

103.32%<br />

-10.00%<br />

ln(g)<br />

-20.00%<br />

-30.00%<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

Gross Consumption Growth Rate g


How Different is a Behavioural SDF<br />

From a Traditional <strong>Neoclassical</strong> SDF?<br />

<strong>Behavioral</strong> SDF vs Traditional SDF<br />

1.2<br />

1.15<br />

<strong>Behavioral</strong> SDF<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

Traditional <strong>Neoclassical</strong> SDF<br />

0.85<br />

0.8<br />

96%<br />

97%<br />

97%<br />

98%<br />

99%<br />

100%<br />

101%<br />

102%<br />

103%<br />

103%<br />

104%<br />

105%<br />

106%<br />

Aggregate Consumption Growth Rate g (Gross)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

33


Fundamental Theorem for<br />

U-shaped Case<br />

ln SDF & Sentiment<br />

25%<br />

20%<br />

15%<br />

ln(SDF)<br />

Sentiment<br />

10%<br />

5%<br />

0%<br />

95.8%<br />

96.6%<br />

97.5%<br />

98.3%<br />

99.2%<br />

100.0%<br />

100.9%<br />

101.7%<br />

102.6%<br />

103.5%<br />

104.4%<br />

105.3%<br />

106.2%<br />

-5%<br />

ln(g)<br />

-10%<br />

Gross Consumption Growth Rate g<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

34


The AFLAC Duck<br />

Behavioural Arrow-Debreu ’87<br />

WFA ’89<br />

<strong>Shefrin</strong>-Statman ’94<br />

Chicago Board of Trade ’97<br />

Univ Michigan ’99<br />

<strong>Neoclassical</strong> & behavioural status<br />

quo bias?<br />

It’s sentiment<br />

~ change of measure!<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

35


Market Prices Reflect<br />

Both Fundamentals and Sentiment<br />

Fundamental behavioural theorem<br />

about the SDF, the market’s DNA.<br />

The log-SDF can be decomposed into<br />

the sum of a neoclassical fundamental<br />

component and sentiment.<br />

SDF provides an integrated approach to<br />

<strong>asset</strong> <strong>pricing</strong>.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

36


Empirical SDF<br />

Aït-Sahalia and Lo (2000) study<br />

economic VaR for risk management,<br />

and estimate the SDF.<br />

Rosenberg and Engle (2002) also<br />

estimate the SDF.<br />

Both use index option data in<br />

conjunction with empirical return<br />

distribution information.<br />

What does the empirical SDF look like?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

37


Aït-Sahalia – Lo’s SDF Estimate<br />

What underlies the lumps and bumps?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

38


Rosenberg-Engle’s SDF Estimate<br />

What accounts for the difference in the two curves?<br />

How to<br />

measure<br />

sentiment?<br />

Sample Computation at Left<br />

sentiment = ln(SDF)-ln(fundamental component)<br />

ln(SDF) = ln(5.0) = 1.61<br />

ln(fundamental component) = ln(2.25) = 0.81<br />

sentiment = 79.9%<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

39


Dittmar (2002)<br />

Human Capital<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

40


Pricing Kernel (SDF)<br />

Stochastic discount factor is a state<br />

price per unit probability.<br />

SDF version 1 M = ν/Π<br />

SDF version 2 M = ν/P R<br />

Both different routes to studying the<br />

effect of sentiment Λ on prices.<br />

But route 2, using P R , leads to a<br />

neoclassical, downward sloping SDF<br />

without the lumps and bumps.<br />

SDF version 2 M = ν/P R<br />

41<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong>


Barone Adesi-<br />

Engle-Mancini (<strong>2008</strong>)<br />

<br />

<br />

<br />

<br />

<br />

Empirical SDF based on index options data for<br />

1/2002 – 12/2004.<br />

Asymmetric volatility and negative skewness<br />

of filtered historical innovations.<br />

Equality broken between physical and risk<br />

neutral volatilities.<br />

BEM obtain a neoclassical SDF!<br />

When BEM use the traditional Gaussian<br />

approach for the period they study, the<br />

estimated SDF features the behavioural<br />

oscillating shape.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

42


Mean-Variance Efficiency<br />

Is there a different path to establishing<br />

whether the SDF is neoclassical or<br />

behavioural?<br />

What does sentiment imply about the<br />

nature of the returns to a mean-variance<br />

efficient portfolio?<br />

What is the priced risk which investors<br />

face?<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

43


Relationship Between SDF and<br />

Mean-Variance Returns<br />

Theorem 17.1<br />

r MV = a – bM<br />

where<br />

a = ξ, whose variation generates the MVfrontier<br />

<br />

The higher is ξ, the stronger the linear term<br />

relative to the quadratic term in the quadratic<br />

utility function<br />

b = (ξ/i 1 – 1) / E Π (M 2 )<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

44


How Different are Returns to a Behavioural<br />

MV-Portfolio From <strong>Neoclassical</strong> Counterpart?<br />

110%<br />

Gross Return to Mean-variance Portfolio:<br />

<strong>Behavioral</strong> Mean-Variance Return vs Efficient Mean-Variance Return<br />

105%<br />

100%<br />

Mean-variance Return<br />

95%<br />

90%<br />

85%<br />

<strong>Neoclassical</strong> Efficient MV Portfolio Return<br />

<strong>Behavioral</strong> MV Portfolio Return<br />

80%<br />

75%<br />

96%<br />

97%<br />

99%<br />

101%<br />

103%<br />

104%<br />

106%<br />

Consumption Growth Rate g (Gross)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

45


MV Function ∼ Quadratic<br />

2-factor Model, Mkt and Mkt 2<br />

Gross Return to Mean-variance Portfolio:<br />

<strong>Behavioral</strong> Mean-Variance Return vs Efficient Mean-Variance Return<br />

1.03<br />

1.02<br />

Efficient MV Portfolio Return<br />

1.01<br />

Mean-variance Return<br />

1<br />

0.99<br />

0.98<br />

0.97<br />

<strong>Behavioral</strong> MV Portfolio Return<br />

Return to a Combination of the Market Portfolio and<br />

Risk-free Security<br />

0.96<br />

0.95<br />

95.82%<br />

96.64%<br />

97.48%<br />

98.31%<br />

99.16%<br />

100.01%<br />

100.87%<br />

101.74%<br />

102.61%<br />

103.49%<br />

104.38%<br />

105.28%<br />

106.19%<br />

Consumption Growth Rate g (Gross)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

46


When a Coskewness Model<br />

Works Exactly<br />

The MV return function is quadratic in g,<br />

risk is priced according to a 2-factor<br />

model.<br />

The factors are g (the market portfolio<br />

return) and g 2 , whose coefficient<br />

corresponds to co-skewness.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

47


Oscillating SDF<br />

<br />

<br />

The general<br />

oscillating shape is<br />

similar to the U-<br />

shaped at the left,<br />

and deviates at the<br />

right.<br />

The market and<br />

coskewness are<br />

<strong>pricing</strong> factors, but<br />

there are other<br />

factors.<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

96%<br />

97%<br />

97%<br />

<strong>Behavioral</strong> SDF vs Traditional SDF<br />

<strong>Behavioral</strong> SDF<br />

Traditional <strong>Neoclassical</strong> SDF<br />

98%<br />

99%<br />

100%<br />

101%<br />

102%<br />

103%<br />

103%<br />

104%<br />

Aggregate Consumption Growth Rate g (Gross)<br />

105%<br />

106%<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

48


What We Know About<br />

the Pricing and Coskewness<br />

Barone-Adesi and Talwar (1983).<br />

Harvey-Siddique (2000).<br />

The correlation between coskewness and<br />

mean returns of portfolios sorted by size,<br />

book-to-market equity, and momentum is -<br />

0.71.<br />

This means that much of the explanatory<br />

power of size, B/M, and momentum<br />

plausibly derives from coskewness.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

49


Additional Explanatory Power<br />

<br />

<br />

<br />

<br />

CAPM only explains 3.5% of cross-sectional<br />

returns.<br />

But CAPM + coskewness explains 68.1% of<br />

cross-sectional returns!<br />

Market, size, and B/M explain 71.8%.<br />

For momentum, recent winners feature lower<br />

coskewness than that of recent losers.<br />

Other factors? Empirical evidence in Barone<br />

Adesi, Gagliardini, Urga<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

50


Prospect Theory<br />

Prospect theory has provided an<br />

important focal point for identifying<br />

where expected utility theory fails as a<br />

descriptive framework.<br />

Unfortunately, prospect theory itself has<br />

very severe weaknesses.<br />

<strong>Shefrin</strong>-Statman (1985)<br />

Hens-Vlcek (2006)<br />

Barberis-Xiong (forthcoming)<br />

De Georgi, Hens, Rieger (<strong>2008</strong>)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

51


My prediction is that <strong>asset</strong> <strong>pricing</strong> theory<br />

will develop around some alternative<br />

psychologically-based risk theory to<br />

capture behavioural preferences.<br />

<strong>Shefrin</strong>-Statman (2000) develop<br />

behavioural portfolio theory around<br />

SP/A theory (Lopes 1987).<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

52


SP/A Theory & Prospect Theory<br />

<br />

<br />

<br />

<br />

SP/A theory is more tractable to use in<br />

respect to <strong>asset</strong> <strong>pricing</strong> theory.<br />

SP/A theory provides a more parsimonious<br />

framework for understanding the psychology<br />

of risk.<br />

SP/A theory consistent with neuro-anatomy.<br />

SP/A theory explains behaviour that prospect<br />

theory cannot explain.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

53


SP/A Focuses on Hope and Fear<br />

Affect-based Representation<br />

Sentiment Function<br />

0.25<br />

0.2<br />

0.15<br />

Fear<br />

Hope<br />

(anterior insula)<br />

(nucleus accumbens)<br />

0.1<br />

0.05<br />

0<br />

106.19%<br />

95.82%<br />

96.15%<br />

96.48%<br />

96.81%<br />

97.14%<br />

97.48%<br />

97.81%<br />

98.15%<br />

98.48%<br />

98.82%<br />

99.16%<br />

99.50%<br />

99.84%<br />

100.18%<br />

100.53%<br />

100.87%<br />

101.22%<br />

101.56%<br />

101.91%<br />

102.26%<br />

102.61%<br />

102.96%<br />

103.32%<br />

103.67%<br />

104.03%<br />

104.38%<br />

104.74%<br />

105.10%<br />

105.46%<br />

105.82%<br />

-0.05<br />

Consumption Growth Rate g (Gross)<br />

54<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong>


Inverse S in SP/A<br />

Rank Dependent Utility<br />

Functional Decomposition of Decumulative Weighting Function in SP/A Theory<br />

1.2<br />

1.0<br />

h2(D)<br />

0.8<br />

h(D)<br />

0.6<br />

0.4<br />

h1(D)<br />

0.2<br />

0.0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

D<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

55


SP/A “Sentiment” with<br />

Aspiration Reference Point<br />

SP/A Sentiment Function<br />

1.5%<br />

Consumption = Aspiration<br />

Level<br />

1.0%<br />

0.5%<br />

0.0%<br />

1 2 3 4 5 6 7 8<br />

-0.5%<br />

-1.0%<br />

-1.5%<br />

<br />

<br />

-2.0%<br />

State<br />

Oscillating shape and skewness.<br />

Behavioural portfolio theory, <strong>Shefrin</strong>-Statman (2000).<br />

Contribution of skewness to coskewness.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

56


Progress Since BAAP 1e<br />

<strong>Neoclassical</strong> <strong>asset</strong> <strong>pricing</strong> theorists are<br />

beginning to build behavioural SDFbased<br />

models.<br />

Jouini-Napp (2007)<br />

Dumas-Kurshev-Uppal (forthcoming)<br />

Bakshi-Wu (2006)<br />

Behavioural <strong>asset</strong> <strong>pricing</strong> theorists<br />

moving to recognition of SDF-based<br />

behavioural approach.<br />

Baker-Wurgler (2007)<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

57


Summary<br />

<br />

<br />

<br />

<br />

Comprehensive SDF-based behavioural <strong>asset</strong><br />

<strong>pricing</strong> model brings together the best of what<br />

neoclassical and behavioural <strong>asset</strong> <strong>pricing</strong><br />

has to offer.<br />

Behavioural beliefs, behavioural preferences,<br />

neoclassical beliefs, neoclassical preferences.<br />

Markets aggregate pdfs, not moments.<br />

Behavioural SDF-based theory predicts how<br />

shape of SDF reflects behavioural traits of<br />

investors.<br />

Copyright Hersh <strong>Shefrin</strong> <strong>2008</strong><br />

58

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!