11.03.2015 Views

Wind Turbine Modeling - PowerWorld

Wind Turbine Modeling - PowerWorld

Wind Turbine Modeling - PowerWorld

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Transient Stability Analysis<br />

with <strong>PowerWorld</strong> Simulator<br />

T12: <strong>Wind</strong> <strong>Turbine</strong> <strong>Modeling</strong><br />

2001 South First Street<br />

Champaign, Illinois 61820<br />

+1 (217) 384.6330<br />

support@powerworld.com<br />

http://www.powerworld.com


Need for <strong>Wind</strong> <strong>Turbine</strong> Models<br />

• Over the last decade<br />

wind turbine capacity<br />

has grown to the point<br />

where they need to be<br />

explicitly considered in<br />

system-wide transient<br />

stability studies<br />

Growth in US <strong>Wind</strong> Capacity<br />

http://www.awea.org/publications/reports/AWEA-Annual-<strong>Wind</strong>-Report-2009.pdf<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

2


<strong>Wind</strong> <strong>Turbine</strong> <strong>Modeling</strong><br />

• A wind farm usually consists of many small turbines in a<br />

collector system<br />

• Each turbine’s voltage is usually less than 1 kV (usually 600<br />

V) with a step-up transformer (usually to 34.5 kV)<br />

• Usually, the wind farm is modeled in aggregate, but how<br />

accurate such aggregate models are is an open question<br />

• <strong>PowerWorld</strong> Simulator provides support of each of the four<br />

major types of wind turbine models used in transient<br />

stability studies<br />

– Type 1: Induction generator with fixed rotor resistance<br />

– Type 2: Induction generators with variable rotor resistance<br />

– Type 3: Doubly-fed induction generators<br />

– Type 4: Full converter generators<br />

• New wind turbines are either Type 3 or Type 4<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

3


<strong>Wind</strong> <strong>Turbine</strong> <strong>Modeling</strong>:<br />

Power Flow Solution<br />

• <strong>Wind</strong> turbines are represented as generators in<br />

the power flow<br />

– Type 1 and 2 units operate at fixed real/reactive<br />

power with the unit supplying real power and<br />

consuming reactive power; usually there are<br />

compensating capacitors<br />

– Type 3 and 4 are treated as regular PV buses<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

4


<strong>Wind</strong> Generator Models<br />

• <strong>Wind</strong> <strong>Turbine</strong>s do not have an “exciter”, “governor”, or<br />

“stabilizer”<br />

• However, modeling is very analogous<br />

– <strong>Wind</strong> Machine Model = Machine Model<br />

– <strong>Wind</strong> Electrical Model = Exciter<br />

– <strong>Wind</strong> Mechanical Model = Governor<br />

– <strong>Wind</strong> Pitch Control = Stabilizer<br />

– <strong>Wind</strong> Aerodynamic Model = Stabilizer<br />

• Simulator will show wind models listed as though they<br />

are Exciters, Governors, and Stabilizers<br />

– Obviously you should not use a synchronous machine<br />

exciter in combination with a wind machine model and wind<br />

governor!<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

5


Generic <strong>Wind</strong> <strong>Turbine</strong> Models<br />

Type 1 Type 2 Type 3 Type 4<br />

GE DYD PSS/E DYR GE DYD PSS/E DYR GE DYD PSS/E DYR GE DYD PSS/E DYR<br />

Machine WT1G WT1G1 WT2G WT2G1 WT3G WT3G1,<br />

WT3G2<br />

• Old Type 1 models as induction machine<br />

– MOTOR1, GENIND<br />

– CIMTR1, CIMTR2, CIMTR3, CIMTR4<br />

• GE-specific Type 2 wind turbine model<br />

– GENWRI, EXWTG1, WNDTRB<br />

• GE-specific Type 3 wind turbine model<br />

– GEWTG, EXWTGE, WNDTGE<br />

– Detailed model for GE 1.5, 1.6 and 3.5 MW turbines<br />

WT4G<br />

WT4G1<br />

“Exciter” WT2E WT2E1 WT3E WT3E1 WT4E WT4E1<br />

“Governor” WT1T WT12T1 WT1T WT12T1 WT3T WT3T1 WT4T<br />

“Stabilizer” WT1P W12A1 WT1P WT12A1 WT3P WT3P1<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

6


<strong>Wind</strong> <strong>Turbine</strong> Voltage Control<br />

• Voltage control of wind turbines depends on the type<br />

• Type 1 squirrel cage induction machines- no direct<br />

voltage control<br />

• Type 2- wound rotor induction machines with variable<br />

external resistance, no direct voltage control, but<br />

external resistance system usually modeled as an exciter<br />

• Type 3 and Type 4- have the ability to perform voltage<br />

or reactive power control, similar to synchronous<br />

machines. Common control modes are constant power<br />

factor control, coordinated control across a wind farm to<br />

maintain a constant interconnection point voltage, and<br />

constant reactive power control<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

Glover, Sarma, Overbye, Power System Analysis and Design<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

7


<strong>Wind</strong> <strong>Turbine</strong> <strong>Modeling</strong><br />

• Types 1 and 2- Induction machine models, stator windings are<br />

connected to the rest of the network, rotor currents are<br />

induced by the relative motion between the rotating magnetic<br />

field due to the stator currents and the rotor<br />

• Slip is the difference between the synchronous speed and the<br />

rotor speed, defined using motor convention as<br />

S<br />

=<br />

n<br />

s<br />

− n<br />

n<br />

• Synchronous speed is n s an rotor speed is n r , per unit<br />

s<br />

r<br />

+<br />

V t<br />

-<br />

R a<br />

I<br />

jX a<br />

jX m<br />

jX 1<br />

R 1 /S<br />

Equivalent<br />

circuit for a<br />

single cage<br />

induction<br />

machine<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

Glover, Sarma, Overbye, Power System Analysis and Design<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

8


Type 1 <strong>Wind</strong> Model- WT1G Power<br />

Speed Curve<br />

Real Power<br />

Type 1 generators usually operate with a small negative slip since the<br />

wind turbine causes the machine to spin slightly faster than<br />

synchronous speed<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

-1.8<br />

-2<br />

-2.2<br />

-2.4<br />

-2.6<br />

-2.8<br />

Real Power<br />

-0.95-0.9-0.85-0.8-0.75-0.7-0.65-0.6-0.55-0.5-0.45-0.4-0.35-0.3-0.25-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95<br />

Slip<br />

Real Pow er<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

1<br />

Values are<br />

calculated<br />

between<br />

a Slip of -1 and 1<br />

9


Type 2 <strong>Wind</strong> Models<br />

Real Power<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

-1.2<br />

-1.4<br />

• Type 2 models augment Type 1 by allowing for variable rotor<br />

resistance control in the wound rotor induction generator<br />

• By using turbine speed and electrical power output as inputs to the<br />

control system, the wind turbine can provide a more steady power<br />

output during wind variation<br />

Real Power<br />

external<br />

resistance = 0.05<br />

-1.6<br />

-0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.0500.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951<br />

Slip<br />

Real Pow er<br />

Real Power<br />

Real Power<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

external resistance<br />

0.3<br />

0.2<br />

= 0.99 pu<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

-0.5<br />

-0.6<br />

-0.7<br />

-0.8<br />

-0.9<br />

-0.95 -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.0500.050.10.150.20.250.30.350.40.450.50.550.60.650.70.750.80.850.90.951<br />

Slip<br />

Real Pow er<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

10


Type 3 <strong>Wind</strong> Models<br />

• Models Doubly-Fed Asynchronous Generators (DFAGs) or<br />

Doubly-Fed Induction Generators (DFIGs)<br />

• In addition to the stator windings, rotor windings are connected<br />

to the AC network through a converter<br />

• Allows separate control of both real and reactive power<br />

• Allows a much wider speed range<br />

• No electrical coupling with the turbine dynamics<br />

• The DFAG dynamics are well approximated as a voltage-source<br />

converter (VSC)<br />

Output from<br />

reactive power<br />

control system<br />

E q<br />

−1<br />

X eq<br />

I q<br />

I p<br />

High/Low<br />

Voltage<br />

Management<br />

I sorc<br />

V∠θ<br />

jX eq<br />

I<br />

Network<br />

Type 3 DFAG Model, Voltage Source Converter (VSC)<br />

Glover, Sarma, Overbye, Power System Analysis and Design<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

11


Type 3 <strong>Wind</strong> Models<br />

• Physically, these models usually consist of a wound rotor<br />

induction machine coupled with a voltage-source converter<br />

AC excitation system<br />

• Electrical performance is dominated by the converter which<br />

acts on a much faster time scale than transient stability level<br />

dynamics<br />

– Machine model consists of a synthesized voltage behind a<br />

reactance<br />

– Rotor dynamics are not important electrically<br />

• <strong>Modeling</strong><br />

– Represents the generator by a machine model<br />

– Reactive power control by an exciter model<br />

– Mechanical control by a governor model<br />

– Blade pitch control by a stabilizer model<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

12


Type 3 <strong>Wind</strong> Model Example<br />

• Generator 3 will be modeled using a GEWTG<br />

machine, which models a 85 MW aggregation<br />

of GE 1.5 MW DFIGs<br />

• Exciter model EXWTGE will be used to model<br />

the reactive power control of the wind turbine<br />

• Governor model WNTDGE will be used to<br />

model the inertia of the wind turbine and its<br />

pitch control<br />

• Generators 1 and 2 remain unchanged<br />

• Open the case which has these settings,<br />

wscc_9bus_Type3WTG.pwb<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG<br />

13


Type 3 <strong>Wind</strong> Model Example<br />

• Set up Plot Definitions as desired<br />

• Click “Run transient Stability”<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Voltage recovery<br />

9<br />

10<br />

V (pu)_Bus Bus1 V (pu)_Bus Bus 2 V (pu)_Bus Bus 3<br />

V (pu)_Bus Bus 4 V (pu)_Bus Bus 5 V (pu)_Bus Bus 6<br />

V (pu)_Bus Bus 7 V (pu)_Bus Bus 8 V (pu)_Bus Bus 9<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

2.5<br />

2.4<br />

2.3<br />

2.2<br />

2.1<br />

2<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

<strong>Wind</strong> turbine MW<br />

Mechanical input and<br />

terminal output<br />

6<br />

7<br />

8<br />

9<br />

10<br />

Mech Input_Gen Bus1 #1 MW Terminal_Gen Bus1 #1 Mech Input_Gen Bus 3 #1<br />

MW Terminal_Gen Bus 3 #1 Mech Input_Gen Bus 2 #1 MW Terminal_Gen Bus 2 #1<br />

Generator 3<br />

EXWTGE states<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

States of Exciter\EField_Gen Bus1 #1 States of Exciter\Sensed Vt_Gen Bus1 #1<br />

States of Exciter\VR_Gen Bus1 #1 States of Exciter\VF_Gen Bus1 #1<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG<br />

14


Type 3 <strong>Wind</strong> Model Example<br />

• During the fault the wind turbine terminal bus voltage will be quite<br />

low. This will cause the turbine’s Low Voltage Power Logic (LVPL) to<br />

reduce the real power current to zero.<br />

• This will cause the wind turbine pitch<br />

control system to begin to pitch the blades<br />

to reduce the mechanical power into the<br />

rotor. This pitch control occurs slowly.<br />

0.158<br />

0.156<br />

0.154<br />

0.152<br />

0.15<br />

0.148<br />

0.146<br />

0.144<br />

0.142<br />

0.14<br />

0.138<br />

0.136<br />

0.134<br />

0.132<br />

0.13<br />

0.128<br />

0.126<br />

0.124<br />

0.122<br />

0.12<br />

0<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

1<br />

2<br />

3<br />

4<br />

5<br />

<br />

6<br />

7<br />

Generator 1<br />

<strong>Turbine</strong> Power<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

States of Governor\<strong>Turbine</strong> Pow er, Gen '1' '1'<br />

16<br />

17<br />

18<br />

19<br />

20<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

<br />

<br />

<br />

<br />

6<br />

7<br />

Pitch<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

States of Governor\Pitch_Gen '3' '1'<br />

14<br />

States of Governor\Pitch Control_Gen '3' '1'<br />

States of Governor\Pitch Compensation_Gen '3' '1'<br />

States of Governor\Mech Speed_Gen '3' '1'<br />

• Once the fault is cleared, this current<br />

is ramped back up, subject to a rate<br />

limit.<br />

wscc_9bus_Type3WTG<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

15


Example: Impact of a Complex Load<br />

• The way load dynamics are modeled often has a significant impact<br />

on the results of transient stability studies<br />

• So far, we have mostly been looking at generator models, but many<br />

load models are also available in Simulator<br />

• The default (global) models are specified on the Options, Power<br />

System Model page as constant impedance loads<br />

– Used when no other model is specified<br />

– Discussed in the Transient Stability Basics section<br />

• Simulator makes it very easy to add complex load models<br />

• More detailed models are added by selecting “Stability Case Info”<br />

from the ribbon, then Case Information, Load Characteristics Models.<br />

• Models can be specified for the entire case (system), or individual<br />

areas, zones, owners, buses or loads.<br />

• To insert a load model, right-click and select “Insert”<br />

to display the Load Characteristic Information dialog.<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

16


Complex Load Example<br />

• Add a CLOD model to the system<br />

– Go to the Load Characteristic page<br />

in Model Explorer<br />

– Right-click and choose “insert” to<br />

open the Load Characteristic<br />

information dialog<br />

• In the dialog, click “System” in the<br />

Element Type box to apply the<br />

load model to all buses in the<br />

system<br />

• Click “Insert” to select the model<br />

type. Use CLOD (see [1]), which<br />

models the load as a combination of<br />

large and small induction motors,<br />

constant power and discharge<br />

lighting loads<br />

Applies at the system level<br />

Insert a CLOD model<br />

[1] J.A. Diaz de Leon II, B. Kehrli, “The <strong>Modeling</strong> Requirements for Short-Term Voltage Stability Studies,” Power Systems<br />

Conference and Exposition (PSCE), Atlanta, GA, October, 2006, pp. 582-588.<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

17


Complex Load Example<br />

0.151<br />

0.151<br />

0.15<br />

0.15<br />

0.149<br />

0.149<br />

0.148<br />

0.148<br />

0.147<br />

0.147<br />

0.146<br />

0.146<br />

0.145<br />

0.145<br />

0.144<br />

0.144<br />

0.143<br />

0.143<br />

0.142<br />

0.142<br />

0.141<br />

0.141<br />

0.14<br />

0.14<br />

0.139<br />

• The case with these settings is wscc_9bus_Type3WTG_CLOD<br />

• Run the simulation<br />

• Compare the plots obtained with and without the CLOD load<br />

model<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

States of Governor\<strong>Turbine</strong> Pow er_Gen '1' '1'<br />

Plots after inserting system-level CLOD model<br />

16<br />

17<br />

18<br />

19<br />

20<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0.7<br />

0.65<br />

0.6<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0<br />

1<br />

2<br />

<br />

<br />

<br />

3<br />

4<br />

5<br />

6<br />

V (pu)_Bus '1' <br />

V (pu)_Bus '5' <br />

V (pu)_Bus '9'<br />

7<br />

8<br />

9<br />

10<br />

V (pu)_Bus '2' <br />

V (pu)_Bus '6' <br />

11<br />

12<br />

13<br />

14<br />

V (pu)_Bus '3' <br />

V (pu)_Bus '7' <br />

15<br />

16<br />

17<br />

V (pu)_Bus '4'<br />

V (pu)_Bus '8'<br />

18<br />

19<br />

20<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG_CLOD<br />

18


Complex Load Example<br />

• On the Simulation page, increase the time<br />

for when the line is opened from 1.12<br />

seconds to 1.155 seconds<br />

• Open the Events tab on the Results page<br />

• The Transient Contingency events are<br />

there, but there are also under voltage<br />

load trip events present<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

1<br />

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

V (pu)_Bus Bus1 V (pu)_Bus Bus 2 V (pu)_Bus Bus 3<br />

V (pu)_Bus Bus 4 V (pu)_Bus Bus 5 V (pu)_Bus Bus 6<br />

V (pu)_Bus Bus 7 V (pu)_Bus Bus 8 V (pu)_Bus Bus 9<br />

19<br />

20<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG_CLOD<br />

19


Complex Load Example<br />

• In the <strong>PowerWorld</strong> CLOD model, under-voltage motor tripping may be<br />

set by the following parameters<br />

– Vi = voltage at which trip will occur (default = 0.75 pu)<br />

– Ti (cycles) = length of time voltage needs to be below Vi before trip will occur<br />

• In the example, under voltage trips occurred at bus 5 and bus 8 when<br />

the fault clearing time was increased to 1.155<br />

• Verify that increasing the clearing time further to 1.2 causes additional<br />

under-voltage trips of loads at buses 6, and an over-frequency trip of<br />

Generator 2<br />

Mechanical Power (MW)<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0<br />

1<br />

2<br />

3<br />

cleared at 1.155 seconds<br />

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

Time (Seconds)<br />

Generator<br />

Pmech<br />

Mechanical Power (MW)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

cleared at 1.2 seconds<br />

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19<br />

Time (Seconds)<br />

20<br />

Mech Input_Gen Bus 2 #1 Mech Input_Gen Bus 3 #1 Mech Input_Gen Bus1 #1<br />

Mech Input_Gen Bus 2 #1 Mech Input_Gen Bus 3 #1 Mech Input_Gen Bus1 #1<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG_CLOD<br />

20


Complex Load Example<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

Plots when fault is cleared at 1.2<br />

seconds<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Generator<br />

exciter states<br />

9<br />

States of Exciter\EField_Gen Bus1 #1 States of Exciter\Sensed Vt_Gen Bus1 #1<br />

States of Exciter\VR_Gen Bus1 #1 States of Exciter\VF_Gen Bus1 #1<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

Large and Small Induction Motor Loads<br />

experience under voltage trips at buses 5,6,<br />

and 8 at about 2 seconds after the line opens<br />

Generator 2 opens due to over<br />

frequency at 4.2 seconds after the line<br />

recloses<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Voltages<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

V (pu)_Bus Bus1 V (pu)_Bus Bus 2 V (pu)_Bus Bus 3<br />

V (pu)_Bus Bus 4 V (pu)_Bus Bus 5 V (pu)_Bus Bus 6<br />

V (pu)_Bus Bus 7 V (pu)_Bus Bus 8 V (pu)_Bus Bus 9<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

wscc_9bus_Type3WTG_CLOD<br />

21


Complex Load Example<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

• CLOD model under-voltage tripping can be turned off by setting its<br />

parameter Vi to zero<br />

• Re-open the CLOD dialog, and set Vi to zero<br />

• Run the simulation, clearing<br />

the fault at 1.2 seconds<br />

• Compare the plots<br />

1<br />

2<br />

3<br />

V (pu)_Bus Bus1 V (pu)_Bus Bus 2 V (pu)_Bus Bus 3<br />

V (pu)_Bus Bus 4 V (pu)_Bus Bus 5 V (pu)_Bus Bus 6<br />

V (pu)_Bus Bus 7 V (pu)_Bus Bus 8 V (pu)_Bus Bus 9<br />

Voltages with undervoltage<br />

tripping turned<br />

OFF<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 80<br />

70<br />

V (pu)_Bus Bus1 V (pu)_Bus Bus 2 V (pu)_Bus Bus 3<br />

60<br />

50<br />

V (pu)_Bus Bus 4 V (pu)_Bus Bus 5 V (pu)_Bus Bus 6<br />

40<br />

V (pu)_Bus Bus 7 V (pu)_Bus Bus 8 V (pu)_Bus Bus 9<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

0 1<br />

Voltages with undervoltage<br />

tripping turned<br />

ON (default)<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

Mechanical Power (MW)<br />

Set to zero to turn off<br />

under-voltage tripping<br />

Time (Seconds)<br />

Mech Input_Gen Bus 2 #1 Mech Input_Gen Bus 3 #1<br />

Mech Input_Gen Bus1 #1<br />

wscc_9bus_Type3WTG_CLOD<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9 10 11 12 13 14 15 16 17 18 19 20<br />

22


Type 4 <strong>Wind</strong> Models<br />

• Completely asynchronous by design, called a “full converter<br />

model”<br />

• The wind turbine’s output is completely decoupled from the<br />

network using an AC-DC-AC converter<br />

• This decoupling allows considerable freedom in selecting<br />

what type of electric machine is used<br />

– Machine could be a conventional synchronous generator,<br />

permanent magnet synchronous generator, or squirrel cage<br />

induction machine<br />

– No electrical coupling with the turbine dynamics<br />

• Represented as a VSC, like Type 3, but with I p and I q as direct<br />

control variables and without effective reactance<br />

• Modeled<br />

– Machine/Exciter combination WT4G1/WT4E1 (PSSE)<br />

T12: <strong>Wind</strong> <strong>Turbine</strong><br />

– Machine/Exciter/Governor WT4G, WT4E, and WT4T (PSLF)<br />

© 2012 <strong>PowerWorld</strong> Corporation<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!