02.04.2015 Views

Bivariate or joint probability distributions

Bivariate or joint probability distributions

Bivariate or joint probability distributions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.13 Expectations and variances<br />

8<br />

Discrete random variables<br />

r<br />

r<br />

r<br />

r<br />

( ) = ∑ ∑ ( , ) = ∑ x ∑ p( x , y)<br />

= x p<br />

X ( x)<br />

E X x p x y<br />

x<br />

y<br />

x<br />

r<br />

r<br />

r<br />

r<br />

( ) = ∑ ∑ ( , ) = ∑ y ∑ p( x , y)<br />

= y pY<br />

( y)<br />

E Y y p x y<br />

Examples<br />

x<br />

y<br />

y<br />

y<br />

x<br />

∑ r =1,2.....<br />

x<br />

∑ r =1,2....<br />

y<br />

2 2<br />

Hence Var(X) = E( X ) − ( E( X ))<br />

, Var(Y) = E( Y ) ( E( Y<br />

)<br />

Continuous random variables<br />

∞<br />

∞<br />

r r r<br />

( ) ∫ ∫ ( ) ∫ X ( )<br />

− etc.<br />

2 2<br />

E X = x f x , y dx dy = x f x dx r = 1, 2 .....<br />

−∞ −∞<br />

∞<br />

∞<br />

r r r<br />

( ) ∫ ∫ ( ) ∫ Y ( )<br />

E Y = y f x , y dx dy = y f y dy r = 1, 2 .....<br />

Examples<br />

−∞ −∞<br />

∞<br />

−∞<br />

∞<br />

−∞<br />

3.14 Expectation of a function of the r.v.'s X and Y<br />

Continuous X and Y<br />

Discrete X and Y<br />

∞<br />

∞<br />

∫ ∫<br />

E[ g( X, Y)] = g( x, y) f ( x, y)<br />

dxdy<br />

−∞ −∞<br />

∞<br />

∞<br />

e . g . ⎡<br />

E X ⎤ x<br />

⎣<br />

⎢ Y ⎦<br />

⎥ = ∫ ∫<br />

y f ( x, y)<br />

dxdy<br />

E[XY] =<br />

−∞ −∞<br />

∞<br />

∞<br />

∫ ∫<br />

−∞ −∞<br />

xy f ( x , y ) dxdy .<br />

3.15 Covariance and c<strong>or</strong>relation<br />

Covariance of X and Y is defined as follows : Cov (X,Y) = σ XY<br />

= E(XY) - E(X)E(Y).<br />

Notes<br />

(a) If the random variables increase together <strong>or</strong> decrease together, then the covariance<br />

will be positive, whereas if one random variable increases and the other variable<br />

decreases and vice-versa, then the covariance will be negative.<br />

(b) If X and Y are independent r.v's, then E(XY) = E(X)E(Y) so cov(X, Y) = 0.<br />

However<br />

if cov(X,Y) = 0, it does not follow that X and Y are independent unless X and Y are

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!