10.06.2015 Views

HiSIM-SOI - TechConnect World

HiSIM-SOI - TechConnect World

HiSIM-SOI - TechConnect World

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Complete Surface-Potential Modeling Approach<br />

Implemented in the <strong>HiSIM</strong> Compact Model Family<br />

for Any MOSFET Type<br />

WCM in Boston<br />

15. June, 2011<br />

M. Miura-Mattausch, M. Miyake, H. Kikuchihara, U. Feldmann and H. J. Mattausch<br />

<strong>HiSIM</strong> Team, Hiroshima University<br />

<strong>HiSIM</strong> 1


Basic Device Equations<br />

s<br />

• Gradual-Channel Approximation<br />

• Charge-Sheet Approximation<br />

reduced to surface potential φ s<br />

<strong>HiSIM</strong> 2


Property of Surface-Potential Model<br />

Q(φ)<br />

=<br />

ν = μ E: velocity<br />

: mobility<br />

The surface potential consistently determines charges,<br />

capacitances and currents under all operating conditions.<br />

<strong>HiSIM</strong> 3


Relationship among Device Properties<br />

(at drain side)<br />

(at source side)<br />

<strong>HiSIM</strong> 4


Specific Feature of Surface-potential Model<br />

one equation for all bias conditions<br />

<strong>HiSIM</strong> 5


Model Extraction for 45nm Technology<br />

W g /L g =2μm/200nm<br />

W g /L g =2μm/40nm<br />

Measurement<br />

<strong>HiSIM</strong>2<br />

one model for any device sizes without binning<br />

<strong>HiSIM</strong> 6


Current Derivatives for 45nm Technology<br />

Measurement<br />

<strong>HiSIM</strong><br />

W g /L g =<br />

2μm/40nm<br />

Beyond the 45nm generation nonphysical effects<br />

are getting obvious.<br />

<strong>HiSIM</strong> 7


Universal Mobility<br />

V ds =0.1V<br />

impurity concentration<br />

carrier concentration<br />

carrier mobility<br />

<strong>HiSIM</strong> 8


Requirements for RF Applications<br />

Harmonic Distortions<br />

Non-Quasi-Static Effect<br />

Noise Characteristics<br />

<strong>HiSIM</strong> 9


Feature of Potential-Based Model<br />

Current Equation: I = qnμE<br />

All physical quantities are function of surface potentials.<br />

Solution of Poisson’s Equation<br />

Important RF characteristics are originated by<br />

the potential distribution along the channel.<br />

I-V characteristics reflect all important RF properties.<br />

Accurate parameter extraction for I-V characteristics<br />

is important.<br />

S. Matsumoto et al., IEIEC T E, E88-C, p. 247, 2005.<br />

S. Hosokawa et al., Ext. Abs. SSDM, pp. 20, 2003.<br />

M. Miura-Mattausch et al., IEEE TED, 2006.<br />

<strong>HiSIM</strong> 10


Descendant of MOSFET<br />

MG-MOSFET<br />

SOTB-MOSFET<br />

TFT<br />

<strong>SOI</strong>-MOSFET<br />

MOSFET<br />

HV-MOSFET<br />

MOS-Varactor<br />

IGBT<br />

<strong>HiSIM</strong> 11


<strong>HiSIM</strong> Family<br />

Bulk-MOSFET<br />

<strong>HiSIM</strong>2<br />

High-Voltage MOSFET<br />

<strong>HiSIM</strong>_HV<br />

<strong>SOI</strong> MOSFET<br />

<strong>HiSIM</strong>-<strong>SOI</strong><br />

Thin-Film Transistor<br />

Double-Gate MOSFET<br />

Insulated-Gate Bipolar Transistor<br />

<strong>HiSIM</strong>-TFT<br />

<strong>HiSIM</strong>-DG<br />

<strong>HiSIM</strong>-IGBT<br />

<strong>HiSIM</strong><br />

12


<strong>SOI</strong>-MOSFET Modeling<br />

many possible conditions<br />

Si<br />

Si substrate<br />

<strong>HiSIM</strong><br />

13


Poisson’s Equation + Gauss’s Law<br />

V<br />

φ<br />

φ<br />

gs fb s,<strong>SOI</strong><br />

b,<strong>SOI</strong><br />

s,<strong>SOI</strong><br />

Q+Q + Q + Q<br />

- V = φ -<br />

CFOX<br />

Qs,bulk<br />

= φs,bulk<br />

-<br />

CBOX<br />

1<br />

Q<br />

s,bulk<br />

+ Qdep<br />

= φ<br />

2<br />

b,<strong>SOI</strong><br />

-<br />

C<br />

i dep b,<strong>SOI</strong> s,bulk<br />

<strong>SOI</strong><br />

Three surface potentials are solved<br />

simultaneously by iteration.<br />

Q b,<strong>SOI</strong><br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

Calculation results<br />

<strong>HiSIM</strong><br />

14


Smooth Transition among Conditions<br />

T <strong>SOI</strong> T BOX Conditi<br />

on<br />

Device1 150 110 PD<br />

Device2 50 110 DD<br />

Device3 50 50 DD<br />

Device4 25 110 FD<br />

<strong>HiSIM</strong><br />

15


C-V Characteristics<br />

T <strong>SOI</strong> =150nm<br />

T BOX =110nm<br />

: <strong>HiSIM</strong>-<strong>SOI</strong><br />

: 2D-Device Sim.<br />

T <strong>SOI</strong> =50nm<br />

T BOX =110nm<br />

T <strong>SOI</strong> =50nm<br />

T BOX =50nm<br />

DEVICE1<br />

DEVICE2<br />

T <strong>SOI</strong> =25nm<br />

T BOX =110nm<br />

DEVICE3<br />

DEVICE4<br />

<strong>HiSIM</strong><br />

16


Potential Distribution in Thin-Body MOSFET<br />

device surface<br />

insulator<br />

Back surface potential is strongly dependent on T <strong>SOI</strong> .<br />

Consistent solution of Poisson’s equation<br />

<strong>HiSIM</strong><br />

17


Device 4: Thin-Body <strong>SOI</strong>-MOSFET<br />

back-gate bias V bs dependence<br />

V bs<br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

<strong>HiSIM</strong><br />

18


Floating-Body Effect<br />

φ b.<strong>SOI</strong> is unstable.<br />

symbol: 2D-Sim.<br />

line: <strong>HiSIM</strong>-<strong>SOI</strong><br />

<strong>SOI</strong><br />

bulk<br />

φ s.bulk<br />

φ b.<strong>SOI</strong><br />

φ s.<strong>SOI</strong><br />

BOX<br />

φ b.<strong>SOI</strong> reduction change from FD to PD<br />

<strong>HiSIM</strong><br />

19


Charge Accumulation<br />

Impact Ionization:<br />

• Include accumulation charge in the Poisson equation<br />

• Increase the surface potential φ s0.<strong>SOI</strong><br />

• Increase the inversion charge Q i according to V ds increase<br />

<strong>HiSIM</strong><br />

20


History Effect<br />

Transient Characteristics of the Floating-Body Effect<br />

Τ d : Time constant of Q h accumulation<br />

T d<br />

H. Toda et al., SSDM 2010.<br />

<strong>HiSIM</strong><br />

21


I d -V d Comparison with Measurements<br />

gds gds’ gds’’<br />

V sub = 0.0V V sub = 0.0V V sub = 0.0V V sub = 0.0V<br />

V sub = -1.5V V sub = -1.5V V sub = -1.5V V sub = -1.5V<br />

measurement<br />

<strong>HiSIM</strong>-<strong>SOI</strong><br />

<strong>HiSIM</strong><br />

22


I d -V d Characteristics as a function of N <strong>SOI</strong><br />

W g =0.25mm, L g =0.15mm<br />

N <strong>SOI</strong> (cm -3 ) = 1.0e16 2.0e16 5.0e16<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Vds<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

Ids<br />

1.0e17 2.0e17 5.0e17<br />

Ids<br />

Ids<br />

1.0e18 2.0e18 5.0e18<br />

Vds<br />

Vds<br />

Vds<br />

enhanced floating body effect with increased N <strong>SOI</strong><br />

<strong>HiSIM</strong> 23


Scalability Tests<br />

V th vs. N <strong>SOI</strong> for various V bs<br />

0.6<br />

V ds =0.05V, W g =10μm, L g =0.15 μm<br />

Threshold Voltage (V)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

Vsub = 0 to -3V step -1.0V<br />

-0.4<br />

1.0e16 1.0e17 1.0e18 1.0e19<br />

N <strong>SOI</strong> (cm -3 )<br />

automatic FD PD shift<br />

<strong>HiSIM</strong><br />

24


<strong>HiSIM</strong>-<strong>SOI</strong><br />

- Considering all possible induced charges in the Poisson equation<br />

- Solving the Poisson equation iteratively<br />

- Deriving accurate analytical solution as initial values<br />

Solving the Poisson equation in a consistent way is<br />

only a possibility to model all different structures and<br />

conditions within one model framework.<br />

<strong>HiSIM</strong><br />

25


carrier concentration<br />

T si =10nm<br />

gate<br />

gate<br />

<strong>HiSIM</strong>-DG<br />

V gs =1V<br />

V ds =0V<br />

T si<br />

T si =20nm<br />

gate<br />

gate<br />

T si =40nm<br />

gate<br />

gate<br />

T si<br />

Body potential is floating.<br />

The floating body potential makes modeling difficult.<br />

<strong>HiSIM</strong> 26


Potential Dependence on T si and N sub<br />

N sub<br />

T Si<br />

φ s0 (V)<br />

φ s0 (V)<br />

<strong>HiSIM</strong> 27


C-V Characteristics<br />

Reduction of T si has only a small influence<br />

on the capacitance characteristics.<br />

<strong>HiSIM</strong> 28


Carrier Traps in TFT<br />

Source<br />

Gate<br />

Drain<br />

1.E-05<br />

Trap density<br />

small<br />

x<br />

y<br />

φ S0<br />

Poly-Si<br />

φ SL<br />

Id(A)<br />

1.E-07<br />

1.E-09<br />

large<br />

φ b0<br />

Display Substrate<br />

(Insulator)<br />

φ bL<br />

1.E-11<br />

Traps<br />

1.E-13<br />

-2 -1 0 1 2 3 4<br />

Vg(V)<br />

<strong>HiSIM</strong><br />

29


Modeling of Trap Density<br />

Grain Boundaries<br />

Poly-Si<br />

film<br />

Traps uniformly distributed<br />

in crystal Si<br />

Simplified Model for Density of States<br />

Log(Density of States)<br />

Tail States<br />

Donor-type<br />

Acceptor-type<br />

Log(Density of States)<br />

Donor-type<br />

⎛ EV<br />

− E<br />

g<br />

D<br />

E = gC1<br />

exp⎜<br />

⎝ Es<br />

( ) ⎟<br />

⎠<br />

⎞<br />

Acceptor-type<br />

⎛ E − EC<br />

⎞<br />

( E) = g exp ⎟<br />

⎠<br />

g<br />

A<br />

C1<br />

⎜<br />

⎝<br />

Es<br />

E V<br />

Deep States<br />

E C<br />

E V<br />

E C<br />

Add into the Poisson equation<br />

<strong>HiSIM</strong><br />

30


I-V characteristics<br />

6.0<br />

measurements<br />

simulations<br />

L=2μm<br />

1.E+00<br />

Ids(a.u.)<br />

4.0<br />

2.0<br />

L=2μm<br />

Ids(a.u.)<br />

1.E-02<br />

1.E-04<br />

1.E-06<br />

1.E-08<br />

measurements<br />

simulations<br />

0.0<br />

0 1 Vds(V) 2 3<br />

1.E-10<br />

-5 -3 -1 1 3 5<br />

Vgs(V)<br />

Ids(a.u.)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

measurements<br />

simulations<br />

L=0.5μm<br />

Ids(a.u.)<br />

L=0.5μm<br />

1.E+00<br />

1.E-02<br />

1.E-04<br />

1.E-06<br />

1.E-08<br />

measurements<br />

simulations<br />

0.0<br />

0 1 Vds(V) 2 3<br />

1.E-10<br />

-5 -3 -1 1 3 5<br />

Vgs(V)<br />

S. Miyano et al., Proc. SISPAD, 2008.<br />

<strong>HiSIM</strong><br />

31


<strong>HiSIM</strong>-HV<br />

a few hundred volts > Bias Range > a few volts<br />

modeling<br />

MOSFET + Resistor<br />

<strong>HiSIM</strong> 32


Potential Drop in Drift<br />

symbol: <strong>HiSIM</strong>‐HV<br />

line: 2D‐Device<br />

N drift =10 17 cm ‐3 : low resistive<br />

N drift =10 16 cm ‐3 : high resistive<br />

: without resistance<br />

<strong>HiSIM</strong><br />

33


Specific Feature of HV MOSFET<br />

Rd = f(V gs , V ddp , model parameters)<br />

<strong>HiSIM</strong><br />

34


Current-Voltage Characteristics<br />

Relatively Low Breakdown Voltage<br />

Relatively High Breakdown Voltage<br />

Y. Oritsuki et al., IEEE TED, Oct. 2010; A. Tanaka et al, July, 2011.<br />

<strong>HiSIM</strong> 35


<strong>HiSIM</strong>-IGBT: Bias Range > 500V<br />

Schematic structure of a modern trench-IGBT<br />

Jn<br />

n - (base)<br />

Simplified circuit diagram of the <strong>HiSIM</strong>-IGBT model<br />

Consistent potential extension in <strong>HiSIM</strong>-IGBT is achieved by<br />

calculation based on Kirchhoff’s law.<br />

<strong>HiSIM</strong> 36


N base Dependence of I-V Characteristics<br />

M. Miyake et al., IEEE PESC, pp. 998-1003, June 2008.<br />

<strong>HiSIM</strong> 37


Summary<br />

<strong>HiSIM</strong> is a compact surface-potential-based MOSFET with<br />

a minimum number of approximations, due to its iterative<br />

surface-potential determination.<br />

<strong>HiSIM</strong> allows to preserve a consistent potential-based<br />

modeling in its extension to other integrated-device<br />

structures containing a MOSFET core.<br />

A compact-model family covering all integrated devices<br />

containing a MOSFET core and sharing the same modeling<br />

concepts could be developed.<br />

<strong>HiSIM</strong> 38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!