11.07.2015 Views

Light-Front Holography and Novel Collider Physics

Light-Front Holography and Novel Collider Physics

Light-Front Holography and Novel Collider Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>:A New Approximation to QCDInicio Acerca de RRR en Chile Como AsExploring QCD, Cambridge, AugustRRR 20-24, 2007en ChileHigh Energy <strong>Physics</strong> in the RRR en Chile LHC > Sedes Era > UTFSMThird International WorkshopStan BrodskyUTFSMUniversidad Tecnica Federico Santa MariaValparaiso, Chile, January 4-8, 2010


H QEDQED atoms: positronium<strong>and</strong> muonium(H 0 + H int ) |Ψ >= E |Ψ > Coupled Fock states[− ∆22m red+ V eff ( S, r)] ψ(r) = E ψ(r)Effective two-particle equationIncludes Lamb Shift, quantum corrections[− 1 d 22m red dr 2 + 1 ( + 1)2m red r 2+ V eff (r, S, )] ψ(r) = E ψ(r)Spherical Basisr, θ, φV eff → V C (r) = − α rSemiclassical first approximation to QEDCoulomb potentialBohr Spectrum


<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong> <strong>and</strong> Non-Perturbative QCDGoal:Use AdS/QCD duality to constructa first approximation to QCDHadron Spectrum<strong>Light</strong>-<strong>Front</strong> Wavefunctions,Form Factors, DVCS, etcGeneral remarks about orbital angular momentumΨ n (x i , k ⊥i , λ i )Exploring QCD, Cambridge, August 20-24, 2007 Page 9in collaboration withGuy de Teramond <strong>and</strong> Alex<strong>and</strong>re DeurCentral problem for strongly-coupled ni=1(x iR⊥ + b ⊥i ) = R gauge theories⊥Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD4Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


H QEDHQCDLFQCD Meson Spectrum(H 0 LF + H I LF )|Ψ >= M 2 |Ψ >Coupled Fock states[ k 2 ⊥ + m2x(1 − x) + V LFeff ] ψ LF (x, k ⊥ ) = M 2 ψ LF (x, k ⊥ )Effective two-particle equation[− d2 −1 + 4L2+dζ2 ζ 2 = x(1 − x)b 2 ⊥Azimuthal Basisζ 2 + U(ζ, S, L)] ψ LF (ζ) = M 2 ψ LF (ζ) ζ, φU(ζ, S, L) = κ 2 ζ 2 + κ 2 (L + S − 1/2)Semiclassical first approximation to QCDConfining AdS/QCDpotential


• QCD LagrangianL QCD = − 14g 2 Tr (Gµν G µν )+iψD µ γ µ ψ + mψψ• LF Momentum Generators P =(P + ,P − , P ⊥ ) in terms of dynamical fields ψ, A ⊥P − = 1 dx − d 2 x ⊥ ψγ + (i∇ ⊥) 2 + m 22i∂ + ψ + interactionsP + = dx − d 2 x ⊥ ψγ + i∂ + ψP ⊥ = 1 dx − d 2 x ⊥ ψγ + i∇ ⊥ ψ2• LF Hamiltonian P − generates LF time translationsψ(x),P− = i<strong>and</strong> the generators P + <strong>and</strong> P ⊥ are kinematical∂∂x + ψ(x)Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD8Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> Bound State Hamiltonian Equationτ = t + z/c• Construct light-front invariant Hamiltonian for the composite system: H LF = P µ P µ = P − P + −P 2 ⊥H LF | ψ H = M 2 H | ψ H • State |ψ H (P + , P ⊥ ,J z ) is exp<strong>and</strong>ed in multi-particle Fock states | n of the free LF Hamiltonian:⎧|ψ H = |uud ⎪⎨ψ n/H |n, |n = |uudgn⎪⎩ |uudqq ···where k 2 i = m2 i ,k i =(k + i ,k− i , k ⊥i), for each component i• Fock components ψ n/H (x i , k ⊥i , λ z i ) are independent of P + <strong>and</strong> P ⊥ <strong>and</strong> depend only on relativepartonic coordinates: momentum fraction x i = ki + /P + , transverse momentum k ⊥i <strong>and</strong> spin λ z innx i =1, k ⊥i =0.i=1DIS, Form Factors, DVCS, etc. measure proton LFWFPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLAC9Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 9i=1HOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> Wavefunctions: rigorous representation of compositesystems in quantum P field + = Ptheory0 + P zx = k+P + = k0 + k 3P 0 + P 3Fixed τ = t + z/cGeneral remarkmentumx P + , P +i = k+A(σ, ∆ ⊥ ) = 1 i PGeneral2π dζe2 σζ + = k0 +k 3P 0 +P zM(ζ,remarks∆⊥ )x i P + about, x iorbiψ(σ, b P⊥ + kR ⊥i⊥ )⊥P + , P ⊥mentumẑx iR⊥ + b ⊥ix i P + , x iP⊥ + β = dα s(Q 2 )kd ln Q 2 < 0⊥iProcess IndependentL = R × P ni ni=1Direct b⊥i = 0(x ⊥ iP⊥ ζ = Q2 Link to QCD Lagrangian! u+ k ⊥i2p·qLΨnix i = 1n (x i , i = (x iR⊥ + b ⊥i ) × P ẑkx iP⊥ + ⊥i , λ i )k ⊥i i = b ⊥i × k ⊥i L = R × P ni k⊥i = 0 ⊥i = L i − x iR⊥ × P = b ⊥i × PInvariant under L i = (x iR⊥ + boosts! Independent of P b ⊥i ) × P nix i = 1 ni=1(x i R⊥ + b ⊥i ) = R ⊥Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD10Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


y conservation of the z projection ofIn general the light-cone wavefunctions satisfy consAngular Momentum on the <strong>Light</strong>-<strong>Front</strong>ngular momentum:J z =he sum over siz represents the contribution of the intrthe intrinsic spins of the n Fock stateonstituents. The sum over orbital angular momenta l zta lj =j z = −i( kj1 ∂∂ke n−1 relative momenta. 2 − kj2 ∂ )derivesj∂k 1 n-1 orbital from angular momentajThis excludes the contributionibution to the orbital angular momentumue to the motion of the center of mass, which is not an inot WeNonzero an intrinsic canAnomalous property see howMomentthe--> of angularNonzero the hadron.orbitalmomentumangular momentum!sum rulemavefunctions rule Eq. Eqs. (62)(20) is <strong>and</strong> satisfied (23) offor the the QEDPress <strong>and</strong>modelMedia : SLAC National Accelerator LaboratorysysLF <strong>Holography</strong> <strong>and</strong> QCDChile LHCJanuary 8, 2010n∑i=1si z ∑n−1+j=1l z j .11ConservedLF Fock state by Fock State!(62)LF Spin Sum RuleStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


|p,S z >= ∑ Ψ n (x i ,k ⊥i ,λ i )|n;k ,λ ⊥i i >n=3sum over states with n=3, 4, ...constituentsThe <strong>Light</strong> <strong>Front</strong> Fock State WavefunctionsChile LHCJanuary 8, 2010Ψ n (x i ,k ⊥i ,λ i )are boost invariant; they are independent of the hadron’s energy<strong>and</strong> momentum P µ .The light-cone momentum fractionare boost invariant.n∑ik + i = P + ,x i = k+ ip + = k0 i + kz iP 0 + P zn∑ix i = 1,Intrinsic heavy quarksc(x), b(x) at high xn∑ik ⊥ i =0 ⊥ .ep → eπ + nP π/p 30%Violation of Gottfried sum rule¯s(x) = s(x)ū(x) = ¯d(x) Fixed LF timeφ M (x, Q 0 ) ∝ x(1 − x)LF <strong>Holography</strong> <strong>and</strong> QCD12Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


QCD <strong>and</strong> the LF Hadron WavefunctionsAdS/QCD<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>LF Schrodinger . EqnHeavy Quark Fock StatesIntrinsic CharmInitial <strong>and</strong> Final StateRescatteringDDIS, DDIS, T-OddQuark Non-Universal & Flavor StructAntishadowingBaryon ExcitationsGluonic propertiesGeneral remarks about orbital angular momentumDGLAPCoordinate spacerepresentationΨ n (x i , k ⊥i , λ i ) ni=1(x i R⊥ + b ⊥i ) = R ⊥Orbital Angular MomentumSpin, Chiral PropertiesCrewther RelationQuark & Flavor Structurex i R⊥ + b ⊥iHard Exclusive AmplitudesForm FactorsCounting RulesJ=0 Fixed PoleDVCS, GPDs. TMDsLF Overlap, incl ERBLHadronization atAmplitude Level ni b⊥i = 0 ⊥ nix i = 1Nuclear ModificationsBaryon AnomalyColor TransparencyDistribution amplitudeERBL Evolutionφ p (x 1 , x 2 , Q 2 )Baryon Decay


te between the struck <strong>and</strong> spectatorF 2 (q 2 )2M= λi ,c[dx][d 2 k ⊥ ] i ,f i i=1constituents; 2(2π) 3 namely, we i=1A(σ, ∆ ⊥ ) = 1 i12π dζe2 σζ M(ζ,e jaj2 × ∆⊥ )Drell, sjbwhere n denotes the number of constituents in Fock state a ank ⊥j = k ⊥j + (1 − x j )q ⊥ (14) possible {λ1i }, {c i }, <strong>and</strong> {f i } in−q L ψ↑∗ a (x i , k ⊥i, λ i ) ψa(x ↓ i , k ⊥i , λ i ) + 1 state a. The arguments of theq R ψ↓∗ a (x i , k ⊥i, λ i ) ψa(x ↑ i , k ⊥i , λ i ) fint j <strong>and</strong>P + wave, P ⊥ function differentiate between the struck <strong>and</strong> spectator cons,β = 0have [13, 15]xk i ⊥i P + = , kx k ⊥i iP⊥ − x+ i q k ⊥ ⊥i⊥j = k ⊥j + (1 −(15)x j B(0))q ⊥ = 0 FockF 3 (q 2 )2M for the struck[dx][d 2 constituentk ⊥ ] iejjaj2 × <strong>and</strong>re i = j. Note that because of the frame choice q + = 0, onlys of theζlight-front= Q2q R,L = q x ± iq y2p·q Fock states appear [14]. 1 −q L ψ↑∗ a (x i , k ⊥i, λ i ) ψa(x ↓ i , k ⊥i , λ i ) − 1 k ⊥i = k ⊥i − x i q ⊥q R ψ↓∗ a (x i , k ⊥i, λ i ) ψa(x ↑ ψ(x, bi , k ⊥i , λ i ) ⊥ ).ˆx, ŷforplaneeach 6 spectator i, where i = j. Note that because of the frameummationsdiagonalare over all(n xcontributing= n) overlapsFockof thestateslight-fronta <strong>and</strong> struckFockconstituentstates appearcha[Here, as Mearlier, 2 (L) we ∝ L-refrain from including the constituents’ b ⊥ (GeV) color −1 <strong>and</strong> flndence in the arguments of the light-front wave functions.6The phase-sration isIdentifyMust have ∆ z = ±1 to have nonzero F 2 (q 2 z ↔ ζ =)x] [d 2 k ⊥ ] ≡ Chile LHCJanuary 8, 2010i=1λ i ,c i ,f i n dxi d 2 k ⊥i2(2π) 3Same matrix elements appear in Sivers effect-- connection to quark anomalous moments16π 3 δLF <strong>Holography</strong> <strong>and</strong> QCD141 − nnx i δ (2) k ⊥ii=1Press <strong>and</strong> Media : SLAC National Accelerator Laboratoryi=1Stan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS,


Anomalous gravitomagnetic moment B(0)Terayev, Okun, et al: B(0) Must vanish because ofEquivalence Theoremgravitonsum over constituents-Hwang, Schmidt, sjb;Holstein et alB(0) = 0Each Fock StateChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD15Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Calculation of Form Factors in Equal-Time TheoryInstant FormNeed vacuum-induced currentsCalculation of Form Factors in <strong>Light</strong>-<strong>Front</strong> Theory<strong>Front</strong> FormComplete AnswerAbsent zero for forq + q + = 00 zero !!Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD16Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> QCDHeisenberg MatrixFormulationH QCDLFL QCD → H QCDLFPhysical gauge: A + = 0= [ m2 + k⊥2 ] i + HLFintxiLF : Matrix in Fock SpaceH intH QCDLF |Ψ h >= M 2 h|Ψ h >338Eigenvalues <strong>and</strong> Eigensolutions give HadronSpectrum <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> wavefunctionsFig. 6. A few selectedChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD17Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> QCD Features <strong>and</strong> Phenomenology• Hidden color, Intrinsic glue, sea, Color Transparency• <strong>Physics</strong> of spin, orbital angular momentum• Near Conformal Behavior of LFWFs at Short Distances;PQCD constraints• Vanishing anomalous gravitomagnetic moment• Relation between edm <strong>and</strong> anomalous magnetic moment• Cluster Decomposition Theorem for relativistic systems• OPE: DGLAP, ERBL evolution; invariant mass schemeChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD18Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is<strong>Light</strong>-<strong>Front</strong> illustrated QCDin Fig. 2 in terms of the block matrix nS.J. Brodsky et LC al. / <strong>Physics</strong> h =Reports 2 : x , k , λ Hn : x, h 301 H.C. k , λ . Pauli The structure & sjbof thismatrix depends of course H QCD on the way one has arranged the Fock space, see Eq. (3.7). Note that most(1998) h h>of the block matrix elements LF |Ψ h >= M 2vanish due to the natureh|Ψof the h >light-cone 299—486 Discretized interaction <strong>Light</strong>-Cone as defined inHeisenberg Matrix FormulationQuantizationEigenvalues <strong>and</strong> Eigensolutions give Hadron Spectrum <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> wavefunctionsFig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Withineach block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).The single gluon is absent since it cannot be color neutral.Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P in LB-convention.DLCQ: Frame-independent, No fermion doubling; Minkowski Spaceor the DLCQ: instantaneous Periodic BC fermion in xlines − . Discrete use the factor k + ; frame-independent ¼ Fig. 5 or Fig. truncation 6, or the correspoables in Section 4. For the instantaneous boson lines use the factor ¼ .


= 1 − ζ1 ∆ 1 − i∆ 2√ 1 − ζ 2Measily checks that ∑ ni=1 x ′ Press <strong>and</strong> Media : SLAC National Accelerator Laboratoryi = 1<strong>and</strong> ∑ ni=1⃗k⊥i ′ = ⃗0 ⊥ . In Eqs. (39) <strong>and</strong> (40) onChile LHCJanuary 8, 201016π 3ζ 16π δ 1 − x j δ4 ( 1 − ζ )√ E (n→n) (x, ζ,t)Example of LFWF 2representation 1 − ζ j=1j=1n(of) (∏ dx× δ(x i d− 2 ⃗k ⊥ix 1 )ψ(n)( ↑∗ x′n∑i , ⃗k ⊥i ′ , λ ) n)GPDs (n => ↑∑)16π i ψ(n)( 3 δ 1 − x j δ (2) xi ⃗k ⊥j , ⃗k ⊥i , λ i ,1 − ζ1 − ζ H (n→n) (x, ζ,t) −2 n,λ i i=1= ( √ ) 2−n∑∫1 − ζn,λ i= ( √ ) 2−n2M ∑1 − ζE (n→n)(x, ζ,t)1 ∆ 1 − i∆∫2√ E (n→n)(x,∏ n ζ,t)1 − ζ dx i d 2 ⃗k ⊥i= ( √ ) 2−n∑ ∏ n16πdx i d 3 2 ⃗k ⊥i1 − ζ n,λ i i=1 16π 3n,λ i∫16π 3 δLF <strong>Holography</strong> <strong>and</strong> QCD20(1 −) (n∑n)∑j=1 x j δ (2) ⃗k ⊥j j=1⃗k ⊥j) (n∑n)∑x j δ (2) ⃗k ⊥ji=1× δ(x (n)( ↑∗j=1x′i , ⃗k ⊥i ′ , λ ) j=1↓ )× δ(x − x i ψ(n)(xi1 )ψ ↑∗ ) ↓ ψ , ⃗k ⊥i , λ i ,re the where arguments the arguments of theof the final-state wavefunction are are given given by byx ′ 1 = x 1 − ζi=116π 3x 1 ′ = x 1 − ζ1 − ζ , ⃗k ⊥1 ′ = ⃗k ⊥1 − 1 − x 11 − ζ , ⃗k ⊥1 ′ = ⃗k ⊥1 − 1 − x 1∆1 − ζ 1 − ζ ⃗ ⊥ for the struck quark,for the struck quark,x i ′ = x xii ′ = x i1 − ζ , 1 − ζ , ⃗k⃗k ⊥i ′ = ⊥i ′ ⃗k = ⃗k ⊥i +⊥i + x x i1i− ζ∆1 − ζ ⃗ ⃗ (41)∆ ⊥ for the spectators i = 2, ..., n.⊥ for the spectators i = 2, ..., n.over all possible combinations of helicities λ i<strong>and</strong> over all parton numbers nj=1j=1× δ(x − x 1 )ψ(n)( ↑∗ x′i , ⃗k ⊥i ′ , λ ) ↑ )i ψ(n)(xi , ⃗k ⊥i , λ i , (39)16π 3 δ(1 −(n)(x′i , ⃗k ′ ⊥i , λ iDiehl, Hwang, sjb(n)(xi , ⃗k ⊥i , λ i) , (40)One easily checks that ∑ ni=1 xi ′ = 1<strong>and</strong> ∑ ni=1⃗k⊥i ′ = ⃗0 ⊥ . In Eqs. (39) <strong>and</strong> (40) one has tosum over all possible combinations of helicities λ i<strong>and</strong> over all parton numbers n in theFock states. We also imply a sum over all possible ways of numbering Stan theBrodskypartons in then-particle Fock state so that the struck quark has the index i = 1.SLACHOME RESEARCH SCIENTIFIC PROGRAMS


H~Hqq!"#$%&'%()*%+#,%-.+/&"0%1'23%1+0&'2/DIS at !=t=0( x,0,0)' q(x),% q(% x)( x,0,0)' ( q(x),( q(% x)11% 1Form factors (sum rules)~dx H"q#q$ dx)H ( x,!,t)q' F 1 ( t) Dirac f.f.1q$ dx)" E ( x,!,t)# ' F 2 ( t) Pauli f.f.$q( x,!,t)' GA,q(t) ,1$% 1~dx Eq( x,!,t)' GP,q(t)Hq ~ q ~ q, E , H , E ( x,, t)q!Verified using LFWFsDiehl, Hwang, sjbQuark angular momentum (Ji’s sum rule)1q'1% J G =1Jxdx H2 2$% 1" ( x,!,0)& E ( x,!,0)#qqX. Ji, Phy.Rev.Lett.78,610(1997)Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD21Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


J=0 Fixed pole in real <strong>and</strong> virtual Compton scattering• Effective two-photon contact term• Seagull for scalar quarks• Real phaseM = s 0 e 2 qF q (t)γ ∗ (q)γDamashek, Gilman;Close, Gunion, sjbLlanes-Estrada,Szczepaniak, sjb• Independent of Q 2 at fixed tpp• Moment: Related to Feynman-Hellman Theorem• Fundamental test of local gauge theoryQ 2 -independent contribution to Real DVCS amplitudeChile LHCJanuary 8, 2010s 2 dσdt (γ∗ p → γp) = F 2 (t)LF <strong>Holography</strong> <strong>and</strong> QCD22Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


StaticDynamic• Square of Target LFWFs• No Wilson Line• Probability Distributions• Process-Independent• T-even Observables• No Shadowing, Anti-Shadowing• Sum Rules: Momentum <strong>and</strong> J zModified by Rescattering: ISI & FSIContains Wilson Line, PhasesNo Probabilistic InterpretationProcess-Dependent - From CollisionT-Odd (Sivers, Boer-Mulders, etc.)Shadowing, Anti-Shadowing, SaturationSum Rules Not Proven• DGLAP Evolution; mod. at large x DGLAP Evolution• No Diffractive DISHard Pomeron <strong>and</strong> Odderon Diffractive DISHwang,Schmidt, sjb,Mulders, BoerQiu, StermanCollins, QiuPasquini, Xiao,Yuan, sjbGeneral remarks about orbital e angular momentumcurrent2– quark jet!*e –Ψ n (x i , k ⊥i , λ i )Sprotonquarkfinal stateinteractionspectatorsystem11-20018624A06Chile LHCJanuary 8, 2010 ni=1(x i R⊥ + b ⊥i ) = R ⊥LF <strong>Holography</strong> <strong>and</strong> QCD23Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Applications of AdS/CFT to QCDChanges inphysicallength scalemapped toevolution in the5th dimension zin collaboration with Guy de TeramondChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD24Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Application of AdS/CFT to QCDChanges inphysicallength scalemapped toevolution in the5th dimension zString TheoryBottom-UpTop-Down


Conformal Theories are invariant under thePoincare <strong>and</strong> conformal transformations withM µν , P µ , D, K µ ,the generators of Sthe generators of SO(4,2)Analytically continueSO(4,2) has a mathematical representation on AdS51s−M 2 +iMΓChile LHCJanuary 8, 2010Stan Brodskyq 2 →LF <strong>Holography</strong> q 2 + <strong>and</strong> iQCD→ q 2 + iMΓSLAC26Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryHOME RESEARCH SCIENTIFIC PROGRAMS


AdS/CFT: Anti-de Sitter Space / Conformal Field TheoryMaldacena:Map AdS 5 X S 5 to conformal N=4 SUSY• QCD is not conformal; however, it hasmanifestations of a scale-invariant theory: Bjorkenscaling, dimensional counting for hard exclusiveprocesses• Conformal window:α s (Q 2 ) const at small Q 2 .• Use mathematical mapping of the conformal groupSO(4,2) to AdS5 spaceHigh Q 2 from short distancesF π (Q 2 )Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD27Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLAC2 2 2 1HOME RESEARCH SCIENTIFIC PROGRAMS


Conformal Behavior of QCD in InfraredConformal QCD Window in Exclusive ProcessesR fixed point? D-S Equation Alkofer, Fischer, LLanes-Es• Does α s develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,Deur . . .ions: evidence that α s becomes constant <strong>and</strong> not small• Recent lattice simulations: evidence that α s becomes constant <strong>and</strong> is not small in the infraredep-lat/0612009Furui <strong>and</strong> Nakajima, hep-lat/0612009 (Green dashed curve: DSE). curve: DSE)• Phenomenological success of dimensional scaling laws for exclusive processesΑsqChile LHCJanuary 8, 201043.532.521.5dσ/dt ∼ 1/s n−2 , n = n A + n B + n C + n D ,implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies10.5Farrar <strong>and</strong> sjb (1973); Matveev et al. (1973).• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space-0.4-0.2 0 0.2 0.4 0.6 0.8 1Log_10qGeV(hard behavior instead of soft behavior characteristic of strings) Polchinski <strong>and</strong> Strassler (2001).LF <strong>Holography</strong> <strong>and</strong> QCD28Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Deur, Korsch, et al.! s/"1! s,g1/" JLabFitGDH limitpQCD evol. eq.Burkert-IoffeBloch et al.10 -1CornwallGodfrey-IsgurBhagwat et al.Maris-T<strong>and</strong>yLattice QCD1Fischer et al.10 -1DSE gluoncouplings10 -1 1 10 -1 1Q (GeV)Chile LHCJanuary 8, 2010Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )LF <strong>Holography</strong> <strong>and</strong> QCD29Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


IR Conformal Window for QCD• Dyson-Schwinger Analysis:Fixed Point• Evidence from Lattice Gauge Theory• Stability ofChile LHCJanuary 8, 2010A LF <strong>Holography</strong> <strong>and</strong> QCD30− 3QCD gluon coupling has IR• Define coupling from observable: indications of IRfixed point for QCD effective charges• Confined gluons <strong>and</strong> quarks have maximum wavelength:+ · · · +Decoupling of QCD vacuum polarization at small Q 2Π(Q 2 ) →15πα Q 2m 2Π(Q 2 Serber-Uehling) →15π• Justifies application of AdS/CFT in strong-couplingQ 2


Maximal Wavelength of Confined Fields• Colored fields confined to finite domain(x − y) 2 < Λ −2QCD• All perturbative calculations regulated in IR• High momentum calculations unaffected• Bound-state Dyson-Schwinger Equation• Analogous to Bethe’s Lamb Shift CalculationQuark <strong>and</strong> Gluon vacuum polarization insertionsdecouple: IR fixed Point Shrock, sjbJ. D. Bjorken,SLAC-PUB 1053Cargese Lectures 1989Chile LHCJanuary 8, 2010A strictly-perturbative space-time region can be defined as one whichhas the property that any straight-line segment lying entirely within the regionhas an invariant length small compared to the confinement scale(whether or not the segment is spacelike or timelike).LF <strong>Holography</strong> <strong>and</strong> QCD31Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Scale Transformations• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS spaceSO(1, 5)ds 2 = R2z 2 (η µνdx µ dx ν − dz 2 ),x µ → λx µ , z → λz, maps scale transformations into the holographic coordinate z.• AdS mode in z is the extension of the hadron wf into the fifth dimension.invariant measure• Different values of z correspond to different scales at which the hadron is examined.x 2 → λ 2 x 2 ,z → λz.x 2 = x µ x µ : invariant separation between quarks• The AdS boundary at z → 0 correspond to the Q → ∞, UV zero separation limit.Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD32Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACaltech High Energy Seminar, Feb 6, 2006 Page 11HOME RESEARCH SCIENTIFIC PROGRAMS


Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, 2010 Cambridge, August 20-24, 2007 SLAC Page 733HOME RESEARCH SCIENTIFIC PROGRAMS


Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, 2010 Cambridge, August 20-24, 2007 SLAC Page 834HOME RESEARCH SCIENTIFIC PROGRAMS


Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, 2010 Cambridge, August 20-24, 2007 SLAC Page 935HOME RESEARCH SCIENTIFIC PROGRAMS


Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, 2010 Cambridge, August 20-24, 2007 SLAC Page 1036HOME RESEARCH SCIENTIFIC PROGRAMS


• In the “ semi-classical” approximation to QCD with massless quarks <strong>and</strong> no quantum loops the βfunction is zero, <strong>and</strong> the approximate theory is scale <strong>and</strong> conformal invariant.• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS spaceds 2 = R2z 2 (η µνdx µ dx ν − dz 2 ).• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).• x µ → λx µ , z → λz, maps scale transformations into the holographic coordinate z.• Different values of z correspond to different scales at which the hadron is examined: AdS boundary atz → 0 corresponds to the Q → ∞, UV zero separation limit.• There is a maximum separation of quarks <strong>and</strong> a maximum value of z at the IR boundary• Truncated AdS/CFT (Hard-Wall) model: cut-off at z 0 = 1/Λ QCD breaks conformal invariance <strong>and</strong>allows the introduction of the QCD scale (Hard-Wall Model) Polchinski <strong>and</strong> Strassler (2001).• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence canbe obtained (Soft-Wall Model) Karch, Katz, Son <strong>and</strong> Stephanov (2006).Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD37Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>:Map AdS/CFT− d2to 3+1 LF TheoryRelativistic LF radial equation−d 2− d2dζ 2 + 1 − 4L24ζ 2d 2 ζ + V (ζ) dζ 2 + V (ζ) ζ 2 = x(1 − x)b 2 ⊥ .= M 2 φ(ζ)Frame Independent= M 2 φ(ζ)+ U(ζ) φ(ζ) = M 2 φ(ζ)G. de Teramond, sjbChile LHCJanuary 8, 2010J z =xS(1 p z −= x) b ni=1Si z + ⊥n−1LF <strong>Holography</strong> <strong>and</strong> QCD39zx (1 − x) b ⊥z ∆i=1 z i = 1 2ψ(x, b ⊥ ) = ψ(ζ)x (1 − x) b ⊥ψ(x, b ⊥ ) = ψ(ζ)φ(z)U(z) = κ 4 z 2 each + 2κFock 2 (L + State S −ψ(x, 1) b ⊥ ) = ψ(ζ)φ(z)ζ = x(1 soft −wallx) b 2 ⊥φ(z)confining potentialJ z ζ =Press <strong>and</strong> Media : SLAC National Accelerator Laboratoryp = Sq z x(1 −+ Sg z x) b 2 ⊥+ L z zq + L z g = 1 ζ = x(1 − x) b 2 ⊥zStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> Quantization of QCD <strong>and</strong> AdS/CFT• <strong>Light</strong>-front (LF) quantization is the ideal framework to describe hadronicstructure in terms of quarks <strong>and</strong> gluons: simple vacuum structure gives anunambiguous definition of the partonic content of a hadron, exact formulae forform factors, physics of angular momentum of constituents ...• Frame-independent LF Hamiltonian equation: similar structure as AdS EOMP µ P µ |P>=(P − P + − P 2 ⊥)|P >= M 2 |P>• First semiclassical approximation to the bound-state LF Hamiltonianequation in QCD is equivalent to equations of motion in AdS <strong>and</strong> can besystematically improvedGdT <strong>and</strong> Sjb PRL 102, 081601 (2009)Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD40Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


AdS/CFT• Use mapping of conformal group SO(4,2) to AdS5Chile LHCJanuary 8, 20100 < z < z 0z 0 = 1Λ QCDψ(z 0 ) = 0LF <strong>Holography</strong> <strong>and</strong> QCD41ψ(z) ∼ z ∆ at z → 0x 2 µ → λ 2 x 2 µψ(z 0 ) = 00 < z < z 0ψ(z) ∼ z ∆ at z → 00 < z < zψ(z[C F = N 0C 2 ) 0−1 = 02N]Cz 0 = 1ψ(z 0 ) = 00 < z < z 0• Truncated space simulates “bag” boundary conditionsz 0 = 1Λ QCDx 2 µ → λ 2 x 2 µ• Scale Transformations represented by wavefunction in5th dimensionz → λz• Match solutions at small z toz →conformal λztwist ψ(z dimension0 ) = 0of hadron wavefunction at short distances• Hard wall model: Confinement at large distances <strong>and</strong>conformal symmetry in interiorΛ QCDF H (Q 2 ) × [Q 2 ] nH−1 ∼ conψ(z) ∼ z ∆ at z → 0z 0 = 1[Q 2 ] n H−1 F H (Q 2 ) ∼ constaψ(z) ∼ z ∆ at z → 0F H (Q 2 ) ∼ [ 1 Q 2]n H−1ψ(z) ∼ z ∆ at zψ(z) → 0 ∼ z ∆ at z →Press <strong>and</strong> Media : SLAC National Accelerator Laboratoryf d (Q 2 ) ≡Λ QCDStan BrodskySLACF d (Q 2 )Q 2 Q 22HOME RESEARCH SCIENTIFIC PROGRAMS


2 Bosonic ModesBosonic Solutions: Hard Wall Model• Conformal metric: ds 2 = g m dx dx m . x = (x µ , z), g m → R 2 /z 2 η m .• Action for massive scalar modes on AdS d+1 :S[Φ] = 1 2d d+1 x √ g 1 2g m ∂ Φ∂ m Φ − µ 2 Φ 2 ,√ g → (R/z) d+1 .• Equation of motion1 ∂ √√ g gm ∂g ∂x ∂x m Φ + µ 2 Φ = 0.• Factor out dependence along x µ -coordinates , Φ P (x, z) = e −iP ·x Φ(z), P µ P µ = M 2 :z 2 ∂ 2 z − (d − 1)z ∂ z + z 2 M 2 − (µR) 2 Φ(z) = 0.• Solution: Φ(z) → z ∆ as z → 0,Chile LHCJanuary 8, 2010Φ(x, z) = Cz d 2 J∆− dΦ(z) = Cz d/2 J ∆−d/2 (zM)• Normalization2d = 4R d−1 Λ−1(zM) , ∆ = 1 2d + d 2 + 4µ 2 R 2 .∆ = 2 + L (µR) 2 = L 2 − 4QCDLF <strong>Holography</strong> 0 <strong>and</strong> QCD42dzz d−1 Φ2 S=0(z) = 1.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Let Φ(z) = z 3/2 φ(z)AdS Schrodinger Equation for bound stateof two scalar constituents:−d 2dz 2 − 1 − 4L24z 2φ(z) = M 2 φ(z)L: light-front orbital angularmomentumDerived from variation of Action in AdS 5Hard wall model: truncated spaceφ(z = z 0 = 1 Λ c) = 0.Chile LHCJanuary 8, 2010[ − d2dz 2 + V(z)]φ(z) = M2 φ(z)LF <strong>Holography</strong> <strong>and</strong> QCD43Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


AdS/QCDMatch fall-off at small z to conformal twist-dimensionat short distancesO 2+L• Pseudoscalar mesons: O 3+L = ψγ 5 D {1 . . . D m }ψ(Φ µ = 0 gauge).G. F. de Téramond• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z 0 ,Φ(x, z o ) = 0, given by the zeros of Bessel functions β α,k : M α,k = β α,k Λ QCD• Normalizable AdS modes Φ(z)twist∆ = 2 + L544Φ(z)2-20068721A7321S = 0Chile LHCJanuary 8, 2010z ∆γd → npz ∆Φ(z)00-40 1 2 3 4 0 1 2 3 42-2006z8721A8zz 0 =Λ 1QCD-2LF <strong>Holography</strong> <strong>and</strong> QCD442γγ → π + π −γd → npFig: Meson orbital <strong>and</strong> radial AdS modes for Λ QCD = 0.32 GeV.γγ → K + K − γd → npγγ → π + π −s = Ecm 2 = W 2 γγ →= Q 2 π + π −Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACaltech High Energy Seminar, Feb 6, 2006 Page 19z ∆z 0γγ → K + K −HOME RESEARCH SCIENTIFIC PROGRAMS


Φ(z)3242Φ(z)01-22-20078721A1800 1 2 3 4z2-20078721A19-40 1 2 3 4zFig: Orbital <strong>and</strong> radial AdS modes in the hard wall model for Λ QCD = 0.32 GeV .(a)S = 0(b) S = 1f 4(2050)a 4(2040)(GeV 2 )42π (140)b 1(1235)π 2(1670)ω (782)ρ (770)a 0(1450)a 2(1320)f 1(1285)ρ (1700)ρ 3(1690)ω 3(1670)ω (1650)01-20068694A160 2 4Lf 2(1270)a 1(1260)0 2 4Fig: <strong>Light</strong> meson <strong>and</strong> vector meson orbital spectrum Λ QCD = 0.32 GeVPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, Cambridge, 2010 August 20-24, 2007 SLAC45Page 23LHOME RESEARCH SCIENTIFIC PROGRAMS


Son <strong>and</strong> Stephanov (2006)] retain conformal AdS metrics but introduceon the profile of a dilaton background Soft-Wall field ϕ(z) Model =±κ 2 zd Stephanov (2006)] retain conformal AdS 2metrics but introducoft-Wall ModelS = d 4 xdz √ ge ϕ(z) L,ofile of a dilaton background field ϕ(z) =±κ 2 z 2• Soft-wall model [Karch, Katz, Son <strong>and</strong> Stephanov (2006)] retain conformal AdS metrics but intrsmooth cutoff wich depends on the profile of a dilaton background field ϕ(z) =±κ 2 z 2Retain g m conformal ∂ Φ∂ m ΦAdS − µ metrics 2 Φ 2 but introduceS = d 4 xdz √ smooth cutoffd 4 xdz √ ge ϕ(z) L,which depends on the profile of a dilaton ge ϕ(z) background L, fieldfield=L = 1 23 ∓ 2κ 2 z 2 z ∂ z + z 2 M 2 − (µR) 2 Φ(z) =0• Equation of motion for scalar field L = 1 2 g m ∂ Φ∂ m Φ − µ 2 Φ 2= 1 g2m ∂ Φ∂ m Φz 2 ∂z 2 − − µ 2 Φ 23 ∓ 2κ 2 z 2 z ∂ z + z 2 M 2 − (µR) 2 Φ(z) =0dilaton’ ϕ = +κ 2 z 2 . Lowest possible state (µR) 2 = −42 with z 2 (µR) z ∂ 2 ≥−4. z + z 2 M 2 − (µR) 2 Φ(z) =02 =0, Φ(z) ∼ z 2 e −κ2 z 2 , r 2 ∼ 1 κ 2Karch, Katz, Son <strong>and</strong> Stephanov (2006)]• LH holography requires ‘plus dilaton’ ϕ = +κ 2 z 2 . Lowest possible state (µR) 2 = −4M 2 =0, Φ(z) ∼ z 2 e −κ2 zte of two massless quarks with scaling dimension 2: 2 the , r pion2 ∼ 1 κ 2ϕ = +κ 2 z 2 . Lowest possible state (µR) 2 = −4A chiral symmetric bound state of two massless quarks with scaling dimension 2: the pionMassless pion


• Erlich, Karch, Katz, Son, Stephanov • de Teramond, sjbAdS Soft-Wall Schrodinger Equation forbound state of two scalar constituents:−d 2dz 2 − 1 − 4L24z 2+ U(z) φ(z) = M 2 φ(z)U(z) = κ 4 z 2 + 2κ 2 (L + S − 1)Derived from variation of ActionDilaton-Modified AdS 5e Φ(z) = e +κ2 z 2Positive-sign dilatonChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD47Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Guyds 2 = e κ2 z 2 R 2z 2 (dx2 0 − dx 2 1 − dx 2 3 − dx 2 3 − dz 2 )Agrees withKlebanov <strong>and</strong>Maldacena forpositive-signexponent ofdilatonChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD48Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Quark separationincreases with L645Φ(z)Φ(z)02-5(GeV 2 )Pion haszero mass!2-20078721A200 0 4 8z2-20078721A210 4 8zFig: Orbital <strong>and</strong> radial AdS modes in the soft wall model for κ = 0.6 GeV .42(a)π (140)S = 0 (b) S = 0b 1 (1235)π 2 (1670)π (140)π (1300) π (1800)Soft WallModelPion massautomaticallyzero!m q = 008-20078694A190 2 4L0 2 4n<strong>Light</strong> meson orbital (a) <strong>and</strong> radial (b) spectrum for κ = 0.6 GeV.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan Brodskyxploring January QCD, Cambridge, LF <strong>Holography</strong> <strong>and</strong> QCD8, 2010 August 20-24, 2007 SLAC Page 2649HOME RESEARCH SCIENTIFIC PROGRAMS


Higher-Spin Hadrons• Obtain spin-J mode Φ µ1···µ Jwith all indices along 3+1 coordinates from Φ by shifting dimensionsΦ J (z) = zR −JΦ(z)• Substituting in the AdS scalar wave equation for Φz 2 ∂ 2 z − 3−2J − 2κ 2 z 2 z ∂ z + z 2 M 2 − (µR) 2 Φ J =0• Upon substitution z →ζφ J (ζ)∼ζ −3/2+J e κ2 ζ 2 /2 Φ J (ζ)we find the LF wave equation− d2dζ 2 − 1 − 4L24ζ 2 + κ 4 ζ 2 +2κ 2 (L + S − 1) φ µ1···µ J= M 2 φ µ1···µ Jwith (µR) 2 = −(2 − J) 2 + L 2Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD50Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Higher Spin Bosonic Modes SW• Effective LF Schrödinger wave equation− d2− d2dz 2 − 1 − 4L24z 2with eigenvaluesdζ 2 − 1 − 4L24ζ 2M 2 = 2κ 2 (2n + 2L + S).Soft-wall model+ κ 4 z 2 + + κ 4 2κ ζ 2 + 2 (L+ 2κ 2 (L+ S−1)φ (ζ) = M 2 S (z) = Mφ S (ζ)2 φ S (z)Same slope in n <strong>and</strong> L• Compare with Nambu string result (rotating flux tube): M 2 n(L) = 2πσ (n + L + 1/2) .(a)S = 1f 4(2050)a 4(2040)(b)S = 1(GeV 2 )42ω (782)ρ (770)a 2(1320)ρ 3(1690)ω 3(1670)ρ (770)ρ (1450)ρ (1700)ReggeTrajectoriesf 2(1270)05-20068694A200 2 4L0 2 4Vector mesons orbital (a) <strong>and</strong> radial (b) spectrum for κ = 0.54 GeV.• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga <strong>and</strong> Carrion (2005); (SW) Colangelo,De Facio, Jugeau <strong>and</strong> Nicotri( 2007).Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyExploring QCD, Cambridge, August 20-24, 2007 LF <strong>Holography</strong> <strong>and</strong> QCDPage 27January 8, 2010SLAC51nHOME RESEARCH SCIENTIFIC PROGRAMS


AdS space (Fig. ??).Φ(z)Quark separation increases with L6(a)L = 34L = 2Φ(z)Φ(z)Φ(z)50n = 0n = 2(b)2L = 1L = 0-5n = 1n = 32-20078721A2000 4 8zz2-20078721A210 4 8uzzFigure 2: Meson wavefunctions f 4(2050) is AdS space f 4 (2050) in the soft-wall holographic model ofconfinement: (a) orbital modes <strong>and</strong> (b) radial modes. Constituent quark <strong>and</strong> antiquark4fly away from each otherρ 3(1690)ρas the orbital 3 (1690)<strong>and</strong> radial quantum number increases.(GeV 2 )2(a)Hadronicω (782)ω (782)spectrum. Thus AdS/CFT ρ (770) <strong>and</strong> light-front ρ (770) holography provide a quantumρ (770)fmechanical wave equation f 2(1270) formalism 2(1270)for hadron physics. The soft-wall model, in particular,appears to provide 0 a very0useful first approximation to QCD. The solutions of the light-5-20068694A20Lnfront equation 8694A20 determine the L masses of the hadrons, ngiven the total internal spin S, theorbital angular momenta L of the constituents, <strong>and</strong> the index n, the number of nodes ofChile LHCJanuary 8, 2010a 2(1320)ω 3(1670)a 4(2040)4S = 1 ρ (1700) S = 1(GeV 2 )2(a)(b)a 2 (1320)ρ (1450)ρ (1450)0 2 4 0 2 40 2 4 0 2 45-2006ρ (770)ω 3 (1670)a 4 (2040)LF <strong>Holography</strong> <strong>and</strong> QCD52Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACthe wavefunction in ζ. For example, if the total quark spin S is zero, the meson bound(b)ρ (1700)HOME RESEARCH SCIENTIFIC PROGRAMS


igenvaluesM 2 = 2κ 2 (2n + 2L + S).S = 1are with Nambu string result (rotating flux tube):M 2 n(L)(a)f 4(2050)a 4(2040)(b)(GeV 2 )42ω (782)ρ (770)ρ (1700)Vectorρ 3(1690)mesons orbital (a) <strong>and</strong> radial (b) spectrum foa 2(1320)f 2(1270)ω 3(1670)ρ (770)ρ (1450)alls in the bottom-up approach: (HW) Boschi-Filho, Bragacio, Jugeau <strong>and</strong> Nicotri( 2007).05-20068694A200 2 4L0 2 4n


1 −− 2 ++ 3 −− 4 ++ J P CM 2LParent <strong>and</strong> daughter Regge trajectories for the I = 1 ρ-meson family (red)<strong>and</strong> the I = 0 ω-meson family (black) for κ = 0.54 GeVPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDSakharov January Conference, 8, 2010Moscow, May 19, 2009 SLAC54Page 23HOME RESEARCH SCIENTIFIC PROGRAMS


Propagation of external perturbation z i ∝ m ⊥i suppressed = m 2 i + inside k2 ⊥ AdS.At large enough Q ∼ r/R 2 X , the = interaction cū ¯dū occurs in the large-r conformal region. Importacontribution to the FF integral from the boundary near z ∼ 1/Q.F (Q 2 ) I→F = dzα z 3Φ F (z)J(Q, z)Φ I (z)s (Q 2 )J(Q, z), Φ(z)1 J(Q, z)High Q 2fromsmall z ~ 1/QChile LHCJanuary 8, 20100.40.215πα z1 2 3 4 5Consider a specific AdS mode Φ (n) dual to an n partonic Fock state |n. At small z, Φ (scales as Φ (n) ∼ z ∆ n. Thus:Hadron Form Factors from AdS/CFTJ(Q, z) = zQK 1 (zQ)0.8β(Q 2 ) = dα Φ(z)s(Q 2 )0.6 d log Q 2 → 0Π(Q 2 ) →Q 2


Spacelike pion form factor from AdS/CFTF π (q 2 )10.80.6q 2 (GeV 2 )0.4Data CompilationBaldini, Kloe <strong>and</strong> Volmer0.2However J/ψ → ρπChile LHCJanuary 8, 2010F π (q 2 )is largest two-body hadron decay0-10 -8 -6 -4 -2 0q 2 (GeV 2 )Small value for ψ → ρπρSoft Wall: Harmonic Oscillator ConfinementHowever J/ψ → ρπis largest two-body hadron decayHard Wall: Truncated Space ConfinementOne parameter - set by pion decay constantSmall value for ψ → ρπLF <strong>Holography</strong> <strong>and</strong> QCD56de Teramond, sjbSee also: RadyushkinPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Current Matrix Elements in AdS Space (SW)• Propagation of external current inside AdS space described by the AdS wave equationz 2 ∂ 2 z − z 1 + 2κ 2 z 2 ∂ z − Q 2 z 2 J κ (Q, z) = 0.sjb <strong>and</strong> GdTGrigoryan <strong>and</strong> Radyushkin• Solution bulk-to-boundary propagatorJ κ (Q, z) = Γ1 + Q24κ 2where U(a, b, c) is the confluent hypergeometric functionΓ(a)U(a, b, z) = ∞0 Q2U4κ 2 , 0, κ2 z 2 ,e −zt t a−1 (1 + t) b−a−1 dt.Soft WallModel• Form factor in presence of the dilaton background ϕ = κ 2 z 2F (Q 2 ) = R 3 dzz 3 e−κ2 z 2 Φ(z)J κ (Q, z)Φ(z).• For large Q 2 4κ 2J κ (Q, z) → zQK 1 (zQ) = J(Q, z),the external current decouples from the dilaton field.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACExploring QCD, Cambridge, August 20-24, 2007 57Page 34HOME RESEARCH SCIENTIFIC PROGRAMS


Spacelike pion form factor from AdS/CFTF π (q 2 )10.80.6q 2 (GeV 2 )0.4Data CompilationBaldini, Kloe <strong>and</strong> Volmer0.2However J/ψ → ρπChile LHCJanuary 8, 2010F π (q 2 )is largest two-body hadron decay0-10 -8 -6 -4 -2 0q 2 (GeV 2 )Small value for ψ → ρπρSoft Wall: Harmonic Oscillator ConfinementHowever J/ψ → ρπis largest two-body hadron decayHard Wall: Truncated Space ConfinementOne parameter - set by pion decay constantSmall value for ψ → ρπLF <strong>Holography</strong> <strong>and</strong> QCD58de Teramond, sjbSee also: RadyushkinPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


• Analytical continuation to time-like region q 2 → −q 2M ρ = 2κ = 750 MeV(M ρ = 4κ 2 = 750 MeV)• Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).21log IF π (q 2 )I0-1-2-3-10 -5 0 5 10q 2 (GeV 2 )Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACExploring QCD, Cambridge, August 20-24, 2007 59Page 407-20078755A4Space <strong>and</strong> time-like pion form factor for κ = 0.375 GeV in the SW model.• Vector Mesons: Hong, Yoon <strong>and</strong> Strassler (2004); Grigoryan <strong>and</strong> Radyushkin (2007).HOME RESEARCH SCIENTIFIC PROGRAMS


Dressed soft-wall current bring in higherFock states <strong>and</strong> more vector meson polese +e − γ ∗ π + π −Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD60Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist• Form factor for a string mode with scaling dimension τ , Φ τ in the SW modelΓ1+ Q2F (Q 2 4κ) = Γ(τ) 2 .Γ τ + Q24κ 2• For τ = N ,Γ(N + z) = (N − 1 + z)(N − 2 + z) . . . (1 + z)Γ(1 + z).• Form factor expressed as N − 1 product of poles• For large Q 2 :F (Q 2 ) =F (Q 2 ) =F (Q 2 ) =1, N = 2,1 + Q24κ 2 2 , N = 3,1 + Q24κ2 + Q22 4κ 2· · ·1 + Q24κ 2 2 + Q24κ 2 · · ·(N − 1)! , N.N −1+ Q24κ 2 4κF (Q 2 2 (N−1)) → (N − 1)!Q 2 .Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACExploring QCD, Cambridge, August 20-24, 2007 61Page 43HOME RESEARCH SCIENTIFIC PROGRAMS


V, Γ ρ = 400MeV <strong>and</strong> Γ ρ = 300 MeV. The value of |α1 |= 0.38,Spacelike <strong>and</strong> timelike pion form factorto a 15 % admission of a four-quark state.Preliminaryκ = 0.534 GeVQ 2 (GeV 2 )Q 2 (GeV 2 )|π >= ψ q¯q |q¯q > + ψ q¯qq¯q |q¯qq¯q >re 1: pion form factor Q 2 F π (Q 2 ) as a function of Q 2 = −q 2 .Figure 2: Timelike pion form factor log|F π (q 2 )| as a function of q 2 .esΓ ρ = 120 MeV, Γ ρ = 300 MeVdsky <strong>and</strong> G. F. de Teramond, Phys. Rev. D 77, 056007 (2008)07.3859 [hep-ph]].P q¯qq¯q = 15%32Q 2 (GeV 2 )


Holographic Model <strong>Light</strong>-<strong>Front</strong> for QCDRepresentation<strong>Light</strong>-<strong>Front</strong> Wavefunctionsof Two-Body Meson Form FactorSJB <strong>and</strong> GdT in preparation• Drell-Yan-West form factor in the light-cone (two-parton state)F (q 2 ) = q 1e q dx0 d 2 k⊥16π 3 ψ∗ P (x, k ⊥ − xq ⊥ ) ψ P (x, k ⊥ ).q 2 ⊥ = Q 2 = −q 2• Fourrier transform to impact parameter space b ⊥ψ(x, k ⊥ ) = √ 4πd 2 b⊥ e i b ⊥·k ⊥ ψ(x, b⊥ )• Find (b = | b ⊥ |) :F (q 2 ) = 10= 2πdx d 2 b⊥ e ix b ⊥·q ⊥ ψ(x, b) 2 10dx ∞0b db J 0 (bqx) ψ(x, b) 2 ,SoperChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD63Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACaltech High Energy Seminar, Feb 6, 2006 Page 33HOME RESEARCH SCIENTIFIC PROGRAMS


Holographic Mapping of AdS Modes to QCD LFWFs• Integrate Soper formula over angles:F (q 2 ) = 2π 10(1 − x)dxxψ(x, b ⊥ ) = ψ(ζ)ζdζJ 0ζq 1 − xx˜ρ(x, ζ),with ρ(x, ζ) QCD effective transverse charge density.• Transversality variableζ = x1 − xn−1 x j b ⊥j .• Compare AdS <strong>and</strong> QCD expressions of FFs for arbitrary Q using identity:z 1 1 − xdxJ 0ζQ = ζQK 1 (ζQ),xthe solution for J(Q, ζ) = ζQK 1 (ζQ) !0φ(z)ζ =z ∆z 0 = 1Λ QCDx(1 − x) b 2 ⊥j=1


• Electromagnetic form-factor in AdS space:where J(Q 2 , z) = zQK 1 (zQ).F π +(Q 2 ) = R 3 dzz 3 J(Q2 , z) |Φ π +(z)| 2 ,• Use integral representation for J(Q 2 , z)J(Q 2 , z) = 10dx J 0ζQ 1 − xx• Write the AdS electromagnetic form-factor asF π +(Q 2 ) = R 3 10 dz 1 − xdxz 3 J 0 zQx• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q ˜ψ qq/π (x, ζ) 2 = R32π x(1 − x)|Φ π(ζ)| 2ζ 4|Φ π +(z)| 2with ζ = z, 0 ≤ ζ ≤ Λ QCDPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLAC65From String to Things, INT, Seattle, April 10, 2008 Page 29HOME RESEARCH SCIENTIFIC PROGRAMS


ψ(x, b ⊥ ) = ψ(ζ)φ(z)ζ =zChile LHCJanuary 8, 2010x LF(3+1) (1 − x) b AdS 5⊥ψ(x, b ⊥ ) = ψ(ζ)φ(z)x(1 − x) b 2 ⊥x (1 −ζx)= b ⊥ x(1 − x) b 2 ⊥ψ(x, b ⊥ ) = ψ(ζ)zLF <strong>Holography</strong> <strong>and</strong> ∆QCD66ψ(x, b ⊥ ) = ψ(ζφ(z)ζ =x (1 − x) b ⊥x (1 − x) bz⊥ψ(x, b ⊥ ) = ψ(ζ)x (1 − x) b ⊥z ∆ψ(x, b ⊥ ) = ψ(ζ)φ(z)φ(z)ψ(x, b ⊥ ) = ψ(ζ)z ∆z ∆φ(z)ζ x(1 − x) b 2 ⊥z 0 = 1 ψ(x, φ(z)Λ x(1 − x)bζ = x(1 − x) z QCDb 2 ⊥ 0 = 1⊥ ) =φ(ζ)zζ = x(1z 0 =− x) 1b 2 2πζ<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>: Unique ⊥ mapping derived from ζ = x(1 equality − x) b 2z⊥γd → np Λz 0 = 1 ofLF <strong>and</strong> AdS formula QCD for current matrix elements z ∆zzzφ(z)ζ =zz ∆Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan Brodskyγdz 0 →= SLAC1npΛ QCDHOME RESEARCH SCIENTIFIC PROGRAMSz ∆x(1 −(x(1 − xΛ QCDΛ QCD


Gravitational Form Factor in AdS space• Hadronic gravitational form-factor in AdS spacewhere H(Q 2 , z) = 1 2 Q2 z 2 K 2 (zQ)A π (Q 2 ) = R 3 dzz 3 H(Q2 , z) |Φ π (z)| 2 ,Abidin & Carlson• Use integral representation for H(Q 2 , z)H(Q 2 , z) = 2• Write the AdS gravitational form-factor as0 10x dx J 0zQ 1 − x 1 dz 1 − xA π (Q 2 ) = 2R 3 x dxz 3 J 0 zQ |Φ π (z)| 2x• Compare with gravitational form-factor in light-front QCD for arbitrary Q ˜ψ qq/π (x, ζ) 2 = R32π x(1 − x)|Φ π(ζ)| 2ζ 4 ,which is identical to the result obtained from the EM form-factorIdentical to LF <strong>Holography</strong> obtained from electromagnetic currentPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyFrom String to Things, INT, Seattle, April 10, LF 2008 <strong>Holography</strong> <strong>and</strong> QCDPage 31January 8, 2010SLAC67xHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong>:Map AdS/CFT− d2to 3+1 LF TheoryRelativistic LF radial equation!−d 2− d2dζ 2 + 1 − 4L24ζ 2d 2 ζ + V (ζ) dζ 2 + V (ζ) ζ 2 = x(1 − x)b 2 ⊥ .= M 2 φ(ζ)Frame Independent= M 2 φ(ζ)+ U(ζ) φ(ζ) = M 2 φ(ζ)G. de Teramond, sjbChile LHCJanuary 8, 2010J z =xS(1 p z −= x) b ni=1Si z + ⊥n−1LF <strong>Holography</strong> <strong>and</strong> QCD68zx (1 − x) b ⊥z ∆i=1 z i = 1 2ψ(x, b ⊥ ) = ψ(ζ)x (1 − x) b ⊥ψ(x, b ⊥ ) = ψ(ζ)φ(z)U(ζ) = each κ 4 ζ 2 Fock + 2κ 2 State (L + Sψ(x,− b ⊥1)) = ψ(ζ)φ(z)ζ = x(1 − x) b 2 ⊥φ(z) soft wallconfining potential:Jp z ζ == Sq z x(1 −+ Sg z x) b 2 ⊥+ L z zq + L z g = 1 ζ = x(1 − x) b 2 ⊥zPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


H QEDHQCDLFQCD Meson Spectrum(H 0 LF + H I LF )|Ψ >= M 2 |Ψ >Coupled Fock states[ k 2 ⊥ + m2x(1 − x) + V LFeff ] ψ LF (x, k ⊥ ) = M 2 ψ LF (x, k ⊥ )Effective two-particle equation[− d2 −1 + 4L2+dζ2 ζ 2 = x(1 − x)b 2 ⊥Azimuthal Basisζ 2 + U(ζ, S, L)] ψ LF (ζ) = M 2 ψ LF (ζ) ζ, φU(ζ, S, L) = κ 2 ζ 2 + κ 2 (L + S − 1/2)Semiclassical first approximation to QCDConfining AdS/QCDpotential


Derivation of the <strong>Light</strong>-<strong>Front</strong> Radial Schrodinger Equationdirectly from LF QCDM 2 =Changevariables= 10 10M 2 = d 2 k⊥dx16π 3dxx(1 − x) k2⊥x(1 − x)ψ(x, k ⊥ )( ζ, ϕ), ζ = x(1 − x) b ⊥ := 2 + interactionsd 2 b⊥ ψ ∗ (x, b ⊥ )− ∇ 2 b⊥ψ(x, b ⊥ ) + interactions.− d2∇ 2 = 1 ζddζζ d dζdζ φ ∗ (ζ) ζdζ 2 − 1 dζ dζ + L2 φ(ζ)√ζ 2 ζ+ dζ φ ∗ (ζ)U(ζ)φ(ζ)dζ φ ∗ (ζ)− d2dζ 2 − 1 − 4L24ζ 2 + U(ζ) φ(ζ)+ 1ζ 2 ∂ 2∂ϕ 2Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD70Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


• Find (L = |M|)M 2 =dζφ ∗ (ζ) ζ− d2dζ 2 − 1 ζ ddζ + L2 φ(ζ)ζ 2 √ + ζdζφ ∗ (ζ) U(ζ) φ(ζ)where the confining forces from the interaction terms is summed up in the effective potential U(ζ)• Ultra relativistic limit m q → 0 longitudinal modes X(x) decouple <strong>and</strong> LF eigenvalue equationH LF |φ = M 2 |φ is a LF wave equation for φ− d2dζ 2 − 1 − 4L24ζ 2 + U(ζ) φ(ζ) =M 2 φ(ζ) confinementkinetic energy of partons• Effective light-front Schrödinger equation: relativistic, frame-independent <strong>and</strong> analytically tractable• Eigenmodes φ(ζ) determine the hadronic mass spectrum <strong>and</strong> represent the probability amplitude tofind n-massless partons at transverse impact separation ζ within the hadron at equal light-front time• Semiclassical approximation to light-front QCD does not account for particle creation <strong>and</strong> absorptionbut can be implemented in the LF Hamiltonian EOM or by applying the L-S formalismPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyHadron 2009, FSU, Tallahassee, DecemberLF 1, 2009 <strong>Holography</strong> <strong>and</strong> QCDPage 12January 8, 2010SLAC71HOME RESEARCH SCIENTIFIC PROGRAMS


H QEDQED atoms: positronium<strong>and</strong> muonium(H 0 + H int ) |Ψ >= E |Ψ > Coupled Fock states[− ∆22m red+ V eff ( S, r)] ψ(r) = E ψ(r)Effective two-particle equationIncludes Lamb Shift, quantum corrections[− 1 d 22m red dr 2 + 1 ( + 1)2m red r 2+ V eff (r, S, )] ψ(r) = E ψ(r)Spherical Basisr, θ, φV eff → V C (r) = − α rSemiclassical first approximation to QEDCoulomb potentialBohr Spectrum


Example: Pion LFWF• Two parton LFWF bound state:ψ qq/π HW (x, b ⊥) = Λ QCD x(1 − x) √πJ1+L (β L,k ) J L x(1 − x) |b⊥ |β L,k Λ QCD θ b 2 ⊥ ≤Λ−2 QCD,x(1 − x)qq/π (x, b ⊥) = κ L+1 2n!(n + L)! [x(1 − x)] 1 2 +L |b ⊥ | L e − 12 κ2 x(1−x)b 2 ⊥ LLn κ 2 x(1 − x)b 2 ⊥ .ψ SW(a)b0 10 20(b)b0 10 20ψ(x,b)0.100.050.20.10 0000.5x0.5x1.01.07-20078755A1Fig: Ground state pion LFWF in impact space. (a) HW model Λ QCD = 0.32 GeV, (b) SW model κ = 0.375 GeV.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, Cambridge, 2010 August 20-24, 2007 SLAC Page 3773HOME RESEARCH SCIENTIFIC PROGRAMS


• Consider Orbital excitations the AdSconstructed 5 metric: by the L-th application of the raising operatords 2 = R2z 2 (η µν dx µ dx ν − dz 2 ).ds 2 invariant if x µ → λx µ , z → λz,on the ground state:Maps scale transformations to scale changes of the the holographic coordinate z.• In the light-front ζ-representationWe define light-front coordinates x ± = x 0 ± x 3 .Then η µν dx µ dx ν = dx 2 0 − dx 2 3 − dx 2 ⊥ = dx + dx − 2− dxφ ⊥ L (ζ) = ζ|L = C L ζ (−ζ)L 1 d LJ 0 (ζM)ζ dζ<strong>and</strong>a † L = −iΠ La † |L = c L |L + 1.= C L ζJL (ζM) .ds 2 = − R2 (dx 2 z 2 ⊥ + dz 2 ) for x + = 0.• The• ds 2 solutions φ L are solutionsis invariant if dx 2 ⊥ → λ 2 of thedx 2 light-front equation (L = 0, ±1, ±2, · · · )⊥ , <strong>and</strong> z → λz, at equal LF time.− d2dζ 2 − 1 − L24ζ 2 φ(ζ) = M 2 φ(ζ),• Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.• Mode Holographic spectrum connection from boundary of AdSconditions 5 to the light-front. : φ (ζ = 1/Λ QCD ) = 0.<strong>Light</strong>-<strong>Front</strong>/AdS 5 Duality• The Casimir effective for the wave rotation equation groupinSO(2).the two-dim transverse LF plane has the Casimir representation L 2corresponding to the SO(2) rotation group [The Casimir for SO(N) ∼ S N−1 is L(L + N − 2) ].Exploring QCD, Cambridge, August 20-24, 2007 Page 20Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryExploringChile QCD, LHC Cambridge, August 20-24, 2007 Stan Brodsky Page 3LF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLAC74HOME RESEARCH SCIENTIFIC PROGRAMS


Prediction from AdS/CFT: Meson LFWFφ M (x, Q 0 ) ∝0.2ψ(x, k ⊥ )x(1 − x)0.8 0.60.40.2de Teramond, sjbψ M (x, k 2 ⊥ )0.150.10.05“Soft Wall”modelµ RNote couplingµ R = Qk 2 ⊥, x01.31.4ψ(x, k ⊥ ) (GeV)1.5κ = 0.375 GeVmassless quarksµ F = µ Rψ M (x, k ⊥ ) =Q/2 < µ R < 2QChile LHCJanuary 8, 20104πκ x(1 − x) e−k 2 ⊥2κ 2 x(1−x)LF <strong>Holography</strong> <strong>and</strong> QCD75φ M (x, Q 0 ) ∝Connection of Confinement to µ TMDs Rx(1 − x)Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


e get(5)dsThe 2 ¼ R2wave z 2 In this model the function gðxÞ in matching condition (8)dxfunction dx ;(13) does PHYSICAL not consider isREVIEW Dmassive fixed 80, 055014 quarks. gðxÞ ¼1 for large values of Q 2 4 2 . In this(4)(2009)case the current JWe ¼include diagð1; the 1; quark 1; Meson 1 masses 1Þ; wave function following fromtheholographic prescription ðQ 2 ;zÞ decouples from the dilaton field[22]. The examples models considered in this work correspond tosuggested by Brodsky <strong>and</strong> Téramond [24]. First one shouldwhere (6) z is the holographic Alfredocoordinate Vega, 1 Ivan<strong>and</strong> Schmidt, , that 1 Tanja represent Branz, 2 mesons withThomas Gutsche, 2 n ¼ L ¼ 0, although<strong>and</strong> Valery E. Lyubovitskij 2, both*for scalars <strong>and</strong>perform the Fourier transform of (13)different things in both 1 Departamento holographical de Físicamodels y Centroconsidered,vectors we findEstudios Subatómicos, Universidad Técnica Federico Santa María,in one model is Casilla 110-V, Valparaíso, Chile2 Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro <strong>and</strong> Particle <strong>Physics</strong>, Auf der Morgenstelle 14,c ð1Þ the scale parameter4A characterizingtheq 1 q 2ðx; k ? Þ¼1k 2 pffiffiffiffiffip? dilaton field <strong>and</strong> in the other MESON one pthis ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi WAVE characterize FUNCTION D–72076exp the1 ðÞ ¼Tübingen, Germany 1 xð1 (Received xÞ5 June 2009; 2 published 2 1 xð1 10 September xÞ : (14) 1 2 expð1=2Þ 2 1 2 ffiffiffi expð1=2Þ 2 1 2 : (12)FROM HOLOGRAPHIC MODELSPHYSIanomalous dimension as you can see later when we discuss Using Eq. (12) <strong>and</strong> 2009) keeping in mind that 2 ¼ xð1 xÞb 2 ? ,the models considered. We An consider the light-front wave function for the valence quark state of mesons using the AdS/CFTInψa second correspondence, stepas has thebeen quark suggestedmasses by Brodskyare <strong>and</strong> Téramond. introduced Two kinds byc¯c (x, important step is to set up the the meson LFWF of this model iselectromagnetic current as k of wave functions, obtaineddifferent holographic ⊥ )m c =1.5 GeV,κ=0.894 GeVSoft-Wall models, are discussed.extending the kinetic energy of massless quarks with K 0 ¼JðQ 2 k;zÞ¼ Z sffiffiffiffiffiffiffiffiffiffiffiffi~c 2 1DOI: 10.1103/PhysRevD.80.055014PACS numbers: 11.25.Tq, 12.39.Ki, 14.40.Aq, 14.40.Cs?dxgðxÞJxð1 xÞto the case 0Qð1Þq 1 q 2ðx; b ? Þ¼ 1A 1pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1pffiffiffiffixð1 xÞ exp1 x2 2 1 xð1 xÞb2 ?:: (5)0 of massive x quarks:(13)Putting z ¼ <strong>and</strong> comparing In this work meson wave functions obtained in theI. INTRODUCTIONEqs. (1) <strong>and</strong> (3) we getThe wave function (13) doescontext of AdS/CFT ideas [21,22] are studied consideringThe hadronicK 0 !waveK ¼function K þinterms 2 12 ; of quark 2 <strong>and</strong> 12 gluon¼ m2 1two kinds of holographic soft-wall models. First we considerthe more usual model with a quadratic dilatonx þ m2 0.06 not consider massive quarks.We include 21 x : the (15) quark masses following the prescription00.04 0degrees ~ðx; of freedoms Þ ¼ xgðxÞ jðÞj 2plays an important role in QCDprocessNote,predictions. 1the changeFor example, x 250 2 : (6) suggested by Brodsky <strong>and</strong> Téramond [24]. First one shouldperform the Fourier transformproposedknowledgeinof(15) the waveis equivalent[10,14,22]. Thentowethediscuss predictions 0.02 of (13)of 250 a recent modelfunction allows to calculate distribution amplitudes <strong>and</strong> which considers a logarithmic dilaton as suggested byFinally, consideringstructure following functionsthe case change or converselywith in two500(10) thesepartonsprocessesq 01 <strong>and</strong>canq give 2 Einstein’s c ð1Þ4Aq equations for an AdS metric. It also 5001 q 2ðx; k ? Þ¼1k 2 ?pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiexp includesphenomenological restrictions on the wave functions. anomalous dimensions 0.2[13] <strong>and</strong> allows to reproduce thekIn principle the Bethe-Salpeterd approach 2 750 [1] <strong>and</strong> discrete Regge behavior even in the baryonic sector.quantization in the light-front formalism [2] allow to obtainhadronic wave functions butThe work is structured as follows. Sec. II is devoted todin 2 !d2k~practice severald 2 þ 2 12 : 0.4(16)750n¼2 ðx; Þ ¼ j ~c q1 q 2ðx; Þj 21 xð1 xÞ 2 2 1 xð1 xÞ : (14)1ð1 xÞ 2 A 2 ; (7) In a second step the quark masses are introduced byproblemspresent to realize this [3,4]. Thereforethe extraction 0.6of wave functions for scalar/pseudoscalar1000extending thexkinetic energy of massless quarksapproximate mesons using the two holographic models. In Sec. III 1000 with Kwhere 2 ¼ xð1 xÞb wesolutions Finally for hadronic we 2 0 ¼?<strong>and</strong> A is the normalization constant,we obtain the relation between the AdS modes <strong>and</strong>obtain0.8 kbound states are usually considered concentrate 2 ? on the pion wave function discussing the adjustmentof the model parameters. Distribution amplitudesxð1 xÞto the case of massive quarks:using in a first step specific quarks models to obtain thethe meson LFWF ~cvalence quark wave function.<strong>and</strong> parton distributions for the valence state are calculatedThere c ð1Þ4Aq 1 are q 2ðx; several k ? Þ¼1k 2 ? 2 q1q 2ðx; ÞFIG. 12nonperturbative p3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi(color online).approaches exp Wave function cto obtain in both models. In the pion case we consider both currentproperties of distribution amplitudes 1 xð1<strong>and</strong>/or xÞhadronic wave2 2 1 xð1 K<strong>and</strong> constituent xÞc c ðx; k ? Þ2quark 2 : according to section IV. We consider in this0 ! K ¼ K 0 þ 2894 MeV, the value suggested by the Regge slope1formasses. charmonium In Sec. states. IV we The calculate left graph correspoj ~c q1 qfunctions 2ðx; Þj 2 ¼ A 2 xð1from QCD, <strong>and</strong> Eq. xÞgðxÞ jðÞj212 ; 2 12 ¼ m2 1now (26). we have 2 possibility : (8)x þ m2 21 x : (15)to Note, decay constants the change in the simplified case when the valencePress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile include LHC techniques based on the anti–de Sitter space/con-constrained field theory by the (AdS/CFT) probability correspondence. condition LF <strong>Holography</strong> <strong>and</strong> Sec. QCD V.component is dominant.(17) proposed in (15) is equivalent to theConclusions Stan are presented Brodsky infollowing change in (10)Here A isformalJanuary 8, 2010SLACAlthoughNote,ainrigorous the caseQCD dualof massiveis unknown, B. Pion quarksa simple distribution 76the normalization amplitude <strong>and</strong>Zd 2 d 2 21 <strong>and</strong> q 2(7)tion conodes<strong>and</strong>: (8)on1 (9)ence Fockf masslesse case forNext we(Model 1s.Z 1(13)HOME RESEARCH SCIENTIFIC PROGRAMS


Example: Evaluation of QCD Matrix Elements• Pion decay constant f π defined by the matrix element of EW current J + W :with0 ψ u γ + 1 2 (1 − γ 5)ψ d π − = i P + f π√2 π− = |du = √ 1 1 N C√2NCc=1• Find light-front expression (Lepage <strong>and</strong> Brodsky ’80):b † c d↓ d† c u↑ − b† c d↑ d† c u↓ 0 .f π = 2 N C 10dx d 2 k⊥16π 3 ψ qq/π(x, k ⊥ ).• Using relation between AdS modes <strong>and</strong> QCD LFWF in the ζ → 0 limitf π = 1 832 R3/2 limζ→0Φ(ζ)ζ 2 .• Holographic result (Λ QCD =0.22 GeV <strong>and</strong> κ=0.375 GeV from pion FF data): Exp: f π =92.4 MeVf HWπ =√38J 1 (β 0,k ) Λ QCD = 91.7 MeV, f SWπ =√38κ = 81.2 MeV,Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploringJanuaryQCD,8,Cambridge,2010August 20-24, 2007SLAC77Page 42HOME RESEARCH SCIENTIFIC PROGRAMS


Hadron Distribution Amplitudesφ H (x i , Q)x i = 1iP + = P 0 + P zFixed τ = t + z/cβ = dα s(Q 2 )d ln Q 2 < 0ux1 − x• Fundamental gauge invariant non-perturbativex i = k+P + = k0 +k input 3 toP 0 +Phard exclusive processes, heavy hadron decays. Definedzfor Mesons, Baryonsψ(σ, b ⊥ )• Evolution Equations fromPQCD, OPE, Conformal InvarianceLepage, sjbBraun, GardiLepage, sjbk 2 ⊥ < Q 2Efremov, RadyushkinSachrajda, Frishman Lepage, sjb• Compute from valence light-front wavefunction in lightconegauge Qφ M (x, Q) = d 2 k ψq¯q (x, k ⊥ )Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD78Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Second Moment of Pion Distribution Amplitude 1< ξ 2 >=−1dξ ξ 2 φ(ξ)ξ = 1 − 2x< ξ 2 > π = 1/5 = 0.20< ξ 2 > π = 1/4 = 0.25φ asympt ∝ x(1 − x)φ AdS/QCD ∝ x(1 − x)Lattice (I) < ξ 2 > π = 0.28 ± 0.03Lattice (II) < ξ 2 > π = 0.269 ± 0.039Donnellan et al.Braun et al.Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD79Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


ERBL Evolution of Pion Distribution AmplitudeΦx,Q 2 fΠ0.40.30.20.1ERBL evolution at Q 2 2,10,100 GeV 2Q 2 = 2 GeV 2x(1 − x)Q 2 = 100 GeV 2 x(1 − x)0.00 100 200 300 400 5000.5 1.0500 xF. Cao, GdT, sjb (preliminary)Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD80Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


2 Fermionic Modes• Baryons Spectrum in ”bottom-up” holographic QCDGdT <strong>and</strong> <strong>and</strong> Brodsky: Sjb hep-th/0409074, hep-th/0501022.From Nick Evans• Baryons Spectrum in ”bottom-up” holographic QCD• Conformal metric x = (x µ , z):GdT <strong>and</strong> Brodsky: hep-th/0409074, hep-th/0501022.dsBaryons in2Ads/CFT= g m dx dx m• Conformal metric x = (x µ , z):= R2z 2 (η µνdx µ dx ν − dz 2 ).ds 2 = g m dx dx m• Action for massive fermionic modes on AdS d+1 : = R2S[Ψ, Ψ] =• Action for massivefermionic modes• Equation of motion: iΓ D − µ on AdS d+1 :Ψ(x, z) = 0• Equation of motion:d d+1 x √ g Ψ(x, z 2 (η µνdx µ dx ν − dz 2 ).z) iΓ D − µ Ψ(x, z).From Nick EvansS[Ψ, Ψ] = d d+1i zη m Γ ∂ m + d x √ g Ψ(x, z)iΓ D − µ Ψ(x, z).2 Γ z + µR Ψ(x ) = 0.iΓ D − µ Ψ(x, z) = 0 i zη m Γ ∂ m + d 2 Γ z + µR Ψ(x ) = 0.Helmholtz Institut, Bonn, Oct 16, 2007 Page 20Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD81Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


4 Fermionic Modes• Baryons Spectrum in ”bottom-up” holographic QCDGdT <strong>and</strong> Brodsky: hep-th/0409074, hep-th/0501022.Hard-Wall ModelBaryons in Ads/CFT• Conformal metric x = (x µ , z):• Action for massive fermionic modes on AdS 5 :• Equation of motion:• Action for massive fermionic modes on AdS d+1 :From Nick EvansFrom Nick EvansS[Ψ, Ψ] = d 4 xdz √ ds 2 = g m dx dx mg Ψ(x, z) iΓ D − µ Ψ(x, z)= R2iΓ D − µ z 2 (η µνdx µ dx ν − dz 2 ).Ψ(x, z) =0 i zη m Γ ∂ m + d 2 Γ S[Ψ, Ψ] =zd d+1 +xµR √ Ψ(x g Ψ(x,)=0z) iΓ D − µ Ψ(x, z).• Solution (µR = ν +1/2) • Equation of motion: iΓ D − µ Ψ(x, z) = 0Ψ(z) =Cz 5/2 [J ν (zM)u + + J ν+1 (zM)u − ]i zη m Γ ∂ m + d • Hadronic mass spectrum determined from IR boundary conditions 2 Γ z + µR Ψ(x ) = 0.ψ ± (z =1/Λ QCD )=0M + = β ν,k Λ QCD ,M − = β ν+1,k Λ QCDHelmholtz Institut, Bonn, Oct 16, 2007with scale independent mass ratio• Obtain spin-J mode Φ µ1···µ J−1/2, J> 1 2, with all indices along 3+1 from Ψ by shifting dimensionsPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACHadron 2009, FSU, Tallahassee, December 1, 2009 82Page 21HOME RESEARCH SCIENTIFIC PROGRAMS


BaryonsHolographic <strong>Light</strong>-<strong>Front</strong> Integrable Form <strong>and</strong> Spectrum• In the conformal limit fermionic spin- 1 2 modes ψ(ζ) <strong>and</strong> spin- 3 2 modes ψ µ(ζ)are two-component spinor solutions of the Dirac light-front equationwhere H LF = αΠ <strong>and</strong> the operatorαΠ(ζ)ψ(ζ) = Mψ(ζ),Π L (ζ) = −iddζ − L + 1 2ζγ 5<strong>and</strong> its adjoint Π † L(ζ) satisfy the commutation relationsΠ L (ζ), Π † L (ζ) = 2L + 1ζ 2 γ 5 .• Supersymmetric QM between bosonic <strong>and</strong> fermionic modes in AdS?,Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD83Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Soft-Wall Model• Equivalent to Dirac equation in presence of a holographic linear confining potentializη m Γ ∂ m + d 2 Γ z+ µR + κ 2 z Ψ(x )=0.• Solution (µR = ν +1/2, d= 4)Ψ + (z) ∼ z 5 2 +ν e −κ2 z 2 /2 L ν n(κ 2 z 2 )Ψ − (z) ∼ z 7 2 +ν e −κ2 z 2 /2 L ν+1n (κ 2 z 2 )• EigenvaluesM 2 =4κ 2 (n + ν + 1)• Obtain spin-J mode Φ µ1···µ J−1/2, J> 1 2, with all indices along 3+1 from Ψ by shifting diChile LHCJanuary 8, 2010by shifting dimensionsLF <strong>Holography</strong> <strong>and</strong> QCD84Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


• Note: in the Weyl representation (iα = γ 5 β)⎛ ⎞iα = ⎝ 0 I ⎠ , β =−I 0⎛ ⎞⎝ 0 I ⎠ , γ 5 =I 0⎛ ⎞⎝ I 0 ⎠ .0 −I• Baryon: twist-dimension 3 + L (ν = L + 1)O 3+L = ψD {1 . . . D q ψD q+1 . . . D m }ψ, L =m i .i=1• Solution to Dirac eigenvalue equation with UV matching boundary conditionsψ(ζ) = C ζ [J L+1 (ζM)u + + J L+2 (ζM)u − ] .Baryonic modes propagating in AdS space have two components: orbital L <strong>and</strong> L + 1.• Hadronic mass spectrum determined from IR boundary conditionsψ ± (ζ = 1/Λ QCD ) = 0,given byM + ν,k = β ν,kΛ QCD , M − ν,k = β ν+1,kΛ QCD ,with a scale independent mass ratio.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploringJanuary QCD, Cambridge, 8, 2010 August 20-24, 2007 SLAC Page 4685HOME RESEARCH SCIENTIFIC PROGRAMS


8(a)N (2600)I = 1/2 (b) I = 3/2! (2420)(GeV 2 )64N (1700)N (1675)N (1650)N (1535)N (1520)N (2250)N (2190)N (2220)! (1232)! (1950)! (1920)! (1910)! (1905)! (1930)201-20068694A14N (939)N (1720)N (1680)0 2L4 6! (1700)! (1620)0 2L56704 6Fig: <strong>Light</strong> baryon orbital spectrum for Λ QCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to Leven P = + states, <strong>and</strong> the 70 to L odd P = − states.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACExploring QCD, Cambridge, August 20-24, 2007 86Page 48HOME RESEARCH SCIENTIFIC PROGRAMS


Non-Conformal Extension of Algebraic Structure (Soft Wall Model)• We write the Dirac equation(αΠ(ζ) − M) ψ(ζ) = 0,in terms of the matrix-valued operator ΠΠ ν (ζ) = −iddζ − ν + 12γ 5 − κ 2 ζγ 5 ,ζ<strong>and</strong> its adjoint Π † , with commutation relations• Solutions to the Dirac equationΠ ν (ζ), Π † ν(ζ)= 2ν + 1ζ 2− 2κ 2 γ 5 .• Eigenvaluesψ + (ζ) ∼ z 1 2 +ν e −κ2 ζ 2 /2 L ν n(κ 2 ζ 2 ),ψ − (ζ) ∼ z 3 2 +ν e −κ2 ζ 2 /2 L ν+1n (κ 2 ζ 2 ).M 2 = 4κ 2 (n + ν + 1).Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACExploring QCD, Cambridge, August 20-24, 2007 87Page 49HOME RESEARCH SCIENTIFIC PROGRAMS


Glazek <strong>and</strong> Schaden [Phys. Lett. B 198, 42 (1987)]: (ω B /ω M ) 2 = 5/8 4κ 2 for ∆n = 1• ∆ spectrum identical to Forkel <strong>and</strong> Klempt, Phys. Lett. B 679, 77 (2009)4κ 2 for ∆L = 12κ 2 for ∆S = 1M 2LParent <strong>and</strong> daughter 56 Regge trajectories for the N <strong>and</strong> ∆ baryon families for κ = 0.5 GeVPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan Brodsky2009 January JLab UsersLF <strong>Holography</strong> <strong>and</strong> QCD8, 2010 Group Meeting, June 8, 2009 SLAC Page 2688HOME RESEARCH SCIENTIFIC PROGRAMS


indebted to B. Metsch <strong>and</strong> H. Petry for numerous discussionson the quark model.ReferencesE. Klempt et al.: ∆ ∗ resonances, <strong>Light</strong>-<strong>Front</strong> quark models, QCD,” International chiral symmetry School of <strong>and</strong> Subnuclear AdS/QCD1. W.M. Yao et al., J. Phys. G 33 (2006) 1 <strong>and</strong> 2007 partial11/2 +update for the 2008 edition.M 2 (GeV 2 13/2 +2. The database can be accessed)at SAID facility at the websitehttp://gwdac.phys.gwu.ed(2002) 031601.34. J. Polchinski <strong>and</strong> M. J. Strassler,5/2 + Phys. Rev. Lett. 889/28! 15/2+(2950)3. R. A. Arndt, W.J. Briscoe, I.I. Strakovsky <strong>and</strong> R.L. Workman,35. E. Klempt, Phys. Rev. C 66 ! 7/2 (2002) +(2390) 058201. 11/2 "Phys. Rev. C 74 (2006) 045205.36. Y. Nambu, Phys. Lett. B 80 ! 9/2(1979) +(2300) 372.4. S. Capstick, N. Isgur, Phys. Rev. D 34 (1986) 2809. 37. M. Baker <strong>and</strong> R. Steinke, Phys. !N=011/2+(2420) Rev. D 65 (2002) 094042.6! 1/2+(1910) ! 5/2"(2223)5/2 +7/2 "5. U. Löring, B. C. Metsch <strong>and</strong> H. R. Petry, Eur. Phys. J. A 38. M. Baker, “From QCD to dual superconductivity to effectivestring theory,” 5th International Conference on Quark! 3/2+(1920) ! 7/2"(2200)7/2 +9/2 "10 (2001) 395, 447.9/2! 5/2+(1905)11/26. L. Y. Glozman, W. Plessas, K. Varga <strong>and</strong> R. F. Wagenbrunn,Phys. Rev. D 58 (1998) 094030.cia, Italy, 10-14 Sep 2002. Published in *Gargnano 2002,Confinement <strong>and</strong> the Hadron Spectrum, Gargnano, Bres-"! 7/2+(1950)!41/2"(1620)1/2 +3/2 "11/2 + ! 13/2"(2750)7. M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson <strong>and</strong> Quark confinement <strong>and</strong> the hadron spectrum* 204-210,D.B. Lichtenberg, Rev. Mod. Phys. 65 (1993) 1199.arXiv:hep-ph/0301032.! 3/2"(1700)3/2 + ! 5/2"(2350)8. M. Kirchbach, M. Moshinsky <strong>and</strong> Yu. F. Smirnov, Phys.7/2 N=1!! 1/2"(1900) 5/2+(2200)Rev. D 64 (2001) 114005.7/2! 3/2+(1232)! 3/2"(1940)! 9/2"(2400)9. E. Santopinto, Phys. Rev. C 72 (2005) 022201.10. L.Y. Glozman, Phys. Lett. B 475 (2000) 329.11. R.L. Jaffe, 2D. Pirjol <strong>and</strong> A. Scardicchio, ! 1/2 Phys. +(1750) Rev. D 74 ! 5/2"(1930)(2006) 057901.! 3/2+(1600)12. See, e.g., L.Y. Glozman, Phys. Rev. Lett. 99 (2007)191602, <strong>and</strong> references therein.L+N13. O. Aharony, 0 S. S. Gubser, J. M. Maldacena, H. Ooguri <strong>and</strong>Y. Oz, Phys. Rept. 3230(2000) 183. 1 2 3 4 5 614. E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253.15. I.R. Klebanov, “TASI lectures: Introduction to theAdS/CFT correspondence,” arXiv:hep-th/0009139.16. A. Karch, E. Katz, D. T. Son <strong>and</strong> M. A. Stephanov, Phys.Rev. D 74 (2006) 015005.17. S.J. Brodsky, Eur. Phys. J. A 31 (2007) 638.2. Regge trajectory for ∆ ∗ resonances as a function of the leading intrinsic orbital angular momentum L <strong>and</strong> thetion quantum number N (corresponding to n 1 + n 2 in quark models). The line represents a prediction of the metrdS/QCD E. Klempt model [18,19]. et al.: Resonances ∆ ∗ resonances, with N = quark 0 <strong>and</strong> N models, = 1 are listed chiral above symmetry or below the<strong>and</strong> trajectory. AdS/QCD The mass pred27, 1.64, 1.92, 2.20, 2.43, 2.64, 2.84 GeV. The two states reported in [20,21] are indicated by arrows.18. H. Forkel, M. Beyer <strong>and</strong> T. Frederico, JHEP 0707 (2007)077.19. H. Forkel, M. Beyer <strong>and</strong> T. Frederico, Int. J. Mod. Phys.[17], E 16 ∆(1930)D (2007) 2794. 35 was interpreted as L = 3, S = 1/220. I. Horn et al., preceding paper.21. 2 tion.I. HornThe new evidence for ∆(1940)D 33 – whichto (GeV be a 2 et al., “Evidence for a parity doublet ∆(1920)P 33<strong>and</strong> ∆(1930)D ) Chile natural 33LHC fromspin γp → pπ partner 0 η”, arXiv:. of ∆(1930)D 35 – sug-22. D. DrechselL = 1,January <strong>and</strong> T.S = 3/2,8, Walcher, 2010 “Hadron structure at low QN = 1 quantum numbers 2 ,”for both,arXiv:0711.3396 [hep-ph].31. G. P. Lepage <strong>and</strong> S. J. Brodsky, Phys. Rev. Lett. 43 (1979)545 [Erratum-ibid. 43 (1979) 1625].32. S. J. Brodsky <strong>and</strong> G. F. de Teramond, “AdS/CFT <strong>and</strong><strong>Physics</strong>: 45th Course: Searching for the “Totally Unexpected”in the LHC Era, Erice, Sicily, Italy, 29 Aug - 7Sep 2007, arXiv:0802.0514 [hep-ph].33. S. J. Brodsky <strong>and</strong> G. F. de Teramond, Phys. Rev. D 77(2008) 056007.LF <strong>Holography</strong> <strong>and</strong> QCD89mass (1.62 GeV) 1 ; the seven states (4,5) should havGeV. The predicted masses for Press <strong>and</strong> Media L + : SLAC N National = Accelerator 3 Laboratory (6,7)9/2 +Stan BrodskySLAC9/2 +11/2 +13/2 +(8,9) are 2.20 5/2 <strong>and</strong> + 2.42 GeV, respectively. The traj9/2 " ! 15/2 + (2950)continues with ! 7/2+(2390) the calculated11/2 masses " 2.64 for L +HOME RESEARCH SCIENTIFIC PROGRAMS


SU(6) S L Baryon State56123270123212561232701232125612327012320 N 1 2+(939)0 ∆ 3 2+(1232)1 N 1 21 N 1 21 ∆ 1 22 N 3 22 ∆ 1 2−(1535) N3 −(1520)−(1650) N3 −(1700) N5 −(1675)+(1910) ∆323 N 5 23 N 3 −2N 5 −23 ∆ 5 24 N 7 +24 ∆ 5 +22−(1620) ∆3 −(1700)+(1720) N5 +(1680)222+(1920) ∆5 +(1905) ∆7 +(1950)∆ 7 +25 N 9 −25 N 7 −2−N 7 22N 7 −22−(2190) N9 −(2250)−(1930) ∆7 −2N 9 −2N 9 2+(2220)∆ 9 +2N 112N 112∆ 112−(2600)−22+(2420)N 13 −2Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan Brodskyxploring QCD, Cambridge, August 20-24, 2007 LF <strong>Holography</strong> <strong>and</strong> QCDPage 47January 8, 2010SLAC90HOME RESEARCH SCIENTIFIC PROGRAMS


Space-Like Dirac Proton Form Factor• Consider the spin non-flip form factorsF + (Q 2 ) = g +F − (Q 2 ) = g −dζ J(Q, ζ)|ψ + (ζ)| 2 ,dζ J(Q, ζ)|ψ − (ζ)| 2 ,where the effective charges g + <strong>and</strong> g − are determined from the spin-flavor structure of the theory.• Choose the struck quark to have S z = +1/2. The two AdS solutions ψ + (ζ) <strong>and</strong> ψ − (ζ) correspondto nucleons with J z = +1/2 <strong>and</strong> −1/2.• For SU(6) spin-flavor symmetryF p 1 (Q2 ) = dζ J(Q, ζ)|ψ + (ζ)| 2 ,F1 n (Q 2 ) = − 1 dζ J(Q, ζ) |ψ + (ζ)| 2 − |ψ − (ζ)| 2 ,3where F p 1 (0) = 1, F n 1(0) = 0.Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDExploring January QCD, 8, Cambridge, 2010 August 20-24, 2007 SLAC Page 5291HOME RESEARCH SCIENTIFIC PROGRAMS


• Scaling behavior for large Q 2 : Q 4 F p 1 (Q2 ) → constant Proton τ = 3Q 4 F p 1 (Q2 ) (GeV 4 )1.20.80.49-20078757A200 10 20 30Q 2 (GeV 2 )SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryChile LHCStan BrodskyLF <strong>Holography</strong> <strong>and</strong> QCDJanuary 8, 2010SLACHelmholtz Institut, Bonn, Oct 16, 2007 92Page 29HOME RESEARCH SCIENTIFIC PROGRAMS


• Scaling behavior for large Q 2 : Q 4 F n 1 (Q2 ) → constant Neutron τ = 30Q 4 F n 1 (Q2 ) (GeV 4 )-0.1-0.2-0.3-0.4 0 10 20 309-20078757A1Q 2 (GeV 2 )SW model predictions for κ = 0.424 GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD93Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


21.5F p 2 (Q2 )1Spacelike Pauli Form FactorFrom overlap of L = 1 <strong>and</strong> L = 0 LFWFsHarmonic OscillatorConfinementNormalized to anomalousmomentκ = 0.49 GeVPreliminaryAdS/QCD Nochiraldivergence!0.5G. de Teramond, sjbF 2 (Q 2 ) = 1 + OQ2m π m pin chiral perturbation theory0F 2 (Q 2 )0 1 2 3 4 5 6Q 2 (GeV 2 )Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD94Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACJADE determination of α s (M Z )HOME RESEARCH SCIENTIFIC PROGRAMS


String TheoryGoal: First Approximant to QCDCounting rules for Hard ExclusiveScatteringRegge TrajectoriesQCD at the Amplitude LevelAdS/CFTAdS/QCDMapping of Poincare’ <strong>and</strong>Conformal SO(4,2) symmetries of 3+1spaceto AdS5 spaceConformal behavior at shortdistances+ Confinement at large distanceSemi-Classical QCD / Wave Equations<strong>Holography</strong>Boost Invariant 3+1 <strong>Light</strong>-<strong>Front</strong> Wave EquationsJ =0,1,1/2,3/2 plus LIntegrable!Hadron Spectra, Wavefunctions, DynamicsChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD95Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


<strong>Light</strong>-<strong>Front</strong> QCDHeisenberg MatrixFormulationH QCDLFL QCD → H QCDLFPhysical gauge: A + = 0= [ m2 + k⊥2 ] i + HLFintxiLF : Matrix in Fock SpaceH intH QCDLF |Ψ h >= M 2 h|Ψ h >338Eigenvalues <strong>and</strong> Eigensolutions give HadronSpectrum <strong>and</strong> <strong>Light</strong>-<strong>Front</strong> wavefunctionsFig. 6. A few selected


More generally, consider a meson in SU(N). The kernel of the integral equation (3.14)illustrated in Fig. 2 in terms of the block matrix n : x , k , λ Hn : x, k , λ . The structure of th <strong>Light</strong>-<strong>Front</strong> matrix depends QCDof course onH QCD the wayLC|Ψ one has arrangedh = M 2 h |Ψ the Fock space, see Eq. (3.7). Note that moof the block matrix elements vanish due to the naturehof the light-cone interaction as definedHeisenberg EquationS.J. Brodsky et al. / <strong>Physics</strong> Reports 301 (1998) 299—486Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P in LB-convention.Use AdS/QCD basis functionsPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryFig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. WithChile each LHCblock they are all of the sameStan BrodskyLF type: <strong>Holography</strong> either vertex, <strong>and</strong> fork QCD or seagull diagrams. Zero matrices are denoted by a dot (January The 8, 2010 single gluon is absent since it cannot be color neutral.SLAC97HOME RESEARCH SCIENTIFIC PROGRAMS


Use AdS/CFT orthonormal <strong>Light</strong> <strong>Front</strong> Wavefunctionsas a basis for diagonalizing the QCD LF Hamiltonian• Good initial approximation• Better than plane wave basis• DLCQ discretization -- highly successful 1+1Pauli, Hornbostel,Hiller, McCartor, sjb• Use independent HO LFWFs, remove CM motion• Similar to Shell Model calculations• Hamiltonian light-front field theory within an AdS/QCD basis.J.P. Vary, H. Honkanen, Jun Li, P. Maris, A. Harindranath,G.F. de Teramond, P. Sternberg, E.G. Ng, C. Yang, sjbChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD98Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


New Perspectives for QCD from AdS/CFT• LFWFs: Fundamental frame-independent description ofhadrons at amplitude level• Holographic Model from AdS/CFT : Confinement at largedistances <strong>and</strong> conformal behavior at short distances• Model for LFWFs, meson <strong>and</strong> baryon spectra: manyapplications!• New basis for diagonalizing <strong>Light</strong>-<strong>Front</strong> Hamiltonian• <strong>Physics</strong> similar to MIT bag model, but covariant. No problemwith support 0 < x < 1.• Quark Interchange dominant force at short distancesChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD99Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Non-Perturbative QCD Coupling From LF <strong>Holography</strong>Running Coupling from Modified AdS/QCDWith A. Deur <strong>and</strong> S. J. BrodskyDeur, de Teramond, sjb• Consider five-dim gauge fields propagating in AdS 5 space in dilaton background ϕ(z) =κ 2 z 2S = − 1 d 4 xdz √ ge ϕ(z) 1 4g52 G 2• Flow equation1g5 2(z) = 1eϕ(z)g5 2(0) or g5(z) 2 =e −κ2 z 2 g5(0)2where the coupling g 5 (z) incorporates the non-conformal dynamics of confinement• YM coupling α s (ζ) =g 2 YM (ζ)/4π is the five dim coupling up to a factor: g 5(z) → g YM (ζ)• Coupling measured at momentum scale QαsAdS (Q) ∼ ∞0ζdζJ 0 (ζQ) αsAdS (ζ)• Solutionwhere the coupling α AdSsαsAdS (Q 2 )=αs AdS (0) e −Q2 /4κ 2 .incorporates the non-conformal dynamics of confinement


Running Coupling from <strong>Light</strong>-<strong>Front</strong> <strong>Holography</strong> <strong>and</strong> AdS/QCDAnalytic, defined at all scales, IR Fixed Pointnormalization! s(Q)/"10.8α s (Q)π0.60.40.20AdS/QCDLF <strong>Holography</strong>AdS/QCD with! s,g1extrapolation! s,g1/" (pQCD)! s,g1/" world data! s,F3/"GDH limit! s,#/" OPALJLab CLAS PLB 665 249Hall A/CLAS PLB 650 4 244Lattice QCDα AdSs (Q)/π = e −Q2 /4κ 2κ =0.54 GeV10 -1 1 10Deur, de Teramond, sjb, (preliminary)Q (GeV)


! s,g1/" Hall A/CLAS JLab ! s,g1/" CLAS JLab! s/"1FitGDH limitpQCD evol. eq.Burkert-IoffeBloch et al.10 -1CornwallGodfrey-Isgur1Fischer et al.Bhagwat et al.Maris-T<strong>and</strong>yLattice QCDAdS/CFT(norm. to ",#=0.54),10 -110 -1 1 10 -1 1 10Deur, de Teramond, sjb, (preliminary)Q (GeV)


• β-functiond! seff/dlog(Q 2 )0-0.25-0.5-0.75β AdS (Q 2 )=!(Q)0-0.25-0.5-0.75-1-1.25dd log Q 2 αAdS s (Q 2 )= πQ2 /4κ 24κ 2 e−Q2 .PRELIMINARY-1-1.25-1.5-1.75-2-2.25" s,F3Lattice QCDAdS/QCD LF<strong>Holography</strong>" s,g1Hall A/CLAS" s,g1CLASGDH sum ruleconstraint on " s,g1" s,g1(pQCD)-1.5-1.75Hadron 2009, FSU, Tallahassee, December 1, 2009-2-2.25Q !(GeV)s,F3/"10 -1 1 10Effective coupling from LF holography for κ =0.54Hall A/CLASGeVPLB650 4 244Lattice QCDJLab CLAS PLB665 249AdS/QCD withGDH sum rule! s,g1extrapolationconstraint on ! s,g1AdS/QCD LFBjorken sum rule<strong>Holography</strong>constraint on ! s,g110 -1 1 10Deur, de Teramond, sjb, (preliminary)QPage


Running Coupling for Static Potential from AdS/QCD s(r)3.53Deur, de Teramond, sjb, (preliminary)2.521.510.50Chile LHCJanuary 8, 2010AdS/QCD with s,g1extrapolation s,g1Jlab+pQCD+sum rulesAdS/QCD LF <strong>Holography</strong>LF <strong>Holography</strong> <strong>and</strong> QCD104Lattice QCD Vfrom s,g1using CSR0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1r (fm)Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Applications of NonperturbativeRunning Coupling from AdS/QCD• Sivers Effect in SIDIS, Drell-Yan• Double Boer-Mulders Effect in DY• Diffractive DIS• Heavy Quark Production at ThresholdAll involve gluon exchange at smallmomentum transferChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD105Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Single-spinasymmetriesLeading TwistSivers Effecte –Hwang,Schmidt, sjbiS p ·q ×p qPseudo- T-Odde – !*quarkcurrentquark jetfinal stateinteractionCollins, BurkardtJi, YuanQCD S- <strong>and</strong> P-Coulomb Phases--Wilson LineSproton<strong>Light</strong>-<strong>Front</strong> WavefunctionS <strong>and</strong> P- Wavesspectatorsystem11-20018624A06Leading-TwistRescatteringViolates pQCDFactorization!Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD106Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Final-State Interactions ProducePseudo T-Odd (Sivers Effect)Hwang, Schmidt, sjbCollins• Leading-Twist Bjorken Scaling!• Requires nonzero orbital angular momentum of quarkiS ·p jet ×q• Arises from the interference of Final-State QCD Coulomb phases in S- <strong>and</strong> P-waves;• Wilson line effect -- gauge independent• Relate to the quark contribution to the target protonanomalous magnetic moment <strong>and</strong> final-state QCD phases• QCD phase at soft scale!e – !*quarke –currentquark jetfinal stateinteractionS• New window to QCD coupling <strong>and</strong> running gluon mass in the IRproton• QED S <strong>and</strong> P Coulomb phases infinite -- difference of phases finite!spectatorsystem11-20018624A06• Alternate: Retarded <strong>and</strong> Advanced Gauge: Augmented LFWFs Pasquini, Xiao, Yuan, sjbMulders, Boer Qiu, StermanChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD107Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Features of Soft-Wall AdS/QCD• Single-variable frame-independent radial Schrodinger equation• Massless pion (m q =0)• Regge Trajectories: universal slope in n <strong>and</strong> L• Valid for all integer J & S. Spectrum is independent of S• Dimensional Counting Rules for Hard Exclusive Processes• Phenomenology: Space-like <strong>and</strong> Time-like Form Factors• LF <strong>Holography</strong>: LFWFs; broad distribution amplitude• No large Nc limit• Add quark masses to LF kinetic energy• Systematically improvable -- diagonalize H LF on AdS basisChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD108Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Formation of Relativistic Anti-HydrogenChile LHCJanuary 8, 2010Measured at CERN-LEAR <strong>and</strong> FermiLab)−¯H(¯pe + )¯H(¯pe + )¯H(¯pe + )¯p¯p¯pπq → γ ∗ qe +e +e +eγ ∗+e −e −ee −LF <strong>Holography</strong> <strong>and</strong> QCD109Munger, Schmidt, sjb¯H(¯pe + )πCoulomb fieldy¯p yZCoalescence of off-shell p co-moving positron <strong>and</strong> e antiproton+< p| G3 µν e +m 2 |p > vs.Qb ⊥ ≤ 1m red αWavefunction maximal at small impact separation <strong>and</strong> equal rapidityγe −“Hadronization” ¯ at the Amplitude Level < p| G3 µνcos 2φ m 2 |p > vs.Qq¯pτ = t + z/cbτ = ⊥ ≤t + 1 z/cγm red αPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLAC4 2HOME RESEARCH SCIENTIFIC PROGRAMS


Hadronization 1 − x, − k ⊥at the Amplitude LevelChile LHCJanuary 8, 2010τ = x +e +e +e −e −γ ∗ e +e +e −γ ∗e +e −γ ∗e −γ ∗g¯qqe +e −γ ∗gψpp →gp +H (x,J/ψ k ⊥ , λ+i )pg ¯qψ H (x, k ⊥ , λ i )e −¯q x, k 1 − x, − ⊥ k ⊥g¯q q1 − x, pγ ∗qe + − k ⊥HEvent amplitudee +generator ¯qq pp → p + J/ψ + pe −ψ(x, kpp → p + J/ψ + p ⊥ , λx, ke i )−⊥gqpp → p + J/ψ + γpConstruct helicity amplitude using ∗ γ ∗<strong>Light</strong>-<strong>Front</strong>Perturbation ¯q theory; coalesce quarkse + 1 − x, − k ⊥via LFWFspp → p + J/ψ + pe +qe −p HLF <strong>Holography</strong> <strong>and</strong> QCD110ψ H (x, k ⊥ , λ i )p Hx, k ⊥e −Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Features of LF T-Matrix Formalism“Event Amplitude Generator”• Coalesce color-singlet cluster to hadronic state ifnM 2 k⊥i 2n =+ m2 i< Λ 2 QCDx ii=1• The coalescence probability amplitude is the LFwavefunction Ψ n (x i , k ⊥i , λ i )• No IR divergences: Maximal gluon <strong>and</strong> quark wavelength fromconfinementP + , P +A(σ, ∆ ⊥ ) = 12πP + , P ⊥dζei2σx i P + , x iP⊥ + k ⊥iẑChile LHCJanuary 8, 2010L = R × PLF <strong>Holography</strong> <strong>and</strong> QCD111xP + i P + , x= P i 0 P⊥ ++ P z k ⊥ixζ =i k+ Q2Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan Brodsky2p·q SLACP + = k0 +k 3P 0 +P zHOME RESEARCH SCIENTIFIC PROGRAMS


Features of LF T-Matrix Formalism“Event Amplitude Generator”• Same principle as antihydrogen production: off-shellcoalescence• coalescence to hadron favored at equal rapidity, smalltransverse momenta• leading heavy hadron production: D <strong>and</strong> B mesons producedat large z• hadron helicity conservation if hadron LFWF has L z =0• Baryon AdS/QCD LFWF has aligned <strong>and</strong> anti-aligned quarkspinA(σ, ∆ ⊥ ) = 1P + , P +P + , P ⊥2πdζei2σx i P + , x iP⊥ + k ⊥iẑChile LHCJanuary 8, 2010L = R × PLF <strong>Holography</strong> <strong>and</strong> QCD112xP + i P + , x= P i 0 P⊥ ++ P z k ⊥ixζ =i k+ Q2Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan Brodsky2p·q SLACP + = k0 +k 3P 0 +P zHOME RESEARCH SCIENTIFIC PROGRAMS


Chiral Symmetry Breaking in AdS/QCD• Chiral symmetry breaking effect in AdS/QCDdepends on weighted z 2 distribution, notconstant condensateδM 2 = −2m q < ¯ψψ > ×dz φ 2 (z)z 2• z 2 weighting consistent with higher Fock statesat periphery of hadron wavefunction• AdS/QCD: confined condensate• Suggests “In-Hadron” CondensatesErlich etal.•Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD113de Teramond, Shrock, sjbPress <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Modern <strong>Physics</strong> Letters AVol. 23, Nos. 17–20 (2008) 1336–1345c○ World Scientific Publishing Company“One of the gravest puzzles oftheoretical physics”DARK ENERGY ANDTHE COSMOLOGICAL CONSTANT PARADOXA. ZEEDepartment of <strong>Physics</strong>, University of California, Santa Barbara, CA 93106, USAKavil Institute for Theoretical <strong>Physics</strong>, University of California,Santa Barbara, CA 93106, USAzee@kitp.ucsb.edu1.I give a brief <strong>and</strong> idiosyncratic overview of the cosmological constant paradox.(Ω Λ ) QCD ∼ 10 45Ω Λ = 0.76(expt)Gravity knows about everything, whatever its origin, luminous or dark, even theenergy contained in fluctuating quantum fields.As is well known, this leads us to one of the gravest puzzles of theoreticalphysics. Consider the Feynman diagram(Ω Λ ) EW ∼ 10 56with the graviton coupling to a matterfield (for example an electron field) loop. If we claim to underst<strong>and</strong> the physicsof the electron field up to an energy scale of M, then the graviton sees an energydensity given schematically by Λ ∼ M 4 + M 2 m 2 e log( M m e) + m 4 e log( M m e) + · · · . Justabout any reasonable choice of M leads to a humongous energy density!!! In fact,even if the first two terms were to be mysteriously deleted, there is still an energydensity of order m 4 e , that is, an energy density corresponding to one electron massin a volume the size of the Compton wavelength of the electron, filling all of space,which is clearly unacceptable.Apparently, this disastrous prediction of quantum field theory has nothing towithin hadrons, not LF vacuumdo with quantum gravity. Indeed, the quantum field theory we need for the matterfield is merely free field theory: we are just adding up zero point energy of harmonicoscillators.QCD Problem Solved if Quark <strong>and</strong> Gluon condensates resideShrock, sjb


<strong>Light</strong>-<strong>Front</strong>(<strong>Front</strong> Form)Formalism


Maximum wavelength of bound quarks <strong>and</strong> gluonsk > 1Λ QCDgλ < Λ QCDq¯bB-MesonShrock, sjbUse Dyson-Schwinger Equation for bound-state quark propagator:find confined condensate< ¯b|¯qq|¯b > not < 0|¯qq|0 >Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD116Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


5[iE π (q; P ) + γ · P F π (q; P ) + γ · qq · P G π (q; p) + σ µ νq µ P ν H π (q; P )] (3Pion mass <strong>and</strong> decay constant.Pieter Maris, Craig D. Roberts (Argonne, PHY) , Peter C. T<strong>and</strong>y (Kent State U.) . ANL-PHY-8753-TH-97,KSUCNR-103-97, Jul 1997. 12pp.Published in Phys.Lett.B420:267-273,1998.e-Print: nucl-th/9707003 d 4 qZ 2 (ζ, Λ)N c tr D Λ(2π) 4 γ 5γ µ S(q + P/2)Γ π (q; P )S(q − P/2), (4Pi- <strong>and</strong> K meson Bethe-Salpeter amplitudes.Pieter Maris, Craig D. Roberts Λ (Argonne, d 4 q PHY) . ANL-PHY-8788-TH-97, Aug 1997. 34pp.Published Z 4 (ζ, Λ)N in Phys.Rev.C56:3369-3383,1997.c tr De-Print: nucl-th/9708029(2π) 4 S0 (q) . (5Concerning the quark condensate.K. Langfeld (Tubingen U.) , H. Markum (Vienna, Tech. U.) , R. Pullirsch (Regensburg U.) , C.D. Roberts(Argonne, PHY & Rostock U.) , S.M. Schmidt (Tubingen U. & HGF, Bonn) . ANL-PHY-10460-TH-2002,MPG-VT-UR-239-02, Jan 2003. 7pp.97) Published 3369; in Phys.Rev.C67:065206,2003.[arXiv:nucl-th/9708029].e-Print: nucl-th/0301024Maris <strong>and</strong> C. D. Roberts, “π <strong>and</strong> K meson Bethe-Salpeter amplitudes,”. [2] defines“In-Meson the in-mesonCondensate”condensate:Valid even for m q → 0− ¯qq π ζ = f π 0|¯qγ 5 q|π . (6f π nonzeroway to proving Eq. (1) herein is a relation of the Goldberger-Treiman typePress <strong>and</strong> Media : SLAC National Accelerator LaboratoryitChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD1170 2Stan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


de Teramond, SjbIn presence of quark masses the Holographic LF wave equation is (ζ = z)− d2dζ 2 + V (ζ) + X2 (ζ)ζ 2 φ(ζ) = M 2 φ(ζ), (1)<strong>and</strong> thusδM 2 = X2ζ 2 . (2)The parameter a is determined by the Weisberger terma = 2 √ x.ThusX(z) = m √ xz − √ x ¯ψψz 3 , (3)<strong>and</strong>δM 2 = i m2ix i− 2 im i ¯ψψz 2 + ¯ψψ 2 z 4 , (4)where we have used the sum over fractional longitudinal momentum i x i = 1.Mass shift from dynamics inside hadronic boundaryChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD118Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Quark <strong>and</strong> Gluon condensates reside withinhadrons, not LF vacuum• Bound-State Dyson-Schwinger Equations• Spontaneous Chiral Symmetry Breaking within infinitecomponentLFWFsMaris, Roberts,T<strong>and</strong>yCasherSusskind• Finite size phase transition - infinite # Fock constituents• AdS/QCD Description -- CSB is in-hadron Effect• Analogous to finite-size superconductor!• Phase change observed at RHIC within a single-nucleus-nucleuscollisions-- quark gluon plasma!• Implications for cosmological constant -- reduction by 45 orders ofmagnitude!Shrock, sjbChile LHCJanuary 8, 2010“Confined QCD Condensates”LF <strong>Holography</strong> <strong>and</strong> QCD119Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


• Color Confinement: Maximum Wavelength of Quark<strong>and</strong> Gluons• Conformal symmetry of QCD coupling in IR• Conformal Template (BLM, CSR, ...)• Motivation for AdS/QCD• QCD Condensates inside of hadronic LFWFs• Technicolor: confined condensates inside oftechnihadrons -- alternative to Higgs• Simple physical solution to cosmological constantconflict with St<strong>and</strong>ard ModelShrock <strong>and</strong> sjbChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD120Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Features of AdS/QCD LF <strong>Holography</strong>• Based on Conformal Scaling of Infrared QCD Fixed Point• Conformal template: Use isometries of AdS5• Interpolating operator of hadrons based on twist, superfield dimensions• Finite Nc = 3: Baryons built on 3 quarks -- Large Nc limit not required• Break Conformal symmetry with dilaton• Dilaton introduces confinement -- positive exponent• Origin of Linear <strong>and</strong> HO potentials: Stochastic arguments (Glazek);General ‘classical’ potential for Dirac Equation (Hoyer)• Effective Charge from AdS/QCD at all scales• Conformal Dimensional Counting Rules for Hard Exclusive Processes• Use CRF (LF Constituent Rest Frame) to reconstruct 3D Image ofHadrons (Glazek, de Teramond, sjb)Chile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD121Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS


Conformal Template• BLM scale-setting: Retain conformal series; nonzero β-terms set multiplerenormalization scales. No renormalization scale ambiguity. Result isscheme-independent.• Commensurate Scale Relations between observables based on conformaltemplate -- prime tests of QCD independent of theory conventions• BLM scales for three-gluon coupling; multi-scale problems• Analytic scheme for coupling unification• Direct high p T processes, baryon anomaly, intrinsic heavy quarks• IR Fixed point -- conformal symmetry motivation for AdS/CFT• <strong>Light</strong>-<strong>Front</strong> Schrödinger Equation: analytic first approximation to QCD• Dilaton-modified AdS 5 : Predict Hadron Spectra, <strong>Light</strong>-<strong>Front</strong> Wavefunctions,Form Factors, Hadronization at Amplitude Level• Non-Perturbative running QCD coupling -- new range of QCD phenomenasuch as Sivers <strong>and</strong> Diffractive DIS fraction calculable; IR fixed pointChile LHCJanuary 8, 2010LF <strong>Holography</strong> <strong>and</strong> QCD122Press <strong>and</strong> Media : SLAC National Accelerator LaboratoryStan BrodskySLACHOME RESEARCH SCIENTIFIC PROGRAMS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!