30.11.2012 Views

Nitric Oxide Mediated Signal Transduction in Networks of Human ...

Nitric Oxide Mediated Signal Transduction in Networks of Human ...

Nitric Oxide Mediated Signal Transduction in Networks of Human ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

References<br />

Agulló, L., and García, A. (1992). Different receptors mediate stimulation <strong>of</strong> nitric oxide-dependent<br />

cyclic GMP formation <strong>in</strong> neurons and astrocytes <strong>in</strong> culture. Biochem. Biophys. Res.<br />

Commun 182, 1362-1368.<br />

Andrews, P. W. (1984). Ret<strong>in</strong>oic acid <strong>in</strong>duces neuronal differentiation <strong>of</strong> a cloned human<br />

embryonal carc<strong>in</strong>oma cell l<strong>in</strong>e <strong>in</strong> vitro. Dev. Biol 103, 285-293.<br />

Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F. (1977). <strong>Nitric</strong> oxide activates guanylate<br />

cyclase and <strong>in</strong>creases guanos<strong>in</strong>e 3':5'-cyclic monophosphate levels <strong>in</strong> various tissue<br />

preparations. Proc. Natl. Acad. Sci. U.S.A 74, 3203-3207.<br />

Ayala, R., Shu, T., and Tsai, L. (2007). Trekk<strong>in</strong>g across the bra<strong>in</strong>: the journey <strong>of</strong> neuronal<br />

migration. Cell 128, 29-43.<br />

Ball, E. E., and Truman, J. W. (1998). Develop<strong>in</strong>g grasshopper neurons show variable levels <strong>of</strong><br />

guanylyl cyclase activity on arrival at their targets. J. Comp. Neurol 394, 1-13.<br />

Baltrons, M. A., Pedraza, C., Sardón, T., Navarra, M., and García, A. (2003). Regulation <strong>of</strong> NOdependent<br />

cyclic GMP formation by <strong>in</strong>flammatory agents <strong>in</strong> neural cells. Toxicol. Lett 139,<br />

191-198.<br />

Bicker, G. (2001). <strong>Nitric</strong> oxide: an unconventional messenger <strong>in</strong> the nervous system <strong>of</strong> an<br />

orthopteroid <strong>in</strong>sect. Arch. Insect Biochem. Physiol 48, 100-110.<br />

Bicker, G. (2005). STOP and GO with NO: nitric oxide as a regulator <strong>of</strong> cell motility <strong>in</strong> simple<br />

bra<strong>in</strong>s. Bioessays 27, 495-505.<br />

Blaise, G. A., Gauv<strong>in</strong>, D., Gangal, M., and Authier, S. (2005). <strong>Nitric</strong> oxide, cell signal<strong>in</strong>g and cell<br />

death. Toxicology 208, 177-192.<br />

Boehn<strong>in</strong>g, D., and Snyder, S. H. (2003). Novel neural modulators. Annu. Rev. Neurosci 26, 105-<br />

131.<br />

Bonanomi, D., Menegon, A., Miccio, A., Ferrari, G., Corradi, A., Kao, H., Benfenati, F., and<br />

Valtorta, F. (2005). Phosphorylation <strong>of</strong> synaps<strong>in</strong> I by cAMP-dependent prote<strong>in</strong> k<strong>in</strong>ase<br />

controls synaptic vesicle dynamics <strong>in</strong> develop<strong>in</strong>g neurons. J. Neurosci 25, 7299-7308.<br />

Borán, M. S., and García, A. (2007). The cyclic GMP-prote<strong>in</strong> k<strong>in</strong>ase G pathway regulates<br />

cytoskeleton dynamics and motility <strong>in</strong> astrocytes. J. Neurochem 102, 216-230.<br />

Boucherie, C., and Hermans, E. (2009). Adult stem cell therapies for neurological disorders:<br />

benefits beyond neuronal replacement? J. Neurosci. Res 87, 1509-1521.<br />

Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization <strong>of</strong> nitric oxide synthase<br />

<strong>in</strong>dicat<strong>in</strong>g a neural role for nitric oxide. Nature 347, 768-770.<br />

Bredt, D. S., and Snyder, S. H. (1989). <strong>Nitric</strong> oxide mediates glutamate-l<strong>in</strong>ked enhancement <strong>of</strong><br />

cGMP levels <strong>in</strong> the cerebellum. Proc. Natl. Acad. Sci. U.S.A 86, 9030-9033.<br />

Bredt, D. S., and Snyder, S. H. (1994). Transient nitric oxide synthase neurons <strong>in</strong> embryonic<br />

cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13, 301-313.<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!