12.07.2015 Views

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ˇx 4ˇx 3ˇx 2Figure 2: Application of trilateration (5.4.2.2.4) is localization (determiningposition) of a radio signal source in 2 dimensions; more commonly known byradio engineers as the process “triangulation”. In this scenario, anchorsˇx 2 , ˇx 3 , ˇx 4 are illustrated as fixed antennae. [154] The radio signal source(a sensor • x 1 ) anywhere in affine hull of three antenna bases can beuniquely localized by measuring distance to each (dashed white arrowed linesegments). Ambiguity of lone distance measurement to sensor is representedby circle about each antenna. So & Ye proved trilateration is expressible asa semidefinite program; hence, a convex optimization problem. [241]we can ascribe shape of a set of points to their convex hull. It should beapparent: from distance, these shapes can be determined only to within arigid transformation (rotation, reflection, translation).Absolute position information is generally lost, given only distanceinformation, but we can determine the smallest possible dimension in whichan unknown list of points can exist; that attribute is their affine dimension(a triangle in any ambient space has affine dimension 2, for example). Incircumstances where fixed points of reference are also provided, it becomespossible to determine absolute position or location; e.g., Figure 2.21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!