12.07.2015 Views

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.2. FRAMEWORK 239Optimal value of the dual objective thus represents the greatest lower boundon the primal. This fact is known as the weak duality theorem for semidefiniteprogramming, [301,1.3.8] and can be used to detect convergence in anyprimal/dual numerical method of solution.4.2.3 Optimality conditionsWhen any primal feasible point exists relatively interior to A ∩ S n + in S n ,or when any dual feasible point exists relatively interior to C ∗ in S n × R m ,then by Slater’s sufficient condition these two problems (547P) and (547D)become strong duals. In other words, the primal optimal objective valuebecomes equivalent to the dual optimal objective value: there is no dualitygap (Figure 47); id est, if ∃X ∈ A ∩ int S n + or ∃S,y ∈ rel int C ∗ then〈C , X ⋆ 〉 = 〈b, y ⋆ 〉〈 ∑iy ⋆ i A i + S ⋆ , X ⋆ 〉= [ 〈A 1 , X ⋆ 〉 · · · 〈A m , X ⋆ 〉 ] y ⋆〈S ⋆ , X ⋆ 〉 = 0(571)where S ⋆ , y ⋆ denote a dual optimal solution. 4.9 We summarize this:4.2.3.0.1 Corollary. Optimality and strong duality. [271,3.1][301,1.3.8] For semidefinite programs (547P) and (547D), assume primaland dual feasible sets A ∩ S n + ⊂ S n and C ∗ ⊂ S n × R m (559) are nonempty.ThenX ⋆ is optimal for (P)S ⋆ , y ⋆ are optimal for (D)the duality gap 〈C,X ⋆ 〉−〈b, y ⋆ 〉 is 0if and only ifi) ∃X ∈ A ∩ int S n + or ∃S , y ∈ rel int C ∗andii) 〈S ⋆ , X ⋆ 〉 = 0⋄4.9 Optimality condition 〈S ⋆ , X ⋆ 〉=0 is called a complementary slackness condition, inkeeping with the tradition of linear programming, [64] that forbids dual inequalities in(547) to simultaneously hold strictly. [231,4]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!