12.07.2015 Views

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4.6. CARDINALITY AND RANK CONSTRAINT EXAMPLES 289move the rank constraint to the objectiveminimizeX , Y , Z , x , ysubject to (x, y) ∈ C⎡f(x, y) + ‖X − Y ‖ F + 〈G, Y 〉G = ⎣tr(X) = 1δ(Z) ≽ 0X Z xZ Y yx T y T 1⎤⎦≽ 0(688)by introducing a direction matrix Y found from (1506a)minimizeY ∈ S 2N+1 〈G ⋆ , Y 〉subject to 0 ≼ Y ≼ ItrY = 2N(689)which has an optimal solution that is known in closed form. Iteration(688) (689) terminates when rankG = 1 and regularization 〈G, Y 〉 vanishesto within some numerical tolerance in (688); typically, in two iterations.If function f competes too much with the regularization, positivelyweighting each regularization term will become required. At convergence,problem (688) becomes a convex equivalent to the original nonconvexproblem (685).4.6.0.0.6 Example. fast max cut. [77]Let Γ be an n-node graph, and let the arcs (i , j) of the graph beassociated with [ ] weights a ij . The problem is to find a cut of thelargest possible weight, i.e., to partition the set of nodes into twoparts S, S ′ in such a way that the total weight of all arcs linkingS and S ′ (i.e., with one incident node in S and the other onein S ′ [Figure 76]) is as large as possible. [27,4.3.3]Literature on the max cut problem is vast because this problem has elegantprimal and dual formulation, its solution is very difficult, and there existmany commercial applications; e.g., semiconductor design [83], quantumcomputing [297].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!