12.07.2015 Views

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

610 APPENDIX E. PROJECTIONE.4 Algebra of projection on affine subsetsLet P A x denote projection of x on affine subset A ∆ = R + α where R is asubspace and α ∈ A . Then, because R is parallel to A , it holds:P A x = P R+α x = (I − P R )(α) + P R x= P R (x − α) + α(1727)Subspace projector P R is a linear operator (P A is not), and P R (x + y)=P R xwhenever y ⊥R and P R is an orthogonal projector.E.4.0.0.1 Theorem. Orthogonal projection on affine subset. [73,9.26]Let A = R + α be an affine subset where α ∈ A , and let R ⊥ be theorthogonal complement of subspace R . Then P A x is the orthogonalprojection of x∈ R n on A if and only ifP A x ∈ A , 〈P A x − x, a − α〉 = 0 ∀a ∈ A (1728)or if and only ifP A x ∈ A , P A x − x ∈ R ⊥ (1729)⋄E.5 Projection examplesE.5.0.0.1 Example. Orthogonal projection on orthogonal basis.Orthogonal projection on a subspace can instead be accomplished byorthogonally projecting on the individual members of an orthogonal basis forthat subspace. Suppose, for example, matrix A∈ R m×n holds an orthonormalbasis for R(A) in its columns; A = ∆ [a 1 a 2 · · · a n ] . Then orthogonalprojection of vector x∈ R n on R(A) is a sum of one-dimensional orthogonalprojectionsn∑Px = AA † x = A(A T A) −1 A T x = AA T x = a i a T i x (1730)where each symmetric dyad a i a T i is an orthogonal projector projecting onR(a i ). (E.6.3) Because ‖x − Px‖ is minimized by orthogonal projection,Px is considered to be the best approximation (in the Euclidean sense) tox from the set R(A) . [73,4.9]i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!