12.07.2015 Views

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

v2007.11.26 - Convex Optimization

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

597Equivalent to the corresponding Moore-Penrose condition:1. A T = A T AA † or A T = A † AA T2. A †T = A †T A † A or A †T = AA † A †TWhen A is symmetric, A † is symmetric and (A.6)A ≽ 0 ⇔ A † ≽ 0 (1672)E.0.1.0.1 Example. Solution to classical linear equation Ax = b .In2.5.1.1, the solution set to matrix equation Ax = b was representedas an intersection of hyperplanes. Regardless of rank of A or its shape(fat or skinny), interpretation as a hyperplane intersection describing apossibly empty affine set generally holds. If matrix A is rank deficient orfat, there is an infinity of solutions x when b∈R(A). A unique solutionoccurs when the hyperplanes intersect at a single point.For any shape of matrix A of any rank, and given any vector b that mayor may not be in R(A) , we wish to find a best Euclidean solution x ⋆ toAx = b (1673)(more generally, Ax ≈ b given arbitrary matrices) by solvingminimizex‖Ax − b‖ 2 (1674)Necessary and sufficient condition for optimal solution to this unconstrainedoptimization is the so-called normal equation that results from zeroing theconvex objective’s gradient: (D.2.1)A T Ax = A T b (1675)normal because error vector b −Ax is perpendicular to R(A) ; id est,A T (b −Ax)=0. Given any matrix A and any vector b , the normal equationis solvable exactly; always so, because R(A T A)= R(A T ) and A T b∈ R(A T ).When A is skinny-or-square full-rank, normal equation (1675) can besolved exactly by inversion:x ⋆ = (A T A) −1 A T b ≡ A † b (1676)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!