12.07.2015 Views

Master's Thesis in Theoretical Physics - Universiteit Utrecht

Master's Thesis in Theoretical Physics - Universiteit Utrecht

Master's Thesis in Theoretical Physics - Universiteit Utrecht

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

F<strong>in</strong>ally, we can also vary the action with respect to the field φ to obta<strong>in</strong> the equation ofmotion for φ. The equation of motion for φ is¨φ + 3H ˙φ + ξRφ +dV (φ)dφ= 0. (4.9)The Ricci scalar R can be expressed <strong>in</strong> terms of H 2 and Ḣ (see appendix, Eq. (B.17)). Wenow want to express the Ricci scalar <strong>in</strong> terms of φ and ˙φ alone. We first substitute Eq. (4.9)<strong>in</strong>to Eq. (4.8) and obta<strong>in</strong>Ḣ =1(M 2 p − ξφ 2 )which allows us to writeThen R isḢ =1(M 2 p − ξ(1 − 6ξ)φ 2 )R = 6(Ḣ + 2H 2 )=6(M 2 p − ξ(1 − 6ξ)φ 2 )==6(M 2 p − ξ(1 − 6ξ)φ 2 )1(M 2 p − ξ(1 − 6ξ)φ 2 )[− 1 2 ˙φ 2 + ξ ˙φ2 − 4ξHφ ˙φ − 6ξ 2 (Ḣ + 2H 2 )φ 2 − ξφ[− 1 2 ˙φ 2 + ξ ˙φ2 − 4ξHφ ˙φ − 12ξ 2 H 2 φ 2 − ξφ[− 1 2 ˙φ 2 + ξ ˙φ2 − 4ξHφ ˙φ − 12ξ 2 H 2 φ 2 − ξφ[− 1 2 ˙φ 2 + ξ ˙φ2 − 4ξHφ ˙φ + 2(M2[− ˙φ2 + 6ξ ˙φ2 + 4V (φ) − 6ξφdV (φ)dφdV (φ)dφdV (φ)dφdV (φ)],].]+ 2H 2dφ]P − ξφ2 )H 2 dV (φ)− ξφdφ]. (4.10)Note that for a quartic potential V (φ) = 1 4 λφ4 the Ricci scalar vanishes for the special valueξ = 1 6. This is the conformal coupl<strong>in</strong>g value of ξ <strong>in</strong> 4 dimensions. The vanish<strong>in</strong>g of R suggeststhat a conformally coupled massless scalar field behaves as <strong>in</strong> flat space, i.e. it does not feelthe expansion of the universe. In fact, one can reduce the field equation for φ <strong>in</strong> Eq. (4.9)for R = 0 to the field equation for a scalar field <strong>in</strong> flat space by a conformal rescal<strong>in</strong>g of thescalar field by the scale factor. We will come back to and show this <strong>in</strong> section 4.2.Let us cont<strong>in</strong>ue by <strong>in</strong>sert<strong>in</strong>g Eq. (4.10) <strong>in</strong>to Eq. (4.9). We f<strong>in</strong>d that the field φ obeys theequation of motion−ξ(1 − 6ξ)φ¨φ + 3H ˙φ + ˙φ 2(M 2 p − ξ(1 − 6ξ)φ 2 )[]1=(M 2 p − ξ(1 − 6ξ)φ 2 −4ξφV (φ) − (M 2 P)− dV (φ)ξφ2 ) . (4.11)dφIn the next section we will solve this equation analytically by us<strong>in</strong>g the slow-roll approximationsand the assumption that ξ ≪ −1.4.1.2 Analytical solutions of the dynamical equationsTo be complete I will give aga<strong>in</strong> the three equations we obta<strong>in</strong>ed from the action (4.2). Firstthe constra<strong>in</strong>t equations (4.7) for H 2 and the dynamical equation (4.8) for Ḣ,[H 2 1 1=3(M 2 p − ξφ 2 ) 2 ˙φ 2 + V (φ) + 6ξHφ ˙φ][1Ḣ =(M 2 p − ξφ 2 − 1 ]) 2 ˙φ 2 + ξ ˙φ2 + ξφ ¨φ − ξHφ ˙φ ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!