12.07.2015 Views

Master's Thesis in Theoretical Physics - Universiteit Utrecht

Master's Thesis in Theoretical Physics - Universiteit Utrecht

Master's Thesis in Theoretical Physics - Universiteit Utrecht

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

such that the k<strong>in</strong>etic term transforms as −gg µν (∂ µ φ)(∂ ν φ) = √ −ḡḡ µν( 1(∂ µ ¯φ)(∂ν ¯φ) +4 (D − 2)2 (∂ µ lnΩ)(∂ ν lnΩ)+ D − 2)2 ( ¯φ(∂µ ¯φ)∂ν lnΩ + ¯φ(∂ν ¯φ)∂µ lnΩ)= √ −ḡḡ µν( 1(∂ µ ¯φ)(∂ν ¯φ) +4 (D − 2)2 ¯φ2 (∂ µ lnΩ)(∂ ν lnΩ)+ D − 22 (∂ µ ¯φ)2 )∂ ν lnΩ= √ −ḡḡ µν( 1)(∂ µ ¯φ)(∂ν ¯φ) +4 (D − 2)2 ¯φ2 (∂ µ lnΩ)(∂ ν lnΩ)− D − 2 ¯φ 2 √∂ µ −ḡḡ µν ∂ ν lnΩ2= √ −ḡḡ µν D − 2√ (∂ µ ¯φ)(∂ν ¯φ) [ − −ḡ ¯φ2 ¯□lnΩ2+ 1 ]2 (D − 2)ḡρλ (∂ ρ lnΩ)(∂ λ lnΩ) .In the third step I have partially <strong>in</strong>tegrated the last term and dropped the boundary term.In the f<strong>in</strong>al step we have used that1 −ḡ∂ ρ√−ḡḡ ρλ ∂ λ = ¯□ = ḡ ρλ ¯ ∇ ρ ¯ ∇ λ . (4.42)Us<strong>in</strong>g the new rescaled fields we f<strong>in</strong>d that the action is∫S = d D x √ {−ḡ − 1 12 ḡµν (∂ µ ¯φ)(∂ν ¯φ) −2 ξ ¯R ¯φ2 − Ω −D V (Ω D−22 ¯φ) (4.43)( ) [D − 2+ − (D − 1)ξ ¯φ 2 ¯□lnΩ + 1 }42 (D − 2)ḡρλ (∂ ρ lnΩ)(∂ λ lnΩ)].Now we <strong>in</strong>sert a general potential <strong>in</strong>to the actionV (φ) = 1 2 m2 φ 2 + 1 4 λφ4 , (4.44)such that the action is∫S = d D x √ {−ḡ − 1 12 ḡµν (∂ µ ¯φ)(∂ν ¯φ) −2 ξ ¯R ¯φ2 − Ω 2 1 2 m2 ¯φ2 − 1 4 λΩD−4 ¯φ4( ) [D − 2+ − (D − 1)ξ ¯φ 2 ¯□lnΩ + 1 }42 (D − 2)ḡρλ (∂ ρ lnΩ)(∂ λ lnΩ)].(4.45)If ξ now has the special valueξ = D − 24(D − 1) , (4.46)we f<strong>in</strong>d that the action is <strong>in</strong>variant <strong>in</strong> D ≠ 4 dimensions if m 2 = 0 and λ = 0. However, <strong>in</strong>4 dimensions we see that the action is <strong>in</strong>variant under a conformal transformation whenm 2 = 0 and ξ = 1 6 . Thus, the action Eq. (4.1) with a λφ4 potential is conformally <strong>in</strong>variant ifξ = 1 6 .As an example we will now consider the conformal FLRW metric, see section B.3. The metrichas the form g µν (x) = a 2 (η)η µν , so we can recognize a(t) = Ω(x). Eqs. (B.21), (B.23) and(B.25) can now easily be derived if we appreciate that <strong>in</strong> a flat M<strong>in</strong>kowsky space time theChristoffel connection vanishes (<strong>in</strong> Cartesian coord<strong>in</strong>ates). We have seen that the action <strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!