13.07.2015 Views

Observation and control of blinking nitrogen-vacancy centres in ...

Observation and control of blinking nitrogen-vacancy centres in ...

Observation and control of blinking nitrogen-vacancy centres in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LETTERSNATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2010.56ab500 nm500 nmcZ (nm)7d655 nm 34322100 10 20 30 40X (nm)1Intensity (a.u.)g (2) (τ)1.51.00.50.0−75 0 75Delay, τ (s)100 nm0640 720 800 880Wavelength (nm)Figure 1 | Characterization <strong>of</strong> discrete 5-nm diamonds on a glass coverslip. a, AFM image <strong>of</strong> nanodiamonds. The brightness <strong>of</strong> the spots is proportional tothe height <strong>of</strong> the crystals (circles highlight the correspondence between the AFM image <strong>and</strong> the confocal image <strong>of</strong> b). b, Correspond<strong>in</strong>g confocal scann<strong>in</strong>gfluorescence microscopy image. Bright spots <strong>in</strong>dicate NV emitters. c, Magnified AFM image <strong>and</strong> correspond<strong>in</strong>g surface pr<strong>of</strong>ile (<strong>in</strong>set) <strong>of</strong> a representativenanocrystal 5 nm <strong>in</strong> height. d, Emission spectrum <strong>of</strong> an NV centre <strong>in</strong> a 5-nm crystal host <strong>and</strong> correspond<strong>in</strong>g second-order correlation function g (2) (<strong>in</strong>set).a2b 4.6Intensity (a.u.)1(i)(ii)Counts (×10 3 )4.44.24.00600 660 720 780 840Wavelength (nm)3.82,840 2,880 2,920Frequency (MHz)Figure 2 | Lum<strong>in</strong>escence <strong>and</strong> magnetic resonance spectra from detonation nanodiamond. a, Representative NV centre spectra, as acquired <strong>in</strong>nanodiamonds <strong>in</strong>corporated <strong>in</strong> aggregates <strong>and</strong>/or a PVA film (i) <strong>and</strong> <strong>in</strong> the free-space sample (ii). b, Optically detected magnetic resonance spectrumassociated with the lum<strong>in</strong>escence spectrum (i), show<strong>in</strong>g the two characteristic magnetic resonance dips <strong>in</strong>dicat<strong>in</strong>g a stra<strong>in</strong>-<strong>in</strong>duced splitt<strong>in</strong>g <strong>of</strong> the m s ¼+1sp<strong>in</strong> sublevels typical <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> nanodiamonds.probably <strong>in</strong>cluded a strong sp 2 -bonded carbon lum<strong>in</strong>escence fromthe gra<strong>in</strong> boundary <strong>of</strong> the nanodiamond agglomerates, which overshadowedthe NV lum<strong>in</strong>escence (centred at 700 nm, compare withFig. 1d), but not the ODMR signal. ODMR was undetectable withour apparatus <strong>in</strong> the free-space nanodiamonds. We attribute thisto strong dephas<strong>in</strong>g ow<strong>in</strong>g to the distorted crystal order <strong>and</strong> aweak signal exacerbated by the reduced count rate due to <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>.The observation <strong>of</strong> lum<strong>in</strong>escence from s<strong>in</strong>gle, isolated NV<strong>centres</strong> <strong>in</strong> 5-nm detonation nanodiamonds, which has been thesubject <strong>of</strong> <strong>in</strong>tense debate, is important because, until now, lum<strong>in</strong>escencefrom ≏5-nm crystals has been observed only <strong>in</strong> detonationnanodiamond agglomerates 5 . Furthermore, <strong>and</strong> <strong>in</strong> contrast toagglomerates (where the diamond surface is largely encased), wealso observed a new property <strong>of</strong> NV <strong>centres</strong>: lum<strong>in</strong>escence <strong>in</strong>termittencyor ‘<strong>bl<strong>in</strong>k<strong>in</strong>g</strong>’. NV has been described as an extremely photostableemitter immune to bleach<strong>in</strong>g 1 or <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>, as representedby a typical lum<strong>in</strong>escence time trajectory (Fig. 3a) acquired <strong>in</strong> asample prepared us<strong>in</strong>g the polyv<strong>in</strong>yl alcohol (PVA) polymersample preparation method 6 .Figure 3c shows a representative <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> lum<strong>in</strong>escence time trajectoryfrom a nanodiamond conta<strong>in</strong><strong>in</strong>g an NV centre, <strong>in</strong> which thediamonds were prepared as described <strong>in</strong> the Methods. Bl<strong>in</strong>k<strong>in</strong>g was2NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology© 2010 Macmillan Publishers Limited. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!