13.07.2015 Views

Observation and control of blinking nitrogen-vacancy centres in ...

Observation and control of blinking nitrogen-vacancy centres in ...

Observation and control of blinking nitrogen-vacancy centres in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

LETTERSPUBLISHED ONLINE: 11 APRIL 2010 | DOI: 10.1038/NNANO.2010.56<strong>Observation</strong> <strong>and</strong> <strong>control</strong> <strong>of</strong> <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> <strong>nitrogen</strong><strong>vacancy</strong><strong>centres</strong> <strong>in</strong> discrete nanodiamondsC. Bradac 1,2 ,T.Gaebel 1,2 ,N.Naidoo 1 ,M.J.Sellars 3 ,J.Twamley 1 ,L.J.Brown 4 ,A.S.Barnard 5 ,T. Plakhotnik 6 ,A.V.Zvyag<strong>in</strong> 2 * <strong>and</strong> J. R. Rabeau 1,2 *Nitrogen-<strong>vacancy</strong> colour <strong>centres</strong> <strong>in</strong> diamond can undergostrong, sp<strong>in</strong>-sensitive optical transitions under ambient conditions,which makes them attractive for applications <strong>in</strong>quantum optics 1 , nanoscale magnetometry 2,3 <strong>and</strong> biolabell<strong>in</strong>g 4 .Although <strong>nitrogen</strong>-<strong>vacancy</strong> <strong>centres</strong> have been observed <strong>in</strong>aggregated detonation nanodiamonds 5 <strong>and</strong> milled nanodiamonds6 , they have not been observed <strong>in</strong> very small isolatednanodiamonds 7 . Here, we report the first direct observation <strong>of</strong><strong>nitrogen</strong>-<strong>vacancy</strong> <strong>centres</strong> <strong>in</strong> discrete 5-nm nanodiamondsat room temperature, <strong>in</strong>clud<strong>in</strong>g evidence for <strong>in</strong>termittency <strong>in</strong>the lum<strong>in</strong>escence (<strong>bl<strong>in</strong>k<strong>in</strong>g</strong>) from the nanodiamonds. We alsoshow that it is possible to <strong>control</strong> this <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> by modify<strong>in</strong>gthe surface <strong>of</strong> the nanodiamonds.Detonation nanodiamond is rout<strong>in</strong>ely produced on an <strong>in</strong>dustrialscale, <strong>and</strong> the raw material can be dis<strong>in</strong>tegrated <strong>in</strong>to a stable 5-nmmonodisperse colloid 8 . The comb<strong>in</strong>ation <strong>of</strong> <strong>in</strong>ert core <strong>and</strong> chemicallyreactive surface, which can host a variety <strong>of</strong> moieties, is appeal<strong>in</strong>gfor chemists, biologists <strong>and</strong> material scientists 9,10 . Quantummagnetometry 2,3 is an example <strong>of</strong> an emerg<strong>in</strong>g technology thatwill directly benefit from the availability <strong>of</strong> nanocrystals with welldef<strong>in</strong>edsizes <strong>in</strong> the 5-nm range, because the sensitivity to s<strong>in</strong>glesp<strong>in</strong>s is <strong>in</strong>versely proportional to the cube <strong>of</strong> the distance betweenthe sensor (that is, the <strong>nitrogen</strong>-<strong>vacancy</strong> (NV) centre) <strong>and</strong> thesp<strong>in</strong> be<strong>in</strong>g detected.Produc<strong>in</strong>g <strong>and</strong> detect<strong>in</strong>g NV colour <strong>centres</strong> <strong>in</strong> isolated 5-nmdetonation nanodiamond has been controversial, <strong>and</strong> there hasbeen some scepticism regard<strong>in</strong>g their stability as a useful emitter<strong>in</strong> a discrete crystal. For example, theoretical calculations <strong>of</strong> thecrystal energy budget favour the location <strong>of</strong> <strong>nitrogen</strong> on thesurface rather than <strong>in</strong> the core, which seems to expla<strong>in</strong> the limitedobservation <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> chemical vapour deposition <strong>and</strong>high-pressure high-temperature gra<strong>in</strong>s <strong>of</strong> less than 40 nm <strong>in</strong>size 11,12 , <strong>and</strong> favours the prediction that nanodiamonds smallerthan 10 nm <strong>in</strong> size do not conta<strong>in</strong> NV <strong>centres</strong> 7,13 . Although sub-10-nm nanodiamonds with NV <strong>centres</strong> have been produced us<strong>in</strong>ga top-down approach (mill<strong>in</strong>g lum<strong>in</strong>escent high-pressure hightemperaturemicrodiamonds <strong>in</strong>to 7-nm particles 6,14 ), the question<strong>of</strong> NV stability <strong>in</strong> isolated detonation nanodiamonds persists.In aggregated detonation nanodiamonds (agglomerates <strong>and</strong>agglut<strong>in</strong>ates 8 ), high-sensitivity, time-gated lum<strong>in</strong>escence <strong>and</strong> electronicparamagnetic resonance spectroscopy have been used toextract a weak NV signal from a strong lum<strong>in</strong>escence background 5 .The experiments highlight the eclips<strong>in</strong>g nature <strong>of</strong> the graphiticsurface layers <strong>in</strong> nanodiamond aggregates—NV <strong>centres</strong> weresimply not visible through the broadb<strong>and</strong> lum<strong>in</strong>escence from thesurface <strong>and</strong> gra<strong>in</strong> boundary material. To dist<strong>in</strong>guish the NV spectralsignature from the large gra<strong>in</strong> boundary lum<strong>in</strong>escence overhead,diamond synthesis yield<strong>in</strong>g discrete sub-10-nm detonation nanodiamondsis vital. Here, we use a robust deaggregation <strong>and</strong> dispersionmethod, which dim<strong>in</strong>ishes the crystal–crystal <strong>in</strong>teractionto yield a quasi-isolated system <strong>of</strong> ‘free-space’ crystals weaklycoupled to the underly<strong>in</strong>g substrate. In contrast to other materials<strong>and</strong> process<strong>in</strong>g techniques (such as mill<strong>in</strong>g 6,14 ), this method producesisolated detonation nanodiamonds with a well-def<strong>in</strong>ed sizedistribution on a dry substrate (see Methods).Figure 1 presents data from the analysed sample, collected withthe comb<strong>in</strong>ed confocal scann<strong>in</strong>g fluorescence <strong>and</strong> atomic forcemicroscope (AFM) system described previously 11 (a schematic isshown <strong>in</strong> Supplementary Fig. S1). The laser excitation power was300 mW. The AFM-based measurements clearly show areas <strong>of</strong> thesample show<strong>in</strong>g a sparse spatial distribution <strong>of</strong> nanoparticles(Fig. 1a) with a typical size <strong>in</strong> the 5 nm range (Fig. 1c). We alsocarried out transmission electron microscopy (TEM) observationsto further quantify the size <strong>of</strong> the nanodiamond crystals (detailed<strong>in</strong> Supplementary Information). As shown, some isolated nanoparticles(≏1%) were lum<strong>in</strong>escent (Fig. 1b), <strong>and</strong> their spectra(Fig. 1d) were consistent with those reported for NVs <strong>in</strong> nanodiamonds6,14 . Furthermore, the second-order correlation function 1g (2) (t) (see Methods) confirmed that the emission orig<strong>in</strong>ated from as<strong>in</strong>gle centre (Fig. 1d, <strong>in</strong>set). The emission lifetime varied from 2to 14 ns, with a mean value <strong>of</strong> ≏5.5 ns. There was no observeddifference <strong>in</strong> the distribution <strong>of</strong> lifetimes for <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> <strong>and</strong> non<strong>bl<strong>in</strong>k<strong>in</strong>g</strong><strong>centres</strong>. Further studies are required to underst<strong>and</strong> thequench<strong>in</strong>g mechanism, which favours a shorter lifetime. It hasbeen shown recently that NV <strong>centres</strong> <strong>in</strong> a detonation-nanodiamondhost show a bi-exponential decay, with time constants <strong>of</strong> 2.5 <strong>and</strong>20 ns 15 , the shortened lifetime be<strong>in</strong>g attributed to quench<strong>in</strong>g fromsurface graphite.Additional confirmation <strong>of</strong> the existence <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> the asreceivednanodiamond sample was obta<strong>in</strong>ed by perform<strong>in</strong>g opticallydetected magnetic resonance (ODMR) to probe the wellcharacterizedground-state triplet splitt<strong>in</strong>g. In previous studies,nanodiamond-hosted NV <strong>centres</strong> have been shown to have azero-magnetic-field, stra<strong>in</strong>-related splitt<strong>in</strong>g 6 , <strong>in</strong> excellent agreementwith the ODMR spectrum shown <strong>in</strong> Fig. 2b, which represents anunambiguous signature <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> the detonation nanodiamond.The lum<strong>in</strong>escence spectrum was centred at 650 nm, <strong>in</strong>agreement with that reported by Smith <strong>and</strong> colleagues 5 , <strong>and</strong>1Centre for Quantum Science <strong>and</strong> Technology, Department <strong>of</strong> Physics, Macquarie University, Sydney, New South Wales, 2109, Australia, 2 MQ PhotonicsResearch Centre, Department <strong>of</strong> Physics, Macquarie University, Sydney, New South Wales, 2109, Australia, 3 Laser Physics Centre, Research School <strong>of</strong>Physics <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Australian National University, Australian Capital Territory, 0200, Australia, 4 Department <strong>of</strong> Chemistry <strong>and</strong> Biomolecular Science,Macquarie University, Sydney, New South Wales, 2109, Australia, 5 Virtual Nanoscience Laboratory, CSIRO Materials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Clayton,Victoria, 3168, Australia, 6 Department <strong>of</strong> Physics, University <strong>of</strong> Queensl<strong>and</strong>, Brisbane, Queensl<strong>and</strong>, Australia. *e-mail: azvyag<strong>in</strong>@science.mq.edu.au;jrabeau@science.mq.edu.auNATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 1© 2010 Macmillan Publishers Limited. All rights reserved.


LETTERSNATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2010.56ab500 nm500 nmcZ (nm)7d655 nm 34322100 10 20 30 40X (nm)1Intensity (a.u.)g (2) (τ)1.51.00.50.0−75 0 75Delay, τ (s)100 nm0640 720 800 880Wavelength (nm)Figure 1 | Characterization <strong>of</strong> discrete 5-nm diamonds on a glass coverslip. a, AFM image <strong>of</strong> nanodiamonds. The brightness <strong>of</strong> the spots is proportional tothe height <strong>of</strong> the crystals (circles highlight the correspondence between the AFM image <strong>and</strong> the confocal image <strong>of</strong> b). b, Correspond<strong>in</strong>g confocal scann<strong>in</strong>gfluorescence microscopy image. Bright spots <strong>in</strong>dicate NV emitters. c, Magnified AFM image <strong>and</strong> correspond<strong>in</strong>g surface pr<strong>of</strong>ile (<strong>in</strong>set) <strong>of</strong> a representativenanocrystal 5 nm <strong>in</strong> height. d, Emission spectrum <strong>of</strong> an NV centre <strong>in</strong> a 5-nm crystal host <strong>and</strong> correspond<strong>in</strong>g second-order correlation function g (2) (<strong>in</strong>set).a2b 4.6Intensity (a.u.)1(i)(ii)Counts (×10 3 )4.44.24.00600 660 720 780 840Wavelength (nm)3.82,840 2,880 2,920Frequency (MHz)Figure 2 | Lum<strong>in</strong>escence <strong>and</strong> magnetic resonance spectra from detonation nanodiamond. a, Representative NV centre spectra, as acquired <strong>in</strong>nanodiamonds <strong>in</strong>corporated <strong>in</strong> aggregates <strong>and</strong>/or a PVA film (i) <strong>and</strong> <strong>in</strong> the free-space sample (ii). b, Optically detected magnetic resonance spectrumassociated with the lum<strong>in</strong>escence spectrum (i), show<strong>in</strong>g the two characteristic magnetic resonance dips <strong>in</strong>dicat<strong>in</strong>g a stra<strong>in</strong>-<strong>in</strong>duced splitt<strong>in</strong>g <strong>of</strong> the m s ¼+1sp<strong>in</strong> sublevels typical <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> nanodiamonds.probably <strong>in</strong>cluded a strong sp 2 -bonded carbon lum<strong>in</strong>escence fromthe gra<strong>in</strong> boundary <strong>of</strong> the nanodiamond agglomerates, which overshadowedthe NV lum<strong>in</strong>escence (centred at 700 nm, compare withFig. 1d), but not the ODMR signal. ODMR was undetectable withour apparatus <strong>in</strong> the free-space nanodiamonds. We attribute thisto strong dephas<strong>in</strong>g ow<strong>in</strong>g to the distorted crystal order <strong>and</strong> aweak signal exacerbated by the reduced count rate due to <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>.The observation <strong>of</strong> lum<strong>in</strong>escence from s<strong>in</strong>gle, isolated NV<strong>centres</strong> <strong>in</strong> 5-nm detonation nanodiamonds, which has been thesubject <strong>of</strong> <strong>in</strong>tense debate, is important because, until now, lum<strong>in</strong>escencefrom ≏5-nm crystals has been observed only <strong>in</strong> detonationnanodiamond agglomerates 5 . Furthermore, <strong>and</strong> <strong>in</strong> contrast toagglomerates (where the diamond surface is largely encased), wealso observed a new property <strong>of</strong> NV <strong>centres</strong>: lum<strong>in</strong>escence <strong>in</strong>termittencyor ‘<strong>bl<strong>in</strong>k<strong>in</strong>g</strong>’. NV has been described as an extremely photostableemitter immune to bleach<strong>in</strong>g 1 or <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>, as representedby a typical lum<strong>in</strong>escence time trajectory (Fig. 3a) acquired <strong>in</strong> asample prepared us<strong>in</strong>g the polyv<strong>in</strong>yl alcohol (PVA) polymersample preparation method 6 .Figure 3c shows a representative <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> lum<strong>in</strong>escence time trajectoryfrom a nanodiamond conta<strong>in</strong><strong>in</strong>g an NV centre, <strong>in</strong> which thediamonds were prepared as described <strong>in</strong> the Methods. Bl<strong>in</strong>k<strong>in</strong>g was2NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology© 2010 Macmillan Publishers Limited. All rights reserved.


NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2010.56LETTERSabPhotocounts per4-ms b<strong>in</strong>400200Photocounts per4-ms b<strong>in</strong>4002000 1 2 0 400 800Time (s)OccurrencecdPhotocounts per4-ms b<strong>in</strong>400200Photocounts per4-ms b<strong>in</strong>400200eOccurrence01 2 0 400 80010 0 10 0Time (s)Occurrence10 3 f 10 39020601710 210 214300.4 0.6 0.80.4 0.6 0.8Laser <strong>in</strong>tensityLaser <strong>in</strong>tensity10 1(MW cm −2 )10 1(MW cm −2 )τ on (ms)Occurrenceτ <strong>of</strong>f (ms)0 75 150 225 300075150‘On’ time <strong>in</strong>terval (ms)‘Off’ time <strong>in</strong>terval (ms)Figure 3 | Detailed analysis <strong>of</strong> <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> statistics from an NV centre <strong>in</strong> detonation nanodiamond. a–d, A 2-s fragment <strong>of</strong> a 200-s lum<strong>in</strong>escence timetrajectory <strong>of</strong> the NV <strong>centres</strong> sampled <strong>in</strong>to 4-ms b<strong>in</strong>s from two separate diamond samples: NV lum<strong>in</strong>escence from nanodiamonds embedded <strong>in</strong> a PVApolymer film (a), with correspond<strong>in</strong>g histogram fitted with a s<strong>in</strong>gle Gaussian (b), where the l<strong>in</strong>e <strong>in</strong> a is the mean count rate; a s<strong>in</strong>gle isolated NV <strong>in</strong>nanodiamond display<strong>in</strong>g <strong>in</strong>termittent lum<strong>in</strong>escence (c), with correspond<strong>in</strong>g histogram <strong>of</strong> the full time trajectory fitted with two Gaussians (d). Gaussians arefitted to the ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ state photon distributions <strong>and</strong> a l<strong>in</strong>e is drawn through c to <strong>in</strong>dicate the on/<strong>of</strong>f ‘threshold’ for analys<strong>in</strong>g the emission statistics.e,f, Bl<strong>in</strong>k<strong>in</strong>g statistics <strong>of</strong> the ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ states on a semi-logarithmic scale (symbols). A s<strong>in</strong>gle exponential is fitted <strong>in</strong> both cases, with time constants 45<strong>and</strong> 18 ms, respectively. Insets to e <strong>and</strong> f plot <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> time constant versus the excitation laser <strong>in</strong>tensities for ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ states, respectively.observed <strong>in</strong> ≏25% <strong>of</strong> the lum<strong>in</strong>escent sites. The ‘<strong>of</strong>f’ state was at thelevel <strong>of</strong> the background signal, <strong>and</strong> <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> due to photochromism16 was ruled out as the neutral NV lum<strong>in</strong>escence signaturewas never observed <strong>in</strong> the spectra. Photobleach<strong>in</strong>g was also observedon some <strong>of</strong> the <strong>centres</strong>; however, those analysed <strong>in</strong> this Lettershowed lum<strong>in</strong>escence over several hours <strong>of</strong> illum<strong>in</strong>ation. We analysed<strong>bl<strong>in</strong>k<strong>in</strong>g</strong> by sampl<strong>in</strong>g the lum<strong>in</strong>escence time trajectories at4-ms time b<strong>in</strong>s <strong>and</strong> analysed the data us<strong>in</strong>g accepted signal-process<strong>in</strong>galgorithms, <strong>in</strong> which the position <strong>of</strong> the signal relative to athreshold level determ<strong>in</strong>es the assignment <strong>of</strong> the states 17 . The <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>phenomena were also characterized as a function <strong>of</strong> the excitation<strong>in</strong>tensity (shown <strong>in</strong> the <strong>in</strong>sets <strong>of</strong> Fig. 3e,f, <strong>and</strong> detailed <strong>in</strong>the Supplementary Information).The 4-ms b<strong>in</strong> width was chosen because it provides the deepestm<strong>in</strong>imum between the two Gaussian curves shown <strong>in</strong> Fig. 3d.Averag<strong>in</strong>g data <strong>in</strong>to 4-ms b<strong>in</strong>s on the one h<strong>and</strong> ignores the rapidevents that may display complex dynamics 18 , but on the otherh<strong>and</strong> decreases the noise <strong>and</strong> emphasizes the two-state NV-nanodiamond<strong>bl<strong>in</strong>k<strong>in</strong>g</strong> system, as shown <strong>in</strong> Fig. 3d. Chang<strong>in</strong>g the b<strong>in</strong>time to 2 ms did not change the result, <strong>and</strong> with 1-ms b<strong>in</strong>s thestatistical noise was too pronounced for a mean<strong>in</strong>gful result.These two states are identified as ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ 19 . Quantum dots 20 ,s<strong>in</strong>gle molecules 21 , silicon nanocrystals <strong>in</strong> a porous siliconmatrix 22 <strong>and</strong> others 23 are well-known systems that show <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>.The validity <strong>of</strong> the two-state on/<strong>of</strong>f model is <strong>in</strong>tensely debated 24 ,especially <strong>in</strong> the context <strong>of</strong> quantum-dot studies, where, forexample, three states 25 <strong>and</strong> a cont<strong>in</strong>uous distribution <strong>of</strong> states 26have been reported. In our case, the validity <strong>of</strong> the two-statemodel was underp<strong>in</strong>ned by the photon distribution <strong>in</strong> ‘on’ <strong>and</strong>‘<strong>of</strong>f’ states based on the Gaussian distribution <strong>and</strong> expressed as⎡ ( ) 2⎤PN ( ) = p N − ¯N onon√⎢⎥exp⎣−⎦2p son2s 2 on⎡ ( ) 2⎤+ p N − ¯N <strong>of</strong>f<strong>of</strong>f√⎢⎥exp⎣−⎦2p s<strong>of</strong>f2s 2 <strong>of</strong>fwhere ¯N represents the mean value <strong>of</strong> the number <strong>of</strong> photons <strong>in</strong>each state, p is the population <strong>of</strong> the states, N the total number <strong>of</strong>photons <strong>and</strong> s 2 the variance <strong>of</strong> the distribution. For a stablephoton emission, the variance equals the mean value. The fit tothe distribution reveals s 2 on to be only about two times largerthan the mean ¯N on . This determ<strong>in</strong>ed our choice <strong>of</strong> the thresholdlevel between the ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ states, which was set at the <strong>in</strong>tersection<strong>of</strong> the two Gaussians (Fig. 3c,d), where the probabilities for N tobe at the ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ levels were equal. The distribution <strong>of</strong> the ‘on’<strong>and</strong> ‘<strong>of</strong>f’ times are plotted on a semi-logarithmic scale <strong>in</strong> Fig. 3e,f,NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 3© 2010 Macmillan Publishers Limited. All rights reserved.


LETTERSNATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2010.56a b 0.05cR Bohr R Bohr0.3R Bohr R Bohr0.040.2Structural disorder, Δd (Å)0.030.020.010.00−0.01−0.02−0.03−0.04Electronic disorder, ΔE LUMO (eV)0.10.0−0.1−0.2−0.3−0.4−0.5−0.05−1.0 −0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0Distance from centre, r/R−0.6−1.0 −0.8−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0Distance from centre, r/RFigure 4 | Theoretical characterization <strong>of</strong> the structural <strong>and</strong> electronic disorder. a, Nanodiamond model, with all NV sites shown simultaneously (blue).b, Site-dependent change <strong>in</strong> the average C–N bond length (Dd). c, Site-dependent change <strong>in</strong> the energy <strong>of</strong> the lowest unoccupied molecular orbital(DE LUMO ). Closed symbols denote NV <strong>centres</strong> located with<strong>in</strong> a Bohr excitonic radius from surfaces/edges/corners (where the surface/edge/corner is at 1 or21 with respect to the centrosymmetric atom at the orig<strong>in</strong>), where atoms with mixed hybridization reside, <strong>and</strong> open symbols <strong>in</strong>dicate NV <strong>centres</strong> locatedbeyond the excitonic radius from surfaces/edges/corners (that is, with<strong>in</strong> the core, where atoms are entirely sp 3 -hybridized).together with the data-fitt<strong>in</strong>g curves, which display exponentialtrends <strong>in</strong> both the ‘on’ <strong>and</strong> ‘<strong>of</strong>f’ cases.We now discuss <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> mechanisms <strong>in</strong> the context <strong>of</strong> otherwell-studied systems. Passivated quantum dots <strong>and</strong> s<strong>in</strong>gle molecules<strong>in</strong> polymer matrices are examples <strong>of</strong> trap-abundant quantumsystems that show <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>. It has been shown that remov<strong>in</strong>gtraps from the passivated quantum-dot surface suppresses <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>23 . In general, excitation/emission is mediated by an exciton,(that is, charge separation, where the electron determ<strong>in</strong>es thek<strong>in</strong>etics <strong>of</strong> this process by virtue <strong>of</strong> its higher mobility). It is thecapture <strong>of</strong> this electron by (surface) traps that <strong>in</strong>hibits excitonrecomb<strong>in</strong>ation (switch<strong>in</strong>g the emitter to the ‘<strong>of</strong>f’ state) where thetrap-abundant matrix disorder promotes this capture 23 . Theoptical excitation/emission process <strong>in</strong> an NV centre is also mediatedby an exciton. However, the NV defect-associated exciton is bound,or localized at the NV site, with<strong>in</strong> the Bohr radius (,1 nm), unlikethe case for quantum dots, where an exciton is essentially delocalized.In the case <strong>of</strong> NVs <strong>in</strong> ≏5-nm detonation nanodiamonds,the <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> may therefore be a manifestation <strong>of</strong> the local crystaldisorder. An NV centre is situated <strong>in</strong> a ≏5-nm crystal compris<strong>in</strong>ga crystall<strong>in</strong>e diamond core sized 2–3 nm <strong>and</strong> a mixed sp 2 –sp 3hybridization shell <strong>of</strong> quasi-spherical shape 27 distorted by thelarge proportion <strong>of</strong> surface dangl<strong>in</strong>g bonds (≏20% <strong>of</strong> total carbonatoms) 28 , dislocations 29 <strong>and</strong> impurities. The outer shell has beenfound to rega<strong>in</strong> some sp 3 hybridization by surface passivation, forexample, with oxygen-conta<strong>in</strong><strong>in</strong>g moieties 28,30 , as <strong>in</strong> the presentstudy. Ow<strong>in</strong>g to the proximity <strong>of</strong> the NV centre to the nanodiamondsurface, it is also a possibility that surface functional groups <strong>and</strong>/oradsorbed species may also be a source <strong>of</strong> traps caus<strong>in</strong>g <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>.To assess the degree <strong>of</strong> disorder <strong>in</strong> a typical nanodiamond, wecarried out a series <strong>of</strong> density functional tight b<strong>in</strong>d<strong>in</strong>g (DFTB) simulationson a model truncated octahedral structure, with all surfacesfully passivated with hydrogen atoms (C 837 H 252 ). NV defects were<strong>in</strong>dividually <strong>in</strong>serted <strong>in</strong>to over 50 unique lattice sites with<strong>in</strong> the particle,as shown <strong>in</strong> Fig. 4a <strong>and</strong> described <strong>in</strong> the SupplementaryInformation. A number <strong>of</strong> parameters were used to assess the localcrystal disorder at these sites, <strong>in</strong>clud<strong>in</strong>g the change <strong>in</strong> the averageC–N bond length (Dd), as shown <strong>in</strong> Fig. 4b. When sufficient disorderis present, there will be a shift <strong>in</strong> the electronic states, so the change <strong>in</strong>the energy <strong>of</strong> the lowest unoccupied molecular orbital (DE LUMO )wasalso considered, as shown <strong>in</strong> Fig. 4c. In these <strong>and</strong> other cases (seeSupplementary Information), the disorder is extreme when the siteis with<strong>in</strong> the excitonic radius (R Bohr ) from the surfaces, edges <strong>and</strong>corners (closed symbols), <strong>and</strong> NV <strong>centres</strong> with<strong>in</strong> the core <strong>of</strong> theparticle (where disorder is absent or <strong>in</strong>significant) are the only<strong>centres</strong> that are likely to be optically active (open symbols <strong>in</strong> Fig.4b,c). More details on the theoretical modell<strong>in</strong>g are available <strong>in</strong> theSupplementary Information.It is important to note that when these 5-nm diamonds werecomb<strong>in</strong>ed <strong>in</strong>to aggregates <strong>and</strong>/or embedded <strong>in</strong> a polymer PVAfilm, electronic discont<strong>in</strong>uity at the <strong>in</strong>terface was altered, <strong>and</strong> the<strong>in</strong>dividual NV-centre lum<strong>in</strong>escence temporal behaviour wasrestored to a cont<strong>in</strong>uous lum<strong>in</strong>escence signal, with no exceptions(Fig. 3a). This result reproduced previous reports on NV lum<strong>in</strong>escence<strong>in</strong> nanodiamonds 4,5,12,14 . However, <strong>in</strong> free space, discrete5-nm nanodiamonds conta<strong>in</strong><strong>in</strong>g an NV centre revealed a new lum<strong>in</strong>escence<strong>in</strong>termittency pattern, for which the effect <strong>of</strong> the nanodiamondsurface state (as <strong>in</strong> the aggregated or polymer-embeddedstate) warrants further study.This <strong>in</strong>sight <strong>in</strong>to the properties <strong>of</strong> NV <strong>centres</strong> <strong>in</strong> discrete nanodiamonds,as reported here, may affect a range <strong>of</strong> applications <strong>in</strong> thephysical <strong>and</strong> life sciences. The presence or absence <strong>of</strong> <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> <strong>in</strong>nanodiamonds provides <strong>in</strong>formation about the local <strong>and</strong> surround<strong>in</strong>genvironment <strong>of</strong> the hosted NV centre, which could f<strong>in</strong>d use <strong>in</strong> avariety <strong>of</strong> quantum or biosens<strong>in</strong>g technologies. For example, harness<strong>in</strong>gthe environmental sensitivity <strong>of</strong> <strong>bl<strong>in</strong>k<strong>in</strong>g</strong> may enable theoptical detection <strong>of</strong> changes <strong>in</strong> the surface functionalization <strong>of</strong> ananodiamond probe.MethodsDetonation diamond nanocrystals (as received, Diamond Technologies <strong>and</strong>Materials) with an average size <strong>of</strong> 5 nm, as measured by dynamic light scatter<strong>in</strong>g(not shown), were used for the experiments. The diamonds were processed us<strong>in</strong>gstrong acid reflux <strong>and</strong> ultrasonication 31,32 , as outl<strong>in</strong>ed below.The preparation <strong>of</strong> the nanodiamonds <strong>in</strong>cluded a number <strong>of</strong> previously reportedmethods 31,32 , <strong>and</strong> was modified for optimal deagglomeration. It is worth mention<strong>in</strong>gthat thermal oxidation can yield disperse sub-10-nm nanodiamond crystals on laceycarbon, as reported previously 28 . Nanodiamonds were mixed with sulphuric acid(98%, 9 ml) <strong>and</strong> nitric acid (70%, 1 ml) <strong>and</strong> then refluxed for 3 days at 70 8C. Themixture was centrifuged <strong>and</strong> ultrasonicated, then refluxed aga<strong>in</strong> with a fresh acidmixture. Nanodiamonds were washed with Milli-Q w then refluxed with NaOH(0.1 M, 8 ml; 1 h, 90 8C), washed, then refluxed with HCl (0.1 M, 8 ml). Thenanodiamond–acid mixture was washed with Milli-Q w <strong>and</strong> ultrasonicated (1 h).The sample was diluted by addition <strong>of</strong> Milli-Q (≏20 ml) <strong>and</strong> ultracentrifuged (1 h,100,000g). This procedure was repeated three times, <strong>and</strong> the result<strong>in</strong>g supernatantconta<strong>in</strong><strong>in</strong>g <strong>in</strong>dividual diamond gra<strong>in</strong>s was used for these experiments.Nanodiamonds were either dropped onto a glass coverslip <strong>and</strong> left to dry, or sp<strong>in</strong>coated.The compositions <strong>of</strong> the treated <strong>and</strong> untreated diamond were assessed byRaman spectroscopy (see Supplementary Information), show<strong>in</strong>g a dramatic decrease<strong>in</strong> the graphitic compared with diamond content <strong>of</strong> the sample.To embed nanodiamonds <strong>in</strong> a PVA film, they were mixed, <strong>in</strong> differentproportions, with a 0.25% solution <strong>of</strong> PVA <strong>in</strong> de-ionized water. Two different4NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology© 2010 Macmillan Publishers Limited. All rights reserved.


NATURE NANOTECHNOLOGY DOI: 10.1038/NNANO.2010.56LETTERSmolecular weight PVAs were used: average M w , 85,000–24,000 (Aldrich 363146);average M w , 31,000–50,000 (Aldrich 363138).The agglomerated nanodiamonds were measured us<strong>in</strong>g optical microscopy <strong>and</strong>AFM-zoom<strong>in</strong>g on the regions <strong>of</strong> clear aggregation. Simultaneous topographic <strong>and</strong>lum<strong>in</strong>escence imag<strong>in</strong>g <strong>of</strong> the same sample area was carried out us<strong>in</strong>g a ‘home-built’,room-temperature confocal scann<strong>in</strong>g fluorescence microscope (×100 oil-immersionobjective lens, NA 1.4) illum<strong>in</strong>ated with a cont<strong>in</strong>uous-wave 532-nm diode-pumpedsolid-state laser (Coherent, model: Compass 315M-100), comb<strong>in</strong>ed with acommercial AFM (NT-MDT Ntegra) as described elsewhere 11 . The lum<strong>in</strong>escencespectrum was acquired us<strong>in</strong>g a spectrometer (Pr<strong>in</strong>ceton Instruments Acton 2500i,Camera Pixis 100 model: 7515-0001). A Hanbury Brown <strong>and</strong> Twiss <strong>in</strong>terferometerwas used to measure the second-order correlation function g (2) (t) ¼ ,I(t)I(t þ t)/I(t) 2 . , where I is the lum<strong>in</strong>escence signal <strong>in</strong>tensity. The number <strong>of</strong> emittersper <strong>in</strong>dividual illum<strong>in</strong>ated nanocrystal was determ<strong>in</strong>ed by analys<strong>in</strong>g g (2) at t ¼ 0 <strong>and</strong>t ¼ 1, where g (2) (t ¼ 0) is the probability <strong>of</strong> detect<strong>in</strong>g two simultaneous photonsnormalized by the probability <strong>of</strong> detect<strong>in</strong>g two photons at once for a r<strong>and</strong>om photonsource. Because a s<strong>in</strong>gle quantum system, such as a s<strong>in</strong>gle NV centre, cannotsimultaneously emit two photons at a time, g (2) (t ¼ 0) ¼ 0, yield<strong>in</strong>g an‘antibunch<strong>in</strong>g’ dip otherwise governed by the sub-Poissonian statistics <strong>of</strong> the emittedphotons. The g (2) -contrast reports on the number <strong>of</strong> sampled emitters N e , because itscales as 1/ N e (ref. 1).ODMR <strong>in</strong>terrogation <strong>of</strong> the s<strong>in</strong>gle NV <strong>centres</strong> was designed <strong>and</strong> carried outus<strong>in</strong>g the accepted quantum-mechanical representation <strong>of</strong> an NV centre. The centrerepresents a two-level quantum system, which can be pumped to the first allowedenergy level (excited state) by 532-nm laser excitation. The NV triplet ground energylevels with magnetic quantum numbers m s ¼ 0 <strong>and</strong> m s ¼+1 are split by sp<strong>in</strong>–sp<strong>in</strong><strong>in</strong>teraction by ≏2.88 GHz. The cyclic lum<strong>in</strong>escence <strong>of</strong> the m s ¼+1 excited state is 30%less efficient than that <strong>of</strong> the m s ¼ 0 excited state. The optical pump<strong>in</strong>g populates them s ¼ 0 ground state, thereby sp<strong>in</strong>-polariz<strong>in</strong>g the NV centre. Microwave radiation(2.88 GHz) mixes two ground states, thus caus<strong>in</strong>g a decrease <strong>in</strong> the lum<strong>in</strong>escencesignal, which represents an unambiguous f<strong>in</strong>gerpr<strong>in</strong>t for the NV centre 33 .Themicrowave probe signal (0.2–0.6 mW) from a signal generator (Rohde & SchwarzSMIQ 06B, 300 kHz to 6.4 GHz) was radiated through a 20-mm copper wire situatedon the sample substrate <strong>in</strong> sub-millimetre proximity to the probed NV centre. Theobserved ODMR spectrum featured two peaks, <strong>in</strong>dicat<strong>in</strong>g lift<strong>in</strong>g <strong>of</strong> the m s ¼+1degeneracy, which was recognized to be stra<strong>in</strong>-<strong>in</strong>duced <strong>in</strong> nanodiamonds 6 .Theoretical simulations were performed us<strong>in</strong>g the density-functional-basedtight-b<strong>in</strong>d<strong>in</strong>g method with self-consistent charges (SCC-DFTB) 34 , which is a twocentreapproach to density functional theory, where the Kohn–Sham densityfunctional is exp<strong>and</strong>ed to second order around a reference electron density. Thereference density was obta<strong>in</strong>ed from self-consistent density functional calculations<strong>of</strong> weakly conf<strong>in</strong>ed neutral atoms, <strong>and</strong> the conf<strong>in</strong>ement potential was optimized toanticipate the charge density <strong>and</strong> effective potential <strong>in</strong> molecules <strong>and</strong> solids. Thismethod has the advantage <strong>of</strong> be<strong>in</strong>g non-periodic, <strong>and</strong> has previously been shown tobe suitable for study<strong>in</strong>g the crystall<strong>in</strong>ity <strong>of</strong> diamond nanoparticles 35 <strong>and</strong> thedistribution <strong>of</strong> substitutional <strong>nitrogen</strong> 7 . In the present study, all test structures werefully relaxed us<strong>in</strong>g the conjugate gradient scheme to m<strong>in</strong>imize the total energy. Theconvergence criterion for a stationary po<strong>in</strong>t was 10 24 a.u. ≈5 meV Å 21 for forces.Received 15 January 2010; accepted 1 March 2010;published onl<strong>in</strong>e 11 April 2010References1. Kurtsiefer, C., Mayer, S., Zarda, P. & We<strong>in</strong>furter, H. Stable solid-state source <strong>of</strong>s<strong>in</strong>gle photons. Phys. Rev. Lett. 85, 290–293 (2000).2. Balasubramanian, G. et al. Nanoscale imag<strong>in</strong>g magnetometry with diamondsp<strong>in</strong>s under ambient conditions. Nature 455, 648–651 (2008).3. Maze, J. R. et al. Nanoscale magnetic sens<strong>in</strong>g with an <strong>in</strong>dividual electronic sp<strong>in</strong><strong>in</strong> diamond. Nature 455, 644–647 (2008).4. Chang, Y.-R. et al. Mass production <strong>and</strong> dynamic imag<strong>in</strong>g <strong>of</strong> fluorescentnanodiamonds. Nature Nanotech. 3, 284–288 (2008).5. Smith, B. R. et al. Five-nanometer diamond with lum<strong>in</strong>escent <strong>nitrogen</strong>-<strong>vacancy</strong>defect centers. Small 5, 1649–1653 (2009).6. Tisler, J. et al. Fluorescence <strong>and</strong> sp<strong>in</strong> properties <strong>of</strong> defects <strong>in</strong> s<strong>in</strong>gle digitnanodiamonds. ACS Nano 3, 1959–1965 (2009).7. Barnard, A. S. & Sternberg, M. Substitutional <strong>nitrogen</strong> <strong>in</strong> nanodiamond <strong>and</strong>bucky-diamond particles. J. Phys. Chem. B 109, 17107–17112 (2005).8. Kruger, A. et al. Unusually tight aggregation <strong>in</strong> detonation nanodiamond:identification <strong>and</strong> dis<strong>in</strong>tegration. Carbon 43, 1722–1730 (2005).9. Mochal<strong>in</strong>, V. N. & Gogotsi, Y. Wet chemistry route to hydrophobic bluefluorescent nanodiamond. J. Am. Chem. Soc. 131, 4594–4595 (2009).10. Holt, K. B. Diamond at the nanoscale: applications <strong>of</strong> diamond nanoparticlesfrom cellular biomarkers to quantum comput<strong>in</strong>g. Phil. Trans. R. Soc. A 365,2845–2861 (2007).11. Bradac, C., Gaebel, T., Naidoo, N., Rabeau, J. R. & Barnard, A. S. Prediction <strong>and</strong>measurement <strong>of</strong> the size-dependent stability <strong>of</strong> fluorescence <strong>in</strong> diamond over theentire nanoscale. Nano Lett. 9, 3555–3564 (2009).12. Rabeau, J. R. et al. S<strong>in</strong>gle <strong>nitrogen</strong> <strong>vacancy</strong> centers <strong>in</strong> chemical vapor depositeddiamond nanocrystals. Nano Lett. 7, 3433–3437 (2007).13. Vlasov, I. et al. Nitrogen <strong>and</strong> lum<strong>in</strong>secent <strong>nitrogen</strong>-<strong>vacancy</strong> defects <strong>in</strong>detonation nanodiamond. Small 6, 687–694 (2010).14. Boudou, J. P. et al. High yield fabrication <strong>of</strong> fluorescent nanodiamonds.Nanotechnology 20, 235602 (2009).15. Smith, B. R., Gruber, D. & Plakhotnik, T. The effects <strong>of</strong> surface oxidation onlum<strong>in</strong>escence <strong>of</strong> nano diamonds. Diamond Relat. Mater. 19, 314–318 (2010).16. Gaebel, T. et al. Photochromism <strong>in</strong> s<strong>in</strong>gle <strong>nitrogen</strong>-<strong>vacancy</strong> defect <strong>in</strong> diamond.Appl. Phys. B 82, 243–246 (2006).17. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘<strong>of</strong>f’fluorescence <strong>in</strong>termittency <strong>of</strong> s<strong>in</strong>gle semiconductor quantum dots. J. Chem.Phys. 115, 1028–1040 (2001).18. Tang, J. & Marcus, R. A. Diffusion-<strong>control</strong>led electron transfer processes <strong>and</strong>power-law statistics <strong>of</strong> fluorescence <strong>in</strong>termittency <strong>of</strong> nanoparticles. Phys. Rev.Lett. 95, 107401 (2005).19. Stefani, F. D., Hoogenboom, J. P. & Barkai, E. Beyond quantum jumps: <strong>bl<strong>in</strong>k<strong>in</strong>g</strong>nanoscale light emitters. Phys. Today 34–39 (February 2009).20. Nirmal, M. et al. Fluorescence <strong>in</strong>termittency <strong>in</strong> s<strong>in</strong>gle cadmium selenidenanocrystals. Nature 383, 802–804 (1996).21. Hoogenboom, J. P., van Dijk, E., Hern<strong>and</strong>o, J., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law-distributed dark states are the ma<strong>in</strong> pathway forphotobleach<strong>in</strong>g <strong>of</strong> s<strong>in</strong>gle organic molecules. Phys. Rev. Lett. 95, 097401 (2005).22. Mason, M. D., Credo, G. M., Weston, K. D. & Buratto, S. K. Lum<strong>in</strong>escence <strong>of</strong><strong>in</strong>dividual porous Si chromophores. Phys. Rev. Lett. 80, 5405–5408 (1998).23. Cichos, F., von Borczyskowski, C. & Orrit, M. Power-law <strong>in</strong>termittency <strong>of</strong> s<strong>in</strong>gleemitters. Curr. Op<strong>in</strong>. Colloid Interface Sci. 12, 272–284 (2007).24. Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission<strong>in</strong>termittency <strong>in</strong> quantum dots, nanorods <strong>and</strong> nanowires. Nature Phys. 4,519–522 (2008).25. Gomez, D. E., van Embden, J., Mulvaney, P., Fernee, M. J. & Rub<strong>in</strong>szte<strong>in</strong>-Dunlop, H. Exciton–trion transitions <strong>in</strong> s<strong>in</strong>gle CdSe–CdS core–shellnanocrystals. ACS Nano 3, 2281–2287 (2009).26. Zhang, K., Chang, H. Y., Fu, A. H., Alivisatos, A. P. & Yang, H. Cont<strong>in</strong>uousdistribution <strong>of</strong> emission states from s<strong>in</strong>gle CdSe/ZnS quantum dots. Nano Lett.6, 843–847 (2006).27. Palosz, B. et al. Investigation <strong>of</strong> relaxation <strong>of</strong> nanodiamond surface <strong>in</strong> real <strong>and</strong>reciprocal spaces. Diamond Relat. Mater. 15, 1813–1817 (2006).28. Osswald, S., Yush<strong>in</strong>, G., Mochal<strong>in</strong>, V., Kucheyev, S. O. & Gogotsi, Y. Control <strong>of</strong>sp (2) /sp (3) carbon ratio <strong>and</strong> surface chemistry <strong>of</strong> nanodiamond powders byselective oxidation <strong>in</strong> air. J. Am. Chem. Soc. 128, 11635–11642 (2006).29. Iakoubovskii, K. et al. Structure <strong>and</strong> defects <strong>of</strong> detonation synthesisnanodiamond. Diamond Relat. Mater. 9, 861–865 (2000).30. Russo, S. P., Barnard, A. S. & Snook, I. K. Hydrogenation <strong>of</strong> nanodiamondsurfaces: structure <strong>and</strong> effects on crystall<strong>in</strong>e stability. Surf. Rev. Lett. 10,233–239 (2003).31. Morita, Y. et al. A facile <strong>and</strong> scalable process for size-<strong>control</strong>lable separation <strong>of</strong>nanodiamond particles as small as 4 nm. Small 4, 2154–2157 (2008).32. Ushizawa, K. et al. Covalent immobilization <strong>of</strong> DNA on diamond <strong>and</strong> itsverification by diffuse reflectance <strong>in</strong>frared spectroscopy. Chem. Phys. Lett. 351,105–108 (2002).33. Gruber, A. et al. Scann<strong>in</strong>g confocal optical microscopy <strong>and</strong> magnetic resonanceon s<strong>in</strong>gle defect centers. Science 276, 2012–2014 (1997).34. Porezag, D., Frauenheim, T., Kohler, T., Seifert, G. & Kaschner, R. Construction<strong>of</strong> tight-b<strong>in</strong>d<strong>in</strong>g-like potentials on the basis <strong>of</strong> density-functional theory—application to carbon. Phys. Rev. B 51, 12947–12957 (1995).35. Barnard, A. S. & Sternberg, M. Crystall<strong>in</strong>ity <strong>and</strong> surface electrostatics <strong>of</strong>diamond nanocrystals. J. Mater. Chem. 17, 4811–4819 (2007).AcknowledgementsThe authors would like to thank N. Manson <strong>and</strong> F. Treussart for useful discussions, D. Birchfor TEM measurements <strong>and</strong> E. Carter for Raman spectroscopy measurements. T.G. isfunded by a Macquarie University Research Fellowship, C.B. is funded by a MacquarieUniversity Research Excellence Scholarship, <strong>and</strong> J.R.R is funded by an ARC FutureFellowship. The work was funded <strong>in</strong> part by the Australian Research Council (DP0772286<strong>and</strong> DP0771676).Author contributionsC.B., T.G., A.V.Z. <strong>and</strong> J.R.R. conceived <strong>and</strong> designed the experiments, analysed the data,contributed materials/analysis tools <strong>and</strong> co-wrote the paper. T.P. analysed the data <strong>and</strong>contributed analysis tools. M.J.S. contributed ESR equipment <strong>and</strong> expertise. A.S.B. carriedout DFTB simulations <strong>and</strong> analysed simulation data. N.N., J.T., L.B. <strong>and</strong> J.R.R. designed thedeaggregation protocol. N.N. prepared the nanodiamond samples. All authors discussedthe results <strong>and</strong> commented on the manuscript.Additional <strong>in</strong>formationThe authors declare no compet<strong>in</strong>g f<strong>in</strong>ancial <strong>in</strong>terests. Supplementary <strong>in</strong>formationaccompanies this paper at www.nature.com/naturenanotechnology. Repr<strong>in</strong>ts <strong>and</strong>permission <strong>in</strong>formation is available onl<strong>in</strong>e at http://npg.nature.com/repr<strong>in</strong>ts<strong>and</strong>permissions/.Correspondence <strong>and</strong> requests for materials should be addressed to A.V.Z. or J.R.R.NATURE NANOTECHNOLOGY | ADVANCE ONLINE PUBLICATION | www.nature.com/naturenanotechnology 5© 2010 Macmillan Publishers Limited. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!