13.07.2015 Views

Directional Waves in the Nearshore Coastal Region of Perth ...

Directional Waves in the Nearshore Coastal Region of Perth ...

Directional Waves in the Nearshore Coastal Region of Perth ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Directional</strong> <strong>Waves</strong> <strong>in</strong> <strong>the</strong> <strong>Nearshore</strong><strong>Coastal</strong> <strong>Region</strong> <strong>of</strong> <strong>Perth</strong>, WesternAustraliaHuey Jean TanSupervisor: Pr<strong>of</strong>essor Charitha PattiaratchiThis <strong>the</strong>sis is submitted <strong>in</strong> partial fulfilment <strong>of</strong> <strong>the</strong> requirements for <strong>the</strong> degree<strong>of</strong> Bachelor <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g at <strong>the</strong> University <strong>of</strong> Western Australia


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanABSTRACTThe conventional approach for wave analysis is <strong>the</strong> relatively simple monochromatic waveapproach, which is still widely used <strong>in</strong> coastal and <strong>of</strong>fshore applications. This traditionalmethod does not consider <strong>the</strong> direction <strong>of</strong> wave propagation, which is an important factor toconsider <strong>in</strong> order to realistically characterise <strong>the</strong> natural surface waves <strong>of</strong> <strong>the</strong> ocean.<strong>Directional</strong> wave methods are more complex, time consum<strong>in</strong>g and expensive than <strong>the</strong>conventional monochromatic wave approach. However, it has been proven that directionalwave analysis <strong>of</strong>fers a more accurate representation <strong>of</strong> natural ocean waves, and that <strong>the</strong>re aresignificant differences between <strong>the</strong> transformations <strong>of</strong> monochromatic and directional waves.<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>in</strong>fluence <strong>the</strong> direction <strong>of</strong> littoral drift on <strong>the</strong>beach, which, <strong>in</strong> turn, affects <strong>the</strong> morphology on <strong>the</strong> beach. The beaches along <strong>the</strong> coastl<strong>in</strong>e<strong>of</strong> <strong>Perth</strong>, Western Australia, exhibit seasonal variations <strong>in</strong> beach morphology. The ma<strong>in</strong> aim<strong>of</strong> <strong>the</strong> present study was to carry out an analysis <strong>of</strong> <strong>the</strong> directional waves <strong>in</strong> <strong>the</strong> nearshoreregion <strong>of</strong> <strong>the</strong> coastal waters <strong>of</strong> <strong>Perth</strong>. This was achieved by analys<strong>in</strong>g <strong>the</strong> directional wavedata collected at Cables Artificial Surf<strong>in</strong>g Reef (ASR) <strong>in</strong> August 1999 (i.e. w<strong>in</strong>ter) and at CityBeach dur<strong>in</strong>g January and February 2001 (i.e. summer). More specifically, due to <strong>the</strong> fact thatwave growth and <strong>the</strong> direction <strong>of</strong> wave propagation are directly affected by w<strong>in</strong>d, this study<strong>in</strong>vestigated <strong>the</strong> wave response to <strong>the</strong> chang<strong>in</strong>g w<strong>in</strong>d climate. The summer data (i.e. at CityBeach) <strong>in</strong>dicated that <strong>the</strong> propagation <strong>of</strong> nearshore waves were predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astdirection, whereas <strong>the</strong> w<strong>in</strong>ter data (i.e. at Cables ASR) displayed directional waves <strong>in</strong> apredom<strong>in</strong>ant east-sou<strong>the</strong>ast direction. This is <strong>in</strong> agreement with <strong>the</strong> observations by Massel<strong>in</strong>k& Pattiaratchi (2001) <strong>of</strong> <strong>the</strong> prevail<strong>in</strong>g northward sediment transport dur<strong>in</strong>g <strong>the</strong> summermonths and southward longshore transport dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months. Swell waves dur<strong>in</strong>gsummer is predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> east-nor<strong>the</strong>ast direction, whereas <strong>the</strong> dom<strong>in</strong>ant swell direction<strong>in</strong> w<strong>in</strong>ter is east-sou<strong>the</strong>ast. The daily sea breeze events dur<strong>in</strong>g summer generate sea waves <strong>in</strong><strong>the</strong> nor<strong>the</strong>asterly direction. Sea waves generated by storm events change from sou<strong>the</strong>asterly tonor<strong>the</strong>asterly with <strong>the</strong> passage <strong>of</strong> mid-latitude depressions, however <strong>the</strong> direction <strong>of</strong> swellwaves rema<strong>in</strong> constant <strong>in</strong> <strong>the</strong> east-sou<strong>the</strong>asterly direction. Dur<strong>in</strong>g <strong>the</strong> summer sampl<strong>in</strong>gperiod, <strong>the</strong> mean significant wave height (H s ) was 0.77 m, and <strong>the</strong> maximum H s achieveddur<strong>in</strong>g a sea breeze event was 1.33 m. For <strong>the</strong> w<strong>in</strong>ter sampl<strong>in</strong>g period, <strong>the</strong> mean H s was 1.17Abstracti


m, and a maximum H s <strong>of</strong> 2.75 m was achieved dur<strong>in</strong>g a storm event. The results from <strong>the</strong>present study <strong>in</strong>dicated that <strong>the</strong> wave response time to changes <strong>in</strong> w<strong>in</strong>d is 3.5 to 4 hours.


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanACKNOWLEDGMENTSThere are many who I would like to acknowledge for <strong>the</strong>ir contribution <strong>in</strong> help<strong>in</strong>g mecomplete this <strong>the</strong>sis project:To my supervisor, Pr<strong>of</strong>essor Charitha Pattiaratchi, for your knowledge, advices, patience andencouragement throughout <strong>the</strong> duration <strong>of</strong> this project. Without your <strong>in</strong>valuable guidance, thisproject would not be possible.To my family, for your help, prayers and encouragements. Thanks especially to my parentsfor understand<strong>in</strong>g my huge absence from <strong>the</strong> family home, and for consciously prepar<strong>in</strong>gnutritious food when I have meals at home.To my fiance, Robert Marlow, for your tremendous support and help, especially withcomputer stuff. Thank you, Rob, for your listen<strong>in</strong>g ear, for stick<strong>in</strong>g by me even when I was atmy worst, and for all those times that you told me to "Go get 'em, tiger (*roar*)!" Youprovided me with an outlet from all this ‘<strong>the</strong>sis stuff’. I don't th<strong>in</strong>k I could have sanely made itto <strong>the</strong> end without your constant moral support, humour and cook<strong>in</strong>g and clean<strong>in</strong>g.To my fellow f<strong>in</strong>al year friends <strong>in</strong> <strong>the</strong> Class <strong>of</strong> 2003: you have my gratitude for your words <strong>of</strong>encouragement. Special thanks to Christ<strong>in</strong>a Young for your advice and for help<strong>in</strong>g me outwith missed lectures.Thanks to my church Endeavour Christian Ga<strong>the</strong>r<strong>in</strong>g and all my Christian buddies whoremembered and kept me <strong>in</strong> prayer.And last, but certa<strong>in</strong>ly not <strong>the</strong> least (not by a long shot), I thank You and praise You, my God<strong>in</strong> heaven, for giv<strong>in</strong>g me life, bless<strong>in</strong>gs and your gift <strong>of</strong> eternal salvation.Acknowledgmentsiii


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanTABLE OF CONTENTSABSTRACTiACKNOWLEDGMENTSiii1. INTRODUCTION 12 LITERATURE REVIEW 32.1 BACKGROUND INFORMATION ON OCEAN WAVES 32.1.1 CLASSIFICATION OF PROGRESSIVE OCEAN SURFACE WAVES............................................. 42.1.2 FACTORS INFLUENCING NEARSHORE WAVES.................................................................... 52.2 THEORIES AND METHODS OF WAVE ANALYSIS 62.2.1 REGULAR WAVES ............................................................................................................ 62.2.2 IRREGULAR WAVES ......................................................................................................... 72.2.3 SIGNIFICANT WAVE HEIGHT AND PEAK PERIOD.............................................................. 112.2.4 SPECTRAL WAVE POWER ............................................................................................... 112.3 DIRECTIONAL WAVE SPECTRUM 132.3.1 MEASUREMENT METHODS .............................................................................................. 132.3.2 FUNDAMENTAL EQUATIONS FOR DIRECTIONAL SPECTRUM ESTIMATION............................ 142.3.3 METHODS FOR DIRECTIONAL WAVE ANALYSIS ................................................................ 152.4 ENVIRONMENTAL SETTING 172.4.1 SITE CHARACTERISTICS.................................................................................................. 172.4.2 CLIMATE ....................................................................................................................... 182.4.3 REGIMES OF SEA BREEZE AND STORM EVENTS IN PERTH ................................................. 202.4.4 OFFSHORE WAVE CONDITIONS....................................................................................... 233 APPROACH 253.1 DATA COLLECTION 253.1.1 MEASURING DEVICE ...................................................................................................... 253.1.2 DATA COLLECTION TECHNIQUE ..................................................................................... 253.2 DATA ANALYSIS 27ivTable <strong>of</strong> Contents


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan3.2.1 DIRECTIONAL ANALYSIS................................................................................................. 293.2.2 NON-DIRECTIONAL ANALYSIS......................................................................................... 293.2.3 WIND ANALYSIS............................................................................................................. 294 RESULTS AND DISCUSSION 304.1 INTRODUCTION 304.2 SEA BREEZE CYCLES 324.2.1 OVERALL PATTERN ........................................................................................................ 324.2.2 HOURLY TRENDS ........................................................................................................... 354.3 STORM EVENTS 414.3.1 OVERALL PATTERN ........................................................................................................ 414.3.2 HOURLY TRENDS............................................................................................................ 444.4 SWELL AND SEA COMPONENTS 504.4.1 CITY BEACH .................................................................................................................. 504.4.2 CABLES ASR ................................................................................................................. 524.5 WAVE RESPONSE TIME 544.6 WAVE REFLECTION 584.6.1 CITY BEACH .................................................................................................................. 584.6.2 CABLES ASR ................................................................................................................. 664.6.3 DISCUSSION OF THE REFLECTION COEFFICIENTS AT CITY BEACH AND CABLES ASR......... 735 CONCLUSIONS 746 REFERENCES 75APPENDICES 78APPENDIX A: “EMEP” FORMULATION 78APPENDIX B: MATLAB ® SCRIPTS 82Table <strong>of</strong> Contentsv


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanLIST OF FIGURESFigure 2.1: Distribution <strong>of</strong> <strong>the</strong> ocean surface wave energy (after K<strong>in</strong>sman 1965) ................................... 3Figure 2.2: The wave parameters <strong>of</strong> a two-dimensional simple progressive wave propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong>positive x-direction (after USACE 2002) ........................................................................................... 7Figure 2.3: Wave parameters for an irregular and random sea state (USACE 2002) ............................... 8Figure 2.4: The surface elevation time series and spectrum <strong>of</strong> a regular wave (USACE 2002)............ 10Figure 2.5: The surface elevation time series and spectrum <strong>of</strong> an irregular wave (USACE 2002) ....... 11Figure 2.6: An example <strong>of</strong> a directional spectrum (USACE 2002) ......................................................... 14Figure 2.7: Locality map <strong>of</strong> study area (adapted from Massel<strong>in</strong>k & Pattiaratchi 2001)......................... 17Figure 2.8: A typical summer sequence for <strong>Perth</strong> (from BOM 1993) ..................................................... 22Figure 2.9: Typical wea<strong>the</strong>r pattern for w<strong>in</strong>ter for <strong>Perth</strong> (from BOM 1993) .......................................... 23Figure 3.1: InterOcean S4DW Current Meter (from ISI 2004a) .............................................................. 25Figure 3.2: A wave spectral energy plot <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> frequency cut-<strong>of</strong>fs for <strong>the</strong> swell and seacomponents <strong>of</strong> <strong>the</strong> wave field............................................................................................................ 28Figure 4.1: W<strong>in</strong>d and wave conditions measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> City Beach from 21January to 09 February 2001: ............................................................................................................ 34Figure 4.2: Typical wave sequence <strong>in</strong>duced by <strong>the</strong> sea breeze cycle measured <strong>in</strong> <strong>the</strong> nearshore region<strong>of</strong> City Beach on <strong>the</strong> 25 – 26 January 2001...................................................................................... 40Figure 4.3: W<strong>in</strong>d and wave conditions measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> Cables Artificial Surf<strong>in</strong>gReef from 11 August to 27 August 1999:......................................................................................... 43Figure 4.4: Typical wave pattern <strong>in</strong>duced by a storm associated with <strong>the</strong> mid-latitude depression,measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> Cables ASR on <strong>the</strong> 23 – 24 August 1999............................. 49Figure 4.5: <strong>Nearshore</strong> significant wave height and peak wave period and <strong>the</strong>ir respective swell and seacomponents at City Beach for <strong>the</strong> period 21 January to 09 February 2001 ................................... 51Figure 4.6: <strong>Nearshore</strong> significant wave height and peak wave period and <strong>the</strong>ir respective swell and seacomponents at Cables Artificial Surf<strong>in</strong>g Reef for <strong>the</strong> period 11 August to 27 August 1999........ 53Figure 4.7: Hourly sequence <strong>of</strong> polar plots <strong>of</strong> wave energy <strong>in</strong> terms <strong>of</strong> wave frequency and direction <strong>of</strong>wave travel measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> City Beach on 31 January 2001........................ 57Figure 4.8: Wave <strong>in</strong>formation at 06:00 on 21 January 2001 at City Beach. ........................................... 61Figure 4.9: Wave <strong>in</strong>formation at 17:00 on 26 January 2001 at City Beach. ........................................... 63Figure 4.10: Wave <strong>in</strong>formation at 10:00 on 31 January 2001 at City Beach. ......................................... 65Figure 4.11: Wave <strong>in</strong>formation at 09:00 on 17 August 1999 at Cables ASR. ........................................ 68Figure 4.12: Wave <strong>in</strong>formation at 09:00 on 18 August 1999 at Cables ASR. ........................................ 70Figure 4.13: Wave <strong>in</strong>formation at 18:00 on 18 August 1999 at Cables ASR. ........................................ 72viList <strong>of</strong> Figures


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanLIST OF TABLESTable 3.1: Details <strong>of</strong> <strong>the</strong> S4DW current meter deployments.................................................................... 26Table 3.2: Wave parameters extracted from <strong>the</strong> data <strong>in</strong> <strong>the</strong> frequency doma<strong>in</strong> ...................................... 28Table 4.1: Bi-hourly w<strong>in</strong>d data for 31 January 2001 collected at Swanbourne. ..................................... 57List <strong>of</strong> Tablesvii


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan1. INTRODUCTIONOcean surface waves are <strong>the</strong> major factor <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> geometry and composition <strong>of</strong>beaches and significantly <strong>in</strong>fluence <strong>the</strong> plann<strong>in</strong>g and design <strong>of</strong> harbours, waterways, shoreprotection measures, coastal structures and o<strong>the</strong>r coastal works. Surface waves derive <strong>the</strong>irenergy from w<strong>in</strong>d, and a significant amount <strong>of</strong> this energy is dissipated <strong>in</strong> <strong>the</strong> nearshoreregion. The wave energy shapes <strong>the</strong> coastl<strong>in</strong>e, transports and sorts bottom sediments, andexerts forces on coastal structures; hence <strong>the</strong> <strong>in</strong>formation obta<strong>in</strong>ed from wave climate data isimportant for plann<strong>in</strong>g and design <strong>in</strong> coastal and <strong>of</strong>fshore eng<strong>in</strong>eer<strong>in</strong>g. The local wave climateis also important <strong>in</strong> o<strong>the</strong>r fields, such as shipp<strong>in</strong>g, commercial fish<strong>in</strong>g, coastal research andrecreation (Lemm 1996).The conventional method to analyse wave records is through <strong>the</strong> relatively easymonochromatic wave approach, however this simple method does not consider <strong>the</strong> direction<strong>of</strong> wave propagation. The analysis <strong>of</strong> directional wave is accomplished via <strong>the</strong> spectralmethod. The ma<strong>in</strong> drawback <strong>of</strong> utilis<strong>in</strong>g spectral analysis is <strong>the</strong> relatively complex and time<strong>in</strong>tensivecomputations <strong>in</strong>volved, which is <strong>the</strong> ma<strong>in</strong> reason why eng<strong>in</strong>eers are reluctant toabandon <strong>the</strong> monochromatic wave approach. However, <strong>the</strong> uses <strong>of</strong> computer models andmultidirectional wave bas<strong>in</strong>s have <strong>in</strong>dicated that <strong>the</strong>re are significant differences between <strong>the</strong>transformations <strong>of</strong> monochromatic and directional waves (Goda 1995), and that directionalwave data <strong>of</strong>fer a more accurate representation <strong>of</strong> natural ocean waves.<strong>Directional</strong> data is <strong>of</strong>ten needed for <strong>the</strong> design <strong>of</strong> harbour and coastal structures, and for <strong>the</strong>analysis <strong>of</strong> sediment transport and pollution control. The load<strong>in</strong>g and performance <strong>of</strong> manymar<strong>in</strong>e structures are directly affected by wave directions, and <strong>the</strong> consideration <strong>of</strong> directionaldistribution <strong>of</strong> wave energy can assist <strong>in</strong> obta<strong>in</strong><strong>in</strong>g an efficient structural design. Tak<strong>in</strong>gdirectional wave data <strong>in</strong>to consideration usually results <strong>in</strong> reduced design wave loads andpossibly a lighter structure, which would reduce construction costs for <strong>the</strong> structure (Wiegel1981). Accord<strong>in</strong>g to Hashimoto (1995), it is apparent that “with <strong>the</strong> ever-<strong>in</strong>creas<strong>in</strong>g demandfor <strong>the</strong> utilisation <strong>of</strong> coastal areas… <strong>the</strong>re is a need for directional wave data to ensureadequate though cost-effective safety marg<strong>in</strong>s be implemented dur<strong>in</strong>g <strong>the</strong> design process <strong>of</strong>coastal structures.” (p. 140). The directional wave spectrum is now a standard tool <strong>of</strong>Introduction 1


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Taneng<strong>in</strong>eer<strong>in</strong>g practice <strong>in</strong> <strong>the</strong> plann<strong>in</strong>g and design<strong>in</strong>g <strong>of</strong> many harbour and coastal projects(Goda 1995).The aim <strong>of</strong> <strong>the</strong> present study is to carry out an analysis <strong>of</strong> <strong>the</strong> nearshore directional waves <strong>in</strong><strong>the</strong> <strong>Perth</strong> coastal region. <strong>Perth</strong> is <strong>the</strong> capital city <strong>of</strong> Western Australia, and is located on <strong>the</strong>south-west coast <strong>of</strong> <strong>the</strong> Australian cont<strong>in</strong>ent. Beaches along <strong>the</strong> coastl<strong>in</strong>e <strong>of</strong> <strong>Perth</strong> exhibit anapparent seasonality <strong>in</strong> beach morphology, however not all beaches are characterised by <strong>the</strong>same seasonal cycle (Massel<strong>in</strong>k & Pattiaratchi 2001). Some <strong>of</strong> <strong>the</strong> <strong>Perth</strong> beaches becomewider dur<strong>in</strong>g summer (i.e. accretion) and narrower dur<strong>in</strong>g w<strong>in</strong>ter (i.e. erosion) whereas o<strong>the</strong>rsexperience summer erosion and w<strong>in</strong>ter accretion (Massel<strong>in</strong>k & Pattiaratchi 2001). It isgenerally accepted that seasonal beach cycles are due to seasonal variations <strong>in</strong> <strong>the</strong> <strong>in</strong>cidentwave energy conditions; however <strong>the</strong> study by Massel<strong>in</strong>k & Pattiaratchi (2001) demonstratedthat <strong>the</strong> seasonal changes on most beaches along <strong>the</strong> <strong>Perth</strong> coasts are better expla<strong>in</strong>ed by <strong>the</strong>seasonal reversal <strong>in</strong> <strong>the</strong> littoral drift direction. The direction <strong>of</strong> littoral drift depends largelyupon <strong>the</strong> direction <strong>of</strong> <strong>the</strong> waves <strong>in</strong>cident on <strong>the</strong> beaches (i.e. nearshore waves), which is, <strong>in</strong>turn, affected by <strong>the</strong> direction <strong>of</strong> w<strong>in</strong>d. Dur<strong>in</strong>g summer, northward sediment transport prevailsdue to sea breeze activity blow<strong>in</strong>g <strong>in</strong> a predom<strong>in</strong>antly south-southwest direction; howeverdur<strong>in</strong>g w<strong>in</strong>ter, <strong>the</strong> longshore sediment transport is towards <strong>the</strong> south due to southwardflow<strong>in</strong>gcurrents generated by northwesterly storms (Massel<strong>in</strong>k & Pattiaratchi 2001). Due to alack <strong>of</strong> nearshore directional wave data at <strong>the</strong> time <strong>of</strong> <strong>the</strong> study by Massel<strong>in</strong>k & Pattiaratchi(2001), conclusions could only be drawn on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> w<strong>in</strong>d speed and direction. Thema<strong>in</strong> objective <strong>of</strong> <strong>the</strong> analysis is to quantify <strong>the</strong> directional wave response to changes <strong>in</strong>meteorological conditions (specifically storm and sea breeze events). The <strong>in</strong>formation fromthis study can <strong>the</strong>n be applied to <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs by Massel<strong>in</strong>k & Pattiaratchi (2001). This is <strong>the</strong>first time a study <strong>of</strong> nearshore directional waves is done for <strong>the</strong> <strong>Perth</strong> coastal region..2 Introduction


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2 LITERATURE REVIEW2.1 BACKGROUND INFORMATION ON OCEAN WAVESW<strong>in</strong>d-generated waves are important as energy-transfer agents: <strong>the</strong> waves first obta<strong>in</strong> energyfrom w<strong>in</strong>d and <strong>the</strong>n transfer <strong>the</strong> energy across <strong>the</strong> expanse <strong>of</strong> <strong>the</strong> ocean to <strong>the</strong> coastal zone. Aspectrum <strong>of</strong> ocean surface waves proposed by K<strong>in</strong>sman (1965) is depicted <strong>in</strong> Figure 2.1, andit suggests that w<strong>in</strong>d-driven waves contribute <strong>the</strong> largest amount <strong>of</strong> <strong>the</strong> energy from <strong>the</strong> oceanto <strong>the</strong> beach and nearshore physical system. In particular, surface gravity ocean waves withperiods between 3 and 25 s are <strong>the</strong> major <strong>in</strong>fluence on <strong>the</strong> geometry <strong>of</strong> beaches, plann<strong>in</strong>g anddesign <strong>of</strong> coastal works (USACE 2002). Therefore, <strong>the</strong>re is an importance to ga<strong>in</strong> anunderstand<strong>in</strong>g <strong>of</strong> <strong>the</strong>se waves and <strong>the</strong> associated generated forces for <strong>the</strong> plann<strong>in</strong>g and design<strong>of</strong> coastal projects.This section provides a brief description <strong>of</strong> <strong>the</strong> <strong>the</strong>ories and methods <strong>of</strong> surface ocean waveanalysis, and a general overview <strong>of</strong> <strong>the</strong> factors affect<strong>in</strong>g waves <strong>in</strong> <strong>the</strong> nearshore region.Figure 2.1: Distribution <strong>of</strong> <strong>the</strong> ocean surface wave energy (after K<strong>in</strong>sman 1965)Literature Review 3


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2.1.1 Classification <strong>of</strong> Progressive Ocean Surface <strong>Waves</strong>The classification <strong>of</strong> progressive waves propagat<strong>in</strong>g on <strong>the</strong> ocean surface is usually based onwave period T or frequency f. The spectrum <strong>of</strong> ocean waves <strong>in</strong> Figure 2.1 shows <strong>the</strong> differenttypes <strong>of</strong> surface waves on <strong>the</strong> ocean and <strong>the</strong> importance <strong>of</strong> gravity wave energy. Gravitywaves can be classified <strong>in</strong>to two types <strong>of</strong> surface waves: swell and sea.Swell <strong>Waves</strong>Swells are long-period waves that have propagated far from <strong>the</strong> region <strong>of</strong> generation and areno longer under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> significant w<strong>in</strong>d action (K<strong>in</strong>sman 1965). Swell waves aremore uniform <strong>in</strong> height, period and direction (i.e. monochromatic) with well-def<strong>in</strong>ed longcrests (i.e. <strong>in</strong>dividual wave crests are several wavelengths <strong>in</strong> extent) (USACE 2002). Swellwaves that have orig<strong>in</strong>ated from a storm area appear to propagate <strong>in</strong> a predom<strong>in</strong>ant direction(i.e. unidirectional), and although swells are milder <strong>in</strong> nature than sea waves, it is <strong>the</strong> swellwaves that transfer energy across <strong>the</strong> ocean to <strong>the</strong> coastal zone (Komar 1998). Swells aremore persistent than sea waves and <strong>the</strong>refore are important for predict<strong>in</strong>g sediment transport.The direction <strong>of</strong> <strong>the</strong>se predom<strong>in</strong>ant swells can be related to <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> shorel<strong>in</strong>es(Silverster & Hsu 1993).Sea <strong>Waves</strong>The term sea waves is used to describe waves that are still with<strong>in</strong> <strong>the</strong> area <strong>of</strong> generation(USACE 2002). Sea waves are short crested (i.e. <strong>the</strong> length <strong>of</strong> <strong>in</strong>dividual wave crests mayonly be a wavelength or two <strong>in</strong> extent) and are highly complex and irregular due to <strong>the</strong> w<strong>in</strong>dsgenerat<strong>in</strong>g a whole spectrum <strong>of</strong> waves with a wide range <strong>of</strong> periods and heights (USACE2002, Komar 1998). The ocean surface under sea conditions appears “steeper, more ruggedand confused” than swell (K<strong>in</strong>sman 1965 p. 22). As sea waves propagate away from <strong>the</strong> area<strong>of</strong> generation, <strong>the</strong>y develop <strong>in</strong>to swell waves. Based on previous work on <strong>of</strong>fshore wavestudies <strong>in</strong> <strong>the</strong> <strong>Perth</strong> area, Lemm (1996) arbitrarily def<strong>in</strong>ed sea waves as waves with periodsbelow 8 s and swell waves def<strong>in</strong>ed as waves with periods above 8 s.Wave characteristics<strong>Waves</strong> <strong>of</strong> different periods can orig<strong>in</strong>ate <strong>in</strong> <strong>the</strong> region <strong>of</strong> generation but <strong>in</strong> time, <strong>the</strong> variouswave components will separate from each o<strong>the</strong>r. The longer period waves will propagate4 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanfaster than shorter period waves, and will reach distant dest<strong>in</strong>ations first. The shorter periodcomponents may arrive at <strong>the</strong> same dest<strong>in</strong>ation several days later (USACE 2002).In <strong>the</strong> area <strong>of</strong> wave generation, energy is transferred from <strong>the</strong> shorter period waves to <strong>the</strong>longer period waves (USACE 2002). <strong>Waves</strong> can travel large distances without los<strong>in</strong>g muchenergy, but energy can be dissipated <strong>in</strong>ternally with<strong>in</strong> <strong>the</strong> fluid, by <strong>in</strong>teraction with <strong>the</strong> air,and by friction with <strong>the</strong> bottom sediment. Due to <strong>the</strong> fact that short-period wave componentslose energy more easily than long-period components, <strong>the</strong> periods <strong>of</strong> swell waves tend to belonger than those <strong>of</strong> sea waves.2.1.2 Factors Influenc<strong>in</strong>g <strong>Nearshore</strong> <strong>Waves</strong>Ocean surface waves undergo certa<strong>in</strong> transformations as <strong>the</strong>y approach <strong>the</strong> coastl<strong>in</strong>e. Thespeed <strong>of</strong> wave propagation decreases as water depth decreases, with those <strong>of</strong> longerwavelengths (such as swell waves) slow<strong>in</strong>g down first. The water depth may vary at differentpo<strong>in</strong>ts along <strong>the</strong> length <strong>of</strong> <strong>the</strong> wave, hence different sections <strong>of</strong> <strong>the</strong> wave may travel atdifferent speeds (BOM 1993). <strong>Waves</strong> travell<strong>in</strong>g through shallow water are strongly affectedby seabed bathymetry and currents, and a slop<strong>in</strong>g or undulat<strong>in</strong>g sea bed can cause largechanges <strong>in</strong> wave height and direction <strong>of</strong> propagation. For <strong>in</strong>stance, shoals can focus wavesand sometimes waves can double <strong>in</strong> height beh<strong>in</strong>d a shoal (USACE 2002). The magnitude <strong>of</strong>wave changes depends on <strong>the</strong> wave period and direction and <strong>the</strong> distribution <strong>of</strong> wave energy<strong>in</strong> frequency and direction.The follow<strong>in</strong>g po<strong>in</strong>ts outl<strong>in</strong>e <strong>the</strong> factors affect<strong>in</strong>g wave propagation from deep <strong>in</strong>to shallowwater (USACE 2002):• Propagation effectsThese result from <strong>the</strong> convergence or divergence <strong>of</strong> waves caused by shape <strong>of</strong> bottomtopography, caus<strong>in</strong>g wave energy to focus or spread out. Propagation effects <strong>in</strong>cluderefraction, shoal<strong>in</strong>g and diffraction. Diffraction is also caused by presence <strong>of</strong> coastalstructures that <strong>in</strong>terrupt wave travel.• S<strong>in</strong>k mechanismWave energy is dissipated due to friction, percolation and break<strong>in</strong>g• Source mechanismThe addition <strong>of</strong> wave energy due to w<strong>in</strong>dLiterature Review 5


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan• Wave-current and wave-wave <strong>in</strong>teractionsWave transformation analyses for nearshore waves are discussed <strong>in</strong> detail <strong>in</strong> USACE (2002)2.2 THEORIES AND METHODS OF WAVE ANALYSIS2.2.1 Regular <strong>Waves</strong>In nature, ocean surface waves are three-dimensional, irregular and random <strong>in</strong> amplitude,period and direction (Horikawa 1988). The ocean surface typically varies <strong>in</strong> time and isunsteady, and <strong>the</strong>refore <strong>the</strong> ocean surface cannot be adequately described <strong>in</strong> its fullcomplexity. The simplest method to deal with irregular waves is to reduce <strong>the</strong>m to arepresentative two-dimensional monochromatic wave <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite wave crest, to enable <strong>the</strong>application <strong>of</strong> <strong>the</strong> vast knowledge available on periodic waves (Horikawa 1988). Wave<strong>the</strong>ories have been developed only as approximations to real waves based on variousassumptions. The most elementary wave <strong>the</strong>ory is <strong>the</strong> l<strong>in</strong>ear first-order wave <strong>the</strong>ory (alsocalled small-amplitude or Airy wave <strong>the</strong>ory), and this <strong>the</strong>ory is widely used <strong>in</strong> coastaleng<strong>in</strong>eer<strong>in</strong>g and design because it can be applied with ease whilst giv<strong>in</strong>g a reasonableapproximation <strong>of</strong> wave characteristics for a wide range <strong>of</strong> wave parameters (USACE 2002).The nonl<strong>in</strong>ear, f<strong>in</strong>ite amplitude periodic wave <strong>the</strong>ories <strong>in</strong>clude Stokes, Cnoidal and solitarywave <strong>the</strong>ory. The details <strong>of</strong> <strong>the</strong>se <strong>the</strong>ories can be found <strong>in</strong> several texts such as Horikawa(1988), K<strong>in</strong>sman (1965) and USACE (2002).A simple, s<strong>in</strong>usoidal progressive wave pass<strong>in</strong>g a fixed po<strong>in</strong>t <strong>in</strong> <strong>the</strong> ocean (as depicted <strong>in</strong>Figure 2.2) can be represented by <strong>the</strong> horizontal spatial coord<strong>in</strong>ates x and time t. Thefollow<strong>in</strong>g wave parameters are used to describe a simple s<strong>in</strong>usoidal oscillatory wave:x – horizontal spatial coord<strong>in</strong>atest – timeL – wavelength: horizontal distance between correspond<strong>in</strong>g po<strong>in</strong>ts on two successive wavesT – wave period: time <strong>in</strong>terval between two successive crests at a given po<strong>in</strong>tC – wave celerityω – angular or radian frequency," = 2!Tk – wave number,k = 2!Lθ – phase," = kx # ! tH – wave height: vertical distance to its crest from <strong>the</strong> preced<strong>in</strong>g trough6 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanη – elevation <strong>of</strong> <strong>the</strong> water surface, " = cos( kx # ! t)h – water depthH2Figure 2.2: The wave parameters <strong>of</strong> a two-dimensional simple progressive wave propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong>positive x-direction (after USACE 2002)2.2.2 Irregular <strong>Waves</strong>The ocean surface is <strong>of</strong>ten a comb<strong>in</strong>ation <strong>of</strong> several wave components that were <strong>in</strong>dividuallygenerated by w<strong>in</strong>d <strong>in</strong> different regions and have travelled to <strong>the</strong> observation po<strong>in</strong>t. Hence realwave systems would be irregular and random, and successive waves may have differ<strong>in</strong>gperiods and heights (Figure 2.3). Therefore, statistical and probabilistic methods have to beutilised to describe <strong>the</strong> natural time-dependent three-dimensional characteristics <strong>of</strong> real wavesystems (USACE 2002). There are two methods for treat<strong>in</strong>g irregular waves: wave-by-waveanalysis (time doma<strong>in</strong>) and spectral analysis (frequency doma<strong>in</strong>)Literature Review 7


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 2.3: Wave parameters for an irregular and random sea state (USACE 2002)Wave-by-wave AnalysisThe wave-by-wave (or wave tra<strong>in</strong>) analysis determ<strong>in</strong>es wave properties by obta<strong>in</strong><strong>in</strong>g <strong>the</strong>average statistical quantities <strong>of</strong> heights and periods <strong>of</strong> <strong>in</strong>dividual wave components (USACE2002). The undulations <strong>of</strong> <strong>the</strong> water surface from <strong>the</strong> mean water level are manually identifiedas <strong>in</strong>dividual wave us<strong>in</strong>g <strong>the</strong> zero-downcross<strong>in</strong>g method to obta<strong>in</strong> representative waveparameters, and us<strong>in</strong>g this <strong>in</strong>formation, statistical characteristics <strong>of</strong> <strong>the</strong> wave record can beestimated and statistics <strong>of</strong> <strong>the</strong> record are compiled (USACE 2002). Wave height is <strong>the</strong> verticaldistance between <strong>the</strong> highest and lowest po<strong>in</strong>ts between two successive zero-downcross<strong>in</strong>g(i.e. cross<strong>in</strong>g <strong>the</strong> zero l<strong>in</strong>e on a negative gradient) po<strong>in</strong>ts; wave period is horizontal distance(see Figure 2.3). All <strong>the</strong> local maxima and m<strong>in</strong>ima not cross<strong>in</strong>g <strong>the</strong> zero-l<strong>in</strong>e is discarded.This time-doma<strong>in</strong> method requires direct measurements <strong>of</strong> sea surface, and <strong>the</strong> wave recordsmust be sufficiently large to obta<strong>in</strong> reliable statistics. The primary disadvantage to <strong>the</strong> waveby-waveanalysis is that it does not give an <strong>in</strong>dication about <strong>the</strong> direction <strong>of</strong> <strong>the</strong> waves;<strong>the</strong>refore a s<strong>in</strong>gle wave at a po<strong>in</strong>t may actually be <strong>the</strong> local superposition <strong>of</strong> two smaller<strong>in</strong>tersect<strong>in</strong>g waves from different directions (USACE 2002).Spectral AnalysisSpectral analysis utilises Fourier <strong>the</strong>ory to transform <strong>the</strong> irregular ocean surface <strong>in</strong>to asummation <strong>of</strong> simple s<strong>in</strong>e waves, and wave characteristics are def<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> itsspectrum. The wave spectrum denotes which frequencies have significant energy content. Thesurface elevation time series <strong>in</strong> both Figure 2.4 and Figure 2.5compares <strong>the</strong> spectra <strong>of</strong> regularand irregular waves. In contrast to <strong>the</strong> wave-by-wave analysis which attempts to def<strong>in</strong>e<strong>in</strong>dividual waves, <strong>the</strong> spectral method attempts to describe <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> surfacevariation from <strong>the</strong> mean level with respect to <strong>the</strong> frequency <strong>of</strong> <strong>the</strong> signal (USACE 2002).8 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanSubsequently, <strong>in</strong>formation on <strong>in</strong>dividual waves is lost and because spectral analysis is acomplex, l<strong>in</strong>ear approach, <strong>the</strong> representation <strong>of</strong> nonl<strong>in</strong>ear waves may be distorted (USACE2002). The distribution <strong>of</strong> <strong>the</strong> variance is def<strong>in</strong>ed with frequency as S(f), assum<strong>in</strong>g that <strong>the</strong>function is cont<strong>in</strong>uous <strong>in</strong> frequency space (i.e. statistically smooth <strong>the</strong> discrete frequencies toestimate cont<strong>in</strong>uum). The function E(f) is <strong>of</strong>ten called <strong>the</strong> frequency energy spectrum, and isdef<strong>in</strong>ed as! "0( f )E = # g S df Equation 2-1where ρ is <strong>the</strong> seawater density and g is <strong>the</strong> gravitational acceleration (Tucker and Pitt 2001).The spectral approach also allows for <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> variability <strong>of</strong> waves with respect toperiod and <strong>the</strong> direction <strong>of</strong> travel. The directional energy spectrum ( f ,! )E describes howvariance is distributed <strong>in</strong> frequency f and direction θ. More <strong>in</strong>formation on directional wavespectrum is provided <strong>in</strong> Section 2.3. Spectral wave analysis us<strong>in</strong>g Fourier transform isdiscussed <strong>in</strong> greater detail <strong>in</strong> Tucker & Pitt (2001), K<strong>in</strong>sman (1965) and Horikawa (1988).The follow<strong>in</strong>g po<strong>in</strong>ts outl<strong>in</strong>e some <strong>of</strong> <strong>the</strong> benefits <strong>of</strong> apply<strong>in</strong>g <strong>the</strong> spectral analysis method tosurface wave records:• The approach is easily implemented on microchip and packaged with gaug<strong>in</strong>g<strong>in</strong>strument• The spectral <strong>the</strong>ory is <strong>the</strong> basis for pr<strong>in</strong>cipal successful <strong>the</strong>ories for describ<strong>in</strong>g wavegeneration by w<strong>in</strong>d and modell<strong>in</strong>g evolution <strong>of</strong> natural sea states <strong>in</strong> coastal regions• It is currently <strong>the</strong> only widely used approach for measur<strong>in</strong>g wave direction• Fourier/spectral analysis <strong>of</strong> waves has large technical literature and statistical basisthat can be readily drawn upon.Literature Review 9


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 2.4: The surface elevation time series and spectrum <strong>of</strong> a regular wave (USACE 2002)10 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 2.5: The surface elevation time series and spectrum <strong>of</strong> an irregular wave (USACE 2002)2.2.3 Significant Wave Height and Peak PeriodThe concept <strong>of</strong> significant wave heightH or H1 3is a very useful and important <strong>in</strong>dex toscharacterise <strong>the</strong> heights <strong>of</strong> <strong>the</strong> surface waves on <strong>the</strong> sea. It is def<strong>in</strong>ed as <strong>the</strong> mean <strong>of</strong> <strong>the</strong> onethirdhighest waves <strong>in</strong> a sample record (K<strong>in</strong>sman 1965), or <strong>in</strong> terms <strong>of</strong> <strong>the</strong> total energy <strong>of</strong> <strong>the</strong>wave system (Tucker and Pitt 2001):H= Hm0 4 m 0Equation 2-2s=where m 0 is <strong>the</strong> spectral moment or variance (‘energy’) <strong>of</strong> sea surface elevation given bym ! " 0= S( f )df Equation 2-30It is conventional to denote significant wave height H s as H 1/3 when it is measured directly via<strong>the</strong> wave-by-wave analysis and H m0 when it has been estimated from <strong>the</strong> variance <strong>of</strong> <strong>the</strong>record or <strong>the</strong> <strong>in</strong>tegral <strong>of</strong> <strong>the</strong> variance <strong>in</strong> <strong>the</strong> spectrum. Both are good estimates <strong>of</strong> H s and aregenerally very close <strong>in</strong> value, and it is typical forH to exceed H1 3by 5-10% (Lemm 1996).The mean period <strong>of</strong> <strong>the</strong>se ‘significant’ waves is termed as <strong>the</strong> significant wave periodAccord<strong>in</strong>g to K<strong>in</strong>sman (1965), visual observations <strong>of</strong> wave heights and periods are goodapproximations <strong>of</strong>Hsand Ts.sTs.Peak period T p is <strong>the</strong> reciprocal <strong>of</strong> <strong>the</strong> frequency at which <strong>the</strong> peak <strong>of</strong> <strong>the</strong> spectrum occurs(Tucker & Pitt 2001). T p is associated with <strong>the</strong> largest wave energy and is only obta<strong>in</strong>ablethrough spectral analysis. An example <strong>of</strong> peak period for natural ocean waves is shown <strong>in</strong>Figure 2.5b. The spectral representation <strong>of</strong> swell waves will display a s<strong>in</strong>gle value <strong>of</strong> peakperiod and wave energy decays at frequencies on ei<strong>the</strong>r side. The spectra <strong>of</strong> storm waves ismulti-peaked, with one peak (although not always <strong>the</strong> highest) correspond<strong>in</strong>g to swelloccurr<strong>in</strong>g at lower frequencies. One or more peaks are associated with storm waves occurr<strong>in</strong>gat higher frequencies.2.2.4 Spectral Wave PowerWave power (or wave energy flux) is def<strong>in</strong>ed as <strong>the</strong> rate <strong>of</strong> energy transmission <strong>in</strong> <strong>the</strong>direction <strong>of</strong> wave travel across a vertical plane that is perpendicular to <strong>the</strong> direction <strong>of</strong> waveLiterature Review 11


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanpropagation and extend<strong>in</strong>g down <strong>the</strong> entire depth (USACE 2002). For a unidirectional wavespectrum, <strong>the</strong> power transported per metre <strong>of</strong> <strong>the</strong> crest length can be derived us<strong>in</strong>g spectralenergy def<strong>in</strong>ed <strong>in</strong> Equation 2-5 (Tucker and Pitt 2001):!( f ) S( f )P = ECn = " g C df Equation 2-4gwhere C g is <strong>the</strong> group velocity, which is def<strong>in</strong>ed as <strong>the</strong> rate <strong>of</strong> transmission <strong>of</strong> waveenergy:C g= CnE is termed <strong>the</strong> specific energy or energy density and is <strong>the</strong> total average wave energyper unit surface area:E =! gH82shallow water.n = 0.5 <strong>in</strong> deep water, <strong>in</strong>creases <strong>in</strong> value <strong>in</strong> <strong>the</strong> transition zone to become n = 1 <strong>in</strong>12 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2.3 DIRECTIONAL WAVE SPECTRUMThe conventional wave analyses based on <strong>the</strong> monochromatic (i.e. regular) wave approachtend to yield significant error <strong>in</strong> estimates <strong>of</strong> wave transformations and structural responses(Goda 1995). The directional spectrum is a more realistic representation <strong>of</strong> sea waves, and canproduce a more accurate solution than that obta<strong>in</strong>ed via conventional methods. Thedirectional wave spectrum provides a probabilistic view <strong>of</strong> sea waves, and it expresses <strong>the</strong>distribution <strong>of</strong> wave energy as a function <strong>of</strong> wave frequency and wave propagation direction(see Figure 2.6). The directional spectral characteristics <strong>of</strong> ocean surface waves strongly<strong>in</strong>fluence <strong>the</strong> wave transformations due to diffraction, refraction and reflection, <strong>the</strong>refore <strong>the</strong>precise estimation <strong>of</strong> <strong>the</strong> directional spectral characteristics is an important step <strong>in</strong> <strong>the</strong> <strong>in</strong>itialplann<strong>in</strong>g and design stages for <strong>the</strong> construction <strong>of</strong> coastal and <strong>of</strong>fshore structures (Hashimoto1995).2.3.1 Measurement methodsThe measurement <strong>of</strong> a directional spectrum usually <strong>in</strong>volves obta<strong>in</strong><strong>in</strong>g <strong>the</strong> measurement <strong>of</strong>ei<strong>the</strong>r <strong>the</strong> same hydrodynamic parameter (e.g. surface elevation or pressure) at a series <strong>of</strong>nearby locations, or different parameters (e.g. pressure and two components <strong>of</strong> horizontalvelocity) at <strong>the</strong> same po<strong>in</strong>t. These records are <strong>the</strong>n cross-correlated through a cross-spectralanalysis, and a directional spectrum is obta<strong>in</strong>ed (USACE 2002). There are two ma<strong>in</strong>categories <strong>of</strong> measurement techniques for estimat<strong>in</strong>g directional spectra (Horikawa 1988):• Instrument-based direct measurement methods: <strong>the</strong>se <strong>in</strong>clude wave gauge arrays(pressure or velocity gauges arranged <strong>in</strong> a variety <strong>of</strong> shapes), directional buoy system(pitch-roll-and-heave or heave-and-tilt methods) and multi-component current meter• Remote sens<strong>in</strong>g methods: examples <strong>in</strong>clude microwave and optical techniquesA more detailed discussion on <strong>the</strong> methods <strong>of</strong> directional measurement can be found <strong>in</strong>Tucker & Pitt (2001).Literature Review 13


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 2.6: An example <strong>of</strong> a directional spectrum (USACE 2002)2.3.2 Fundamental equations for directional spectrum estimationUs<strong>in</strong>g <strong>the</strong> wave parameters amplitude A, frequency f and wave propagation direction θ , <strong>the</strong>directional wave spectrum is def<strong>in</strong>ed asf + df"+ d"! !f"( f ,! )1 A 2 i= S( f ," ) dfd"2Equation 2-5S is <strong>the</strong> directional wave spectral density function, which is <strong>of</strong>ten expressed as <strong>the</strong>product <strong>of</strong> <strong>the</strong> frequency spectrum S ( f ) and <strong>the</strong> directional spread<strong>in</strong>g function G (!| f )(Goda 1995):( f , ) S( f ) G( ! f )S ! = | Equation 2-6The function G ( | f )2#0("| f ) d = 1! has no dimension and is normalised such that! G "Equation 2-714 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanThe follow<strong>in</strong>g formula shows <strong>the</strong> general relationship between <strong>the</strong> cross power spectrum for apair <strong>of</strong> wave properties and <strong>the</strong> wavenumber frequency spectrum (Hashimoto 1995):*(#) H ( k ,#) H ( k,#) exp[ " ik( x x )] S( k #)$mn= ! mnn"m,kdkEquation 2-8where " mn(!) is <strong>the</strong> cross-power spectrum between <strong>the</strong> m- and n-th wave properties,! <strong>the</strong> angular frequency,k is <strong>the</strong> wavenumber vector,m( k,! )H is <strong>the</strong> transfer function from <strong>the</strong> water surface elevation to <strong>the</strong> m-th waveproperty,i is <strong>the</strong> imag<strong>in</strong>ary constant,xmandproperty,xn<strong>the</strong> respective location vector (x,y) <strong>of</strong> <strong>the</strong> probe for <strong>the</strong> m- and n-th waveS ( k,! ) <strong>the</strong> wavenumber-frequency spectrum* is <strong>the</strong> conjugate complex.The wavenumber k is related to <strong>the</strong> frequency f by <strong>the</strong> dispersion relationship given <strong>in</strong>Equation 2-1. Through <strong>the</strong> use <strong>of</strong> this relationship, <strong>the</strong> wavenumber-frequency spectrumS ( k,! ) can be expressed as a function <strong>of</strong> f and ! (Hashimoto 1995):#2$*( f ) H ( f ,") H ( f ,!)[ cos{ k( x cos!+ y s<strong>in</strong>!)} % i s<strong>in</strong>{ k( x cos!+ y s<strong>in</strong>!)}] S( f ! ) d!= &mn mnmnmnmnmn,0Equation 2-9wherex !mn= xnxm, ymn= yn! ymWhen S ( k,! ) and ( f ,! )for " mn(!) and ( f )1995).mnS are non-negative functions and satisfy <strong>the</strong> fundamental equations! functions, <strong>the</strong>y are termed as <strong>the</strong> directional spectrum (Hashimoto2.3.3 Methods for directional wave analysisPopular conventional methods for directional wave analysis <strong>in</strong>clude <strong>the</strong> direct Fouriertransformation method (DFTM), parametric method, maximum likelihood method (MLM)and extended maximum likelihood method (EMLM), details <strong>of</strong> which can be found <strong>in</strong>Literature Review 15


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanHorikawa (1988). However, <strong>the</strong>re are <strong>in</strong>herent drawbacks to <strong>the</strong>se methods as <strong>the</strong>y sometimesestimate erroneous directional spectra due to <strong>in</strong>accuracies (e.g. <strong>in</strong>accuracy <strong>of</strong> <strong>the</strong> cross-powerspectra). Hence, <strong>the</strong> maximum entropy pr<strong>in</strong>ciple method (MEP), Bayesian directionalspectrum estimation method (BDM) and extended maximum entropy pr<strong>in</strong>ciple method(EMEP) were developed to mitigate <strong>the</strong> drawbacks <strong>of</strong> conventional methods, and have s<strong>in</strong>ceprovided a powerful means for reliably estimat<strong>in</strong>g an accurate directional wave spectrum(Hashimoto 1995).The MEP method derives <strong>the</strong> directional wave spectrum us<strong>in</strong>g location-dependent threequantitymeasurements related to random wave motion (eg, pitch-roll-and-heave data). Itprovides <strong>the</strong> directional estimates with a higher resolution than that obta<strong>in</strong>ed by <strong>the</strong>conventional methods, however it is not a general method because it can only utilise a threequantitymeasurement and does not consider errors <strong>in</strong> <strong>the</strong> cross-power spectra (Hashimoto1995). The BDM is a general method because it can utilise multi-quantity measurementsobta<strong>in</strong>ed from mixed <strong>in</strong>strument arrays and provide <strong>the</strong> highest resolution whilst provid<strong>in</strong>g areliable and robust method for estimat<strong>in</strong>g <strong>the</strong> directional spectrum and cross-power spectracontam<strong>in</strong>ated by errors. The ma<strong>in</strong> drawback <strong>of</strong> <strong>the</strong> BDM is that it utilises a time-consum<strong>in</strong>giterative computation and cannot always be used for three-quantity measurements (Hashimoto1995). The EMEP method conta<strong>in</strong>s <strong>the</strong> benefits <strong>of</strong> <strong>the</strong> BDM and can use three-quantitymeasurements and yield equivalent results <strong>in</strong> a shorter time (Hashimoto 1995). More<strong>in</strong>formation on <strong>the</strong> EMEP method is provided <strong>in</strong> Appendix A.16 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2.4 ENVIRONMENTAL SETTING2.4.1 Site CharacteristicsFigure 2.7: Locality map <strong>of</strong> study area (adapted from Massel<strong>in</strong>k & Pattiaratchi 2001).The locations <strong>in</strong>dicated by <strong>the</strong> letter and number ‘S4’ are <strong>the</strong> deployment sites <strong>of</strong> <strong>the</strong> InterOcean S4current meters utilised <strong>in</strong> this <strong>in</strong>vestigation. More <strong>in</strong>formation <strong>in</strong> Section 3.1.Literature Review 17


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanThe waves travell<strong>in</strong>g <strong>in</strong>to <strong>the</strong> shallower waters <strong>of</strong> <strong>the</strong> <strong>Perth</strong> metropolitan area (Figure 2.7) aremodified by a number <strong>of</strong> processes, <strong>in</strong>clud<strong>in</strong>g refraction due to changes <strong>in</strong> bathymetry anddiffraction due to exposed reefs and islands. The cont<strong>in</strong>ental shelf along <strong>the</strong> <strong>Perth</strong> coastalregion generally has a mild slope, but <strong>the</strong> actual bathymetry may be ra<strong>the</strong>r complex due to <strong>the</strong>presence <strong>of</strong> submerged limestone ridges (Massel<strong>in</strong>k & Pattiaratchi 2001). The <strong>of</strong>fshore ridges,shallow reef cha<strong>in</strong>s and <strong>the</strong> islands (Rottnest and Garden Islands) have significant shelter<strong>in</strong>geffects on <strong>the</strong> <strong>in</strong>shore wave field from <strong>the</strong> <strong>of</strong>fshore wave conditions. In areas <strong>of</strong> <strong>the</strong>metropolitan coastal waters, a northwesterly w<strong>in</strong>d will generate higher seas than asouthwesterly <strong>of</strong> similar strength because <strong>of</strong> <strong>the</strong> shelter<strong>in</strong>g effect <strong>of</strong> <strong>the</strong> islands <strong>in</strong> <strong>the</strong>southwest direction (BOM 1993).2.4.2 ClimateThe ‘w<strong>in</strong>ter-wet south-west’ <strong>of</strong> Western Australia experiences a Mediterranean-type climatewhich is characterised by hot, dry summers and cool, wet w<strong>in</strong>ters (Gentilli 1972). The major<strong>in</strong>fluence on <strong>the</strong> wea<strong>the</strong>r pattern along <strong>the</strong> south-west coast is <strong>the</strong> position <strong>of</strong> <strong>the</strong> ‘subtropicalridge axis’, which is a belt <strong>of</strong> semi-permanent anticyclonic high pressure systems encircl<strong>in</strong>g<strong>the</strong> sou<strong>the</strong>rn hemisphere between latitudes <strong>of</strong> 25 and 40 degrees south (BOM 1993).Accord<strong>in</strong>g to L<strong>in</strong>acre (1977), <strong>Perth</strong> is Australia’s w<strong>in</strong>diest city, be<strong>in</strong>g exposed to westerlygales <strong>in</strong> w<strong>in</strong>ter and to strong sea breezes <strong>in</strong> summer. The average annual w<strong>in</strong>d speed for <strong>Perth</strong>is 4.3 ms -1 , which is approximately 30% above those <strong>of</strong> o<strong>the</strong>r capitals. <strong>Perth</strong> also experiencesa maximum gust <strong>of</strong> 43ms -1 , far exceed<strong>in</strong>g those <strong>of</strong> most o<strong>the</strong>r capital cities <strong>of</strong> Australia(L<strong>in</strong>acre 1977). There are dist<strong>in</strong>ct variations <strong>in</strong> both <strong>the</strong> seasonal and diurnal w<strong>in</strong>d patterns.The summer w<strong>in</strong>d pattern is characterised by <strong>the</strong> daily sea breeze cycle, and <strong>the</strong> w<strong>in</strong>terwea<strong>the</strong>r is dom<strong>in</strong>ated by <strong>the</strong> passage <strong>of</strong> low pressure systems cross<strong>in</strong>g <strong>the</strong> south-westernregion <strong>of</strong> Australia every 7 to 10 days.Subtropical Ridge Axis and <strong>the</strong> Anticyclonic High Pressure SystemDur<strong>in</strong>g summer, <strong>the</strong> subtropical belt <strong>of</strong> high pressure is over most <strong>of</strong> <strong>the</strong> south-west region,reach<strong>in</strong>g near 40 o S and prevent<strong>in</strong>g most cold fronts from approach<strong>in</strong>g <strong>the</strong> south coast withany strength (BOM 1993, Gentilli 1972). Dur<strong>in</strong>g w<strong>in</strong>ter, <strong>the</strong> belt is displaced to <strong>the</strong> north ataround 25 o S to 30 o S, allow<strong>in</strong>g cold fronts and strong westerly w<strong>in</strong>ds to frequently penetrate<strong>the</strong> sou<strong>the</strong>rn half <strong>of</strong> WA <strong>in</strong> some strength (BOM 1993).18 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanDue to <strong>the</strong> normal breakdown <strong>of</strong> <strong>the</strong> high pressure belt <strong>in</strong>to anticyclonic cells, <strong>the</strong> prevail<strong>in</strong>gair circulation over <strong>the</strong> southwest region is anticlockwise. Along <strong>the</strong> north side <strong>of</strong> <strong>the</strong>anticyclones, <strong>the</strong> w<strong>in</strong>ds gradually become easterlies (or trade w<strong>in</strong>ds) and along <strong>the</strong> sou<strong>the</strong>dge, variable w<strong>in</strong>ds come <strong>in</strong> from <strong>the</strong> west (Gentilli 1971). Therefore, <strong>the</strong> seasonal shift <strong>of</strong><strong>the</strong> high pressure belt accounts for a dom<strong>in</strong>ant onshore (i.e. westerly) component <strong>in</strong> w<strong>in</strong>terand an <strong>of</strong>fshore (easterly) component <strong>in</strong> summer along <strong>the</strong> south-west coast <strong>of</strong> Australia(Gentilli 1972). The anticyclonic high pressure cells progress eastward with a periodicity <strong>of</strong>five to six days (Gentilli 1971).Mid-latitude depressionsThe anticyclonic system is periodically disrupted by storm events associated with mid-latitudedepressions. Dur<strong>in</strong>g summer, mid-latitude depressions are usually located far too south <strong>of</strong>Australia to have any direct <strong>in</strong>fluence on <strong>the</strong> local climate. However, dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>termonths, when <strong>the</strong> high pressure belt is displaced towards <strong>the</strong> north, <strong>the</strong> low pressure cellsassociated with <strong>the</strong> mid-latitude depressions travel northward. Accord<strong>in</strong>g to Gentilli (1971),<strong>the</strong> storms associated with mid-latitude depressions occur most frequently <strong>in</strong> July with anaverage <strong>of</strong> three cyclonic centres skirt<strong>in</strong>g <strong>the</strong> south-western coast <strong>of</strong> WA.Tropical cyclonesTropical cyclones are <strong>in</strong>tense low pressure systems that form over <strong>the</strong> tropical waters <strong>of</strong>northwest <strong>of</strong> WA, and <strong>the</strong> paths <strong>of</strong> <strong>the</strong>se storms greatly <strong>in</strong>fluence <strong>the</strong> coastal w<strong>in</strong>d conditions.The tropical cyclone season occur between November and May with most cyclonic activityoccurr<strong>in</strong>g <strong>in</strong> January or February (Rose 2001). In most cases, if <strong>the</strong> cyclone travels to <strong>the</strong>south <strong>of</strong> Australia, it loses most <strong>of</strong> its characteristics and becomes <strong>in</strong>dist<strong>in</strong>guishable from anyfrontal cyclonic depression. However, a few cyclones have reached <strong>the</strong> sou<strong>the</strong>rn shore <strong>of</strong>Australia without any apparent loss <strong>of</strong> <strong>in</strong>tensity (Gentilli 1971), and it has been estimated thattropical cyclones directly affect <strong>the</strong> <strong>Perth</strong> metropolitan coastl<strong>in</strong>e once <strong>in</strong> every ten years(Lemm 1996).Literature Review 19


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2.4.3 Regimes <strong>of</strong> Sea breeze and Storm events <strong>in</strong> <strong>Perth</strong>Sea breezesThe sea breeze system is a diurnal atmospheric circulation due to <strong>the</strong> differential heat<strong>in</strong>g <strong>of</strong><strong>the</strong> land and sea surfaces caus<strong>in</strong>g a pressure gradient, which leads to streams <strong>of</strong> air flow<strong>in</strong>gonshore or <strong>of</strong>fshore until balance is restored (BOM 1993). Sea breezes are a dist<strong>in</strong>ctive andwell established feature <strong>of</strong> <strong>the</strong> local climate <strong>in</strong> <strong>the</strong> south-west <strong>of</strong> Australia, and are given localnames such as <strong>the</strong> Fremantle Doctor, Albany Doctor, and Esperance Doctor “from <strong>the</strong> name<strong>of</strong> <strong>the</strong> coastal locality near which <strong>the</strong>y cross <strong>the</strong> shore on <strong>the</strong>ir welcome way <strong>in</strong>land.” (Gentilli1971 p.111). A typical sea breeze cycle usually consists <strong>of</strong> <strong>of</strong>fshore w<strong>in</strong>ds <strong>in</strong> <strong>the</strong> generaleasterly direction <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g, followed by <strong>the</strong> sudden arrival <strong>of</strong> south to southwesterly(alongshore to cross-shore) w<strong>in</strong>ds towards mid-afternoon. The sea breeze is present more than60% <strong>of</strong> <strong>the</strong> time dur<strong>in</strong>g <strong>the</strong> summer months, and <strong>the</strong> mean sea breeze velocity at <strong>the</strong> coastl<strong>in</strong>eis about 8 ms -1 (Massel<strong>in</strong>k & Pattiaratchi 2001). W<strong>in</strong>d speeds dur<strong>in</strong>g <strong>the</strong> summer sea breeze<strong>of</strong>ten exceed 15ms -1 with maximum values <strong>of</strong> 20 ms -1 (Pattiaratchi et al 1997).In contrast to <strong>the</strong> ‘typical’ sea breeze system which blows perpendicular to <strong>the</strong> shorel<strong>in</strong>e, <strong>the</strong>sea breeze along <strong>the</strong> west coast <strong>of</strong> Australia blows parallel to <strong>the</strong> shorel<strong>in</strong>e <strong>in</strong> a sou<strong>the</strong>rlydirection (Pattiaratchi et al 1997). The reason for <strong>the</strong> shore-parallel sea breeze system can beattributed to <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> sea breeze system and <strong>the</strong> synoptic wea<strong>the</strong>r patterns.Dur<strong>in</strong>g summer, <strong>the</strong> Australian cont<strong>in</strong>ent is generally under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> easterly air flow,and due to <strong>the</strong> heat<strong>in</strong>g <strong>of</strong> <strong>the</strong> air flow across <strong>the</strong> cont<strong>in</strong>ent, a low pressure trough is formedparallel to <strong>the</strong> coast <strong>of</strong> Western Australia (i.e. <strong>in</strong> a north-south direction) (Pattiaratchi et al1997). The location <strong>of</strong> <strong>the</strong> trough affects <strong>the</strong> <strong>in</strong>tensity and direction <strong>of</strong> <strong>the</strong> sea breeze. Thesynoptic pressure gradient acts <strong>in</strong> a nor<strong>the</strong>asterly direction when <strong>the</strong> low pressure trough islocated <strong>in</strong>land from <strong>the</strong> west coast (Pattiaratchi et al 1997). If we consider <strong>the</strong> sea breezesystem on <strong>the</strong> West Australian coast as simply due to <strong>the</strong> differential heat<strong>in</strong>g <strong>of</strong> land and seasurfaces and <strong>the</strong> Coriolis force, <strong>the</strong> sea breeze would flow <strong>in</strong> a southwesterly direction. Hence<strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> southwesterly air flow <strong>of</strong> <strong>the</strong> sea breeze pressure system and <strong>the</strong>sou<strong>the</strong>asterly air flow <strong>of</strong> <strong>the</strong> synoptic pressure results <strong>in</strong> a sou<strong>the</strong>rly sea breeze. When <strong>the</strong>location <strong>of</strong> <strong>the</strong> trough is such that <strong>the</strong> synoptic pressure gradient <strong>in</strong>duces sou<strong>the</strong>rly w<strong>in</strong>ds, <strong>the</strong>sea breeze enhances <strong>the</strong> sou<strong>the</strong>rly w<strong>in</strong>ds (Pattiaratchi et al 1997). Therefore <strong>the</strong> summersynoptic patterns <strong>in</strong> this region heighten <strong>the</strong> sea breeze system, and very strong sea breezesoccur dur<strong>in</strong>g <strong>the</strong> summer months. The deepest sea breezes at <strong>Perth</strong> occur <strong>in</strong> November to20 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanDecember, while <strong>the</strong> strongest ones come later <strong>in</strong> January or February (Gentilli 1971). Atypical summer wea<strong>the</strong>r pattern is depicted <strong>in</strong> Figure 2.8 (a-d).Dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months, <strong>the</strong> general isobaric pattern favours <strong>of</strong>fshore flow and thus landbreezes are streng<strong>the</strong>ned while sea breezes <strong>of</strong>ten fail to occur (Gentilli 1971). The strengthand onset <strong>of</strong> sea breeze are also affected by o<strong>the</strong>r meteorological factors. For example, <strong>the</strong>amount <strong>of</strong> cloud cover can affect <strong>the</strong> temperature and <strong>the</strong> prevail<strong>in</strong>g synoptic situation whichmay ei<strong>the</strong>r enhance or retard its development (BOM 1993). Accord<strong>in</strong>g to Pattiaratchi et al1997), w<strong>in</strong>d waves that are locally generated by <strong>the</strong> sea breeze activity are <strong>the</strong> majormechanism controll<strong>in</strong>g littoral sand transport and nearshore morphology <strong>of</strong> sandy beaches.When <strong>the</strong> nearshore wave field is <strong>in</strong>fluenced by a sea breeze local w<strong>in</strong>d waves undergodiurnal changes <strong>in</strong> height, period and <strong>in</strong>cidence angles (Pattiaratchi et al 1997).Storm eventsThe low pressure systems associated with <strong>the</strong> mid-latitude depressions <strong>in</strong> w<strong>in</strong>ter br<strong>in</strong>gwesterly cold fronts, result<strong>in</strong>g <strong>in</strong> strong susta<strong>in</strong>ed w<strong>in</strong>ds with speeds up to 14ms -1 (Rose2001). With <strong>the</strong> approach <strong>of</strong> a depression, <strong>the</strong> w<strong>in</strong>ds are <strong>in</strong>itially from <strong>the</strong> north and shifts to<strong>the</strong> northwest whilst <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> strength. As <strong>the</strong> depression crosses <strong>the</strong> coast, <strong>the</strong>re is arapid shift <strong>in</strong> <strong>the</strong> w<strong>in</strong>d direction to become southwesterly, and <strong>the</strong> mean w<strong>in</strong>d speed decreasesslightly after <strong>the</strong> change. Storm conditions may be ma<strong>in</strong>ta<strong>in</strong>ed for up to 36 hours, with w<strong>in</strong>dsreach<strong>in</strong>g up to 20 ms -1 and <strong>in</strong>stantaneous gusts to 35 ms -1 and will gradually moderate(Massel<strong>in</strong>k & Pattiaratchi 2001, Rose 2001). A typical w<strong>in</strong>ter sequence for <strong>Perth</strong> is shown <strong>in</strong>Figure 2.9 (a-d).Literature Review 21


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan(a) Day 1: A low pressure trough extends <strong>in</strong> a generalnorth-south orientation <strong>in</strong>land <strong>of</strong> <strong>the</strong> west coast and ahigh pressure system is centred over <strong>the</strong> Indian Ocean.The typical w<strong>in</strong>d pr<strong>of</strong>ile shows a moderatesou<strong>the</strong>asterly w<strong>in</strong>d <strong>in</strong> <strong>the</strong> early morn<strong>in</strong>g, veer<strong>in</strong>g to <strong>the</strong>southwest and streng<strong>the</strong>n<strong>in</strong>g by late morn<strong>in</strong>g. W<strong>in</strong>dwill gradually tend sou<strong>the</strong>ast and moderate overnight.The strongest sea breezes <strong>in</strong> <strong>Perth</strong> result from thispattern.(b) Day 2: The low pressure trough has progressedfur<strong>the</strong>r <strong>in</strong>land and <strong>the</strong> high over <strong>the</strong> Indian Ocean iscloser. W<strong>in</strong>d pattern is similar to Day 1, although seabreeze may arrive later and a little weaker. The w<strong>in</strong>dmay turn to a gusty easterly overnight.(c) Day 3: The high pressure cell has progressed fur<strong>the</strong>reast and is now located <strong>of</strong>f <strong>the</strong> south coast andproduc<strong>in</strong>g a hot easterly flow over WA. A fresh tostrong easterly w<strong>in</strong>d early <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g will moderatedur<strong>in</strong>g <strong>the</strong> day as <strong>the</strong> temperature rises. A weak seabreeze may arrive late <strong>in</strong> <strong>the</strong> afternoon, but <strong>the</strong> w<strong>in</strong>d islikely to return to <strong>the</strong> east and freshen dur<strong>in</strong>g even<strong>in</strong>g.On some days <strong>the</strong>re will not be a sea breeze and <strong>the</strong>(d) Day 4: The formation <strong>of</strong> a low pressure trough along<strong>the</strong> west coast is due to <strong>the</strong> temperature differencebetween <strong>the</strong> land and sea surfaces. Ano<strong>the</strong>r high islocated over <strong>the</strong> Indian Ocean. W<strong>in</strong>ds may rema<strong>in</strong> from<strong>the</strong> nor<strong>the</strong>ast until mid-afternoon when a moderate seabreeze is likely to develop.Figure 2.8: A typical summer sequence for <strong>Perth</strong> (from BOM 1993)22 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan(a) Day 1: The w<strong>in</strong>d early <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g is a nor<strong>the</strong>rly,shift<strong>in</strong>g northwesterly before mid-day andstreng<strong>the</strong>n<strong>in</strong>g by late afternoon(b) Day 2: Northwesterly w<strong>in</strong>ds rapidly shift southwestwith <strong>the</strong> passage <strong>of</strong> <strong>the</strong> front and mean w<strong>in</strong>d speeddecreases slightly. Westerly w<strong>in</strong>ds soon streng<strong>the</strong>nahead <strong>of</strong> a second cold front, associated with a lowpressure cell that developed rapidly <strong>in</strong> <strong>the</strong> cold airbeh<strong>in</strong>d <strong>the</strong> first front.(c) Day 3: Cold front progresses on eastward andsqually west to southwesterly w<strong>in</strong>ds gradually decrease<strong>in</strong> strength.(d) Day 4: Conditions have moderated and asouthwesterly w<strong>in</strong>d persists for mosst <strong>of</strong> <strong>the</strong> day,moderat<strong>in</strong>g slowly by <strong>the</strong> even<strong>in</strong>g.Figure 2.9: Typical wea<strong>the</strong>r pattern for w<strong>in</strong>ter for <strong>Perth</strong> (from BOM 1993)2.4.4 Offshore Wave ConditionsThe <strong>of</strong>fshore wave climate is dom<strong>in</strong>ated by moderate energy swell from <strong>the</strong> south tosouthwest, and a variable w<strong>in</strong>d wave climate is superimposed on <strong>the</strong> background swell(Massel<strong>in</strong>k & Pattiaratchi 2001). Sea breezes have a strong <strong>in</strong>fluence on <strong>the</strong> <strong>of</strong>fshore waveconditions dur<strong>in</strong>g summer, <strong>the</strong>refore <strong>the</strong> prevail<strong>in</strong>g wave direction is south to southwest.Offshore waves dur<strong>in</strong>g summer have predom<strong>in</strong>antly low period (less than 8 s) <strong>in</strong> <strong>the</strong> range <strong>of</strong>1-2 m (Lemm 1996). Northwesterly to southwesterly storm waves occur dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>terLiterature Review 23


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanmonths, and <strong>the</strong> <strong>of</strong>fshore wave climate is characterised by high period (more than 8 s) swelland storm waves <strong>of</strong> 1.5-2.5 m (Lemm 1996). Hence, for <strong>the</strong> study area, <strong>the</strong>re is a dist<strong>in</strong>ctive<strong>of</strong>fshore wave climatic shift from moderate, locally generated seas <strong>in</strong> summer to higher,distantly generated swell <strong>in</strong> w<strong>in</strong>ter (Lemm 1996). A background swell above 0.5 m was foundto be present all year round (Lemm 1996). The submerged ridges and islands mentioned <strong>in</strong>Section 2.4.1 <strong>of</strong>fer extensive shelter<strong>in</strong>g <strong>of</strong> <strong>the</strong> coastl<strong>in</strong>e, particularly from southwesterlywaves (i.e. <strong>the</strong> prevail<strong>in</strong>g wave conditions), <strong>the</strong>refore <strong>the</strong> nearshore wave conditions are lessenergetic than <strong>of</strong>fshore conditions.24 Literature Review


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan3 APPROACH3.1 DATA COLLECTION3.1.1 Measur<strong>in</strong>g DeviceThe wave data <strong>in</strong> this study was obta<strong>in</strong>ed through <strong>the</strong> use <strong>of</strong> <strong>the</strong> InterOcean TM S4DWelectromagnetic current meter (Figure 3.1). The S4DW current meter is designed byInterOcean TM to measure and record <strong>the</strong> true magnitude and direction <strong>of</strong> horizontal motionwithout <strong>the</strong> effect <strong>of</strong> vertical movement due to wave action (ISI 2004b). The equipmentmeasures velocities us<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciples <strong>of</strong> Faraday's Law <strong>of</strong> electromagnetic <strong>in</strong>duction. Waterflows through an electromagnetic field generated by <strong>the</strong> current meter, thus produc<strong>in</strong>g avoltage proportional to <strong>the</strong> flow velocity <strong>of</strong> <strong>the</strong> water past <strong>the</strong> sensor (ISI 2004c). The voltageis sensed by two orthogonal pairs <strong>of</strong> electrodes located symmetrically on <strong>the</strong> equator <strong>of</strong> <strong>the</strong>sensor and current direction is measured by an <strong>in</strong>ternal flux-gate compass (ISI 2004b). TheS4DW <strong>in</strong>strument also records pressure, which was converted <strong>in</strong>to depth data for <strong>the</strong> purposes<strong>of</strong> this study. The equipment samples at a rate <strong>of</strong> 2 Hz (i.e. once every 0.5 s), and has 20megabytes <strong>of</strong> memory available for data storage to allow deployments for extended periods(ISI 2004d).Figure 3.1: InterOcean S4DW Current Meter (from ISI 2004a)3.1.2 Data Collection TechniqueThe S4DW current meter was moored at 0.5 m above <strong>the</strong> sea bed at two <strong>in</strong>shore locations asshown <strong>in</strong> blue <strong>in</strong> Figure 2.7: City Beach and <strong>the</strong> Cables Artificial Surf<strong>in</strong>g Reef (ASR). Thedetails <strong>of</strong> each deployment are shown <strong>in</strong> Table 3.1. The data obta<strong>in</strong>ed at City Beach was at ashallower depth than <strong>the</strong> data obta<strong>in</strong>ed at Cables ASR, hence <strong>the</strong> deployment at City Beachwas closer to shore than <strong>the</strong> deployment at Cables ASR. The current meter recorded data at 18Approach 25


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanm<strong>in</strong>ute bursts for <strong>the</strong> City Beach deployment, and 20 m<strong>in</strong>ute bursts at Cables ASR. Each databurst was cont<strong>in</strong>uously recorded beg<strong>in</strong>n<strong>in</strong>g on <strong>the</strong> hour at both locations. Therefore, <strong>the</strong>rewere 18 m<strong>in</strong>! 60sec!2 Hz = 2160 data po<strong>in</strong>ts recorded for each burst at <strong>the</strong> City Beachdeployment, and 20 m<strong>in</strong>! 60sec!2 Hz= 2400 data po<strong>in</strong>ts per burst at <strong>the</strong> Cables ASRdeployment.Table 3.1: Details <strong>of</strong> <strong>the</strong> S4DW current meter deploymentsLOCATIONCity BeachCables ASRDate (<strong>in</strong>clusive) 21-Jan-2001 to 09-Feb-2001 11-Aug-1999 to 27-Aug-1999Depth ~ 5 m ~ 8 mData po<strong>in</strong>ts/burst 2160 2400W<strong>in</strong>d speed and direction data at 30 m<strong>in</strong>ute <strong>in</strong>tervals for Swanbourne, which is approximately10 kilometres south-west from <strong>the</strong> city <strong>of</strong> <strong>Perth</strong> (Figure 2.7), was obta<strong>in</strong>ed from <strong>the</strong> Bureau <strong>of</strong>Meteorology for <strong>the</strong> period <strong>of</strong> both deployments.26 Approach


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan3.2 DATA ANALYSISMajority <strong>of</strong> <strong>the</strong> data analysis <strong>in</strong> this study was carried out us<strong>in</strong>g MATLAB ® , a high level,vector-orientated, ma<strong>the</strong>matical programm<strong>in</strong>g language developed by The MathWorks Inc.(Appendix B).A sequence <strong>of</strong> observations made through time may be described as a time series. The datacollected by <strong>the</strong> S4DW current meter <strong>in</strong> this study are <strong>the</strong>refore time series <strong>of</strong> currentvelocities measured at a fixed location. These time series are stochastic, discrete, uniformlysampled and <strong>of</strong> f<strong>in</strong>ite length. In this study, <strong>the</strong> time series data were processed us<strong>in</strong>g spectralanalysis. Spectral analysis can be used to decompose a time series <strong>in</strong>to its constituentfrequency components, and different frequency bands can be isolated. In particular, thismethod allows <strong>the</strong> separation <strong>of</strong> <strong>the</strong> sea and swell components <strong>of</strong> <strong>the</strong> wave field. In this study,sea waves are def<strong>in</strong>ed as waves with periods between 2 s and 6.65 s (i.e. 0.15 < f < 0.5) andswell waves are def<strong>in</strong>ed as waves with periods between 6.65 s and 20 s (i.e. 0.05 < f < 0.15).The wave spectrum <strong>in</strong> Figure 3.2 demonstrates <strong>the</strong> frequency cut-<strong>of</strong>fs for swell and seawaves; this particular wave spectrum shows that <strong>the</strong> wave field is dom<strong>in</strong>ated by sea waveenergy.In this study, <strong>the</strong> data records were transformed from <strong>the</strong> time doma<strong>in</strong> to <strong>the</strong> frequencydoma<strong>in</strong> via <strong>the</strong> Fast Fourier Transform (FFT). The application <strong>of</strong> <strong>the</strong> FFT requires that <strong>the</strong>number <strong>of</strong> data po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> series should be a power <strong>of</strong> 2. In addition to this, it is desirable touse a considerable length <strong>of</strong> data as this <strong>in</strong>creases <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> conversion performedby <strong>the</strong> FFT. As mentioned <strong>in</strong> Section 3.1.2, <strong>the</strong>re were 2160 data po<strong>in</strong>ts recorded for every 18m<strong>in</strong>ute burst at City Beach and 2400 data recorded for every 20 m<strong>in</strong>ute burst at Cables ASR.The number <strong>of</strong> data analysed <strong>in</strong> <strong>the</strong> present study is 2048, which is <strong>the</strong> maximum power <strong>of</strong> 2value with<strong>in</strong> <strong>the</strong> data record (N = 2048 = 2 11 ). This ensures optimum spectral resolution andm<strong>in</strong>imum occurrence <strong>of</strong> error for <strong>the</strong> given data record. A set <strong>of</strong> wave parameters useful tothis study was extracted from each data burst (Table 3.2).Approach 27


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 3.2: A wave spectral energy plot <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> frequency cut-<strong>of</strong>fs for <strong>the</strong> swell and seacomponents <strong>of</strong> <strong>the</strong> wave field.Table 3.2: Wave parameters extracted from <strong>the</strong> data <strong>in</strong> <strong>the</strong> frequency doma<strong>in</strong>Symbol Description Method <strong>of</strong> Calculation Unitsm 0 Total variance (zeroth moment <strong>of</strong> spectral( f )dfdensity)! " mS20m 0,sea Variance <strong>of</strong> sea componentmS( f )df2m 0,swellH sH s,seaVariance <strong>of</strong> swell componentSignificant wave height estimateSignificant wave height <strong>of</strong> sea component! 0.50. 15! 0.15 S0. 05( f )dfm 24 m0m4 m 0,seamH s,swell Significant wave height <strong>of</strong> swell 4 m m0,swellcomponentT p Peak period. Wave period correspond<strong>in</strong>g 1/f p sto <strong>the</strong> maximum spectral energy.T p,sea Peak period <strong>of</strong> <strong>the</strong> sea component 1/f p,sea sT p,swell Peak period <strong>of</strong> <strong>the</strong> swell component 1/f p,swell sNote: f p is <strong>the</strong> spectral peak frequency, <strong>the</strong> frequency at which <strong>the</strong> maximum spectral density occurs28 Approach


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan3.2.1 <strong>Directional</strong> analysisThe directional wave spectra were obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> DIWASP (DIrectional WAve Spectra)Toolbox (Version 1.1) for MATLAB ® . DIWASP is a toolbox <strong>of</strong> MATLAB ® functions for <strong>the</strong>estimation <strong>of</strong> directional wave spectra, and <strong>the</strong>re are five different estimation methodsavailable: Direct Fourier Transform Method (DFTM), Extended Maximum LikelihoodMethod (EMLM), Iterated Maximum Likelihood Method (IMLM), Extended MaximumEntropy Method (EMEP) and Bayesian Direct Method (BDM) (Johnson no date). The EMEPestimation method was chosen for use <strong>in</strong> this study because <strong>of</strong> its advantages over <strong>the</strong> o<strong>the</strong>rmethods, as briefly discussed <strong>in</strong> Section 2.3.3. Fur<strong>the</strong>rmore, <strong>the</strong> o<strong>the</strong>r methods <strong>in</strong> DIWASPwere tested on <strong>the</strong> data and <strong>the</strong> EMEP method provided <strong>the</strong> best overall results. The speedand direction data recorded by <strong>the</strong> current meter were resolved <strong>in</strong>to east-west and north-southcomponents for use with <strong>the</strong> DIWASP toolbox.3.2.2 Non-directional analysisNon-directional wave parameters (significant wave height and peak period) and <strong>the</strong> swell andsea components for each burst were obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> spectral method (Appendix B). Nondirectionalwave spectra were obta<strong>in</strong>ed for each wave burst us<strong>in</strong>g FFT techniques and <strong>the</strong>Welch method (Appendix B). A Hann<strong>in</strong>g w<strong>in</strong>dow was utilised for frequency band averag<strong>in</strong>gand two segments <strong>of</strong> 1024 po<strong>in</strong>ts (i.e. 8.53 m<strong>in</strong>utes) were used for segment averag<strong>in</strong>g,yield<strong>in</strong>g four degrees <strong>of</strong> freedom <strong>in</strong> <strong>the</strong> f<strong>in</strong>al spectral estimates.3.2.3 W<strong>in</strong>d analysisVelocity vectors <strong>of</strong> <strong>the</strong> w<strong>in</strong>d speed and direction were plotted via <strong>the</strong> <strong>in</strong>-built MATLAB ®function, ‘fea<strong>the</strong>r’. However, <strong>the</strong> plots <strong>of</strong> bi-hourly data (i.e. <strong>the</strong> complete w<strong>in</strong>d data set)produced a congested plot which cannot be observed <strong>in</strong> detail. Therefore, w<strong>in</strong>d data that wererecorded on <strong>the</strong> hour were extracted to match <strong>the</strong> hourly wave data for <strong>the</strong> purpose <strong>of</strong>observ<strong>in</strong>g general trends. The complete w<strong>in</strong>d data were used o<strong>the</strong>rwise for detailed analysis.Approach 29


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4 RESULTS AND DISCUSSION4.1 INTRODUCTIONThe results obta<strong>in</strong>ed from <strong>the</strong> methods described <strong>in</strong> Section 3 are presented along withdetailed discussion <strong>in</strong> this section:• The wave response to changes <strong>in</strong> w<strong>in</strong>d speed and w<strong>in</strong>d direction dur<strong>in</strong>g sea breezes andstorms was <strong>in</strong>vestigated <strong>in</strong> terms <strong>of</strong> changes <strong>in</strong> wave height, wave frequency, direction <strong>of</strong>wave propagation and spectral density <strong>of</strong> <strong>the</strong> waves. These are presented <strong>in</strong> Sections 4.2.1and 4.3.1 for sea breeze and storm events respectively. The hourly wave patterns <strong>in</strong>response to changes <strong>in</strong> w<strong>in</strong>d conditions are <strong>in</strong>vestigated <strong>in</strong> Sections 4.2.2 and 4.3.2.• Comparisons between <strong>the</strong> swell and sea components <strong>of</strong> <strong>the</strong> significant wave height andpeak period are presented <strong>in</strong> Section 4.4.• The wave response time to changes <strong>in</strong> w<strong>in</strong>d conditions are <strong>in</strong>vestigated <strong>in</strong> Section 4.5.• The reflection <strong>of</strong> wave energy at City Beach and Cables ASR is considered <strong>in</strong> Section 4.6.Wave energy <strong>in</strong> terms <strong>of</strong> wave frequency and direction <strong>of</strong> propagation are presented as hourlypolar plots <strong>in</strong> Sections 4.2.2, 4.3.2, 4.5 and 4.6, which were obta<strong>in</strong>ed through <strong>the</strong> use <strong>of</strong>DIWASP. It is worth not<strong>in</strong>g that a significant number <strong>of</strong> <strong>the</strong>se plots were not suitable foranalysis. These unusable plots showed waves com<strong>in</strong>g from all directions (i.e. <strong>the</strong> whole 360 operipheral), and this could be due to <strong>the</strong> EMEP estimation method be<strong>in</strong>g relatively sensitive tonoise <strong>in</strong> <strong>the</strong> data, hence amplify<strong>in</strong>g erroneous data. Consequently, <strong>the</strong>re were slightdifficulties <strong>in</strong> obta<strong>in</strong><strong>in</strong>g suitable consecutive hourly plots for analysis, and selection <strong>of</strong> <strong>the</strong>seplots was subject to <strong>the</strong> availability <strong>of</strong> overall good hourly plots.The numerical directions <strong>of</strong> waves <strong>in</strong> <strong>the</strong> discussion <strong>of</strong> <strong>the</strong> results are “compass” directions <strong>in</strong>degrees relative to <strong>the</strong> north and <strong>in</strong>creases <strong>in</strong> a clockiwise fashion (i.e. 0 o /360 o is due north,90 o is east, 180 o is south and 270 o is west). Note that this is different to <strong>the</strong> direction notationon <strong>the</strong> polar plots presented <strong>in</strong> Sections 4.2.2, 4.3.2, 4.5 and 4.6.30 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanResults and Discussion 31


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.2 SEA BREEZE CYCLESThe data recorded at City Beach <strong>in</strong> January/February 2001 were utilised to demonstrate <strong>the</strong>wave response to <strong>the</strong> sea breeze cycles experienced <strong>in</strong> <strong>Perth</strong> dur<strong>in</strong>g <strong>the</strong> summer months.4.2.1 Overall patternThe time series <strong>of</strong> w<strong>in</strong>d and wave conditions over <strong>the</strong> sampl<strong>in</strong>g period for <strong>the</strong> City Beachdeployment are depicted <strong>in</strong> Figure 4.1.The daily south to southwesterly sea breezes are clearly shown <strong>in</strong> <strong>the</strong> w<strong>in</strong>d pattern (Figure4.1a). For most <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g period, <strong>the</strong> typical sea breeze cycle prevailed (Section 2.4.3).For each cycle, <strong>of</strong>fshore (easterly) w<strong>in</strong>ds blow early <strong>in</strong> <strong>the</strong> day, followed by an abrupt<strong>in</strong>crease <strong>in</strong> w<strong>in</strong>d speed and shift <strong>in</strong> w<strong>in</strong>d direction to onshore southwesterly w<strong>in</strong>ds towardsmiddle <strong>of</strong> <strong>the</strong> day. The southwesterly w<strong>in</strong>ds persist for most <strong>of</strong> <strong>the</strong> even<strong>in</strong>g, and w<strong>in</strong>dconditions gradually return to pre-breeze conditions usually <strong>in</strong> <strong>the</strong> early hours <strong>of</strong> <strong>the</strong> morn<strong>in</strong>gwhen <strong>the</strong> <strong>of</strong>fshore land breeze starts blow<strong>in</strong>g.There was little to no sea breeze activity on days 28, 30 – 31 (i.e. 28, 30 – 31 Jan) and 35 – 37(i.e. 4 – 6 Feb) <strong>in</strong>clusive, which could be due to various synoptic <strong>in</strong>fluences act<strong>in</strong>g to suppresssea breeze events. The events on days 31 – 32 are <strong>of</strong> <strong>in</strong>terest. Variable nor<strong>the</strong>rly w<strong>in</strong>dsdom<strong>in</strong>ated for <strong>the</strong> most <strong>of</strong> day 31 and part <strong>of</strong> day 32, <strong>the</strong>n rapidly shift<strong>in</strong>g to <strong>the</strong> southwestlater on day 32. These patterns <strong>in</strong>dicate <strong>the</strong> possible passage <strong>of</strong> a storm (Section 2.4.3). Thesouthwesterly w<strong>in</strong>d shift may have streng<strong>the</strong>ned <strong>the</strong> sea breeze on <strong>the</strong> latter part <strong>of</strong> day 32.The maximum and mean w<strong>in</strong>d speeds for <strong>the</strong> sampl<strong>in</strong>g period at <strong>the</strong> City Beach deploymentwere 23 knots and 11.75 knots respectively.The sea breeze events cause <strong>in</strong>stantaneous changes to <strong>the</strong> nearshore wave conditions. Therewere dist<strong>in</strong>ct peaks <strong>of</strong> significant wave height H s correspond<strong>in</strong>g to each sea breeze event(Figure 4.1b). Dur<strong>in</strong>g each <strong>of</strong> <strong>the</strong> sea breezes, H s usually doubled <strong>in</strong> height with a general<strong>in</strong>crease <strong>of</strong> approximately 0.6 m <strong>in</strong> response to <strong>the</strong> onset <strong>of</strong> <strong>the</strong> sea breeze. H s <strong>the</strong>n decreasedas <strong>the</strong> effects <strong>of</strong> <strong>the</strong> sea breeze subside towards <strong>the</strong> end <strong>of</strong> <strong>the</strong> day and <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong>next day. The decrease <strong>in</strong> H s experienced after each sea breeze was not usually equal to <strong>the</strong><strong>in</strong>crease <strong>in</strong> H s experienced at <strong>the</strong> onset <strong>of</strong> <strong>the</strong> sea breeze, and vice versa. This is because <strong>the</strong>32 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanwave field was greatly <strong>in</strong>fluenced by <strong>the</strong> energy <strong>of</strong> swell waves which are not affected bylocal w<strong>in</strong>d conditions such as <strong>the</strong> sea breeze events. The effects <strong>of</strong> <strong>the</strong> swell and seacomponents <strong>of</strong> H s for <strong>the</strong> data collected at City Beach are discussed <strong>in</strong> Section 4.4.1. Therewere no dist<strong>in</strong>ct daily peaks <strong>of</strong> H s observed on days 28, 30 – 31 and 35 – 37 (<strong>in</strong>clusive) due toweak or no sea breezes occurr<strong>in</strong>g on those days. Fur<strong>the</strong>rmore, H s appear less variable dur<strong>in</strong>g<strong>the</strong> periods <strong>of</strong> little to no sea breezes. The mean H s for <strong>the</strong> summer sampl<strong>in</strong>g period was 0.77m. A maximum H s <strong>of</strong> 1.33 m was achieved dur<strong>in</strong>g a sea breeze event with<strong>in</strong> <strong>the</strong> sampl<strong>in</strong>gperiod.The wave frequency spectra (Figure 4.1c) clearly <strong>in</strong>dicate that dur<strong>in</strong>g <strong>the</strong> sea breezes, shortperiod sea waves became superimposed on <strong>the</strong> background swell. The generation <strong>of</strong> seawaves beg<strong>in</strong> <strong>in</strong> response to <strong>the</strong> start <strong>of</strong> sea breezes at around 0.3 Hz, decreas<strong>in</strong>g down toaround 0.15 Hz when <strong>the</strong> sea breezes subsided (i.e. wave period <strong>in</strong>creased from 3 s to 6 s).Swell waves <strong>of</strong> approximately 0.1 Hz (i.e. wave period <strong>of</strong> 10 s) were almost always present.The frequency spectra verify <strong>the</strong> lack <strong>of</strong> sea breeze generated sea waves on days 28 – 32 and35 – 37, when relatively high energy swell waves dom<strong>in</strong>ated <strong>in</strong>stead.The directional wave spectra (Figure 4.1d) show that <strong>the</strong> dom<strong>in</strong>ant wave direction for <strong>the</strong>duration <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g period was <strong>in</strong> <strong>the</strong> nor<strong>the</strong>ast quadrant (i.e. 0 o to 90 o ), correspond<strong>in</strong>g to<strong>the</strong> prevail<strong>in</strong>g southwesterly w<strong>in</strong>ds dur<strong>in</strong>g <strong>the</strong> summer months.Results and Discussion 33


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.1: W<strong>in</strong>d and wave conditions measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> City Beach from 21January to 09 February 2001:(A) w<strong>in</strong>d speed and direction measured at Swanbourne – note that w<strong>in</strong>d speed is given <strong>in</strong> kilometresper hour (kph); (B) significant wave height; (C) wave frequency <strong>in</strong> terms <strong>of</strong> wave spectral energy; (D)wave direction relative to <strong>the</strong> north <strong>in</strong> terms <strong>of</strong> wave spectral energy. The solid l<strong>in</strong>e <strong>in</strong> (A) represents<strong>the</strong> w<strong>in</strong>d speed and <strong>the</strong> arrows are hourly w<strong>in</strong>d vectors with <strong>the</strong>ir length proportional to <strong>the</strong> w<strong>in</strong>d speed(up = sou<strong>the</strong>rly; right = westerly; down = nor<strong>the</strong>rly; left = easterly). The shad<strong>in</strong>g <strong>in</strong> (C) and (D)reflects <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong> spectral energy as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adjacent colour bars (<strong>in</strong> units <strong>of</strong> m 2 /Hz)34 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.2.2 Hourly TrendsThe hourly wave patterns <strong>in</strong>duced by <strong>the</strong> sea breeze cycle are <strong>in</strong>vestigated <strong>in</strong> this section. Thesequence presented <strong>in</strong> Figure 4.2 illustrates <strong>the</strong> typical wave patterns that occur dur<strong>in</strong>g a seabreeze event. This particular sea breeze cycle occurred on 25 – 26 January 2001 at CityBeach. Data analysis for <strong>the</strong>se dates via DIWASP produced generally excellent hourly plots.The sequence beg<strong>in</strong>s a few hours after <strong>the</strong> onset <strong>of</strong> <strong>the</strong> wave response to <strong>the</strong> sea breeze effectoccurr<strong>in</strong>g on 25 January at 17:00, and ends on 26 January at 17:00 to encompass a wholeday’s cycle. However, <strong>the</strong> description presented here shall beg<strong>in</strong> at 06:00 <strong>of</strong> 26 January <strong>in</strong>order to illustrate <strong>the</strong> wave response to <strong>the</strong> arrival <strong>of</strong> <strong>the</strong> sea breeze.At 06:00 on 26 January, <strong>the</strong> prevail<strong>in</strong>g southwesterly summer w<strong>in</strong>ds have subsided aga<strong>in</strong>st <strong>the</strong>streng<strong>the</strong>n<strong>in</strong>g <strong>of</strong>fshore land breeze. The wave field was dom<strong>in</strong>ated by swell waves <strong>of</strong>approximately 0.1 Hz (i.e. wave period <strong>of</strong> 10 s) flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> east-nor<strong>the</strong>asterly direction(60 o – 90 o ), and <strong>the</strong>re were very weak sea waves flow<strong>in</strong>g <strong>in</strong> <strong>the</strong> nor<strong>the</strong>asterly direction(approximately 45 o ). By 08:00, <strong>the</strong> energy <strong>of</strong> <strong>the</strong> nor<strong>the</strong>asterly sea waves had significantlyreduced, and <strong>the</strong> swell waves cont<strong>in</strong>ued propagat<strong>in</strong>g to <strong>the</strong> east-nor<strong>the</strong>ast. Swell conditionsrema<strong>in</strong>ed <strong>the</strong> same for <strong>the</strong> next six hours, as verified by <strong>the</strong> 13:00 wave pattern. At 14:00, seawaves <strong>of</strong> approximately 0.32 Hz began propagat<strong>in</strong>g to <strong>the</strong> nor<strong>the</strong>ast (approximately 40 o ) <strong>in</strong>response to <strong>the</strong> onset <strong>of</strong> <strong>the</strong> south-southwesterly sea breeze. By 15:00, <strong>the</strong> sea breezegeneratedwaves <strong>of</strong> 0.2 – 0.3 Hz have picked up significant energy. The east-nor<strong>the</strong>ast(approximately 80 o ) swell component was still present <strong>in</strong> <strong>the</strong> background, giv<strong>in</strong>g a maximumdifference <strong>of</strong> 40 o <strong>in</strong> <strong>the</strong> directions <strong>of</strong> wave propagation between <strong>the</strong> swell and sea componentsdur<strong>in</strong>g <strong>the</strong> sea breeze event. At 16:00 and 17:00, two and three hours after <strong>the</strong> onset <strong>of</strong> <strong>the</strong>wave response to <strong>the</strong> sea breeze, <strong>the</strong> propagation <strong>of</strong> <strong>the</strong> sea breeze-generated sea wavespersisted <strong>in</strong> <strong>the</strong> nor<strong>the</strong>asterly direction aga<strong>in</strong>st a background easterly swell component.Reflected waves <strong>of</strong> <strong>the</strong> same frequency as that <strong>of</strong> <strong>the</strong> sea waves were detected almost 180 o <strong>in</strong><strong>the</strong> opposite direction.In fact, <strong>the</strong> cessation <strong>of</strong> <strong>the</strong> sea breeze effect on <strong>the</strong> waves was less def<strong>in</strong>ed than for <strong>the</strong> onset<strong>of</strong> <strong>the</strong> sea breeze effect because <strong>the</strong>re was a gradual return to pre-breeze conditions dur<strong>in</strong>g <strong>the</strong>even<strong>in</strong>g. This is illustrated <strong>in</strong> <strong>the</strong> hourly wave patterns <strong>of</strong> 17:00 and 21:00 on 25 January and01:00 and 04:00 on 26 January. The pre-breeze swell wave conditions did not return until <strong>the</strong>early hours <strong>of</strong> <strong>the</strong> next morn<strong>in</strong>g.Results and Discussion 35


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanHence, <strong>the</strong> summer wave patterns on <strong>the</strong> nearshore coastal zone <strong>of</strong> <strong>Perth</strong> waters dur<strong>in</strong>g <strong>the</strong>sampl<strong>in</strong>g period at City Beach were dom<strong>in</strong>ated by east-nor<strong>the</strong>asterly (approximately 80 o )swell waves and nor<strong>the</strong>asterly (approximately 40 o ) sea waves generated by sea breezes. Amaximum difference <strong>of</strong> approximately 40 o <strong>in</strong> <strong>the</strong> directions between <strong>the</strong> propagation <strong>of</strong> swelland sea waves was achieved dur<strong>in</strong>g <strong>the</strong> sea breeze event. The persistence <strong>of</strong> <strong>the</strong> eastnor<strong>the</strong>asterlyswell waves is due to <strong>the</strong> fact that swells are not affected by local w<strong>in</strong>dconditions (Section 2.1.1). Note that nearshore waves do not respond to <strong>the</strong> overnight/earlymorn<strong>in</strong>g <strong>of</strong>fshore (easterly) w<strong>in</strong>ds (i.e. by propagat<strong>in</strong>g to <strong>the</strong> west) due to <strong>the</strong> <strong>in</strong>sufficientfetch area at <strong>the</strong> sampl<strong>in</strong>g location for sea waves to develop appreciably <strong>in</strong> response.36 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan1700 on 25 Jan2100 on 25 Jan0100 on 26 Jan0400 on 26 JanResults and Discussion 37


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan0600 on 26 Jan0800 on 26 Jan1300 on 26 Jan38 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan1400 on 26 Jan1500 on 26 Jan1600 on 26 Jan1700 on 26 JanResults and Discussion 39


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.2: Typical wave sequence <strong>in</strong>duced by <strong>the</strong> sea breeze cycle measured <strong>in</strong> <strong>the</strong> nearshore region<strong>of</strong> City Beach on <strong>the</strong> 25 – 26 January 2001The left side <strong>of</strong> <strong>the</strong> figure shows hourly polar plots <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> wave energy <strong>in</strong> terms <strong>of</strong> wavefrequency and direction <strong>of</strong> wave travel. The shad<strong>in</strong>g <strong>in</strong> <strong>the</strong> polar plots reflects <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong>spectral energy as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adjacent colour bars (<strong>in</strong> units <strong>of</strong> m 2 /Hz) The correspond<strong>in</strong>g hourlynon-directional frequency spectrum is shown on <strong>the</strong> right40 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.3 STORM EVENTSThe data recorded at Cables ASR dur<strong>in</strong>g August 1999 (i.e. w<strong>in</strong>ter) were used to demonstrate<strong>the</strong> wave response to storm events <strong>in</strong> <strong>the</strong> <strong>Perth</strong> coastal area.4.3.1 Overall patternThe time series <strong>of</strong> w<strong>in</strong>d and wave conditions over <strong>the</strong> sampl<strong>in</strong>g period for <strong>the</strong> Cables ASRdeployment are shown <strong>in</strong> Figure 4.3.The w<strong>in</strong>d pattern (Figure 4.3a) clearly <strong>in</strong>dicate <strong>the</strong> passage <strong>of</strong> storms associated with midlatitudedepressions (Section 2.4.3). One storm event occurred on days 229 – 231 (i.e. 17 – 20Aug) and two closely-spaced storms occurred on days 236 – 237 (i.e. 24 – 25 Aug) <strong>in</strong>clusive.Offshore variable w<strong>in</strong>ds <strong>in</strong>itially flow from <strong>the</strong> north, shift<strong>in</strong>g to <strong>the</strong> northwest and <strong>in</strong>creas<strong>in</strong>g<strong>in</strong> speed as <strong>the</strong> depression approaches <strong>the</strong> coast. W<strong>in</strong>ds <strong>the</strong>n abruptly shift to southwesterly,<strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> depression crossed <strong>the</strong> coast, and <strong>the</strong> w<strong>in</strong>ds decrease slightly <strong>in</strong> strength.The present w<strong>in</strong>d conditions persist for a few hours before gradually moderat<strong>in</strong>g. The meanand maximum w<strong>in</strong>d speeds for <strong>the</strong> w<strong>in</strong>ter sampl<strong>in</strong>g period at <strong>the</strong> Cables ASR deploymentwere 12.05 knots and 34.05 knots respectively. The maximum w<strong>in</strong>d speed was achieveddur<strong>in</strong>g <strong>the</strong> storm event on days 229 – 231.The response <strong>of</strong> H s to storm events is straightforward and apparent, as shown <strong>in</strong> Figure 4.3b.Dur<strong>in</strong>g <strong>the</strong> storm event on days 229 – 231, H s <strong>in</strong>creased more than 1.5 m. At <strong>the</strong> height <strong>of</strong> <strong>the</strong>storm on day 230, <strong>the</strong> peak H s <strong>of</strong> 2.75 m was achieved <strong>in</strong> response to <strong>the</strong> highest w<strong>in</strong>d energyfor <strong>the</strong> sampl<strong>in</strong>g period. The mean H s for <strong>the</strong> w<strong>in</strong>ter sampl<strong>in</strong>g period was 1.17 m.The wave frequency spectra (Figure 4.3c) clearly show <strong>the</strong> wave response to storm w<strong>in</strong>ds.With <strong>the</strong> onset <strong>of</strong> northwesterly w<strong>in</strong>ds, short period sea waves became superimposed on <strong>the</strong>background swell. The generation <strong>of</strong> sea waves began <strong>in</strong> response to storm w<strong>in</strong>ds at 0.3 Hz,decreas<strong>in</strong>g down to around 0.15 Hz for <strong>the</strong> whole duration <strong>of</strong> <strong>the</strong> storm event. The constantbackground swell waves <strong>of</strong> less than 0.1 Hz (i.e. wave period <strong>of</strong> more than 10 s) were almostalways present. The highest energy waves were generated <strong>in</strong> response to <strong>the</strong> strongest w<strong>in</strong>dspeeds, especially for <strong>the</strong> storm event on days 229 – 231.Results and Discussion 41


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanThe directional wave spectra (Figure 4.3d) <strong>in</strong>dicate that <strong>the</strong> dom<strong>in</strong>ant wave direction for <strong>the</strong>duration <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g period was <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast quadrant (i.e. 90 o – 180 o ), correspond<strong>in</strong>gto <strong>the</strong> prevail<strong>in</strong>g nor<strong>the</strong>rly w<strong>in</strong>ds <strong>in</strong> w<strong>in</strong>ter. An <strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>t to note is that dur<strong>in</strong>g <strong>the</strong> latterpart <strong>of</strong> <strong>the</strong> storm events, <strong>the</strong> predom<strong>in</strong>ant direction <strong>of</strong> wave propagation rema<strong>in</strong>ed to <strong>the</strong>general sou<strong>the</strong>asterly direction although <strong>the</strong> w<strong>in</strong>d was blow<strong>in</strong>g from <strong>the</strong> southwest. This isfur<strong>the</strong>r discussed <strong>in</strong> Section 4.3.2.42 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.3: W<strong>in</strong>d and wave conditions measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> Cables Artificial Surf<strong>in</strong>gReef from 11 August to 27 August 1999:(A) w<strong>in</strong>d speed and direction measured at Swanbourne – note that w<strong>in</strong>d speed is given <strong>in</strong> kilometresper hour (kph); (B) significant wave height; (C) wave frequency <strong>in</strong> terms <strong>of</strong> wave spectral energy; (D)wave direction relative to <strong>the</strong> north <strong>in</strong> terms <strong>of</strong> wave spectral energy. The solid l<strong>in</strong>e <strong>in</strong> (A) represents<strong>the</strong> w<strong>in</strong>d speed and <strong>the</strong> arrows are hourly w<strong>in</strong>d vectors with <strong>the</strong>ir length proportional to <strong>the</strong> w<strong>in</strong>d speed(up = sou<strong>the</strong>rly; right = westerly; down = nor<strong>the</strong>rly; left = easterly). The shad<strong>in</strong>g <strong>in</strong> (C) and (D)reflects <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong> spectral energy as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adjacent colour bars (<strong>in</strong> units <strong>of</strong> m 2 /Hz)Results and Discussion 43


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.3.2 Hourly trendsThe hourly wave patterns <strong>in</strong>duced by storm events associated with mid-latitude depressionsare <strong>in</strong>vestigated <strong>in</strong> this section. The sequence presented <strong>in</strong> Figure 4.4 illustrates <strong>the</strong> typicalwave patterns that occur dur<strong>in</strong>g a storm. This particular storm began on 24 August 1999 atCables ASR. This storm event was chosen over <strong>the</strong> storm that began on 17 August because<strong>the</strong> data analysis us<strong>in</strong>g DIWASP produced overall good hourly polar plots for <strong>the</strong> latter stormevent but not for <strong>the</strong> former.At 23:00 on 23 August, relatively high energy swell waves were prevail<strong>in</strong>g <strong>in</strong> <strong>the</strong> eastsou<strong>the</strong>asterlydirection (approximately 110 o ). The swell conditions persisted for two morehours, and at 01:00 on 24 August, waves began respond<strong>in</strong>g to <strong>the</strong> northwesterly w<strong>in</strong>ds thatmarked <strong>the</strong> approach <strong>of</strong> a mid-latitude depression. East-sou<strong>the</strong>asterly (110 o – 130 o ) sea wavesbegan develop<strong>in</strong>g at a frequency <strong>of</strong> approximately 0.2 Hz, however <strong>the</strong> wave field rema<strong>in</strong>edprevalently swell conditions. At 02:00 and 03:00, <strong>the</strong> sea waves shifted to sou<strong>the</strong>asterly (120 o– 150 o ) whilst obta<strong>in</strong><strong>in</strong>g more energy from <strong>the</strong> streng<strong>the</strong>n<strong>in</strong>g northwesterly w<strong>in</strong>ds. Note that<strong>the</strong> background east-sou<strong>the</strong>asterly swell was still present, and <strong>the</strong> energy <strong>of</strong> reflected seawaves can be detected at approximately 180 o <strong>in</strong> <strong>the</strong> opposite direction. At 04:00 and 05:00,<strong>the</strong> sea waves began to change <strong>the</strong> direction <strong>of</strong> propagation to <strong>the</strong> east (approximately 90 o ),correspond<strong>in</strong>g to <strong>the</strong> abrupt change <strong>in</strong> w<strong>in</strong>d direction from northwest to southwest associatedwith <strong>the</strong> passage <strong>of</strong> <strong>the</strong> depression. At 07:00 to 08:00, <strong>the</strong> change <strong>in</strong> <strong>the</strong> direction <strong>of</strong> stormgeneratedsea waves was completed, with waves <strong>of</strong> 0.25 Hz propagat<strong>in</strong>g to <strong>the</strong> nor<strong>the</strong>ast(approximately 50 o ). Note that <strong>the</strong> direction <strong>of</strong> wave propagation <strong>of</strong> <strong>the</strong> swell componentrema<strong>in</strong>ed to <strong>the</strong> east-sou<strong>the</strong>ast (approximately 110 o ) dur<strong>in</strong>g <strong>the</strong> change <strong>in</strong> direction <strong>of</strong> <strong>the</strong> seawaves, achiev<strong>in</strong>g a maximum difference <strong>of</strong> approximately 60 o <strong>in</strong> <strong>the</strong> directions <strong>of</strong> propagationbetween <strong>the</strong> swell and sea waves dur<strong>in</strong>g <strong>the</strong> storm. The nor<strong>the</strong>asterly sea wave conditionscont<strong>in</strong>ued for a few more hours before moderat<strong>in</strong>g back to almost swell conditions, as verifiedby <strong>the</strong> wave patterns at 09:00, 10:00 and 13:00. However, <strong>the</strong> wave field for that particularstorm event did not return to pre-storm swell conditions as at 23:00 on 23 August because <strong>the</strong>end <strong>of</strong> this particular storm event was not def<strong>in</strong>ed, and ano<strong>the</strong>r storm followed closelyovernight (Section 4.3.1).Therefore, <strong>the</strong> w<strong>in</strong>ter nearshore wave field for <strong>the</strong> sampl<strong>in</strong>g period at Cables ASR wasdom<strong>in</strong>ated by swell waves propagat<strong>in</strong>g to <strong>the</strong> east-sou<strong>the</strong>ast (approximately 110 o ). Sea waves44 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanwere generated <strong>in</strong> variable onshore directions <strong>in</strong> response to storm events, superimposed on<strong>the</strong> east-sou<strong>the</strong>asterly background swells, achiev<strong>in</strong>g a maximum deviation to <strong>the</strong> nor<strong>the</strong>ast(approximately 50 o ). Hence a difference <strong>of</strong> approximately 60 o was obta<strong>in</strong>ed between <strong>the</strong>directions <strong>of</strong> wave propagation <strong>of</strong> <strong>the</strong> swell and sea components dur<strong>in</strong>g <strong>the</strong> storm event.For <strong>the</strong> duration <strong>of</strong> <strong>the</strong> storm event analysed <strong>in</strong> this section, <strong>the</strong> energy <strong>of</strong> swell waves waspredom<strong>in</strong>antly higher than that <strong>of</strong> sea waves (as observed <strong>in</strong> <strong>the</strong> non-directional spectra <strong>of</strong>Figure 4.4), imply<strong>in</strong>g that swell waves were more important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> direction <strong>of</strong>littoral transport on <strong>the</strong> beach. This justifies <strong>the</strong> observation noted at <strong>the</strong> conclusion <strong>of</strong> Section4.3.1 that <strong>the</strong> dom<strong>in</strong>ant wave direction for <strong>the</strong> duration <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g period was <strong>in</strong> <strong>the</strong>sou<strong>the</strong>ast quadrant despite <strong>the</strong> variable w<strong>in</strong>d conditions experienced dur<strong>in</strong>g storms.Results and Discussion 45


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2300 on 23 Aug0100 on 24 Aug0200 on 24 Aug0300 on 24 Aug46 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan0400 on 24 Aug0500 on 24 Aug0700 on 24 AugResults and Discussion 47


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan0800 on 24 Aug0900 on 24 Aug1000 on 24 Aug1300 on 24 Aug48 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.4: Typical wave pattern <strong>in</strong>duced by a storm associated with <strong>the</strong> mid-latitude depression,measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> Cables ASR on <strong>the</strong> 23 – 24 August 1999.The left side <strong>of</strong> <strong>the</strong> figure shows hourly polar plots <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> wave energy <strong>in</strong> terms <strong>of</strong> wavefrequency and direction <strong>of</strong> wave travel. The shad<strong>in</strong>g <strong>in</strong> <strong>the</strong> polar plots reflects <strong>in</strong>creas<strong>in</strong>g levels <strong>of</strong>spectral energy as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> adjacent colour bars (<strong>in</strong> units <strong>of</strong> m 2 /Hz). The correspond<strong>in</strong>g hourlynon-directional frequency spectrum is shown on <strong>the</strong> rightResults and Discussion 49


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.4 SWELL AND SEA COMPONENTSThe time series <strong>of</strong> <strong>the</strong> total, swell and sea components <strong>of</strong> <strong>the</strong> nearshore significant waveheight H s and peak wave period T p for <strong>the</strong> City Beach and Cables ASR deployments areshown <strong>in</strong> Figure 4.5 and Figure 4.6 respectively. H s is composed <strong>of</strong> different componentswhich are categorised accord<strong>in</strong>g to <strong>the</strong> frequency value. The swell and sea components <strong>of</strong> H sshown <strong>in</strong> <strong>the</strong> second subplot <strong>of</strong> Figure 4.5 and Figure 4.6 were obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> frequencycut <strong>of</strong>f values for swell and sea waves def<strong>in</strong>ed <strong>in</strong> Section 3.2. As previously discussed <strong>in</strong>Sections 2.2.3 and 3.2, T p is <strong>the</strong> largest wave energy occurr<strong>in</strong>g for a certa<strong>in</strong> <strong>in</strong>terval <strong>of</strong>frequency. Therefore, total T p , as shown <strong>in</strong> <strong>the</strong> third subplot <strong>of</strong> Figure 4.5 and Figure 4.6,represents <strong>the</strong> largest wave energy spann<strong>in</strong>g both <strong>the</strong> frequency <strong>in</strong>tervals for <strong>the</strong> swell and seawaves. The swell and sea components <strong>of</strong> T p correspond to <strong>the</strong> peak wave energy <strong>in</strong> <strong>the</strong>irrespective frequency cut-<strong>of</strong>f values. Hence, <strong>the</strong> value <strong>of</strong> <strong>the</strong> total T p for any given time can<strong>in</strong>dicate swell or sea conditions.4.4.1 City BeachThe sea component <strong>of</strong> significant wave height (H s,sea ) shown <strong>in</strong> <strong>the</strong> second subplot <strong>of</strong> Figure4.5 clearly <strong>in</strong>dicates sea breeze events. The peaks <strong>of</strong> H s,sea correspond to <strong>the</strong> wave response to<strong>the</strong> onset <strong>of</strong> sea breezes, which is clearly reflected <strong>in</strong> <strong>the</strong> total H s . The swell component <strong>of</strong> <strong>the</strong>significant wave height (H s,swell ) dom<strong>in</strong>ated on days 28 – 32 (i.e. 28 Jan – 1 Feb) and 35 – 37(i.e. 4 – 6 Feb) due to a lack <strong>of</strong> strong sea breezes to generate sea waves, as verified by <strong>the</strong>w<strong>in</strong>d plot on Figure 4.1a.The total T p plot <strong>in</strong> <strong>the</strong> third subplot <strong>of</strong> Figure 4.5 <strong>in</strong>dicates that <strong>the</strong> largest wave energy <strong>in</strong> <strong>the</strong>wave field for <strong>the</strong> whole sampl<strong>in</strong>g period was dom<strong>in</strong>ated by high T p waves (i.e. swells) <strong>of</strong>generally more than 10 s punctuated with low T p waves (i.e. seas) that correspond to <strong>the</strong> waveresponse to <strong>the</strong> onset <strong>of</strong> sea breezes. The mean and maximum T p for <strong>the</strong> sampl<strong>in</strong>g period was12.15 s and 18.45 s. For most <strong>of</strong> <strong>the</strong> sea breeze events that occurred dur<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>gperiod, <strong>the</strong> peak wave period <strong>of</strong> sea waves, T p,sea , progressively <strong>in</strong>creased from 3 – 4 s to 5 – 6s. There were days when <strong>the</strong> swell waves had higher energy than that <strong>of</strong> <strong>the</strong> sea breezegenerated sea waves, such as days 23 – 25 (i.e. 23 – 25 Jan), and subsequently, <strong>the</strong> total T p donot <strong>in</strong>dicate low period waves.50 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanIt was previously discussed <strong>in</strong> Section 4.2.1 that <strong>the</strong> w<strong>in</strong>d and wave patterns on days 31-32(i.e. 31 Jan – 1 Feb) <strong>in</strong>dicated <strong>the</strong> possible passage <strong>of</strong> a storm. H s,sea and H s,swell for that periodshowed <strong>the</strong> generation <strong>of</strong> sea waves at <strong>the</strong> onset <strong>of</strong> relatively strong nor<strong>the</strong>rly w<strong>in</strong>ds, and anapparent lag <strong>in</strong> <strong>the</strong> response <strong>of</strong> swell waves <strong>of</strong> a few hours. This lag is discussed <strong>in</strong> detail <strong>in</strong>Section 4.4.2. Total T p for days 31-32 verified that waves with relatively low period (i.e. seawaves) dom<strong>in</strong>ated <strong>the</strong> wave field <strong>in</strong> response to <strong>the</strong> onset <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rly w<strong>in</strong>ds on days 31-32. Relatively high period waves dom<strong>in</strong>ated <strong>the</strong> wave field about midday <strong>of</strong> day 32,correspond<strong>in</strong>g to <strong>the</strong> lagged response <strong>of</strong> H s,swell .Figure 4.5: <strong>Nearshore</strong> significant wave height and peak wave period and <strong>the</strong>ir respective swell andsea components at City Beach for <strong>the</strong> period 21 January to 09 February 2001Results and Discussion 51


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.4.2 Cables ASRThe shape <strong>of</strong> <strong>the</strong> total H s <strong>in</strong> <strong>the</strong> first subplot <strong>of</strong> Figure 4.6 is most similar to that <strong>of</strong> H s,swell <strong>in</strong><strong>the</strong> second subplot, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> swell component <strong>of</strong> H s dom<strong>in</strong>ated for majority <strong>of</strong> <strong>the</strong>sampl<strong>in</strong>g period, even dur<strong>in</strong>g <strong>the</strong> storm events. The maxima <strong>of</strong> H s,sea correspond to <strong>the</strong> waveresponse to storm w<strong>in</strong>ds, and contribute to <strong>the</strong> maxima <strong>of</strong> <strong>the</strong> total H s .A lag <strong>of</strong> a few hours between <strong>the</strong> response <strong>of</strong> H s,sea and H s,swell to strong nor<strong>the</strong>rly w<strong>in</strong>ds at <strong>the</strong>onset <strong>of</strong> a storm was previously noted <strong>in</strong> Section 4.4.1 for <strong>the</strong> data collected at <strong>the</strong> City Beachdeployment. The same lagged response is observed <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter sampl<strong>in</strong>g data, and isparticularly obvious <strong>in</strong> <strong>the</strong> <strong>in</strong>itial storm stages on days 229 (i.e. 17 Aug) and 236 (i.e. 24 Aug)(second subplot <strong>of</strong> Figure 4.6). As discussed <strong>in</strong> Section 2.1.1, swell waves at a location weregenerated <strong>in</strong> a region far from <strong>the</strong> sampl<strong>in</strong>g location and are no longer under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong>locally-generated w<strong>in</strong>d. The eastward passage <strong>of</strong> a mid-latitude depression would havegenerated waves <strong>of</strong> different periods to <strong>the</strong> west <strong>of</strong> a sampl<strong>in</strong>g location. The differentcomponents <strong>of</strong> <strong>the</strong> waves will separate from each o<strong>the</strong>r, with <strong>the</strong> longer period waves (i.e.swells) travell<strong>in</strong>g faster than shorter period waves (i.e. seas) (Section 2.1.1). Therefore, <strong>the</strong>lagged response <strong>of</strong> H s,swell <strong>in</strong> a local storm are <strong>in</strong> fact due to long period components <strong>of</strong> wavesthat were generated <strong>in</strong> response to <strong>the</strong> same storm event at a location to <strong>the</strong> west <strong>of</strong> <strong>the</strong>sampl<strong>in</strong>g region.The total T p plot <strong>in</strong> <strong>the</strong> third subplot <strong>of</strong> Figure 4.6 <strong>in</strong>dicates that <strong>the</strong> largest wave energy <strong>in</strong> <strong>the</strong>wave field for <strong>the</strong> w<strong>in</strong>ter sampl<strong>in</strong>g period at Cables ASR was dom<strong>in</strong>antly <strong>in</strong>fluenced by highperiod swell waves <strong>of</strong> generally more than 10 s, with an average T p <strong>of</strong> 14.21 s and a maximum<strong>of</strong> 21.56 s. The only exception that occurred dur<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g period was on day 229 whenrelatively low period sea waves were <strong>in</strong>itially generated <strong>in</strong> response to <strong>the</strong> approach <strong>of</strong> <strong>the</strong>mid-latitude depression. The m<strong>in</strong>imum T p <strong>of</strong> 6.67 s occurred dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial stages <strong>of</strong> <strong>the</strong>storm event on day 229, which is <strong>the</strong> cut <strong>of</strong>f value between <strong>the</strong> swell and sea components.This observation implies that <strong>the</strong> swell component <strong>of</strong> <strong>the</strong> peak period dom<strong>in</strong>ated <strong>the</strong> peakenergy wave field for majority <strong>of</strong> <strong>the</strong> storm duration. The relatively low T p waves were notsusta<strong>in</strong>ed for <strong>the</strong> whole duration <strong>of</strong> <strong>the</strong> storm, but <strong>in</strong>itially fluctuated through a large range,and as <strong>the</strong> response <strong>of</strong> H s reached its peak <strong>in</strong> response to <strong>the</strong> height <strong>of</strong> <strong>the</strong> storm event <strong>in</strong> <strong>the</strong>early hours <strong>of</strong> day 230, high T p,swell <strong>of</strong> more than 10 s dom<strong>in</strong>ated <strong>the</strong> peak energy wave fieldonce aga<strong>in</strong>. The sea component <strong>of</strong> T p as shown <strong>in</strong> <strong>the</strong> f<strong>in</strong>al subplot <strong>of</strong> Figure 4.6 was generally52 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanma<strong>in</strong>ta<strong>in</strong>ed at approximately 6 s, decreas<strong>in</strong>g near 4 second dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial stages <strong>of</strong> a stormevent.Figure 4.6: <strong>Nearshore</strong> significant wave height and peak wave period and <strong>the</strong>ir respective swell andsea components at Cables Artificial Surf<strong>in</strong>g Reef for <strong>the</strong> period 11 August to 27 August 1999Results and Discussion 53


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.5 WAVE RESPONSE TIMETo evaluate <strong>the</strong> wave response time to w<strong>in</strong>d speed and direction, <strong>the</strong> w<strong>in</strong>d and wave details <strong>of</strong>day 31 (i.e. 31 January 2001) from <strong>the</strong> City Beach deployment data were analysed <strong>in</strong> detail.This day was chosen because <strong>the</strong>re were good hourly polar plots for each burst for 15consecutive hours co<strong>in</strong>cid<strong>in</strong>g with a dist<strong>in</strong>ct change <strong>in</strong> wave energy and direction. Thesequence <strong>of</strong> polar plots for each hourly wave burst is from 0600 to 2100 (Figure 4.7). Bihourlyw<strong>in</strong>d speed and direction are also tabulated for that day (Table 4.1). As noted <strong>in</strong>Section 4.2.1, no sea breeze was observed on this day.Two <strong>in</strong>stances shall be used to verify <strong>the</strong> response time <strong>of</strong> <strong>the</strong> waves to <strong>the</strong> w<strong>in</strong>d. The polargraphs <strong>in</strong>dicate that swell waves were propagat<strong>in</strong>g <strong>in</strong> a westerly direction from 06:00 to09:00. Sea waves began propagat<strong>in</strong>g to <strong>the</strong> south east quadrant at 10:00. W<strong>in</strong>d data shows thatfrom 00:00 to 06:00, w<strong>in</strong>d was flow<strong>in</strong>g <strong>in</strong> an easterly to nor<strong>the</strong>asterly direction. At 06:30, <strong>the</strong>w<strong>in</strong>d changed direction to flow <strong>in</strong> a northwesterly fashion. This corresponds with <strong>the</strong> change<strong>in</strong> wave direction at 10:00. From 10:00 to 14:30, <strong>the</strong> w<strong>in</strong>d was blow<strong>in</strong>g <strong>in</strong> a northwesterlydirection. There was a change <strong>in</strong> w<strong>in</strong>d direction at 15:00 to <strong>the</strong> west-southwest, and <strong>the</strong>correspond<strong>in</strong>g change <strong>in</strong> wave direction occurred at 19:00.Therefore <strong>the</strong> time taken for <strong>the</strong> waves to respond to w<strong>in</strong>d is approximately 3.5 to 4 hours,with an uncerta<strong>in</strong>ty <strong>of</strong> about 0.5 hours due to <strong>the</strong> fact that bi-hourly w<strong>in</strong>d data were used withhourly wave bursts.54 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan06:00 07:0008:00 09:0010:00 11:0012:00 13:00Results and Discussion 55


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan14:00 15:0016:00 17:0018:00 19:0020:00 21:0056 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.7: Hourly sequence <strong>of</strong> polar plots <strong>of</strong> wave energy <strong>in</strong> terms <strong>of</strong> wave frequency and direction<strong>of</strong> wave travel measured <strong>in</strong> <strong>the</strong> nearshore region <strong>of</strong> City Beach on 31 January 2001Table 4.1: Bi-hourly w<strong>in</strong>d data for 31 January 2001 collected at Swanbourne.Date Time (hour) W<strong>in</strong>d Direction (deg North) W<strong>in</strong>d Speed (m/s)20010131 0 70 6.6920010131 30 60 8.2320010131 100 50 6.6920010131 130 50 4.6320010131 200 30 3.0920010131 230 20 2.5720010131 300 10 1.5420010131 330 10 2.0620010131 400 20 3.0920010131 430 40 1.5420010131 500 40 2.0620010131 530 70 3.0920010131 600 30 3.6020010131 630 340 4.1220010131 700 360 4.6320010131 730 360 6.1720010131 800 350 4.1220010131 830 30 6.1720010131 900 360 6.6920010131 930 340 7.2020010131 1000 350 8.7520010131 1028 350 8.7520010131 1058 340 10.2920010131 1130 340 11.3220010131 1131 340 11.3220010131 1200 350 11.3220010131 1230 350 9.7720010131 1300 340 9.2620010131 1330 330 9.7720010131 1400 320 8.7520010131 1430 300 6.6920010131 1500 260 8.2320010131 1530 260 8.2320010131 1600 260 7.7220010131 1630 260 8.2320010131 1700 250 7.20Results and Discussion 57


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan20010131 1730 250 6.6920010131 1800 250 7.7220010131 1830 240 6.6920010131 1900 230 7.2020010131 1930 230 7.7220010131 2000 220 8.7520010131 2030 220 9.2620010131 2100 220 8.2320010131 2130 220 8.2320010131 2200 230 7.7220010131 2230 220 7.2020010131 2300 220 6.6920010131 2330 220 6.69Note: <strong>the</strong> w<strong>in</strong>d direction notation beg<strong>in</strong>s at 0 degrees north and <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> a clockwise fashion,<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> direction <strong>the</strong> w<strong>in</strong>d is com<strong>in</strong>g from (e.g. a w<strong>in</strong>d direction <strong>of</strong> 360 o is a nor<strong>the</strong>rly w<strong>in</strong>dblow<strong>in</strong>g <strong>in</strong> from <strong>the</strong> north). That is, North: 0/360 o , East: 90 o , South: 180 o , West: 270 o4.6 WAVE REFLECTIONThis section compares <strong>the</strong> energy <strong>of</strong> reflected waves with that <strong>of</strong> <strong>in</strong>cident waves via <strong>the</strong>reflection coefficient, which is def<strong>in</strong>ed asX =EEreflected<strong>in</strong>cidentwhere E reflected and E <strong>in</strong>cident are <strong>the</strong> respective energy <strong>of</strong> reflected and <strong>in</strong>cident waves (CharithaPattiaratchi pers. comm. 2004). The reflection coefficient can provide an <strong>in</strong>dication <strong>of</strong> <strong>the</strong>amount <strong>of</strong> wave energy dissipation on <strong>the</strong> beach, which is an important factor <strong>in</strong> beachsediment transport. The reflection coefficient can only be accurately obta<strong>in</strong>ed with <strong>the</strong> use <strong>of</strong>directional wave data. For each <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g locations (i.e. City Beach and Cables ASR),three hourly polar plots that best displayed reflected waves were selected (though notnecessarily consecutive hours), and <strong>the</strong> wave spectrum for <strong>the</strong> directions <strong>of</strong> <strong>the</strong> <strong>in</strong>cident andreflected waves were plotted. For each hour at each sampl<strong>in</strong>g location, <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>reflected and <strong>in</strong>cident wave spectra was calculated, and <strong>the</strong> maximum wave reflectioncoefficients were obta<strong>in</strong>ed.4.6.1 City BeachThe follow<strong>in</strong>g hourly polar plots were selected for wave reflection analysis for City Beach:• 06:00 on 21 January 2001• 17:00 on 26 January 2001• 10:00 on 31 January 200158 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanAt 06:00 on 21 January, waves at approximately 0.08 Hz were propagat<strong>in</strong>g to <strong>the</strong> eastnor<strong>the</strong>astat 74 o with a correspond<strong>in</strong>g reflected wave component travell<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong>292 o at <strong>the</strong> same frequency (Figure 4.8). The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident for this hourwas 0.112, imply<strong>in</strong>g that up to 11.2% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected.At 17:00 on 26 January, waves <strong>of</strong> approximately 0.25 Hz were propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong>53 o with a correspond<strong>in</strong>g reflected wave component travell<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong> 254 o (Figure4.9). The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident obta<strong>in</strong>ed for this hour was 0.153, which meansthat up to 15.3% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected.At 10:00 on 31 January, 0.09 Hz waves were propagat<strong>in</strong>g to <strong>the</strong> east at 86 o with acorrespond<strong>in</strong>g reflected wave component propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong> 274 o (Figure 4.10).The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident for this hour was 0.522, imply<strong>in</strong>g that as high as52.2% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected.For <strong>the</strong> three hours that were analysed for City Beach, <strong>the</strong> maximum E reflected : E <strong>in</strong>cident was0.522.Results and Discussion 59


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan60 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.8: Wave <strong>in</strong>formation at 06:00 on 21 January 2001 at City Beach.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 74 o (previous page); wave spectrum at 292 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.112Results and Discussion 61


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan62 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.9: Wave <strong>in</strong>formation at 17:00 on 26 January 2001 at City Beach.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 53 o (previous page); wave spectrum at 254 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.153Results and Discussion 63


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan64 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.10: Wave <strong>in</strong>formation at 10:00 on 31 January 2001 at City Beach.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 86 o (previous page); wave spectrum at 274 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.522Results and Discussion 65


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.6.2 Cables ASRThe follow<strong>in</strong>g hourly polar plots were selected for wave reflection analysis for Cables ASR:• 09:00 on 17 August 1999• 09:00 on 18 August 1999• 18:00 on 18 August 1999At 09:00 on 17 August, waves <strong>of</strong> approximately 0.22 Hz were propagat<strong>in</strong>g <strong>in</strong> a direction <strong>of</strong>128 o with a correspond<strong>in</strong>g reflected wave component travell<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong> 287 o(Figure 4.11). The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident for this hour was 0.127 (i.e. up to12.7% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected).At 09:00 on 18 August, waves <strong>of</strong> approximately 0.27 Hz were propagat<strong>in</strong>g to <strong>the</strong> eastnor<strong>the</strong>astat 79 o with a correspond<strong>in</strong>g reflected wave component propagat<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction<strong>of</strong> 274 o (Figure 4.12). The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident for this hour was 0.239,imply<strong>in</strong>g that as much as 23.9% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected.At 18:00 on 18 August, waves <strong>of</strong> approximately 0.29 Hz were propagat<strong>in</strong>g to <strong>the</strong> nor<strong>the</strong>ast at55 o with a correspond<strong>in</strong>g reflected wave component travell<strong>in</strong>g <strong>in</strong> <strong>the</strong> direction <strong>of</strong> 228 o (Figure4.13). The maximum value <strong>of</strong> E reflected : E <strong>in</strong>cident for this hour was 0.981, which implies that upto 98.1% <strong>of</strong> <strong>the</strong> <strong>in</strong>cident wave energy was reflected.For <strong>the</strong> three hours that were analysed for Cables ASR, a maximum E reflected : E <strong>in</strong>cident <strong>of</strong> 0.981was obta<strong>in</strong>ed.66 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanResults and Discussion 67


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.11: Wave <strong>in</strong>formation at 09:00 on 17 August 1999 at Cables ASR.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 128 o (previous page); wave spectrum at 287 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.12768 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanResults and Discussion 69


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.12: Wave <strong>in</strong>formation at 09:00 on 18 August 1999 at Cables ASR.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 79 o (previous page); wave spectrum at 274 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.23970 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanResults and Discussion 71


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanFigure 4.13: Wave <strong>in</strong>formation at 18:00 on 18 August 1999 at Cables ASR.Top to bottom: wave energy <strong>in</strong> terms <strong>of</strong> frequency and direction <strong>of</strong> propagation (previous page); wavespectrum at 55 o (previous page); wave spectrum at 228 o ; and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> reflected and <strong>in</strong>cidentwave components, yield<strong>in</strong>g a maximum value <strong>of</strong> 0.98172 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan4.6.3 Discussion <strong>of</strong> <strong>the</strong> reflection coefficients at City Beach and Cables ASRThe major factor <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> wave reflection coefficient at a location is <strong>the</strong> distance from<strong>the</strong> shore. The energy <strong>of</strong> reflected waves is higher at a location close to <strong>the</strong> shore than at a sitelocated fur<strong>the</strong>r <strong>of</strong>fshore. Hence <strong>the</strong> wave reflection coefficient should be higher at CityBeach. However, <strong>the</strong> maximum E reflected : E <strong>in</strong>cident is significantly higher for Cables ASR(0.981) than for City Beach (0.522), imply<strong>in</strong>g that more wave energy is reflected at CablesASR. There is <strong>in</strong>sufficient <strong>in</strong>formation at this stage to draw reliable conclusions to address <strong>the</strong>apparent contradiction. Fur<strong>the</strong>rmore, <strong>the</strong>re were substantial differences between <strong>the</strong> threehourly ratio values for both locations, <strong>the</strong>refore more analysis should be carried out to obta<strong>in</strong>more reliable statistics and to determ<strong>in</strong>e any outlier values which may <strong>in</strong>dicate erroneousresults.Results and Discussion 73


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan5 CONCLUSIONSThe directional wave data collected <strong>in</strong> <strong>the</strong> nearshore coastal waters <strong>of</strong> <strong>Perth</strong>, WesternAustralia, dur<strong>in</strong>g summer and w<strong>in</strong>ter clearly show <strong>the</strong> wave response to <strong>the</strong> chang<strong>in</strong>g w<strong>in</strong>dclimate experienced <strong>in</strong> each season. The summer wave patterns have a predom<strong>in</strong>ant eastnor<strong>the</strong>asterlyswell component, with nor<strong>the</strong>asterly sea waves generated by <strong>the</strong> sea breezessuperimposed on <strong>the</strong> background swell. The w<strong>in</strong>ter nearshore wave field have relatively highenergy swell waves propagat<strong>in</strong>g to <strong>the</strong> east-sou<strong>the</strong>ast, with sea waves generated <strong>in</strong> variableonshore directions by storm w<strong>in</strong>d conditions associated with <strong>the</strong> passage <strong>of</strong> mid-latitudedepressions. The propagation direction <strong>of</strong> storm-generated sea waves change fromsou<strong>the</strong>asterly to nor<strong>the</strong>asterly <strong>in</strong> response to <strong>the</strong> vary<strong>in</strong>g w<strong>in</strong>d conditions dur<strong>in</strong>g a storm event,however <strong>the</strong> direction <strong>of</strong> swell waves rema<strong>in</strong>s constant at east-sou<strong>the</strong>ast. The wave responsetime to changes <strong>in</strong> w<strong>in</strong>d conditions is 3.5 to 4 hours.The constant direction <strong>of</strong> swell waves <strong>in</strong> both <strong>the</strong> summer and w<strong>in</strong>ter nearshore wave patternsare <strong>in</strong> agreement with <strong>the</strong> observations by Massel<strong>in</strong>k & Pattiaratchi (2001) <strong>of</strong> <strong>the</strong> prevail<strong>in</strong>gnorthward sediment transport dur<strong>in</strong>g <strong>the</strong> summer months and <strong>the</strong> southward longshoretransport dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months. The f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this study imply that <strong>the</strong> energy anddirection <strong>of</strong> swell waves are more important than those <strong>of</strong> <strong>the</strong> sea component <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<strong>the</strong> directions <strong>of</strong> sediment transport on <strong>the</strong> beaches. A recommendation for fur<strong>the</strong>r workfollow<strong>in</strong>g this study is to conduct detailed <strong>in</strong>vestigations on <strong>the</strong> seasonal sediment transporton beaches, concurrently with <strong>the</strong> analysis <strong>of</strong> nearshore directional wave data at <strong>the</strong> samelocations. This will allow firm conclusions to be drawn on <strong>the</strong> effect <strong>of</strong> swell waves on beachsediment transport for <strong>the</strong> beaches on <strong>the</strong> coastl<strong>in</strong>e <strong>of</strong> <strong>Perth</strong>.74 Results and Discussion


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan6 REFERENCESBureau <strong>of</strong> Meteorology (BOM). 1993, W<strong>in</strong>d, waves, wea<strong>the</strong>r: <strong>Perth</strong> waters (Jurien Bay toBunbury), Department <strong>of</strong> <strong>the</strong> Environment, Sport and Territories.<strong>Coastal</strong> Eng<strong>in</strong>eer<strong>in</strong>g Research Center (CERC). 1984, Shore Protection Manual, Department <strong>of</strong><strong>the</strong> Army, Waterways Experiment Station, Corps <strong>of</strong> Eng<strong>in</strong>eers, Vicksburg, Mississippi.Gentilli, J. 1971, Australian Climate Patterns, Thomas Nelson Australia.Gentilli, J. 1971, Climates <strong>of</strong> Australia and New Zealand (World Survey <strong>of</strong> Climatology Vol 13).Elsevier Publish<strong>in</strong>g Co., Amsterdam.Goda, Y. 1995, ‘<strong>Directional</strong> wave spectrum and its eng<strong>in</strong>eer<strong>in</strong>g applications’ <strong>in</strong> Advances <strong>in</strong><strong>Coastal</strong> and ocean eng<strong>in</strong>eer<strong>in</strong>g – Vol. 3, ed. P. Liu, World Scientific Publish<strong>in</strong>g Co, S<strong>in</strong>gapore,pp. 67-102.Hashimoto, N. 1995, ‘Analysis <strong>of</strong> <strong>the</strong> directional wave spectrum from field data’ <strong>in</strong> Advances <strong>in</strong><strong>Coastal</strong> and ocean eng<strong>in</strong>eer<strong>in</strong>g – Vol. 3, ed. P. Liu, World Scientific Publish<strong>in</strong>g Co, S<strong>in</strong>gapore,pp. 103-143.Horikawa, K. 1988, <strong>Nearshore</strong> Dynamics and <strong>Coastal</strong> Processes: Theory, Measurement andPredictive Models, University <strong>of</strong> Tokyo Press, Tokyo.Hsu, S.A. 1988, <strong>Coastal</strong> Meteorology, Academic Press, San Diego.InterOcean systems, <strong>in</strong>c. (ISI). 2004a, S4 Current Meter Family, [Onl<strong>in</strong>e], Available from: [11 May 2004].InterOcean systems, <strong>in</strong>c. (ISI). 2004b, S4 Current Meter Family – General Description, [Onl<strong>in</strong>e],Available from: [11 May 2004].InterOcean systems, <strong>in</strong>c. (ISI). 2004c, S4 Current Meter Family - Theory, [Onl<strong>in</strong>e], Availablefrom: [11 May 2004].References 75


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanInterOcean systems, <strong>in</strong>c. (ISI). 2004d, S4 Current Meter Family – Eng<strong>in</strong>eer<strong>in</strong>g Data &Specifications, [Onl<strong>in</strong>e], Available from: [11May 2004].Johnson, D. no date, DIWASP, a directional wave spectra toolbox for MATLAB ® : User Manual.Research Report WP-1601-DJ (V1.1), Centre for Water Research, University <strong>of</strong>Western Australia.Komar, P.D. 1998, Beach processes and Sedimentation – 2 nd Ed, Prentice Hall, New Jersey.Lemm, A. 1996, Offshore Wave Climate <strong>Perth</strong> Western Australia, Department <strong>of</strong> EnvironmentalEng<strong>in</strong>eer<strong>in</strong>g Honours Thesis, University <strong>of</strong> Western Australia.L<strong>in</strong>acre, E. & Hobbs, J. 1977, The Australian Climatic Environment, Wiley, Milton.Massel<strong>in</strong>k, G. & Pattiaratchi, C.B. 2001, ‘Seasonal changes <strong>in</strong> beach morphology along <strong>the</strong>sheltered coastl<strong>in</strong>e <strong>of</strong> <strong>Perth</strong>, Western Australia’, Mar<strong>in</strong>e Geology, vol. 172, pp. 243-263.Pattiaratchi, C., Hegge, B., Gould, J. & Elliot, I. 1997, ‘Impact <strong>of</strong> Sea Breeze Activity on<strong>Nearshore</strong> and Foreshore Processes <strong>in</strong> Southwestern Australia’, Cont<strong>in</strong>ental Shelf Research, vol.17, no. 13, pp. 1539-1560.Rose, E. 2001, The Dynamics <strong>of</strong> Flow Between Cockburn Sound and Sepia Depression,Department <strong>of</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g Honours Thesis, University <strong>of</strong> Western Australia.Silvester, R. & Hsu, J.R.C. 1993, <strong>Coastal</strong> Stabilization: <strong>in</strong>novative concepts, Prentice Hall, NewJersey.Tucker, M.J. & Pitt, E.G. 2001, <strong>Waves</strong> <strong>in</strong> Ocean Eng<strong>in</strong>eer<strong>in</strong>g, Elsevier Ocean Eng<strong>in</strong>eer<strong>in</strong>g BookSeries Volume 5, Elsevier Science Ltd, Oxford.U.S. Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE). 2002, <strong>Coastal</strong> Eng<strong>in</strong>eer<strong>in</strong>g Manual, Eng<strong>in</strong>eer Manual1110-2-1100, U.S. Army Corps <strong>of</strong> Eng<strong>in</strong>eers, Wash<strong>in</strong>gton, D.C. (<strong>in</strong> 6 volumes).76 References


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanWiegel, R.L. 1981, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> conference on <strong>Directional</strong> Wave Spectra Applications,American Society <strong>of</strong> Civil Eng<strong>in</strong>eers, California.References 77


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanAPPENDICESAPPENDIX A: “EMEP” FORMULATIONThe EMEP formulation is characterised by an exponential function with a power that ensure anon-negative value and allow <strong>the</strong> directional spectrum to fit to a wide range <strong>of</strong> energydistributions. It is <strong>the</strong> extension to <strong>the</strong> MEP formula, <strong>the</strong>refore a brief explanation for MEPwill be given. Hashimoto (1995).The formula presented <strong>in</strong> Equation 2-8 <strong>in</strong> Section 2.3.2 can be rewritten us<strong>in</strong>g <strong>the</strong> uppertriangular component <strong>of</strong> <strong>the</strong> Hermitian matrix !( f ) (Hashimoto 1995):2"( f ) = H ( f # ) G( # | f )!$i i, d#Equation A-1 for i = 1,…,N0where N is <strong>the</strong> number <strong>of</strong> equations,*Hi( f ,! ) = Hm( f ,!) Hn( f ,!)[ cos{ k( xmncos!+ ymns<strong>in</strong>!)} " i s<strong>in</strong>{ k( xmncos!+ ymns<strong>in</strong>!)}]/Wmn( f )!mn( f )and "i( f ) =S( f ) W ( f )mn[ W mn( f ) is a weight<strong>in</strong>g function to normalise and non-dimensionalise <strong>the</strong> errors <strong>in</strong> <strong>the</strong> crosspower spectra].The transfer function ( k,! )Hm# m " m( f ! ) h ( f ) cos ! s<strong>in</strong> !mH is usually expressed asm, = Equation A-2where h m( f ) and parameters !mand !mare derived from l<strong>in</strong>ear wave <strong>the</strong>ory.Rewrit<strong>in</strong>g Equation 2-8 with Equation A-2 for a three-quantity measurement taken at <strong>the</strong>same po<strong>in</strong>t:hm&mn( f )( f ) h ( f ) S( f )2"!(%f )= Gs<strong>in</strong>*n0$ m + $ n # m + # n| cos % % d%Equation A-3If <strong>the</strong> measurement provide <strong>the</strong> water surface elevation ! and <strong>the</strong> orthogonal components <strong>of</strong><strong>the</strong> slope at <strong>the</strong> surface !xand !y, Equation A-3 becomes:78 Appendices


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan2"(#f ) A (#)! G |id#= BiEquation A-4 for i = 0,…,40where <strong>the</strong> follow<strong>in</strong>g conditions apply:A (!) 1, A (! ) cos!, A (! ) s<strong>in</strong>!, A (! ) 2!, A (! ) 2!0=0 = 11=2=3= cosB , = Q ( f ) { kC ( f )}, Q ( f ) { kC ( f )}B 1 12/11{ }B2 13/1122= { C ( f )!C ( f )} k C ( f ) , = 2C( f ) k C ( f )B3 2222/114= s<strong>in</strong>= , Equation A-5{ }B4 22/11The directional spread<strong>in</strong>g function G ( | f )! <strong>in</strong> Equation A-4 can be regarded as a probabilitydensity function def<strong>in</strong>ed between 0 to 2π, which can be derived us<strong>in</strong>g a method called <strong>the</strong>maximum entropy approach also known as Jaynes’ pr<strong>in</strong>ciple.Entropy H is def<strong>in</strong>ed as2"$#(!| f ) ln G( ! f ) d!H = G|Equation A-60and <strong>the</strong>re exist a function G ( | f )ˆ ! to maximise H under <strong>the</strong> conditions def<strong>in</strong>ed by EquationA-5. This function is called <strong>the</strong> maximum entropy estimate and uses Lagrange’s unknownmultiplier method <strong>in</strong> which an auxiliary function with unknown parameters !iis def<strong>in</strong>ed as:2* 2*( %42*(L = ) ! G( + | f ) ln G( + | f ) d++ (,0 ) 1) ' 1 ) ! G( + | f ) d+$ + ",i ' Bi) ! G( + | f ) Ai( + ) d+&# = &# $%00i 10Equation A-7! LThe maximum entropy estimate is thus calculated by maximis<strong>in</strong>g L ie = 0 :! G4&( | f ) exp ' * ' * ( )" #!G ˆ ) = % 0 ( iA i) Equation A-8$ i=1The follow<strong>in</strong>g general expression <strong>of</strong> G ( | f )! is an extension <strong>of</strong> equation Equation A-8:( | f )G * =2)(exp&'N("{ a ( f ) cos n*+ b s<strong>in</strong> n*}%#$%d*$! exp&"{ an( f ) cos n*+ bn( f ) s<strong>in</strong> n*}#'0 n=1Nn=1nnEquation A-9Appendices 79


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanwhere a n( f ) and ( f )model.b nfor n = 1,…,N are unknown parameters and N is <strong>the</strong> order <strong>of</strong> <strong>the</strong>The application <strong>of</strong> equation Equation A-1 to <strong>the</strong> field data need to account for <strong>the</strong> errors <strong>in</strong> <strong>the</strong>cross-power spectra, and <strong>the</strong> follow<strong>in</strong>g formula def<strong>in</strong>es <strong>the</strong> errors:2*N(%!{,i) Hi( + )} exp'"( ancos n+) bns<strong>in</strong> n+) $ d+0 & n=1#i=Equation A-10 for i = 1,…, M* N(%! exp'"( ancos n++ bns<strong>in</strong> n+) $ d+& n=#-20 1with M be<strong>in</strong>g <strong>the</strong> number <strong>of</strong> rema<strong>in</strong><strong>in</strong>g <strong>in</strong>dependent equations follow<strong>in</strong>g <strong>the</strong> elim<strong>in</strong>ation <strong>of</strong>mean<strong>in</strong>gless equations (eg. from <strong>the</strong> zero co-spectrum). If <strong>the</strong> values <strong>of</strong> !iare assumed to be<strong>in</strong>dependent <strong>of</strong> each o<strong>the</strong>r, and <strong>the</strong> probability <strong>of</strong> <strong>the</strong>ir occurrence is expressed by a normaldistribution with zero mean and varianceˆ ! can be derived by m<strong>in</strong>imiz<strong>in</strong>g ! " 2 .2! , G ( | f )Due to <strong>the</strong> nonl<strong>in</strong>earity <strong>of</strong> Equation 8-10 with respect toan, bn, <strong>the</strong> equation is difficult tosolve, <strong>the</strong>refore Newton’s technique <strong>of</strong> l<strong>in</strong>earisation and iteration was utilised to obta<strong>in</strong> asolution. The solutiona ~ n, b ~ n:an, bncan be expressed <strong>in</strong> terms <strong>of</strong> an assumed approximate solutioniabnn= a~~= bnn+ a'+ b'nnEquation A-11wherea ~ n, b ~ n.a'nandb'nare <strong>the</strong> residuals between <strong>the</strong> solution an, bnand <strong>the</strong> approximate solutionSubstitut<strong>in</strong>g Equation A-11 <strong>in</strong>to Equation A-10 produces <strong>the</strong> follow<strong>in</strong>g l<strong>in</strong>earised equationwith respect toa'n,b'n:N!( a'nXi+ bnYi)n ,n ,# = ZEquation A-12 for i = 1,…,MiN , i"'n=180 Appendices


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanwhere2#{%H ( $ )} F ( $ )! i"i Nd$0ZN , i= Equation A-132#F d$!0N( $ )2)2)&#$ ( FN(*) cos n*d*({ +i' Hi( * )} FN(*) cos n*d*!= $ 00X'!n , iZN , i$2)2)!$ ( FN(*) d*({ +i' Hi( * )} FN(*) d*!$ % 00!"Equation A-142)2)&#$ ( FN(*) s<strong>in</strong> n*d*({ +i' Hi( * )} FN(*) s<strong>in</strong> n*d*!= $ 00Y'!n , iZN , i$2)2)!$ ( FN(*) d*({ +i' Hi( * )} FN(*) d*!$ % 00!"Equation A-15FN~( = %'nnEquation A-16$ n=1N&( ) exp ( a~cos n(+ b s<strong>in</strong> n()" #!Therefore, if an approximate solution ( a' ,nb'n) is <strong>in</strong>itially assumed, <strong>the</strong>n <strong>the</strong> iterative use <strong>of</strong>Equations A-12 to A-16 with Equation A-11 will yield <strong>the</strong> solution to Equation A-12. Thefollow<strong>in</strong>g Akaike’s Information Criterion (AIC) is <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> iterative calculationsˆ ! .to allow <strong>the</strong> m<strong>in</strong>imisation to yield a reasonable and smooth result <strong>of</strong> G ( | f )2( ln 2 ˆ + 1) + 2( 2 + 1)AIC = M "!N Equation A-17where2! ˆ is <strong>the</strong> estimated variance <strong>of</strong> !i.Appendices 81


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanAPPENDIX B: MATLAB ® SCRIPTSfunction [return] = <strong>in</strong>teranal(dataset, start, f<strong>in</strong>ish, EPMethod, GraphFileName, SavePolarGraphsp, …SaveSpectralPlot, w<strong>in</strong>ddat, spare)% Interval Analysis. This function processes <strong>the</strong> raw data to obta<strong>in</strong> both directional (via DIWASP) and non-% directional <strong>in</strong>formation. This function also allows <strong>the</strong> user to def<strong>in</strong>e <strong>the</strong> time <strong>in</strong>terval with<strong>in</strong> <strong>the</strong> data set for <strong>the</strong>% analysis to be carried out. Required data: suitable wave data file for use under DIWASP, w<strong>in</strong>d data with w<strong>in</strong>d% speed and direction <strong>in</strong>formation%% Inputs: dataset: <strong>the</strong> data file that has been loaded <strong>in</strong>to MATLAB% start: specify <strong>the</strong> start time <strong>of</strong> iterations. A value <strong>of</strong> zero ('0')% will start iteration from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> data% f<strong>in</strong>ish: specify <strong>the</strong> end time <strong>of</strong> iterations. A value <strong>of</strong> zero will end% iteration at <strong>the</strong> end <strong>of</strong> data file% EPMethod: specify <strong>the</strong> method to compute directional wave spectra% GraphfileName: <strong>the</strong> name <strong>of</strong> <strong>the</strong> f<strong>in</strong>al plot (w<strong>in</strong>d speed, wave height,% wave frequency and wave direction)% SavePolarGraphs: 0 to not run <strong>the</strong> burst polar plots under DIWASP% >= 1 to run plots for every burst% SaveSpectralPlot: 0 to not run <strong>the</strong> spectral energy plots for each burst% >= 1 to run plots for every burst% w<strong>in</strong>ddat: w<strong>in</strong>d data file% spare: The extra at <strong>the</strong> end <strong>of</strong> each burst (i.e. after 2048 data po<strong>in</strong>ts have been taken out% from each hourly burst. It is 352 for <strong>the</strong> data collected at Cables ASR and 112 for% City Beachclf% number <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> a burstnumpo<strong>in</strong>ts = 2048;%sample ratesrate = 2;% number <strong>of</strong> po<strong>in</strong>ts for fftnpo<strong>in</strong>ts = 1024;fnd= srate*(1:npo<strong>in</strong>ts/2)/npo<strong>in</strong>ts;% F<strong>in</strong>d <strong>the</strong> start po<strong>in</strong>t by b<strong>in</strong>ary search<strong>in</strong>gspan = size(dataset, 1);spo<strong>in</strong>t = 1;fpo<strong>in</strong>t = span;if (start == 0 & f<strong>in</strong>ish == 0)fpo<strong>in</strong>t = span;elsewhile (span > 1)span = floor(span / 2);mid = spo<strong>in</strong>t + span;if (dataset(mid, 1) < start)spo<strong>in</strong>t = mid;endend% F<strong>in</strong>d <strong>the</strong> f<strong>in</strong>al po<strong>in</strong>t by b<strong>in</strong>ary search<strong>in</strong>gspan = size(dataset, 1) - spo<strong>in</strong>t;fpo<strong>in</strong>t = spo<strong>in</strong>t;while (span > 1)span = floor(span / 2);mid = fpo<strong>in</strong>t + span;if (dataset(mid, 1) < f<strong>in</strong>ish)fpo<strong>in</strong>t = mid;endendendspo<strong>in</strong>tfpo<strong>in</strong>tdataset(spo<strong>in</strong>t,1)dataset(fpo<strong>in</strong>t,1)% F<strong>in</strong>d <strong>the</strong> number <strong>of</strong> times to iterate (number <strong>of</strong> bursts)82 Appendices


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanbursts = floor((fpo<strong>in</strong>t - spo<strong>in</strong>t) / (numpo<strong>in</strong>ts + spare));% We use this lateralpha = ceil(spo<strong>in</strong>t / (numpo<strong>in</strong>ts + spare));% arrays to store wave parameterswstat=ones(bursts,5);wdir=ones(bursts,361);wspect=ones(bursts,50);wavestata=ones(bursts,25);% Parameters for non-directional spectrad<strong>of</strong>=4;% required degrees <strong>of</strong> freedom for <strong>the</strong> spectratcut=0.005;% cut<strong>of</strong>f frequency for long term trendicut=0.05;% cut<strong>of</strong>f frequency for <strong>in</strong>fragravity wavesscut=0.15;% cut<strong>of</strong>f frequency for swell waveswcut=0.5;% cut<strong>of</strong>f frequency for w<strong>in</strong>d waves% Parameters for directional spectra <strong>in</strong> DIWASPID.fs = 2;ID.datatypes={'pres' 'velx' 'vely'};%ID.depth = mean(data(:,1))+ 0.2 ;ID.layout = [ 0 0 00 0 00.5 0.5 0.5] ;SM.freqs = [0.01:0.01:0.5]; % (<strong>the</strong>se are <strong>the</strong> frequency b<strong>in</strong>s for <strong>the</strong> output)SM.dirs = [-180:1:180]; %(<strong>the</strong>se are <strong>the</strong> directional b<strong>in</strong>s for <strong>the</strong> output)M.xaxisdir = 90 ;EP.dres = 180; % (this is <strong>the</strong> number <strong>of</strong> directions <strong>in</strong> <strong>the</strong> calculation)EP.nfft = 1024; %(this is <strong>the</strong> number <strong>of</strong> DFTs <strong>in</strong> <strong>the</strong> spectral estimation)EP.iter = 100; %(this is <strong>the</strong> number <strong>of</strong> algorithm iterations)EP.smooth = 'YES' ;EP.method = EPMethod;for i=1:bursts% def<strong>in</strong>e section <strong>of</strong> record to analysedata=zeros(numpo<strong>in</strong>ts,3);epo<strong>in</strong>t = spo<strong>in</strong>t + numpo<strong>in</strong>ts - 1;disp(' ');disp(['Analyz<strong>in</strong>g ', num2str(numpo<strong>in</strong>ts), ' po<strong>in</strong>ts from ', num2str(spo<strong>in</strong>t), ' to ', num2str(epo<strong>in</strong>t), ' burst ', num2str(i),' <strong>of</strong> ', num2str(bursts)])j=spo<strong>in</strong>t;% calculate velocity componentsfor k=1:numpo<strong>in</strong>tsdata(k,1)=dataset(j,4);dir=dataset(j,3)*pi/180.;data(k,2)=0.01*dataset(j,2)*s<strong>in</strong>(dir);data(k,3)=0.01*dataset(j,2)*cos(dir);j=j+1;end% calculate non-directional wave parameters:wavestata(i,2:10)=wavepar(data(:,1),srate,icut);wavestata(i,1)=mean(dataset(j-numpo<strong>in</strong>ts:j,1)); % wavepar=[c Tz Hrms Hmax Tmax Hs Ts H10 T10];[f,Pn(:,1),Pnstat]= ...autospec(data(:,1),srate,d<strong>of</strong>,tcut,icut,scut,wcut);wavestata(i,11:24)=Pnstat; % Pnstat=[Tpeak Tpswell Tpsea ...% Trend_Per Inf_Per Swell_Per W<strong>in</strong>d_Per Noise_Per ...% Hrms Trend_ht Inf_ht Swell_ht W<strong>in</strong>d_ht Noise_ht];%plott<strong>in</strong>g wave spectra for each burstif (SaveSpectralPlot > 0)Pnn = Pn(1:256,1);plot(f(1:256), Pnn);xlabel('Frequency (Hz)');ylabel('Spectral Density (m^2/Hz)');% axis([0, 0.5, 0, 5]);savefileb=['spectralburst',num2str(i)];coms=['pr<strong>in</strong>t -dbitmap ',savefileb];eval([coms]);end% calculate directional wave parametersID.depth = mean(data(:,1))+ 0.5 ;ID.data = data ;Appendices 83


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tan[SMout,EPout,H,Tp,DTp,Dp]=dirspec(ID,SM,EP,{'PLOTTYPE',2,'FILEOUT','sampleout.spec', 'MESSAGE', 0});wstat(i,1)=mean(dataset(j-numpo<strong>in</strong>ts:j,1));wstat(i,2)=H;wstat(i,3)=Tp;wstat(i,4)=DTp;wstat(i,5)=Dp;wspec=real(SMout.S);wdir(i,:)=mean(wspec);wspect(i,:)=mean(wspec');% This bit is for plott<strong>in</strong>g that polar graphif (SavePolarGraphsp > 0)savefilea=['burst',num2str(i), spr<strong>in</strong>tf('graph%d.bmp', i)];% coms=['pr<strong>in</strong>t -djpeg ',savefilea];coms=['pr<strong>in</strong>t -dbitmap ',savefilea];eval([coms])endspo<strong>in</strong>t = spo<strong>in</strong>t+numpo<strong>in</strong>ts+spare;enddirs1=SMout.dirs;ffreqs=SMout.freqs;xaxisdir=SMout.xaxisdir;dirs=xaxisdir*ones(size(dirs1))-dirs1;dirs=dirs+360*(dirs360);[dirs,order]=sort(dirs);clf%%%% Plott<strong>in</strong>g w<strong>in</strong>d data: %%%%H = subplot(411);w<strong>in</strong>ddir=(w<strong>in</strong>ddat(alpha:alpha + bursts - 1,1)+180)*pi/180;x=w<strong>in</strong>ddat(alpha:alpha + bursts - 1,2).*s<strong>in</strong>(w<strong>in</strong>ddir);y=w<strong>in</strong>ddat(alpha:alpha + bursts - 1,2).*cos(w<strong>in</strong>ddir);z = w<strong>in</strong>ddat(alpha:alpha + bursts - 1,2);% There’s a -1 <strong>in</strong> here for work<strong>in</strong>g with w<strong>in</strong>d for every hour (for plott<strong>in</strong>g purposes). An example shows <strong>the</strong> need% easier. Say we have an array [1 2 3 4 5 6]. The way we're calculat<strong>in</strong>g <strong>the</strong> end <strong>in</strong>dex is by say<strong>in</strong>g "we start at 1% and we do 6 bursts *for 1 % <strong>in</strong>clusive*". If we simply did 1 (<strong>the</strong> start) + 6 (number <strong>of</strong> bursts) we'd end up with 7% out <strong>of</strong> bounds. So we take 1 <strong>of</strong>f because <strong>the</strong> bursts count <strong>the</strong> start po<strong>in</strong>t.plot(z);axis manualholdfea<strong>the</strong>r(x,y); % w<strong>in</strong>d plothold <strong>of</strong>f;axis tightaxis([1, bursts, -1.2 * max(z), 1.2 * max(z)])span = bursts - 1;set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');% Try calculat<strong>in</strong>g xtick dynamically. Make it tick on every day.xtick = ones(1, f<strong>in</strong>ish - start + 1);for i = 1:1:f<strong>in</strong>ish - start + 1xtick(1, i+1) = 1 + span * i / (f<strong>in</strong>ish - start);endset(H, 'XTick', xtick);ylabel('W<strong>in</strong>d Speed (kph)');colorbar('vert');%%%%Plott<strong>in</strong>g spectral significant wave height %%%%H = subplot(412);plot(wstat(1:bursts,1),wstat(1:bursts,2))axis tight;span = wstat(bursts,1) - wstat(1,1);set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');% This makes <strong>the</strong> graph choose ugly grid l<strong>in</strong>es and tick po<strong>in</strong>ts but it's <strong>the</strong> only way to l<strong>in</strong>e up <strong>the</strong> grid l<strong>in</strong>es% with <strong>the</strong> w<strong>in</strong>d data which uses a different scale on X. When we're not us<strong>in</strong>g w<strong>in</strong>d data we let matlab choose% <strong>the</strong> tick po<strong>in</strong>ts.% Calculate <strong>the</strong> divisionsxtick(1, 1) = wstat(1, 1);84 Appendices


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean Tanfor i = 1:1:f<strong>in</strong>ish - start + 1xtick(1, i+1) = round(wstat(1,1) + span * i / (f<strong>in</strong>ish - start));endset(H, 'XTick', xtick);ylabel('Wave Height (m)');colorbar('vert');%%%% Plott<strong>in</strong>g wave spectra <strong>in</strong> a time series %%%%H = subplot(413);pcolor(wstat(1:bursts,1),ffreqs,wspect(1:bursts,:)')set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');set(H, 'XTick', xtick);shad<strong>in</strong>g('<strong>in</strong>terp')ylabel('Frequency (Hz)');colorbar('vert');%%%% Plott<strong>in</strong>g directional wave spectra %%%%H = subplot(414);pcolor(wstat(1:bursts,1),dirs,wdir(1:bursts,order)')set(H, 'XGrid', 'on');set(H, 'XTick', xtick);shad<strong>in</strong>g('<strong>in</strong>terp')xlabel('Time (day)');ylabel('Direction (degrees)');colorbar('vert');%%%% Sav<strong>in</strong>g current image %%%%savefileb = [GraphFileName, '.bmp'];coms=['pr<strong>in</strong>t -dbitmap ', savefileb];eval([coms]);%%%% Plott<strong>in</strong>g <strong>the</strong> swell and sea components <strong>of</strong> significant wave height and peak period %%%%%Significant wave heightH = subplot(411);plot(wstat(1:bursts,1),wstat(1:bursts,2),'k-');set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');ylabel('Significant Height, Hs (m)');axis tight%Swell and sea significant wave heightH = subplot(412);plot(wstat(1:bursts,1),wavestata(1:bursts,22), 'b-', wstat(1:bursts,1),wavestata(1:bursts,23), 'r-');legend('Swell Hs', 'Sea Hs');set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');ylabel('Swell & Sea Hs (m)');axis tight%Peak PeriodH = subplot(413);plot(wstat(1:bursts,1),wavestata(1:bursts,11),'k-');set(H, 'XGrid', 'on');set(H, 'XTickLabel', '');ylabel('Peak Period, Tp (s)');axis tight%Swell and sea peak periodH = subplot(414);plot(wstat(1:bursts,1),wavestata(1:bursts,12), 'b-', wstat(1:bursts,1),wavestata(1:bursts,13), 'r-');legend('Swell Tp', 'Sea Tp');set(H, 'XGrid', 'on');xlabel('Time (day)');ylabel('Swell & Sea Tp (s)');axis tight%Saves plotsavefilec=[GraphFileName, '_swellsea.bmp'];coms=['pr<strong>in</strong>t -dbitmap ',savefilec];eval([coms]);Appendices 85


<strong>Directional</strong> waves <strong>in</strong> <strong>the</strong> nearshore coastal region <strong>of</strong> <strong>Perth</strong>, Western AustraliaHuey Jean TanTrend_Per Inf_Per Swell_Per W<strong>in</strong>d_Per Noise_Per ...Hrms Trend_ht Inf_ht Swell_ht W<strong>in</strong>d_ht Noise_ht];function P = periodo(x, srate)% P=periodo(x, srate)% Calculate one-sided periodogram% INPUT: one column time series (x)% sample frequency <strong>in</strong> hertz (srate)%% The periodogram (P) is normalized so that (length <strong>of</strong> time series, n):% variance <strong>of</strong> <strong>the</strong> (detrended) time series = sum <strong>of</strong> <strong>the</strong> spectral estimates.% The b<strong>in</strong>width <strong>of</strong> <strong>the</strong> last (Nyquist) frequency b<strong>in</strong> is half that <strong>of</strong> <strong>the</strong> o<strong>the</strong>rs.%% ********************Parseval's Theorum******************************% Variance == sum(x.^2)/n = sum(P(:,2))*(srate/n)%% OUTPUT P=[Freq Density Phase]% Freq - Hz (midpo<strong>in</strong>t <strong>of</strong> frequency b<strong>in</strong>}% Density - units^2/Hz% Phase - radians% Authors: Bruce Hegge / Gerd Massel<strong>in</strong>k (17/01/95)% Department <strong>of</strong> Geography / Center for Water Research% University <strong>of</strong> Western Australia% Nedlands, 6009% bruce@gis.uwa.edu.au / massel<strong>in</strong>@cwr.uwa.edu.au% TWO-SIDED PERIODOGRAMn=length(x);% Number <strong>of</strong> data po<strong>in</strong>ts <strong>in</strong> time seriesXx = zeros(n,1);% Pre-allocate output vectorXx = abs(fft(x)).^2; % Power estimates <strong>of</strong> two-sided periodogramPhaXx = atan(imag(fft(x))./... % Phase estimates <strong>of</strong> two-sided periodogramreal(fft(x)));% ONE-SIDED PERIODOGRAMselect = [1;ones((n/2)-1,1).*2;1]; % Def<strong>in</strong>e first half <strong>of</strong> periodogramXx = Xx(1:(n/2)+1).*select; % Power estimates <strong>of</strong> one-sided periodogramXx = Xx/(srate*n);% Normaliz<strong>in</strong>g for Parseval's <strong>the</strong>orumfreq=(((0:n/2)'*srate)/n); % Frequency axis <strong>of</strong> one-sided periodogramP=[freq Xx PhaXx(1:(n/2)+1)];% One-sided periodogram% P=[freq, density, phase]P(1,:)=[];% Remove <strong>the</strong> DC valueAppendices 87

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!