13.07.2015 Views

modern variation and evolutionary change in the hominin eye orbit

modern variation and evolutionary change in the hominin eye orbit

modern variation and evolutionary change in the hominin eye orbit

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MODERN VARIATION AND EVOLUTIONARY CHANGE INTHE HOMININ EYE ORBITDISSERTATIONPresented <strong>in</strong> Partial Fulfillment of <strong>the</strong> Requirements for <strong>the</strong> Degree of Doctor ofPhilosophy <strong>in</strong> <strong>the</strong> Graduate School of The Ohio State UniversityByMichael P. Masters, M.A.* * * * *The Ohio State University2008Dissertation Committee:Dr. Jeffrey K. McKee, AdvisorDr. Scott McGrawDr. Paul ScuilliApproved by_________________________________AdvisorGraduate Program <strong>in</strong> Anthropology


I am extremely <strong>in</strong>debted to my family <strong>and</strong> friends for provid<strong>in</strong>g support <strong>in</strong>numerous forms, <strong>and</strong> above all to my mo<strong>the</strong>r L<strong>in</strong>da Grimes, <strong>and</strong> life partner Keira Arps,for offer<strong>in</strong>g a tremendous amount of patients, k<strong>in</strong>dness, love, <strong>and</strong> nourriture whilework<strong>in</strong>g on this <strong>the</strong>sis project. I am also grateful for <strong>the</strong> help of my committee membersDr. Paul Scuilli <strong>and</strong> Dr. Scott McGraw for provid<strong>in</strong>g <strong>in</strong>sight, feedback, <strong>and</strong> guidancethroughout this process, <strong>and</strong> most of all for <strong>the</strong> help of my advisor Dr. Jeff McKee whohas been <strong>in</strong>strumental <strong>in</strong> direct<strong>in</strong>g my course of study, provid<strong>in</strong>g opportunities forfieldwork <strong>and</strong> research, putt<strong>in</strong>g out fires <strong>and</strong> light<strong>in</strong>g o<strong>the</strong>rs where <strong>the</strong>y should be, <strong>and</strong> foralways provid<strong>in</strong>g motivation, encouragement, <strong>and</strong> a smile. Thank you all!v


VITAJanuary 2, 1978……………………………...Born – Orrville, Ohio1996-2000…………………………………...B.A. Anthropology, FrenchOhio University, A<strong>the</strong>ns, Ohio2001-2003…………………………………...M.A. AnthropologyThe Ohio State University, Columbus, Ohio2004-present………………………………... Ph.D. C<strong>and</strong>idate, AnthropologyThe Ohio State University, Columbus, Ohio2000-2001…………………………………...Research AssistantDepartment of Anthropology,Ohio University, A<strong>the</strong>ns, Ohio2002-2003…………………………………...Graduate Teach<strong>in</strong>g AssistantSchool of Journalism <strong>and</strong> Communications,The Ohio State University, Columbus, Ohio2002-2008…………………………………...Graduate Teach<strong>in</strong>g AssociateDepartment of Anthropology,The Ohio State University, Columbus, Ohio2004-2005………………………………….. Research AssistantSchool of Journalism <strong>and</strong> Communications,The Ohio State University, Columbus, Ohio2005-2006…………………………………...InstructorDepartment of Sociology <strong>and</strong> Anthropology,Ohio Dom<strong>in</strong>ican University, Columbus, Ohio2005-present………………………………...InstructorSchool of Social <strong>and</strong> Behavioral Sciences,Columbus State Community College,Columbus, Ohiovi


PUBLICATIONSMasters, M.P. (2008) Morphological <strong>variation</strong> <strong>in</strong> <strong>the</strong> <strong>eye</strong> <strong>orbit</strong> among <strong>modern</strong> humanpopulations. American Journal of Physical Anthropology. 135(46), 151.Stewart, J., Tatarek, N., Masters, M.P. (2002) From beh<strong>in</strong>d bars: new anthropometrichistory data from Ohio Penitentiary records. American Journal of Physical Anthropology.117(34), 148.FIELDS OF STUDYMajor Field:Specializations:AnthropologyPaleoanthropologyModern Human Craniofacial Variationvii


TABLE OF CONTENTSPageAbstract .….......................................................................….................................…… …iiAcknowledgments............................................................................……..............………ivVita..................................................................................................................…..…… ….viList of Tables……………………………………………………………………………..xiList of Figures……………………………………………………………….…….…….xiiiChapters:1 Introduction.........................................................................……..............………..11.1 Background……………………………………………………………………11.2 Evolution of <strong>the</strong> hom<strong>in</strong><strong>in</strong> bra<strong>in</strong>, neurocranium, <strong>and</strong> face……………………. 31.3 Structural <strong>and</strong> functional components of <strong>the</strong> skull……………………………41.4 Growth of <strong>the</strong> bra<strong>in</strong>, basicranium, <strong>and</strong> face………………………...………... 61.5 Growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>………………………………………………….. 91.6 Modern <strong>variation</strong> <strong>in</strong> human <strong>orbit</strong>al morphology……………………………..141.7 Evolution of cranial globularity & facial orthognathism <strong>in</strong> Homo sapiens….161.8 Post-Pleistocene craniofacial <strong>change</strong> <strong>in</strong> Homo sapiens……………………...191.9 Evolution of <strong>the</strong> <strong>eye</strong>, <strong>orbit</strong>, <strong>and</strong> reduced visual acuity <strong>in</strong> humans….………..222 Materials <strong>and</strong> Methods…………………………………………………………...292.1 Variables……………………………………………………………………..292.2 Measurement error. ………………………………………………………….343 Modern Human Variation <strong>in</strong> Orbital Morphology……………………………….383.1 Samples………………………………………………………………………383.2 Statistical analysis……………………………………………………………403.3 Results of univariate comparisons of <strong>orbit</strong>al variables among groups……....423.3.1 Inter<strong>orbit</strong>al breadth <strong>and</strong> bi<strong>orbit</strong>al breadth………………………….443.3.2 Index of <strong>orbit</strong>al breadth to <strong>orbit</strong>al height ………………………….443.3.3 Orbital height <strong>and</strong> <strong>orbit</strong>al breadth………………………………….463.3.4 Basion-superior <strong>orbit</strong> <strong>and</strong> basion-<strong>orbit</strong>ale………………………….47viii


3.3.5 Orbital depth……………………………………………………….483.3.6 Orbital frontation…………………………………………………..493.3.7 Orbital volume…………………………………………………… .503.4 Results of multivariate analyses of <strong>orbit</strong>al morphology among groups.…….523.4.1 Canonical discrim<strong>in</strong>ant function analysis.…………………………523.4.2 Mahalanobis’ distance analysis.……………………………………593.5 Population <strong>variation</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong> <strong>and</strong> broader craniofacial anatomy…..……..613.5.1 Canonical discrim<strong>in</strong>ant function analysis.…………………………613.5.2 Mahalanobis’ distance analysis.…………………………………...663.6 Summary……………………………………………………………………..674. Evolutionary Change <strong>in</strong> The Hom<strong>in</strong><strong>in</strong> Orbit………………….………………………704.1 Samples…………………………………………………………………….. ..704.2 Statistical analysis……………………………………………….…………. ..724.3 Evolutionary <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> face <strong>and</strong> cranium.……………………. ..744.4 Predicted <strong>change</strong>s <strong>in</strong> anatomical features of <strong>the</strong> <strong>orbit</strong>…………...…………...774.4.1 Summary of predictions <strong>and</strong> null hypo<strong>the</strong>ses………………….. ..794.5 Results of regression analyses: <strong>orbit</strong>al variables vs. craniofacial <strong>in</strong>dex……...794.6 Summary……………………………………………………………………..845. Evolutionary Change <strong>in</strong> <strong>the</strong> Hom<strong>in</strong><strong>in</strong> Orbit: Upper Paleolithic to Present………865.1 Samples…………………………………………………………………….. ..865.2 Variables…………………………………………………………………… ..875.3 Statistical analysis………………………………………………………….. ..885.4 Results of regression analyses: <strong>orbit</strong>al variables vs. time (years B.P.)…….. .895.5 Craniofacial shape <strong>change</strong> <strong>in</strong> Western Europe: Upper Paleolithic topresent……………………………………………………………………………975.6 Results of regression analyses: <strong>orbit</strong>al variables vs. craniofacial shape……1026. The Orbit, Eyeball, <strong>and</strong> Reduced Visual Acuity <strong>in</strong> Humans……………………1076.1 Samples <strong>and</strong> statistical analysis..……………………………………………1076.2 Results of test of no relationship between <strong>orbit</strong>/<strong>eye</strong> volume <strong>and</strong> SER…….. 1116.3 Sex differences <strong>in</strong> <strong>orbit</strong>/<strong>eye</strong> size <strong>in</strong> relation to SER……………………….. 1126.4 Sex differences <strong>in</strong> <strong>orbit</strong>al volume, <strong>eye</strong>ball volume, <strong>and</strong> SER………………1156.4.1 Orbital volume…………………………………………………… 1156.4.2 Eyeball volume…………………………………………………... 1186.4.3 Incidence <strong>and</strong> severity of myopia………………………………... 1216.5 Growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>………………………………………………... 123ix


7. Summary <strong>and</strong> Conclusion………….…………………………………………... 1287.1 Modern human <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphology…………………………… 1297.1.1 Orbital <strong>variation</strong> <strong>in</strong> relation to overall craniofacial variability…………... 1317.2 Long-term <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>……………………… 1337.3 Evolutionary <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>: Upper Paleolithic-present…….. 1367.4 An <strong>evolutionary</strong> perspective on <strong>the</strong> etiology of juvenile-onset myopia…… 141Bibliography…………………………………………………………………………… 150x


LIST OF TABLESTablePageTable 2.1: Cranial <strong>and</strong> facial measurements used <strong>in</strong> this study………………………….30Table 2.2: Orbital measurements used <strong>in</strong> this study…………………………..…………30Table 2.3: Indexes <strong>and</strong> size variables derived from l<strong>in</strong>ear measurements……………….31Table 2.4: Measurement error for craniofacial variables…..…………………………….36Table 2.5: Measurement error for <strong>orbit</strong>al variables ……………………………………..36Table 3.1: Samples used <strong>in</strong> analysis of <strong>orbit</strong>al <strong>variation</strong> among <strong>modern</strong> humans…….....40Table 3.2: Results of one-way ANOVA among African, Asian <strong>and</strong> European Groups…43Table 3.3: Pooled with<strong>in</strong>-groups correlation matrix…………………………..…………54Table 3.4: Eigenvalues <strong>and</strong> percent of variance expla<strong>in</strong>ed by each function……………54Table 3.5: Wilks' lambda <strong>and</strong> Chi-square tests for each discrim<strong>in</strong>ant function…………55Table 3.6: St<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficients…………………..56Table 3.7: Structure matrix…………………………..………………………..…………57Table 3.8: Functions at group centroids…………………………..……………………. 57Table 3.9: Mahalanobis’ distance between-groups comparisons………………………..59Table 3.10: D² between-groups comparisons (<strong>orbit</strong>al volume excluded)… …………….60Table 3.11: Tests of equality of group means…………………………..………………..62Table 3.12: Eigenvalues <strong>and</strong> percent of variance expla<strong>in</strong>ed by each function…………..63xi


Table 3.13: Wilks' lambda <strong>and</strong> Chi-square tests for each discrim<strong>in</strong>ant function………..63Table 3.14: St<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficients………………....64Table 3.15: Structure matrix…………………………..………………………..………..65Table 3.16: Functions at group centroids…………………………..…………………….65Table 3.17: D² between-groups comparisons (<strong>orbit</strong>al <strong>and</strong> o<strong>the</strong>r craniofacial traits)…….65Table 3.18: D² between-groups comparisons (<strong>orbit</strong>al traits only)….. …………………..65Table 4.1: Samples used <strong>in</strong> <strong>in</strong>vestigation of cranial, lower facial, <strong>and</strong> <strong>orbit</strong>al <strong>change</strong>….72Table 4.2: Descriptive statistics: relative cranial size <strong>and</strong> facial length among grades…77Table 4.3: Results of regression analyses, <strong>eye</strong> <strong>orbit</strong> variables vs. craniofacial <strong>in</strong>dex...…80Table 4.4: Regression analysis of <strong>orbit</strong>al variables vs. cranial size & facial projection...80Table 5.1: Samples of human groups from Western Europe: Upper Paleolithic–Present.87Table 5.2: Test of no <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology among European temporal groups..89Table 5.3. Regression analyses: <strong>orbit</strong>al variables vs. cranial <strong>in</strong>dex, upper facial <strong>in</strong>dex..102Table 6.1: Modern human groups used to <strong>in</strong>vestigate sex differences <strong>in</strong> <strong>orbit</strong> size..…..110Table 6.2: Intra-group sex differences <strong>in</strong> size-adjusted <strong>orbit</strong>al volume………………..118Table 6.3: Sex difference <strong>in</strong> <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex & percent of <strong>orbit</strong> filled by <strong>the</strong> <strong>eye</strong>….121xii


LIST OF FIGURESFigurePageFigure 3.1: Map of regional groups compris<strong>in</strong>g <strong>the</strong> African, European, <strong>and</strong>Asian samples…………………………………………………………………………….39Figure 3.2: Comparison of <strong>in</strong>ter<strong>orbit</strong>al breadth <strong>and</strong> bi<strong>orbit</strong>al breadth (<strong>in</strong> millimeters)….44Figure 3.3: Among-group comparison of <strong>orbit</strong>al <strong>in</strong>dex.. ………………………….…….45Figure 3.4: Among-group comparison of <strong>orbit</strong>al height, <strong>orbit</strong>al breadth (mm)..………...46Figure 3.5: Among-group comparison of basion-superior <strong>orbit</strong>, basion-<strong>orbit</strong>ale (mm)…48Figure 3.6: Among-group comparison of <strong>orbit</strong>al depth (mm)….………………………..49Figure 3.7: Among-group comparison of <strong>orbit</strong>al frontation (angle <strong>in</strong> degrees)………....50Figure 3.8: Among-group comparison of <strong>orbit</strong>al volume (<strong>in</strong> milliliters)……………..….51Figure 3.9: Plot of <strong>in</strong>dividuals <strong>and</strong> group centroids along each discrim<strong>in</strong>ant axis ……...58Figure 3.10: Plot of <strong>in</strong>dividuals <strong>and</strong> group centroids along each discrim<strong>in</strong>ant axis……..66Figure 4.1: Grade shift <strong>in</strong> relative cranial size <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage…………………..76Figure 4.2: Grade shift <strong>in</strong> relative facial prognathism <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage (mm)…….76Figure 4.3: Comparison of <strong>orbit</strong>al shape: Australopi<strong>the</strong>cus africanus vs. Homo sapiens.83Figure 4.4: Image of Sh<strong>and</strong><strong>in</strong>gdong (Upper Cave) - From Brown (1998-2005)………...84Figure 5.1: Comparison of <strong>in</strong>ter<strong>orbit</strong>al breadth among European groups……………….90Figure 5.2: Comparison of <strong>orbit</strong>al frontation among European groups….………………91Figure 5.3: Comparison of <strong>orbit</strong>al depth among chimpanzees <strong>and</strong> European groups…...93xiii


Figure 5.4: Change <strong>in</strong> <strong>orbit</strong>al breadth through <strong>the</strong> Upper Paleolithic.…………………...94Figure 5.5: Change <strong>in</strong> <strong>orbit</strong>al height through <strong>the</strong> Upper Paleolithic……………………..95Figure 5.6: Variation <strong>in</strong> <strong>the</strong> <strong>orbit</strong>al <strong>in</strong>dex among all temporal groups…………………..96Figure 5.7: Temporal <strong>change</strong> <strong>in</strong> facial projection s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic………….98Figure 5.8: Temporal <strong>change</strong> <strong>in</strong> cranial size s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic……………….99Figure 5.9: Change <strong>in</strong> cranial shape among Western European groups………………..100Figure 5.10: Change <strong>in</strong> facial shape among Western European groups………………..100Figure 5.11: Comparison of long-term <strong>and</strong> recent <strong>variation</strong> <strong>in</strong> facial shape…………....101Figure 6.1: Plot of spherical equivalent refraction (SER) vs. (log10)<strong>orbit</strong>/<strong>eye</strong>ball ……111Figure 6.2: Plot of SER vs. <strong>in</strong>dex of (log10)<strong>orbit</strong>/<strong>eye</strong>ball volume for males….……….113Figure 6.3: Plot of SER vs. <strong>in</strong>dex of (log10)<strong>orbit</strong>/<strong>eye</strong>ball volume for females………...113Figure 6.4: Comparison of sex differences <strong>in</strong> absolute <strong>orbit</strong>al volume <strong>in</strong> Ch<strong>in</strong>ese adults……..………………..………………………..………………………..…………….….116Figure 6.5: Intra-group sex differences <strong>in</strong> size-adjusted <strong>orbit</strong>al volume……………….117Figure 6.6: Comparison of absolute <strong>eye</strong>ball volume between male <strong>and</strong> female Ch<strong>in</strong>eseadults……………………………………………………………………………….…...119Figure 6.7: Comparison of relative <strong>eye</strong>ball volume between male & female Ch<strong>in</strong>eseadults..………………..………………………..………………………..………….…...120Figure 6.8: Comparison of <strong>orbit</strong>/<strong>eye</strong>ball volume between male <strong>and</strong> female Ch<strong>in</strong>eseadults…………………………..………………………..………………………..……..121Figure 6.9: Comparison of st<strong>and</strong>ard error of refraction between male <strong>and</strong> female Ch<strong>in</strong>eseadults..…………………..………………………..………………………..……..…..…122Figure 6.10: Comparison of <strong>eye</strong> <strong>orbit</strong> <strong>and</strong> cranial growth <strong>in</strong> African <strong>and</strong> Japanese samples…………………………..………………………..………………………..……………124xiv


CHAPTER 1INTRODUCTION1.1 BackgroundThrough years of travel <strong>and</strong> research, Charles Darw<strong>in</strong> was able to provide a broadaccount of how species adapt <strong>and</strong> <strong>change</strong> over time. Despite this <strong>in</strong>valuable contribution,<strong>the</strong> technology of his time could not provide <strong>the</strong> tools necessary to answer questionsrelat<strong>in</strong>g to <strong>the</strong> mechanisms of <strong>in</strong>heritance or <strong>the</strong> way <strong>in</strong> which complex structures couldarise through <strong>the</strong> process of evolution. “To suppose that <strong>the</strong> <strong>eye</strong> with all its <strong>in</strong>imitablecontrivances for adjust<strong>in</strong>g <strong>the</strong> focus to different distances, for admitt<strong>in</strong>g different amountsof light, <strong>and</strong> for <strong>the</strong> correction of spherical <strong>and</strong> chromatic aberration, could have beenformed by natural selection, seems, I freely confess, absurd <strong>in</strong> <strong>the</strong> highest degree”(Darw<strong>in</strong>, 1859 pg. 227).In <strong>the</strong> 150 years s<strong>in</strong>ce this assertion, it has become much clearer how <strong>in</strong>cremental<strong>change</strong>s result <strong>in</strong> highly complex systems such as <strong>the</strong> <strong>eye</strong>. This <strong>in</strong>strument for ga<strong>the</strong>r<strong>in</strong>gvisual <strong>in</strong>formation from <strong>the</strong> natural environment is so useful <strong>in</strong> fact that it is estimated tohave arisen <strong>in</strong>dependently 65 times throughout <strong>the</strong> long history of life (Salv<strong>in</strong>i-Plawen &Mayr, 1961; Weiss, 2002). Even with <strong>the</strong> many stages of <strong>evolutionary</strong> development <strong>and</strong>multitude of environments to which it has adapted, <strong>the</strong> general form of <strong>the</strong> <strong>eye</strong> acrossdifferent organisms is remarkably similar.1


Although <strong>the</strong>re is a great deal of commonality <strong>in</strong> <strong>the</strong> structure of <strong>the</strong> <strong>eye</strong> amongmembers of <strong>the</strong> animal k<strong>in</strong>gdom, research has shown that <strong>the</strong> appearance of <strong>the</strong> <strong>eye</strong> <strong>in</strong>humans is relatively unique <strong>in</strong> comparison with even closely related non-human primates.This uniqueness is <strong>in</strong>dicated by an exposed sclera that lacks any pigmentation, <strong>the</strong> mostexposed sclera relative to <strong>eye</strong> outl<strong>in</strong>e of any species, <strong>and</strong> an extraord<strong>in</strong>arily elongated <strong>eye</strong>outl<strong>in</strong>e <strong>in</strong> <strong>the</strong> horizontal direction (Kobayashi & Koshima, 2001).Kobayashi <strong>and</strong> Koshima (2001) suggest that <strong>the</strong> dist<strong>in</strong>ctiveness of <strong>the</strong> human <strong>eye</strong>is <strong>the</strong> result of social factors, such as <strong>the</strong> need to recognize <strong>the</strong> direction of an<strong>in</strong>dividual’s gaze. While this is important <strong>in</strong> humans <strong>and</strong> some non-human primates withsophisticated social systems, <strong>and</strong> particularly <strong>in</strong> <strong>the</strong> context of group hunt<strong>in</strong>g, o<strong>the</strong>rfactors such as ecological <strong>and</strong> morphological constra<strong>in</strong>ts have been proposed to expla<strong>in</strong><strong>the</strong> evolution of gaze perception <strong>and</strong> <strong>the</strong> unique <strong>eye</strong> of humans (Emery, 2000).Morphological <strong>change</strong>s primarily center around reduced facial projection <strong>and</strong> anoverall flatten<strong>in</strong>g of <strong>the</strong> face <strong>in</strong> hom<strong>in</strong>oids, which has acted to reduce <strong>the</strong> cues availablefrom <strong>the</strong> snout <strong>and</strong> head as a whole, result<strong>in</strong>g <strong>in</strong> more reliance on <strong>the</strong> <strong>eye</strong>s to <strong>in</strong>dicategaze direction (Emery, 2000). Among <strong>the</strong> hom<strong>in</strong>oids, humans are characterized by agreater degree of facial reduction that has occurred <strong>in</strong> association with markedencephalization dur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution. Increased cranial size <strong>in</strong> conjunction withreduced facial prognathism are important to consider <strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> unique form of<strong>the</strong> human <strong>eye</strong> as a result of chang<strong>in</strong>g reliance on certa<strong>in</strong> features to <strong>in</strong>dicate gaze, butalso due to <strong>the</strong> position of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong> amid <strong>the</strong>se coalesc<strong>in</strong>g neurocranial <strong>and</strong> lowerfacial features.2


1.2 Evolution of <strong>the</strong> hom<strong>in</strong><strong>in</strong> bra<strong>in</strong>, neurocranium, <strong>and</strong> faceIncreased bra<strong>in</strong> size <strong>in</strong> hom<strong>in</strong><strong>in</strong>s has contributed to a number of <strong>change</strong>s <strong>in</strong> o<strong>the</strong>rfeatures of <strong>the</strong> neurocranium <strong>and</strong> face, <strong>and</strong> is thought to have modified <strong>the</strong> size <strong>and</strong>location of various traits while also impact<strong>in</strong>g <strong>the</strong> functional efficiency of mastication <strong>and</strong>olfaction (Lieberman, Ross, Ravosa, 2000; Ravosa et al. 2000; Ross, 1995). The bra<strong>in</strong> isimmense <strong>in</strong> humans <strong>and</strong> has exp<strong>and</strong>ed considerably dur<strong>in</strong>g <strong>the</strong> last 2 million years,though enlargement of <strong>the</strong> various structures that make up <strong>the</strong> bra<strong>in</strong> have not <strong>in</strong>creasedisometrically dur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution (Rill<strong>in</strong>g, 2006).The neocortex is greatly exp<strong>and</strong>ed <strong>in</strong> primates relative to most o<strong>the</strong>r mammals, somuch <strong>in</strong> fact that it accounts for 80% of total bra<strong>in</strong> mass <strong>in</strong> anthropoids (Aiello & Dean,1990; Kornack & Rakic, 2001). Dur<strong>in</strong>g human evolution <strong>the</strong> neocortex has grown tooccupy an even larger share of <strong>the</strong> bra<strong>in</strong>, with a disproportionate enlargement of <strong>the</strong>temporal <strong>and</strong> prefrontal association cortices, an <strong>in</strong>crease <strong>in</strong> connectivity with<strong>in</strong> <strong>and</strong>among cerebral cortical association areas <strong>in</strong>volved <strong>in</strong> cognition, as well as an <strong>in</strong>creasedgyrification of <strong>the</strong> cortical surface (Rill<strong>in</strong>g, 2006). This gyrification has primarilyoccurred <strong>in</strong> <strong>the</strong> prefrontal cortex <strong>and</strong> is <strong>the</strong> result of bend<strong>in</strong>g <strong>and</strong> fold<strong>in</strong>g of this outermostlayer as it scales with positive allometry on bra<strong>in</strong> volume with<strong>in</strong> <strong>the</strong> conf<strong>in</strong>es of aspherically shaped skull (Rill<strong>in</strong>g, 2006).The frontal lobes of <strong>the</strong> neocortex have exp<strong>and</strong>ed considerably dur<strong>in</strong>g humanevolution <strong>and</strong> have been widely studied as a result of <strong>the</strong>ir assumed role <strong>in</strong> languagedevelopment <strong>and</strong> higher cognition (Wu et al. 2007). In early hom<strong>in</strong><strong>in</strong>s <strong>the</strong> fontal lobesare relatively flat <strong>and</strong> narrow, but have become taller, wider, <strong>and</strong> more rounded over <strong>the</strong>course of human evolution (Bruner, 2003). This area of <strong>the</strong> bra<strong>in</strong> has exp<strong>and</strong>ed to <strong>the</strong>3


extent that <strong>in</strong> <strong>modern</strong> humans it sits directly over <strong>the</strong> <strong>eye</strong>s <strong>and</strong> has filled <strong>in</strong> <strong>the</strong> spacepreviously occupied by <strong>the</strong> brow ridge <strong>in</strong> ancestors of <strong>modern</strong> humans (Moss & Young,1960). This cerebral expansion, <strong>and</strong> <strong>in</strong> particular a more anterior position of <strong>the</strong> frontallobes, has repositioned <strong>the</strong> bra<strong>in</strong> atop <strong>the</strong> <strong>eye</strong>s <strong>and</strong> created a situation <strong>in</strong> which twodifferent functional systems (<strong>the</strong> <strong>eye</strong>s <strong>and</strong> bra<strong>in</strong>) both make use of <strong>the</strong> frontal bone.Marked encephalization throughout hom<strong>in</strong><strong>in</strong> evolution is <strong>the</strong>refore expected to <strong>in</strong>fluence<strong>the</strong> relative size <strong>and</strong> position of <strong>the</strong>se two features, possibly result<strong>in</strong>g <strong>in</strong> decreasedfunction of <strong>the</strong> visual system.In chapter 4 of this <strong>the</strong>sis, relationships among <strong>the</strong> cranium, <strong>orbit</strong>s, <strong>and</strong> lower faceare <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> context of hom<strong>in</strong><strong>in</strong> <strong>evolutionary</strong> trends of <strong>in</strong>creased cranial size<strong>and</strong> decreased facial prognathism. It is proposed that <strong>orbit</strong>al morphology varies <strong>in</strong>predictable ways <strong>in</strong> relation to <strong>the</strong>se long-term craniofacial <strong>change</strong>s, which have resulted<strong>in</strong> a number of unique characteristics of <strong>the</strong> skull <strong>in</strong> <strong>modern</strong> humans. The results of thisanalysis <strong>and</strong> those from chapter 5, which <strong>in</strong>vestigates more recent <strong>evolutionary</strong> <strong>change</strong>s<strong>in</strong> <strong>orbit</strong>al morphology s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Western Europe, will be assessed <strong>in</strong><strong>the</strong> context of how <strong>the</strong> <strong>eye</strong> <strong>and</strong> surround<strong>in</strong>g soft tissue may be impacted by temporalmodification to <strong>the</strong> bony <strong>orbit</strong> that circumscribes this functional system.1.3 Structural <strong>and</strong> functional components of <strong>the</strong> skullMost <strong>change</strong>s <strong>in</strong> craniofacial form dur<strong>in</strong>g ontogeny <strong>and</strong> throughout hom<strong>in</strong><strong>in</strong>evolution are best expla<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of functional craniology, which is an approachto underst<strong>and</strong><strong>in</strong>g <strong>the</strong> skull as a matrix of hard <strong>and</strong> soft tissues arranged <strong>in</strong> a physicalnetwork, <strong>in</strong> which <strong>the</strong> f<strong>in</strong>al form is a product of forces <strong>and</strong> constra<strong>in</strong>ts among <strong>the</strong>se4


structural <strong>and</strong> functional components <strong>in</strong>teract<strong>in</strong>g dur<strong>in</strong>g morphogenesis (Moss & Young,1960). These cranial constituents are <strong>in</strong>terrelated by way of tensions <strong>and</strong> pressuresbetween connective tissues, muscles, sutures, <strong>the</strong> remodel<strong>in</strong>g <strong>and</strong> displacement of bone,<strong>and</strong> perhaps most importantly, expansion of organs such as <strong>the</strong> bra<strong>in</strong> (Bruner, 2007).Encephalization with<strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage has resulted <strong>in</strong> a number of <strong>change</strong>s<strong>in</strong> <strong>the</strong> cranial vault, cranial base, <strong>and</strong> face, which comprise <strong>the</strong> major structuralcomponents of <strong>the</strong> skull. Relative <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> size dur<strong>in</strong>g human evolution hasresulted <strong>in</strong> <strong>change</strong>s to underly<strong>in</strong>g structures, <strong>and</strong> can be understood <strong>in</strong> <strong>the</strong> framework ofheterochrony (<strong>change</strong>s <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g or rate of growth <strong>and</strong> development), modularity(relationship among structural units <strong>in</strong> which <strong>variation</strong> <strong>in</strong> each component is dependentupon <strong>variation</strong> <strong>in</strong> o<strong>the</strong>rs), <strong>and</strong> allometry (shape <strong>change</strong> <strong>in</strong> relation to size) (ibid.).It is also important to consider that adaptive features do not always result from<strong>the</strong>se processes, but ra<strong>the</strong>r “dur<strong>in</strong>g evolution, a selective pressure determ<strong>in</strong><strong>in</strong>g <strong>change</strong>s <strong>in</strong>one of <strong>the</strong>se components (size or shape) <strong>in</strong>volves secondary <strong>change</strong>s <strong>in</strong> <strong>the</strong> o<strong>the</strong>r. Suchsecondary <strong>change</strong>s are not necessarily adaptive but may be merely consequences of <strong>the</strong>adjustment with<strong>in</strong> <strong>the</strong> structural system.” (Bruner, 2007 p. 1360). Selection favor<strong>in</strong>g<strong>in</strong>dividuals with greater cognitive ability result<strong>in</strong>g from <strong>the</strong> expansion of underly<strong>in</strong>gcerebral components could result <strong>in</strong> a consequent dim<strong>in</strong>ishment of <strong>the</strong> structurally<strong>in</strong>tegrated visual matrix.Change <strong>in</strong> neighbor<strong>in</strong>g features that are part of <strong>the</strong> functional <strong>and</strong> structuralmatrix of <strong>the</strong> skull <strong>in</strong>teract dur<strong>in</strong>g ontogeny <strong>and</strong> are viewed <strong>in</strong> association with <strong>the</strong>counterpart pr<strong>in</strong>ciple of craniofacial growth, which states that “<strong>the</strong> growth of any givenfacial or cranial part relates specifically to o<strong>the</strong>r structural <strong>and</strong> geometric “counterparts”5


<strong>in</strong> <strong>the</strong> face <strong>and</strong> cranium” (Enlow & Hans, 1996 p. 40). This pr<strong>in</strong>ciple has been supportedby recent research show<strong>in</strong>g that craniofacial levels of skull development among <strong>the</strong>neurobasicranial complex, ethmomaxillary complex, <strong>and</strong> m<strong>and</strong>ible follow asupero<strong>in</strong>ferior growth gradient <strong>in</strong> which <strong>the</strong> first structure to atta<strong>in</strong> adult size is <strong>the</strong>neurocranium, followed by <strong>the</strong> midl<strong>in</strong>e cranial base, <strong>the</strong> lateral cranial floor, <strong>and</strong> lastly<strong>the</strong> ethmomaxillary complex <strong>and</strong> m<strong>and</strong>ible, which reach adult size near <strong>the</strong> age of 16years (Bastir, Rosas, O’Higg<strong>in</strong>s, 2006). Early growth of <strong>the</strong> frontal <strong>and</strong> temporal lobesalong with <strong>the</strong> anterior <strong>and</strong> middle cranial fossae <strong>in</strong> which <strong>the</strong>y sit, are important <strong>in</strong>determ<strong>in</strong><strong>in</strong>g later growth of <strong>the</strong> face (Bastir & Rosas, 2006; Enlow & Hans, 1996; Kohnet al. 1993; Lieberman, 1998; Lieberman, Ross, Ravosa, 2000; Ross, 1995; Lieberman,Pearson, Mowbray, 2000; Martone et al. 1992; Zollikofer & Ponce de León, 2002).1.4 Growth of <strong>the</strong> bra<strong>in</strong>, basicranium, <strong>and</strong> faceEnlargement of <strong>the</strong> bra<strong>in</strong> dur<strong>in</strong>g ontogeny causes <strong>the</strong> basicranium to exp<strong>and</strong>anteriorly <strong>and</strong> laterally, while <strong>in</strong>itiat<strong>in</strong>g <strong>in</strong>ferior movement of <strong>the</strong> cranial floor byexocranial deposition <strong>and</strong> endocranial resorption (Enlow & Hans, 1996; Lieberman,Ross, Ravosa 2000). Inferior drift <strong>in</strong> <strong>the</strong> posterior cranial fossa also helps move <strong>the</strong>cranial floor more below <strong>the</strong> middle cranial fossa, thus flex<strong>in</strong>g <strong>the</strong> basicranium as awhole (Lieberman, Ross, Ravosa 2000).The cranial base plays a vital role <strong>in</strong> creat<strong>in</strong>g <strong>the</strong> shape of an <strong>in</strong>dividual’s face <strong>and</strong>cranium throughout growth <strong>and</strong> development <strong>and</strong> contributes to differences <strong>in</strong>craniofacial form among <strong>modern</strong> human populations (Enlow & Hans, 1996; Kuroe,Rosas, Molleson, 2004; Lieberman, Ross, Ravosa, 2000; Lieberman, Pearson, Mowbray,6


2000). The basicranium provides a platform on which <strong>the</strong> bra<strong>in</strong> can sit <strong>and</strong> from which<strong>the</strong> face can grow, <strong>and</strong> <strong>in</strong> one way or ano<strong>the</strong>r connects <strong>the</strong> cranium with <strong>the</strong> rest of <strong>the</strong>body. For example, this feature articulates with <strong>the</strong> m<strong>and</strong>ible <strong>and</strong> vertebral column,provides a channel through which <strong>the</strong> neural <strong>and</strong> circulatory connections of <strong>the</strong> face,neck, <strong>and</strong> bra<strong>in</strong> can pass, forms <strong>the</strong> roof of <strong>the</strong> nasopharynx, while hous<strong>in</strong>g <strong>and</strong>connect<strong>in</strong>g all of <strong>the</strong> sense organs <strong>in</strong> <strong>the</strong> bra<strong>in</strong> (Kuroe, Rosas, Molleson, 2004;Lieberman, Ross, Ravosa, 2000).In humans, <strong>the</strong> cranial base appears as a cartilag<strong>in</strong>ous platform called <strong>the</strong>chondrocranium at about 2 months of embryonic development. At seven weeks it isseparated by <strong>the</strong> mid-sphenoid synchondrosis <strong>in</strong>to <strong>the</strong> prechordal (anterior) <strong>and</strong>postchordal (posterior) portions, which grow relatively <strong>in</strong>dependently of each o<strong>the</strong>r,possibly as a result of <strong>the</strong>ir different embryonic orig<strong>in</strong>s <strong>and</strong>/or different spatial <strong>and</strong>functional roles (Lieberman, Ross, Ravosa, 2000).The center of <strong>the</strong> basicranium near <strong>the</strong> sphenoid body reaches adult size <strong>and</strong>shape earlier than <strong>the</strong> surround<strong>in</strong>g regions, while <strong>the</strong> anterior, middle, <strong>and</strong> posteriorcranial fossae grow slightly longer <strong>and</strong> more or less <strong>in</strong>dependently of each o<strong>the</strong>r (Bastir& Rosas, 2005; Lieberman, Pearson, Mowbray, 2000; Lieberman, Ross, Ravosa, 2000),with each <strong>in</strong>volved <strong>in</strong> a complex series of growth events that ma<strong>in</strong>ly <strong>in</strong>volvedisplacement <strong>and</strong> drift (Lieberman, Ross, Ravosa, 2000).Despite <strong>the</strong> relative <strong>in</strong>dependence among dimensions of <strong>the</strong> cranial base, its size,shape, <strong>and</strong> degree of flexion play an important role <strong>in</strong> neurocranial <strong>and</strong> facial growth(Enlow & Hans, 1996; Kohn et al. 1993; Lieberman, 1998; Lieberman, Ross, Ravosa,2000; Ross, 1995; Ross & Ravosa, 1993), <strong>and</strong> because <strong>the</strong> cranial base acts as a bridge7


etween <strong>the</strong> neurocranium <strong>and</strong> face, upon which <strong>the</strong> latter is constructed, <strong>variation</strong> <strong>in</strong> thisfeature also corresponds to <strong>variation</strong> <strong>in</strong> facial form among <strong>modern</strong> human groups (Enlow& Hans, 1996; Kuroe, Rosas, Molleson, 2004).For example, an open angled basicranium results <strong>in</strong> a face that protrudesanteriorly, is vertically elongated, <strong>and</strong> is associated with a dolichocephalic headform(Enlow & Hans, 1996). In contrast, a smaller basicranial angle denotes a shorteranteroposterior midface <strong>and</strong> a wider nasomaxillary complex, which are characteristic of<strong>the</strong> brachycephalic headform. The basicranium also plays a major role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong>shape <strong>and</strong> position of <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>s, which become more frontated, convergent, <strong>and</strong>ventrally flexed as <strong>the</strong> cranial base angle decreases (Cartmill, 1970; Ross, 1995; Ross &Ravosa, 1993), <strong>in</strong> association with an <strong>in</strong>crease <strong>in</strong> relative bra<strong>in</strong> size (Lieberman, Ross,Ravosa, 2000; Strait & Ross, 1999).Because <strong>the</strong> bra<strong>in</strong> <strong>and</strong> cranium are <strong>the</strong> first to grow, serv<strong>in</strong>g as a template onwhich <strong>the</strong> rest of <strong>the</strong> face develops (Enlow & Hans, 1996), cont<strong>in</strong>ual selection for a largerbra<strong>in</strong> throughout hom<strong>in</strong><strong>in</strong> evolution has shifted <strong>the</strong> tim<strong>in</strong>g <strong>and</strong> shortened <strong>the</strong> duration ofgrowth <strong>in</strong> <strong>the</strong> mid <strong>and</strong> lower face. This has resulted <strong>in</strong> a worldwide <strong>and</strong> accelerat<strong>in</strong>gtrend toward orthognathism, which has co<strong>in</strong>cided with a shift toward cranial globularity<strong>in</strong> recent human evolution (Brown 1987; Brown & Maeda, 2004; Carlson, 1976; Carlson& Van Gerven, 1977; Hanihara, 1994, 2000; Henneberg & Steyn, 1993; Lahr & Wright,1996; Wu et al. 2007). As part of this research, samples of chimpanzee <strong>and</strong> past hom<strong>in</strong><strong>in</strong>fossil species with different grades of encephalization <strong>and</strong> facial prognathism are used to<strong>in</strong>vestigate how <strong>eye</strong> <strong>orbit</strong> morphology varies <strong>in</strong> association with <strong>the</strong>se trends of cranialexpansion <strong>and</strong> facial retraction dur<strong>in</strong>g human evolution.8


1.5 Growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>In humans, <strong>the</strong> frontal lobes of <strong>the</strong> cerebrum exp<strong>and</strong> forward <strong>and</strong> downwardthrough childhood, dur<strong>in</strong>g which time <strong>the</strong> <strong>orbit</strong>al roof remodels <strong>in</strong>feriorly <strong>and</strong> anteriorlyby resorption of bone on <strong>the</strong> endocranial surface <strong>and</strong> deposition on <strong>the</strong> exocranial surfacedirectly above <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> extraocular tissues (Enlow & Hans, 1996). After amajority of bra<strong>in</strong> growth is complete, <strong>the</strong> nasomaxillary complex beg<strong>in</strong>s to move by wayof primary displacement anteriorly <strong>and</strong> <strong>in</strong>feriorly away from <strong>the</strong> neurocranium, whilebone is concomitantly deposited on its superior surface (ibid.).This is an important time dur<strong>in</strong>g ontogeny, <strong>and</strong> an important region of <strong>the</strong> skullconcern<strong>in</strong>g relationships among <strong>the</strong> bra<strong>in</strong>, <strong>orbit</strong>, <strong>eye</strong>, <strong>and</strong> extraocular tissues, as <strong>change</strong>s<strong>in</strong> <strong>the</strong> tim<strong>in</strong>g or rate of growth <strong>in</strong> <strong>the</strong>se regions may have implications for <strong>the</strong> properdevelopment <strong>and</strong> function<strong>in</strong>g of <strong>the</strong> <strong>eye</strong>. This is of particular concern given thatendocranial resorption <strong>and</strong> exocranial deposition of bone on <strong>the</strong> superior surface of <strong>the</strong><strong>eye</strong> <strong>orbit</strong> may conflict with growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissue with<strong>in</strong> it, particularlygiven that <strong>the</strong> <strong>eye</strong> grows <strong>in</strong>dependently of <strong>the</strong> <strong>orbit</strong>.Although <strong>the</strong> <strong>eye</strong>ball lies predom<strong>in</strong>antly with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>, it is not considered todirectly <strong>in</strong>fluence its size. “In consider<strong>in</strong>g all <strong>the</strong> evidence produced it appears that <strong>the</strong>size of <strong>the</strong> <strong>orbit</strong> is dependent upon <strong>the</strong> size of <strong>the</strong> <strong>eye</strong>ball <strong>in</strong> only <strong>the</strong> most general way<strong>and</strong> that <strong>the</strong> two structures can vary <strong>in</strong> size <strong>in</strong>dependently to a surpris<strong>in</strong>g extent” (Schultz,1940 pg. 408). Schultz’s early analysis is one of few exam<strong>in</strong><strong>in</strong>g how <strong>the</strong> <strong>eye</strong>ball varies <strong>in</strong>association with <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>, <strong>and</strong> <strong>in</strong>cludes an <strong>in</strong>vestigation of this relationship <strong>in</strong> smallsamples of extant non-human primates, <strong>and</strong> <strong>in</strong> male <strong>and</strong> female adult <strong>and</strong> subadulthumans.9


Schultz (1940) observes a negative allometric relationship between <strong>the</strong> <strong>eye</strong>ball<strong>and</strong> <strong>orbit</strong> with respect to body weight, <strong>in</strong> which <strong>orbit</strong>al volume <strong>in</strong>creases more rapidlythan <strong>eye</strong>ball volume as body weight <strong>in</strong>creases. This shows that larger bodied primatespossess a relatively small <strong>eye</strong>ball <strong>in</strong> a large <strong>orbit</strong>, while smaller primates have <strong>eye</strong>s thatoccupy a larger percentage of <strong>the</strong> <strong>orbit</strong>. This relationship is also found to exist <strong>in</strong> humanswith different body sizes, as larger bodied males possess larger <strong>orbit</strong>s relative to <strong>eye</strong> size,<strong>and</strong> females with smaller bodies have <strong>eye</strong>s that occupy a larger proportion of <strong>the</strong> <strong>orbit</strong>(Schultz, 1940). In fact, among all primates <strong>eye</strong>ball size relative to both body size <strong>and</strong><strong>orbit</strong> size is always greater <strong>in</strong> females than <strong>in</strong> males of <strong>the</strong> same species (ibid.).Growth of <strong>the</strong> <strong>eye</strong> occurs more slowly <strong>in</strong> comparison to that of <strong>the</strong> <strong>orbit</strong> dur<strong>in</strong>gpostnatal ontogeny <strong>in</strong> humans, result<strong>in</strong>g <strong>in</strong> a larger relative size of <strong>the</strong> <strong>eye</strong> <strong>orbit</strong> <strong>in</strong><strong>in</strong>dividuals with larger bodies, though dur<strong>in</strong>g prenatal growth <strong>and</strong> until about <strong>the</strong> 6 thmonth <strong>in</strong> utero <strong>the</strong> <strong>eye</strong>s <strong>and</strong> <strong>orbit</strong>s grow isometrically (Dixon, Hoyte, Ronn<strong>in</strong>g, 1997).Follow<strong>in</strong>g this <strong>in</strong>itial period of associated growth dur<strong>in</strong>g <strong>the</strong> first 6 months <strong>in</strong> utero,<strong>eye</strong>ball growth actually outpaces <strong>orbit</strong>al growth to <strong>the</strong> extent that half of <strong>the</strong> globeprotrudes out of <strong>the</strong> <strong>orbit</strong>. This pattern <strong>the</strong>n reverses <strong>and</strong> for <strong>the</strong> next five years <strong>the</strong> <strong>eye</strong><strong>orbit</strong> grows at a faster rate than <strong>the</strong> <strong>eye</strong>ball (Dixon, Hoyte, Ronn<strong>in</strong>g, 1997).Studies of <strong>in</strong>terspecific allometry show that this reversal <strong>in</strong> <strong>the</strong> pattern of <strong>eye</strong>ball<strong>and</strong> <strong>orbit</strong>al growth is similar <strong>in</strong> <strong>the</strong> chimpanzee, where<strong>in</strong> <strong>the</strong> <strong>eye</strong>ball fills 92% of <strong>the</strong> <strong>orbit</strong><strong>in</strong> <strong>the</strong> late fetal stage, but only 24% <strong>in</strong> adulthood. In humans by contrast, <strong>the</strong> <strong>eye</strong>balloccupies 75% of <strong>the</strong> <strong>orbit</strong> dur<strong>in</strong>g <strong>the</strong> same late fetal stage, <strong>and</strong> approximately 32% <strong>in</strong>adulthood (Dixon, Hoyte, Ronn<strong>in</strong>g, 1997, Schultz, 1940). The larger percentage of <strong>the</strong><strong>orbit</strong> that <strong>the</strong> <strong>eye</strong>ball occupies <strong>in</strong> adult humans compared to chimpanzees <strong>and</strong> primates as10


a whole, is due <strong>in</strong> part to <strong>the</strong> larger absolute volume of <strong>the</strong> human <strong>eye</strong>ball, as <strong>orbit</strong>alvolume is approximately <strong>the</strong> same <strong>in</strong> both chimpanzees <strong>and</strong> humans (Schultz, 1940).Because <strong>the</strong> <strong>eye</strong>ball does not dictate growth of <strong>the</strong> <strong>orbit</strong>, it is important tounderst<strong>and</strong> how each develops <strong>in</strong>dependently throughout life, <strong>and</strong> particularly <strong>in</strong> <strong>the</strong>context of neighbor<strong>in</strong>g structural <strong>and</strong> functional features of <strong>the</strong> skull. The <strong>eye</strong>ball hasbeen shown to grow most rapidly dur<strong>in</strong>g <strong>the</strong> first years of life, with a majority of thisgrowth occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> anterior segment (Todd et al. 1940; Weale, 1982). It <strong>the</strong>nexp<strong>and</strong>s more slowly through later life with <strong>the</strong> exception of a short spurt between 10-12,<strong>and</strong> ano<strong>the</strong>r <strong>in</strong>creased rate of growth from <strong>the</strong> age of fourteen until <strong>the</strong> early twenties(Salzmann, 1912; Weiss, 1897). In contrast to <strong>the</strong> early growth phase that takes placeprimarily <strong>in</strong> <strong>the</strong> anterior segment of <strong>the</strong> <strong>eye</strong>, dur<strong>in</strong>g this later stage of development amajority of enlargement occurs <strong>in</strong> <strong>the</strong> posterior segment of <strong>the</strong> <strong>eye</strong>ball (Salzmann, 1912;Weiss, 1897; Weale, 1982).The <strong>orbit</strong>s also complete most of <strong>the</strong>ir total growth relatively early <strong>in</strong> life,reach<strong>in</strong>g 80% of adult size at age 3, <strong>and</strong> 94% of adult size at age 7 <strong>in</strong> humans (Scott,1953). The rema<strong>in</strong><strong>in</strong>g 6 percent of growth occurs dur<strong>in</strong>g childhood <strong>and</strong> is primarilyrestricted to <strong>the</strong> transverse plane, or <strong>in</strong> an equatorial orientation relative to <strong>the</strong> <strong>eye</strong>ball(Waitzman et al. 1992). Later growth of this region demonstrates <strong>the</strong> importance of<strong>in</strong>vestigat<strong>in</strong>g each <strong>orbit</strong>al area separately, as different segments develop somewhat<strong>in</strong>dependently of each o<strong>the</strong>r dur<strong>in</strong>g ontogeny.The lateral marg<strong>in</strong> of <strong>the</strong> <strong>orbit</strong> is primarily made up of <strong>the</strong> greater w<strong>in</strong>g of <strong>the</strong>sphenoid <strong>and</strong> part of <strong>the</strong> zygomatic bone, which toge<strong>the</strong>r <strong>in</strong>crease <strong>in</strong> area dur<strong>in</strong>g growthspurts around age two <strong>and</strong> <strong>the</strong>n aga<strong>in</strong> dur<strong>in</strong>g separate spurts between ages 8 <strong>and</strong> 11 <strong>in</strong> <strong>the</strong>11


sphenoid, <strong>and</strong> between 5 <strong>and</strong> 6 <strong>in</strong> <strong>the</strong> zygomatic region (Dixon, Hoyte, Ronn<strong>in</strong>g, 1997).The lateral wall of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s, which is one of few areas that cont<strong>in</strong>ues growththroughout childhood (Waitzman et al. 1992) also grows by remodel<strong>in</strong>g, with depositionon <strong>the</strong> lateral surface <strong>and</strong> resorption on <strong>the</strong> medial (Enlow & Hans, 1996). Because <strong>the</strong><strong>in</strong>ter<strong>orbit</strong>al region <strong>change</strong>s relatively little after birth (Waitzman et al. 1992), thisdeposition acts to widen <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>s while mov<strong>in</strong>g <strong>the</strong> lateral walls away from <strong>the</strong>nasal region between <strong>the</strong>m.Growth of <strong>the</strong> medial <strong>orbit</strong> is one of <strong>the</strong> most complex portions of this feature, asit is made up of <strong>the</strong> greatest number of bones with marked <strong>variation</strong> <strong>in</strong> <strong>the</strong>ir articulations.The medial wall as a whole <strong>in</strong>creases relatively little dur<strong>in</strong>g two growth spurts, with onedur<strong>in</strong>g <strong>the</strong> first year of life, <strong>and</strong> <strong>the</strong> second between 6 <strong>and</strong> 8 years (Dixon, Hoyte,Ronn<strong>in</strong>g, 1997). Most growth that does occur <strong>in</strong> <strong>the</strong> medial wall of <strong>the</strong> <strong>orbit</strong> is anterior<strong>in</strong> direction. In young adults <strong>the</strong> medial <strong>orbit</strong>al rim lies slightly <strong>in</strong> front of <strong>the</strong> lateral rim,but dur<strong>in</strong>g ontogeny <strong>the</strong> nasal wall moves <strong>the</strong> medial rim anteriorly while remodel<strong>in</strong>g of<strong>the</strong> cheekbones moves <strong>the</strong> lateral wall posteriorly, so that at maturity <strong>the</strong> two areseparated by a greater distance with <strong>the</strong> medial <strong>orbit</strong> positioned more anteriorly relativeto <strong>the</strong> lateral <strong>orbit</strong>al marg<strong>in</strong>s (Enlow & Hans, 1996).The roof of <strong>the</strong> <strong>orbit</strong> grows most rapidly for <strong>the</strong> first three months after birth, <strong>and</strong>ma<strong>in</strong>ta<strong>in</strong>s this pace until <strong>the</strong> end of <strong>the</strong> first year. As with <strong>the</strong> lateral <strong>orbit</strong>, this superior<strong>orbit</strong>al region also grows aga<strong>in</strong> dur<strong>in</strong>g later life, as a second spurt occurs sometimebetween age n<strong>in</strong>e <strong>and</strong> eleven (Lang, 1983). As described above, <strong>the</strong> pattern of growth <strong>in</strong>this region is predom<strong>in</strong>antly <strong>the</strong> result of forward <strong>and</strong> downward expansion of <strong>the</strong> frontallobes, dur<strong>in</strong>g which time <strong>the</strong> <strong>orbit</strong>al roof moves by growth remodel<strong>in</strong>g anteriorly <strong>and</strong>12


<strong>in</strong>feriorly through deposition on <strong>the</strong> exocranial side, or <strong>the</strong> <strong>in</strong>ternal <strong>orbit</strong>al roof, <strong>and</strong>resorption on <strong>the</strong> endocranial surface just below <strong>the</strong> frontal lobes (Enlow & Hans, 1996).Dur<strong>in</strong>g this period <strong>the</strong> malar region is relocat<strong>in</strong>g posteriorly through deposition on<strong>the</strong> anterior surface <strong>and</strong> resorption on <strong>the</strong> posterior, which toge<strong>the</strong>r with forward <strong>and</strong>downward movement of <strong>the</strong> <strong>orbit</strong>al roof, creates a more obtuse facial angle relative to <strong>the</strong>Frankfurt Horizontal Plane. This angle is a unique human characteristic to <strong>the</strong> exclusionof all o<strong>the</strong>r mammals (Enlow & Hans, 1996), <strong>and</strong> is primarily <strong>the</strong> result ofencephalization <strong>and</strong> reduced facial prognathism throughout human evolution that occurby way of <strong>change</strong>s to <strong>the</strong> pattern of growth <strong>and</strong> development <strong>in</strong> <strong>the</strong> bra<strong>in</strong>, cranial vault,basicranium, <strong>and</strong> face dur<strong>in</strong>g this time (Cobb, 2008; Lieberman, McBratney, Krovitz,2002; Bastir et al. 2008).The floor of <strong>the</strong> <strong>orbit</strong> is primarily formed by <strong>the</strong> zygomatic bones that make up<strong>the</strong> anterior <strong>and</strong> lateral portion of <strong>the</strong> base of this feature, <strong>and</strong> <strong>the</strong> maxilla, which is also<strong>the</strong> roof of <strong>the</strong> maxillary s<strong>in</strong>us. Dur<strong>in</strong>g ontogeny <strong>the</strong>re is a threefold <strong>in</strong>crease <strong>in</strong> <strong>the</strong> areaoccupied by <strong>the</strong>se bones, which primarily occurs <strong>in</strong> association with <strong>the</strong> forward <strong>and</strong>downward displacement of <strong>the</strong> nasomaxillary complex by way of maxillary suturalgrowth (Enlow & Hans, 1996). Dur<strong>in</strong>g this anterior <strong>and</strong> <strong>in</strong>ferior migration of <strong>the</strong>nasomaxillary complex however, <strong>the</strong> <strong>orbit</strong>al floor <strong>and</strong> nasal floor grow away from eacho<strong>the</strong>r, which acts to <strong>in</strong>crease facial height while also limit<strong>in</strong>g <strong>the</strong> amount of net <strong>in</strong>feriormovement <strong>in</strong> <strong>the</strong> floor of <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>.Dur<strong>in</strong>g early childhood <strong>the</strong> nasal floor is nearly <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> floor of <strong>the</strong> <strong>eye</strong><strong>orbit</strong>s, but moves downward dur<strong>in</strong>g displacement of <strong>the</strong> nasomaxillary complex until itbecomes substantially separated from <strong>the</strong> <strong>orbit</strong>al floor <strong>in</strong> adulthood. In order to ma<strong>in</strong>ta<strong>in</strong>13


its relative position dur<strong>in</strong>g forward <strong>and</strong> downward displacement of <strong>the</strong> entire unit, <strong>the</strong>floor of <strong>the</strong> <strong>eye</strong> <strong>orbit</strong> remodels upward by deposit<strong>in</strong>g bone on <strong>the</strong> superior surface (<strong>orbit</strong>alside) <strong>and</strong> resorb<strong>in</strong>g bone on <strong>the</strong> <strong>in</strong>ferior surface (maxillary s<strong>in</strong>us side) (Enlow & Hans,1996).It would be expected that <strong>the</strong> size of <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>s would decrease dur<strong>in</strong>g growth<strong>and</strong> development, as both <strong>the</strong> roof <strong>and</strong> floor are depositional surfaces. Deposit<strong>in</strong>g boneon <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior surfaces of <strong>the</strong> <strong>orbit</strong> could be particularly problematic given<strong>the</strong> large amount of soft tissue that lies with<strong>in</strong> it, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> nerves, blood supply,muscles, fat, <strong>and</strong> an <strong>eye</strong>ball that cont<strong>in</strong>ues exp<strong>and</strong><strong>in</strong>g later <strong>in</strong> life, <strong>and</strong> with a bulk of thisgrowth occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> posterior globe that lies with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>.Enlow <strong>and</strong> Hans (1996) argue that <strong>the</strong> <strong>in</strong>ternal size of <strong>the</strong> <strong>orbit</strong>s do not decreasedur<strong>in</strong>g <strong>the</strong>se periods of roof <strong>and</strong> floor remodel<strong>in</strong>g as a result of <strong>the</strong> V-pr<strong>in</strong>ciple, whichstates that despite deposition on <strong>the</strong> <strong>in</strong>terior surfaces of V-shaped bone configurations, itsoverall dimensions <strong>in</strong>crease as a result of <strong>the</strong> entire complex mov<strong>in</strong>g toward <strong>the</strong> largerend dur<strong>in</strong>g growth. These authors go on to mention that displacement associated withsutural bone growth <strong>in</strong> <strong>and</strong> around <strong>the</strong> <strong>orbit</strong> also help to enlarge it dur<strong>in</strong>g ontogeny,however <strong>the</strong>y add that <strong>the</strong>se processes <strong>change</strong> <strong>the</strong> <strong>orbit</strong> relatively little dur<strong>in</strong>g laterchildhood.1.6 Modern <strong>variation</strong> <strong>in</strong> human <strong>orbit</strong>al morphologyIt is important to consider that application of <strong>the</strong> V-pr<strong>in</strong>ciple may not be equallyappropriate for all human populations, <strong>and</strong> particularly among East Asians who possessvery flat faces compared to Europeans, Sub-Saharan Africans, <strong>and</strong> Australians (Badawi-14


Fayad & Cabanis, 2007; Hanihara, 2000; Hennessy & Str<strong>in</strong>ger, 2002). Individuals <strong>and</strong>groups with anteroposteriorly shorter skulls <strong>and</strong> flatter faces are characterized by lessforward growth of <strong>the</strong> nasomaxillary complex out from <strong>the</strong> basicranium, whichdim<strong>in</strong>ishes <strong>the</strong> degree to which <strong>the</strong> V-shaped <strong>orbit</strong> can move toward <strong>the</strong> open end <strong>and</strong>become enlarged. Posterior remodel<strong>in</strong>g of <strong>the</strong> malar region dur<strong>in</strong>g growth <strong>and</strong> an upwardmovement of <strong>the</strong> <strong>orbit</strong>al floor relative to <strong>the</strong> nasal floor also work <strong>in</strong> <strong>the</strong> oppositedirection of this anterior migration of <strong>the</strong> <strong>orbit</strong>, fur<strong>the</strong>r limit<strong>in</strong>g forward displacement <strong>and</strong>expansion.Many studies have <strong>in</strong>vestigated <strong>variation</strong> <strong>in</strong> cranial <strong>and</strong> facial form among<strong>modern</strong> human populations, <strong>and</strong> have shown that a number of differences exist among<strong>the</strong>m (Bruner & Manzi, 2004; Enlow, 1982; Hanihara, 1996, 2000; Hennessy & Str<strong>in</strong>ger,2002; Howells, 1973, 1989; Lahr, 1996; Roseman & Weaver, 2004). However, humansas a whole actually show lower levels of <strong>in</strong>terpopulation differentiation <strong>in</strong> craniofacialanatomy when compared to o<strong>the</strong>r terrestrial mammals of similar body size (Roseman &Weaver, 2004). In general, <strong>the</strong> degree of craniometric variability among <strong>modern</strong> humanpopulations is relatively limited, <strong>and</strong> <strong>in</strong> agreement with past studies of genetic <strong>variation</strong>(Relethford, 1994). Additionally, <strong>variation</strong> among groups is relatively cont<strong>in</strong>uous <strong>and</strong><strong>change</strong>s gradually across space, with some degree of overlap <strong>in</strong> <strong>the</strong> genotype <strong>and</strong>phenotype of various features (Bruner & Manzi, 2004; Lahr, 1996; Hanihara, 1996;Howells, 1973; Relethford, 1994).Despite <strong>the</strong>se common aspects of craniofacial form, <strong>and</strong> a relative uniformity <strong>in</strong>cranial size across <strong>modern</strong> human groups (Badawi-Fayad & Cabanis, 2007; Bruner &Manzi, 2004; Howells, 1973) some level of <strong>variation</strong> does exists between <strong>the</strong>m; <strong>and</strong> <strong>in</strong>15


fact more <strong>variation</strong> exist between regional group pair<strong>in</strong>gs than between males <strong>and</strong>females with<strong>in</strong> each group (Hennessy & Str<strong>in</strong>ger, 2002). These differences <strong>in</strong> craniofacialform among <strong>modern</strong> human groups are well documented, though little is known abouthow <strong>the</strong> <strong>orbit</strong>s vary among <strong>the</strong>m, particularly concern<strong>in</strong>g <strong>the</strong> degree of <strong>variation</strong> thatexists <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal anatomy of this feature. This <strong>the</strong>sis will contribute to studies ofcraniofacial diversity among <strong>modern</strong> human groups by <strong>in</strong>vestigat<strong>in</strong>g a number ofcharacteristics of <strong>the</strong> <strong>orbit</strong> <strong>and</strong> contiguous midfacial anatomy among samples of<strong>in</strong>dividuals drawn from Western European, Far East Asian, <strong>and</strong> Sub-Saharan Africanpopulations.1.7 Evolution of cranial globularity <strong>and</strong> facial orthognathism <strong>in</strong> Homo sapiensAnatomically <strong>modern</strong> humans are generally characterized by a small face that isshort, high, <strong>and</strong> pushed back under <strong>the</strong> vault, a high vertical forehead, enlargement of <strong>the</strong>parietal region of <strong>the</strong> upper cranium, a flexed cranial base, a rounded occiput, an occipitalprotuberance on <strong>the</strong> occipital bone, a can<strong>in</strong>e fossa, <strong>and</strong> a mental em<strong>in</strong>ence (Lahr &Wright, 1995). These traits are primarily <strong>the</strong> result of facial retraction <strong>and</strong> neurocranialglobularity that result from <strong>change</strong>s <strong>in</strong> cranial development <strong>and</strong> particularly a relative size<strong>in</strong>crease <strong>in</strong> <strong>the</strong> temporal <strong>and</strong> frontal lobes of <strong>the</strong> bra<strong>in</strong> (Bastir et al. 2007; Lieberman,McBratney, Krovitz, 2002).The effect of <strong>the</strong>se variables on cranial shape, which results <strong>in</strong> structuralautapomorphies useful for separat<strong>in</strong>g anatomically <strong>modern</strong> humans from earlier archaicHomo sapiens forms, can also be understood by compar<strong>in</strong>g patterns of growth betweenhumans <strong>and</strong> chimpanzees. Dur<strong>in</strong>g <strong>the</strong> early stages of postnatal ontogeny <strong>in</strong> Pan, relative16


length of <strong>the</strong> anterior <strong>and</strong> middle cranial fossae decreases <strong>in</strong> association with an <strong>in</strong>crease<strong>in</strong> relative length <strong>and</strong> height of <strong>the</strong> face. These cranial fossae cont<strong>in</strong>ue to shorten afterneural growth is complete, <strong>and</strong> facial height <strong>and</strong> length cont<strong>in</strong>ue to <strong>in</strong>crease <strong>in</strong> associationwith facial projection (Lieberman, McBratney, Krovitz, 2002). By contrast, <strong>the</strong> facestays retracted beneath <strong>the</strong> anterior cranial base <strong>and</strong> <strong>the</strong> neurocranium rema<strong>in</strong>s highlyglobular dur<strong>in</strong>g ontogeny <strong>in</strong> Homo sapiens.Cranial globularity is a unique feature of <strong>modern</strong> human skulls <strong>and</strong> is largely <strong>the</strong>result of <strong>in</strong>creased cranial base flexion <strong>and</strong> <strong>change</strong>s <strong>in</strong> relative size of certa<strong>in</strong> bra<strong>in</strong>structures. Expansion of <strong>the</strong> frontal <strong>and</strong> temporal lobes of <strong>the</strong> bra<strong>in</strong> are an importantcomponent of this flexion, as <strong>the</strong>y act to leng<strong>the</strong>n <strong>the</strong> anterior cranial base <strong>and</strong> <strong>in</strong>fluence<strong>the</strong> size of <strong>the</strong> anterior <strong>and</strong> middle cranial fossae, respectively (Lieberman, McBratney,Krovitz, 2002).In addition to an <strong>in</strong>crease <strong>in</strong> relative size of <strong>the</strong>se basicranial components,anatomically <strong>modern</strong> Homo sapiens are characterized by a dist<strong>in</strong>ct forward <strong>and</strong> lateralexpansion of <strong>the</strong> anterior portion of <strong>the</strong> middle cranial fossa relative to <strong>the</strong> optic <strong>and</strong>maxillary nerve foram<strong>in</strong>ae compared to archaic Homo sapiens <strong>and</strong> Homo erectus (Bastir,et al. 2008). As a result of this anterior movement of <strong>the</strong> middle cranial fossa relative to<strong>the</strong>se nerve foram<strong>in</strong>ae, <strong>the</strong> maxillary tuberosities <strong>and</strong> <strong>the</strong> <strong>orbit</strong>s are also shifted anteriorly<strong>in</strong> relation to basicranial <strong>and</strong> neurocranial structures (Bastir et al. 2008).Forward movement of <strong>the</strong> middle cranial fossa also correlates with forwardprojection of <strong>the</strong> greater sphenoid w<strong>in</strong>gs, which shift <strong>the</strong> posterior maxillary planeanteriorly, rotat<strong>in</strong>g it clockwise when viewed laterally from <strong>the</strong> right side (Bastir et al.2008; McCarthy & Lieberman, 2001). The vertical boundary of <strong>the</strong> posterior maxillary17


plane is highly related to factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> basic design of <strong>the</strong> face, <strong>and</strong> isconsidered one of <strong>the</strong> most important structural <strong>and</strong> developmental planes of <strong>the</strong> entirecraniofacial complex (Enlow & Hans, 1996). This plane is tightly constra<strong>in</strong>ed at 90relative to <strong>the</strong> anterior cranial base <strong>in</strong> humans <strong>and</strong> non-human primates (Bastir et al.2008; Enlow, 1990; Lieberman, Ross, Ravosa, 2000; Lieberman, McBratney, Krovitz,2002; McCarthy & Lieberman, 2001), <strong>and</strong> is also constra<strong>in</strong>ed at 90 relative to <strong>the</strong>neutral horizontal axis throughout growth <strong>and</strong> development <strong>in</strong> all mammals (Bromage,1992; Enlow & Hans, 1996).An <strong>in</strong>crease <strong>in</strong> relative size of <strong>the</strong> frontal <strong>and</strong> temporal lobes of <strong>the</strong> bra<strong>in</strong>,expansion <strong>and</strong> forward movement of <strong>the</strong> anterior <strong>and</strong> middle cranial fossae, forwardprojection of <strong>the</strong> greater sphenoid w<strong>in</strong>gs, <strong>and</strong> rotation of <strong>the</strong> posterior maxillary planethus act to create <strong>the</strong> uniquely globular cranium <strong>and</strong> ventrally rotated face that lies under<strong>the</strong> anterior cranial fossa <strong>in</strong> anatomically <strong>modern</strong> humans (Bastir et al. 2008; McCarthy& Lieberman, 2001; Lieberman, McBratney, Krovitz, 2002).Throughout hom<strong>in</strong><strong>in</strong> evolution a marked <strong>in</strong>crease <strong>in</strong> neocortical volume hasoccurred <strong>in</strong> which <strong>the</strong> frontal, temporal, occipital, <strong>and</strong> parietal lobes have exp<strong>and</strong>ed <strong>in</strong>association with <strong>in</strong>creased <strong>in</strong>tellectual capacity (Bastir et al. 2008; Rill<strong>in</strong>g, 2006; Wu etal. 2007). As described above, <strong>the</strong>se <strong>change</strong>s are associated with modification tounderly<strong>in</strong>g basicranial <strong>and</strong> facial structures, <strong>and</strong> have resulted <strong>in</strong> a more anteroposteriorlyshorter face through time. However, <strong>the</strong> extent to which <strong>the</strong> entire skull has rotated, <strong>and</strong><strong>the</strong> face <strong>and</strong> <strong>orbit</strong>s have become tucked up under <strong>the</strong> bra<strong>in</strong>, is a unique derived feature ofanatomically <strong>modern</strong> humans (Cobb, 2008; Bastir et al. 2008; Lieberman, McBratney,Krovitz, 2002).18


1.8 Post-Pleistocene craniofacial <strong>change</strong> <strong>in</strong> Homo sapiensModern human populations are characterized by disparate craniofacial features(Bastir et al. 2008; Bruner & Manzi, 2004; Hanihara, 1996, 2000; Hennessy & Str<strong>in</strong>ger,2002; Howells, 1973, 1989; Kuroe, Rosas, Molleson, 2004), however a general shifttoward brachycephaly <strong>and</strong> facial orthognathism has occurred ubiquitously among nearlyall human groups (Brown, 1989, 1992; Carlson, 1976; Carlson & Van Gerven, 1977; Wuet al. 2007). Although <strong>the</strong> pattern of craniofacial <strong>change</strong> is similar across humanpopulations, few studies have focused on <strong>orbit</strong>al <strong>and</strong> midfacial <strong>change</strong> <strong>and</strong> to what degreethis feature varies <strong>in</strong> association with a shift toward brachycephaly <strong>and</strong> facialorthognathism.Two recent <strong>in</strong>vestigations have exam<strong>in</strong>ed diachronic <strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> <strong>the</strong>irassociation with neighbor<strong>in</strong>g craniofacial traits among Ch<strong>in</strong>ese groups dat<strong>in</strong>g to <strong>the</strong>Holocene (Brown & Maeda, 2004; Wu et al. 2007). These <strong>and</strong> o<strong>the</strong>r studies echo areduction <strong>in</strong> overall cranial <strong>and</strong> facial size <strong>in</strong> which bra<strong>in</strong> volume, <strong>the</strong> cranial vault, <strong>the</strong>oro-facial skeleton, <strong>and</strong> general skeletal robusticity are reduced follow<strong>in</strong>g <strong>the</strong> Pleistoceneperiod (Brown 1987; Brown & Maeda, 2004; Carlson, 1976; Carlson & Van Gerven,1977; Henneberg, 1988; Lahr & Wright, 1996; Smith et al. 1985, 1986; Wu et al. 2007).This reduction likely began slightly earlier than <strong>the</strong> Holocene however, as it is estimatedthat s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Europe, cranial <strong>and</strong> facial dimensions have beenreduced by 10-30% (Kidder et al. 1992).While <strong>the</strong>se <strong>change</strong>s occur <strong>in</strong> Europe <strong>and</strong> Ch<strong>in</strong>a, reduction dur<strong>in</strong>g this period wasnot accompanied by brachycephalization <strong>in</strong> Sub-Saharan African groups (Henneberg &Steyn, 1993). In <strong>the</strong> Nubian region of nor<strong>the</strong>rn Africa however, an overall <strong>in</strong>crease <strong>in</strong>19


cranial <strong>and</strong> facial height occurs <strong>in</strong> association with a decrease <strong>in</strong> <strong>the</strong> anteroposteriorlength of both <strong>the</strong> calvarium <strong>and</strong> face, result<strong>in</strong>g <strong>in</strong> brachycephalization <strong>and</strong> facialorthognathism dur<strong>in</strong>g <strong>the</strong> last 5,000 years <strong>in</strong> this region (Carlson, 1976). In a subsequentstudy <strong>the</strong>se same <strong>change</strong>s were also found to occur <strong>in</strong> this region over a longer period oftime dat<strong>in</strong>g back to <strong>the</strong> Mesolithic age (Carlson & Van Gerven, 1977).In Ch<strong>in</strong>a, Wu et al. (2007) show that certa<strong>in</strong> aspects of <strong>the</strong> <strong>orbit</strong>s <strong>change</strong>considerably s<strong>in</strong>ce <strong>the</strong> Neolithic, <strong>and</strong> vary to a greater extent than most o<strong>the</strong>r features of<strong>the</strong> face <strong>and</strong> cranium. Shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s show <strong>the</strong> greatest degree of <strong>variation</strong>throughout this time period, which is primarily <strong>the</strong> result of a reduction <strong>in</strong> <strong>orbit</strong>al breadthfrom <strong>the</strong> Neolithic to <strong>the</strong> Bronze Age, <strong>and</strong> <strong>the</strong>n a cont<strong>in</strong>uation of this decrease <strong>in</strong> <strong>orbit</strong>albreadth accompanied by a rapid <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al height from <strong>the</strong> Bronze Age to <strong>the</strong>present. Change <strong>in</strong> <strong>the</strong>se <strong>orbit</strong>al dimensions are also accompanied by a decrease <strong>in</strong>cranial <strong>and</strong> facial size, a decrease <strong>in</strong> facial prognathism, an <strong>in</strong>crease <strong>in</strong> cranial globularity,a taller <strong>and</strong> narrower nasal aperture, <strong>and</strong> a narrow<strong>in</strong>g of mediolateral facial dimensions asa whole (Wu et al. 2007).Brown <strong>and</strong> Maeda (2004) observe many of <strong>the</strong> same <strong>change</strong>s <strong>in</strong> craniofacial formamong Ch<strong>in</strong>ese adults over analogous time periods, <strong>and</strong> <strong>in</strong> addition to <strong>in</strong>vestigat<strong>in</strong>gheight, breadth, <strong>and</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s, <strong>the</strong>se authors exam<strong>in</strong>e how volume of<strong>the</strong> <strong>orbit</strong> has <strong>change</strong>d s<strong>in</strong>ce <strong>the</strong> Neolithic, <strong>and</strong> how it varies <strong>in</strong> association with o<strong>the</strong>r traitsof <strong>the</strong> face <strong>and</strong> cranium.While diachronic <strong>change</strong> <strong>in</strong> most aspects of <strong>the</strong> <strong>orbit</strong> were <strong>in</strong>vestigated us<strong>in</strong>gskulls dat<strong>in</strong>g to between 7,000 years BP <strong>and</strong> <strong>the</strong> present, due to <strong>the</strong> fragile nature of <strong>the</strong>bones that make up <strong>the</strong> <strong>orbit</strong>al cavity, Brown <strong>and</strong> Maeda (2004) were not able to directly20


<strong>in</strong>vestigate <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al volume among <strong>the</strong>se groups. However, by compar<strong>in</strong>g <strong>the</strong>crania of Japanese <strong>and</strong> Australian Aborig<strong>in</strong>e samples that represent more “<strong>modern</strong>” <strong>and</strong>“ancestral” temporal groups from East Asia, respectively, <strong>the</strong>y are able to deduce how<strong>orbit</strong>al volume varies <strong>in</strong> association with adjacent craniofacial features dur<strong>in</strong>g <strong>the</strong> last10,000 years <strong>in</strong> this region.Brown & Maeda (2004) show that s<strong>in</strong>ce <strong>the</strong> Ch<strong>in</strong>ese Neolithic cranial robusticity<strong>and</strong> endocranial volume are reduced, along with a reduction <strong>in</strong> posterior tooth size, lossof alveolar bone, <strong>and</strong> a subsequent reduction <strong>in</strong> facial prognathism. These trendscorroborate <strong>the</strong> results of <strong>the</strong> above studies of craniofacial <strong>change</strong> <strong>in</strong> size across Africa,Europe, <strong>and</strong> Asia over a similar time period. In relation to <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphologythroughout <strong>the</strong> Ch<strong>in</strong>ese Neolithic, a pattern of relative <strong>and</strong> absolute <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>alheight emerges, which <strong>in</strong> association with decreas<strong>in</strong>g <strong>orbit</strong>al breadth, results <strong>in</strong> taller,narrower, <strong>and</strong> more circular shaped <strong>orbit</strong>al marg<strong>in</strong>s (Brown & Maeda, 2004); a strongtrend also observed by Wu et al. (2007). This <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al height <strong>and</strong> decrease <strong>in</strong><strong>orbit</strong>al breadth occurs <strong>in</strong> association with a reduction <strong>in</strong> supra<strong>orbit</strong>al breadth, a decrease<strong>in</strong> facial height, <strong>and</strong> a reduction <strong>in</strong> facial prognathism throughout <strong>the</strong> last 7,000 years <strong>in</strong>this region.As part of this dissertation research, <strong>orbit</strong>al morphology is <strong>in</strong>vestigated amongWestern European groups from different time periods dat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic <strong>in</strong>order to underst<strong>and</strong> diachronic <strong>change</strong> <strong>in</strong> this feature <strong>and</strong> with<strong>in</strong> this region. These same<strong>orbit</strong>al characteristics are exam<strong>in</strong>ed <strong>in</strong> relation to <strong>change</strong>s <strong>in</strong> cranial <strong>and</strong> facial form,which undergo a considerable degree of modification throughout this time period <strong>in</strong>Europe, <strong>and</strong> many o<strong>the</strong>r regions of <strong>the</strong> world. The results of this analysis are also21


assessed <strong>in</strong> relation to patterns of <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology among Ch<strong>in</strong>ese groupsdat<strong>in</strong>g to <strong>the</strong> Neolithic, <strong>in</strong>vestigated by Brown & Maeda (2004) <strong>and</strong> Wu et al. (2007).1.9 Evolution of <strong>the</strong> <strong>eye</strong>, <strong>orbit</strong>, <strong>and</strong> reduced visual acuity <strong>in</strong> humansMany studies have shown that a decrease <strong>in</strong> craniofacial size <strong>and</strong> robusticity, aswell as a shift toward brachycephalization, occur relatively ubiquitously across differentregions dur<strong>in</strong>g <strong>the</strong> last 7,000 – 10,000 years (Brown 1987; Brown & Maeda, 2004;Carlson, 1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Lahr & Wright, 1996;Wu et al. 2007). However, <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology has not been <strong>in</strong>vestigated to <strong>the</strong>same extent <strong>in</strong> each of <strong>the</strong>se regions. An aim of this <strong>the</strong>sis research is to contribute to aglobal underst<strong>and</strong><strong>in</strong>g of <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology by <strong>in</strong>vestigat<strong>in</strong>g multiple aspectsof this feature <strong>and</strong> how it varies <strong>in</strong> association with o<strong>the</strong>r cranial <strong>and</strong> facial featuresamong Western European groups over <strong>the</strong> last 30,000 years.This type of <strong>in</strong>vestigation is of particular importance consider<strong>in</strong>g that <strong>orbit</strong>alvolume <strong>and</strong> o<strong>the</strong>r aspects of this feature have been found to vary <strong>in</strong> association with<strong>change</strong>s <strong>in</strong> contiguous features of <strong>the</strong> face <strong>and</strong> cranium through time (Brown & Maeda,2004; Wu et al. 2007). Additionally, <strong>change</strong> <strong>in</strong> size, shape, or orientation of <strong>the</strong> <strong>orbit</strong>s <strong>in</strong>association with temporal modification to <strong>the</strong> broader craniofacial anatomy, may haveimplications for proper function<strong>in</strong>g of <strong>the</strong> visual system.One prom<strong>in</strong>ent feature that shows a marked degree of modification <strong>in</strong> Asia isshape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s, which have become taller, narrower <strong>and</strong> generally morerounded <strong>in</strong> <strong>the</strong> last 7,000 years (Brown & Maeda, 2004; Wu et al. 2007). It has also beenshown that a large <strong>orbit</strong>al height relative to <strong>orbit</strong>al breadth is <strong>in</strong>versely related to <strong>orbit</strong>al22


volume (r = -0.568), which means that high <strong>and</strong> narrow <strong>orbit</strong>s are smaller <strong>in</strong> size thanlower more rectangular ones (Brown & Maeda, 2004). These authors also show that astrong positive relationship exists between supra<strong>orbit</strong>al breadth <strong>and</strong> <strong>orbit</strong>al volume (r =0.88), <strong>and</strong> between facial prognathism <strong>and</strong> <strong>orbit</strong>al volume (r = 0.83), which <strong>in</strong>dicates thatas faces become narrower <strong>and</strong> more orthognathic, respectively, <strong>the</strong> amount of spacewith<strong>in</strong> <strong>the</strong> <strong>orbit</strong> decreases. Reduction <strong>in</strong> <strong>the</strong> size of <strong>the</strong>se features <strong>and</strong> <strong>in</strong> association with<strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s becom<strong>in</strong>g taller <strong>and</strong> more rounded throughout <strong>the</strong> Ch<strong>in</strong>ese Neolithic<strong>in</strong>dicates that <strong>the</strong> <strong>orbit</strong>s also dim<strong>in</strong>ish <strong>in</strong> size dur<strong>in</strong>g this period (Brown & Maeda, 2004).Change <strong>in</strong> <strong>orbit</strong>al morphology throughout <strong>the</strong> East Asian Holocene, <strong>and</strong>particularly <strong>in</strong> relation to shape <strong>and</strong> volumetric modification associated with o<strong>the</strong>rcraniofacial trends, may impact visual acuity <strong>in</strong> groups that undergo such <strong>change</strong>sthrough time. Although Brown <strong>and</strong> Maeda (2004) observe temporal size <strong>and</strong> shape<strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong>s of this East Asian sample, <strong>the</strong>y do not address <strong>the</strong> issue of vision <strong>in</strong><strong>the</strong> functional sense, but do po<strong>in</strong>t out that “If it is <strong>the</strong> total volume occupied by <strong>the</strong><strong>eye</strong>ball, extraocular muscles, nerves <strong>and</strong> blood supply which are important, ra<strong>the</strong>r thanjust <strong>the</strong> size of <strong>the</strong> <strong>eye</strong>ball, <strong>the</strong>n <strong>the</strong>re would need to be some functional compensation forany significant reduction <strong>in</strong> <strong>orbit</strong> length <strong>and</strong> volume” (Brown & Maeda, 2004 pg. 38).This raises an important question concern<strong>in</strong>g <strong>the</strong> role of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gkeen <strong>eye</strong>sight, <strong>and</strong> how <strong>change</strong>s <strong>in</strong> this feature may impact vision, particularly due to itslocation between a retract<strong>in</strong>g lower face <strong>and</strong> exp<strong>and</strong><strong>in</strong>g neurocranium throughouthom<strong>in</strong><strong>in</strong> evolution. The <strong>orbit</strong>s circumscribe a number of different soft tissue components<strong>and</strong> <strong>the</strong> relationship among <strong>the</strong>m <strong>change</strong>s throughout life. Modification to <strong>the</strong> tim<strong>in</strong>g orrate of growth <strong>in</strong> <strong>the</strong>se various cranial, lower facial, <strong>and</strong> <strong>orbit</strong>al features dur<strong>in</strong>g ontogeny23


or throughout hom<strong>in</strong><strong>in</strong> evolution could impact <strong>the</strong> relationship among <strong>the</strong>m <strong>and</strong> possiblyalter <strong>the</strong> shape of <strong>the</strong> <strong>eye</strong>ball, imp<strong>in</strong>g<strong>in</strong>g on its ability to accurately focus light on <strong>the</strong>posterior ret<strong>in</strong>al wall.Myopia is <strong>the</strong> primary source of reduced vision throughout <strong>the</strong> world, <strong>and</strong> hasbecome so common <strong>in</strong> some populations that it has recently been labeled an epidemic(Mak et al. 2005; Park & Congdon, 2004). Most myopia is juvenile-onset, whichtypically beg<strong>in</strong>s dur<strong>in</strong>g adolescence <strong>and</strong> progresses steadily until <strong>the</strong> late teens or earlytwenties (Goss & Grosvenor, 1990). Refractive error associated with this conditionoccurs with an axial elongation of <strong>the</strong> <strong>eye</strong>, which <strong>in</strong>creases <strong>the</strong> vitreous depth <strong>and</strong>subsequently <strong>in</strong>creases <strong>the</strong> focus<strong>in</strong>g power of <strong>the</strong> cornea, result<strong>in</strong>g <strong>in</strong> an image that iserroneously focused <strong>in</strong> front of <strong>the</strong> ret<strong>in</strong>a (Lam et al. 1999, Mak et al. 2005).Myopia has become unusually common <strong>in</strong> <strong>the</strong> <strong>modern</strong> world, to <strong>the</strong> extent that itaffects 80-90% of <strong>in</strong>dividuals <strong>in</strong> some East Asian populations (Goldschmidt, Lam,Opper, 2001; Lam, et al. 1999; Park & Congdon, 2004). It is also found to occur earlier<strong>in</strong> life <strong>and</strong> at a higher frequency among Ch<strong>in</strong>ese schoolchildren compared to younger<strong>in</strong>dividuals of African or European descent (Ip et al. 2008; Lam et al. 1999).Additionally, women have a higher rate of myopia than men, develop <strong>the</strong> conditionearlier <strong>in</strong> life, <strong>and</strong> have greater degree of spherical equivalent refractive error whengrowth ceases (Angle & Wissman, 1980; Grosvenor & Goss, 1999; Lam et al. 1999; Ip etal. 2008; Parss<strong>in</strong>en & Lyyra, 1993; WGMPP, 1989).Despite <strong>the</strong> widespread occurrence <strong>and</strong> severe impact of juvenile-onset myopia <strong>in</strong>certa<strong>in</strong> regions, <strong>the</strong> pathogenesis of this condition is still poorly understood (Corda<strong>in</strong> etal. 2002; Goldschmidt, 1999; Grosvenor & Goss, 1999; Qu<strong>in</strong>n et al. 1999), <strong>and</strong> current24


models fall short of expla<strong>in</strong><strong>in</strong>g why myopia is so common, <strong>and</strong> consistently found tocorrelate with variables like ancestry, sex, <strong>in</strong>telligence, <strong>and</strong> socioeconomic status. Twocommonly cited explanations for this type of refractive error are <strong>the</strong> biological <strong>the</strong>ory <strong>and</strong><strong>the</strong> use-abuse or near-work model (Angle & Wissman, 1980; Corda<strong>in</strong> et al. 2002; Miller,2000; Qu<strong>in</strong>n et al. 1999; Saw et al. 2002).The near-work hypo<strong>the</strong>sis ascribes myopia progression to <strong>the</strong> permanentmalformation of <strong>the</strong> <strong>eye</strong>ball caused by muscles tens<strong>in</strong>g dur<strong>in</strong>g regular use throughout an<strong>in</strong>dividual’s lifetime. Evidence to support this hypo<strong>the</strong>sis generally comes from <strong>the</strong>higher rate of myopia among more <strong>in</strong>telligent people <strong>and</strong> those <strong>in</strong> higher socioeconomicclasses. In this model it is presumed that <strong>in</strong>telligence is <strong>the</strong> result of read<strong>in</strong>g throughoutlife, <strong>and</strong> that this act causes <strong>the</strong> muscles to tighten <strong>and</strong> distort <strong>the</strong> <strong>eye</strong>ball, however it hasyet to be shown how convergence <strong>and</strong> <strong>eye</strong> stra<strong>in</strong> can permanently alter <strong>the</strong> shape of ahuman <strong>eye</strong>ball (Angle & Wissmann, 1980).Ano<strong>the</strong>r problem with this model relates to <strong>the</strong> ambiguous relationship betweencorrelation <strong>and</strong> causality <strong>in</strong> observational studies, <strong>and</strong> with reference to <strong>the</strong> near-workhypo<strong>the</strong>sis it cannot be known whe<strong>the</strong>r read<strong>in</strong>g produces myopia over time as assumedby <strong>the</strong> near-work camp, or ra<strong>the</strong>r if myopes read more because of an overall greater thirstfor knowledge associated with a pre-exist<strong>in</strong>g higher level of <strong>in</strong>telligence (Mak et al.2005; Miller, 2000; Saw et al. 2004; WGMPP, 1989).A f<strong>in</strong>al objection to <strong>the</strong> use-abuse/near-work model is that it doesn’t account forwhy some <strong>in</strong>dividuals, who do as much or more read<strong>in</strong>g as o<strong>the</strong>r members of <strong>the</strong> samegroup, do not develop myopia. If near-work were a primary contributor to <strong>the</strong>development of near-sightedness, <strong>the</strong>n any highly literate population should be affected25


<strong>in</strong> roughly <strong>the</strong> same proportions (Angle & Wissmann, 1980; Corda<strong>in</strong>, et al. 2002). Manystudies <strong>in</strong>dicate that college students, people of higher socioeconomic status, <strong>and</strong>generally <strong>the</strong> more educated have higher rates of myopia, but even with<strong>in</strong> <strong>the</strong>se bra<strong>in</strong>ygroups a majority of <strong>in</strong>dividuals (who presumably do equal amounts of read<strong>in</strong>g) don’tdevelop near-sightedness.The biological model attributes myopia progression to genetic errors associatedwith growth of <strong>the</strong> <strong>eye</strong> tissue, <strong>and</strong> is supported by myopia prevalence studies amongfamily members, <strong>and</strong> concordance rates of myopia among tw<strong>in</strong>s (Angle & Wissmann,1980). For example, a higher concordance rate was found between monozygotic (92.2%)compared to dizygotic tw<strong>in</strong>s (79.3%) <strong>in</strong> a study of myopia prevalence <strong>in</strong> Taiwan (Chen,Cohen, Diamond, 1985), which suggests that at least some of <strong>the</strong> pathogenesis of myopiamay be attributable to genes; but exactly what genes are responsible for myopiadevelopment <strong>and</strong> how genetics can expla<strong>in</strong> <strong>the</strong> ubiquitous pattern of <strong>eye</strong>ballmalformation, as well as <strong>the</strong> ethnic, economic, sex, <strong>and</strong> social correlates is still notunderstood.Juvenile-onset myopia is <strong>the</strong> result of an axial elongation of <strong>the</strong> <strong>eye</strong>, an <strong>in</strong>crease<strong>in</strong> vitreous depth, <strong>and</strong> an <strong>in</strong>creased focus<strong>in</strong>g power of <strong>the</strong> cornea; <strong>the</strong> result of which is animage that is focused <strong>in</strong> front of <strong>the</strong> ret<strong>in</strong>a (Lam et al. 1999; WGMPP, 1989). Because<strong>the</strong>se are <strong>the</strong> ma<strong>in</strong> contributors to <strong>the</strong> development of myopia <strong>in</strong> every population around<strong>the</strong> world, some o<strong>the</strong>r mechanism besides genetic mutation controll<strong>in</strong>g <strong>eye</strong>ball growthmust be responsible. It is improbable that a mutation affect<strong>in</strong>g <strong>eye</strong> growth would cause<strong>the</strong> same distortion of <strong>the</strong> <strong>eye</strong>ball throughout <strong>the</strong> world, or that it could have orig<strong>in</strong>ated <strong>in</strong>26


one group <strong>and</strong> spread to all o<strong>the</strong>r areas with<strong>in</strong> only a few thous<strong>and</strong> years, particularlybecause near-sightedness is selectively neutral.A genetic mutation that dim<strong>in</strong>ishes <strong>eye</strong>sight could only persist <strong>in</strong> a population thatdoes not rely extensively on acute vision for survival, or is capable of develop<strong>in</strong>g somemeans to physically correct <strong>the</strong> focal error; as a result it can only be <strong>in</strong> recent humanhistory that genes affect<strong>in</strong>g visual acuity would be permitted to persist (Corda<strong>in</strong> et. al.2002; Miller, 1992). If <strong>the</strong>re is a heritable genetic component to <strong>the</strong> pathogenesis ofmyopia a relaxation of selection pressure favor<strong>in</strong>g <strong>in</strong>dividuals with keen <strong>eye</strong>sight wouldmake it possible for such a gene or genes to endure. However, even though visualdeterioration would be permitted <strong>in</strong> recent human history, a mutation affect<strong>in</strong>g <strong>eye</strong>growth cannot be <strong>the</strong> only cause of juvenile-onset myopia, as this condition develops <strong>in</strong>highly patterned ways <strong>and</strong> occurs at a very high rate <strong>in</strong> some populations but not o<strong>the</strong>rs.The common pattern of myopia development <strong>and</strong> <strong>the</strong> many biological <strong>and</strong> socialcorrelates would not occur if myopia were a purely genetic abnormality.Most research <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> etiology of juvenile-onset myopia has focused on<strong>the</strong> <strong>eye</strong>ball as a relatively isolated unit, overlook<strong>in</strong>g its close proximity to <strong>and</strong> spatialrelationship with surround<strong>in</strong>g extraocular tissues, <strong>the</strong> <strong>orbit</strong>, facial framework,neurocranium, <strong>and</strong> bra<strong>in</strong>. As a result, <strong>the</strong> f<strong>in</strong>al section of this <strong>the</strong>sis exam<strong>in</strong>es <strong>the</strong>relationship between <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong>, <strong>and</strong> how relative size of <strong>the</strong> globe with<strong>in</strong> <strong>the</strong>bony <strong>orbit</strong> relates to <strong>the</strong> frequency <strong>and</strong> severity of myopic refractive error. This researchalso aims to provide a model for <strong>in</strong>vestigat<strong>in</strong>g reduced visual acuity <strong>in</strong> humans, <strong>and</strong>contribute to an underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> degree to which <strong>modern</strong> <strong>variation</strong> <strong>and</strong> <strong>evolutionary</strong><strong>change</strong> <strong>in</strong> <strong>orbit</strong>al <strong>and</strong> overall craniofacial morphology may expla<strong>in</strong> <strong>the</strong> common <strong>eye</strong> form27


association with juvenile-onset myopia, why this selectively neutral condition occurs <strong>in</strong>such high frequency <strong>in</strong> <strong>modern</strong> humans, <strong>and</strong> why it is consistently found to correlate withancestry, sex, <strong>in</strong>telligence, <strong>and</strong> age.The pr<strong>in</strong>cipal objective of this dissertation research is to provide a comprehensivedescription of <strong>modern</strong> <strong>variation</strong> <strong>and</strong> <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>. In chapter3 of this <strong>the</strong>sis, <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphology is <strong>in</strong>vestigated among <strong>modern</strong> humanancestral groups from Western Europe, Ch<strong>in</strong>a, <strong>and</strong> South Africa <strong>in</strong> order to underst<strong>and</strong><strong>the</strong> pattern <strong>and</strong> degree of <strong>variation</strong> among <strong>the</strong>m for this feature, <strong>and</strong> how its variabilityrelates to general differences <strong>in</strong> craniofacial form. In chapter 4, <strong>the</strong> <strong>orbit</strong> is exam<strong>in</strong>ed <strong>in</strong>relation to hom<strong>in</strong><strong>in</strong> trends of cranial expansion <strong>and</strong> reduced facial prognathism to<strong>in</strong>vestigate how relative size <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> association with <strong>the</strong>semorphological <strong>change</strong>s dur<strong>in</strong>g human evolution.Chapter 5 exam<strong>in</strong>es more recent <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology,focus<strong>in</strong>g on Western European groups dat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic, <strong>and</strong> <strong>in</strong>volves aseparate analysis of how <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> relation to <strong>change</strong>s <strong>in</strong> shape of <strong>the</strong> face <strong>and</strong>cranium <strong>in</strong> this region throughout <strong>the</strong> last 30,000 years. F<strong>in</strong>ally, <strong>in</strong> chapter 6 of this<strong>the</strong>sis relative size of <strong>the</strong> <strong>eye</strong> with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> is <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> context of sphericalequivalent refractive error to <strong>in</strong>vestigate whe<strong>the</strong>r a larger <strong>eye</strong> with<strong>in</strong> a smaller <strong>orbit</strong> isassociated with <strong>the</strong> <strong>in</strong>cidence <strong>and</strong> severity of juvenile-onset myopia <strong>in</strong> Ch<strong>in</strong>ese adults.The results of this analysis are <strong>the</strong>n exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of different patterns ofgrowth <strong>and</strong> development between <strong>the</strong> sexes, across <strong>modern</strong> human group, <strong>and</strong> <strong>in</strong> relationto <strong>the</strong> results of <strong>the</strong>se separate <strong>in</strong>vestigations of hom<strong>in</strong><strong>in</strong> <strong>evolutionary</strong> <strong>change</strong> <strong>and</strong> <strong>modern</strong><strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphology.28


.CHAPTER 2MATERIALS AND METHODS2.1 VariablesIn this study, cont<strong>in</strong>uous traits of <strong>the</strong> <strong>orbit</strong>s, lower face, <strong>and</strong> cranium are used to<strong>in</strong>vestigate <strong>variation</strong> among <strong>modern</strong> human <strong>and</strong> past hom<strong>in</strong><strong>in</strong> groups. These data werecollected us<strong>in</strong>g st<strong>and</strong>ard l<strong>and</strong>marks follow<strong>in</strong>g <strong>the</strong> methods of Howells (1973) <strong>and</strong> White(2000) for characteristics of <strong>the</strong> face <strong>and</strong> cranium (Table 2.1), <strong>and</strong> Schultz (1940) <strong>and</strong>Moore-Jansen et al. (1994) for measures of <strong>the</strong> <strong>orbit</strong>s (Table 2.2). Indices <strong>and</strong> sizeestimates are also derived from <strong>the</strong>se l<strong>in</strong>ear measures <strong>in</strong> order to better underst<strong>and</strong><strong>variation</strong> <strong>and</strong> <strong>change</strong> <strong>in</strong> size <strong>and</strong> shape of <strong>the</strong> skull (Table 2.3). Because few studies havefocused pr<strong>in</strong>cipally on <strong>the</strong> <strong>orbit</strong>, additional measures have been <strong>in</strong>cluded <strong>in</strong> order to betterunderst<strong>and</strong> <strong>modern</strong> <strong>variation</strong>, <strong>evolutionary</strong> <strong>change</strong>, <strong>and</strong> how this feature varies <strong>in</strong> relationto neighbor<strong>in</strong>g craniofacial traits.29


Craniofacial Variables Label L<strong>and</strong>marksMaximum Cranial Length gol (g – op)Basion – Prosthion Length bpl (ba – pr)Maximum Cranial Breadth xbc (eu – eu)M<strong>in</strong>imum Frontal Breadth wfb (ft – ft)Bizygomatic Diameter zyb (zy – zy)Upper Facial Height nph (n – pr)Basion – Bregma Height bbh (ba – b)Nasal Height nlh (n – ns)Basion – Nasion Length bnl (ba – n)Upper Facial Breadth ufb (fmt – fmt)Table 2.1: Cranial <strong>and</strong> facial measurements used <strong>in</strong> this studyOrbital Variable Label L<strong>and</strong>marksOrbital Breadth obb Dacryon (d) – Ectoconchion (ec)Orbital Height obh Distance between <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>almarg<strong>in</strong>s taken at <strong>the</strong> midl<strong>in</strong>e <strong>and</strong> at a right angle to<strong>orbit</strong>al breadthOrbital Frontation obf Angle formed between <strong>the</strong> Frankfurt Horizontal <strong>and</strong>vertical plane of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>sOrbital Volume obv Orbit filled with mustard seed <strong>and</strong> transferred tograduated cyl<strong>in</strong>der. Measured <strong>in</strong> milliliters (mL)1 milliliter (mL) = 1 Cubic Centimeter (cc)Orbital Depth obd Distance from ectoconchion to <strong>the</strong> most posterior po<strong>in</strong>tof <strong>the</strong> anterior open<strong>in</strong>g on <strong>the</strong> optic canalBasion-Sup. Orbit bso Chord from Basion to <strong>the</strong> most superior midpo<strong>in</strong>t on<strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>sBasion-Inf. Orbit bio Chord from Basion to <strong>the</strong> most <strong>in</strong>ferior midpo<strong>in</strong>t of <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>sBi<strong>orbit</strong>al Breadth ekb Ectoconchion (ec) - Ectoconchion (ec)Inter<strong>orbit</strong>al Breadth dkb Dacryon (d) - Dacryon (d)Table 2.2: Orbital measurements used <strong>in</strong> this study30


Indices & Size Estimates Label L<strong>and</strong>marksCranial Index cri xcb * 100 / golOrbital Index obi obb * 100 / obhUpper Facial Index ufi nph * 100 / zybCranial SizeGM crg (gol * xcb * bbh)·³³³³³Orbital SizeGM obg (obb * obh * obd)·³³³³³Table 2.3: Indexes <strong>and</strong> size variables derived from l<strong>in</strong>ear measurementsSize of <strong>the</strong> <strong>orbit</strong> is <strong>in</strong>vestigated us<strong>in</strong>g measurements of <strong>orbit</strong>al volume (obv),<strong>orbit</strong>al depth (obd), distance from basion to <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s (bso,bio), <strong>orbit</strong>al breadth (obb), <strong>orbit</strong>al height (obh) as well as bi-<strong>orbit</strong>al <strong>and</strong> <strong>in</strong>ter<strong>orbit</strong>albreadth (ekb, dkb). A ratio of <strong>orbit</strong>al width/height was created to test for differences <strong>in</strong>shape of <strong>the</strong> exterior marg<strong>in</strong>s (obi), <strong>and</strong> vertical orientation of <strong>the</strong> <strong>orbit</strong> relative to <strong>the</strong>Frankfurt Horizontal Plane facilitates an exam<strong>in</strong>ation of population differences, <strong>and</strong><strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al frontation (obf).Orbital frontation was determ<strong>in</strong>ed by measur<strong>in</strong>g <strong>the</strong> angle formed between a straitvertical l<strong>in</strong>e across <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong> <strong>and</strong> <strong>the</strong> Frankfurt Horizontal Plane (porionto <strong>orbit</strong>ale).This was determ<strong>in</strong>ed <strong>in</strong> 1877 by <strong>the</strong> International Congress ofAnthropologists to be a st<strong>and</strong>ard plane for normal skull orientation (Byrnes, 2007), <strong>and</strong>represents a flat l<strong>in</strong>e that runs parallel to <strong>the</strong> floor <strong>in</strong> most <strong>in</strong>dividuals. However, <strong>the</strong>biological rational of <strong>the</strong> Frankfurt Horizontal Plane (FH) as a way of orient<strong>in</strong>g skulls <strong>in</strong>reference to normal head position has recently come <strong>in</strong>to question (Barash, Marom, 2008;Strait & Ross, 1999).31


In this <strong>in</strong>vestigation <strong>the</strong> FH is not used to determ<strong>in</strong>e “normal” skull position, butra<strong>the</strong>r as a basic st<strong>and</strong>ard reference po<strong>in</strong>t for determ<strong>in</strong><strong>in</strong>g <strong>orbit</strong>al frontation due to itspassage through <strong>orbit</strong>ale on <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s. Orbitale is used as <strong>the</strong> vertexbetween <strong>the</strong> FH <strong>and</strong> a ray runn<strong>in</strong>g across <strong>the</strong> upper <strong>and</strong> lower marg<strong>in</strong>s of <strong>the</strong> <strong>orbit</strong>, <strong>and</strong><strong>the</strong> angle formed between <strong>the</strong>m is measured to determ<strong>in</strong>e <strong>the</strong> degree of vertical rotationof <strong>the</strong> <strong>orbit</strong>s relative to this st<strong>and</strong>ard plane.An important element of underst<strong>and</strong><strong>in</strong>g <strong>orbit</strong>al <strong>variation</strong> <strong>and</strong> <strong>change</strong> <strong>in</strong>volves anestimation of <strong>orbit</strong>al volume, however because <strong>the</strong> posterior <strong>orbit</strong> is composed of th<strong>in</strong>fragile bone, it is often impossible to obta<strong>in</strong> accurate volumetric measurements <strong>in</strong> pasthuman groups dat<strong>in</strong>g to before <strong>the</strong> Neolithic. In <strong>modern</strong> humans <strong>and</strong> non-humanprimates <strong>the</strong> <strong>orbit</strong> is typically <strong>in</strong> good condition <strong>and</strong> rigid enough to allow a directmeasure of its capacity. In <strong>the</strong>se samples, careful volumetric measurements are recordedby l<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>orbit</strong> with a th<strong>in</strong> piece of plastic wrap, fill<strong>in</strong>g it to <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s withmustard seed, <strong>and</strong> <strong>the</strong>n transferr<strong>in</strong>g <strong>the</strong> seed to a graduated cyl<strong>in</strong>der to determ<strong>in</strong>e <strong>the</strong>actual metric volume <strong>in</strong> milliliters.A similar technique was used <strong>in</strong> a recent study of <strong>modern</strong> humans from TohokuJapan (Brown & Maeda, 2004), <strong>and</strong> along with 64 o<strong>the</strong>r craniofacial variables from thisJapanese sample, were made available to researchers on <strong>the</strong> author’s website (Brown P.,1998–2003). Sex differences <strong>in</strong> <strong>orbit</strong>al capacity across different samples of <strong>modern</strong>humans are <strong>in</strong>vestigated <strong>in</strong> chapter 6 of this <strong>the</strong>sis us<strong>in</strong>g <strong>orbit</strong>al volume data collected byBrown <strong>and</strong> Maeda, (2004).A comparison of <strong>the</strong> technique described by <strong>the</strong>se authors <strong>and</strong> that used as part ofthis research <strong>in</strong>dicates that both yield nearly identical results. This ensures that m<strong>in</strong>or32


differences <strong>in</strong> measurement technique will not confound <strong>the</strong> <strong>in</strong>vestigation of populationaff<strong>in</strong>ities. Though <strong>the</strong>se two techniques yield consistent results, because a differentresearcher collected <strong>the</strong>se <strong>orbit</strong>al volume data as part of a separate study, <strong>the</strong> degree of<strong>in</strong>terobserver error cannot be known.In addition to this <strong>orbit</strong>al volume measurement recorded <strong>in</strong> milliliters, a separate<strong>in</strong>dicator of <strong>orbit</strong>al size is used <strong>in</strong> <strong>the</strong> analysis of <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>orbit</strong>almorphology s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong>vestigated <strong>in</strong> chapter 4. This provides anadditional estimate that enables <strong>the</strong> <strong>in</strong>clusion of more <strong>in</strong>dividuals that would o<strong>the</strong>rwise beexcluded due to poor preservation of <strong>the</strong> th<strong>in</strong> bones that make up <strong>the</strong> <strong>in</strong>terior <strong>orbit</strong>.This <strong>orbit</strong>al size variable is derived from <strong>the</strong> geometric mean of <strong>orbit</strong>al height,<strong>orbit</strong>al breadth, <strong>and</strong> <strong>orbit</strong>al depth (Height * Width * Depth)·³³³³³ follow<strong>in</strong>g <strong>the</strong> methods ofGonzález-José et al. (2005). The geometric mean of <strong>the</strong>se three variables provides anestimate of volume, which is <strong>the</strong> same as that of a rectangular prism with side lengthsequal to each measure of <strong>orbit</strong>al depth, width, <strong>and</strong> height. Though <strong>the</strong> <strong>orbit</strong> is more pearshapedthan cuboid, this provides an estimate of its volume when damage to <strong>the</strong> fragilebone of its <strong>in</strong>ternal structure prohibits accurate measure <strong>in</strong> milliliters.In addition to <strong>the</strong>se cont<strong>in</strong>uous traits of <strong>the</strong> face <strong>and</strong> cranium, o<strong>the</strong>r quantitative<strong>and</strong> categorical variables such as age, sex, ancestry, species, <strong>and</strong> time are used foraddress<strong>in</strong>g questions <strong>and</strong> test<strong>in</strong>g hypo<strong>the</strong>ses relat<strong>in</strong>g to <strong>orbit</strong>al development, <strong>in</strong>terspecific<strong>variation</strong>, sex differences, <strong>and</strong> how much <strong>change</strong> is characteristic of this feature throughtime. In most cases sex was listed <strong>in</strong> <strong>the</strong> museum database or written on <strong>in</strong>dividualskulls, though when not available it was estimated us<strong>in</strong>g different skeletal <strong>in</strong>dicators afterBurns (1999), <strong>and</strong> was marked <strong>in</strong>determ<strong>in</strong>ate if a clear dist<strong>in</strong>ction could not be made. In33


this study most research questions <strong>in</strong>volve an <strong>in</strong>vestigation of population <strong>variation</strong> <strong>and</strong><strong>evolutionary</strong> <strong>change</strong> among broader ancestral <strong>and</strong> temporal group<strong>in</strong>gs; as a result sexdeterm<strong>in</strong>ation was primarily done to ensure an equal number of male <strong>and</strong> female adultswith<strong>in</strong> each sample.Age of <strong>the</strong> <strong>in</strong>dividual was also most often <strong>in</strong> <strong>the</strong> registry of each museum wheredata were collected, though if not listed, full eruption of <strong>the</strong> third molar was used todeterm<strong>in</strong>e if <strong>the</strong> <strong>in</strong>dividual was an adult <strong>and</strong> could <strong>the</strong>refore be <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> sample.The only anthropological collection <strong>in</strong> which measurements were taken on <strong>in</strong>dividualsfrom different stages of growth was <strong>in</strong> <strong>the</strong> Dart Collection at <strong>the</strong> University of <strong>the</strong>Witswatersr<strong>and</strong> <strong>in</strong> Johannesburg, South Africa, <strong>and</strong> chronological age was available foreach skull <strong>in</strong> <strong>the</strong> collection. This sample consists of 50 <strong>in</strong>dividuals (age range 0-17 years)from primarily <strong>the</strong> Sotho <strong>and</strong> Zulu tribes of South Africa.The geologic age of ancient hom<strong>in</strong><strong>in</strong> fossils was taken from estimates provided bymultiple authors <strong>and</strong> summarized <strong>in</strong> Schwartz & Tattersall (2002). Dates for more recentskulls from different time periods s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic were taken from <strong>the</strong>museum registry. In many cases <strong>the</strong> general period from which <strong>the</strong>y came was given <strong>in</strong>lieu of a specific date for each skull, <strong>in</strong> which case <strong>the</strong> middle date for this age range wasrecorded.2.2 Measurement errorMeasurements were repeated multiple times on <strong>in</strong>dividual skulls throughout <strong>the</strong>data collection phase of research <strong>in</strong> order to <strong>in</strong>vestigate <strong>the</strong> repeatability of eachmeasurement used <strong>in</strong> <strong>the</strong> analysis. Measurements were repeated on <strong>the</strong> same crania34


upward of 5 times for 23 different skulls at different museums over <strong>the</strong> course of 4 yearsof data collection. In each case dimensions were recorded from a r<strong>and</strong>omly selectedskull, which was <strong>the</strong>n set aside until later <strong>in</strong> <strong>the</strong> day or for <strong>the</strong> follow<strong>in</strong>g day to ensurethat repeated measures wouldn’t be biased by consecutive quantification. Measurementerror was assessed follow<strong>in</strong>g <strong>the</strong> method described <strong>in</strong> White (2000), page 307.Variables of <strong>the</strong> cranium <strong>and</strong> face were found to be slightly more consistent,deviat<strong>in</strong>g only 0.56% from <strong>the</strong> average of each measurement. By comparison, variablesof <strong>the</strong> <strong>orbit</strong> were found to diverge by 1.07% on average. Though most <strong>orbit</strong>al variablesare as accurate or <strong>in</strong> some cases more accurate than those taken from o<strong>the</strong>r features of <strong>the</strong>cranium <strong>and</strong> face, <strong>in</strong>ter<strong>orbit</strong>al breadth, <strong>orbit</strong>al volume, <strong>and</strong> <strong>the</strong> distance from basion to<strong>orbit</strong>ale have measurement errors above 1%, which acts to <strong>in</strong>crease <strong>the</strong> average error for<strong>the</strong>se <strong>orbit</strong>al variables (Tables 2.4 & 2.5).Seeds used to estimate volume of <strong>the</strong> <strong>orbit</strong> were sifted to ensure that each wasroughly <strong>the</strong> same size, <strong>and</strong> <strong>the</strong> same seeds were used at each museum where data werecollected. Additional precautions were taken to ensure that <strong>the</strong> measurement techniquewas consistent throughout, as it was recognized prior to beg<strong>in</strong>n<strong>in</strong>g data collection thatsome error is <strong>in</strong>herent <strong>in</strong> volumetric estimations of <strong>the</strong> <strong>orbit</strong> us<strong>in</strong>g seed, partially due to<strong>the</strong> less well def<strong>in</strong>ed border <strong>in</strong> <strong>the</strong> upper corner of <strong>the</strong> medial <strong>orbit</strong>al marg<strong>in</strong> (Schultz,1940). Even with <strong>the</strong>se precautions <strong>and</strong> <strong>the</strong> meticulousness with which <strong>orbit</strong>al volumewas taken, measurement of this trait is found to be <strong>the</strong> least repeatable of all variables,with an average difference from <strong>the</strong> mean measurement of 2.97%.35


Craniofacial Variables Label ErrorCranial Length gol .68%Cranial Breadth xcb .83%Basion-Bregma Height bbh .44%Basion-Nasion Length bnl .82%Basion-Prosthion Length bpl .51%Nasion-Prosthion Length nph .64%Nasal Height nlh .51%Zygomatic Breadth zyb .07%Average Measurement Error .56%Table 2.4: Measurement error for craniofacial variablesOrbital Variables Label ErrorOrbital Breadth obb .46%Orbital Height obh .54%Inter<strong>orbit</strong>al Breadth dkb 1.36%Bi<strong>orbit</strong>al Breadth ekb .52%Basion-Superior Orbit bso .89%Basion-Orbitale bio 1.21%Orbital Depth obd .74%Orbital Frontation obf .98%Orbital Volume obv 2.97%Average Measurement Error 1.07%Table 2.5: Measurement error for <strong>orbit</strong>al variablesEach chapter of this <strong>the</strong>sis exam<strong>in</strong>es different aspects of <strong>the</strong> <strong>orbit</strong>, focus<strong>in</strong>g on<strong>modern</strong> human <strong>variation</strong>, <strong>the</strong> relationship between <strong>orbit</strong>al morphology <strong>and</strong> neighbor<strong>in</strong>gcraniofacial traits throughout hom<strong>in</strong><strong>in</strong> evolution, <strong>orbit</strong>al <strong>variation</strong> <strong>in</strong> European samplesdat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic, <strong>and</strong> <strong>the</strong> relationship among <strong>the</strong> <strong>eye</strong>ball, <strong>orbit</strong> <strong>and</strong>spherical equivalent refractive error. Because each subdivision uses different samples36


<strong>and</strong> different methods of analysis to test hypo<strong>the</strong>ses <strong>and</strong> address anthropologicalquestions, <strong>the</strong> materials <strong>and</strong> methods section specific to each <strong>in</strong>vestigation is presented at<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of each chapter.37


CHAPTER 3MODERN HUMAN VARIATION IN ORBITAL MORPHOLOGY3.1 SamplesCraniofacial data were collected from skulls of <strong>in</strong>dividuals represent<strong>in</strong>g different<strong>modern</strong> human ancestral groups, <strong>and</strong> analyzed to <strong>in</strong>vestigate differences <strong>in</strong> <strong>orbit</strong>almorphology us<strong>in</strong>g analysis of variance (ANOVA), Mahalanobis’ distance D², <strong>and</strong>canonical discrim<strong>in</strong>ant function analysis. As a result of <strong>variation</strong> <strong>in</strong> overall craniofacialanatomy among populations from Sub-Saharan Africa, Western Europe, <strong>and</strong> East Asia, itis expected that significant differences <strong>in</strong> <strong>the</strong> <strong>orbit</strong> also exist among <strong>the</strong> three samplesused <strong>in</strong> this <strong>in</strong>vestigation. A null hypo<strong>the</strong>sis of no difference is tested us<strong>in</strong>g ANOVA,while Mahalanobis’ distance <strong>and</strong> discrim<strong>in</strong>ant function analysis are used to exam<strong>in</strong>e how<strong>the</strong>se samples differ <strong>in</strong> <strong>orbit</strong>al morphology, <strong>and</strong> to underst<strong>and</strong> to what degree <strong>the</strong> <strong>orbit</strong>svary among groups <strong>in</strong> relation to broader craniofacial form. These samples consist of<strong>in</strong>dividuals from <strong>the</strong> Sotho <strong>and</strong> Zulu tribes from South Africa; <strong>the</strong> cities of Macau,Guangzhou, Hong-Kong, Xiamen, <strong>and</strong> Shangi, which lie south of <strong>the</strong> Yangtze River <strong>in</strong><strong>the</strong> Guangdon <strong>and</strong> Fujian prov<strong>in</strong>ces of Ch<strong>in</strong>a; <strong>and</strong> from France, Germany, Switzerl<strong>and</strong>,<strong>and</strong> Italy <strong>in</strong> Western Europe (Figure 3.1).38


Figure 3.1: Map of regional groups compris<strong>in</strong>g <strong>the</strong> African, European, <strong>and</strong> Asian samplesEach sample conta<strong>in</strong>s nearly equal numbers of male <strong>and</strong> female adults, <strong>and</strong> wasselected to reflect a wider range of <strong>variation</strong> with<strong>in</strong> <strong>the</strong>se regions <strong>in</strong> order to m<strong>in</strong>imizeerror that can result from focus<strong>in</strong>g on only one group from a specific locality. Forsimplicity, <strong>the</strong>se samples will be referred to as African, Asian, <strong>and</strong> European throughout<strong>the</strong> rema<strong>in</strong>der of <strong>the</strong> <strong>the</strong>sis. These data were collected at <strong>the</strong> University of <strong>the</strong>Witswatersr<strong>and</strong> <strong>in</strong> Johannesburg, South Africa, <strong>and</strong> from Le Laboratoire d’AnthropologieBiologique at <strong>the</strong> Musée de l'Homme <strong>in</strong> Paris, France (Table 3.1).39


Sample Sample Size RepositoryAfrican 54 UWAsian 57 MNHNEuropean 68 MNHNUW - Dart collection, University of <strong>the</strong> Witswatersr<strong>and</strong>, Johannesburg, South AfricaMNHN- Laboratoire d’Anthropologie Biologique, Musée de l'Homme, Paris, FranceTable 3.1: Samples used <strong>in</strong> analysis of <strong>orbit</strong>al <strong>variation</strong> among <strong>modern</strong> humans3.2 Statistical analysisMahalanobis’ distance (D²), discrim<strong>in</strong>ant function analysis, <strong>and</strong> analysis ofvariance (ANOVA) are used to <strong>in</strong>vestigate <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphology among <strong>the</strong>three samples listed above. Analysis of variance is used to test <strong>the</strong> null hypo<strong>the</strong>sis of nodifference among groups for each <strong>in</strong>dividual <strong>orbit</strong>al trait, <strong>and</strong> provides an accurate pictureof how <strong>the</strong>se features differ among Africans, Asians, <strong>and</strong> Europeans. However, thismethod is limited <strong>in</strong> its ability to expla<strong>in</strong> overall differences among <strong>the</strong>m. Discrim<strong>in</strong>antfunction analysis <strong>and</strong> Mahalanobis’ D² are able to provide a more comprehensivedepiction of differences <strong>in</strong> skeletal morphology by focus<strong>in</strong>g on a number of traitssimultaneously, <strong>and</strong> because of this advantage are commonly employed <strong>in</strong> comparativeanalyses of <strong>modern</strong> human populations (Aft<strong>and</strong>ilian et al. 1994; Manly, 2004).Assumptions of <strong>the</strong> Mahalanobis’ Generalized Distance procedure (Mahalanobis,1936) are equal covariance with<strong>in</strong> each subdivision, <strong>and</strong> that traits <strong>in</strong> each subpopulationare normally distributed (Lalouel, 1980). It is often difficult to accurately estimate <strong>the</strong>covariance <strong>in</strong> order to check <strong>the</strong> equality assumption, <strong>and</strong> due to <strong>the</strong> nature ofanthropological samples <strong>the</strong> normality assumption is also occasionally not met (Manly,1994; Penrose, 1954; Pietrusewsky, 1999). Large sample sizes help <strong>in</strong>crease <strong>the</strong>40


obusticity of <strong>the</strong> method aga<strong>in</strong>st violation of <strong>the</strong>se assumptions, though even very largesamples can still be affected by non-normality, unequal spreads, <strong>and</strong> <strong>in</strong>accuratecovariance estimates.In general, multivariate analyses are not as robust aga<strong>in</strong>st violations of <strong>the</strong> equalvariance <strong>and</strong> normality assumptions compared to regression analysis <strong>and</strong> ANOVA(Manly, 2004), <strong>and</strong> should <strong>the</strong>refore be validated <strong>in</strong> practice by test<strong>in</strong>g for substantialskewness <strong>and</strong> kurtosis (Lalouel, 1980). As a result, <strong>the</strong>se data were checked formultivariate normality us<strong>in</strong>g PRELIS 2.80 (Jöreskog & Sörbom, 1981-2007) <strong>and</strong> did notshow statistically significant levels of skewness or kurtosis for <strong>the</strong> analysis us<strong>in</strong>g only<strong>orbit</strong>al variables (Chi-Square = 3.178, p = 0.204) or for that us<strong>in</strong>g <strong>orbit</strong>al <strong>and</strong> o<strong>the</strong>rcraniofacial traits (Chi-Square = 0.920, p = 0.631). Additionally, <strong>the</strong> pooled with<strong>in</strong>-classcovariance matrix is used <strong>in</strong> <strong>the</strong> Mahalanobis’ D² analy`sis to reduce <strong>the</strong> chance ofviolat<strong>in</strong>g <strong>the</strong> equal covariance with<strong>in</strong> subdivisions assumption associated with thismethod.An important benefit of <strong>the</strong>se multivariate procedures is that unlike o<strong>the</strong>rs, suchas <strong>the</strong> Penrose size <strong>and</strong> shape test, <strong>the</strong> mean measure of divergence (MMD), <strong>and</strong> multipleregression analysis, Mahalanobis’ D² <strong>and</strong> discrim<strong>in</strong>ant function analysis are able toaccount for <strong>the</strong> <strong>in</strong>tercorrelation of traits. This is important because if covariance amongmeasures are not identified <strong>and</strong> accounted for it can lead to an unequal representation ofvariables.Many functional systems are housed with<strong>in</strong> <strong>the</strong> limited area of <strong>the</strong> human skull,<strong>and</strong> consequently <strong>the</strong> <strong>orbit</strong>s covary with o<strong>the</strong>r traits of <strong>the</strong> face <strong>and</strong> cranium. In fact, <strong>the</strong>exploration of <strong>the</strong>se relationships is an important part of underst<strong>and</strong><strong>in</strong>g <strong>evolutionary</strong>41


<strong>change</strong> <strong>in</strong> <strong>orbit</strong>al anatomy <strong>and</strong> will be exam<strong>in</strong>ed <strong>in</strong> chapters 4 <strong>and</strong> 5 of this <strong>the</strong>sis. Inmultiple regression analysis it is necessary to throw out one of <strong>the</strong> correlated variables,but <strong>the</strong> use of <strong>the</strong>se multivariate statistical methods ensures that potentially valuable datawill not be lost as a result of multicoll<strong>in</strong>earity.Discrim<strong>in</strong>ant function analysis also has <strong>the</strong> added benefit of provid<strong>in</strong>g<strong>in</strong>formation relat<strong>in</strong>g to which traits contribute most to <strong>in</strong>ter-group differences <strong>in</strong>craniofacial <strong>variation</strong>. The relative size of <strong>the</strong> first eigenvalue (λ1) can be used todeterm<strong>in</strong>e <strong>the</strong> amount of sample disparity described by <strong>the</strong> first discrim<strong>in</strong>ant function(Z1), <strong>and</strong> <strong>the</strong>refore which variables are most important for del<strong>in</strong>eat<strong>in</strong>g groups (Manly,2004). Because <strong>the</strong> first few canonical variates account for a large percentage ofpopulation <strong>variation</strong>, <strong>the</strong>se functions can be plotted with <strong>the</strong> groups used <strong>in</strong> <strong>the</strong> analysisto provide a partial graphical depiction of <strong>the</strong> relationships among <strong>the</strong>m. However, plotsof <strong>the</strong>se functions are only meant to provide a partial representation of <strong>the</strong> resultsobta<strong>in</strong>ed from <strong>the</strong> distance analysis (Pietrusewsky, 1999), <strong>and</strong> will not be viewed to <strong>the</strong>exclusion of <strong>the</strong> o<strong>the</strong>r statistical results.3.3 Results of univariate comparisons of <strong>orbit</strong>al variables among groupsThe results of <strong>in</strong>dividual univariate comparisons of morphological features of <strong>the</strong><strong>orbit</strong> among Africans, Asians, <strong>and</strong> Europeans reveal that <strong>the</strong> null hypo<strong>the</strong>sis of nodifference is rejected for most <strong>orbit</strong>al characteristics, with <strong>the</strong> exception of bi<strong>orbit</strong>al (p =0.102) <strong>and</strong> <strong>in</strong>ter<strong>orbit</strong>al breadth (p = 0.585). The null hypo<strong>the</strong>sis can also not be rejectedfor <strong>the</strong> measure of basion-<strong>orbit</strong>ale (p = 0.055) at α = 0.05, though some degree of<strong>variation</strong> is recognizable among <strong>the</strong>se three samples. The rema<strong>in</strong><strong>in</strong>g seven characteristics42


of <strong>the</strong> <strong>orbit</strong> are found to be statistically different among groups, with <strong>the</strong> greatest degreeof difference seen <strong>in</strong> <strong>orbit</strong>al depth, <strong>orbit</strong>al breadth, <strong>and</strong> <strong>orbit</strong>al volume (Table 3.2). How<strong>the</strong> African, Asian, <strong>and</strong> European samples differ with regard to each <strong>orbit</strong>al trait isexam<strong>in</strong>ed below.Orbital Dimension Samples N Mean s.d. F pInter<strong>orbit</strong>al Breadth AfricanAsianEuropean53576822.34122.04722.5352.341.962.170.54 .585Bi<strong>orbit</strong>al BreadthOrbital BreadthOrbital HeightBasion-Superior OrbitBasion-OrbitaleOrbital DepthOrbital VolumeOrbital FrontationAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropeanAfricanAsianEuropean53576853576853576853576853576853576853576853576897.01995.80497.36740.13438.78939.75533.40834.27233.353100.36101.3498.91086.50087.75085.94847.46648.77046.81525.60826.85427.73088.59689.80790.1423.993.343.892.101.511.741.902.111.834.393.674.304.243.884.902.342.462.532.091.822.973.392.692.912.32 .1028.06 .0003.79 .0256.38 .0022.95 .0559.79 .0009.32 .0003.67 .028Table 3.2: Results of one-way ANOVA among African, Asian, <strong>and</strong> European Groups43


3.3.1 Inter<strong>orbit</strong>al breadth <strong>and</strong> bi<strong>orbit</strong>al breadthThough differences among <strong>the</strong>se three samples for <strong>in</strong>ter<strong>orbit</strong>al breadth (dkb) <strong>and</strong>bi<strong>orbit</strong>al breadth (ekb) are not statistically significant, <strong>the</strong> pattern of <strong>variation</strong> <strong>in</strong> <strong>the</strong>relative location of group means is consistent for both measures. It can be seen that <strong>the</strong>European <strong>and</strong> Asian samples show <strong>the</strong> greatest degree of divergence, while <strong>the</strong> meanvalue for <strong>the</strong> African sample falls between <strong>the</strong>se two, <strong>and</strong> shows slightly more aff<strong>in</strong>ity to<strong>the</strong> European group (Figure 3.2).Inter<strong>orbit</strong>al Breadth, Bi<strong>orbit</strong>al Breadth28dkb108AfricanAsianekbEuropean26106104242210210098209694189216AfricanAsian90Europeanancestry - Mean symbol, <strong>in</strong>side box – median confidence <strong>in</strong>terval, outside box – <strong>in</strong>terquartile rangeFigure 3.2: Comparison of <strong>in</strong>ter<strong>orbit</strong>al breadth <strong>and</strong> bi<strong>orbit</strong>al breadth (<strong>in</strong> millimeters)3.3.2 Index of <strong>orbit</strong>al breadth to <strong>orbit</strong>al heightThough not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> above univariate tests of no difference among groupsdue to a violation of <strong>the</strong> normality assumption for <strong>the</strong> Asian sample, a ratio of <strong>orbit</strong>albreadth to <strong>orbit</strong>al height (obb * 100 / obh) provides an <strong>in</strong>dication of <strong>the</strong> relative44


proportions of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s, <strong>and</strong> whe<strong>the</strong>r <strong>the</strong> <strong>orbit</strong> is more circular or rectangular <strong>in</strong>shape. With this <strong>in</strong>dex a large value reflects a horizontally elongated <strong>and</strong> verticallyshorter <strong>orbit</strong> (or a more rectangular shape), <strong>and</strong> a smaller value <strong>in</strong>dicates that <strong>the</strong> <strong>orbit</strong> isrelatively tall <strong>and</strong> narrow (a more rounded shape).This <strong>in</strong>vestigation reveals that <strong>the</strong> African <strong>and</strong> European samples possess similar<strong>orbit</strong>al shapes, but that <strong>the</strong> Asian group is characterized by a much taller <strong>and</strong> narrower<strong>orbit</strong>al outl<strong>in</strong>e. Though it is not practical to perform a significance test for this variabledue to skewness <strong>in</strong> <strong>the</strong> Asian sample, this pattern of <strong>in</strong>ter-group <strong>variation</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong>almarg<strong>in</strong>s is well known <strong>and</strong> is commonly used to determ<strong>in</strong>e ancestry <strong>in</strong> skeletal samplesas a result of common population differences <strong>in</strong> <strong>the</strong> relative size of <strong>orbit</strong>al breadth <strong>and</strong><strong>orbit</strong>al height (White, 2000).140Orbital Index130obi120110100AfricanAsianancestryEuropeanFigure 3.3: Among-group comparison of <strong>orbit</strong>al <strong>in</strong>dex45


3.3.2 Orbital height <strong>and</strong> <strong>orbit</strong>al breadthA closer look at <strong>the</strong> variables that make up this <strong>in</strong>dex reveals that <strong>the</strong> unique<strong>orbit</strong>al shape <strong>in</strong> <strong>the</strong> Asian sample is <strong>the</strong> result of both a larger <strong>orbit</strong>al height <strong>and</strong> smaller<strong>orbit</strong>al breadth compared to Africans <strong>and</strong> Europeans (Figure 3.3). It can also be seenfrom Figures 3.2, 3.3, <strong>and</strong> Table 3.2 that Africans are characterized by <strong>the</strong> opposite<strong>orbit</strong>al shape of that of <strong>the</strong> Asian group, <strong>in</strong> which <strong>the</strong> former possesses a wider morerectangular <strong>orbit</strong>al marg<strong>in</strong> by comparison. This characteristic is primarily <strong>the</strong> result of alarger average <strong>orbit</strong>al breadth <strong>in</strong> <strong>the</strong> African sample, as average <strong>orbit</strong>al height is nearlyidentical between this <strong>and</strong> <strong>the</strong> European group. The European <strong>orbit</strong>al shape is<strong>in</strong>termediate between Africans <strong>and</strong> Asians, but shows much more aff<strong>in</strong>ity to <strong>the</strong> Africansample.Orbital HeightOrbital BreadthAfricanAsianEuropean40.0obh45.0obb37.542.535.040.032.537.530.035.0AfricanAsianEuropeanancestryFigure 3.4: Among-group comparison of <strong>orbit</strong>al height, <strong>orbit</strong>al breadth (mm)46


3.3.4 Basion-superior <strong>orbit</strong> <strong>and</strong> basion-<strong>orbit</strong>aleThe two measurements taken from basion to <strong>the</strong> superior (bso) <strong>and</strong> <strong>in</strong>ferior (bio)marg<strong>in</strong>s of <strong>the</strong> <strong>orbit</strong> yield slightly different results <strong>in</strong> relation to <strong>the</strong> null hypo<strong>the</strong>sis of nodifference among groups, though <strong>the</strong> relative location of <strong>the</strong> mean for Africans, Asians,<strong>and</strong> Europeans is consistent <strong>in</strong> both. A one-way analysis of variance shows that <strong>the</strong> nullhypo<strong>the</strong>sis of no difference among groups is rejected for basion-superior <strong>orbit</strong>(p = 0.002) as a result of <strong>the</strong> greater distance between basion <strong>and</strong> <strong>the</strong> superior <strong>orbit</strong>almarg<strong>in</strong>s <strong>in</strong> <strong>the</strong> Asian group, <strong>and</strong> relatively small length between <strong>the</strong>se po<strong>in</strong>ts <strong>in</strong>Europeans.Though not significantly different, <strong>the</strong>se samples show <strong>the</strong> same pattern of <strong>in</strong>tergroup<strong>variation</strong> <strong>in</strong> basion-<strong>orbit</strong>ale (bio) as that observed for basion-superior <strong>orbit</strong> (bso), <strong>in</strong>which <strong>the</strong> greatest disparity exists between <strong>the</strong> Asian <strong>and</strong> European samples, with <strong>the</strong>African group mean located between <strong>the</strong>se two extremes. The above pattern <strong>in</strong>dicatesthat <strong>the</strong> Asian sample is characterized by a greater degree of <strong>orbit</strong>al projection out awayfrom this mid-cranial po<strong>in</strong>t on <strong>the</strong> base of <strong>the</strong> skull, <strong>and</strong> that <strong>the</strong> <strong>orbit</strong>s are moreposteriorly located <strong>in</strong> <strong>the</strong> European sample.47


Basion-Superior Orbit, Basion-Inferior Orbit110bso100AfricanAsianbioEuropean10595901008595809075AfricanAsianEuropeanancestryFigure 3.5: Among-group comparison of basion-superior <strong>orbit</strong>, basion-<strong>orbit</strong>ale (mm)3.3.5 Orbital depthDepth of <strong>the</strong> <strong>orbit</strong> was obta<strong>in</strong>ed by measur<strong>in</strong>g <strong>the</strong> distance from ectoconchion on<strong>the</strong> lateral edge of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s to <strong>the</strong> most posterior po<strong>in</strong>t on <strong>the</strong> anterior surfaceof <strong>the</strong> optic canal. The null hypo<strong>the</strong>sis of no difference among groups for this <strong>orbit</strong>aldepth variable is rejected (p < 0.000), <strong>and</strong> it can be seen that a relatively large amount of<strong>variation</strong> exists among <strong>the</strong> three samples <strong>in</strong>vestigated (Figure 3.5). As with many of <strong>the</strong>o<strong>the</strong>r <strong>in</strong>ter-group comparisons of <strong>orbit</strong>al morphology, <strong>the</strong> greatest difference <strong>in</strong> <strong>orbit</strong>aldepth is between <strong>the</strong> Asian <strong>and</strong> European samples, <strong>and</strong> aga<strong>in</strong> Africans show more aff<strong>in</strong>ityto <strong>the</strong> European form.The larger <strong>orbit</strong>al depth <strong>in</strong> this Asian sample corresponds with <strong>the</strong> abovemeasures of basion-superior <strong>orbit</strong> <strong>and</strong> basion-<strong>orbit</strong>ale, which were also found to be larger48


<strong>in</strong> this group. Greater projection of <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong>al marg<strong>in</strong>s out from <strong>the</strong> baseof <strong>the</strong> skull would be expected to correlate with an anteroposterior elongation of <strong>the</strong><strong>orbit</strong>s. The consistently higher values for each trait <strong>in</strong> <strong>the</strong> Asian sample, <strong>and</strong> lowervalues <strong>in</strong> <strong>the</strong> European sample are an <strong>in</strong>dication of this relationship.56Orbital Depth545250obd4846444240AfricanAsianancestryEuropeanFigure 3.6: Among-group comparison of <strong>orbit</strong>al depth (mm)3.3.6 Orbital frontationA test of no difference among groups <strong>in</strong> <strong>the</strong> vertical orientation of <strong>the</strong> <strong>orbit</strong>almarg<strong>in</strong>s us<strong>in</strong>g one-way analysis of variance shows that at least two of <strong>the</strong> samples arestatistically different (p = 0.028). It is easily observable that <strong>the</strong> African group has <strong>the</strong>smallest angle formed between <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s <strong>and</strong> <strong>the</strong> Frankfurt Horizontal Plane(Figure 3.6), <strong>and</strong> <strong>in</strong> fact <strong>in</strong>dividual two-sample t-tests show that this angle is statisticallydifferent from both Asians (p = 0.043), <strong>and</strong> Europeans (p = 0.017). Among <strong>the</strong>m, <strong>the</strong><strong>orbit</strong>s are oriented more rostrally <strong>in</strong> <strong>the</strong> European sample.49


98Vertical Angle of Orbital Marg<strong>in</strong>s969492obf9088868482AfricanAsianancestryEuropeanFigure 3.7: Among-group comparison of <strong>orbit</strong>al frontation (angle <strong>in</strong> degrees)3.3.7 Orbital volumeIn this comparison of <strong>orbit</strong>al size, Europeans are found to possess <strong>the</strong> largestvolume as well as <strong>the</strong> highest level of <strong>in</strong>tra-group <strong>variation</strong> (Figure, 3.7). This samplecan be seen to differ most <strong>in</strong> relation to <strong>the</strong> African group, however a two-sample t-testshows that <strong>orbit</strong>al volume is statistically different between <strong>the</strong> European <strong>and</strong> Asiansamples as well (p = 0.003). This pattern of <strong>variation</strong> among group means, <strong>in</strong> whichEuropeans <strong>and</strong> Asians share a more similar morphology to <strong>the</strong> exclusion of Africans, isone of few <strong>orbit</strong>al features shared between <strong>the</strong>se two groups, as most traits have beenfound to differ most between <strong>the</strong> European <strong>and</strong> African samples.50


34Orbital Volume (ml)323028obv26242220AfricanAsianancestryEuropeanFigure 3.8: Among-group comparison of <strong>orbit</strong>al volume (<strong>in</strong> milliliters)Of <strong>the</strong> n<strong>in</strong>e <strong>orbit</strong>al characteristics exam<strong>in</strong>ed <strong>in</strong> this univariate analysis, 67%follow a pattern <strong>in</strong> which <strong>the</strong> greatest mean difference is between <strong>the</strong> Asian <strong>and</strong> Europeansamples with Africans fall<strong>in</strong>g between <strong>the</strong> two. In <strong>orbit</strong>al features with this pattern of<strong>in</strong>ter-group <strong>variation</strong>, Africans are more similar to Europeans 83% of <strong>the</strong> time, <strong>and</strong> onlydraw nearer to <strong>the</strong> Asian sample <strong>in</strong> 17% of comparisons. This general pattern <strong>in</strong>dicatesthat with <strong>the</strong> exception of <strong>orbit</strong>al frontation <strong>and</strong> <strong>orbit</strong>al volume, Africans <strong>and</strong> Europeansshare a more similar morphology to <strong>the</strong> exclusion of <strong>the</strong> Asian sample.This univariate analysis is valuable for test<strong>in</strong>g null hypo<strong>the</strong>ses of no differenceamong groups <strong>in</strong> size, shape, <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>s, <strong>and</strong> to observe patterns of<strong>variation</strong> among <strong>the</strong>m with regard to each <strong>orbit</strong>al feature. However, underst<strong>and</strong><strong>in</strong>g <strong>the</strong>relative contribution of each trait to correct-group classification, <strong>in</strong>terpret<strong>in</strong>g populationaff<strong>in</strong>ities, <strong>and</strong> visualiz<strong>in</strong>g <strong>orbit</strong>al <strong>variation</strong> is made easier with <strong>the</strong> use of multivariate51


statistical tools. In <strong>the</strong> next section <strong>the</strong> above n<strong>in</strong>e traits are comb<strong>in</strong>ed to <strong>in</strong>vestigate<strong>orbit</strong>al morphology among <strong>the</strong>se African, Asian, <strong>and</strong> European samples us<strong>in</strong>gMahalanobis’ distance <strong>and</strong> canonical discrim<strong>in</strong>ant function analysis. Additionally,<strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al characteristics among <strong>the</strong>se groups is assessed <strong>in</strong> <strong>the</strong> context ofbroader differences <strong>in</strong> craniofacial anatomy.3.4 Results of multivariate analyses of <strong>orbit</strong>al morphology among groups3.4.1 Canonical discrim<strong>in</strong>ant function analysisA multiple discrim<strong>in</strong>ant function analysis was carried out us<strong>in</strong>g n<strong>in</strong>emeasurements of <strong>the</strong> <strong>orbit</strong> to <strong>in</strong>vestigate how well <strong>the</strong>se traits dist<strong>in</strong>guish among <strong>the</strong>African, Asian, <strong>and</strong> European samples used <strong>in</strong> this analysis. The st<strong>and</strong>ardized canonicaldiscrim<strong>in</strong>ant function coefficients are used to <strong>in</strong>vestigate which traits contribute most togroup separation, <strong>and</strong> Mahalanobis’ distance matrices to exam<strong>in</strong>e overall differencesamong groups when all <strong>orbit</strong>al characteristics are considered collectively. A discrim<strong>in</strong>antfunction analysis is also performed us<strong>in</strong>g <strong>the</strong>se n<strong>in</strong>e <strong>orbit</strong>al variables as well as n<strong>in</strong>eadditional measurements of <strong>the</strong> neurocranium, mid, <strong>and</strong> lower face, to <strong>in</strong>vestigate <strong>the</strong>contribution of <strong>the</strong> <strong>orbit</strong> to group separation with regard to o<strong>the</strong>r aspects of humancraniofacial anatomy.Prior to <strong>the</strong> <strong>in</strong>vestigation, checks of normality, skewness, kurtosis, <strong>and</strong> <strong>the</strong>presence of outliers were carried out for each <strong>in</strong>dependent variable used <strong>in</strong> this analysis,both with<strong>in</strong> groups <strong>and</strong> with all groups comb<strong>in</strong>ed. A few outliers were identified, thoughwhen checked aga<strong>in</strong>st <strong>the</strong> orig<strong>in</strong>al datasheet most were found to be record<strong>in</strong>g errors. Thefew that were not record<strong>in</strong>g errors were determ<strong>in</strong>ed to be a natural part of <strong>the</strong> <strong>variation</strong>52


<strong>and</strong> were kept <strong>in</strong> <strong>the</strong> dataset, however <strong>the</strong>y were not found to have considerable <strong>in</strong>fluenceon <strong>the</strong> distribution <strong>and</strong> mean for those variables. Additionally, as stated <strong>in</strong> <strong>the</strong> materials<strong>and</strong> methods section at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of this chapter, a check of multivariate normalitywas carried out us<strong>in</strong>g <strong>the</strong> PRELIS 2.80 statistical software package (Jöreskog & Sörbom,1981-2007), which did not show statistically significant levels of skewness or kurtosis for<strong>the</strong>se <strong>orbit</strong>al variables (Chi-Square = 3.178, p = 0.204).The correlation matrix is used <strong>in</strong> place of <strong>the</strong> variance-covariance matrix <strong>in</strong> thisanalysis as a result of different units for <strong>orbit</strong>al frontation (<strong>in</strong> degrees) <strong>and</strong> <strong>orbit</strong>al volume(<strong>in</strong> milliliters), while all o<strong>the</strong>r variables were measured <strong>in</strong> millimeters. Because <strong>the</strong>canonical discrim<strong>in</strong>ant function coefficients will not reliably assess <strong>the</strong> relativecontribution of <strong>the</strong> predictor variables if <strong>the</strong> <strong>in</strong>dependents are highly correlated,multicoll<strong>in</strong>earity <strong>in</strong> <strong>the</strong> pooled with<strong>in</strong>-groups correlation matrix of <strong>the</strong> <strong>in</strong>dependentvariables was assessed.As a general rule of thumb multicoll<strong>in</strong>earity is not a problem as long as <strong>the</strong>re areno variables <strong>in</strong> <strong>the</strong> correlation matrix with r > 0.90 <strong>and</strong> not several with r > 0.80 (Garson,2008). That criterion is met for this analysis, <strong>and</strong> it can be seen <strong>in</strong> <strong>the</strong> correlation matrix(Table 3.3), that <strong>the</strong>re are no variables with r > 0.90, only one with r > .80 (bso/bio), <strong>and</strong>one with a correlation greater than 0.70 (ekb/dkb). Differences between <strong>the</strong> structurematrix <strong>and</strong> discrim<strong>in</strong>ant function coefficients will also be evaluated as a safeguard aga<strong>in</strong>stmulticoll<strong>in</strong>earity.53


Correlation obbobhobdobvobfekbdkbbsobioobb obh obd obv obf ekb dkb bso bio1.000 .183 .216 .399 .088 .734 .006 .313 .199.183 1.000 -.098 .133 -.067 .166 .017 .029 -.179.216 -.098 1.000 .603 .052 .456 .228 .508 .477.399 .133 .603 1.000 .175 .586 .295 .510 .373.088 -.067 .052 .175 1.000 .031 -.058 .143 -.177.734 .166 .456 .586 .031 1.000 .570 .520 .444.006 .017 .228 .295 -.058 .570 1.000 .322 .346.313 .029 .508 .510 .143 .520 .322 1.000 .835.199 -.179 .477 .373 -.177 .444 .346 .835 1.000Table 3.3: Pooled with<strong>in</strong>-groups correlation matrixThe eigenvalue <strong>and</strong> Wilks’ lambda tables provide <strong>in</strong>formation about <strong>the</strong> efficacyof each discrim<strong>in</strong>ant function, or how well <strong>the</strong>y separate cases <strong>in</strong>to <strong>the</strong>ir respectivegroups. The characteristic roots of <strong>the</strong> discrim<strong>in</strong>ant functions <strong>in</strong>dicate that <strong>the</strong> firstaccounts for 60% <strong>and</strong> <strong>the</strong> second for 40% of <strong>the</strong> total variance (Table 3.4). The lowWilks’ lambda significance value result<strong>in</strong>g from <strong>the</strong> chi-square statistic tests shows that<strong>the</strong> canonical roots do far better than chance at separat<strong>in</strong>g groups, <strong>and</strong> that <strong>the</strong> model as awhole is effective (Table 3.5).Function12CanonicalEigenvalue % of Variance Cumulative % Correlation.674 59.8 59.8 .635.452 40.2 100.0 .558Table 3.4: Eigenvalues <strong>and</strong> percent of variance expla<strong>in</strong>ed by each function54


Test of Function(s)1 through 22Wilks'Lambda Chi-square df Sig..411 119.051 18 .000.689 50.001 8 .000Table 3.5: Wilks' lambda <strong>and</strong> Chi-square tests for each discrim<strong>in</strong>ant functionThe st<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficients are used todeterm<strong>in</strong>e <strong>the</strong> relative importance of each <strong>in</strong>dependent variable to group classification.Coefficients with large absolute values correspond to traits with a greater discrim<strong>in</strong>at<strong>in</strong>gability, <strong>and</strong> because <strong>the</strong>y are st<strong>and</strong>ardized it is possible to compare <strong>the</strong> relative weight ofvariables measured on different scales.This analysis reveals that <strong>orbit</strong>al volume (obv), distance from basion to <strong>the</strong>superior (bso) <strong>and</strong> <strong>in</strong>ferior marg<strong>in</strong> of <strong>orbit</strong> (bio), as well as <strong>orbit</strong>al depth (obd) are mostimportant for <strong>the</strong>ir unique contribution to <strong>the</strong> first discrim<strong>in</strong>ant function (Table 3.6).Along <strong>the</strong> second vector <strong>orbit</strong>al breadth (obb) has <strong>the</strong> greatest discrim<strong>in</strong>at<strong>in</strong>g ability, asdo bi<strong>orbit</strong>al breadth (ekb), <strong>in</strong>ter<strong>orbit</strong>al breadth (dkb), <strong>orbit</strong>al frontation (obf), <strong>orbit</strong>alheight (obh), <strong>and</strong> aga<strong>in</strong> <strong>the</strong> distance from basion to <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>almarg<strong>in</strong>s, though <strong>in</strong> <strong>the</strong> second discrim<strong>in</strong>ant function <strong>the</strong> relative contribution of <strong>the</strong>sevariables is reversed.55


obbobhobdobvobfekbdkbbsobioFunction1 2.425 -1.219.166 .666.802 .278-1.082 .026-.361 .656-.583 .719.254 -.6781.273 -.715-.791 .997Table 3.6: St<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficientsThe structure coefficients represent simple correlations between <strong>the</strong> <strong>in</strong>dependentvariables <strong>and</strong> <strong>the</strong> discrim<strong>in</strong>ant functions <strong>and</strong> do not measure <strong>the</strong> unique, controlledassociation of <strong>the</strong> discrim<strong>in</strong>at<strong>in</strong>g variables, as do <strong>the</strong> st<strong>and</strong>ardized discrim<strong>in</strong>antcoefficients. Because <strong>the</strong> structure coefficients show <strong>the</strong> order of importance ofdiscrim<strong>in</strong>at<strong>in</strong>g variables by total correlation <strong>in</strong> multiple discrim<strong>in</strong>ant function analysis,<strong>the</strong>y can also be used to assess <strong>the</strong> relative importance of each <strong>in</strong>dependent variable oneach dimension, <strong>and</strong> along with <strong>the</strong> functions at group centroids table, are helpful <strong>in</strong>assign<strong>in</strong>g mean<strong>in</strong>gful labels to <strong>the</strong>se functions.This analysis <strong>in</strong>dicates that <strong>orbit</strong>al volume, <strong>and</strong> distance from basion to <strong>the</strong>superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s are most strongly correlated with <strong>the</strong> firstdiscrim<strong>in</strong>ant function (Table 3.7). However, it should be noted that <strong>the</strong> contribution ofbasion-<strong>orbit</strong>ale (bio) may be due <strong>in</strong> part to coll<strong>in</strong>earity with <strong>the</strong> measure of basionsuperior<strong>orbit</strong> (bso), as it was found that basion-<strong>orbit</strong>ale had a high Wild’s lambda value,was not statistically different among groups <strong>in</strong> <strong>the</strong> above univariate analysis (p = 0.055),56


<strong>and</strong> <strong>the</strong>refore is not expected to contribute appreciably to <strong>the</strong> model. The largestcorrelates with <strong>the</strong> second discrim<strong>in</strong>ant function are <strong>orbit</strong>al breadth, <strong>orbit</strong>al frontation,<strong>orbit</strong>al height, <strong>and</strong> bi<strong>orbit</strong>al breadth. Orbital depth is found to correlate ra<strong>the</strong>r stronglywith both discrim<strong>in</strong>ant functions <strong>in</strong> <strong>the</strong> structure matrix.obvbsobioobbobfobdobhekbdkbFunction1 2-.381 .139.332 .160.200 .149-.020 -.469-.192 .304.268 .286.131 .283-.066 -.219-.052 -.117ancestry_11.0002.0003.000Function1 2.641 -.781.488 .836-1.164 -.074Table 3.7: Structure matrixTable 3.8: Functions at group centroidsPlott<strong>in</strong>g <strong>in</strong>dividual cases on <strong>the</strong> axes formed by <strong>the</strong> two discrim<strong>in</strong>ant functions, <strong>in</strong>association with <strong>the</strong> structure matrix <strong>and</strong> group centroids tables, gives a graphicalrepresentation of which traits contribute most to group separation along each dimensionof <strong>the</strong> canonical roots (Figure 3.9). Along <strong>the</strong> axis of <strong>the</strong> first discrim<strong>in</strong>ant function it isclear that <strong>the</strong> African <strong>and</strong> Asian samples are more similar to <strong>the</strong> exclusion of Europeans,which is predom<strong>in</strong>antly a product of <strong>the</strong> large negative value for <strong>orbit</strong>al volume (obv) <strong>in</strong><strong>the</strong> first function (Table 3.7).The distance between basion <strong>and</strong> <strong>the</strong> superior (bso) <strong>and</strong> <strong>in</strong>ferior (bio) marg<strong>in</strong>s of<strong>the</strong> <strong>orbit</strong> also account for much of <strong>the</strong> difference between Europeans relative to <strong>the</strong> o<strong>the</strong>rtwo groups. This is <strong>in</strong>dicated by <strong>the</strong> high positive value of <strong>the</strong>se two <strong>in</strong>dependent57


variables <strong>in</strong> <strong>the</strong> first discrim<strong>in</strong>ant function of <strong>the</strong> structure matrix, <strong>and</strong> <strong>the</strong> location of <strong>the</strong>European group centroids more toward <strong>the</strong> negative end of Function 1 (Figure 3.9).O<strong>the</strong>r contributors to <strong>the</strong> separation of Europeans along <strong>the</strong> first dimension are a smaller<strong>orbit</strong>al depth <strong>and</strong> a more obtuse angle formed by <strong>the</strong> vertical plane of <strong>the</strong> <strong>orbit</strong> relative to<strong>the</strong> Frankfort Horizontal.4Function 23210321AncestryAfricanAsianEuropeanGroup Centroid-1-2-3-4-2024Function 1Figure 3.9: Plot of <strong>in</strong>dividuals <strong>and</strong> group centroids along each discrim<strong>in</strong>ant axisAlong <strong>the</strong> second dimension, <strong>orbit</strong>al breadth contributes considerably to groupseparation <strong>and</strong> shows that Africans <strong>and</strong> Asians are most divergent along this axis,<strong>in</strong>dicat<strong>in</strong>g between <strong>the</strong>m a wider <strong>and</strong> narrow <strong>orbit</strong>al breadth, respectively. Inter<strong>orbit</strong>al58


<strong>and</strong> bi<strong>orbit</strong>al breadth also follow this same pattern <strong>in</strong> which both traits are wider <strong>in</strong>Africans <strong>and</strong> narrower <strong>in</strong> Asians. The position of <strong>the</strong> Asian group centroid toward <strong>the</strong>positive end of <strong>the</strong> second dimension also <strong>in</strong>dicates that this sample has a more frontated<strong>orbit</strong>al plane, a deeper <strong>orbit</strong>al depth, <strong>and</strong> a larger <strong>orbit</strong>al height with respect to <strong>the</strong> o<strong>the</strong>rgroups, <strong>and</strong> particularly <strong>in</strong> comparison with <strong>the</strong> African sample. These relationshipscorroborate <strong>the</strong> differences observed among groups <strong>in</strong> <strong>the</strong> previous section us<strong>in</strong>g one-wayanalysis of variance.3.4.2 Mahalanobis’ distance analysisA Mahalanobis’ distance analysis also highlights <strong>the</strong> pattern of between-groupaff<strong>in</strong>ities described <strong>in</strong> <strong>the</strong> previous univariate comparison of <strong>the</strong>se <strong>orbit</strong>al variables. Forexample, <strong>in</strong> <strong>the</strong> last section Asians <strong>and</strong> Europeans displayed <strong>the</strong> most dissimilarity <strong>in</strong>67% of comparisons. This pattern is reiterated <strong>in</strong> this multivariate analysis, which showsthat <strong>the</strong> Asian <strong>and</strong> European samples have <strong>the</strong> highest distance value, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong>greatest overall disparity between groups (Table 3.9).Samples Asian EuropeanAfrican 1.80745 3.19353Asian 3.70921Table 3.9: Mahalanobis’ distance between-groups comparisonsIn <strong>the</strong> previous section it was determ<strong>in</strong>ed that Africans are more similar toEuropeans <strong>in</strong> 83% of comparisons, which is not <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> above Mahalanobis’59


distance matrix, which shows <strong>the</strong> African <strong>and</strong> Asian samples to be most similar <strong>in</strong> <strong>orbit</strong>almorphology. However, this is primarily <strong>the</strong> result of <strong>the</strong> large disparity <strong>in</strong> <strong>orbit</strong>al volumebetween <strong>the</strong> African <strong>and</strong> European samples. When <strong>orbit</strong>al volume is not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong>analysis <strong>and</strong> distance is determ<strong>in</strong>ed by <strong>the</strong> o<strong>the</strong>r 8 variables, it is found that overall <strong>orbit</strong>almorphology is most similar between <strong>the</strong> African <strong>and</strong> European groups (Table 3.10).Samples Asian EuropeanAfrican 1.98795 0.88047Asian 2.31137Table 3.10: D² between-groups comparisons (<strong>orbit</strong>al volume excluded)These univariate <strong>and</strong> multivariate analyses <strong>in</strong>dicate that several <strong>modern</strong> humanpopulations exhibit differences <strong>in</strong> size, shape, <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>. However, <strong>the</strong>plot of canonical discrim<strong>in</strong>ant functions does not fully separate <strong>the</strong>m <strong>in</strong>to clearlydist<strong>in</strong>guishable groups, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>se samples possess some level of shared <strong>orbit</strong>almorphology. In <strong>the</strong> next section, additional cranial <strong>and</strong> facial variables are added to <strong>the</strong>discrim<strong>in</strong>ant analysis to exam<strong>in</strong>e <strong>the</strong> relative importance of <strong>the</strong> <strong>orbit</strong>s to group separation,<strong>and</strong> to assess whe<strong>the</strong>r <strong>the</strong> same pattern of <strong>in</strong>ter-group differentiation exists whencompar<strong>in</strong>g <strong>the</strong>se samples us<strong>in</strong>g more traits that reflect broader differences <strong>in</strong> craniofacialanatomy.60


3.5 Populations <strong>variation</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong> <strong>and</strong> broader craniofacial anatomy3.5.1 Canonical discrim<strong>in</strong>ant function analysisAdditional cranial <strong>and</strong> facial variables were added to this discrim<strong>in</strong>ant functionanalysis to <strong>in</strong>vestigate how well <strong>orbit</strong>al characteristics del<strong>in</strong>eate groups <strong>in</strong> <strong>the</strong> context ofbroader craniofacial anatomy. Inter<strong>orbit</strong>al <strong>and</strong> bi<strong>orbit</strong>al breadth were not <strong>in</strong>cluded <strong>in</strong> thisexp<strong>and</strong>ed study because <strong>the</strong>y were found to be highly correlated with zygomatic breadth,<strong>orbit</strong>al breadth, upper facial breadth, <strong>and</strong> to some extent each o<strong>the</strong>r. Additionally, aprelim<strong>in</strong>ary <strong>in</strong>vestigation that <strong>in</strong>cluded <strong>the</strong>se two variables with <strong>the</strong> o<strong>the</strong>r 14 craniofacialtraits showed that <strong>the</strong>y do not substantially contribute to group separation. Basion-nasionlength <strong>and</strong> basion-<strong>orbit</strong>ale were also removed because of multicoll<strong>in</strong>earity <strong>and</strong> <strong>the</strong>ir lackof contribution to <strong>the</strong> model.It is clear from <strong>the</strong> low Wilks’ lambda <strong>and</strong> associated significance values <strong>in</strong> <strong>the</strong>tests of equality of group means table that craniofacial traits as a whole are much morevariable <strong>in</strong> relation to most <strong>orbit</strong>al characteristics among <strong>the</strong>se three samples (Table3.11). For example, with <strong>the</strong> exception of maximum cranial length (gol), me<strong>and</strong>ifferences are considerably larger for all o<strong>the</strong>r cranial <strong>and</strong> facial traits with regard tothose of <strong>the</strong> <strong>orbit</strong>. Variables with <strong>the</strong> most potential for discrim<strong>in</strong>at<strong>in</strong>g between groupsare maximum cranial breadth (xcb), upper facial breadth (ufb), nasal height (nlh), <strong>and</strong>cranial height (bbh).61


golxcbzybbbhbplufbnphnlhobbobhobdobvobfbsoWilks'Lambda F df1 df2 Sig..943 4.083 2 135 .019.412 96.189 2 135 .000.692 29.979 2 135 .000.672 32.943 2 135 .000.851 11.850 2 135 .000.565 52.023 2 135 .000.803 16.567 2 135 .000.611 42.918 2 135 .000.906 6.999 2 135 .001.958 2.950 2 135 .056.901 7.444 2 135 .001.926 5.364 2 135 .006.941 4.199 2 135 .017.909 6.773 2 135 .002Table 3.11: Tests of equality of group meansThe eigenvalues <strong>and</strong> Wilks’ lambda tables produced by this extended discrim<strong>in</strong>antanalysis show that <strong>the</strong> first canonical root alone is highly effective at classify<strong>in</strong>g cases<strong>in</strong>to <strong>the</strong>ir respective ancestral group (Tables 3.12 & 3.13). This is <strong>in</strong>dicated by <strong>the</strong> largeeigenvalue <strong>and</strong> percentage of variance expla<strong>in</strong>ed by <strong>the</strong> first dimension. The secondfunction, which is orthogonal to <strong>the</strong> first, expla<strong>in</strong>s less of <strong>the</strong> <strong>variation</strong> but is alsostatistically significant (p < 0.000), <strong>and</strong> <strong>the</strong> large canonical correlation coefficients showthat each is highly correlated with ancestral groups, <strong>and</strong> accounts for much of <strong>the</strong>variability <strong>in</strong> discrim<strong>in</strong>ant scores.62


Function12EigenvalueCanonical% of Variance Cumulative % Correlation3.253 65.3 65.3 .8751.726 34.7 100.0 .796Table 3.12: Eigenvalues <strong>and</strong> percent of variance expla<strong>in</strong>ed by each functionTest of Function(s)1 through 22Wilks'Lambda Chi-square df Sig..086 314.920 28 .000.367 128.887 13 .000Table 3.13: Wilks' lambda <strong>and</strong> Chi-square tests for each discrim<strong>in</strong>ant functionTraits with <strong>the</strong> greatest discrim<strong>in</strong>at<strong>in</strong>g ability for <strong>the</strong> first canonical root <strong>in</strong> <strong>the</strong>st<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficients table are upper facial breadth(ufb), nasal height (nlh), maximum cranial length (gol), <strong>and</strong> <strong>orbit</strong>al breadth (Table 3.14).For <strong>the</strong> second discrim<strong>in</strong>ant function, maximum cranial breadth (xcb), zygomatic breadth(zyb), <strong>and</strong> cranial height (bbh) are non-<strong>orbit</strong>al craniofacial traits that contribute most togroup separation, while <strong>orbit</strong>al volume (obv) <strong>and</strong> <strong>orbit</strong>al depth (obd) are also importantvariables <strong>in</strong> this dimension.Orbital frontation (obf) <strong>and</strong> basion-superior <strong>orbit</strong> (bso) also add to <strong>the</strong>discrim<strong>in</strong>ation of groups along <strong>the</strong> first <strong>and</strong> second functions, respectively. This <strong>in</strong>dicatesthat despite <strong>the</strong> greater degree of <strong>variation</strong> among <strong>modern</strong> human populations <strong>in</strong>63


non-<strong>orbit</strong>al cranial <strong>and</strong> facial traits, as <strong>in</strong>dicated by <strong>the</strong> test of equality of means table(Table 3.11), characteristics of <strong>the</strong> <strong>orbit</strong> also vary <strong>and</strong> are useful for assign<strong>in</strong>g cases to<strong>the</strong>ir appropriate group.golxcbzybbbhbplufbnphnlhobbobhobdobvobfbsoFunction1 2-.499 .083.296 -.981.079 .551.277 .516.029 .171.745 .136-.261 .081.651 .243-.486 -.331-.059 .262-.062 .494-.128 -.545.300 .232-.216 -.387Table 3.14: St<strong>and</strong>ardized canonical discrim<strong>in</strong>ant function coefficientsThe structure matrix, functions at group centroids table, <strong>and</strong> plot of <strong>in</strong>dividualsalong <strong>the</strong> discrim<strong>in</strong>ant dimensions help to visualize <strong>and</strong> assign mean<strong>in</strong>gful labels to <strong>the</strong>secanonical roots (Tables 3.15, 3.16, <strong>and</strong> Figure 3.10). One can see a clear trend along <strong>the</strong>first dimension <strong>in</strong> which Asians <strong>and</strong> Europeans are characterized by a much broader <strong>and</strong>taller cranium, as well as a taller <strong>and</strong> more orthognathic face <strong>in</strong> relation to <strong>the</strong> Africansample. Orbital characteristics that contribute to separation along <strong>the</strong> first discrim<strong>in</strong>antaxis are <strong>orbit</strong>al breadth (obb), <strong>orbit</strong>al frontation (obf), <strong>and</strong> <strong>orbit</strong>al volume (obv), although<strong>the</strong>ir contribution relative to o<strong>the</strong>r craniofacial traits is limited.64


xcbufbnlhzybbbhbplobbobfobvgolobdbsonphobhFunction1 2.550 -.505.486 -.043.398 .265.359 .119.319 .302-.206 .147-.148 -.136.138 -.002.133 -.112-.127 .068.014 .252-.032 .237.219 .228.056 .139AncestryAfricanAsianEuropeanFunction1 2-2.442 -.0581.234 1.5361.380 -1.688Table 3.16: Functions at group centroidsTable 3.15: Structure matrixIn contrast to <strong>the</strong> first discrim<strong>in</strong>ant function, which separates <strong>the</strong> African groupfrom <strong>the</strong> o<strong>the</strong>r two, <strong>the</strong> second divides <strong>the</strong> European from <strong>the</strong> Asian sample. Along thisdimension, <strong>the</strong> primary difference between <strong>in</strong>dividuals from Asia <strong>and</strong> Europe relates to<strong>variation</strong> <strong>in</strong> height <strong>and</strong> width of <strong>the</strong> cranium <strong>and</strong> length of <strong>the</strong> face. However, outside of<strong>the</strong>se few disparate features, characteristics of <strong>the</strong> <strong>orbit</strong>s contribute more to separationalong <strong>the</strong> second discrim<strong>in</strong>ant axis than <strong>the</strong> first, <strong>and</strong> show that Europeans possess larger<strong>and</strong> wider <strong>orbit</strong>s <strong>in</strong> contrast to <strong>the</strong> relatively tall, narrow, <strong>and</strong> deep <strong>orbit</strong>s of <strong>the</strong> Asiansample.65


Function 242012AncestryAfricanAsianEuropeanGroupCentroid3-2-4-6-4-20Function 124Figure 3.10: Plot of <strong>in</strong>dividuals <strong>and</strong> group centroids along each discrim<strong>in</strong>ant axisThe first discrim<strong>in</strong>ant function primarily separates groups based on features of <strong>the</strong>face <strong>and</strong> cranium, while separation along <strong>the</strong> second dimension is largely <strong>the</strong> result ofdifferences <strong>in</strong> <strong>orbit</strong>al morphology. This pattern shows that <strong>the</strong> second discrim<strong>in</strong>antfunction captures much of <strong>the</strong> same pattern of population <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphologydescribed <strong>in</strong> both <strong>the</strong> univariate analysis of variance, <strong>and</strong> discrim<strong>in</strong>ant function analysiswhen only <strong>orbit</strong>al traits were used.3.5.2 Mahalanobis’ distance analysisWhen <strong>orbit</strong>al along with o<strong>the</strong>r craniofacial traits were <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> abovediscrim<strong>in</strong>ant function analysis, Asians <strong>and</strong> Europeans were most similar to <strong>the</strong> exclusion66


of <strong>the</strong> African sample, however once <strong>the</strong>se common features of <strong>the</strong> face <strong>and</strong> craniumwere accounted for by <strong>the</strong> first canonical root, <strong>the</strong> European <strong>and</strong> Asian groups became<strong>the</strong> most divergent. Along this second dimension <strong>the</strong> African sample was locatedbetween Asians <strong>and</strong> Europeans, <strong>and</strong> showed slightly more aff<strong>in</strong>ity to <strong>the</strong> Europeansample. This reversal <strong>in</strong> <strong>in</strong>ter-group aff<strong>in</strong>ity is also <strong>in</strong>dicated by a comparison of <strong>the</strong>Mahalanobis’ D² matrices when all variables are considered (Table 3.17), <strong>and</strong> when onlytraits of <strong>the</strong> <strong>orbit</strong> are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis (Table 3.18).Samples Asian EuropeanAfrican 20.9960 31.2139Asian 15.4776Table 3.17: D² between-groups comparisons (<strong>orbit</strong>al <strong>and</strong> o<strong>the</strong>r craniofacial traits)Samples Asian EuropeanAfrican 1.80745 3.19353Asian 3.70921Table 3.18: D² between-groups comparisons (<strong>orbit</strong>al traits only)3.6 SummaryMorphological characteristics of <strong>the</strong> <strong>orbit</strong> that are most variable among <strong>the</strong>African, Asian, <strong>and</strong> European samples <strong>in</strong>clude <strong>orbit</strong>al volume (obv), <strong>orbit</strong>al depth (obd),basion-superior <strong>orbit</strong> (bso), <strong>and</strong> <strong>orbit</strong>al breadth (obb), <strong>and</strong> are also those that contributemost to group separation <strong>in</strong> <strong>the</strong> multivariate analyses. Inter<strong>orbit</strong>al breadth (dkb), bi<strong>orbit</strong>al67


eadth (ekb), <strong>and</strong> basion-<strong>orbit</strong>ale (bio) were not found to be statistically different among<strong>the</strong>se samples, however <strong>the</strong> low significance value for basion-<strong>orbit</strong>ale <strong>in</strong> a one-wayanalysis of variance (p = 0.055) <strong>in</strong>dicates that some degree of divergence exists among<strong>the</strong>m. Additionally, while a significance test was not carried out for “shape” of <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>s, it is clear that general differences exist among groups. The most notabledifference is between <strong>the</strong> Asian <strong>and</strong> African samples, <strong>in</strong> which <strong>the</strong> former possesses high<strong>and</strong> narrow <strong>orbit</strong>s (a more rounded shape), <strong>and</strong> <strong>the</strong> latter is characterized by lower <strong>and</strong>wider <strong>orbit</strong>al marg<strong>in</strong>s (a more rectangular shape).The above univariate <strong>and</strong> multivariate analyses <strong>in</strong>dicate that <strong>orbit</strong>al morphology isvariable among Asian, African, <strong>and</strong> European populations, however fewer differencesexist among <strong>the</strong>m <strong>in</strong> relation to overall craniofacial form. The higher Wilks’ lambda <strong>and</strong>lower significance values of non-<strong>orbit</strong>al traits (Table 3.11), as well as <strong>the</strong> greater degreeof separation among groups <strong>in</strong> <strong>the</strong> discrim<strong>in</strong>ant functions plot (Figure 3.10), <strong>and</strong>Mahalanobis’ distance matrix (table 3.17), <strong>in</strong>dicate that less <strong>variation</strong> exists amongAfrican, Asian, <strong>and</strong> European populations <strong>in</strong> <strong>orbit</strong>al morphology relative to o<strong>the</strong>r traits of<strong>the</strong> face <strong>and</strong> cranium.Although both sets of features are useful for ascrib<strong>in</strong>g <strong>in</strong>dividuals to <strong>the</strong>irappropriate ancestral group, <strong>the</strong> different patterns of aff<strong>in</strong>ity among <strong>the</strong>m whencraniofacial traits are used, <strong>and</strong> when only <strong>orbit</strong>al traits are used <strong>in</strong> <strong>the</strong> analysis, <strong>in</strong>dicatesthat <strong>the</strong>se features do not vary <strong>in</strong> strict association with adjacent anatomical units <strong>in</strong><strong>modern</strong> humans. If size <strong>and</strong> shape of <strong>the</strong> <strong>orbit</strong>s were determ<strong>in</strong>ed solely by contiguouscraniofacial characteristics, it is expected that <strong>the</strong> same relationship would exist amongeach sample regardless of which suite of traits are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis. This <strong>in</strong>dicates68


that <strong>the</strong> <strong>orbit</strong> is not tightly <strong>in</strong>tegrated with <strong>the</strong> skull as a whole, but suggests <strong>in</strong>stead thatthis feature <strong>in</strong>teracts multifariously with different structural <strong>and</strong> functional components of<strong>the</strong> face <strong>and</strong> cranium.Though <strong>the</strong> <strong>orbit</strong>s vary somewhat <strong>in</strong>dependently of adjacent traits across <strong>modern</strong>human groups, this feature would be expected to vary <strong>in</strong> association with neighbor<strong>in</strong>gcranial <strong>and</strong> facial features throughout hom<strong>in</strong><strong>in</strong> evolution as a result of marked <strong>change</strong>s <strong>in</strong>craniofacial form that occur dur<strong>in</strong>g this 5-7 million year time period. In <strong>the</strong> next chapter,<strong>the</strong> relationship between <strong>orbit</strong>al <strong>and</strong> contiguous craniofacial characteristics will beexam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of long-term trends of encephalization <strong>and</strong> reduced facialprognathism dur<strong>in</strong>g human evolution.69


CHAPTER 4EVOLUTIONARY CHANGE IN THE HOMININ ORBIT4.1 SamplesData were obta<strong>in</strong>ed from past hom<strong>in</strong><strong>in</strong> groups <strong>and</strong> a sample of Pan troglodytes to<strong>in</strong>vestigate temporal <strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> <strong>the</strong>ir relationship to neighbor<strong>in</strong>g features <strong>in</strong><strong>the</strong> context of long-term trends of cranial expansion <strong>and</strong> facial reduction. Measurementswere taken on skulls of wild-shot chimpanzees from Abong Mbong, Ebolwa, <strong>and</strong>Djaposten, Cameroon, kept at <strong>the</strong> Clevel<strong>and</strong> Museum of Natural History. This sample,characterized by a more ancestral cranial <strong>and</strong> facial form, is used as an outgroup <strong>in</strong> orderto underst<strong>and</strong> <strong>orbit</strong>al morphology <strong>in</strong> an earlier phase of hom<strong>in</strong><strong>in</strong> evolution.Though chimpanzees have certa<strong>in</strong>ly undergone <strong>evolutionary</strong> <strong>change</strong>s s<strong>in</strong>ce <strong>the</strong>bifurcation of <strong>the</strong>se two l<strong>in</strong>eages, <strong>the</strong>y possess many ancestral features characteristic ofearly hom<strong>in</strong><strong>in</strong>s. Dur<strong>in</strong>g human evolution, a marked <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> size has occurred <strong>in</strong>association with a reduction <strong>in</strong> tooth size <strong>and</strong> <strong>the</strong> degree of facial prognathism. The smallbra<strong>in</strong> <strong>and</strong> highly prognathic face of <strong>modern</strong> chimpanzees represents an earlier level ofmorphological complexity. Includ<strong>in</strong>g this species as an early representative of this gradeshift <strong>in</strong> hom<strong>in</strong><strong>in</strong> craniofacial form allows for a better underst<strong>and</strong><strong>in</strong>g of how <strong>the</strong> <strong>orbit</strong>varies <strong>in</strong> association with <strong>the</strong>se long-term <strong>evolutionary</strong> trends.70


Craniofacial measurements were taken on <strong>the</strong> orig<strong>in</strong>al fossils of Australopi<strong>the</strong>cusafricanus (STS 5, STS 71, STW 505) at <strong>the</strong> University of <strong>the</strong> Witswatersr<strong>and</strong> <strong>in</strong>Johannesburg, South Africa, to represent an early hom<strong>in</strong><strong>in</strong> grade <strong>in</strong> this analysis. Tocapture <strong>variation</strong> <strong>in</strong> craniofacial form <strong>in</strong> hom<strong>in</strong><strong>in</strong>s with a greater degree ofencephalization <strong>and</strong> reduced lower facial projection, craniometric data were obta<strong>in</strong>edfrom <strong>the</strong> orig<strong>in</strong>al fossil of Homo erectus (SK 847) at <strong>the</strong> University of <strong>the</strong>Witswatersr<strong>and</strong>, from a cast of Homo erectus at <strong>the</strong> Clevel<strong>and</strong> Museum of NaturalHistory, <strong>and</strong> from published measurements taken from <strong>the</strong> orig<strong>in</strong>al fossils of KNM-ER3733 <strong>and</strong> KNM-ER 3883 (Wood, 1991).Recent studies have found that despite many differences between anatomically<strong>modern</strong> humans <strong>and</strong> Ne<strong>and</strong>erthals, <strong>the</strong> latter has reta<strong>in</strong>ed a number of archaic traits <strong>in</strong>midsagittal shape of <strong>the</strong> face <strong>and</strong> cranium (Bruner, Manzi, Arsuga, 2003; Bruner et al.2004). Because of <strong>the</strong> greater projection of <strong>the</strong> midface <strong>and</strong> more ancestral cranium <strong>in</strong>this species, casts of three Ne<strong>and</strong>erthal skulls were measured at <strong>the</strong> University of <strong>the</strong>Witswatersr<strong>and</strong> to represent an archaic Homo grade.Four skulls of <strong>in</strong>dividuals represent<strong>in</strong>g anatomically <strong>modern</strong> humans from <strong>the</strong>European Upper Paleolithic were measured at <strong>the</strong> Musée de l'Homme <strong>in</strong> Paris, <strong>and</strong> at <strong>the</strong>Musée d’Anthropologie Préhistorique <strong>in</strong> Monte Carlo, Monaco. These <strong>in</strong>clude Grottedes Enfants 4 & 5, Cro-Magnon 1, <strong>and</strong> <strong>the</strong> exceptionally well-preserved Abri Pataud 1.Individuals <strong>in</strong> this sample possess large crania <strong>and</strong> retracted faces that sit below <strong>the</strong>anterior cranial fossa, considered autapomorphies of anatomically <strong>modern</strong> Homo sapiens(Bastir et al. 2008; Lieberman, 2002).71


This sample represents <strong>the</strong> most morphologically complex form <strong>in</strong> this analysis ofcorrelations between <strong>the</strong> <strong>orbit</strong>, cranium, <strong>and</strong> lower face, <strong>and</strong> was chosen <strong>in</strong> lieu of arecent <strong>modern</strong> human sample because a major anthropological question concerns how <strong>the</strong><strong>orbit</strong> <strong>change</strong>s <strong>in</strong> association with <strong>in</strong>creased cranial size <strong>and</strong> reduced facial lengththroughout hom<strong>in</strong><strong>in</strong> evolution. S<strong>in</strong>ce <strong>the</strong> Upper Paleolithic, <strong>and</strong> particularly through <strong>the</strong>Holocene, cranial capacities have decreased by 95 –165 mL for males <strong>and</strong> 74 – 106 mLfor females (Henneberg, 1988). Because of this more recent decrease <strong>in</strong> cranial size, <strong>the</strong>Upper Paleolithic group represents more accurately <strong>the</strong> last grade <strong>in</strong> this series, <strong>and</strong> isused to represent more <strong>modern</strong> skulls characterized by a greater degree ofencephalization <strong>and</strong> reduced facial prognathism (Table 4.1).Species Sample Size Actual/Cast RepositoryPan troglodytes 30 Actual CMNHAustralopi<strong>the</strong>cus africanus 3 Actual UW/TMHomo erectus 4 Actual/Cast UW/CMNH*Archaic Homo 3 Casts UWAnatomically <strong>modern</strong> Homo sapiens 4 Actual/Casts MNHN/MAMCUW - University of <strong>the</strong> Witswatersr<strong>and</strong>, Johannesburg, South AfricaMNHN - Muséum national d'Histoire naturelle, Musée de l'Homme Paris, FranceMAMC- Musée d’Anthropologie Préhistorique, Monte Carlo, MonacoTM - Transvaal Museum, Pretoria, South AfricaCMNH – Clevel<strong>and</strong> Museum of Natural History, Clevel<strong>and</strong>, Ohio, USA* Measurements for KNM-ER 3733 <strong>and</strong> KNM-ER 3883 from Wood (1991)Table 4.1: Samples used <strong>in</strong> <strong>in</strong>vestigation of cranial, lower facial, <strong>and</strong> <strong>orbit</strong>al <strong>change</strong>4.2 Statistical analysisIn this chapter, <strong>the</strong> above samples are used to <strong>in</strong>vestigate how <strong>orbit</strong>al morphologyvaries <strong>in</strong> association with long-term trends of encephalization <strong>and</strong> reduced facial72


prognathism, characteristic of hom<strong>in</strong><strong>in</strong> craniofacial evolution. It is predicted that <strong>the</strong><strong>orbit</strong>s vary <strong>in</strong> conjunction with <strong>the</strong>se converg<strong>in</strong>g features of <strong>the</strong> skull, <strong>and</strong> that specific<strong>change</strong>s result from <strong>the</strong> posterior movement of <strong>the</strong> face, <strong>and</strong> expansion of <strong>the</strong> cranium outover <strong>the</strong> <strong>orbit</strong>s dur<strong>in</strong>g this long period of <strong>evolutionary</strong> <strong>change</strong>. Cranial size <strong>in</strong> thistemporal series is estimated from <strong>the</strong> geometric mean of cranial length, cranial breadth,<strong>and</strong> cranial height (length * breadth * height)·³³³³³, <strong>and</strong> lower facial projection as <strong>the</strong>distance from basion to prosthion.Four <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>al morphology are predicted to occur <strong>in</strong> association wi<strong>the</strong>ncephalization <strong>and</strong> reduced facial prognathism. A null hypo<strong>the</strong>sis of no relationship istested with separate regression analyses for each <strong>orbit</strong>al variable aga<strong>in</strong>st measures ofcranial size <strong>and</strong> facial prognathism, <strong>and</strong> is rejected if <strong>the</strong> relationship is significant at α =0.05, <strong>and</strong> if <strong>the</strong> direction of this co<strong>variation</strong> is <strong>in</strong> agreement with <strong>the</strong> a priori predictions.Because cranial size <strong>in</strong>creases while facial prognathism decreases throughouthuman evolution, <strong>and</strong> because <strong>the</strong>se two variables are highly correlated <strong>in</strong> this dataset(Pearson correlation = -0.948, p < 0.0000), a ratio of Cranial Size to Facial Projection, ora Craniofacial Index (CFI), is used to <strong>in</strong>vestigate how <strong>the</strong> <strong>orbit</strong>s vary with <strong>the</strong>se features<strong>in</strong> each regression analysis. This <strong>in</strong>dex captures long-term trends of encephalization <strong>and</strong>reduced facial prognathism <strong>in</strong> <strong>the</strong> sample, <strong>and</strong> represents <strong>in</strong>dividuals with large crania<strong>and</strong> retracted faces (a more <strong>modern</strong> craniofacial form) with a high CFI, <strong>and</strong> <strong>in</strong>dividualswith small crania <strong>and</strong> large project<strong>in</strong>g faces (characteristic of earlier hom<strong>in</strong><strong>in</strong> evolution)with a low CFI.Because each species, <strong>and</strong> even temporal groups with<strong>in</strong> <strong>the</strong> same species, are notof equal morphological size, all l<strong>in</strong>ear measurements were size-adjusted prior to <strong>the</strong>73


analysis. This was done to remove any confound<strong>in</strong>g effects of size difference amongspecies <strong>and</strong> to allow <strong>the</strong> comparison of <strong>orbit</strong>al traits, which would o<strong>the</strong>rwise simplyreflect overall size differences among groups. This adjustment was carried out bydivid<strong>in</strong>g each <strong>in</strong>dividual by <strong>the</strong> geometric mean of 11 variables of <strong>the</strong> skull, follow<strong>in</strong>g <strong>the</strong>methods of Jungers et al. (1995). This technique is part of <strong>the</strong> Mosimann framework(Darroch & Mosimann, 1985), which has been effectively applied <strong>in</strong> a number ofdifferent studies (exp. Ackerman, 2005; González-José et al. 2005; Lieberman et al.2000) <strong>and</strong> is superior to o<strong>the</strong>r methods of size-adjustment <strong>in</strong>clud<strong>in</strong>g C-scores, residualadjustments, <strong>and</strong> discard<strong>in</strong>g <strong>the</strong> first pr<strong>in</strong>cipal component (PC1) of <strong>the</strong> logged variancecovariancematrix (Jungers et al. 1995).4.3 Evolutionary <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> face <strong>and</strong> craniumIn this chapter <strong>the</strong> <strong>orbit</strong> is exam<strong>in</strong>ed among samples represent<strong>in</strong>g different gradesof <strong>variation</strong> <strong>in</strong> relative size of <strong>the</strong> cranium <strong>and</strong> face to <strong>in</strong>vestigate how this feature varies<strong>in</strong> relation to long-term <strong>change</strong>s <strong>in</strong> craniofacial anatomy <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage. It ispresumed that <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> patterned ways <strong>in</strong> association with trends ofencephalization <strong>and</strong> reduced facial prognathism as a result of morphological <strong>in</strong>tegrationamong <strong>the</strong>se structural <strong>and</strong> functional cranial components dur<strong>in</strong>g <strong>evolutionary</strong>morphogenesis (Bruner, 2007; Lieberman, McBratney, Krovitz, 2002; Lieberman,Krovitz, McBratney, 2004; Moss & Young, 1960). More specifically, it is predicted that<strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s move posteriorly, <strong>the</strong> vertical angle of <strong>the</strong> <strong>orbit</strong> becomes morefrontated, <strong>and</strong> that <strong>the</strong> <strong>orbit</strong> becomes vertically shortened <strong>and</strong> horizontally elongated as<strong>the</strong> face retreats <strong>and</strong> <strong>the</strong> bra<strong>in</strong> exp<strong>and</strong>s <strong>and</strong> grows out over <strong>the</strong> <strong>eye</strong>s.74


A decrease <strong>in</strong> <strong>orbit</strong>al depth <strong>and</strong> <strong>orbit</strong>al volume is also predicted <strong>in</strong> associationwith <strong>the</strong>se craniofacial trends, though due to poor preservation of <strong>the</strong> <strong>in</strong>ternal <strong>orbit</strong> ofmost hom<strong>in</strong><strong>in</strong> fossils it is not currently possible to test <strong>the</strong>se predictions. However, morerecent <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal anatomy of <strong>the</strong> <strong>orbit</strong> <strong>in</strong>clud<strong>in</strong>g depth <strong>and</strong>volume will be <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> next chapter. Change <strong>in</strong> <strong>the</strong>se <strong>and</strong> o<strong>the</strong>r features of <strong>the</strong><strong>orbit</strong> are <strong>in</strong>vestigated among Western European groups dat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic,which are characterized by better preservation of <strong>the</strong> <strong>orbit</strong>al anatomy <strong>and</strong> are made up oflarger samples with<strong>in</strong> each temporal group.Encephalization <strong>and</strong> reduced facial prognathism are two trends that bestcharacterize craniofacial <strong>change</strong> dur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution. These large-scale shifts <strong>in</strong>skeletal anatomy <strong>in</strong>volve an absolute <strong>and</strong> relative <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> size, <strong>and</strong> a reduction<strong>in</strong> <strong>the</strong> face, both <strong>in</strong> terms of its size relative to <strong>the</strong> bra<strong>in</strong>, <strong>and</strong> its anterior-posterior positionrelative to <strong>the</strong> cranial base (Lieberman, Krovitz, McBratney, 2004). These trends ofrelative size <strong>in</strong>crease <strong>in</strong> <strong>the</strong> crania, <strong>and</strong> decrease <strong>in</strong> relative size of <strong>the</strong> lower face areeasily observable across Pan, Australopi<strong>the</strong>cus, <strong>and</strong> Homo (Figures 4.1 <strong>and</strong> 4.2).75


190Boxplot of Cranial Size vs Time180170Cranial Size160150140130120ChimpanzeeAustralopi<strong>the</strong>cusHomo erectusArchaic HomoHomo sapiensFigure 4.1: Grade shift <strong>in</strong> relative cranial size <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage190Boxplot of Facial Projection vs Time180170Facial Projection160150140130120110100ChimpanzeeAustralopi<strong>the</strong>cusHomo erectusArchaic HomoHomo sapiensFigure 4.2: Grade shift <strong>in</strong> relative facial prognathism <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage (mm)76


Size Adjusted Feature Species N Mean s.d.Cranial Size Pan troglodytes 30 131.29 4.27Australopi<strong>the</strong>cus 2 151.83 10.55Homo erectus 2 158.60 3.15Archaic Homo 3 165.58 2.68Homo sapiens 4 180.89 2.23Facial Prognathism Pan troglodytes 30 169.60 6.34Australopi<strong>the</strong>cus 2 165.99 9.31Homo erectus 2 133.00 9.05Archaic Homo 3 125.54 7.66Homo sapiens 4 119.00 11.40Table 4.2: Descriptive statistics: relative cranial size <strong>and</strong> facial prognathismPredictions relat<strong>in</strong>g to how <strong>orbit</strong>al anatomy is expected to vary <strong>in</strong> association with<strong>the</strong>se long-term craniofacial trends <strong>in</strong> hom<strong>in</strong><strong>in</strong> evolution are evaluated by test<strong>in</strong>g a nullhypo<strong>the</strong>sis of no relationship between <strong>orbit</strong>al features <strong>and</strong> contiguous craniofacialcharacteristics among chimpanzees <strong>and</strong> hom<strong>in</strong><strong>in</strong> species with vary<strong>in</strong>g degrees ofencephalization <strong>and</strong> facial prognathism. The null hypo<strong>the</strong>sis of no relationship betweenfeatures of <strong>the</strong> <strong>orbit</strong> <strong>and</strong> adjacent craniofacial traits was tested us<strong>in</strong>g separate regressionanalyses with each <strong>orbit</strong>al trait as <strong>the</strong> dependent variable, <strong>and</strong> an <strong>in</strong>dex of cranial size tofacial prognathism as <strong>the</strong> <strong>in</strong>dependent variable.4.4 Predicted <strong>change</strong>s <strong>in</strong> anatomical features of <strong>the</strong> <strong>orbit</strong>Most mammalian species <strong>in</strong>clud<strong>in</strong>g non-human primates, are characterized bylong faces <strong>and</strong> low slop<strong>in</strong>g foreheads that protect a bra<strong>in</strong> positioned beh<strong>in</strong>d <strong>the</strong> <strong>orbit</strong>s(Enlow & Hans, 1996). However, throughout hom<strong>in</strong><strong>in</strong> evolution <strong>the</strong> cranial base has77


flexed <strong>in</strong> association with neurocranial expansions while <strong>the</strong> alveolar process <strong>and</strong>nasomaxillary complex have shifted posteriorly toward <strong>the</strong>m, to <strong>the</strong> extent that <strong>in</strong>anatomically <strong>modern</strong> humans <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> lower face are tucked up under <strong>the</strong> anteriorcranial base (Lieberman, McBratney, Krovitz, 2002; Lieberman, Ross, Ravosa, 2000;Bastir et al. 2008). These <strong>change</strong>s raise questions concern<strong>in</strong>g how size, shape, <strong>and</strong>orientation of <strong>the</strong> <strong>orbit</strong>s <strong>change</strong> <strong>in</strong> association with <strong>the</strong> coalescence of <strong>the</strong>se craniofacialcharacteristics dur<strong>in</strong>g human evolution.Three specific <strong>change</strong>s are predicted <strong>in</strong> <strong>the</strong> external anatomy of <strong>the</strong> <strong>orbit</strong>s <strong>in</strong>association with encephalization <strong>and</strong> reduced facial prognathism throughout <strong>the</strong> evolutionof <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage. These, along with a summary of null hypo<strong>the</strong>ses tested, are listedbelow.1) It is predicted that facial reduction contributes to a posterior migration of <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>s relative to basion, with most of this backward movementoccurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong>ferior segment as a result of its shared anatomy with <strong>the</strong>nasomaxillary complex. The superior <strong>orbit</strong>al marg<strong>in</strong>s are also projected to moveposteriorly as <strong>the</strong> entire face retreats, however <strong>the</strong>y are assumed to vary less <strong>in</strong>association with CFI as a result of cranial expansion above <strong>the</strong> <strong>orbit</strong>s, whichwould act to restrict posterior movement of <strong>the</strong> upper <strong>orbit</strong>al region.2) The expected result of differential movement <strong>in</strong> <strong>the</strong> relative position of <strong>the</strong>superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s is a more obtuse angle of <strong>the</strong> <strong>orbit</strong> relative to<strong>the</strong> Frankfurt Horizontal Plane. Frontation of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s is predicted tooccur as <strong>the</strong> bra<strong>in</strong> fills <strong>the</strong> space above <strong>the</strong> <strong>orbit</strong>s, while at <strong>the</strong> same time lowerfacial retraction moves <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s posteriorly. Increased <strong>orbit</strong>al78


frontation as a response to an <strong>in</strong>crease <strong>in</strong> relative bra<strong>in</strong> size <strong>and</strong>/or a reduction <strong>in</strong>palatal length <strong>and</strong> maxillary recession has been suggested by Cartmill (1970), <strong>and</strong>Ross (1995).3) Lastly, it is predicted that <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s become shorter <strong>and</strong> wider <strong>in</strong>response to <strong>the</strong> posterior migration of <strong>the</strong> face <strong>and</strong> forward movement of <strong>the</strong>cranium out over <strong>the</strong> <strong>orbit</strong>s, result<strong>in</strong>g <strong>in</strong> <strong>the</strong>ir becomes horizontally elongated <strong>and</strong>vertical compressed, or more rectangular <strong>in</strong> shape.4.4.1 Summary of predictions <strong>and</strong> null hypo<strong>the</strong>ses1) Predicted Result – Negative relationship between basion-superior <strong>orbit</strong>, basion<strong>orbit</strong>ale<strong>and</strong> <strong>the</strong> craniofacial <strong>in</strong>dex (CFI)Ho: No relationship between basion-superior <strong>orbit</strong> vs. CFIHo: No relationship between basion-<strong>orbit</strong>ale vs. CFI2) Predicted Result – Positive relationship between <strong>orbit</strong>al frontation <strong>and</strong> CFIHo: No relationship between <strong>orbit</strong>al frontation vs. CFI3) Predicted Result – Positive relationship between <strong>orbit</strong>al breadth <strong>and</strong> CFI– Negative relationship between <strong>orbit</strong>al height <strong>and</strong> CFI– Positive relationship between Orbital Index <strong>and</strong> CFIHo: No relationship between <strong>orbit</strong>al size/shape <strong>and</strong> CFI4.5 Results of regression analyses: <strong>orbit</strong>al variables vs. craniofacial <strong>in</strong>dexThe result of <strong>the</strong>se regression analyses <strong>in</strong>dicate that <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> relation tocranial expansion <strong>and</strong> reduced facial prognathism, <strong>and</strong> that predicted <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>almorphology as a result of <strong>the</strong>ir position between <strong>the</strong>se converg<strong>in</strong>g traits, are supported by<strong>the</strong> direction <strong>and</strong> strength of <strong>the</strong>se relationships (Table 4.3).79


Variables N Coefficient t p R²1) Basion-Superior Orbit 43 -0.10072 -2.35 0.023 11.90%Basion-Orbitale 43 -0.22840 -6.97 0.000 54.20%2) Orbital Frontation 41 0.11823 4.04 0.000 29.50%3) Orbital Breadth 44 0.08667 6.83 0.000 51.40%Orbital Height 44 -0.05741 -4.48 0.000 31.30%Orbital Index 44 0.40793 8.92 0.000 64.40%Table 4.3: Results of regression analyses, <strong>orbit</strong>al variables vs. craniofacial Index (CFI)The null hypo<strong>the</strong>sis of no <strong>change</strong> <strong>in</strong> position of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s is rejected forboth basion-superior <strong>orbit</strong> (p = 0.023) <strong>and</strong> basion-<strong>orbit</strong>ale (p < 0.000), <strong>and</strong> it can be seenfrom <strong>the</strong> lower level of significance <strong>and</strong> smaller R² value that <strong>the</strong> superior <strong>orbit</strong>al marg<strong>in</strong>svary less <strong>in</strong> association with <strong>change</strong>s <strong>in</strong> <strong>the</strong> face <strong>and</strong> cranium. This dichotomy between<strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s is also apparent when <strong>the</strong>se traits are regressedseparately aga<strong>in</strong>st cranial size <strong>and</strong> facial length (Table 4.4).Cranial SizeFacial PrognathismOrbital Variables t p R² t p R²Basion-Sup. Orbit -0.86 0.395 1.8% 3.22 0.002 19.8%Basion-Orbitale -4.68 0.000 34.8% 10.66 0.000 73.0%Orbital Frontation 4.78 0.000 37.0% -4.19 0.000 30.5%Orbital Breadth 6.24 0.000 46.4% -7.45 0.000 55.2%Orbital Height -4.80 0.000 33.9% 2.88 0.006 15.5%Orbital Index 8.63 0.000 62.4% -7.68 0.000 56.7%Table 4.4: Regression analysis of <strong>orbit</strong>al variables vs. cranial size & facial projection80


Both <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al components are positively correlated withfacial prognathism, to <strong>the</strong> extent that reduction <strong>in</strong> this feature expla<strong>in</strong>s 73% of <strong>the</strong>variance <strong>in</strong> basion-<strong>orbit</strong>ale, though only about 20% <strong>in</strong> basion-superior <strong>orbit</strong>. Basion<strong>orbit</strong>aleis also reduced <strong>in</strong> association with an <strong>in</strong>crease <strong>in</strong> cranial size, but this relationshipis not found to be significant <strong>in</strong> regard to <strong>the</strong> superior <strong>orbit</strong>al marg<strong>in</strong>s (p = 0.395). This<strong>in</strong>congruity is likely <strong>the</strong> result of cranial expansion offsett<strong>in</strong>g <strong>the</strong> posterior retraction of<strong>the</strong> upper <strong>orbit</strong>al area.The null hypo<strong>the</strong>sis of no <strong>change</strong> <strong>in</strong> vertical orientation of <strong>the</strong> <strong>orbit</strong> is alsorejected (p < 0.000), as <strong>the</strong> <strong>orbit</strong> becomes more frontated <strong>in</strong> association with <strong>in</strong>creasedcranial size <strong>and</strong> decreased facial prognathism. The relationship between <strong>the</strong> <strong>orbit</strong>al angle<strong>and</strong> <strong>the</strong>se craniofacial features is also found to be approximately equal, <strong>in</strong>dicat<strong>in</strong>g that<strong>orbit</strong>al frontation may be equally <strong>in</strong>fluenced by expansion of <strong>the</strong> frontal lobes above, <strong>and</strong>retraction of <strong>the</strong> maxilla below <strong>the</strong>se features.In addition to <strong>the</strong> role of cranial expansion <strong>and</strong> reduced lower facial protrusion <strong>in</strong><strong>in</strong>creas<strong>in</strong>g <strong>the</strong> <strong>orbit</strong>al angle among members of this gradistic scheme, basicranial flexure(Ross & Ravosa, 1993) <strong>and</strong> a more orthograde posture (Daebelow, 1929), which <strong>in</strong>creasedur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution, have also been proposed as factors <strong>in</strong>fluenc<strong>in</strong>g <strong>orbit</strong>alorientation (Lieberman et al. 2000). For example, significant negative correlations havebeen found between <strong>the</strong> cranial base angle <strong>and</strong> degree of <strong>orbit</strong>al frontation amonghaplorh<strong>in</strong>es (r = -0.43) <strong>and</strong> anthropoids (r = -0.52), mean<strong>in</strong>g that <strong>the</strong> <strong>orbit</strong>s become morefrontated <strong>in</strong> species with a greater degree of cranial base flexure (Ross, 1995).81


Ross (1995) also f<strong>in</strong>ds a relationship between orthogrady <strong>and</strong> <strong>orbit</strong>al frontation <strong>in</strong>strepsirh<strong>in</strong>es <strong>and</strong> platyrrh<strong>in</strong>es, though a causal relationship between <strong>the</strong>se variables wasnot supported. Ra<strong>the</strong>r, <strong>orbit</strong>al frontation is considered to be more <strong>the</strong> result of <strong>in</strong>creasedcranial base flexure <strong>and</strong> enlargement of <strong>the</strong> temporal lobes, which help expla<strong>in</strong> <strong>the</strong>extreme frontation of <strong>the</strong> <strong>orbit</strong>s <strong>in</strong> anthropoids. The current research also corroborates<strong>the</strong>se f<strong>in</strong>d<strong>in</strong>g, as it is <strong>the</strong> species with larger crania, <strong>and</strong> more developed frontal lobes(Bruner, 2003; Wu et al. 2007) that also possess <strong>the</strong> highest <strong>orbit</strong>al angle. However,<strong>the</strong>se data also suggest that reduced facial prognathism is an important contributor to <strong>the</strong>degree of <strong>orbit</strong>al frontation, at least among hom<strong>in</strong><strong>in</strong>s, though certa<strong>in</strong>ly <strong>the</strong> effects oforthogrady, cranial base flexure, expansion of <strong>the</strong> frontal lobes, <strong>and</strong> posterior movementof <strong>the</strong> maxilla are not mutually exclusive.It was predicted that <strong>orbit</strong>al height would decrease <strong>and</strong> <strong>orbit</strong>al breadth <strong>in</strong>crease <strong>in</strong>association with <strong>the</strong> cranium exp<strong>and</strong><strong>in</strong>g out over <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> <strong>the</strong> lower face migrat<strong>in</strong>gposteriorly toward <strong>the</strong>m over <strong>the</strong> course of human evolution. This is supported by asignificant positive relationship between <strong>the</strong> CFI <strong>and</strong> <strong>orbit</strong>al breadth (p < 0.000), <strong>and</strong> anegative relationship between CFI <strong>and</strong> <strong>orbit</strong>al height (p < 0.000). The result of this shift<strong>in</strong> relative size between <strong>orbit</strong>al height <strong>and</strong> <strong>orbit</strong>al breadth is a more rectangular shape of<strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s.Compar<strong>in</strong>g skulls of Australopithicus africanus <strong>and</strong> anatomically <strong>modern</strong> humansfrom <strong>the</strong> European Upper Paleolithic, which display <strong>orbit</strong>al features characteristic ofearlier <strong>and</strong> later hom<strong>in</strong><strong>in</strong>s, respectively, it can be seen that <strong>the</strong> <strong>orbit</strong>s become morerectangular <strong>and</strong> appear to slope <strong>in</strong>ferolaterally away from nasion (Figure 4.3). Change <strong>in</strong>82


<strong>the</strong> <strong>orbit</strong>al angle <strong>in</strong> <strong>the</strong> coronal plane was not <strong>in</strong>vestigated as part of this research, thoughviewed anteriorly members of this later grade appear to possess on <strong>orbit</strong>al shape <strong>and</strong>orientation that differs from those of earlier forms.Frontal view of Sts 5 Frontal View of Cro-Magnon 1Figure 4.3: Comparison of <strong>orbit</strong>al shape: Australopi<strong>the</strong>cus africanus vs. Homo sapiensThis midfacial configuration characterized by short <strong>and</strong> elongated <strong>orbit</strong>s that slopemoderately downward away from nasion, is also observable <strong>in</strong> anatomically <strong>modern</strong>humans from Far East Asia dat<strong>in</strong>g to <strong>the</strong> Mesolithic period (Figure 4.4).83


Figure 4.4: Image of Sh<strong>and</strong><strong>in</strong>gdong (Upper Cave) - From Brown (1998-2005)The similar shape <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>s <strong>in</strong> skulls of <strong>in</strong>dividuals from <strong>the</strong>Upper Paleolithic <strong>and</strong> Mesolithic <strong>in</strong> both Europe <strong>and</strong> <strong>the</strong> Far East <strong>in</strong>dicate that a commonpattern of temporal <strong>change</strong> <strong>in</strong> craniofacial anatomy that occurs follow<strong>in</strong>g this generaltime period <strong>in</strong> Europe, Asia, Africa, <strong>and</strong> Australia (Brown 1987; Brown & Maeda, 2004;Carlson, 1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Henneberg & Steyn,1993; Lahr & Wright, 1996; Smith et al. 1985, 1986; Wu et al. 2007), may haveorig<strong>in</strong>ated earlier, <strong>and</strong> <strong>in</strong> response to cranial expansion <strong>and</strong> posterior movement ofprosthion <strong>and</strong> <strong>the</strong> entire nasomaxillary complex dur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution.4.6 SummaryThroughout hom<strong>in</strong><strong>in</strong> evolution a considerable <strong>in</strong>crease <strong>in</strong> cranial size has occurred<strong>in</strong> association with a reduction <strong>in</strong> facial size <strong>and</strong> prognathism. Variation <strong>in</strong> <strong>orbit</strong>almorphology has not previously been <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> context of <strong>the</strong>se morphologicalshifts, but is important to underst<strong>and</strong> as a result of <strong>the</strong> <strong>orbit</strong>s position amid <strong>the</strong> exp<strong>and</strong><strong>in</strong>g84


neurocranium <strong>and</strong> retract<strong>in</strong>g lower face. This current <strong>in</strong>vestigation reveals that <strong>the</strong> <strong>orbit</strong>almarg<strong>in</strong>s vary <strong>in</strong> association with <strong>the</strong>se long-term <strong>evolutionary</strong> <strong>change</strong>s, becom<strong>in</strong>gvertically shorter, horizontally elongated, more frontated, <strong>and</strong> retracted relative to basion,with a greater degree of reduction <strong>in</strong> <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s.This analysis provides knowledge of how <strong>the</strong> <strong>orbit</strong>s <strong>change</strong> <strong>in</strong> association withlong-term <strong>evolutionary</strong> trends <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage, but are limited <strong>in</strong> <strong>the</strong> extent towhich <strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal anatomy of <strong>the</strong> <strong>orbit</strong>s can be understood, due to a limitedhom<strong>in</strong><strong>in</strong> fossil record <strong>and</strong> poor preservation of <strong>the</strong> fragile bone compris<strong>in</strong>g <strong>the</strong> <strong>orbit</strong>alwalls. In <strong>the</strong> next chapter, <strong>orbit</strong>al <strong>variation</strong> is exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of temporal <strong>change</strong><strong>in</strong> craniofacial anatomy across Western European groups dat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic.These samples comprise a larger number of <strong>in</strong>dividuals with more complete <strong>in</strong>ternal<strong>orbit</strong>al cavities, which facilitates a greater underst<strong>and</strong><strong>in</strong>g of recent <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong><strong>orbit</strong>al morphology <strong>and</strong> how this feature varies <strong>in</strong> association with neighbor<strong>in</strong>gcraniofacial characteristics throughout <strong>the</strong> last 30,000 years <strong>in</strong> this region.85


CHAPTER 5EVOLUTIONARY CHANGE IN THE HOMININ ORBIT:UPPER PALEOLITHIC TO PRESENT5.1 SamplesThis chapter exp<strong>and</strong>s on <strong>the</strong> previous analysis of <strong>orbit</strong>al form <strong>in</strong> relation to<strong>evolutionary</strong> <strong>change</strong>s <strong>in</strong> <strong>the</strong> face <strong>and</strong> cranium, but focuses on a more condensed timeperiod us<strong>in</strong>g well-preserved <strong>in</strong>dividuals from more groups with<strong>in</strong> this sequence, with <strong>the</strong>aim of underst<strong>and</strong><strong>in</strong>g recent <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong> of our own species. Thisanalysis is carried out us<strong>in</strong>g samples of European Homo sapiens sapiens from 6 differenttime periods dat<strong>in</strong>g back to <strong>the</strong> Upper Paleolithic (Table 5.1), <strong>and</strong> tests a null hypo<strong>the</strong>sisof no <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology with<strong>in</strong> this temporal series. Additionally, <strong>orbit</strong>al<strong>variation</strong> is exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of cranial <strong>and</strong> facial shape <strong>change</strong>s that characterize<strong>the</strong> last 30,000 years of evolution <strong>in</strong> this region.86


Time Period Years Before Present Sample Size RepositoryUpper Paleolithic 35,000 – 12,000 b.p. 4 MAMC/MNHMEpipaleo-Mesolithic 12,000 – 7,000 b.p. 4 MSN/ MNHMNeolithic 7,000 – 4,500 b.p. 39 MSN/MNHNCopper Age 4,500 – 4,100 b.p. 17 MSN/MAEBronze/Iron Age 4,100 – 2,700 b.p. 20 MSN/MNHNModern < 500 b.p 58 MNHNMNHN - Musée National d'Histoire Naturelle, Musée de l'Homme Paris, FranceMAE - Museo di Antropologia ed Etnografia, Tor<strong>in</strong>o, ItalyMAMC - Musée d’Anthropologie à Monte Carlo, MonacoMSN - Museo di Storia Naturale dell'Università degli Studi di Firenze, ItalyTable 5.1: Samples of human groups from Western Europe: Upper Paleolithic–PresentAlthough <strong>the</strong>se data were collected from <strong>in</strong>dividuals recovered fromarchaeological sites <strong>in</strong> different parts of Western Europe, due to migration <strong>in</strong> <strong>and</strong> out of<strong>the</strong> region throughout this 30,000-year period it is possible that later groups are notdirectly descended from those that preceded <strong>the</strong>m. However, <strong>in</strong> similar studies us<strong>in</strong>gsamples from different time periods with<strong>in</strong> a particular region, time is a reliable <strong>in</strong>dicatorof group affiliation (Brown & Maeda, 2004; Carlson & Van Gerven, 1977; Hanihara,1994), <strong>and</strong> when <strong>in</strong>dividuals represent<strong>in</strong>g each group are drawn from slightly differentareas with<strong>in</strong> <strong>the</strong> broader region, as is <strong>the</strong> case with <strong>the</strong>se samples, <strong>the</strong> effects of migration<strong>and</strong> admixture are less pronounced (Wu et al. 2007).5.2 VariablesEleven <strong>orbit</strong>al characteristics are exam<strong>in</strong>ed among <strong>the</strong>se six groups, <strong>and</strong> as <strong>in</strong> <strong>the</strong>previous chapter, l<strong>in</strong>ear dimensions were size-adjusted for each <strong>in</strong>dividual prior to <strong>the</strong>analysis (Table 5.2). This was done to remove <strong>the</strong> confound<strong>in</strong>g effect of overall sizedifferences among groups, which are less pronounced <strong>in</strong> this temporal series, though87


ecause of a general reduction <strong>in</strong> cranial <strong>and</strong> post-cranial size <strong>and</strong> robusticity s<strong>in</strong>ce <strong>the</strong>Upper Paleolithic <strong>in</strong> Europe <strong>and</strong> around <strong>the</strong> world (Brown & Maeda, 2004; Carlson,1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Henneberg & Steyn 1993; Kidderet al. 1992; Lahr & Wright, 1996), not adjust<strong>in</strong>g for size would simply show a decrease<strong>in</strong> each variable <strong>in</strong> association with this general trend.5.3 Statistical analysisIn this chapter a null hypo<strong>the</strong>sis of no <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al anatomy is evaluatedamong groups from different time periods s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Western Europe.To test whe<strong>the</strong>r <strong>orbit</strong>al morphology <strong>change</strong>s l<strong>in</strong>early through time, a regression analysiswith each <strong>orbit</strong>al trait as <strong>the</strong> dependent variable, <strong>and</strong> time as <strong>the</strong> <strong>in</strong>dependent variable iscarried out separately for each characteristic. In contrast to <strong>the</strong> previous chapter <strong>in</strong> whichhypo<strong>the</strong>ses concern<strong>in</strong>g relationships between <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> surround<strong>in</strong>g craniofacialtraits were tested, <strong>in</strong> this analysis no predictions were made regard<strong>in</strong>g how <strong>the</strong>se features<strong>change</strong> over time, or covary with o<strong>the</strong>r craniofacial features.Trends of encephalization <strong>and</strong> facial reduction that characterize most of humanevolution are reversed, <strong>and</strong> m<strong>in</strong>imal, respectively, <strong>and</strong> ra<strong>the</strong>r it is predom<strong>in</strong>antly <strong>change</strong><strong>in</strong> shape of <strong>the</strong> skull that occurs throughout this 30,000-year period (Brown, 1992; Brown& Maeda, 2004; Carlson, 1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Kidderet al. 1992; Lahr & Wright, 1996; Wu et al. 2007). As a result, <strong>orbit</strong>al morphology is<strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> context of <strong>the</strong>se more recent <strong>evolutionary</strong> <strong>change</strong>s <strong>in</strong> craniofacialshape s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Europe, however no a priori predictions were madeconcern<strong>in</strong>g relationships among <strong>the</strong>m.88


5.4 Results of regression analyses: <strong>orbit</strong>al variables vs. time (years B.P.)The results of this analysis <strong>in</strong>dicate that <strong>the</strong> null hypo<strong>the</strong>sis of no <strong>change</strong> <strong>in</strong> <strong>orbit</strong>almorphology s<strong>in</strong>ce <strong>the</strong> European Upper Paleolithic is rejected for all variables except<strong>in</strong>ter<strong>orbit</strong>al breadth, <strong>orbit</strong>al size, <strong>and</strong> <strong>orbit</strong>al frontation (Table 5.2). The null hypo<strong>the</strong>sis isrejected for <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>orbit</strong>al variables that <strong>change</strong> l<strong>in</strong>early with time, though <strong>the</strong>direction <strong>and</strong> strength of <strong>the</strong>se relationships vary among <strong>the</strong>m.Variable # Sample Coefficient t p R²Orbital Breadth 142 0.000071 2.39 0.018 3.9%Orbital Height, 142 -0.000194 -5.00 0.000 15.2%Orbital Index 142 0.000847 6.02 0.000 20.50%Orbital Frontation 136 0.000007 0.16 0.874 0.00%Orbital Volume 84 -0.000025 -0.24 0.814 0.10%Orbital SizeGM 120 -0.000012 -0.41 0.679 0.10%Orbital Depth 120 0.000226 3.65 .0000 10.10%Basion-Sup. Orbit 109 0.000298 3.49 0.001 10.20%Basion-Orbitale 109 0.000251 2.7 0.008 6.40%Bi<strong>orbit</strong>al Breadth 142 0.000013 2.34 0.021 3.80%Inter<strong>orbit</strong>al Breadth 142 0.000021 0.5 0.620 0.20%Time: Present (0) to Upper Paleolithic (~ 30,000 years B.P.)Table 5.2: Test of no <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al morphology among European temporal groupsRelative stasis of <strong>the</strong> 3 rema<strong>in</strong><strong>in</strong>g <strong>orbit</strong>al variables also provides some <strong>in</strong>sight <strong>in</strong>torecent evolution of this anatomical region. A limited degree of temporal <strong>change</strong> <strong>in</strong><strong>in</strong>ter<strong>orbit</strong>al breadth, <strong>orbit</strong>al size, <strong>and</strong> <strong>orbit</strong>al frontation likely relates to functionalconstra<strong>in</strong>ts associated with proper function<strong>in</strong>g of <strong>the</strong> nasal cavity <strong>and</strong> nasopharynx,89


adequate space with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>s for <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues, <strong>and</strong> an <strong>orbit</strong>alorientation that is perpendicular to <strong>the</strong> visual plane. Inter<strong>orbit</strong>al breadth was not part of<strong>the</strong> predictive model of how <strong>the</strong> <strong>orbit</strong> is expected to vary <strong>in</strong> relation to long-termcraniofacial trends <strong>in</strong> <strong>the</strong> previous chapter. However, a post-hoc analysis of this featureshows no consistent pattern of <strong>change</strong> among hom<strong>in</strong><strong>in</strong> groups, <strong>and</strong> no statisticallysignificant relationship with encephalization <strong>and</strong> reduced facial prognathism (t = 1.15, p= 0.253). A lack of <strong>change</strong> <strong>in</strong> <strong>in</strong>ter<strong>orbit</strong>al breadth also characterizes <strong>the</strong> last 30,000 yearsof evolution <strong>in</strong> Western Europe, <strong>and</strong> while some <strong>variation</strong> is observable among groups,<strong>the</strong> l<strong>in</strong>ear <strong>change</strong> that characterizes most o<strong>the</strong>r <strong>orbit</strong>al traits is not evident <strong>in</strong> this feature(Figure 5.1).34Boxplot of Inter<strong>orbit</strong>al Breadth vs Time32Inter<strong>orbit</strong>al Breadth302826242220Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.1: Comparison of <strong>in</strong>ter<strong>orbit</strong>al breadth among European groupsOrbital frontation also shows no l<strong>in</strong>ear relationship to time s<strong>in</strong>ce <strong>the</strong> EuropeanUpper Paleolithic, but was found to vary <strong>in</strong> association with <strong>the</strong> CFI <strong>in</strong> chapter 4. In this90


previous chapter it was determ<strong>in</strong>ed that cranial expansion <strong>and</strong> facial reduction expla<strong>in</strong>30% of <strong>the</strong> variance <strong>in</strong> <strong>orbit</strong>al frontation, with a trend toward more frontated <strong>orbit</strong>s <strong>in</strong>more <strong>modern</strong> forms. However, <strong>the</strong>re is little deviation from an approximately 90˚ angleamong temporal groups <strong>in</strong>vestigated here (Figure 5.2), which likely relates to <strong>the</strong> relativecessation of craniofacial trends <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> previous chapter, <strong>and</strong> preservation of<strong>the</strong> horizontal visual plane <strong>in</strong> fully orthograde anatomically <strong>modern</strong> humans.98Boxplot of Orbital Frontation vs Time9694Orbital Frontation929088868482Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.2: Comparison of <strong>orbit</strong>al frontation among European groupsTemporal homogeny <strong>in</strong> <strong>orbit</strong>al volume <strong>and</strong> <strong>orbit</strong>al sizeGM may also relate tostructural or functional constra<strong>in</strong>ts <strong>in</strong> this anatomical region. Schultz (1940) reportsabsolute <strong>orbit</strong>al volume measurement among “fossil man” that are <strong>the</strong> largest among allprimate groups <strong>in</strong>clud<strong>in</strong>g gorillas (Kabwe - 42.0 cc, La Chapelle aux Sa<strong>in</strong>ts – 39.5 cc,Gibralter – 34.5 cc). These values are far larger than <strong>orbit</strong>al volume measurements <strong>in</strong>91


Western European temporal groups sampled for this research, <strong>and</strong> <strong>in</strong> comparison witho<strong>the</strong>r studies of <strong>orbit</strong>al size <strong>in</strong> extant humans. If Homo heidelbergensis is <strong>the</strong> ancestor ofanatomically <strong>modern</strong> Homo sapiens, this <strong>in</strong>dicates a marked reduction <strong>in</strong> <strong>orbit</strong>al volumewith<strong>in</strong> <strong>the</strong> past 150,000 to 300,000 years.Because <strong>the</strong> <strong>orbit</strong> of <strong>the</strong>se Ne<strong>and</strong>erthal <strong>and</strong> Archaic Homo forms is far larger than<strong>the</strong> <strong>eye</strong> would have been <strong>in</strong> <strong>the</strong>se species, adequate space would have existed for <strong>the</strong> softtissue components of <strong>the</strong> <strong>eye</strong>, <strong>and</strong> a reduction <strong>in</strong> <strong>orbit</strong>al capacity s<strong>in</strong>ce 200,000 years b.p.until 30,000 years b.p. likely would not have imp<strong>in</strong>ged on <strong>the</strong> functionality of <strong>the</strong> opticsystem. A lack of <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al volume s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic suggests thatfur<strong>the</strong>r reduction <strong>in</strong> <strong>the</strong> size of this feature may have been limited by <strong>the</strong> functionalconstra<strong>in</strong>t of ocular soft tissue anatomy, particularly given that overall size of <strong>the</strong> skullwas reduced throughout this period, <strong>and</strong> that it was only <strong>in</strong> recent human history that wehave been able to correct aberrant vision.With <strong>the</strong> exception of <strong>the</strong> above variables, most <strong>orbit</strong>al traits do show a l<strong>in</strong>earrelationship with time, <strong>and</strong> some cont<strong>in</strong>ue <strong>the</strong> pattern of <strong>change</strong> observed <strong>in</strong> <strong>the</strong> previouschapter. For example, basion-superior <strong>orbit</strong> <strong>and</strong> basion-<strong>orbit</strong>ale showed an <strong>in</strong>verserelationship to <strong>the</strong> craniofacial <strong>in</strong>dex, mean<strong>in</strong>g that <strong>the</strong>se distances were reduced ascranial size <strong>in</strong>creased <strong>and</strong> <strong>the</strong> lower face shifted posteriorly. And despite a slowed rate offacial retraction <strong>and</strong> a reversal of cranial expansion s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic, posteriormovement of <strong>the</strong> midfacial region cont<strong>in</strong>ues throughout <strong>the</strong> last 30,000 years, as<strong>in</strong>dicated by a decrease <strong>in</strong> measures of basion-superior <strong>orbit</strong> <strong>and</strong> basion-<strong>orbit</strong>ale.Due to limited preservation of <strong>the</strong> posterior <strong>orbit</strong> <strong>in</strong> fossil hom<strong>in</strong><strong>in</strong>s it was notpossible to <strong>in</strong>vestigate <strong>orbit</strong>al depth <strong>in</strong> relation to encephalization <strong>and</strong> facial reduction <strong>in</strong>92


<strong>the</strong> previous chapter. However, it is clear that a reduction <strong>in</strong> <strong>orbit</strong>al depth has occurreds<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Western Europe (p < 0.000). Plott<strong>in</strong>g <strong>the</strong> chimpanzeesample from chapter 3 (which represented <strong>the</strong> most primitive grade <strong>in</strong> that analysis)among groups <strong>in</strong> this temporal series <strong>in</strong>dicates that <strong>the</strong> reduction <strong>in</strong> <strong>orbit</strong>al depth that hasoccurred over <strong>the</strong> last 30,000 years may be <strong>the</strong> cont<strong>in</strong>uation of a broader trend. However,without data from past hom<strong>in</strong><strong>in</strong> species represent<strong>in</strong>g <strong>in</strong>termediate grades, it cannot beknown if <strong>orbit</strong>al depth is reduced <strong>in</strong> association with cranial expansion <strong>and</strong> reduced facialprognathism dur<strong>in</strong>g human evolution.70Boxplot of Orbital Depth vs Time65Orbital Depth605550ChimpanzeeUpp PaleolithicMesolithicNeolithicCopper AgeBronze/IronModernFigure 5.3: Comparison of <strong>orbit</strong>al depth among chimpanzees <strong>and</strong> European groupsIn addition to depth of <strong>the</strong> <strong>in</strong>ternal <strong>orbit</strong> <strong>and</strong> position of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>srelative to basion, <strong>orbit</strong>al height is characterized by a marked degree of <strong>change</strong> s<strong>in</strong>ce <strong>the</strong>93


Upper Paleolithic (Figure 5.4). The rapid <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al height that occurs over thistime period is also accompanied by a statistically significant decrease <strong>in</strong> <strong>orbit</strong>al breadth(Figure 5.5). The comb<strong>in</strong>ed effect of <strong>change</strong> <strong>in</strong> <strong>the</strong>se <strong>orbit</strong>al measures is a pronounceddecrease <strong>in</strong> <strong>the</strong> <strong>orbit</strong>al <strong>in</strong>dex, or a shift toward higher <strong>and</strong> more rounded <strong>orbit</strong>s.55.0Boxplot of Orbital Breadth vs Time52.5Orbital Breadth50.047.545.0Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.4: Change <strong>in</strong> <strong>orbit</strong>al breadth through <strong>the</strong> Upper Paleolithic94


46Boxplot of Orbital Height vs Time4442Orbital Height4038363432Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.5: Change <strong>in</strong> <strong>orbit</strong>al height through <strong>the</strong> Upper PaleolithicTemporal <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al shape among Western European groups <strong>in</strong> which <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>s become taller, narrower <strong>and</strong> generally more rounded has also beenobserved <strong>in</strong> studies of diachronic <strong>change</strong> <strong>in</strong> East Asian <strong>orbit</strong>al morphology, though with<strong>in</strong>a slightly narrower time span (Brown 1987; Brown & Maeda, 2004; Wu et al. 2007).The greater contribution of <strong>orbit</strong>al height to <strong>the</strong> observed shape <strong>change</strong> <strong>in</strong> this<strong>in</strong>vestigation of Western European groups corroborates <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of Brown & Maeda,(2004), who show that <strong>orbit</strong>al height <strong>in</strong>creases substantially <strong>and</strong> most rapidly <strong>in</strong> <strong>the</strong> last3500 years, while <strong>orbit</strong>al breadth is found to decrease only slightly between <strong>the</strong> Neolithic<strong>and</strong> recent periods. In contrast to <strong>the</strong>se results, Wu et al. (2007) show that from <strong>the</strong>Neolithic to present <strong>orbit</strong>al breadth decreases by 3.6% <strong>and</strong> <strong>orbit</strong>al height <strong>in</strong>creases byonly 3.2%.95


Regardless of <strong>the</strong> relative contribution of <strong>orbit</strong>al height or <strong>orbit</strong>al breadth <strong>in</strong>generat<strong>in</strong>g taller <strong>and</strong> narrower <strong>orbit</strong>s through time, this <strong>orbit</strong>al feature is found to <strong>change</strong>more s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic than any o<strong>the</strong>r trait <strong>in</strong> this study, <strong>and</strong> is also among <strong>the</strong>most variable craniofacial characteristics <strong>in</strong> East Asian temporal groups dat<strong>in</strong>g to <strong>the</strong>Neolithic period (Brown & Maeda, 2004; Wu et al. 2007). This recent shift toward taller<strong>and</strong> narrower <strong>orbit</strong>s <strong>in</strong> Europe <strong>and</strong> <strong>the</strong> Far East st<strong>and</strong>s <strong>in</strong> stark contrast to <strong>the</strong> pattern of<strong>change</strong> <strong>in</strong> <strong>orbit</strong>al marg<strong>in</strong> shape associated with long-term trends of cranial expansion <strong>and</strong>reduced facial prognathism observed <strong>in</strong> chapter 4. In <strong>the</strong> preced<strong>in</strong>g chapter it was shownthat <strong>the</strong> <strong>eye</strong> <strong>orbit</strong>s become vertically shortened <strong>and</strong> horizontally elongated <strong>in</strong> associationwith a grade shift <strong>in</strong> craniofacial form. However, follow<strong>in</strong>g <strong>the</strong> Upper Paleolithic thistrend reverses <strong>and</strong> <strong>the</strong> <strong>orbit</strong>s become mediolaterally narrower <strong>and</strong> vertically elongated,with much of this shape <strong>change</strong> result<strong>in</strong>g from an <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al height (Figure 5.6).160150Boxplot of Orbital Index vs TimeOrbital Index14013012011010090ChimpanzeeAustralopi<strong>the</strong>cusHomo erectusArchaic HomoUp PaleolithicMesolithicNeolithicCopper AgeBronze/IronModernFigure 5.6: Variation <strong>in</strong> <strong>the</strong> <strong>orbit</strong>al <strong>in</strong>dex among all temporal groups96


This shift <strong>in</strong> <strong>the</strong> direction of <strong>orbit</strong>al shape <strong>change</strong> s<strong>in</strong>ce <strong>the</strong> onset of <strong>the</strong> UpperPaleolithic <strong>in</strong> Europe is likely <strong>the</strong> result of cranial <strong>and</strong> facial shape <strong>change</strong>s that haveoccurred across most regions of <strong>the</strong> globe dur<strong>in</strong>g equivalent time spans. Thesecraniofacial shape <strong>change</strong>s primarily <strong>in</strong>volve an <strong>in</strong>crease <strong>in</strong> brachycephalization <strong>and</strong>facial height, <strong>and</strong> a cont<strong>in</strong>ued decrease <strong>in</strong> facial prognathism, which occur <strong>in</strong> associationwith a global decrease <strong>in</strong> cranial size <strong>and</strong> robusticity (Brown, 1992; Brown & Maeda,2004; Carlson, 1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Kidder et al. 1992;Lahr & Wright, 1996; Wu et al. 2007), however brachycephalization is not found tooccur with decreased cranial size among Sub-Saharan African groups dur<strong>in</strong>g this timeperiod (Henneberg & Steyn, 1993).As a result of <strong>the</strong>se more recent global <strong>change</strong>s <strong>in</strong> craniofacial form, this<strong>in</strong>vestigation exam<strong>in</strong>es how <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> relation to <strong>the</strong> cranial <strong>in</strong>dex <strong>and</strong> upperfacial <strong>in</strong>dex among Western European temporal groups. These <strong>in</strong>dexes capture much of<strong>the</strong> <strong>variation</strong> <strong>in</strong> craniofacial shape <strong>change</strong> throughout this period <strong>and</strong> are used to exam<strong>in</strong>eto what degree observed patterns of <strong>variation</strong> <strong>in</strong> size, shape, <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>described <strong>in</strong> <strong>the</strong> above section are associated with craniofacial shape <strong>change</strong>s <strong>in</strong> WesternEurope with<strong>in</strong> <strong>the</strong> last 30,000 years.5.5 Craniofacial shape <strong>change</strong> <strong>in</strong> Western Europe: Upper Paleolithic to presentProm<strong>in</strong>ent trends of cranial expansion <strong>and</strong> facial reduction that occur dur<strong>in</strong>ghom<strong>in</strong><strong>in</strong> evolution are m<strong>in</strong>imal <strong>in</strong> relation to shape <strong>change</strong>s <strong>in</strong> <strong>the</strong> skull s<strong>in</strong>ce <strong>the</strong>European Upper Paleolithic. Though not statistically significant at α = 0.05, a regression97


of facial projection vs. time <strong>in</strong>dicates that a slight reduction <strong>in</strong> facial prognathism (t =1.92, p = 0.058) does cont<strong>in</strong>ue throughout this time period <strong>in</strong> Western Europe (Figure5.7). However, expansion of <strong>the</strong> cranium does not cont<strong>in</strong>ue, but ra<strong>the</strong>r shows a slightdecrease <strong>in</strong> size s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic (t = 2.39, p = 0.018), with <strong>the</strong> actual peakaround <strong>the</strong> Mesolithic (Figure 5.8). This corroborates <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of Henneberg (1988)who found that peak cranial size for males (1593 CC) <strong>and</strong> females (1502 CC) from <strong>the</strong>Northwest quadrant of <strong>the</strong> Old World were also obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> Mesolithic period.135Boxplot of Facial Projection vs Time130125Facial Projection120115110105100Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.7: Temporal <strong>change</strong> <strong>in</strong> facial projection s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic98


Boxplot of Cranial Size vs Time190185Cranial Size180175170Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.8: Temporal <strong>change</strong> <strong>in</strong> cranial size s<strong>in</strong>ce <strong>the</strong> Upper PaleolithicRa<strong>the</strong>r than a cont<strong>in</strong>uation of long-term trends of facial reduction <strong>and</strong> cranialexpansion, <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> Western Europe is better characterized by shape<strong>change</strong> <strong>in</strong> which <strong>the</strong> cranium becomes wider <strong>and</strong> anteroposteriorly shorter, or morebrachycephalic (t = -5.78, p < 0.000), while <strong>the</strong> face becomes narrower <strong>and</strong> verticallyelongated (t = -2.95, p = 0.004) throughout this 30,000 year time period (Figures 5.9,5.10). With <strong>the</strong> exception of Sub-Saharan Africa (Henneberg & Steyn, 1993), <strong>the</strong>se samecranial <strong>and</strong> facial shape <strong>change</strong>s have been documented <strong>in</strong> many different populationsthroughout <strong>the</strong> Old <strong>and</strong> New World (Brown 1987; Brown & Maeda, 2004; Carlson, 1976;Carlson & Van Gerven, 1977; Henneberg, 1988; Lahr & Wright, 1996; Nakahashi, 1993;Rothhammer et al. 1982), <strong>and</strong> recent data <strong>in</strong>dicates that <strong>the</strong>se features are still evolv<strong>in</strong>g <strong>in</strong>similar ways (Wu et al. 2007).99


Boxplot of Cranial Index vs Time9085Cranial Index807570Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.9: Change <strong>in</strong> cranial shape among Western European groups60Boxplot of Upper Facial Index vs Time55Upper Facial Index504540Upper PaleolithicMesolithicNeolithicCopper AgeBronze/Iron AgeModernFigure 5.10: Change <strong>in</strong> facial shape among Western European groupsFacial shape <strong>change</strong> s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic is a product of an <strong>in</strong>crease <strong>in</strong>facial height (T = -2.90, p = 0.004), which aga<strong>in</strong> is a reversal from <strong>the</strong> pattern that100


characterizes much of human evolution. A reduction <strong>in</strong> facial height occurs <strong>in</strong>association with a long-term trend of reduced facial prognathism <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage,but as facial projection cont<strong>in</strong>ues to decrease slightly through <strong>the</strong> Upper Paleolithic,facial height beg<strong>in</strong>s to <strong>in</strong>crease, though this <strong>change</strong> is not completely l<strong>in</strong>ear <strong>and</strong> appearsto <strong>in</strong>crease most between <strong>the</strong> Upper Paleolithic <strong>and</strong> Mesolithic periods, <strong>and</strong> aga<strong>in</strong>follow<strong>in</strong>g <strong>the</strong> Copper age (Figure 5.11). This <strong>in</strong>crease <strong>in</strong> facial height also occurs <strong>in</strong>association with a reduction <strong>in</strong> facial width (T = 5.51, p < 0.000) follow<strong>in</strong>g <strong>the</strong> UpperPaleolithic, result<strong>in</strong>g <strong>in</strong> a shift toward longer <strong>and</strong> narrower faces <strong>in</strong> Western Europeangroups dur<strong>in</strong>g this 30,000-year period.120Boxplot of Nasion-Prosthion Height vs TimeNasion-Prosthion Height110100908070Chim panzeeA ustralo pith ecu sHomo erectu sNe<strong>and</strong>erthalUpper PaleolithicMesolithicNeolithicCopper A geBronze/Iron A gesMod ern Euro peanFigure 5.11: Comparison of long-term <strong>and</strong> recent <strong>variation</strong> <strong>in</strong> facial shape101


5.6 Results of regression analyses: <strong>orbit</strong>al variables vs. craniofacial shapeAn <strong>in</strong>vestigation of how <strong>the</strong> <strong>eye</strong> <strong>orbit</strong> varies <strong>in</strong> relation to <strong>the</strong> cranial <strong>and</strong> upperfacial <strong>in</strong>dexes <strong>in</strong>dicates that many of <strong>the</strong> <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>al morphology observable s<strong>in</strong>ce<strong>the</strong> Upper Paleolithic <strong>in</strong> Western Europe can be understood at least <strong>in</strong> part by <strong>the</strong>secraniofacial shape <strong>change</strong>s (Table 5.3).Cranial IndexUpper Facial IndexOrbital Variables Coefficient t p Coefficient t p CumR²Orbital Breadth 0.014806 0.47 0.636 -0.17339 -3.48 0.001 10.5%Orbital Height 0.147524 3.64 0.000 0.19608 3.04 0.003 14.5%Orbital Index -0.43712 -2.88 0.005 -1.0820 -4.47 0.000 17.8%Orbital Frontation -0.05440 -1.03 0.307 -0.09336 -1.12 0.267 1.8%Orbital Volume -0.06742 -0.89 0.376 -0.2348 -2.03 0.046 5.8%Orbital SizeGM 0.03749 1.82 0.071 -0.08931 -2.51 0.014 8.8%Orbital Depth -0.07678 -1.42 0.158 -0.33446 -3.89 0.000 13.1%Basion-Sup. Orbit -0.42667 -6.66 0.000 -0.6540 -6.26 0.000 41.7%Basion-Orbitale -0.42194 -5.27 0.000 -0.6927 -5.31 0.000 32.4%Bi<strong>orbit</strong>al Breadth -0.01704 -0.33 0.744 -0.55571 -6.71 0.000 28.8%Inter<strong>orbit</strong>al Breadth -0.05302 -1.16 0.249 -0.21250 -2.92 0.004 7.3%Table 5.3. Regression analysis of <strong>orbit</strong>al variables vs. cranial <strong>in</strong>dex, upper facial <strong>in</strong>dexEach <strong>orbit</strong>al characteristic that varies significantly <strong>in</strong> relation to <strong>the</strong> cranial <strong>in</strong>dex<strong>and</strong> upper facial <strong>in</strong>dex are correlated <strong>in</strong> a way that is consistent with <strong>evolutionary</strong> <strong>change</strong>s<strong>in</strong> <strong>orbit</strong>al morphology that have occurred <strong>in</strong> this region dur<strong>in</strong>g <strong>the</strong> last 30,000 years.Although <strong>the</strong>se craniofacial <strong>change</strong>s do not expla<strong>in</strong> all of <strong>the</strong> <strong>variation</strong> <strong>in</strong> <strong>the</strong> <strong>orbit</strong>through time, <strong>the</strong>y <strong>in</strong>dicate that a narrow<strong>in</strong>g <strong>and</strong> elongation of <strong>the</strong> face <strong>and</strong> a shift toward102


achycephalization <strong>in</strong> Western Europe s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic are important forunderst<strong>and</strong><strong>in</strong>g recent <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> this feature.In look<strong>in</strong>g at size <strong>and</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s it can be seen that <strong>orbit</strong>albreadth does not vary <strong>in</strong> relation to cranial shape, but does decrease as <strong>the</strong> upper facial<strong>in</strong>dex <strong>in</strong>creases, with <strong>the</strong> same be<strong>in</strong>g true of bi<strong>orbit</strong>al breadth. In contrast, <strong>orbit</strong>al heightis positively correlated with both shape features, which one might expect particularly <strong>in</strong>relation to <strong>the</strong> upper facial <strong>in</strong>dex, <strong>in</strong> which a vertical <strong>in</strong>crease <strong>in</strong> facial height <strong>and</strong>decrease <strong>in</strong> facial width would be assumed to affect <strong>in</strong> a similar way <strong>the</strong>se samedimensions of <strong>the</strong> <strong>orbit</strong>. However, Brown & Maeda (2004) found that throughout <strong>the</strong>Neolithic <strong>in</strong> Ch<strong>in</strong>a, <strong>orbit</strong>al height <strong>in</strong>creases substantially even while facial height isreduced <strong>in</strong> that region.In nearly every case, <strong>orbit</strong>al variables are more highly correlated with shape of <strong>the</strong>face than with shape of <strong>the</strong> head, which is underst<strong>and</strong>able given <strong>the</strong>ir <strong>in</strong>clusion <strong>in</strong> <strong>the</strong>facial framework. However, <strong>the</strong> relationship between basion-<strong>orbit</strong>ale <strong>and</strong> basion-superior<strong>orbit</strong> is negatively correlated with both cranial <strong>and</strong> facial shape variables <strong>and</strong> toapproximately <strong>the</strong> same degree. This is of particular <strong>in</strong>terest given that <strong>the</strong> upper facial<strong>in</strong>dex comprises two variables that <strong>in</strong>dicate <strong>the</strong> relationship between height <strong>and</strong> width of<strong>the</strong> face <strong>in</strong> <strong>the</strong> coronal plane, though measures of basion-<strong>orbit</strong>ale <strong>and</strong> basion-superior<strong>orbit</strong> lie <strong>in</strong> <strong>the</strong> parasagittal plane. Orbital depth also decreases <strong>in</strong> association with<strong>in</strong>creased facial height <strong>and</strong> decreased facial breadth, but is not statistically related to<strong>change</strong> <strong>in</strong> cranial shape. This too is surpris<strong>in</strong>g given that <strong>orbit</strong>al depth might be expectedto decrease more as a result of anterior-posterior shorten<strong>in</strong>g of <strong>the</strong> skull ra<strong>the</strong>r than <strong>in</strong>relation to a narrow<strong>in</strong>g <strong>and</strong> elongation of <strong>the</strong> face.103


Although <strong>the</strong> direction <strong>and</strong> magnitude of <strong>the</strong> relationship between <strong>orbit</strong>almorphology <strong>and</strong> craniofacial shape largely mimics observed <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>al featuresdur<strong>in</strong>g <strong>the</strong> last 30,000 years <strong>in</strong> Western Europe (section 5.4 above), <strong>orbit</strong>al size deviatesslightly from this pattern. Both <strong>orbit</strong>al volume <strong>and</strong> <strong>the</strong> geometric mean of <strong>orbit</strong>al height,breadth, <strong>and</strong> depth rema<strong>in</strong>ed relatively un<strong>change</strong>d s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic, howeverboth show a statistically significant negative relationship to <strong>the</strong> upper facial <strong>in</strong>dex,mean<strong>in</strong>g that as <strong>the</strong> face becomes taller <strong>and</strong> narrower, space with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>s isdim<strong>in</strong>ished.Brown <strong>and</strong> Maeda (2004) show that among skulls of Australian Aborig<strong>in</strong>es <strong>and</strong>Tohoku Japanese, which represent chang<strong>in</strong>g craniofacial form s<strong>in</strong>ce <strong>the</strong> end of <strong>the</strong>Pleistocene, <strong>orbit</strong>al volume is highly correlated with supra<strong>orbit</strong>al breadth, lower facialprognathism, <strong>and</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s. Among <strong>the</strong>se crania a broadersupra<strong>orbit</strong>al region, more project<strong>in</strong>g facial skeleton <strong>and</strong> lower <strong>orbit</strong>al <strong>in</strong>dex (morerectangular shape) are associated with a larger <strong>orbit</strong>al volume. Change <strong>in</strong> <strong>the</strong>se features,<strong>in</strong>clud<strong>in</strong>g a strong trend toward higher <strong>and</strong> narrower <strong>orbit</strong>s, is considered to reflect adecrease <strong>in</strong> <strong>orbit</strong>al volume that occurred throughout <strong>the</strong> Holocene <strong>in</strong> Ch<strong>in</strong>a (Brown &Maeda, 2004).A test of <strong>the</strong>se relationships among European crania spann<strong>in</strong>g a slightly longertime period shows no relationship between <strong>orbit</strong>al volume <strong>and</strong> measures of supra<strong>orbit</strong>albreadth (p = 0.144), facial prognathism (p = 0.287), or shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s (p =0.804). A test of <strong>the</strong>se relationships us<strong>in</strong>g raw data obta<strong>in</strong>ed from <strong>the</strong>se skulls (non-sizeadjustedvariables) also shows no relationship between <strong>orbit</strong>al volume <strong>and</strong> facialprognathism (p = 0.399), or <strong>orbit</strong>al volume <strong>and</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s (p = 0.441).104


A statistically significant relationship between <strong>orbit</strong>al volume <strong>and</strong> supra<strong>orbit</strong>albreadth was discovered us<strong>in</strong>g <strong>the</strong> raw data (t = 6.46, p < 0.000), <strong>and</strong> while absolute sizeof <strong>the</strong> supra<strong>orbit</strong>al region does decrease slightly <strong>in</strong> Western Europe dur<strong>in</strong>g <strong>the</strong> last 30,000years (p = 0.045), this is largely <strong>the</strong> product of an overall decrease <strong>in</strong> skull dimensions, asrelative size does not show <strong>the</strong> same relationship to time (p = 0.946). Additionally, asdescribed above <strong>the</strong>re is no apparent decrease <strong>in</strong> <strong>orbit</strong>al size <strong>in</strong> Western Europe dur<strong>in</strong>g<strong>the</strong> last 30,000 years <strong>in</strong> this region, despite a statistically significant relationship between<strong>the</strong> upper facial <strong>in</strong>dex <strong>and</strong> both <strong>orbit</strong>al volume (p = 0.046), <strong>and</strong> <strong>the</strong> geometric mean of<strong>orbit</strong>al length, width, <strong>and</strong> height (p = 0.014).This discrepancy <strong>in</strong> patterns of <strong>change</strong> <strong>in</strong> <strong>orbit</strong>al volume between European <strong>and</strong>Ch<strong>in</strong>ese groups over similar time periods may help expla<strong>in</strong> why visual acuity hasdim<strong>in</strong>ished faster, <strong>and</strong> why myopia occurs at a higher frequency among many East Asiangroups relative to Western Europeans <strong>and</strong> Sub-Saharan Africans (Goldschmidt, Lam,Opper, 2001; Lam et al. 1999; Park & Congdon, 2004). A decrease <strong>in</strong> <strong>orbit</strong>al volume <strong>in</strong>association with supra<strong>orbit</strong>al narrow<strong>in</strong>g, facial retraction, <strong>and</strong> chang<strong>in</strong>g shape of <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>s throughout <strong>the</strong> Holocene <strong>in</strong> Ch<strong>in</strong>a could affect <strong>the</strong> amount of spaceavailable for <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues. These <strong>change</strong>s are particularly important toconsider given that <strong>eye</strong>ball size does not directly <strong>in</strong>fluence size of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> humans(Chau et al. 2004; Schultz, 1940).If <strong>the</strong> volume of <strong>the</strong> <strong>orbit</strong>s is reduced <strong>and</strong> <strong>the</strong> contents with<strong>in</strong> <strong>the</strong>m are not able tocounter this reduction, <strong>the</strong> <strong>eye</strong>ball may be forced <strong>in</strong>to a more anterior position (Brown &Maeda, 2004), or become compressed with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> as a result of bra<strong>in</strong> growth above,<strong>and</strong> a superoposterior relocation of <strong>the</strong> maxilla <strong>and</strong> zygomatic bones below <strong>the</strong> <strong>eye</strong>ball.105


Additionally, because <strong>the</strong> <strong>eye</strong>ball scales with negative allometry to <strong>the</strong> bony <strong>orbit</strong> withrespect to body size (Schultz, 1940), a reduction <strong>in</strong> cranial <strong>and</strong> post-cranial sizethroughout this period (Brown, 1992; Brown & Maeda, 2004; Carlson, 1976; Carlson &Van Gerven, 1977; Henneberg, 1988; Kidder et al. 1992; Lahr & Wright, 1996; Wu et al.2007), could fur<strong>the</strong>r contribute to compression of <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues with<strong>in</strong><strong>the</strong> bony <strong>orbit</strong>.In <strong>the</strong> follow<strong>in</strong>g chapter, an analysis of <strong>the</strong> <strong>in</strong>cidence <strong>and</strong> severity of myopicrefractive error is exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong> context of size of <strong>the</strong> <strong>eye</strong> with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>, to<strong>in</strong>vestigate whe<strong>the</strong>r visual acuity is reduced <strong>in</strong> <strong>in</strong>dividuals <strong>and</strong> groups with large <strong>eye</strong>s <strong>in</strong>relatively small <strong>orbit</strong>s. The relationship between size of <strong>the</strong> <strong>eye</strong>, <strong>orbit</strong>, <strong>and</strong> sphericalequivalent refractive error is <strong>the</strong>n assessed <strong>in</strong> <strong>the</strong> context of results from <strong>the</strong> preced<strong>in</strong>gchapters <strong>in</strong>vestigat<strong>in</strong>g craniofacial <strong>change</strong> <strong>and</strong> <strong>modern</strong> <strong>variation</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>.106


CHAPTER 6THE ORBIT, EYEBALL, AND REDUCED VISUAL ACUITY IN HUMANS6.1 Samples <strong>and</strong> Statistical AnalysisIn a recent study, high-resolution magnetic resonance scans were used to<strong>in</strong>vestigate whe<strong>the</strong>r <strong>eye</strong>ball volume <strong>and</strong> <strong>eye</strong> <strong>orbit</strong> volume are <strong>in</strong>terrelated, <strong>and</strong> how eachcorrelates with refractive errors <strong>in</strong> Ch<strong>in</strong>ese adults (Chau et al. 2004). The sphericalequivalent refraction error (SER) was recorded to assess an <strong>in</strong>dividual’s quality of vision,<strong>and</strong> skull height, length, <strong>and</strong> breadth were measured to explore possible relationshipsbetween myopia <strong>and</strong> cranial dimensions, as well as to identify which correlates most with<strong>orbit</strong>al volume (Chau et al. 2004).The authors po<strong>in</strong>t to an <strong>in</strong>vestigation of <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong>al volumes <strong>in</strong> juvenilechickens that showed a positive correlation between <strong>the</strong>se variables (Wilson et al. 1997),<strong>and</strong> which is thought to be <strong>the</strong> result of <strong>the</strong> globe exert<strong>in</strong>g pressure on <strong>the</strong> bony <strong>orbit</strong>dur<strong>in</strong>g growth, caus<strong>in</strong>g it to exp<strong>and</strong>. This chick study also revealed that <strong>in</strong>duced myopic<strong>and</strong> hyperopic <strong>eye</strong>s were found to result <strong>in</strong> larger <strong>and</strong> smaller <strong>orbit</strong>s respectively, whichwas considered fur<strong>the</strong>r evidence that <strong>eye</strong>ball size <strong>in</strong>fluences <strong>the</strong> size of <strong>the</strong> <strong>orbit</strong> <strong>in</strong>chickens (Wilson et al. 1997).In humans however, <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong> are not correlated <strong>in</strong> this way (Chau etal. 2004), <strong>and</strong> only a weak relationship exists between <strong>the</strong>m (r = 0.13, p = 0.005), which107


corroborates <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of o<strong>the</strong>r researchers <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> association of <strong>the</strong>se hard<strong>and</strong> soft tissues of <strong>the</strong> <strong>eye</strong> (Kay & Kirk, 2000; Schultz, 1940). Additionally, it was foundthat <strong>in</strong>duc<strong>in</strong>g myopia or hyperopia did not correlate with larger or smaller <strong>orbit</strong>s <strong>in</strong>humans as it did <strong>in</strong> chicks, but ra<strong>the</strong>r it was discovered that <strong>the</strong> opposite relationshipexists among <strong>the</strong>m (Chau et al. 2004). For example, <strong>the</strong> most hyperopic <strong>in</strong>dividuals hadan <strong>orbit</strong>al volume 2.37 cm³ larger than <strong>the</strong> most myopic subjects, <strong>and</strong> that <strong>the</strong> <strong>eye</strong>ball of<strong>the</strong> most myopic subjects was 1.07 cm³ larger than <strong>the</strong> most hyperopic <strong>in</strong>dividuals <strong>in</strong> <strong>the</strong>study (Chau et al. 2004, emphasis added).Read<strong>in</strong>g this statement suggested that look<strong>in</strong>g at <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>the</strong> <strong>orbit</strong>separately may not show <strong>the</strong> true relationship between <strong>the</strong>se features <strong>and</strong> how <strong>the</strong>y relateto refractive error <strong>in</strong> humans, <strong>and</strong> suggested that <strong>the</strong> relative size of <strong>the</strong> <strong>eye</strong>ball with<strong>in</strong> <strong>the</strong><strong>orbit</strong> may better expla<strong>in</strong> <strong>the</strong> <strong>in</strong>cidence <strong>and</strong> severity of this condition. Because Chau et al.(2004) published <strong>the</strong>ir raw data <strong>in</strong> <strong>the</strong> article, it is possible to address this question byconstruct<strong>in</strong>g a hypo<strong>the</strong>sis predict<strong>in</strong>g that <strong>in</strong>dividuals with a larger <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex willbe less myopic (as a result of more space with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> for <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> extraocularstructures, which fill a large portion of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> humans), <strong>and</strong> <strong>in</strong>dividuals with a lower<strong>orbit</strong>/<strong>eye</strong> <strong>in</strong>dex will have a higher spherical equivalent refractive error due to <strong>in</strong>adequatespace with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> for <strong>the</strong>se optical components. This <strong>in</strong>dex was derived frommeasurements taken by Chau et al. (2004) with a high-resolution MR scanner on 33Ch<strong>in</strong>ese adults aged 19-42, determ<strong>in</strong>ed to be free of <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>al pathologies prior to<strong>the</strong> analysis.Regression analysis is used to test <strong>the</strong> null hypo<strong>the</strong>sis of no relationship between<strong>the</strong> <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex <strong>and</strong> spherical equivalent refractive error (SER) measured <strong>in</strong>108


dioptres (<strong>in</strong> which a lower value <strong>in</strong>dicates greater spherical error <strong>and</strong> more severemyopia). Alternatively it is predicted that a positive relationship exists between <strong>the</strong>semeasures, <strong>and</strong> that <strong>in</strong>dividuals with smaller <strong>orbit</strong>s <strong>and</strong> larger <strong>eye</strong>s are limited by availablespace with<strong>in</strong> this bony enclosure for <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> extraocular tissue, result<strong>in</strong>g <strong>in</strong>deformation of <strong>the</strong> globe <strong>and</strong> improper refraction of light upon <strong>the</strong> ret<strong>in</strong>a.The current <strong>in</strong>vestigation also <strong>in</strong>volves an analysis of sex differences <strong>in</strong> SER <strong>and</strong><strong>the</strong> <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex, <strong>and</strong> predicts that <strong>the</strong> ubiquitously higher frequency of myopia <strong>in</strong>females can be understood <strong>in</strong> <strong>the</strong> context of <strong>the</strong>ir generally larger <strong>eye</strong> <strong>in</strong> a smaller <strong>orbit</strong>.This sex disparity has been shown to exist <strong>in</strong> humans, where on average <strong>the</strong> female <strong>eye</strong>fills 5.7% more of <strong>the</strong> <strong>orbit</strong> compared to men, with similar proportions reported between<strong>the</strong> sexes across <strong>the</strong> primate order (Schultz, 1940). This part of <strong>the</strong> <strong>in</strong>vestigation iscarried out us<strong>in</strong>g two-sample t-tests to evaluate a null hypo<strong>the</strong>sis of no differencebetween <strong>the</strong> sexes <strong>in</strong> volume of <strong>the</strong> <strong>eye</strong>ball, <strong>orbit</strong>, <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex, <strong>and</strong> SER.An assessment of sex differences <strong>in</strong> <strong>orbit</strong>al volume with<strong>in</strong> <strong>and</strong> across sevensamples of <strong>modern</strong> humans is also carried out <strong>in</strong> conjunction with <strong>the</strong> above analysis ofSER <strong>and</strong> <strong>orbit</strong>/<strong>eye</strong> volume. Data used <strong>in</strong> this comparison <strong>in</strong>clude measures of <strong>orbit</strong>alvolume from 6 samples represent<strong>in</strong>g African, Asian, <strong>and</strong> European ancestral groups.These <strong>in</strong>clude <strong>the</strong> above sample of Ch<strong>in</strong>ese adults (Chau et al. 2004), <strong>orbit</strong>al volumemeasurement from a Tohoku Japanese sample (Brown & Maeda, 2004) made availableon <strong>the</strong> author’s website (Brown P., 1998–2003), <strong>and</strong> volumetric measurements taken <strong>in</strong>association with this dissertation research (Table 6.1).109


Sample Sample Sizes Method DataFemale Male TotalSouth African 22 26 48 MS UWAfrican American 29 29 58 MS CMNHEuropean 17 16 33 MS MNHNEuropean American 19 31 50 MS CMNHJapanese 22 22 44 MS BROWNCh<strong>in</strong>ese 16 17 33 MRI CHAUUW - The Dart collection, University of <strong>the</strong> Witswatersr<strong>and</strong>, Johannesburg, South AfricaCMNH – Hamman-Todd collection, Clevel<strong>and</strong> Museum of Natural History, Clevel<strong>and</strong>, OHMNHN - Musée National d'Histoire Naturelle, Musée de l'Homme Paris, FranceBROWN – Published data collected by Peter Brown (Brown P., 1998–2003).CHAU – Published data from (Chau, et al. 2004).MS – Volume estimated from fill<strong>in</strong>g <strong>orbit</strong> with mustard seedMRI – Volume estimated from Magnetic Resonance Imag<strong>in</strong>gTable 6.1: Modern human groups used to <strong>in</strong>vestigate sex differences <strong>in</strong> <strong>orbit</strong> sizeThough it is not possible to <strong>in</strong>vestigate differences <strong>in</strong> <strong>the</strong> relationship betweensize of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong> among <strong>modern</strong> human populations based on <strong>the</strong>se data, relativegrowth of <strong>the</strong> <strong>orbit</strong> is compared between South African <strong>and</strong> Tohoku Japanese samples toexam<strong>in</strong>e patterns of <strong>orbit</strong>al growth <strong>and</strong> development between two groups with dist<strong>in</strong>ctlydifferent craniofacial features. The African sample comprises 64 <strong>in</strong>dividuals withapproximately 3 from each year s<strong>in</strong>ce birth between 0 <strong>and</strong> 25 years of age, while <strong>the</strong>Tohoku Japanese sample (Brown P., 1998–2003), is made up of 30 <strong>in</strong>dividuals withslightly fewer numbers from each age group between 5 <strong>and</strong> 25 years. Though <strong>the</strong>sesamples differ slightly <strong>in</strong> age structure, this comparison facilitates a better underst<strong>and</strong><strong>in</strong>gof population-specific <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>al volume throughout growth <strong>and</strong> development,<strong>and</strong> how <strong>the</strong>se differences may relate to <strong>the</strong> etiology of juvenile-onset myopia.110


6.2 Results of test of no relationship between <strong>orbit</strong>/<strong>eye</strong> volume <strong>and</strong> SERThe results of this analysis demonstrate that a highly significant positiverelationship exists between SER <strong>and</strong> relative size of <strong>the</strong> <strong>eye</strong>ball with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> (p


approximately 3.5 show little to no sign of myopia at all (right side of Figure 6.1). Thiscorresponds to an <strong>eye</strong> that occupies approximately 29% of <strong>the</strong> <strong>orbit</strong>, <strong>and</strong> appears from <strong>the</strong>above graph to be an important po<strong>in</strong>t at which <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> extraocular tissues beg<strong>in</strong> tovie for space with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>.It can also be seen <strong>in</strong> Figure 6.1 that all <strong>in</strong>dividuals with an <strong>orbit</strong>/<strong>eye</strong> <strong>in</strong>dex of lessthan approximately 3.0 show some <strong>in</strong>dication of myopia, <strong>and</strong> that <strong>the</strong> severity ofrefractive error cont<strong>in</strong>ues to <strong>in</strong>crease below this po<strong>in</strong>t. This represents ano<strong>the</strong>r importantthreshold <strong>in</strong> <strong>the</strong> relationship between <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong> with<strong>in</strong> this sample, <strong>and</strong> <strong>in</strong>dicatesthat with<strong>in</strong> <strong>the</strong> Ch<strong>in</strong>ese population <strong>in</strong>dividuals with an <strong>eye</strong>ball that occupies more than33% of <strong>the</strong> <strong>orbit</strong> develop myopia, <strong>and</strong> that <strong>the</strong> severity of <strong>the</strong> refractive error <strong>in</strong>creases asthis percentage grows.6.3 Sex differences <strong>in</strong> <strong>orbit</strong>/<strong>eye</strong> size <strong>in</strong> relation to SEROrbit to <strong>eye</strong>ball <strong>in</strong>dices below 3.0 <strong>and</strong> above 3.5 appear to be importantthresholds for ei<strong>the</strong>r <strong>the</strong> development of myopia or <strong>the</strong> retention of emmetropia.However, <strong>in</strong> look<strong>in</strong>g at separate graphs of SER plotted aga<strong>in</strong>st <strong>the</strong> <strong>in</strong>dex of <strong>orbit</strong>al to<strong>eye</strong>ball volume <strong>in</strong> males (Figure 6.2) <strong>and</strong> females (Figure 6.3), it can be seen that <strong>the</strong>sepo<strong>in</strong>ts actually represent <strong>the</strong> same threshold between emmetropic <strong>and</strong> myopic <strong>eye</strong>s, butshow up as two separate po<strong>in</strong>ts when males <strong>and</strong> females are comb<strong>in</strong>ed <strong>in</strong> <strong>the</strong> same graph(Figure 6.1). These sex-separate graphs <strong>in</strong>dicate that myopia beg<strong>in</strong>s to develop <strong>in</strong> femaleswith an <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex below 3.0, <strong>and</strong> <strong>in</strong> males with an <strong>in</strong>dex below 3.5, <strong>and</strong> that <strong>in</strong>both sexes visual acuity cont<strong>in</strong>ues to decrease below <strong>the</strong>se respective po<strong>in</strong>ts.112


Fitted L<strong>in</strong>e Plot: SER vs log(Orb/Eye) - Males Only0.0-2.5SER-5.0-7.5-10.03.03.5Orb/Eye4.04.5[SER = - 23.83 + 39.22 logten(Orb/Eye), R² = 61.8%, p < 0.0001]Figure 6.2: Plot of SER vs. <strong>in</strong>dex of (log10)<strong>orbit</strong>/<strong>eye</strong>ball volume for malesFitted L<strong>in</strong>e Plot: SER vs log(Orb/Eye) - Females Only20-2SER-4-6-8-10-122.53.0Orb/Eye3.54.0[SER = - 26.91 + 47.87 logten(Orb/Eye), R² = 57.1% p < 0.0001]Figure 6.3: Plot of SER vs. <strong>in</strong>dex of (log10)<strong>orbit</strong>/<strong>eye</strong>ball volume for females113


In females <strong>the</strong>re is a clear difference <strong>in</strong> <strong>the</strong> <strong>in</strong>cidence of myopia between<strong>in</strong>dividuals with an <strong>orbit</strong>/<strong>eye</strong> value above <strong>and</strong> below 3.0, which corresponds to an <strong>eye</strong>that occupies approximately 33.3% of <strong>the</strong> <strong>orbit</strong>. This shows that females with <strong>eye</strong>ballsthat fill more than a third of <strong>the</strong> <strong>orbit</strong> are more likely to be myopic, <strong>and</strong> that as <strong>the</strong>percentage grows <strong>the</strong> severity of this condition worsens. This same po<strong>in</strong>t at whichmyopia develops also exists <strong>in</strong> males, however it is shifted toward <strong>the</strong> right on this graph<strong>and</strong> corresponds to an <strong>eye</strong>ball that fills only about 28.6% of <strong>the</strong> <strong>orbit</strong>al cavity.This sex disparity makes it appear as though males are more likely to developmyopia due to <strong>the</strong> lower percentage of <strong>orbit</strong>al occupancy at which it beg<strong>in</strong>s to occur.However, it can be seen from Figure 6.2 that 43% of males have refraction errorsapproximat<strong>in</strong>g 0 dioptres (<strong>in</strong>dicat<strong>in</strong>g relative emmetropia), while only about 27% offemales <strong>in</strong> this sample have acute vision. This is likely <strong>the</strong> result of observedrelationships among <strong>the</strong> <strong>eye</strong>ball, <strong>orbit</strong>, <strong>and</strong> body size, <strong>in</strong> which <strong>eye</strong>ball volume scaleswith negative allometry to <strong>orbit</strong>al volume as body size <strong>in</strong>creases (Kay & Kirk, 2000;Schultz, 1940). Therefore, <strong>the</strong> larger body size of males naturally correlates with an<strong>eye</strong>ball that occupies a smaller percentage of <strong>the</strong> <strong>orbit</strong>. Additionally, males possesslarger extraocular muscles <strong>and</strong> fat volumes (Forbes et al. 1985), which acts tocompensate for <strong>the</strong> greater size of <strong>the</strong> <strong>orbit</strong> to some extent, lower<strong>in</strong>g <strong>the</strong> percentage of<strong>orbit</strong>al occupancy at which myopia beg<strong>in</strong>s to develop. To better underst<strong>and</strong> <strong>the</strong>sedifferences <strong>in</strong> absolute <strong>and</strong> relative size of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>, sex differences for eachvariable are exam<strong>in</strong>ed <strong>in</strong>dependently.114


6.4 Sex differences <strong>in</strong> <strong>orbit</strong>al volume, <strong>eye</strong>ball volume, <strong>and</strong> SER6.4.1 Orbital volumeIn studies of juvenile-onset myopia women are universally found to have a higherfrequency <strong>and</strong> more severe refractive error compared to men (Angle & Wissman, 1980;Grosvenor & Goss, 1999; Ip et al. 2008; Lam et al. 1999; Parss<strong>in</strong>en & Lyyra, 1993; Sawet al. 2008). Size of <strong>the</strong> <strong>eye</strong> is also a predictor of <strong>the</strong> occurrence <strong>and</strong> severity of myopia,<strong>in</strong> which a larger <strong>eye</strong>ball is correlated with its axial elongation, an <strong>in</strong>crease <strong>in</strong> vitreousdepth, <strong>in</strong>creased focus<strong>in</strong>g power of <strong>the</strong> cornea, <strong>and</strong> an image that is erroneously focused<strong>in</strong> front of <strong>the</strong> ret<strong>in</strong>a (Lam et al. 1999; WGMPP, 1989). This relationship is commonlyreported, but <strong>the</strong>re is perpetual vacillation concern<strong>in</strong>g <strong>the</strong> mechanism of this oculardistortion, <strong>and</strong> why it occurs more frequently <strong>in</strong> women than <strong>in</strong> men.A comparison of <strong>orbit</strong>al volumes from data published by Chau et al. (2004)reveals that males have significantly larger <strong>orbit</strong>s compared to females (p = 0.001), withan average difference of approximately 2.33 cm³. The male <strong>orbit</strong> is also found to be farless variable by comparison, to <strong>the</strong> extent that <strong>the</strong> variance for females (ơ² = 5.30) is morethan three times that for males (ơ² = 1.59) (Figure 6.4).115


Boxplot of Orbital Vol vs Sex25.022.5Orbital Vol20.017.515.0FSexM[♀x⎯ = 19.81 = 2.30 / ♂x⎯ = 22.14 = 1.26, p = 0.001]Figure 6.4: Comparison of sex differences <strong>in</strong> absolute <strong>orbit</strong>al volume <strong>in</strong> Ch<strong>in</strong>ese adultsA larger absolute size of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> males is not especially surpris<strong>in</strong>g given that<strong>orbit</strong> size is related to body size <strong>and</strong> men are generally larger than women. However,even after adjust<strong>in</strong>g for size differences between <strong>the</strong> sexes it can be seen that femalespossess a much smaller relative <strong>orbit</strong> size compared to men <strong>in</strong> each sample (Figure 6.5).116


40.0Boxplot of Orbital Volume vs Ancestry / Sex37.5Orbital Volume35.032.530.027.525.0Af-A merican FemaleA f-American MaleA frican FemaleAfrican MaleEuro-American FemaleEuro-American MaleEuropean FemaleAncestry / SexEuropean MaleJapanese FemaleJapanese MaleFigure 6.5: Intra-group sex differences <strong>in</strong> size-adjusted <strong>orbit</strong>al volumeWith <strong>the</strong> exception of <strong>the</strong> Tohoku Japanese sample, size-adjusted <strong>orbit</strong>al volumevalues are statistically different between males <strong>and</strong> females with<strong>in</strong> each sample (Table6.2). The lack of significance between <strong>the</strong> sexes <strong>in</strong> this Japanese sample may relate to <strong>the</strong>comparatively small absolute <strong>and</strong> relative size of <strong>the</strong> <strong>orbit</strong> among all <strong>in</strong>dividuals <strong>in</strong> thisgroup. In fact, <strong>the</strong> average <strong>orbit</strong>al volume value of males <strong>in</strong> this sample even fallssubstantially below <strong>the</strong> average of every female group <strong>in</strong> <strong>the</strong> analysis. The comparativelylow relative <strong>orbit</strong>al volume <strong>in</strong> <strong>the</strong> Japanese sample may limit <strong>the</strong> degree of <strong>variation</strong> thatcan exist between <strong>the</strong> sexes, as both already have limited space available for <strong>the</strong> <strong>eye</strong>ball,muscles, blood supply, nerves, <strong>and</strong> fat that lie with<strong>in</strong> <strong>the</strong> conf<strong>in</strong>es of <strong>the</strong> <strong>orbit</strong>.117


Ancestral Group N mean s.d. t pAfrican-American Female 29 30.63 2.61 -3.37 0.001African-American Male 29 33.11 3.00African Female 22 30.58 2.00 -3.25 0.002African Male 26 32.38 1.81European-American Female 29 31.65 3.34 -2.45 0.017European-American Male 31 33.65 2.97European Female 17 31.13 3.37 -3.41 0.002European Male 16 34.61 2.44Japanese Female 22 28.77 2.80 -0.45 0.654Japanese Male 22 29.14 2.58Table 6.2: Intra-group sex differences <strong>in</strong> size-adjusted <strong>orbit</strong>al volume6.4.2 Eyeball volumeA comparison of <strong>eye</strong>ball volume between male <strong>and</strong> female Ch<strong>in</strong>ese adults us<strong>in</strong>gdata collected by Chau et al. (2004) reveals that no statistically significant difference (p =0.368) exists <strong>in</strong> <strong>the</strong> size of <strong>the</strong> <strong>eye</strong>ball between <strong>the</strong> sexes (Figure 6.6). It is <strong>in</strong>terest<strong>in</strong>g tonote however that females possess a slightly larger absolute <strong>eye</strong>ball volume compared tomales <strong>in</strong> this sample, which is counter to <strong>the</strong> above pattern of larger absolute <strong>and</strong> relativesize of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> males.118


Boxplot of Eyeball Vol vs Sex8.58.07.5Eyeball Vol7.06.56.05.55.0FSexM[♀x⎯ = 6.836, = 0.882 / ♂x⎯ = 6.546, = 0.940, p = 0.368]Figure 6.6: Comparison of absolute <strong>eye</strong>ball volume between male <strong>and</strong> female Ch<strong>in</strong>ese adultsSchultz (1940) observed that with<strong>in</strong> humans <strong>and</strong> among all primates with <strong>the</strong>exception of <strong>the</strong> marmoset, females possess a larger relative <strong>eye</strong>ball size compared tomale conspecifics. Though body size was not collected by Chau et al. (2004), divid<strong>in</strong>g<strong>eye</strong>ball volume by <strong>the</strong> geometric mean of cranial length, width, <strong>and</strong> height for each<strong>in</strong>dividual <strong>in</strong> this sample provides an estimate of relative <strong>eye</strong> size <strong>in</strong> proportion to overallsize of <strong>the</strong> neurocranium. A comparison of size-adjusted <strong>eye</strong>ball volume between <strong>the</strong>sexes <strong>in</strong> this sample of Ch<strong>in</strong>ese adults shows that relative size of <strong>the</strong> <strong>eye</strong>ball is larger <strong>in</strong>females than <strong>in</strong> males (Figure 6.7), corroborat<strong>in</strong>g <strong>the</strong> results of Schultz (1940).119


5.5Boxplot of Relative Eye Size vs SexSize-adjusted <strong>eye</strong> volume5.04.54.03.53.0FSexM[♀x⎯ =4.446, = 0.573 / ♂x⎯ = 4.038, = 0.491, p = 0.030]Figure 6.7: Comparison of relative <strong>eye</strong>ball volume between male & female Ch<strong>in</strong>ese adultsThe above analysis shows that absolute <strong>and</strong> relative size of <strong>the</strong> <strong>orbit</strong> is larger <strong>in</strong>males than females <strong>in</strong> this sample of Ch<strong>in</strong>ese adults, but that females possess a largerrelative <strong>eye</strong>ball size, despite comparable values of absolute <strong>eye</strong>ball volume between <strong>the</strong>sexes. A comparison of sex differences <strong>in</strong> <strong>eye</strong>ball volume relative to that of <strong>the</strong> <strong>orbit</strong>shows that females have a significantly lower average <strong>orbit</strong>/<strong>eye</strong> value compared to men(p = 0.005), which corresponds to an <strong>eye</strong>ball that occupies 34% of <strong>the</strong> <strong>orbit</strong> <strong>in</strong> females,<strong>and</strong> 29.1% <strong>in</strong> males (Figure 6.8, Table 6.1).120


Boxplot of Orb/Eye vs Sex4.54.0Orb/Eye3.53.02.52.0FSexM[♀x⎯ = 2.936 (34.0%) = 0.480 / ♂x⎯ = 3.438 (29.1%) = 0.461, p = 0.005]Figure 6.8: Comparison of <strong>orbit</strong>/<strong>eye</strong>ball volume between male <strong>and</strong> female Ch<strong>in</strong>ese adultsSex Index │ Percent[Average] [M<strong>in</strong> – Max] [Range] [Average] [M<strong>in</strong> – Max] [Range]Female 2.94 2.3 – 3.7 1.4 34% 27% - 43.5% 16.5%Male 3.44 2.7 - 4.5 1.8 29.1% 22% - 37% 15%Comb<strong>in</strong>ed 3.19 2.3 – 4.5 2.2 │ 31.35% 22%-43.5% 21.5%Table 6.3: Sex difference <strong>in</strong> <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex / Percent of <strong>orbit</strong> filled by <strong>the</strong> <strong>eye</strong>6.4.3 Incidence <strong>and</strong> severity of myopiaIt was shown <strong>in</strong> <strong>the</strong> above section that a strong positive relationship existsbetween spherical equivalent refractive error (SER) <strong>and</strong> <strong>the</strong> <strong>in</strong>dex of <strong>orbit</strong>al volume to<strong>eye</strong>ball volume <strong>in</strong> both males <strong>and</strong> females. It was also found that <strong>the</strong>re is a clear shift121


away from emmetropia <strong>in</strong> <strong>in</strong>dividuals with <strong>eye</strong>balls larger than 33.3% of <strong>orbit</strong>al volume<strong>in</strong> women, <strong>and</strong> larger than 28.6% of <strong>orbit</strong>al volume <strong>in</strong> men.In both sexes <strong>the</strong> average <strong>orbit</strong>/<strong>eye</strong> <strong>in</strong>dex is below <strong>the</strong> threshold at which po<strong>in</strong>t<strong>in</strong>dividuals beg<strong>in</strong> to develop myopia (Table 6.3), which corresponds to an average SERof – 4.76 dioptres <strong>in</strong> females, <strong>and</strong> – 2.94 dioptres <strong>in</strong> males. Despite an average refractiveerror that is nearly – 2 dioptres lower <strong>in</strong> females, <strong>the</strong> difference <strong>in</strong> this sample is notsignificant at α = 0.05 (Figure 6.9). However, it can be seen that a greater number offemales are myopic by comparison, <strong>and</strong> that all of <strong>the</strong> most severe cases of refractiveerror are found <strong>in</strong> this sex group; <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> worst case <strong>in</strong> which this <strong>in</strong>dividual hasboth <strong>the</strong> lowest <strong>orbit</strong>/<strong>eye</strong>ball <strong>in</strong>dex (2.29), correspond<strong>in</strong>g to an <strong>eye</strong>ball that occupies 44%of <strong>the</strong> <strong>orbit</strong>, <strong>and</strong> <strong>the</strong> most severe case of myopia <strong>in</strong> <strong>the</strong> sample (- 12.75).Boxplot of SER vs Sex0-2-4SER-6-8-10-12-14FSexM[♀x⎯ = -4.76 = 4.25 / ♂x⎯ = -2.94 = 2.87, p = 0.159]Figure 6.9: Comparison of refraction error between male <strong>and</strong> female Ch<strong>in</strong>ese adults122


6.5 Growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>Chau et al. (2004) po<strong>in</strong>t out <strong>in</strong> <strong>the</strong>ir analysis that <strong>in</strong> some <strong>in</strong>dividuals with severemyopia <strong>the</strong> enlarged <strong>eye</strong>ball, characteristic of myopes <strong>in</strong> general, was compressed aga<strong>in</strong>stextraocular tissues. However, <strong>the</strong>y do not address <strong>the</strong> question of why <strong>the</strong> <strong>eye</strong>ball wouldbe compressed aga<strong>in</strong>st surround<strong>in</strong>g soft tissue structures if <strong>the</strong>re were room enough foreach with<strong>in</strong> <strong>the</strong> conf<strong>in</strong>es of <strong>the</strong> <strong>orbit</strong>. The rectus muscles, blood supply, nerves, <strong>and</strong>particularly fat that occupy <strong>the</strong> area around <strong>the</strong> <strong>eye</strong>ball would be expected to exertpressure on <strong>the</strong> globe <strong>and</strong> cause deviations from its natural spherical state <strong>in</strong> <strong>in</strong>dividuals<strong>and</strong> groups with <strong>orbit</strong>s that are small <strong>in</strong> relation to size of <strong>the</strong> globe <strong>and</strong> extraoculartissues that fill it. The above analysis of relative size of <strong>the</strong> <strong>eye</strong>ball with<strong>in</strong> <strong>the</strong> bony <strong>orbit</strong><strong>and</strong> how this <strong>in</strong>dex varies <strong>in</strong> association with <strong>the</strong> occurrence <strong>and</strong> severity of juvenileonsetmyopia lends evidence to this proposal.Because it does not take much pressure to br<strong>in</strong>g an image out of focus, evenm<strong>in</strong>or force result<strong>in</strong>g from compression aga<strong>in</strong>st extraocular tissue could impact vision,but not be apparent <strong>in</strong> MR scans until a significant degree of penetration occurs. Thoughmore importantly, because <strong>the</strong> degree of myopia does not <strong>change</strong> significantly aftergrowth ceases <strong>in</strong> adult <strong>in</strong>dividuals (Goss et al. 1990), <strong>and</strong> actually beg<strong>in</strong>s to improve afterabout age 50 (Fledelius & Stubgaard, 1986; Mutti & Zadnik, 2000), disparities <strong>in</strong> growthof <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong> dur<strong>in</strong>g ontogeny, which are shown to follow separate trajectories(Schultz, 1940; Kay <strong>and</strong> Kirk, 2000; Chau et al. 2004), could result <strong>in</strong> a permanentmalformation of <strong>the</strong> <strong>eye</strong>ball.Different growth trajectories of <strong>the</strong> <strong>orbit</strong> <strong>and</strong> <strong>eye</strong>ball are likely contributors to <strong>the</strong>onset of myopia early <strong>in</strong> life <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ued deterioration of vision until growth123


ceases. Additionally, different patterns of growth <strong>and</strong> development <strong>in</strong> groups withvariable cranial <strong>and</strong> facial forms may contribute to an underst<strong>and</strong><strong>in</strong>g of populationdifferences <strong>in</strong> <strong>the</strong> frequency <strong>and</strong> severity of juvenile-onset myopia. This is partiallyexhibited through a comparison of <strong>orbit</strong>al growth <strong>and</strong> development between <strong>in</strong>dividualsof South African <strong>and</strong> Japanese ancestry, which shows that <strong>the</strong> <strong>orbit</strong> reaches adult sizemuch earlier <strong>in</strong> <strong>the</strong> African group by comparison (Figure 6.10). Growth of <strong>the</strong> cranium isrelatively consistent between <strong>the</strong> two, though <strong>the</strong> Japanese reach peak size slightly later,which also correlates with <strong>the</strong> later achievement of adult <strong>orbit</strong>al size around <strong>the</strong> age of 20years.Scatterplot of Orbital Volume, Cranial Size vs Age302520151006 12 18 24 0 6 12 18 24Orbital Volume Cranial Size Ancestry160AfricanJapanese1501401301201101005061218249080Age06121824Figure 6.10: Comparison of <strong>orbit</strong>al <strong>and</strong> cranial growth <strong>in</strong> African <strong>and</strong> Japanese samples124


The above comparison <strong>in</strong>dicates that <strong>in</strong> <strong>the</strong> African group <strong>the</strong> <strong>orbit</strong> grows rapidly<strong>in</strong> early life <strong>and</strong> cont<strong>in</strong>ues a slower growth between 3 <strong>and</strong> 9 years, followed by a rapid<strong>in</strong>crease <strong>in</strong> size around puberty. By comparison <strong>the</strong> Japanese sample shows little growththrough adolescents, <strong>and</strong> doesn’t exhibit an <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al volume until about 6 yearsafter <strong>the</strong> African group, with growth <strong>in</strong> this feature occurr<strong>in</strong>g primarily between ages 18<strong>and</strong> 24 years. O<strong>the</strong>r studies based on skeletal, hormonal, <strong>and</strong> o<strong>the</strong>r <strong>in</strong>dicators of growth<strong>and</strong> development have also shown that a general delay <strong>in</strong> growth is characteristic ofAsian populations compared to African <strong>and</strong> European groups (Ashcroft & Lovell, 1964;Ashcroft et al. 1966; Bog<strong>in</strong>, 1999; Herman-Giddens et al. 1997).Investigat<strong>in</strong>g differences <strong>in</strong> patterns of growth <strong>and</strong> development <strong>in</strong> <strong>the</strong>neurocranium <strong>and</strong> face of males <strong>and</strong> females may also contribute to an underst<strong>and</strong><strong>in</strong>g ofwhy women develop myopia earlier <strong>in</strong> life, have a higher frequency of <strong>the</strong> condition, <strong>and</strong>have a more severe degree of spherical error when growth ceases. For example, <strong>in</strong> arecent longitud<strong>in</strong>al growth study of <strong>in</strong>dividuals of European descent, sexual dimorphism<strong>in</strong> <strong>the</strong> neurocranium of human males <strong>and</strong> females is found to be present dur<strong>in</strong>g early life,<strong>and</strong> rema<strong>in</strong> relatively constant throughout ontogeny; however marked differences existbetween <strong>the</strong> sexes <strong>in</strong> regard to <strong>the</strong>ir facial growth trajectories (Bulyg<strong>in</strong>a, Mitteroecker,Aiello, 2006).These authors show that sexual dimorphism <strong>in</strong> facial size develops postnatally<strong>and</strong> <strong>in</strong>creases throughout growth <strong>and</strong> development, which is primarily due to malehypermorphosis. By contrast females experience a considerable decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> rate offacial growth around age 13, <strong>and</strong> stop grow<strong>in</strong>g altoge<strong>the</strong>r at about age 15 (Bulyg<strong>in</strong>a,Mitteroecker, Aiello, 2006). These differences are important given <strong>the</strong> high percentage125


of <strong>the</strong> <strong>orbit</strong> that <strong>the</strong> <strong>eye</strong>ball fills <strong>in</strong> females, <strong>and</strong> <strong>the</strong> cont<strong>in</strong>ued growth of <strong>the</strong> <strong>eye</strong>ballwith<strong>in</strong> <strong>the</strong> <strong>orbit</strong> even after facial growth is complete.By comparison, <strong>the</strong> <strong>eye</strong>ball has been shown to grow most rapidly dur<strong>in</strong>g <strong>the</strong> firstyears of life, <strong>and</strong> <strong>the</strong>n more slowly dur<strong>in</strong>g later life but with a short spurt between 10-12,<strong>and</strong> ano<strong>the</strong>r <strong>in</strong>creased rate of growth from <strong>the</strong> age of 14 until <strong>the</strong> early 20s (Salzmann,1912; Weiss, 1897; Weale, 1982). The rapid period of enlargement early on is primarily<strong>in</strong> <strong>the</strong> anterior segment of <strong>the</strong> <strong>eye</strong>, which atta<strong>in</strong>s much of its complete size dur<strong>in</strong>g <strong>the</strong> firstyear of postnatal life. However, <strong>the</strong> last <strong>in</strong>crease <strong>in</strong> size follow<strong>in</strong>g <strong>the</strong> fourteenth yearprimarily <strong>in</strong>volves an enlargement of <strong>the</strong> posterior segment of <strong>the</strong> <strong>eye</strong>ball (Salzmann,1912; Weiss, 1897), which if out of step with <strong>orbit</strong>al growth could result <strong>in</strong> itscompression aga<strong>in</strong>st <strong>in</strong>ternal soft tissues, with most distortion occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> moresupple globe.The late development of this posterior segment would likely contribute to <strong>the</strong>occurrence <strong>and</strong> progression of juvenile-onset myopia <strong>in</strong> <strong>in</strong>dividuals <strong>and</strong> groups that arecharacterized by less overall skeletal growth, <strong>and</strong> particularly growth of <strong>the</strong> face. This isespecially important to consider given that early growth of <strong>the</strong> bra<strong>in</strong> <strong>and</strong> neurocraniumlargely <strong>in</strong>fluence when <strong>and</strong> how <strong>the</strong> face develops (Enlow & Hans, 1996). Forward <strong>and</strong>downward growth of <strong>the</strong> bra<strong>in</strong> <strong>and</strong> basicranium, result<strong>in</strong>g <strong>in</strong> less facial growth away from<strong>the</strong>se supra<strong>orbit</strong>al features, may well vertically compress <strong>the</strong> soft tissue with<strong>in</strong> <strong>the</strong> <strong>orbit</strong><strong>and</strong> result <strong>in</strong> an axial elongation of <strong>the</strong> lissome globe.Compression of <strong>the</strong> <strong>eye</strong>ball <strong>in</strong> <strong>the</strong> parasagittal plane is also underst<strong>and</strong>able <strong>in</strong> <strong>the</strong>context of differential growth among various components of <strong>the</strong> <strong>orbit</strong> dur<strong>in</strong>g ontogeny, <strong>in</strong>which later development occurs only <strong>in</strong> <strong>the</strong> lateral portion of this feature. Orbital126


expansion throughout childhood is primarily restricted to <strong>the</strong> transverse plane, or <strong>in</strong> anequatorial orientation with respect to <strong>the</strong> <strong>eye</strong>ball (Waitzman et al. 1992), while <strong>the</strong> roofof <strong>the</strong> <strong>orbit</strong> is remodel<strong>in</strong>g anteriorly <strong>and</strong> <strong>in</strong>feriorly by resorption on <strong>the</strong> endocranialsurface <strong>and</strong> deposition on <strong>the</strong> exocranial surface of <strong>the</strong> frontal bone with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>,which is primarily driven by forward <strong>and</strong> downward expansion of <strong>the</strong> frontal lobes(Enlow & Hans, 1996). Additionally, a second growth spurt occurs around <strong>the</strong> age ofn<strong>in</strong>e to eleven years <strong>in</strong> <strong>the</strong> superior portion of <strong>the</strong> <strong>orbit</strong> (Lang, 1983), fur<strong>the</strong>r contribut<strong>in</strong>gto this downward movement of <strong>the</strong> <strong>orbit</strong>al roof above <strong>the</strong> <strong>eye</strong>s <strong>and</strong> extraocular tissues.Fur<strong>the</strong>r research is needed to <strong>in</strong>vestigate how different patterns of growth between<strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong> among <strong>modern</strong> human populations <strong>and</strong> between <strong>the</strong> sexes relate to <strong>the</strong>onset <strong>and</strong> progression of juvenile-onset myopia. Investigat<strong>in</strong>g <strong>variation</strong> <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g <strong>and</strong>rate of development among <strong>the</strong> bra<strong>in</strong>, neurocranium, lower face, <strong>orbit</strong>s, <strong>eye</strong>balls, <strong>and</strong>extraocular tissues may help expla<strong>in</strong> <strong>the</strong> <strong>in</strong>creased <strong>in</strong>cidence of juvenile-onset myopia <strong>in</strong>recent human history, <strong>and</strong> why it occurs with greater frequency <strong>and</strong> severity amongdifferent human groups <strong>and</strong> between <strong>the</strong> sexes. Additionally, future research shouldemploy high resolution MRI or CAT scan technology, comprise multiple ancestral groupswith equal numbers of males <strong>and</strong> females, <strong>and</strong> utilize a longitud<strong>in</strong>al approach, as crosssectionaldata are not capable of detect<strong>in</strong>g slight aberrations <strong>in</strong> <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> to whatdegree <strong>the</strong>y relate to compression aga<strong>in</strong>st contiguous hard <strong>and</strong> soft tissues with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>dur<strong>in</strong>g growth <strong>and</strong> development.127


CHAPTER 7SUMMARY AND CONCLUSION7.1 Modern human <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphologyAs part of this <strong>the</strong>sis research, <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al anatomy is compared amongthree diverse <strong>modern</strong> human samples us<strong>in</strong>g univariate <strong>and</strong> multivariate statistical tools.The results of this analysis <strong>in</strong>dicate that several differences exist among <strong>the</strong>m <strong>in</strong> relationto size, shape, <strong>and</strong> orientation of <strong>the</strong> <strong>orbit</strong>s. Of <strong>the</strong> 11 <strong>orbit</strong>al traits <strong>in</strong>vestigated only 3showed no statistically significant degree of divergence among groups, <strong>and</strong> <strong>in</strong>cluded <strong>the</strong>distance between <strong>the</strong> most lateral marg<strong>in</strong>s of <strong>the</strong> <strong>orbit</strong>s (bi<strong>orbit</strong>al breadth), width of <strong>the</strong>nasal area between <strong>the</strong> <strong>orbit</strong>s (<strong>in</strong>ter<strong>orbit</strong>al breadth), <strong>and</strong> projection of <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>almarg<strong>in</strong>s relative to basion (basion-<strong>orbit</strong>ale).Traits that are most variable among <strong>the</strong> <strong>modern</strong> human groups <strong>in</strong>vestigated <strong>in</strong> thisanalysis <strong>in</strong>clude <strong>orbit</strong>al depth, <strong>orbit</strong>al volume, <strong>and</strong> shape of <strong>the</strong> exterior <strong>orbit</strong>al marg<strong>in</strong>s.Orbital depth is largest <strong>in</strong> <strong>the</strong> Asian sample <strong>and</strong> differs most from <strong>the</strong> European group <strong>in</strong>this regard. The deep <strong>orbit</strong>s <strong>in</strong> this sample are likely related to <strong>the</strong> greater degree of<strong>orbit</strong>al convergence, fronto-<strong>orbit</strong>al, <strong>and</strong> midfacial flatness of East Asian groups(Hanihara, 2000). This facial form draws ectoconchion more anteriorly, thus leng<strong>the</strong>n<strong>in</strong>g<strong>the</strong> distance between <strong>the</strong> lateral <strong>orbit</strong>al marg<strong>in</strong>s <strong>and</strong> <strong>the</strong> most posterior po<strong>in</strong>t of <strong>the</strong><strong>in</strong>terior <strong>orbit</strong> from which this measurement was taken.128


Although Europeans possess <strong>the</strong> shortest <strong>in</strong>ternal <strong>orbit</strong>al depth, overall volume of<strong>the</strong> <strong>orbit</strong>al cavity is much larger <strong>in</strong> this sample, particularly <strong>in</strong> comparison with <strong>the</strong>African group. Despite this disparity <strong>in</strong> <strong>orbit</strong>al size however, Africans <strong>and</strong> Europeansshare a more similar <strong>orbit</strong>al morphology to <strong>the</strong> exclusion of <strong>the</strong> Asian sample <strong>in</strong> 83% ofunivariate comparisons. Relative size of <strong>orbit</strong>al breadth <strong>and</strong> <strong>orbit</strong>al height (<strong>orbit</strong>al <strong>in</strong>dex)is <strong>the</strong> most variable of all traits <strong>in</strong> this among-group univariate comparison. The Asiansample is characterized by <strong>the</strong> largest <strong>orbit</strong>al height <strong>and</strong> smallest <strong>orbit</strong>al breadth, whichtoge<strong>the</strong>r results <strong>in</strong> a tall, narrow <strong>and</strong> more rounded <strong>orbit</strong>al open<strong>in</strong>g. The <strong>orbit</strong> <strong>in</strong> <strong>the</strong>African sample is at <strong>the</strong> opposite extreme, <strong>and</strong> is much shorter, wider, <strong>and</strong> morerectangular <strong>in</strong> shape. Though a significance test could not be carried out due to aviolation of <strong>the</strong> normality assumption <strong>in</strong> <strong>the</strong> Asian sample, this pattern of variability <strong>in</strong><strong>orbit</strong>al shape is well documented among <strong>modern</strong> human populations, <strong>and</strong> as a result iscommonly used <strong>in</strong> <strong>the</strong> classification of ancestry <strong>in</strong> osteological analyses (White, 2000).In <strong>the</strong> current study, <strong>orbit</strong>al shape <strong>in</strong> <strong>the</strong> European sample fell between Africans<strong>and</strong> Asians <strong>and</strong> showed slightly more aff<strong>in</strong>ity to <strong>the</strong> African group. This is particularly<strong>in</strong>terest<strong>in</strong>g given <strong>the</strong> degree to which <strong>orbit</strong>al height has <strong>in</strong>creased <strong>and</strong> <strong>orbit</strong>al breadthdecreased s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong> Western Europe (chapter 5), <strong>and</strong> <strong>in</strong>dicates thatthis same trend has occurred even more rapidly, or over a longer time period <strong>in</strong> Ch<strong>in</strong>a(Brown & Maeda, 2004; Wu et al. 2007).Variation <strong>in</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s among <strong>the</strong>se <strong>modern</strong> human groups isalso <strong>in</strong>terest<strong>in</strong>g because both bi<strong>orbit</strong>al <strong>and</strong> <strong>in</strong>ter<strong>orbit</strong>al breadth are not statisticallydifferent among <strong>the</strong>m. Orbital breadth is much smaller <strong>in</strong> <strong>the</strong> Asian sample however, <strong>and</strong>is more important than <strong>orbit</strong>al height <strong>in</strong> creat<strong>in</strong>g <strong>the</strong> dist<strong>in</strong>ctive form of <strong>the</strong> <strong>orbit</strong>al129


marg<strong>in</strong>s <strong>in</strong> this group. The slightly smaller bi<strong>orbit</strong>al breadth <strong>and</strong> generally narrower faceof <strong>in</strong>dividuals <strong>in</strong> <strong>the</strong> Asian sample also contributes to <strong>the</strong>ir dist<strong>in</strong>ctively high <strong>and</strong> narrow<strong>orbit</strong>al marg<strong>in</strong>s.A multivariate comparison of <strong>the</strong> African, Asian, <strong>and</strong> European samples us<strong>in</strong>gonly <strong>orbit</strong>al traits, separates groups most along <strong>the</strong> first discrim<strong>in</strong>ant function based ondifferences <strong>in</strong> <strong>orbit</strong>al volume, <strong>orbit</strong>al depth, <strong>and</strong> <strong>the</strong> distance from basion to <strong>the</strong> superior<strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s. Along this dimension, <strong>the</strong> European sample is mostdifferent from <strong>the</strong> o<strong>the</strong>r two, which is primarily <strong>the</strong> result of a much larger <strong>orbit</strong>alvolume, <strong>and</strong> relatively small values for <strong>orbit</strong>al depth, basion-superior <strong>orbit</strong>, <strong>and</strong> basion<strong>orbit</strong>ale.The pattern of <strong>variation</strong> among <strong>modern</strong> human groups for <strong>the</strong>se four traits, whichmost separate Europeans from <strong>the</strong> Asian <strong>and</strong> African samples, is consistent with resultsobta<strong>in</strong>ed from <strong>the</strong> exam<strong>in</strong>ation of temporal <strong>change</strong> <strong>in</strong> Western Europe <strong>in</strong> chapter 5. Thispart of <strong>the</strong> <strong>in</strong>vestigation revealed that dur<strong>in</strong>g <strong>the</strong> last 30,000 years <strong>in</strong> Europe, <strong>orbit</strong>alvolume rema<strong>in</strong>ed relatively large, while all three measures of <strong>orbit</strong>al depth weresignificantly reduced (obd, bso, bio).After account<strong>in</strong>g for <strong>the</strong> variance expla<strong>in</strong>ed by <strong>the</strong> first discrim<strong>in</strong>ant function(which primarily separates Europeans from <strong>the</strong> o<strong>the</strong>r two samples), it is <strong>the</strong> Asian groupthat differs most from <strong>the</strong> o<strong>the</strong>r two along <strong>the</strong> second discrim<strong>in</strong>ant axis. This departure isprimarily <strong>the</strong> result of a narrower bi<strong>orbit</strong>al <strong>and</strong> <strong>orbit</strong>al breadth, <strong>and</strong> taller, deeper, <strong>and</strong>more frontated <strong>orbit</strong>s <strong>in</strong> <strong>the</strong> Asian sample. The product of this discrim<strong>in</strong>ant functionanalysis corroborates <strong>the</strong> results <strong>in</strong> <strong>the</strong> previous section us<strong>in</strong>g one-way analysis of130


variance, but offers more <strong>in</strong>formation about <strong>the</strong> relative contribution of each variable togroup separation, <strong>and</strong> provide a much more holistic picture of population differences <strong>in</strong><strong>orbit</strong>al morphology.7.1.1 Orbital <strong>variation</strong> <strong>in</strong> relation to overall craniofacial variabilityAlthough <strong>the</strong> <strong>orbit</strong>s do show a considerable degree of <strong>variation</strong> among <strong>modern</strong>human groups, <strong>the</strong>y are far less variable <strong>in</strong> comparison with o<strong>the</strong>r craniofacial traits. With<strong>the</strong> exception of maximum cranial length, mean differences are noticeably larger for allo<strong>the</strong>r cranial <strong>and</strong> facial measures <strong>in</strong> comparison with those of <strong>the</strong> <strong>orbit</strong>s. Variables thatdiscrim<strong>in</strong>ate most among <strong>the</strong> three samples considered <strong>in</strong> this analysis primarily <strong>in</strong>volveheight <strong>and</strong> width of <strong>the</strong> face <strong>and</strong> cranium.A discrim<strong>in</strong>ant function analysis us<strong>in</strong>g all cranial, facial, <strong>and</strong> <strong>orbit</strong>al variablesshows that <strong>the</strong> Asian <strong>and</strong> European groups share a more similar overall craniofacial form,despite possess<strong>in</strong>g <strong>the</strong> greatest number of differences <strong>in</strong> <strong>orbit</strong>al anatomy revealed <strong>in</strong> <strong>the</strong>univariate <strong>and</strong> multivariate analyses with only <strong>orbit</strong>al variables. Consider<strong>in</strong>g all traits of<strong>the</strong> face <strong>and</strong> cranium, <strong>the</strong> European <strong>and</strong> Asian samples are most separate from <strong>the</strong>African sample along <strong>the</strong> first discrim<strong>in</strong>ant function as a result of <strong>the</strong>ir broader <strong>and</strong> tallercrania, <strong>and</strong> narrower, taller, <strong>and</strong> more orthognathic faces.The African group by comparison is characterized by a longer <strong>and</strong> narrower skullwith a shorter, wider, <strong>and</strong> more prognathic face. O<strong>the</strong>r comparative morphology studieshave also po<strong>in</strong>ted out <strong>the</strong> similarity between Europeans <strong>and</strong> Asians, <strong>and</strong> <strong>the</strong>ir divergencefrom <strong>the</strong> craniofacial form of Africans <strong>and</strong> Austro-melanesians (Hanihara, 1996, 2000;Hennessy & Str<strong>in</strong>ger, 2002; Howells, 1989). These dichotomous features also help <strong>in</strong> <strong>the</strong>131


classification of dry skulls <strong>and</strong> assign<strong>in</strong>g <strong>the</strong>m to a particular ancestral group <strong>in</strong> forensic<strong>in</strong>vestigations (Burns, 2007; White, 2000).Orbital characteristics that contribute most to group separation along <strong>the</strong> firstdiscrim<strong>in</strong>ant axis <strong>in</strong>clude breadth, volume, <strong>and</strong> frontation, with each follow<strong>in</strong>g <strong>the</strong> samepattern of group differences observed <strong>in</strong> <strong>the</strong> previous analyses us<strong>in</strong>g only <strong>orbit</strong>alvariables. After account<strong>in</strong>g for <strong>the</strong> variance expla<strong>in</strong>ed by <strong>the</strong> first discrim<strong>in</strong>ant function,(which ma<strong>in</strong>ly separates Africans out from <strong>the</strong> European <strong>and</strong> Asian samples), mostcranial, facial, <strong>and</strong> <strong>orbit</strong>al differences exist between <strong>the</strong> European <strong>and</strong> Asian groups.Additionally, because <strong>the</strong>se samples are more similar <strong>in</strong> cranial <strong>and</strong> facial form, much of<strong>the</strong> separation between <strong>the</strong>m along this dimension is <strong>the</strong> result of a disparity <strong>in</strong> <strong>orbit</strong>almorphology, <strong>in</strong> which Europeans possess a wider <strong>and</strong> larger <strong>orbit</strong>, while Asians are aga<strong>in</strong>dist<strong>in</strong>guished by <strong>the</strong>ir relatively tall, narrow <strong>and</strong> deep <strong>orbit</strong>s.The first discrim<strong>in</strong>ant function primarily divides groups based on features of <strong>the</strong>face <strong>and</strong> cranium, while separation along <strong>the</strong> second dimension is largely <strong>the</strong> result ofdifferences <strong>in</strong> <strong>orbit</strong>al morphology. This <strong>in</strong>dicates that despite a greater degree of<strong>variation</strong> that exists among <strong>modern</strong> humans <strong>in</strong> cranial <strong>and</strong> facial form, <strong>orbit</strong>alcharacteristics also vary <strong>and</strong> are useful for assign<strong>in</strong>g cases to <strong>the</strong>ir appropriate ancestralgroup. This also <strong>in</strong>dicates that <strong>orbit</strong>al traits are relatively <strong>in</strong>dependent of surround<strong>in</strong>gcranial <strong>and</strong> facial features <strong>in</strong> <strong>modern</strong> humans, as <strong>the</strong>se characteristics of <strong>the</strong> skulldemarcate along different canonical roots, <strong>and</strong> show different patterns of group aff<strong>in</strong>itydepend<strong>in</strong>g on whe<strong>the</strong>r <strong>orbit</strong>al variables are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> analysis.For example, despite <strong>the</strong> disparate <strong>orbit</strong>al attributes of Asians <strong>and</strong> Europeans,<strong>the</strong>se groups share a similar overall craniofacial form, <strong>and</strong> when cranial <strong>and</strong> facial132


characteristics dom<strong>in</strong>ate <strong>the</strong> discrim<strong>in</strong>ant analysis, Asians <strong>and</strong> Europeans are most similarto <strong>the</strong> exclusion of <strong>the</strong> African sample. However, once <strong>the</strong>se are accounted for by <strong>the</strong>first discrim<strong>in</strong>ant function <strong>and</strong> <strong>orbit</strong>al differences contribute more to <strong>the</strong> model, <strong>the</strong>greatest disparity exists between Asians <strong>and</strong> Europeans. Consequently, <strong>the</strong> seconddiscrim<strong>in</strong>ant function, which considers all <strong>orbit</strong>al, lower facial, <strong>and</strong> neurocranial traits,captures much of <strong>the</strong> same pattern of <strong>in</strong>ter-group <strong>variation</strong> <strong>in</strong> <strong>orbit</strong>al morphologydescribed <strong>in</strong> both <strong>the</strong> analysis of variance, <strong>and</strong> discrim<strong>in</strong>ant function analysis when only<strong>orbit</strong>al traits were used. This <strong>in</strong>dicates that <strong>the</strong> <strong>orbit</strong> is not tightly <strong>in</strong>tegrated with o<strong>the</strong>rcraniofacial traits that dist<strong>in</strong>guish between <strong>the</strong>se ancestral groups, but ra<strong>the</strong>r that <strong>orbit</strong>alform is somewhat <strong>in</strong>dependent of <strong>the</strong>se o<strong>the</strong>r features <strong>in</strong> <strong>modern</strong> humans.7.2 Long-term <strong>evolutionary</strong> <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>The hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage is unique among mammals <strong>in</strong> <strong>the</strong> extent to which <strong>the</strong> bra<strong>in</strong>has enlarged relative to o<strong>the</strong>r anatomical regions, particularly consider<strong>in</strong>g that most ofthis growth has taken place only with<strong>in</strong> <strong>the</strong> last 2 million years of human evolution. Aconsiderable degree of modification has also taken place <strong>in</strong> <strong>the</strong> facial form of pasthom<strong>in</strong><strong>in</strong> groups <strong>in</strong> association with this cranial expansion. Though <strong>the</strong>se <strong>change</strong>s arewell documented <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> l<strong>in</strong>eage, little is known about how <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong>association with <strong>the</strong> convergence of <strong>the</strong> face <strong>and</strong> neurocranium around this midfacialregion. As a result, this study <strong>in</strong>vestigates <strong>the</strong> relationship among <strong>the</strong>se features <strong>in</strong> Pan,Australopi<strong>the</strong>cus, <strong>and</strong> Homo, which are characterized by different grades ofencephalization <strong>and</strong> facial prognathism, <strong>and</strong> tests predictions regard<strong>in</strong>g <strong>the</strong> direction <strong>and</strong>strength of <strong>the</strong>se relationships.133


Six <strong>orbit</strong>al variables were used to <strong>in</strong>vestigate three general regions of <strong>the</strong> external<strong>orbit</strong> predicted to covary with cranial size <strong>and</strong> facial prognathism. As <strong>the</strong> lower faceretracts toward an exp<strong>and</strong><strong>in</strong>g <strong>and</strong> forward project<strong>in</strong>g neurocranium, <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>alregion was predicted to drift posteriorly, <strong>and</strong> to a greater extent than <strong>the</strong> superior <strong>orbit</strong>almarg<strong>in</strong>s, which toge<strong>the</strong>r would result <strong>in</strong> a more frontated <strong>eye</strong> <strong>orbit</strong> relative to <strong>the</strong>Frankfurt Horizontal Plane. Shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s was also expected to <strong>change</strong><strong>and</strong> become vertically shortened <strong>and</strong> horizontally elongated <strong>in</strong> association withconvergence of <strong>the</strong> face <strong>and</strong> cranium above <strong>and</strong> below <strong>the</strong> <strong>orbit</strong>al region.A test of no relationship between six <strong>orbit</strong>al variables <strong>and</strong> <strong>the</strong> craniofacial <strong>in</strong>dex(CFI), which captures this grade shift <strong>in</strong> craniofacial form, reveals that <strong>the</strong> nullhypo<strong>the</strong>sis is rejected for each <strong>orbit</strong>al trait, <strong>and</strong> that predicted patterns of co<strong>variation</strong>among <strong>the</strong>se features are supported by <strong>the</strong> direction <strong>and</strong> strength of <strong>the</strong>se relationships.For example, <strong>in</strong> this analysis it was shown that as cranial size <strong>in</strong>creases <strong>and</strong> facialprognathism decreases, which is <strong>in</strong>dicated by an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> craniofacial <strong>in</strong>dex, <strong>orbit</strong>alprojection relative to basion is reduced. Though both basion-superior <strong>orbit</strong> (bso) <strong>and</strong>basion-<strong>orbit</strong>ale (bio) are <strong>in</strong>versely related to <strong>the</strong> craniofacial <strong>in</strong>dex, <strong>the</strong> position of <strong>the</strong><strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s relative to basion is more highly correlated with CFI. This meansthat as <strong>the</strong> neurocranium exp<strong>and</strong>s out over <strong>the</strong> <strong>orbit</strong>s, <strong>the</strong> superior <strong>orbit</strong>al marg<strong>in</strong>s moveposteriorly to a lesser extent than <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s that migrate posteriorly <strong>in</strong>association with lower facial retrognathism.This discrepancy between <strong>the</strong> upper <strong>and</strong> lower aspects of <strong>the</strong> <strong>orbit</strong>s is also relatedto an <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al frontation. As <strong>the</strong> craniofacial <strong>in</strong>dex <strong>in</strong>creases <strong>and</strong> <strong>the</strong> <strong>in</strong>ferior<strong>orbit</strong>al marg<strong>in</strong>s shift posteriorly to a greater extent than <strong>the</strong> superior marg<strong>in</strong>s, <strong>the</strong> entire134


<strong>orbit</strong> becomes more frontated, or more vertically oriented relative to <strong>the</strong> FrankfurtHorizontal Plane. This analysis <strong>in</strong>dicates that a strong relationship exists between <strong>orbit</strong>alorientation <strong>and</strong> <strong>change</strong>s <strong>in</strong> <strong>the</strong> cranium <strong>and</strong> face dur<strong>in</strong>g human evolution. This f<strong>in</strong>d<strong>in</strong>galso corroborates Cartmill’s (1970) proposal that <strong>in</strong>creased <strong>orbit</strong>al frontation would occur<strong>in</strong> response to an <strong>in</strong>crease <strong>in</strong> relative bra<strong>in</strong> size <strong>and</strong>/or a reduction <strong>in</strong> palatal length <strong>and</strong>maxillary recession. However, though strong relationships exists between <strong>orbit</strong>alfrontation <strong>and</strong> <strong>the</strong>se cranial <strong>and</strong> facial features, frontation of <strong>the</strong> <strong>orbit</strong> must also beunderstood <strong>in</strong> <strong>the</strong> context of a shift toward more orthograde posture (Daebelow, 1929,Weidenreich, 1941), <strong>in</strong>creased basicranial flexure (Ross, 1995; Ross & Ravosa, 1993),<strong>and</strong> <strong>in</strong>creased relative bra<strong>in</strong> size (Lieberman, Ross, Ravosa, 2000; Strait & Ross, 1999)that occur <strong>in</strong> association with <strong>the</strong>se craniofacial trends dur<strong>in</strong>g hom<strong>in</strong><strong>in</strong> evolution.A more orthograde posture has been suggested as a contributor to frontation of <strong>the</strong><strong>orbit</strong>s, which occurs <strong>in</strong> association with <strong>in</strong>creased relative bra<strong>in</strong> size <strong>and</strong> flexure of <strong>the</strong>cranial base, each act<strong>in</strong>g to rotate <strong>the</strong> mid <strong>and</strong> lower face <strong>in</strong>feriorly <strong>and</strong> contribut<strong>in</strong>g tokl<strong>in</strong>orhynchy <strong>in</strong> species with <strong>the</strong>se postural, bra<strong>in</strong>, <strong>and</strong> basicranial characteristics (Bastiret al. 2008; Bookste<strong>in</strong> et al.2003; Enlow & Hans, 1996; Lieberman & McCarthy, 2000;Lieberman, Ross, Ravosa, 2000; Lieberman, McBratney, Krovitz, 2002; Ross, 1995;Strait & Ross, 1999). Dur<strong>in</strong>g this craniofacial transformation <strong>in</strong> hom<strong>in</strong><strong>in</strong> evolution, <strong>the</strong>brow ridge essentially acts as a h<strong>in</strong>ge between <strong>the</strong> exp<strong>and</strong><strong>in</strong>g bra<strong>in</strong>case <strong>and</strong> posteriorlyrelocat<strong>in</strong>g face, to <strong>the</strong> extent that <strong>the</strong> <strong>orbit</strong>s <strong>and</strong> ethmomaxillary complex sw<strong>in</strong>g below <strong>the</strong>anterior cranial base <strong>and</strong> under <strong>the</strong> frontal lobes of <strong>the</strong> bra<strong>in</strong> <strong>in</strong> anatomically <strong>modern</strong>Homo sapiens (Bruner, 2007; Lieberman, 2000; Lieberman, Ross, Ravosa, 2000;Lieberman, McBratney, Krovitz, 2002).135


A f<strong>in</strong>al prediction relat<strong>in</strong>g to how <strong>the</strong> <strong>orbit</strong>al open<strong>in</strong>g varies <strong>in</strong> association with<strong>in</strong>creased cranial size <strong>and</strong> decreased facial prognathism is also supported <strong>in</strong> this analysis.Orbital height is found to decrease as <strong>orbit</strong>al breadth <strong>in</strong>creases <strong>in</strong> association with anexp<strong>and</strong><strong>in</strong>g cranium that grows out over <strong>the</strong> <strong>orbit</strong>s, <strong>and</strong> an ethmomaxillary complex thatrelocates posteriorly toward <strong>the</strong>m. The result of this craniofacial coalescence is anoverall shape <strong>change</strong> <strong>in</strong> which <strong>the</strong> <strong>orbit</strong>s become mediolateraly elongated <strong>and</strong>supero<strong>in</strong>feriorly shortened.The wide rectangular shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s result<strong>in</strong>g from a shift <strong>in</strong> relativesize of <strong>orbit</strong>al height <strong>and</strong> <strong>orbit</strong>al breadth is highly characteristic of anatomically <strong>modern</strong>humans from <strong>the</strong> Upper Paleolithic <strong>in</strong> Europe <strong>and</strong> Asia (chapter 5), <strong>and</strong> extant groupsfrom Sub-Saharan Africa (chapter 3). Follow<strong>in</strong>g <strong>the</strong> Upper Paleolithic however, <strong>the</strong>trend toward supero<strong>in</strong>feriorly shorter <strong>and</strong> more elongated <strong>orbit</strong>s associated with a gradeshift <strong>in</strong> craniofacial form began to reverse, <strong>and</strong> <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s become taller <strong>and</strong>narrower, tak<strong>in</strong>g on a more rounded shape. This more recent trend has also beendocumented among East Asian groups dat<strong>in</strong>g to <strong>the</strong> Holocene (Brown & Maeda, 2004;Wu et al. 2007), <strong>and</strong> is <strong>in</strong>vestigated as part of a larger exam<strong>in</strong>ation of <strong>orbit</strong>al <strong>change</strong>through <strong>the</strong> European Upper Paleolithic <strong>in</strong> chapter 5 of this <strong>the</strong>sis.7.3 Evolutionary <strong>change</strong> <strong>in</strong> <strong>the</strong> hom<strong>in</strong><strong>in</strong> <strong>orbit</strong>: Upper Paleolithic to presentNumerous <strong>change</strong>s <strong>in</strong> <strong>orbit</strong> morphology are observable with<strong>in</strong> <strong>the</strong> last 30,000years <strong>in</strong> Western Europe. Most notable among <strong>the</strong>m is a relatively rapid <strong>in</strong>crease <strong>in</strong><strong>orbit</strong>al height, which <strong>in</strong> association with a decrease <strong>in</strong> <strong>orbit</strong>al breadth <strong>and</strong> bi<strong>orbit</strong>albreadth results <strong>in</strong> a high, narrow, <strong>and</strong> more rounded shape of <strong>the</strong> external <strong>orbit</strong>al marg<strong>in</strong>s.136


As previously mentioned, this decrease <strong>in</strong> <strong>orbit</strong>al <strong>in</strong>dex (obi) s<strong>in</strong>ce <strong>the</strong> Upper Paleolithicmimics a trend that occurs <strong>in</strong> Asia (Brown & Maeda, 2004; Hanihara, 1994; Wu et al.2007), but st<strong>and</strong>s <strong>in</strong> contrast to that which characterizes most of our <strong>evolutionary</strong> history.This divergent pattern of <strong>change</strong> <strong>in</strong> shape of <strong>the</strong> <strong>orbit</strong>al marg<strong>in</strong>s is likely associated with aslow<strong>in</strong>g, cessation, <strong>and</strong>/or reversal of certa<strong>in</strong> long-term trends <strong>in</strong> <strong>the</strong> evolution of hom<strong>in</strong><strong>in</strong>craniofacial anatomy.Throughout much of our <strong>evolutionary</strong> history <strong>the</strong> neurocranium has exp<strong>and</strong>edupward, forward, <strong>and</strong> outward while <strong>the</strong> lower facial region retreats posteriorly toward it.However, dur<strong>in</strong>g <strong>the</strong> last 30,000 years <strong>in</strong> Western Europe <strong>and</strong> <strong>in</strong> o<strong>the</strong>r regions of <strong>the</strong>world, absolute <strong>and</strong> relative cranial size have decreased <strong>in</strong> association with a m<strong>in</strong>imaldegree of facial retraction. Most <strong>change</strong>s <strong>in</strong> skull morphology throughout this timeperiod <strong>in</strong>volve shape modification, <strong>and</strong> more specifically a shift towardbrachycephalization <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> facial <strong>in</strong>dex (a narrower vertically elongatedfacial form) (Brown 1987; Brown & Maeda, 2004; Carlson, 1976; Carlson & VanGerven, 1977; Hanihara, 1994; Henneberg, 1988; Lahr & Wright, 1996; Wu et al. 2007).Though no predictions were made concern<strong>in</strong>g how <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> relation toneighbor<strong>in</strong>g features <strong>in</strong> this analysis of <strong>orbit</strong>al <strong>change</strong> s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic, anextemporized <strong>in</strong>vestigation of <strong>the</strong>se features shows that <strong>the</strong> <strong>orbit</strong>al <strong>in</strong>dex <strong>and</strong> many o<strong>the</strong>r<strong>orbit</strong>al variables are correlated with <strong>the</strong>se cranial <strong>and</strong> facial shape <strong>change</strong>s. It should bepo<strong>in</strong>ted out that although <strong>the</strong> <strong>orbit</strong>s vary <strong>in</strong> association with brachycephalization <strong>and</strong> an<strong>in</strong>crease <strong>in</strong> <strong>the</strong> facial <strong>in</strong>dex throughout this time period, <strong>the</strong>y are not viewed as <strong>the</strong> onlysource of <strong>in</strong>fluence, as o<strong>the</strong>r contiguous features certa<strong>in</strong>ly covary with <strong>the</strong> <strong>orbit</strong>s as well.137


Never<strong>the</strong>less, <strong>orbit</strong>al traits that <strong>change</strong> most dur<strong>in</strong>g this time are also those thatare most highly correlated with <strong>the</strong> cranial <strong>and</strong> facial <strong>in</strong>dexes, <strong>and</strong> <strong>the</strong> pattern ofco<strong>variation</strong> among <strong>the</strong>m follows that which would be expected <strong>in</strong> association with trendsof brachycephalization <strong>and</strong> a narrow<strong>in</strong>g <strong>and</strong> elongation of <strong>the</strong> face. For example, <strong>the</strong><strong>orbit</strong>al marg<strong>in</strong>s <strong>and</strong> three measures of <strong>orbit</strong>al depth are most strongly associated with <strong>the</strong>time variable, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>y have <strong>change</strong>d significantly s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic.These features are also highly correlated with <strong>the</strong> cranial <strong>in</strong>dex <strong>and</strong> upper facial <strong>in</strong>dex,<strong>and</strong> covary with <strong>the</strong>m <strong>in</strong> a way that is consistent with craniofacial shape <strong>change</strong>s thathave occurred <strong>in</strong> this region over <strong>the</strong> last 30,000 years.Although long-term trends of <strong>in</strong>creased cranial capacity <strong>and</strong> decreased facialprognathism do not persist, some <strong>orbit</strong>al traits found to vary <strong>in</strong> association with <strong>the</strong>secraniofacial <strong>change</strong>s, which are characteristic of a majority of human evolution (chapter4), cont<strong>in</strong>ue through <strong>the</strong> European Upper Paleolithic. For example, both <strong>the</strong> upper <strong>and</strong>lower <strong>orbit</strong>al marg<strong>in</strong>s moved posteriorly relative to basion <strong>in</strong> association with <strong>in</strong>creasedcranial size <strong>and</strong> decreased facial prognathism, <strong>and</strong> each measure cont<strong>in</strong>ues to decreasethrough <strong>the</strong> Upper Paleolithic. While both <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong>al marg<strong>in</strong>s cont<strong>in</strong>ueto move posteriorly, <strong>the</strong>re is a shift <strong>in</strong> which of <strong>the</strong>se regions <strong>change</strong> most dur<strong>in</strong>g thistime period.In chapter 4 it was found that basion-<strong>orbit</strong>ale decreases far more than <strong>the</strong> measureof basion to <strong>the</strong> superior <strong>orbit</strong>al marg<strong>in</strong>s <strong>in</strong> association with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> craniofacial<strong>in</strong>dex CFI, which is likely a result of <strong>the</strong> bra<strong>in</strong> mov<strong>in</strong>g forward <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong>relative position of <strong>the</strong> upper <strong>orbit</strong>, while <strong>the</strong> zygomatic <strong>and</strong> maxilla that toge<strong>the</strong>r makeup <strong>the</strong> lower <strong>orbit</strong>al region move posteriorly <strong>in</strong> association with <strong>the</strong> retract<strong>in</strong>g face.138


Follow<strong>in</strong>g <strong>the</strong> Upper Paleolithic however, <strong>the</strong> superior <strong>orbit</strong>al marg<strong>in</strong>s are shown toretreat slightly more compared to <strong>the</strong> <strong>in</strong>ferior <strong>orbit</strong>al region, which is likely <strong>the</strong> result of agreater reduction <strong>in</strong> size of <strong>the</strong> supra<strong>orbit</strong>al tori, as well as a slowed rate of reduction <strong>in</strong>facial prognathism dur<strong>in</strong>g recent human evolution.The relative position of <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong>al marg<strong>in</strong>s, <strong>in</strong> association with<strong>the</strong>se o<strong>the</strong>r craniofacial trends, also <strong>in</strong>fluences <strong>the</strong> vertical angle of <strong>the</strong> <strong>orbit</strong>s. Orbitalfrontation occurs <strong>in</strong> association with cranial expansion <strong>and</strong> facial reduction dur<strong>in</strong>ghom<strong>in</strong><strong>in</strong> evolution, <strong>and</strong> is equally correlated with <strong>change</strong> <strong>in</strong> both features above <strong>and</strong>below <strong>the</strong> <strong>orbit</strong>s. As <strong>the</strong> upper <strong>orbit</strong>al marg<strong>in</strong>s move posteriorly to a lesser extent than<strong>the</strong> <strong>in</strong>ferior marg<strong>in</strong>s <strong>in</strong> association with cranial expansion above <strong>and</strong> facial retractionbelow <strong>the</strong> <strong>orbit</strong>al open<strong>in</strong>g, <strong>the</strong> angle becomes more obtuse <strong>and</strong> approaches 90 degrees <strong>in</strong>more <strong>modern</strong> groups with a higher craniofacial <strong>in</strong>dex.Compared to <strong>the</strong> vast majority of human evolution, <strong>orbit</strong>al frontation does not<strong>change</strong> considerably dur<strong>in</strong>g <strong>the</strong> last 30,000 years <strong>in</strong> Western Europe, but ra<strong>the</strong>r ma<strong>in</strong>ta<strong>in</strong>san approximately 90 degree orientation throughout this period, <strong>and</strong> actually appears todecrease slightly follow<strong>in</strong>g <strong>the</strong> Neolithic <strong>and</strong> particularly after <strong>the</strong> Copper Age.Although <strong>the</strong> superior <strong>and</strong> <strong>in</strong>ferior <strong>orbit</strong>al marg<strong>in</strong>s both cont<strong>in</strong>ue to move posteriorly,because <strong>the</strong> lower region no longer retreats to a greater extent than <strong>the</strong> upper, this longtermtrend of <strong>orbit</strong>al frontation is largely arrested. Orbital frontation is also not found tocorrelate with ei<strong>the</strong>r <strong>the</strong> cranial <strong>in</strong>dex or upper facial <strong>in</strong>dex, which capture general<strong>change</strong>s <strong>in</strong> cranial <strong>and</strong> facial shape with<strong>in</strong> this region over <strong>the</strong> last 30,000 years.As a result of poor preservation <strong>in</strong> <strong>the</strong> fragile bony <strong>orbit</strong> of fossil hom<strong>in</strong><strong>in</strong>s,<strong>change</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal anatomy of this feature relative to cranial expansion <strong>and</strong> facial139


etraction could not be evaluated. However, many skulls of anatomically <strong>modern</strong> humansdat<strong>in</strong>g back to <strong>the</strong> Upper Paleolithic have reta<strong>in</strong>ed much of <strong>the</strong> <strong>in</strong>ternal <strong>orbit</strong>al structure,which facilitates an analysis of more recent <strong>evolutionary</strong> <strong>change</strong>s <strong>in</strong> <strong>orbit</strong>al depth <strong>and</strong>volume, as well as an assessment of how <strong>the</strong>y covary with craniofacial shape <strong>change</strong>sthat have taken place dur<strong>in</strong>g this time.Both measures of volume are among only four <strong>orbit</strong>al characteristics, <strong>in</strong>clud<strong>in</strong>g<strong>orbit</strong>al frontation <strong>and</strong> <strong>in</strong>ter<strong>orbit</strong>al breadth, which show no statistically significantrelationship to time <strong>in</strong> this <strong>in</strong>vestigation of <strong>orbit</strong>al <strong>change</strong> s<strong>in</strong>ce <strong>the</strong> European UpperPaleolithic. In fact a later <strong>in</strong>vestigation of <strong>in</strong>ter<strong>orbit</strong>al breadth showed that this featuredoes not vary <strong>in</strong> relation to cranial expansion or reduced facial prognathism throughoutbroader hom<strong>in</strong><strong>in</strong> evolution, nor did it vary among <strong>the</strong> three <strong>modern</strong> human samples <strong>in</strong>this study, <strong>in</strong>dicat<strong>in</strong>g that it is a highly conserved region of <strong>the</strong> skull across time <strong>and</strong>space.Although <strong>orbit</strong>al volume does not show a relationship to time <strong>in</strong> this <strong>in</strong>vestigationof morphological <strong>change</strong> <strong>in</strong> Western Europe, both measures of <strong>orbit</strong>al volume are<strong>in</strong>versely related to <strong>the</strong> upper facial <strong>in</strong>dex, which <strong>in</strong>creases s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong>this region. This <strong>in</strong>dicates that an <strong>in</strong>crease <strong>in</strong> facial height <strong>and</strong> decrease <strong>in</strong> facial breadthis accompanied by a reduction <strong>in</strong> <strong>orbit</strong>al size. However, because <strong>orbit</strong>al volume rema<strong>in</strong>sconstant throughout this time period, <strong>the</strong>se facial shape <strong>change</strong>s do not <strong>in</strong>fluence relative<strong>orbit</strong>al size <strong>in</strong> any appreciable way. Additionally, a decrease <strong>in</strong> <strong>orbit</strong>al volume thatoccurs <strong>in</strong> association with decreased supra<strong>orbit</strong>al breadth, lower facial prognathism, <strong>and</strong><strong>the</strong> <strong>orbit</strong>al <strong>in</strong>dex <strong>in</strong> East Asia s<strong>in</strong>ce <strong>the</strong> Neolithic (Brown & Maeda, 2004), is not140


consistent with morphological <strong>change</strong>s <strong>in</strong> <strong>the</strong> <strong>orbit</strong> <strong>and</strong> broader craniofacial complex oftemporal groups <strong>in</strong> Europe.While <strong>orbit</strong>al volume rema<strong>in</strong>s relatively constant s<strong>in</strong>ce <strong>the</strong> Upper Paleolithic <strong>in</strong>Western Europe, a statistically significant decrease <strong>in</strong> <strong>orbit</strong>al depth is found to occur.This decrease <strong>in</strong> <strong>the</strong> anteroposterior length of <strong>the</strong> <strong>orbit</strong> would be expected <strong>in</strong> associationwith a decrease <strong>in</strong> cranial length <strong>and</strong> a posterior movement of <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong>almarg<strong>in</strong>s, which also take place throughout this period. Reduction <strong>in</strong> basion-superior <strong>orbit</strong>(bso), basion-<strong>orbit</strong>ale (bio), <strong>and</strong> <strong>orbit</strong>al depth (obd) with<strong>in</strong> Western Europe over <strong>the</strong> last30,000 years, also helps expla<strong>in</strong> <strong>the</strong> statistically lower value for each of <strong>the</strong>se variables <strong>in</strong><strong>modern</strong> Europeans when compared with African <strong>and</strong> Asian samples <strong>in</strong> <strong>the</strong> analysis of<strong>modern</strong> human <strong>variation</strong> carried out <strong>in</strong> chapter 3.7.4 An <strong>evolutionary</strong> perspective on <strong>the</strong> etiology of juvenile-onset myopiaA decrease <strong>in</strong> anterior projection of <strong>the</strong> upper <strong>and</strong> lower <strong>orbit</strong>al marg<strong>in</strong>s, whichoccurs <strong>in</strong> association with <strong>in</strong>creased cranial size <strong>and</strong> decreased facial prognathism(chapter 4), <strong>and</strong> cont<strong>in</strong>ues <strong>in</strong> association with a reduction <strong>in</strong> <strong>orbit</strong>al depth throughout <strong>the</strong>last 30,000 years <strong>in</strong> Western Europe (chapter 5), may be important to consider <strong>in</strong><strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> etiology of myopia <strong>in</strong> European/Caucasian groups. A more forwardproject<strong>in</strong>g (exophthalmic/proptotic) <strong>eye</strong> result<strong>in</strong>g from a decrease <strong>in</strong> <strong>orbit</strong>al depth,becomes anterior to <strong>the</strong> concave segment of <strong>the</strong> <strong>orbit</strong>al roof <strong>and</strong> floor <strong>in</strong> which it is meantto rest. Because <strong>the</strong> <strong>in</strong>ferior <strong>and</strong> superior aspects of <strong>the</strong> <strong>orbit</strong>al open<strong>in</strong>g curve towardeach o<strong>the</strong>r, a more forward <strong>eye</strong> <strong>and</strong> extraocular tissues may become compressed aga<strong>in</strong>st<strong>the</strong>se hard tissue components of <strong>the</strong> <strong>orbit</strong>.141


A statistically significant negative correlation between proptosis <strong>and</strong> sphericalequivalent refractive error has led some researchers to suggest that degree of refractiveerror be considered <strong>in</strong> studies of exophthalmia, as it is assumed that <strong>the</strong> <strong>in</strong>creased axiallength of <strong>the</strong> <strong>eye</strong>ball <strong>in</strong> myopes causes it to protrude out from <strong>the</strong> <strong>orbit</strong> (Migliori et al.1984; Quant & Woo, 1992). However, it is also highly likely that more proptotic<strong>eye</strong>balls become compressed with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>, which would cause <strong>the</strong>m to become axiallyelongated <strong>and</strong> subsequently <strong>in</strong>crease myopic refractive error as a response to thissupero<strong>in</strong>ferior pressure be<strong>in</strong>g applied to <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues as <strong>the</strong>y shiftforward toward <strong>the</strong> smaller part of <strong>the</strong> <strong>orbit</strong>. This suggests that <strong>in</strong>creased axial length of<strong>the</strong> myopic <strong>eye</strong> is not a contribut<strong>in</strong>g factor to exophthalmia, but ra<strong>the</strong>r a possible result ofits protrusion.A rapid <strong>in</strong>crease <strong>in</strong> <strong>orbit</strong>al height that occurs throughout <strong>the</strong> Upper Paleolithic <strong>in</strong>Europe <strong>and</strong> Asia would dim<strong>in</strong>ish <strong>the</strong> amount of pressure applied to <strong>the</strong> <strong>eye</strong> <strong>and</strong> oculartissue if it were to shift anteriorly <strong>in</strong> association with a decrease <strong>in</strong> both <strong>orbit</strong>al depth <strong>and</strong><strong>orbit</strong>al projection through time. However, Brown <strong>and</strong> Maeda (2004) show that this shape<strong>change</strong>, <strong>in</strong> which <strong>the</strong> <strong>orbit</strong>s become taller <strong>and</strong> rounder, is associated with an overalldecrease <strong>in</strong> <strong>orbit</strong>al volume <strong>in</strong> <strong>the</strong>ir East Asia temporal analysis. This relationshipbetween <strong>orbit</strong>al shape <strong>and</strong> <strong>orbit</strong>al volume was not found to exist among groups fromWestern Europe dat<strong>in</strong>g to <strong>the</strong> Upper Paleolithic <strong>in</strong> <strong>the</strong> current study, <strong>and</strong> <strong>in</strong> fact nodecrease <strong>in</strong> absolute or relative size of <strong>the</strong> <strong>orbit</strong> was detected <strong>in</strong> this region (chapter 5).At <strong>the</strong> end of <strong>the</strong>ir article, Brown <strong>and</strong> Maeda (2004) state that “if it is <strong>the</strong> totalvolume occupied by <strong>the</strong> <strong>eye</strong>ball, extraocular muscles, nerves <strong>and</strong> blood supply which areimportant, ra<strong>the</strong>r than just <strong>the</strong> size of <strong>the</strong> <strong>eye</strong>ball, <strong>the</strong>n <strong>the</strong>re would need to be some142


functional compensation for any significant reduction <strong>in</strong> <strong>orbit</strong> length <strong>and</strong> volume” (pg.38). A reduction <strong>in</strong> <strong>orbit</strong>al volume <strong>and</strong> <strong>orbit</strong>al depth would require some form offunctional compensation to allow adequate space for proper growth <strong>and</strong> development of<strong>the</strong> <strong>eye</strong>, particularly given that <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong> follow separate growth trajectories.However, as a result of long-term <strong>evolutionary</strong> trends <strong>in</strong> hom<strong>in</strong><strong>in</strong> evolution <strong>in</strong> which<strong>in</strong>creased relative bra<strong>in</strong> size <strong>in</strong>itiates flex<strong>in</strong>g of <strong>the</strong> basicranium <strong>and</strong> <strong>the</strong> deposition ofbone on <strong>the</strong> exocranial surface of <strong>the</strong> anterior cranial base, while also limit<strong>in</strong>g <strong>the</strong> amountof available time <strong>and</strong> space for outward <strong>and</strong> downward growth of <strong>the</strong> nasomaxillarycomplex, it is not likely that any form of functional compensation could occur whichwould free up space for <strong>the</strong> mass of soft tissues with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>.Dur<strong>in</strong>g much of our <strong>evolutionary</strong> history, <strong>the</strong> relationship between <strong>the</strong> bra<strong>in</strong>, <strong>eye</strong>,<strong>orbit</strong>, <strong>and</strong> lower face would be regulated by <strong>the</strong> necessity of keen vision associated with ahunter/ga<strong>the</strong>rer subsistence strategy. Selective pressure favor<strong>in</strong>g <strong>in</strong>dividuals with better<strong>eye</strong>sight would be relaxed follow<strong>in</strong>g <strong>the</strong> advent of corrective lenses, but may have begun<strong>in</strong> association with social stratification <strong>and</strong> a division of labor <strong>in</strong> human society longbefore this technology was available. Social stratification allows <strong>in</strong>dividuals with skillsthat only require one to work with<strong>in</strong> arms-length of <strong>the</strong> face (mak<strong>in</strong>g cloth<strong>in</strong>g, tally<strong>in</strong>gcommercial activities, etc.) to cont<strong>in</strong>ue to survive <strong>and</strong> reproduce even without highlyacute vision.A broad division of labor with high levels of social stratification began dur<strong>in</strong>g <strong>the</strong>Neolithic, at which time <strong>in</strong>dividuals could remove <strong>the</strong>mselves from <strong>the</strong> burdens ofsubsistence <strong>and</strong> engage <strong>in</strong> o<strong>the</strong>r crafts, trad<strong>in</strong>g goods <strong>and</strong> services for food produced byo<strong>the</strong>rs. However, while <strong>the</strong> development of agriculture allowed some members of society143


to engage <strong>in</strong> non-subsistence activities without an imposed opportunity cost, relaxation ofselective pressure favor<strong>in</strong>g those with keen <strong>eye</strong>sight may have begun even earlier, astool-mak<strong>in</strong>g, which has been an exceptionally valued skill for far longer, allows<strong>in</strong>dividuals to produce highly coveted items that can be traded for parts of animals <strong>the</strong>ywere used to kill by o<strong>the</strong>rs. With relaxation of this selective pressure <strong>in</strong> <strong>the</strong> human past,<strong>change</strong>s among structural <strong>and</strong> functional units of <strong>the</strong> skull <strong>in</strong> association with bra<strong>in</strong>peramorphosis <strong>and</strong> facial paedomorphosis may have begun to imp<strong>in</strong>ge on <strong>the</strong> spacepreviously reserved for <strong>the</strong> visual system, particularly given that <strong>the</strong> bra<strong>in</strong> <strong>and</strong> <strong>eye</strong> sharemultiple bones that house <strong>the</strong>ir respective soft tissue components.The <strong>orbit</strong>s, along with <strong>the</strong> <strong>eye</strong>balls <strong>and</strong> extraocular tissues circumscribed by<strong>the</strong>m, are separated from <strong>the</strong> frontal lobes of <strong>the</strong> bra<strong>in</strong> by a very th<strong>in</strong> sliver of bone thatprotrudes slightly <strong>in</strong>to <strong>the</strong> anterior bra<strong>in</strong>case. This bone is so th<strong>in</strong> <strong>in</strong> fact, that <strong>in</strong> many<strong>in</strong>dividual dry skulls <strong>in</strong>vestigated as part of this dissertation research it was translucentenough to see <strong>in</strong>to <strong>the</strong> <strong>orbit</strong> look<strong>in</strong>g down on <strong>the</strong> anterior cranial base with <strong>the</strong> calvariumremoved. The close configuration of <strong>the</strong> bra<strong>in</strong>, anterior cranial fossa, <strong>orbit</strong>, <strong>and</strong> <strong>eye</strong>, is aresult of an absolute <strong>and</strong> relative <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> size, <strong>in</strong> which <strong>the</strong> frontal lobes haveexp<strong>and</strong>ed <strong>and</strong> moved forward to <strong>the</strong> po<strong>in</strong>t that <strong>the</strong>y have come to rest atop <strong>the</strong> <strong>eye</strong>s, <strong>and</strong>have all but erased <strong>the</strong> supra<strong>orbit</strong>al tori <strong>in</strong> <strong>modern</strong> humans (Bruner, 2007; Moss &Young, 1960).This craniofacial form is considered a unique feature of humans to <strong>the</strong>exclusion of all o<strong>the</strong>r mammalian groups (Enlow & Hans, 1996), <strong>and</strong> is a likelycontributor to <strong>the</strong> high <strong>in</strong>cidence of juvenile-onset myopia <strong>in</strong> our species, as a result ofcompetition among important functional units with<strong>in</strong> <strong>the</strong> limited space of <strong>the</strong> human144


skull. Although <strong>the</strong> <strong>eye</strong>ball lies predom<strong>in</strong>antly with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>, it does not directly<strong>in</strong>fluence <strong>orbit</strong>al size (Chau et al. 2004; Schultz, 1940), but ra<strong>the</strong>r <strong>eye</strong> growth keeps pacewith growth of <strong>the</strong> bra<strong>in</strong> (Salzmann, 1912; Todd et al. 1940; Weale, 1982; Weiss, 1897),<strong>and</strong> both are thought to be <strong>the</strong> product of pleiotropic gene control (Mak, et al. 2005). Incontrast, <strong>the</strong> <strong>orbit</strong>s grow <strong>in</strong> association with <strong>the</strong> rest of <strong>the</strong> cranium (Waitzmann et al.1992) <strong>and</strong> have been shown to vary <strong>in</strong> association with overall body size, to <strong>the</strong> extentthat body mass <strong>and</strong> area of <strong>the</strong> <strong>orbit</strong>al open<strong>in</strong>g are correlated at r = 0.987 (Kappelman,1996).If growth of <strong>the</strong> <strong>eye</strong> <strong>and</strong> bra<strong>in</strong> are a product of pleiotropy, prolonged bra<strong>in</strong> growththroughout hom<strong>in</strong><strong>in</strong> evolution would also act to <strong>in</strong>crease size of <strong>the</strong> <strong>eye</strong>ball, while at <strong>the</strong>same time limit<strong>in</strong>g available space for <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>,due to bra<strong>in</strong> growth above this region <strong>in</strong> recent human evolution. Change <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g<strong>and</strong> rate of growth <strong>in</strong> <strong>the</strong> neurocranium <strong>and</strong> face <strong>in</strong> association with <strong>in</strong>creasedencephalization throughout hom<strong>in</strong><strong>in</strong> evolution, would eventually reach a po<strong>in</strong>t <strong>in</strong> whichcont<strong>in</strong>ued expansion of both <strong>the</strong> <strong>eye</strong>s <strong>and</strong> bra<strong>in</strong> would result <strong>in</strong> <strong>the</strong>ir compet<strong>in</strong>g for space<strong>in</strong> this anatomical region. And while <strong>the</strong> bra<strong>in</strong> can bend <strong>and</strong> fold with<strong>in</strong> <strong>the</strong> conf<strong>in</strong>es of<strong>the</strong> cranium, <strong>the</strong> <strong>eye</strong> cannot.Additional expansion of ei<strong>the</strong>r of <strong>the</strong>se features due to genetic or epigeneticfactors dur<strong>in</strong>g growth would fur<strong>the</strong>r contribute to supero<strong>in</strong>ferior pressure be<strong>in</strong>g applied to<strong>the</strong> <strong>eye</strong>, <strong>and</strong> result <strong>in</strong> myopic refractive error from an <strong>in</strong>crease <strong>in</strong> its axial length <strong>and</strong>corneal curvature. The correlation between myopia <strong>and</strong> <strong>in</strong>telligence for example, islikely <strong>the</strong> result of epigenetic <strong>change</strong>s <strong>in</strong> which <strong>the</strong> frontal lobes develop more dur<strong>in</strong>gearly life as a result of <strong>in</strong>creased cognitive stimulation. The benefit of higher <strong>in</strong>telligence145


comes at a cost to visual acuity however, as <strong>the</strong> size/shape of <strong>the</strong> upper <strong>orbit</strong>al regionmay be affected by this extended neural development.The l<strong>in</strong>k between diabetes <strong>and</strong> myopia (Fledelius, 1983) may also be understood<strong>in</strong> this context. A shift toward a more Westernized diet consist<strong>in</strong>g of foods high <strong>in</strong> sugar<strong>and</strong> saturated fat often leads to myopia, <strong>in</strong> association with diabetes <strong>and</strong> general weightga<strong>in</strong> (Corda<strong>in</strong> et al. 2002). Additional deposition of fat around <strong>the</strong> <strong>eye</strong> (which comprisesa large part of <strong>the</strong> total <strong>orbit</strong>al volume) would aga<strong>in</strong> imp<strong>in</strong>ge on <strong>the</strong> globe, as long-term<strong>evolutionary</strong> <strong>change</strong>s <strong>in</strong> craniofacial form have left little room to compensate for <strong>the</strong>seadditional tissues with<strong>in</strong> <strong>the</strong> already limited space of <strong>the</strong> <strong>orbit</strong>.Lastly, because relative size of <strong>the</strong> <strong>eye</strong> with<strong>in</strong> <strong>the</strong> <strong>orbit</strong> <strong>in</strong>creases as body sizedecreases (Schultz, 1940; Kay & Kirk, 2000), a global reduction <strong>in</strong> cranial <strong>and</strong> postcranialsize <strong>and</strong> robusticity follow<strong>in</strong>g <strong>the</strong> Pleistocene (Brown 1987; Brown & Maeda,2004; Carlson, 1976; Carlson & Van Gerven, 1977; Henneberg, 1988; Lahr & Wright,1996; Wu et al. 2007) would also be expected to fur<strong>the</strong>r <strong>in</strong>crease <strong>the</strong> percentage of <strong>orbit</strong>alvolume filled by <strong>the</strong> <strong>eye</strong> <strong>and</strong> extraocular tissues.In chapter 6 of this <strong>the</strong>sis, an analysis of <strong>eye</strong>ball volume, <strong>orbit</strong>al volume, <strong>and</strong>refractive error <strong>in</strong> Ch<strong>in</strong>ese adults <strong>in</strong>dicated that <strong>the</strong> relative size of <strong>the</strong> <strong>eye</strong> with<strong>in</strong> <strong>the</strong> <strong>orbit</strong>is an important predictor of myopia. Individuals with large <strong>eye</strong>s <strong>and</strong> small <strong>orbit</strong>s tend tobe more myopic <strong>and</strong> have a greater degree of refractive error, while those with large<strong>orbit</strong>s <strong>and</strong> relatively small <strong>eye</strong>s boast keener vision. Because <strong>orbit</strong> size <strong>and</strong> body massare highly correlated (Kappelman, 1996), <strong>and</strong> a negative allometric relationship existsbetween <strong>the</strong> <strong>eye</strong>ball <strong>and</strong> <strong>orbit</strong> with respect to body size (Schultz, 1940), a reduction <strong>in</strong>overall size <strong>and</strong> robusticity s<strong>in</strong>ce <strong>the</strong> Mesolithic would act to <strong>in</strong>crease <strong>the</strong> percentage of146


<strong>the</strong> <strong>orbit</strong> occupied by <strong>the</strong> <strong>eye</strong>, <strong>and</strong> br<strong>in</strong>g humans as a whole closer to <strong>the</strong> po<strong>in</strong>t at which<strong>the</strong>se tissues vie for space. An added decrease <strong>in</strong> <strong>orbit</strong>al volume <strong>in</strong> East Asia (Brown &Maeda, 2004) would act to exacerbate an exist<strong>in</strong>g trend toward <strong>in</strong>creased relative <strong>eye</strong>size, <strong>and</strong> may help expla<strong>in</strong> <strong>the</strong> unusually high frequency of myopia <strong>in</strong> this region. Thehigher <strong>in</strong>cidence rate among certa<strong>in</strong> Asian groups may also be understood <strong>in</strong> <strong>the</strong> contextof different patterns of growth <strong>and</strong> development among <strong>modern</strong> human populations.The <strong>eye</strong>ball has been shown to grow fastest early <strong>in</strong> life <strong>and</strong> with ano<strong>the</strong>r spurtbetween 10-12 years of age (Wheale, 1982), though many East Asian groups arecharacterized by delayed growth <strong>and</strong> development, as <strong>in</strong>dicated by a number of dental,skeletal, <strong>and</strong> sexual <strong>in</strong>dicators. For example, <strong>in</strong> a study of European, African, Afro-European, <strong>and</strong> Ch<strong>in</strong>ese descendent populations, it was found that no significantdifference <strong>in</strong> height or weight existed among <strong>the</strong> first three groups; but at every age <strong>the</strong>Ch<strong>in</strong>ese group was significantly lighter <strong>and</strong> shorter than <strong>the</strong> o<strong>the</strong>r three, even afternutritional, socioeconomic, <strong>and</strong> environmental effects were accounted for (Ashcroft &Lovell, 1964; Ashcroft et al. 1966; cited <strong>in</strong> Bog<strong>in</strong>, 1999). O<strong>the</strong>r studies also support<strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs, show<strong>in</strong>g differences <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g of tooth eruption (Gillett, 1998; Smith,Gannon, Smith, 1995), <strong>and</strong> sexual maturity <strong>in</strong>dicators (breast development, pubic hair,menses) <strong>in</strong> groups with different ethnic orig<strong>in</strong>s (Herman-Giddens et al. 1997).In chapter 6 of this <strong>the</strong>sis it was shown that <strong>orbit</strong>al growth is delayed byapproximately 6 years <strong>in</strong> a sample of Japanese sub-adults <strong>in</strong> comparison with <strong>in</strong>dividualsfrom two tribes <strong>in</strong> South Africa, corroborat<strong>in</strong>g <strong>the</strong> results of <strong>the</strong>se prior studies. Delayeddevelopment of <strong>the</strong> <strong>orbit</strong> <strong>and</strong> o<strong>the</strong>r facial components among groups characterized byneurocranial peramorphosis <strong>and</strong> facial hypomorphosis, may result <strong>in</strong> divergent growth147


trajectories between <strong>the</strong> <strong>eye</strong> <strong>and</strong> <strong>orbit</strong>, <strong>and</strong> consequently compression of <strong>the</strong> moreli<strong>the</strong>some globe with<strong>in</strong> <strong>the</strong> bony structure of <strong>the</strong> <strong>orbit</strong>al cavity.Differences <strong>in</strong> patterns of growth <strong>and</strong> development <strong>in</strong> <strong>the</strong> neurocranium <strong>and</strong> faceof males <strong>and</strong> females have also been shown to exist, <strong>and</strong> may contribute to anunderst<strong>and</strong><strong>in</strong>g of why women have a higher frequency of juvenile-onset myopia thanmen, develop <strong>the</strong> condition earlier <strong>in</strong> life, <strong>and</strong> have a more severe degree of refractiveerror when growth ceases (Angle & Wissman, 1980; Grosvenor & Goss, 1999; Lam et al.1999; Ip et al. 2008; Parss<strong>in</strong>en & Lyyra, 1993; WGMPP, 1989).In a recent sex-based longitud<strong>in</strong>al growth study, sexual dimorphism <strong>in</strong> <strong>the</strong>neurocranium of human males <strong>and</strong> females was found to be present dur<strong>in</strong>g early life, <strong>and</strong>rema<strong>in</strong> relatively constant throughout ontogeny, however facial growth trajectoriesbetween <strong>the</strong> sexes were found to differ noticeably (Bulyg<strong>in</strong>a, Mitteroecker, Aiello, 2006).For example, sexual dimorphism <strong>in</strong> facial size develops postnatally <strong>and</strong> <strong>in</strong>creasesthroughout growth <strong>and</strong> development, which is primarily <strong>the</strong> result of hypermorphosis <strong>in</strong>males. Females on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> experience a considerable decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> rate of facialgrowth around age 13, <strong>and</strong> stop grow<strong>in</strong>g altoge<strong>the</strong>r at about age 15 (Bulyg<strong>in</strong>a,Mitteroecker, Aiello, 2006). This growth pattern is particularly important <strong>in</strong> <strong>the</strong> contextof later expansion of <strong>the</strong> posterior segment of <strong>the</strong> <strong>eye</strong>ball, <strong>and</strong> <strong>the</strong> larger relative size of<strong>the</strong> <strong>eye</strong> <strong>in</strong> females.The model proposed <strong>in</strong> this <strong>the</strong>sis attributes <strong>the</strong> high frequency of juvenile-onsetmyopia <strong>in</strong> humans to <strong>change</strong>s <strong>in</strong> <strong>the</strong> relationship among different hard <strong>and</strong> soft tissuecomponents of <strong>the</strong> skull dur<strong>in</strong>g growth <strong>and</strong> development, <strong>and</strong> throughout hom<strong>in</strong><strong>in</strong>evolution. Most studies <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> pathogenesis of this condition have primarily148


considered <strong>the</strong> <strong>eye</strong> as an isolated entity, with little attention paid to its association with<strong>the</strong> neurocranium, basicranium, viscerocranium, <strong>and</strong> above all its relative <strong>in</strong>ternmentwith<strong>in</strong> circumscrib<strong>in</strong>g extraocular tissues <strong>and</strong> an <strong>orbit</strong> that consists of seven bones withheterogeneous relationships to neighbor<strong>in</strong>g craniofacial units. The results of thisanthropological <strong>in</strong>vestigation <strong>in</strong>dicate that future research <strong>in</strong>to <strong>the</strong> etiology of juvenileonsetmyopia should consider how <strong>the</strong> <strong>eye</strong>ball <strong>in</strong>teracts with <strong>the</strong> <strong>orbit</strong> <strong>and</strong> broader matrixof structural <strong>and</strong> functional components of <strong>the</strong> skull, <strong>in</strong> <strong>the</strong> context of both ontogenetic<strong>and</strong> <strong>evolutionary</strong> morphogenesis.149


BIBLIOGRAPHYAiello, L., Dean, C. (1990) An Introduction to Human Evolutionary Anatomy. AcademicPress Limited. San Diego, CAAckermann, R. R., & Krovitz, G. E. (2002) Common patterns of facial ontogeny <strong>in</strong> <strong>the</strong>hom<strong>in</strong>id l<strong>in</strong>eage. Anat Rec, 269(3), 142-147.Aft<strong>and</strong>ilian D, Buikstra J, F<strong>in</strong>negan M, Hass J, Kice D, Nichol C, Owsley D, Rose J,Schoen<strong>in</strong>ger M, Scott G, Turner C. II, Ubelaker D, Walker P, Weidl E (1994) St<strong>and</strong>ards,for data collection from human skeletal rema<strong>in</strong>s. Eds. Jane E. Buikstra <strong>and</strong> Douglas H.Ubelaker. Proceed<strong>in</strong>gs of a Sem<strong>in</strong>ar at The Field Museum of Natural HistoryAngle, J., Wissmann, D., (1980) The Epidemiology of Myopia. American Journal ofEpidemiology 11(2), 220-228Ashcroft MT, Lovell HG (1964) Heights <strong>and</strong> weights of Jamaican children of variousracial orig<strong>in</strong>. Tropical <strong>and</strong> Geographical Medic<strong>in</strong>e 16:346-353Ashcroft MT, Heneage P, Lovell HG (1966) Heights <strong>and</strong> weights of Jamaicanschoolchildren of various ethnic groups. Am J Phys Anthropol 24(1), 35-44Badawi-Fayad, J., Cabanis, E. (2007) Three-dimensional procrustes analysis of <strong>modern</strong>human craniofacial form. Anatomical record-advances <strong>in</strong> <strong>in</strong>tegrative anatomy <strong>and</strong><strong>evolutionary</strong> biology. 290(3), 268-276Bastir M, Rosas A. (2004) Facial heights: Evolutionary relevance of postnatal ontogenyfor facial orientation <strong>and</strong> skull morphology <strong>in</strong> humans <strong>and</strong> chimpanzees. J Hum Evol47(5), 359-381.Bastir M, Rosas A. (2004) Comparative ontogeny <strong>in</strong> humans <strong>and</strong> chimpanzees:Similarities, differences <strong>and</strong> paradoxes <strong>in</strong> postnatal growth <strong>and</strong> development of <strong>the</strong> skull.Annals of Anatomy-Anatomischer Anzeiger 186(5-6), 503-509.Bastir M, Rosas A. (2005) Hierarchical nature of morphological <strong>in</strong>tegration <strong>and</strong>modularity <strong>in</strong> <strong>the</strong> human posterior face. Am J Phys Anthropol 128(1), 26-34.150


Bastir, M., Rosas, A., O'Higg<strong>in</strong>s, P. (2006) Craniofacial levels <strong>and</strong> <strong>the</strong> morphologicalmaturation of <strong>the</strong> human skull. Journal of Anatomy, 209(5), 637-654Bastir, M., O'Higg<strong>in</strong>s, P., & Rosas, A. (2007). Facial ontogeny <strong>in</strong> Ne<strong>and</strong>erthals <strong>and</strong><strong>modern</strong> humans. Proc Biol Sci, 274(1614), 1125-1132.Bastir M, Rosas A, O'Higg<strong>in</strong>s P (2007). 3D architecture of <strong>the</strong> middle cranial fossa <strong>and</strong><strong>modern</strong> human orig<strong>in</strong>s. Am J Phys Anthropol 44, 69-69 Suppl.Bastir, M., Sobral, P. G., Kuroe, K., & Rosas, A. (2008). Human craniofacial sphericity:a simultaneous analysis of frontal <strong>and</strong> lateral cephalograms of a Japanese populationus<strong>in</strong>g geometric morphometrics <strong>and</strong> partial least squares analysis. Arch Oral Biol, 53(4),295-303.Bastir, M., Rosas, A., Lieberman, D., O'Higg<strong>in</strong>s, P. (2008) Middle Cranial FossaAnatomy <strong>and</strong> <strong>the</strong> Orig<strong>in</strong> of Modern Humans. The Anatomical Record: Advances <strong>in</strong>Integrative Anatomy <strong>and</strong> Evolutionary Biology, 291(2), 130-140Bog<strong>in</strong>, B. (1999) Patterns of Human Growth. Cambridge University PressBookste<strong>in</strong> F., Gunz P., Mitteroecker P., Pross<strong>in</strong>ger H., Schaefer K., Seidler H. (2003)Cranial <strong>in</strong>tegration <strong>in</strong> Homo: s<strong>in</strong>gular warps analysis of <strong>the</strong> midsagittal plane <strong>in</strong> ontogeny<strong>and</strong> evolution. J Hum Evol 44:167–87Bromage TG. (1992) The ontogeny of pan-troglodytes craniofacial architecturalrelationships <strong>and</strong> implications for early hom<strong>in</strong>ids. J Hum Evol 23(3), 235-251.Brown P. (1998–2003) Australian <strong>and</strong> Asian Palaeoanthropology.http://metz.une.edu.au/~pbrown3/palaeo.htmlBrown. P. (1987) Pleistocene homogeneity <strong>and</strong> Holocene size reduction: <strong>the</strong> Australianhuman skeletal evidence. Archaeology <strong>in</strong> Oceania 22: 41-67.Brown, P. (1989) Coobool Creek. Terra Australis 13, Department of Prehistory, ResearchSchool of Pacific Studies, Australian National University: Canberra;Brown, P. (1992) Recent human evolution <strong>in</strong> East Asia <strong>and</strong> Australasia. PhilosophicalTransactions of <strong>the</strong> Royal Society London, Series B 337:235-242.Brown, P. <strong>and</strong> Maeda, T. (2004) Post-Pleistocene diachronic <strong>change</strong> <strong>in</strong> East Asian facialskeletons: <strong>the</strong> size, shape <strong>and</strong> volume of <strong>the</strong> <strong>orbit</strong>s. Anthropological Science. 112:29-40Bruner E, Manzi G, Arsuaga J-L (2003) Ecephalization <strong>and</strong> allometric trajectories <strong>in</strong> <strong>the</strong>genus Homo: evidence from <strong>the</strong> Ne<strong>and</strong>ertal <strong>and</strong> <strong>modern</strong> l<strong>in</strong>eages. Proc Natl Acad SciUSA 100:15335–15340.151


Bruner, E., Sarac<strong>in</strong>o, B., Passarello, P., Ricci, F., Tafuri, M., Manzi, G., (2004)Midsagittal cranial shape <strong>variation</strong> <strong>in</strong> <strong>the</strong> genus Homo by geometric morphometrics. Coll.Antropol. 28, 99-112.Bruner, E., Manzi G. (2005) CT-based description <strong>and</strong> phyletic evaluation of <strong>the</strong> archaichuman calvarium from Ceprano, Italy. The Anatomical Record Part A: Discoveries <strong>in</strong>Molecular, Cellular, <strong>and</strong> Evolutionary Biology, 285A,(1), 643-657Bruner, E. (2007) Cranial shape <strong>and</strong> size <strong>variation</strong> <strong>in</strong> human evolution: structural <strong>and</strong>functional perspectives. Childs Nervous System 23(12) 1357-1365Bulyg<strong>in</strong>a, E, Mitteroecker, P., Aiello L. (2006) Ontogeny of facial dimorphism <strong>and</strong>patterns of <strong>in</strong>dividual development with<strong>in</strong> one human population. American Journal ofPhysical Anthropology 131(3) 432-443Burns K. (1999) Forensic anthropology tra<strong>in</strong><strong>in</strong>g manual. New Jersey: Prentice-HallCarlson DS., Van Gerven DP. (1977) Masticatory function <strong>and</strong> post-Pleistoceneevolution <strong>in</strong> Nubia. Am J Phys Anthropol 46(3), 495-506Carlson DS. (1976) Temporal <strong>variation</strong> <strong>in</strong> prehistoric Nubian crania. Am J PhysAnthropol 45(3), 467-84Cartmill, M. (1970) The <strong>orbit</strong>s of arboreal mammals: a reassessment of <strong>the</strong> arboreal<strong>the</strong>ory of primate evolution. Ph.D. Dissertation, University of Chicago.Chau, A., Fung, K., Pak, K., Yap, M (2004) Is <strong>eye</strong> size related to <strong>orbit</strong> size <strong>in</strong> humansubjects? Ophthalmic <strong>and</strong> Physiological Optics, 24(1) 35-40Chen, C., Cohen, B., Diamond E. (1985) Genetic <strong>and</strong> environmental effects on <strong>the</strong>development of myopia <strong>in</strong> Ch<strong>in</strong>ese tw<strong>in</strong> children. Ophthalmic Pediatrics <strong>and</strong> Genetics, 6½:113-119Cobb, S. N. (2008). The facial skeleton of <strong>the</strong> chimpanzee-human last common ancestor.J Anat, 212(4), 469-485.Corda<strong>in</strong>, L., Eaton, B., Miller, J., L<strong>in</strong>deberg, S., Jensen, C. (2002) An <strong>evolutionary</strong>analysis of <strong>the</strong> aetiology <strong>and</strong> pathogenesis of juvenile-onset myopia. ActaOphthalmologica Sc<strong>and</strong><strong>in</strong>avica 80: 125-135Darroch JN, Mosimann JE (1985) Biometrika 72:241–252.152


Darw<strong>in</strong>, C. (1859) On <strong>the</strong> Orig<strong>in</strong> of Species by Means of Natural Selection, 6 th ed. JohnMurray, LondonDixon, A., Hoyte, D., Ronn<strong>in</strong>g, O. editors (1997) Fundamentals of craniofacial growth.CRC Press, Boca Raton, FloridaDabelow, A. (1929) Uber Korrelationen <strong>in</strong> der phylogenetischen Entwicklung derSchadelform I. Die Beziehungen Zwischen Rumpf und Schadelform. Gegenb.Morpholog. Jahrb. 63, 1-49Emery N.J. (2000) The <strong>eye</strong>s have it: neuroethology, function <strong>and</strong> evolution of socialgaze. Neuroscience <strong>and</strong> biobehavioral reviews. 24(6), 581-604Enlow, D., Pfister, C., Richardson, E., Kuroda, T. (1982) An analysis of black <strong>and</strong>caucasian craniofacial patterns. The Angle Orthodontist. 52(4), 279-287Enlow, D. H. (1990). Facial Growth, 3rd ed. Philadelphia: Saunders.Enlow D., Hans, M. (1996) Essentials of Facial Growth. W.B. Saunders Company.Philadelphia, PennsylvaniaFledelius, H. C. (1983) Is myopia gett<strong>in</strong>g more frequent? A cross-sectional study of 1416Danes aged 16 years +. Acta Ophthalmologica. 61: 545-559Fledelius, H. C., & Stubgaard, M. (1986). Changes <strong>in</strong> <strong>eye</strong> position dur<strong>in</strong>g growth <strong>and</strong>adult life as based on exophthalmometry, <strong>in</strong>terpupillary distance, <strong>and</strong> <strong>orbit</strong>al distancemeasurements. Acta Ophthalmol (Copenh), 64(5), 481-486.Fledelius, H. C., & Stubgaard, M. (1986). Changes <strong>in</strong> refraction <strong>and</strong> corneal curvaturedur<strong>in</strong>g growth <strong>and</strong> adult life. A cross-sectional study. Acta Ophthalmol (Copenh), 64(5),487-491.Forbes G, Gehr<strong>in</strong>g DG, Gorman CA, Brennan MD, Jackson IT. (1985) Volumemeasurements of normal <strong>orbit</strong>al structures by computed tomographic analysis. AJR Am JRoentgenol 145:149–154Garson, GD. (2008) Discrim<strong>in</strong>ant function analysis. Statnotes: Topics <strong>in</strong> MultivariateAnalysis. Retrieved 01/02/2008 fromhttp://www2.chass.ncsu.edu/garson/pa765/statnote.htmGoldschmidt, E. (1999) Myopia <strong>in</strong> humans: can progression be arrested? In Myopia <strong>and</strong><strong>the</strong> Control of Eye Growth, Ciba Foundation Symposium 155. John Wiley & Sons, NewYork, N.Y.153


Goldschmidt, E., Lam, C., Opper, S. (2001) The development of myopia <strong>in</strong> Hong Kongchildren. Acta Ophthalmologica Sc<strong>and</strong><strong>in</strong>avica. 79:228-232Gonzalez-Jose, R., Neves, W., Lahr, M. M., Gonzalez, S., Pucciarelli, H., Hern<strong>and</strong>ezMart<strong>in</strong>ez, M., et al. (2005). Late Pleistocene/Holocene craniofacial morphology <strong>in</strong>Mesoamerican Paleo<strong>in</strong>dians: implications for <strong>the</strong> peopl<strong>in</strong>g of <strong>the</strong> New World. Am J PhysAnthropol, 128(4), 772-780.Gonzalez-Jose, R., Ramirez-Rozzi, F., Sardi, M., Mart<strong>in</strong>ez-Abadias, N., Hern<strong>and</strong>ez, M.,& Pucciarelli, H. M. (2005). Functional-cranial approach to <strong>the</strong> <strong>in</strong>fluence of economicstrategy on skull morphology. Am J Phys Anthropol, 128(4), 757-771.Goss, D. A., & Grosvenor, T. (1990). Rates of childhood myopia progression withbifocals as a function of nearpo<strong>in</strong>t phoria: consistency of three studies. Optom Vis Sci,67(8), 637-640.Grosvenor TP, Goss DA. (1990) Cl<strong>in</strong>ical Management of Myopia. Boston: Butterworth-He<strong>in</strong>emanHanihara T. (1994) Craniofacial cont<strong>in</strong>uity <strong>and</strong> discont<strong>in</strong>uity of Far Easterners <strong>in</strong> <strong>the</strong> latePleistocene <strong>and</strong> Holocene. J Hum Evol 27(5), 417-441.Hanihara T. (1996) Comparison of craniofacial features of major human groups. Am JPhys Anthropol 99(3), 389-412.Hanihara T. (2000) Frontal <strong>and</strong> facial flatness of major human populations. Am J PhysAnthropol 111(1), 105-134.Henneberg, M. (1988). Decrease of human skull size <strong>in</strong> <strong>the</strong> Holocene. Hum Biol, 60(3),395-405.M. Henneberg, M. Steyn. (1993) Trends <strong>in</strong> cranial capacity <strong>and</strong> cranial <strong>in</strong>dex <strong>in</strong>Subsaharan Africa dur<strong>in</strong>g <strong>the</strong> Holocene. Am. J of Human Biology 5(4), 473-479Hennessy RJ, Str<strong>in</strong>ger CB. (2002) Geometric morphometric study of <strong>the</strong> regional<strong>variation</strong> of <strong>modern</strong> human craniofacial form. Am J Phys Anthropol 117(1), 37-48.Herman-Giddens, Marcia E., Slora, Eric J., Wasserman, Richard C., Bourdony, Carlos J.,Bhapkar, Manju V., Koch, Gary G., Hasemeier, Cynthia M. (1997) Secondary SexualCharacteristics <strong>and</strong> Menses <strong>in</strong> Young Girls Seen <strong>in</strong> Office Practice: A Study from <strong>the</strong>Pediatric Research <strong>in</strong> Office Sett<strong>in</strong>gs Network Pediatrics. 99: 505-512Howells, W. (1973) Cranial Variation <strong>in</strong> Man: A Study by Multivariate Analysis ofPattern of Differences Among Recent Human Populations. Papers of <strong>the</strong> PeabodyMuseum of Archaeology <strong>and</strong> Ethnology, Harvard University 67: 1-259.154


Howells W. (1989) Skull shapes <strong>and</strong> <strong>the</strong> map. Pap Peabody Mus. 79: whole volume.Cambridge, MA: Harvard. p 1–189.Ip, J., Huynh, S., Rogaei, D. Kifley, A., Rose, K., Morgan, I., Wang J. Mitchell, P. (2008)Ethnic differences <strong>in</strong> refraction <strong>and</strong> ocular biometry <strong>in</strong> a populat<strong>in</strong>-based sample of 11-15year-old Australian children. Eye. 22: 649-656Jöreskog, K.G. & Sörbom, D. (1981-2007) LISREL 8.7 Computer SoftwareL<strong>in</strong>colnwood, IL: Scientific Software International, Inc.Kappelman, J. (1996) The evolution of body mass <strong>and</strong> relative bra<strong>in</strong> size <strong>in</strong> fossilhom<strong>in</strong>ids. Journal of Human Evolution. 30: 243-276Kay, RF., Kirk EC. (2000) Osteological evidence for <strong>the</strong> evolution of activity pattern <strong>and</strong>visual acuity <strong>in</strong> primates. Am J Phys Anthropol 113: 235–262Kidder, J. H., Jantz, R. L. & Smith, F. H. (1992). Def<strong>in</strong><strong>in</strong>g <strong>modern</strong> humans: Amultivariate approach. In (G. Bräuer & F. H. Smith, Eds) Cont<strong>in</strong>uity or Replacement, pp.157–177. Rotterdam: Balkema.Kobayashi, H., Koshima, S., (2001) Unique morphology of <strong>the</strong> human <strong>eye</strong> <strong>and</strong> itsadaptive mean<strong>in</strong>g: comparative studies on external morphology of <strong>the</strong> primate <strong>eye</strong>.Journal of Human Evolution. 40: 419-435Kohn LAP, Leigh SR, Jacobs SC, Cheverud JM. (1993) Effects of annular cranial vaultmodification on <strong>the</strong> cranial base <strong>and</strong> face. Am J Phys Anthropol 90(2), 147-168.Kornack D. R., Rakic P. (2001) Cell Proliferation Without Neurogenesis <strong>in</strong> Adult PrimateNeocortex. Science. 294: 2127Kuroe, K., Rosas, A., & Molleson, T. (2004). Variation <strong>in</strong> <strong>the</strong> cranial base orientation <strong>and</strong>facial skeleton <strong>in</strong> dry skulls sampled from three major populations. Eur J Orthod, 26(2),201-207.Lahr M. (1996) The evolution of <strong>modern</strong> human diversity. Cambridge: CambridgeUniversity Press.Lahr M., Wright R. (1996) The question of robusticity <strong>and</strong> <strong>the</strong> relationship betweencranial size <strong>and</strong> shape <strong>in</strong> Homo sapiens. J Hum Evol 31(2):157-191.Lalouel, J. (1980) Distance Analysis <strong>and</strong> Multi-determ<strong>in</strong>ate Scal<strong>in</strong>g. In: J.H. Mielke <strong>and</strong>M. H. Crawford (eds.) Current Developments <strong>in</strong> Anthropological Genetics. 209-250.Plenum Press, N.Y.155


Lam, C., Edwards, M., Millodot, M., Goh, W. (1999) A 2-year Longitud<strong>in</strong>al Study ofMyopia Progression <strong>and</strong> Optical Component Changes among Hong KongSchoolchildren. Optometry <strong>and</strong> Vision Science 76(6), 370-379Lang, J. (1983) Cl<strong>in</strong>ical Anatomy of <strong>the</strong> Head: Neurocranium, Orbit,& CraniocervicalRegions. (Kl<strong>in</strong>ische Anatomie des Kopfes) Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>Lieberman, D. (1998) Sphenoid shorten<strong>in</strong>g <strong>and</strong> <strong>the</strong> evolution of <strong>modern</strong> human cranialshape. Nature. 393:158-162Lieberman, D. (2000) Ontogeny, homology, <strong>and</strong> phylogeny <strong>in</strong> <strong>the</strong> hom<strong>in</strong>id craniofacialskeleton: <strong>the</strong> problem of <strong>the</strong> browridge. In: O’Higg<strong>in</strong>s P, Cohn M (eds) Development,growth <strong>and</strong> evolution. Academic, London, 85-122Lieberman D. (2002) Human evolution through developmental <strong>change</strong>. AmericanAnthropologist 104(4), 1245-1246.Lieberman, D., McCarthy, R. (2000) The ontogeny of cranial base angulation <strong>in</strong> humans<strong>and</strong> chimpanzees <strong>and</strong> its implications for reconstruct<strong>in</strong>g pharyngeal dimensions. Journalof Human Evolution. 36(5), 487-517Lieberman, D., Pearson, O., Mowbray, K. (2000) Basicranial <strong>in</strong>fluence on overallcranial shape. Journal of Human Evolution. 38:291-315Lieberman, D., Ross, C., Ravosa, M. (2000) The Primate Cranial Base: Ontogeny,Function, <strong>and</strong> Integration. Yearbook of Physical Anthropology. 43:117-169Lieberman D., McBratney BM, Krovitz G. (2002) The evolution <strong>and</strong> development ofcranial form <strong>in</strong> Homo sapiens. Proc Natl Acad Sci U S A 99(3), 1134-1139.Lieberman, D., Krovitz, G. E., & McBratney-Owen, B. (2004). Test<strong>in</strong>g hypo<strong>the</strong>ses aboutt<strong>in</strong>ker<strong>in</strong>g <strong>in</strong> <strong>the</strong> fossil record: <strong>the</strong> case of <strong>the</strong> human skull. J Exp Zoolog B Mol Dev Evol,302(3), 284-301.Mahalanobis, P. (1936) On <strong>the</strong> generalized distance <strong>in</strong> statistics. Proceed<strong>in</strong>gs of <strong>the</strong>National Institute of Sciences Cacutta 2: 49-55Mak MWM, Kwan TS, Cheng KH, Chan RTF, Ho SL. (2006) Myopia as a latentphenotype of a pleiotropic gene positively selected for facilitat<strong>in</strong>g neurocognitivedevelopment, <strong>and</strong> <strong>the</strong> effects of environmental factors <strong>in</strong> its expression. 66: 1209–1215Martone, V., Enlow, D., Hans, M., Broadbent, H., Oyen, O. (1992) Class I <strong>and</strong> Class IIImalocclusion sub-group<strong>in</strong>gs related to headform type. Angle Orthodontist. 62(1), 35-42156


McBratney BM, McCarthy RC, Lieberman DE. (2000) Facial projection <strong>and</strong> <strong>the</strong> orig<strong>in</strong> ofmodem humans. Am J Phys Anthropol:223-223.McCarthy RC, Lieberman DE. (2001) Posterior maxillary (PM) plane <strong>and</strong> anterior cranialarchitecture <strong>in</strong> primates. Anat Rec 264(3), 247-260.Migliori, M., Geoffrey, J., Gladstone. (1984) Determ<strong>in</strong>ation of <strong>the</strong> normal range ofexopthalmometric values for black <strong>and</strong> white adults. American Journal ofOphthalmology. 98,438-442Miller EM. (1992) On <strong>the</strong> correlation of myopia <strong>and</strong> <strong>in</strong>telligence. GenetSoc Gen Psychol Monogr. 118: 361–383.Moore-Jansen, P. , Ousley, S., Jantz, R. (1994) Data Collection Procedures for ForensicSkeletal Material. Report of Investigation no. 48. Knoxville, TN: University ofTennessee.Moss M., Young R. (1960) A functional approach to craniology. Am J Phys Anthropol18: 281–292.Mutti DO, Zadnik K. (2000) Age-related decreases <strong>in</strong> <strong>the</strong> prevalence of myopia:longitud<strong>in</strong>al <strong>change</strong> or cohort effect? Invest Ophthalmol Vis Sci. 41(8):2103-2107.Park DJ, Congdon NG. (2004) Evidence for an ‘‘epidemic’’ of myopia. Ann Acad MedS<strong>in</strong>gapore. 33: 21–6Nakahashi, T. (1993) Temporal craniometric chantes from <strong>the</strong> Jomon to <strong>the</strong> <strong>modern</strong>period <strong>in</strong> western Japan. Am. J. Phys. Anthropol. 90: 409-425Parss<strong>in</strong>en, O., Lyyra, A. (1993) Myopia <strong>and</strong> myopic progression among schoolchildren: athree-year follow-up study. Investigative Ophthalmology & Visual Science. 34: 2794-2802Park DJ, Congdon NG. (2004) Evidence for an ‘‘epidemic’’ of myopia. Ann Acad MedS<strong>in</strong>gapore. 33: 21–6.Penrose, L. (1954) Distance, size, <strong>and</strong> shape. Annals of Eugenics 18: 337-343Pietrusewsky, M. (1999) Multivariate Craniometric Investigations of Japanese, Asians,<strong>and</strong> Pacific Isl<strong>and</strong>ers. In: Interdiscipl<strong>in</strong>ary perspectives on <strong>the</strong> orig<strong>in</strong>s of <strong>the</strong> Japanese:International Symposium, September 25-28, 1996 / edited by Omoto Keiichi. :International Research Center for Japanese StudiesQu<strong>in</strong>n, G., Sh<strong>in</strong>, C., Maguire, M., Stone, R. (1999) Myopia <strong>and</strong> ambient light<strong>in</strong>g at night.Nature, 399: 113-114157


Quant, J., Woo, G. (1992) Normal values of <strong>eye</strong> position <strong>and</strong> head size <strong>in</strong> Ch<strong>in</strong>esechildren from Hong-Kong. Optometry <strong>and</strong> Vision Science. 70(8), 668-671Ravosa, Noble, Hyl<strong>and</strong>er, Johnson, Kolwalski, (2000) Masticatory stress, <strong>orbit</strong>alorientation <strong>and</strong> <strong>the</strong> evolution of <strong>the</strong> primate post<strong>orbit</strong>al bar. Journal of Human Evolution.38: 667-693Relethford, J. H. (1994). Craniometric <strong>variation</strong> among <strong>modern</strong> human populations. Am JPhys Anthropol, 95(1), 53-62.Rill<strong>in</strong>g, JK (2006) Human <strong>and</strong> nonhuman primate bra<strong>in</strong>s: Are <strong>the</strong>y allometrically scaledversions of <strong>the</strong> same design? Evolutionary Anthropology: Issues, News, <strong>and</strong> Reviews.15(2), 65-77Roseman CC., Weaver TD. (2004) Multivariate apportionment of global humancraniometric diversity. Am J Phys Anthropol 125: 257-263Ross, C. F. (1995) Allometric <strong>and</strong> functional <strong>in</strong>fluences on primate <strong>orbit</strong> orientation <strong>and</strong><strong>the</strong> orig<strong>in</strong>s of <strong>the</strong> Anthropoids. Journal of Human Evolution. 29: 201-227Ross, C., Ravosa, M. (1993) Basicranial flexion, relative bra<strong>in</strong> size <strong>and</strong> facialkyphosis <strong>in</strong> nonhuman primates. Am. J. Phys. Anthropol. 91: 305-324Rothhammer, F., Cocilovo JA., Quevedo S., et al. (1982) Microevolution <strong>in</strong> prehistoricAndean populations: Chronologic craniometric <strong>variation</strong>. Am. J. Phys. Anthropol. 58:391-396Salv<strong>in</strong>i-Plawen, L. <strong>and</strong> Mayr, E. (1961) <strong>in</strong> Evolutionary Biology, (Vol. 10) (Hecht, M.K.,Steere, W.C. <strong>and</strong> Wallace, B., eds), pp. 207–263, Plenum PressSalzmann, M. (1912) The anatomy <strong>and</strong> histology of <strong>the</strong> Human Eyeball <strong>in</strong> <strong>the</strong> normalstate, its development <strong>and</strong> senescence. Translated by Brown, E.V.L. University ofChicago PressSaw SM, Katz J, Sche<strong>in</strong> OD, Chew SJ, Chan TK. (1996) Epidemiology ofmyopia. Epidemiol Rev. 18: 175–187.Saw SM, Hong CY, Chia KS, Stone RA, Tan D. (2001) Nearwork <strong>and</strong>myopia <strong>in</strong> young children. Lancet. 357:390.Saw SM, Chua WH, Hong CY, et al. (2002) Nearwork <strong>in</strong> early onsetmyopia. Invest Ophthalmol Vis Sci. 43: 332–339.158


Saw, MS., Tan, S., Fung, D., Chia, K., Koh, D., Tan, D., Stone, R. (2004) IQ <strong>and</strong> <strong>the</strong>Association with Myopia <strong>in</strong> Children Investigative Ophthalmology <strong>and</strong> Visual Science.45: 2943-2948Schultz, AH. 1940. The size of <strong>the</strong> <strong>orbit</strong> <strong>and</strong> of <strong>the</strong> <strong>eye</strong> <strong>in</strong> primates. Am J Phys Anthropol26: 389-408Schwartz, J., Tattersall, I. (2002) The Human Fossil Record, Volume One, term<strong>in</strong>ology<strong>and</strong> Craniodental Morphology of Genus Homo (Europe). Wiley-Liss, N.Y.Schwartz, J., Tattersall, I. (2002) The Human Fossil Record, Volume Two, CraniodentalMorphology of Genus Homo (Africa <strong>and</strong> Asia) Wiley-Liss, N.Y.Schwartz, J., Tattersall, I. (2002) The Human Fossil Record, Volume Four, CraniodentalMorphology of Early Hom<strong>in</strong>ids (Genera Australopi<strong>the</strong>cus, Paranthropus, Orror<strong>in</strong>), <strong>and</strong>Overview. Wiley-Liss, N.Y.Scott, JH. (1953) The cartilage of <strong>the</strong> nasal septum: a contribution to <strong>the</strong> study of facialgrowth. Br Dental J. 95: 37Smith P., Wax Y., Becher A., <strong>and</strong> E<strong>in</strong>y S. (1985) Diachronic <strong>variation</strong> <strong>in</strong> cranialthickness. American Journal of Physical Anthropology, 67: 127-133.Smith P., Wax Y., Adler F, Silberman D., <strong>and</strong> He<strong>in</strong>ic G. (1986) Post-Pleistocene <strong>change</strong>s<strong>in</strong> tooth root <strong>and</strong> jaw relationships. Am J of Phys Anthropol 70: 339-348.Strait D., Ross C. (1999) K<strong>in</strong>ematic data on primate head <strong>and</strong> neck posture: implicationsfor <strong>the</strong> evolution of basicranial flexion <strong>and</strong> an evaluation of registration planes used <strong>in</strong>paleoanthropology. Am J Phys Anthropol 108:205–222.Todd, T., Beecher, H., Williams, G., Todd, A. (1940) The weight <strong>and</strong> growth of <strong>the</strong>human <strong>eye</strong>ball. Human Biology. 12(1), 1-20Waitzman, A. A., Posnick, J. C., Armstrong, D. C., & Pron, G. E. (1992). Craniofacialskeletal measurements based on computed tomography: Part II. Normal values <strong>and</strong>growth trends. Cleft Palate Craniofac J, 29(2), 118-128.Weale, R. (1982) A Biography of <strong>the</strong> Eye: Development, Growth, Age. H.K. Lewis &Co.Weiss, L. (1897) Uber das Wachstum des menschlichen Auges. Anatom. Hefte, Bd. 8Weidenreich F. (1941) The bra<strong>in</strong> <strong>and</strong> its role <strong>in</strong> <strong>the</strong> phylogenetic transformation of <strong>the</strong>human skull. Trans Am Phil Soc. 31: 321–442.159


Weiss, K. (2002) How <strong>the</strong> Eye Got its Bra<strong>in</strong>. Evolutionary Anthropology. 11: 215-219White, T.D. (2000) Human Osteology, second ed. Academic Press, New York.Wilson, K. T., Sivak, J. G. <strong>and</strong> Callender, M. G. (1997) Induced refractive anomaliesaffect chick <strong>orbit</strong>al bone structure. Exp. Eye Res. 64: 675–682.Wood, B.A., (1991) Koobi Fora Research Project, Vol. 4: Hom<strong>in</strong>id CranialRema<strong>in</strong>s. Oxford University Press, New York.Work<strong>in</strong>g Group on Myopia Prevalence <strong>and</strong> Progression (1989). Myopia: prevalence <strong>and</strong>progression. Wash<strong>in</strong>gton, D.C: National Academy Press.Wu, X., Wu L., Zhang Q., Zhu, H., Norton C. (2007) Craniofacial morphologicalmicroevolution of Holocene populations <strong>in</strong> nor<strong>the</strong>rn Ch<strong>in</strong>a. Ch<strong>in</strong>ese Science Bullet<strong>in</strong>.52(12), 1661-1668160

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!