18.04.2016 Views

isolated current voltage transducers

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hall Effect Technologies<br />

t2 [min]<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

I P<br />

=<br />

100 A<br />

I P<br />

= 75 A<br />

I P<br />

= 50 A<br />

I P<br />

= 40 A<br />

I P<br />

= 34 A<br />

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450<br />

t1 [sec]<br />

Accuracy at 25 °C ±0.65 % of I PN<br />

±0.65 %<br />

Offset drift with temperature ±0.6 mA / 50 mA ±1.20 %<br />

Worst-case error (+85 °C) ±1.85 %<br />

The worst-case error when measuring a 50 A <strong>current</strong> is<br />

consequently equal to ±1.85 % • 50 A = ±0.93 A.<br />

When a 40 A <strong>current</strong> is measured the output <strong>current</strong> is 40 mA<br />

and the errors are:<br />

Accuracy at 25 °C ±0.65 % of I PN<br />

±0.81 %<br />

Offset drift with temperature ±0.6 mA / 40 mA ±1.50 %<br />

Worst-case error (+85 °C) ±2.31 %<br />

Figure 17: Overload diagram of the LTS 25-NP for a standby<br />

<strong>current</strong> of 0A<br />

The worst-case error when measuring a 40 A <strong>current</strong> is<br />

consequently equal to ±2.31 % • 40 A = ±0.93 A.<br />

t2 [sec]<br />

180<br />

170<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

I P<br />

=<br />

100 A<br />

I P<br />

= 75 A<br />

I P<br />

= 50 A<br />

I P<br />

= 40 A<br />

The errors when measuring lower <strong>current</strong>s are larger as a<br />

percentage of reading due to the offset <strong>current</strong>s becoming<br />

significantly larger with respect to the output signal <strong>current</strong>.<br />

The initial offset <strong>current</strong>, I O<br />

, of ±0.2 mA and the residual<br />

<strong>current</strong>, I OM<br />

, (magnetic offset) of ±0.3 mA after a <strong>current</strong><br />

overload, are also given in the data sheet. It shall be read as<br />

follows: When measuring a 0 A <strong>current</strong> the output can be<br />

±0.2 mA, or ±0.4 % of I PN<br />

= ±0.2 A. In addition, after<br />

experiencing an accidental 300 % overload (150 A) there<br />

can be an additional ±0.3 mA of offset for a total of ±0.5 mA,<br />

or 1.0 % of I PN<br />

= ±0.5 A.<br />

30<br />

20<br />

10<br />

I P<br />

= 34 A<br />

Current transducer LTS 25-NP (see datasheet)<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90<br />

t1 [sec]<br />

Fig. 18 Overload diagram of the LTS 25-NP for a rest <strong>current</strong> of<br />

0 A, linear zone<br />

• the region at or near the nominal primary level, which is<br />

characterized by the accuracy specification<br />

• the region between these two, characterized by the linearity<br />

specification<br />

• and the region near the limit of the measuring range, where<br />

saturation effects may begin<br />

Maximum error takes all factors into account using the worstcase<br />

parameters. Because of the statistical distribution of each<br />

parameter it is highly unlikely that all will be at worst-case<br />

values in a single device. Nonetheless, this is the basis of<br />

worst-case design analysis.<br />

Current transducer LA 55-P (see datasheet)<br />

In this example, a DC <strong>current</strong> is measured with the LA 55-P<br />

<strong>current</strong> transducer with a ±15 V supply.<br />

The datasheet provides the following information: I PN<br />

= 50 A,<br />

I SN<br />

= 50 mA, accuracy (@ 25 °C and ±15 V) is 0.65 % of I PN<br />

.<br />

The accuracy is breakdown in several parameters, including<br />

linearity < 0.15 %, offset error I O<br />

= 0.2 mA, and offset drift<br />

I OT<br />

= 0.6 mA for 25…85 °C.<br />

When a 50 A <strong>current</strong> is measured (one primary turn) the<br />

output <strong>current</strong> is 50 mA and the errors are:<br />

For the LTS 25-NP transducer, the accuracy at 25 °C is given<br />

as ±0.7 % of I PN<br />

. This breaks down as follows:<br />

Number of secondary turns<br />

Non-linearity<br />

Tolerance on R IM<br />

Worst-case error<br />

±0.1 % of I PN<br />

±0.1 % of I PN<br />

±0.5 % of I PN<br />

±0.7 % of I PN<br />

The internal measurement resistance, R IM<br />

, has a value of<br />

50 Ω and a thermal drift specified as 50 ppm/K. Considering a<br />

-10…85 °C temperature range, the maximum variation is<br />

±0.15 Ω and the corresponding error due to the R M<br />

drift is<br />

equal to 50 ppm/K • (85 - 25)°C = ±0.3 % of I PN<br />

.<br />

In addition, the <strong>voltage</strong> output of the LTS 25-NP transducer<br />

uses a 2.5V ‘reference <strong>voltage</strong>’ corresponding to a zero<br />

primary <strong>current</strong> (Fig. 1). The offset on this reference <strong>voltage</strong><br />

(given in the datasheet) is ±25 mV at 25 °C. Considering a<br />

-10…85 °C temperature range, the worst-case offset value<br />

goes up an additional 100 ppm/K • (85 - 25)°C = 0.6 % to a<br />

total of ±40 mV at 85 °C, corresponding to 1 % initial offset<br />

plus 0.6 % drift.<br />

Because a primary nominal <strong>current</strong> (I PN<br />

) generates an output<br />

<strong>voltage</strong> of 625 mV at 25 °C, the error introduced by the offset<br />

on the reference <strong>voltage</strong> is:<br />

• error due to the standard offset ±25 / 625 = ±4.0 % of I PN<br />

• maximum error due to the drift ±15 / 625 = ±2.4 % of I PN<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!