04.06.2016 Views

Cremaschi - 1987 - Paleosols and vetusols in the central Po plain (No

Cremaschi - 1987 - Paleosols and vetusols in the central Po plain (No

Cremaschi - 1987 - Paleosols and vetusols in the central Po plain (No

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

m><br />

f<br />

I<br />

I<br />

Í 0<br />

) n


• m u r<br />

i-ÍCW.


PALEOSOLS AND VETUSOLS<br />

IN THE CENTRAL PO PLAIN<br />

(NORTHERN ITALY)<br />

a study <strong>in</strong> Quaternary Geology<br />

<strong>and</strong> Soil Development


<strong>Cremaschi</strong>, Mauro<br />

Is<br />

Pakosols <strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>Po</strong> pla<strong>in</strong> (<strong>No</strong>r<strong>the</strong>rn Italy) a Study <strong>in</strong> Quaternary Geology <strong>and</strong> Soil<br />

Development<br />

M. <strong>Cremaschi</strong><br />

—Amsterdam: Fysisch Geografisch en Bodemkund<strong>in</strong>g Laboratorium, Universiteit van Amsterdam<br />

Proefschrift Universiteit van Amsterdam. - 111. -Met lit. opg.-<br />

Met samenvatt<strong>in</strong>g <strong>in</strong> het Nederl<strong>and</strong>s, <strong>in</strong> het Engels en <strong>in</strong> het Italiaans<br />

Key words: quaternary geology, paleopedology, mora<strong>in</strong>es, fluviatile deposits, fluvioglacial deposits,<br />

loess, soil genesis, paleoclimates.<br />

Ook vershenen <strong>in</strong> de reeks: EDIZIONI UNICOPLI, Studi e Ricerche sul Territorio Nr. 28<br />

ISBN 88-400-0081-X<br />

Copyright © <strong>1987</strong> by Edizioni Unicopli - via Verona, 9, 20135 Milano<br />

On cover: Draw<strong>in</strong>gs by Luciano Coma-Pellegr<strong>in</strong>i<br />

Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt door middel van dmk,<br />

fotokopie of op welke <strong>and</strong>ere wijze ook zonder voorafga<strong>and</strong>e schriftelijke toestemm<strong>in</strong>g van de<br />

uitgevers.<br />

All rights reserved. <strong>No</strong> part of this publication may be reproduced <strong>in</strong> any form, by pr<strong>in</strong>t or<br />

photopr<strong>in</strong>t, microfilm or any o<strong>the</strong>r means, without written permission by <strong>the</strong> publishers.


PALEOSOLS AN D VETUSOLS IN THE CEN TRAL PO PLAIN<br />

(N ORTH ERN IT A LY)<br />

a study <strong>in</strong> Quaternary Geology <strong>and</strong> Soil D evelopm ent<br />

ACADEMISCH PROEFSCHRIFT<br />

ter verkrijg<strong>in</strong>g van de graad van doctor<br />

<strong>in</strong> de Wiskunde en Natuurwetenschappen<br />

aan de Universiteit van Amsterdam, op<br />

gezag van de Rector Magnificus<br />

Dr. S. K. Thoden van Velzen,<br />

hoogleraar <strong>in</strong> de Faculteit der T<strong>and</strong>heelkunde,<br />

<strong>in</strong> het openbaar te verdedigen <strong>in</strong> de Aula der<br />

Universiteit (Oude Lu<strong>the</strong>rse Kerk, S<strong>in</strong>gel 411,<br />

hoek Spui) op woensdag 30 September <strong>1987</strong>, te 15.00 uur precies.<br />

door<br />

Mauro <strong>Cremaschi</strong><br />

geboren te Reggio Emilia


ERRATA<br />

CORRIGE<br />

p a g . 15 , 1. hk testo tetto<br />

pag. 15 , 1. 46 Capitolo 6 Capitolo 5<br />

p a g . 16 , 1. 14 morenici moreniche<br />

pag. 16 , 1. 27 Capitolo 7 Capitolo 8<br />

pag. 16 , 1. 29 Capitolo 8 Capitolo 9<br />

pag. 16 , 1. 31 Capitolo 9 Capitolo 10<br />

pag. 16 , 1. 40 alluviazione illuviazione<br />

pag. 47 , fig. 9 5 6<br />

pag. 47 , fig. 9 6 5<br />

pag. 47 , fig. 9 7 8<br />

pag. 47 , fig. 9 8 7<br />

pag. 86 , fig. 30 veutosols <strong>vetusols</strong><br />

pag. 86 , fig. 30 above below<br />

pag. 86 , fig. 30 below above<br />

pag. 89 , 1. 15 g l a d e s glaciers<br />

pag. 89 , 1. 40 sugoests suggest<br />

pag. 119, fig. 51 91 21<br />

pag. 163, 1. 12 A) 2<br />

pag. 190, fig. 89 buriel burial<br />

pag. 191, 1. 20 Fersiallisation Fersiallitisation<br />

pag. 194, 1. 6 biref<strong>in</strong>gence birefr<strong>in</strong>gence<br />

pag. 226, 1. 2 pronunced pronounced


CONTENTS<br />

Acknowledgments .............................................................................................. 13<br />

Riassunto............................................................................................................. 15<br />

Summary ............................................................................................................. 17<br />

Samenvatt<strong>in</strong>g...................................................................................................... 19<br />

Chapter 1. INTRODUCTION....................................................................... 23<br />

1.1. The paleosols <strong>in</strong> Quaternary Geology ............................... 23<br />

1.2. The paleosols of <strong>the</strong> <strong>Po</strong> pla<strong>in</strong>; <strong>the</strong> «Ferretto»..................... 27<br />

1.3. The aims of <strong>the</strong> stu d y ........................................................ 28<br />

1.4. Methods ............................................................................... 29<br />

1.4.1. Field <strong>and</strong>'Laboratory techniques...................................... 29<br />

1.4.2. Geochronometric markers................................................. 30<br />

Chapter 2. GENERAL ASPECTS OF THE A R E A .................................. 33<br />

2.1. Ma<strong>in</strong> climatic characteristics................................................. 33<br />

2.1.1. The paleoclimates............................................................ 33<br />

2.1.2. The present climate of <strong>the</strong> area........................................ 37<br />

2.1.3. The moisture <strong>and</strong> temperature regime of <strong>the</strong> soils............... 40<br />

2.2. Geological outl<strong>in</strong>e ................................................................ 40<br />

2.2.1. The Prequaternary Geology............................................... 40<br />

2.2.2. Ma<strong>in</strong> tectonic d ata............................................................ 42<br />

Chapter<br />

3. PAST RESEARCH ON THE PHYSIOGRAPHY AND<br />

QUATERNARY GEOLOGY OF THE AREA AND ITS<br />

CONSEQUENCES FOR THIS RESEARCH .......................... 45<br />

3.1. Introduction.......................................................................... 45<br />

3.2. The Garda area <strong>and</strong> <strong>the</strong> Iseo area....................................... 47<br />

3.2.1. Geological outl<strong>in</strong>e............................................................ 48<br />

3.2.2. The paleosols.................................................................. 52<br />

3.3. The Adda bas<strong>in</strong> ................................................................... 52<br />

3.3.1. General outl<strong>in</strong>e ................................................................ 52<br />

3.3.2. The «Old Diluvium» terrace............................................. 54


ttm Ê Ê Ê Ê ô m i^<br />

10 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

3.3.3. The «Middle Diluvium» terrace........................................ 56<br />

3.3.4. The «Recent Diluvium» terrace........................................ 56<br />

3.4. The isolated terraces <strong>in</strong> <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> ..... ........................... 56<br />

3.5. The Apenn<strong>in</strong>e fr<strong>in</strong>ge .............................................................. 57<br />

3.6. The loesses <strong>in</strong> <strong>the</strong> <strong>Po</strong> pla<strong>in</strong>.................................................. 58<br />

3.7. The present <strong>in</strong>vestigations.................................................. 58<br />

■féîl<br />

Chapter 4. QUATERNARY DEPOSITS, VETUSOLS AND<br />

PALEOSOLS IN THE GARDA A R E A .................................. 61<br />

4.1. The stratigraphic sequence <strong>and</strong> <strong>the</strong> paleosols of <strong>the</strong> Gavardo<br />

q u a rry ............................................................................... 61<br />

4.2. The stratigraphic sequence of <strong>the</strong> Ciliverghe h i ll................. 68<br />

4.3. The stratigraphic sequence of <strong>the</strong> Castenedolo h ill............... 74<br />

4.4. The Chiese sequence............................................................ 79<br />

4.5. The <strong>vetusols</strong> <strong>and</strong> loess at <strong>the</strong> top of <strong>the</strong> Chiese sequence . . . 84<br />

4.6. The stratigraphic sequence of Val Sorda <strong>and</strong> <strong>the</strong> paleosol<br />

developed <strong>in</strong> <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Sedeña glacial stage .... 89<br />

4.7. The soils <strong>in</strong> <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Solfer<strong>in</strong>o stage................ 95<br />

4.8. The fluvioglacial pla<strong>in</strong> of <strong>the</strong> Solfer<strong>in</strong>o mora<strong>in</strong>e system .... 100<br />

4.9. Discussion on <strong>the</strong> chronostratigraphy of <strong>the</strong> Garda system . 103<br />

Chapter<br />

Chapter<br />

Chapter<br />

5. QUATERNARY DEPOSITS, VETUSOLS AND PALEO­<br />

SOLS IN THE ADDA A R E A ................................................... 107<br />

5.1. The «Old Diluvium» terrace................................................. 107<br />

5.2. Observations on <strong>the</strong> «Old Diluvium» terrace..................... 115<br />

5.3. The terrace of <strong>the</strong> «Middle Diluvium »................................ 116<br />

5.4. The terrace of <strong>the</strong> «Recent Diluvium »................................ 122<br />

5.5. The stratigraphic sequence of <strong>the</strong> Bagaggera bas<strong>in</strong> ........... 123<br />

5.6. The chronostratigraphy of <strong>the</strong> Bagaggera bas<strong>in</strong> <strong>and</strong> of <strong>the</strong><br />

Adda terraces......................................................................... 138<br />

6. SOILS AND VETUSOLS IN THE TOP OF THE ISOLA­<br />

TED TERRACES IN THE PLAIN ........................................... 143<br />

7. QUATERNARY DEPOSITS, VETUSOLS AND PALEO­<br />

SOLS IN THE APENNINE FRINGE...................................... 147<br />

7.1. Stratigraphy of <strong>the</strong> cont<strong>in</strong>ental Quaternary deposits, <strong>vetusols</strong><br />

<strong>and</strong> paleosols.................................................................. 147<br />

7.2. The <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> top of <strong>the</strong> Pepe-Apenn<strong>in</strong>e fluviatile<br />

form ation............................................................................... 151<br />

7.3. The terraces of Spezzano <strong>and</strong> Formig<strong>in</strong>e, <strong>the</strong> profiles of<br />

Tiepido <strong>and</strong> Rex .................................................................. 156


CONTENTS 11<br />

7.4. The soils <strong>and</strong> <strong>vetusols</strong> ma<strong>in</strong>ly developed <strong>in</strong> <strong>the</strong> Ghiardo<br />

lo e ss....................................................................................... 161<br />

7.5. The soils of <strong>the</strong> late Pleistocene <strong>and</strong> Holocene alluvial fans 169<br />

7.6. Conclusions on <strong>the</strong> stratigraphy of <strong>the</strong> Quaternary paleosols,<br />

<strong>vetusols</strong> <strong>and</strong> cont<strong>in</strong>ental deposits of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge<br />

............................................................................................ 173<br />

Chapter<br />

Chapter<br />

8. GENERAL CORRELATION; MAP OF THE QUATERNA­<br />

RY FORMATIONS .................................................................... 179<br />

8.1. Correlations of <strong>the</strong> lithostratigraphic <strong>and</strong> pedostratigraphic<br />

units over <strong>the</strong> whole <strong>in</strong>vestigated a rea................................ 179<br />

8.2. General concepts of <strong>the</strong> m a p ............................................... 184<br />

8.3. The structure of <strong>the</strong> legend ................................................. 185<br />

8.4. Description of <strong>the</strong> mapp<strong>in</strong>g units........................................ 186<br />

9. INTRODUCTION INTO THE GENESIS AND DEVELOP­<br />

MENT OF THE PALEOSOLS AND VETUSOLS................. 189<br />

9.1. The pedogenetic phases ....................................................... 189<br />

9.2. Relevant pedogenetic processes <strong>and</strong> pedological features . . 191<br />

Chapter 10. THE PALEOSOLS AND VETUSOLS IN GRAVEL AND<br />

INDIAMICTON ........................................................................ 197<br />

10.1. The parent material ............................................................ 197<br />

10.2. Characteristics <strong>and</strong> development of <strong>the</strong> horizons............. 197<br />

10.3. Wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> coarse fraction .................................... 200<br />

10.4. Evolution of <strong>the</strong> f<strong>in</strong>e earth................................................. 202<br />

10.5. Micromorphological characteristics.................................. 204<br />

10.6. Rubéfaction <strong>and</strong> free iron content........................... 207<br />

10.7. M<strong>in</strong>eralogical characteristics <strong>and</strong> cation exchange properties<br />

....................................................................................... 208<br />

10.8. Conclusions: <strong>the</strong> development of <strong>the</strong> <strong>vetusols</strong> <strong>and</strong> paleosols<br />

<strong>in</strong> gravel <strong>and</strong> diamicton............................................... 210<br />

Chapter 11. THE SOILS AND VETUSOLS IN LOESS............................ 215<br />

11.1. Morphology <strong>and</strong> micromorphology of <strong>the</strong> soil horizons . 215<br />

11.2. Textural characteristics....................................................... 218<br />

11.3. M<strong>in</strong>eralogical <strong>and</strong> chemical characteristics....................... 218<br />

11.4. The ma<strong>in</strong> soil form<strong>in</strong>g processes <strong>in</strong> loess.......................... 221<br />

Chapter 12. CONCLUSIONS......................................................................... 227<br />

12.1 The Quaternary Geology ................................................... 227


12 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

12.2. The soil form<strong>in</strong>g processes................................................. 231<br />

12.3. The vetusol concept............................................................ 234<br />

References .......................................................................................................... 235<br />

APPENDIXES<br />

1. Descriptions of <strong>in</strong>dividual profiles................................................................ 249<br />

la. Brief descriptions of <strong>in</strong>dividual profiles...................................................... 267<br />

2. Textural <strong>and</strong> chemical analyses of f<strong>in</strong>e earth <strong>and</strong> gravel ............................ 271<br />

3. X-ray analyses................................................................................................ 277<br />

4. Heavy m<strong>in</strong>eral analyses ................................................................................ 281<br />

5. Brief micromorphological descriptions........................................................ 287<br />

6. Map of Quaternary Formations <strong>in</strong> <strong>the</strong> Central <strong>Po</strong> Pla<strong>in</strong><br />

7. Prehistoric cultures <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy from Early Palaeolithic to Neolithic . 303


Acknowledgments<br />

I wish to express my s<strong>in</strong>cere gratitude to Prof. A.P.A. V<strong>in</strong>k, for hav<strong>in</strong>g accepted to act as promotor of this<br />

<strong>the</strong>sis, for his guidance, helpfull discussions, <strong>and</strong> critical read<strong>in</strong>g of <strong>the</strong> manuscript which have led to important<br />

improvements of <strong>the</strong> text.<br />

I wish to thank Dr. J. Sev<strong>in</strong>k, who strongly encouraged me <strong>in</strong> all <strong>the</strong> steps for <strong>the</strong> compilation of this <strong>the</strong>sis.<br />

I am greatly <strong>in</strong>debted to him particularly for usefull discussions on soil genesis <strong>and</strong> l<strong>and</strong>scape development, for<br />

his assistance <strong>in</strong> <strong>the</strong> field, dur<strong>in</strong>g laboratory studies <strong>in</strong> Amsterdam <strong>and</strong> dur<strong>in</strong>g <strong>the</strong> compilation of <strong>the</strong> manuscript<br />

<strong>and</strong> <strong>in</strong> subsequent discussions.<br />

I would like to thank prof. G. Orombelli for his advices on <strong>the</strong> Quaternary of <strong>No</strong>r<strong>the</strong>rn Italy, for<br />

encouragments <strong>in</strong> undertak<strong>in</strong>g this <strong>the</strong>sis abroad, for careful read<strong>in</strong>g of <strong>the</strong> manuscript <strong>and</strong> valuable suggestions.<br />

Thanks are also due to:<br />

—Prof. G.A. Ferrari, for many suggestions on micromorphology of soils <strong>and</strong> for his help <strong>in</strong> <strong>the</strong> impregnation<br />

of samples <strong>in</strong> Institute of Applied Geology <strong>in</strong> Florence.<br />

—Dr. H.J. Mücher for valuable comments on <strong>in</strong>terpretation of some th<strong>in</strong> sections of loess.<br />

—Prof. J.M. Verstraten: under his supervision many chemical analyses were carried out <strong>in</strong> <strong>the</strong> Laboratory of<br />

Physical Geography <strong>and</strong> Soil Science <strong>in</strong> Amsterdam.<br />

—Prof. G. Papani, for discussions about <strong>the</strong> Geology of <strong>the</strong> p>ede - Appenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

—B. de Leeuw for X-ray analyses.<br />

—F. Spezzi Bottiani, for chemical analyses carried out <strong>in</strong> <strong>the</strong> Department of Earth Sciences <strong>in</strong> Milan.<br />

—M. M<strong>in</strong>oli for draw<strong>in</strong>gs.<br />

—Dr. Pietro Mario Rossi, director of <strong>the</strong> Centro di Studio p>er la Stratigrafia e la Petrografía delle Alpi Central!,<br />

C.N.R. <strong>in</strong> Milan, who supported <strong>in</strong> many ways <strong>the</strong> <strong>in</strong>vestigations for this <strong>the</strong>sis.<br />

—C.N.R. <strong>and</strong> M.PJ. (40Z) for f<strong>in</strong>ancial support for <strong>the</strong> publication of <strong>the</strong> text <strong>and</strong> <strong>the</strong> pr<strong>in</strong>t<strong>in</strong>g of <strong>the</strong> map.


Riassunto<br />

Questo Studio riguarda i depositi cont<strong>in</strong>entali quaternari, i vetusuoli ed i paleosuoli del settore <strong>central</strong>e della<br />

Val Padana (Italia del <strong>No</strong>rd).<br />

Obiettivi e metodi sono discussi nel Capitolo 1 ; <strong>in</strong> una breve discussione circa il significato dei paleosuoli<br />

nella Geologia del Quaternario ed <strong>in</strong> una rassegna delle defmizioni più frequentemente utilizzate nella letteratura<br />

specialistica, vengono commentati i pr<strong>in</strong>cipal! tipi di paleosuolo f<strong>in</strong> ora riconosciuti. Viene sottol<strong>in</strong>eato come i<br />

concetti attualmente accettati non siano <strong>in</strong> grado di descrivere adeguatamente quei suoli che sono i) prodotto di<br />

una evoluzione prolungata, peraltro molto diffusi nell’area mediterránea. Per essi si propone il term<strong>in</strong>e di<br />

vetusuolo.<br />

Nella valle padana esistono numéros! paleosuoli che, malgrado i different! caratteri e la diversa eta, sono<br />

stati spesso désignât! con il term<strong>in</strong>e genérico di «Ferretto». Questo studio si propone di descrivere ed analizzare<br />

compiutamente le evidenze paleopedologiche della regione centro padana e di descrivere i rapport! che <strong>in</strong>tercorrono<br />

fra essi ed i depositi quaternari cui sono associati. Inoltre vengono studiati i process! pedogenetici di cui i<br />

paleosuoli sono il prodotto, al f<strong>in</strong>e di <strong>in</strong>dividuare i fattori che li hanno controllati, e come essi sono variati nel<br />

corso del Quaternario.<br />

È stato eseguito un rilevamento dei depositi quaternari, sulla base del quale è stata redatta una carta <strong>in</strong> scala<br />

1:250.000. Dei numerosi profili e sezione osservate, 54 sono stati descritti <strong>in</strong> dettaglio ed analizzati dal punto di<br />

vista micromorfologico, granulometrico, chimico e m<strong>in</strong>eralógico. Le datazioni proposte delle evidenze stratigrañche<br />

e paleopedologiche appoggiano su dati paleomagnetici ed archéologie!.<br />

Gli aspetti climatic!, paleoclimatici, geologic! e tettonici delParea sono esposti nel Capitolo 2. Dopo una<br />

breve rassegna dei caratteri paleoclimatici dell’area mediterránea, dedotti da recenti studi pal<strong>in</strong>ologici, vengono<br />

discussi nel dettaglio quelli relativ! alla pianura padana. Scarsi risultano i dati riferibili al Pleistocene <strong>in</strong>feriore e<br />

medio, mentre si possiedono per il Pleistocene superiore numeróse serie poll<strong>in</strong>iche, talora corredate da date<br />

radiometriche. Sulla base di questi dati, la vegetazione padana durante Tapice glaciale risulta costituita da foresta<br />

boreale, c solo ai marg<strong>in</strong>! della pianura, limitât! da una stretta fascia si riconoscono ambient! a steppa-prateria.<br />

L’attuale clima ha carattere submediterraneo.<br />

II bac<strong>in</strong>o padano venne a del<strong>in</strong>earsi, nei suoi caratteri pr<strong>in</strong>cipal!, già a partiré dal Miocene, <strong>in</strong> seguito<br />

alTorogenesi appenn<strong>in</strong>ica. Risulta occupato dal mare per gran parte del Pliocene e divenne progressivamente<br />

sede di sedimentazione cont<strong>in</strong>entale a partiré dal Pleistocene <strong>in</strong>feriore. Dal punto di vista tetonico Tarea risulta<br />

fortcmente attiva durante tutto il Quaternario.<br />

Nel Capitolo 3 viene passata <strong>in</strong> rassegna e discussa la letteratura quaternaristica delTarea; i Capitoli 4, 5, 6,<br />

sono <strong>in</strong> vece dedicati alia descrizione ed al commento dei depositi quaternari e paleosuoli rilevati. NelTarea<br />

gardesana, cui è dedicato il Capitolo 4, sono documéntate c<strong>in</strong>que avanzate glacial!. La piíi antica risale al<br />

Pleistocene <strong>in</strong>feriore d’epoca paleomagnetica Matuyama (fase di Ciliverghe), tre appartengono al Pleistocene<br />

medio (fasi di monte Paita, Carpenedolo e Sedeña), ed una al Pleistocene superiore (fase di Solfer<strong>in</strong>o). Gli<br />

apparat! glacial! e fluvioglaciali delle prime quattro fasi sono mal conservati e ridotti talora a lembi isolati e/o a<br />

terrazzi residui.<br />

Le più antiche coltri di loess r<strong>in</strong>venute risalgono al primo Pleistocene medio, e sono costituite da lembi<br />

circoscritti, <strong>in</strong>clus! nelle serie stratigrafiche. Meglio rappresentati sono i lœss del Pleistocene medio f<strong>in</strong>ale e del<br />

Pleistocene superiore che ricoprono ampie aree alia sommitá dei terrazzi e delle morene. Sono stati <strong>in</strong>oltre<br />

rilevati sediment! fluvial! di fasi non glacial!, che si differenziano da quelli fluvioglaciali non solo per caratteri<br />

sedimentologici, ma anche petrografíci. Sulle morene e sui terrazzi, dove non fortemente erosi, si conservano<br />

vetusuoli rubefatti di eta crescente, con spessi orizzonti argillici, che differiscono tra di loro per spessore,<br />

alterazione delle pietre, rubefazione, numero di coltri loessiche, al testo dei profili. Paleosuoli sepolti fortemente<br />

alteran e rubefatti, risalenti almeno al Pleistocene <strong>in</strong>feriore, sono stati r<strong>in</strong>venuti a Castenendolo e Gavardo.<br />

Nel hac<strong>in</strong>o di Ragaggera, posto nella regione delTAdda cui è dedicato il Capitolo 6, i sediment! lacustri<br />

giungono f<strong>in</strong>o alTepoca tardo-Matuyama. Ancora nel Pleistocene <strong>in</strong>feriore ad essi si sovrappongono e giustappongono<br />

depositi connettibili ad una fase glaciale. Durante il Pleistocene medio la sedimentazione fluviale e<br />

fluvioglaciale tende a prevalere progressivamente su quella lacustre. 1 sedimenti di questo periodo documentano


16 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

B<br />

Í Î T,’ - -<br />

tre successive fasi glaciali. Durante il Pleistocene superiore la sedimentazione ha esclusivo carattere eolico.<br />

All’<strong>in</strong>terno del hac<strong>in</strong>o di Bagaggera sono documéntate c<strong>in</strong>que successive fasi pedogenetiche. La più antica è<br />

rappresentata da un paleosuolo fortemente evoluto, sviluppatosi sul substrato roccioso e probabilmente precedente<br />

alla sedimentazione lacustre, che risalirebbe qu<strong>in</strong>di almeno al tardo Terziario.<br />

Le fasi pedogenetiche quarta e terza sono rappresentate da paleosuoli sepolti sovrapposti, risalenti rispettivamente<br />

al Pleistocene <strong>in</strong>feriore e medio. All’<strong>in</strong>izio del Pleistocene superiore va riferita la fase pedogenetica<br />

quarta, mentre la qu<strong>in</strong>ta è rappresentata dalla pedogenesi postglaciale sviluppatasi sul loess.<br />

Nell’area dell’Adda tra il tardo Terziario ed il Pleistocene superiore va sediment<strong>and</strong>osi il Membro di<br />

Paderno del Ceppo dell’Adda; segue, sempre nel Pleistocene <strong>in</strong>feriore, la sedimentazione del Membro di Trezzo<br />

del Ceppo dell’Adda e la messa <strong>in</strong> posto della contemporánea morena di Camparada. Questi depositi costituiscono<br />

la successione stratigrafica che da luogo al terrazzo a Ferretto. Tale unita è poi profondamente <strong>in</strong>cisa e<br />

successivamente, già nel tardo Pleistocene medio, essa viene avvolta dalle ghiaie del Diluvium medio.<br />

Dopo un’altra fase di terrazzamento, si depongono le ghiaie del Diluvium recente, che sono parte di una più<br />

ampia piaña fluvioglaciale connessa alle front! morenici dell’ultima fase glaciale; questo si estende per ampio<br />

tratto verso Sud e forma il livello pr<strong>in</strong>cipale della pianura lombarda. Da questa emergono, <strong>in</strong> corrispondenza di<br />

strutture tettoniche sepolte i terrazzi isolati, composti di depositi fluviali, ricoperti da coltri loessiche.<br />

Al marg<strong>in</strong>e dell’Appenn<strong>in</strong>o, cui è dedicato il Capitolo 7, la Formazione Fluviale Pedeappenn<strong>in</strong>ica com<strong>in</strong>cia<br />

a depositarsi <strong>in</strong> età tardo Pleistocenica <strong>in</strong>feriore. Essa presenta un chiaro trend positivo connesso al progressive<br />

sollevamento del marg<strong>in</strong>e appenn<strong>in</strong>ico. Una lunga fase di stabilità si verifica all’<strong>in</strong>terno del Pleistocene medio e<br />

<strong>in</strong> quel periodo il vetusuolo denom<strong>in</strong>ate di Collecchio, com<strong>in</strong>cia a svilupparsi. Alla f<strong>in</strong>e del Pleistocene medio,<br />

successivamente ad una importante fase tettonica, si forma al marg<strong>in</strong>e appennico un ampio pedemontano.<br />

In questa fase si deposita per ampio tratto una coltre di loess. Succédé una importante fase di erosione, cui segue<br />

la sedimentazione di due dist<strong>in</strong>ti sistemi di conoidi pedemontane; la sedimentazione del primo sistema è già<br />

cessata alla f<strong>in</strong>e del Pleistocene superiore, mentre quella del secondo cont<strong>in</strong>ua f<strong>in</strong>o all’Olocene antico. Alle<br />

formazioni descritte sono sistemáticamente associati dei vetusuoli rubefatti. Evidenze paleopedologiche più<br />

antiche del Vetusuolo di Collecchio sono molto rare.<br />

Nei Capitolo 7 sono discuss! i criteri con cui sono state formulate le unità stratigrafíche della Carta delle<br />

Formazioni quaternarie e ne è descritta la legenda.<br />

Nel Capitolo 8 sono discusse e descritte le fasi pedogenetiche riconosciute nell’area; sono discuss! su base<br />

bibliográfica, i pr<strong>in</strong>cipal! process! pedogenetici operanti nei suoli dell’area <strong>in</strong> studio.<br />

Nel Capitolo 9 sono discuss! i process! pedogenetici che hanno portato alio sviluppo dei paleosuoli su ghiaia<br />

e diamictorr. decalcificazione, rubefazione, ferriargilluviazione e debole idromorfia.<br />

Sulla base dei dati micromorfologici, granulometrici, m<strong>in</strong>éralogie! e chimici, si osserva come, nel tempo, i<br />

profili tendano ad ispessirsi, e ad articolarsi <strong>in</strong> una successione caratteristica di orizzonti (B21, B22, B31, B32)<br />

che differiscono per rubefazione, accumulo di argüía illuviale e progressiva disgregazione ed alterazione delle<br />

pietre. Trasformazioni e neoformazioni di m<strong>in</strong>eral! argillosi risultano trascurabili. I paleosuoli e vetusuoli su<br />

ghiaia e diamicton sembrano il prodotto di process! fersiallitici durati dal tardo Pleistocene <strong>in</strong>feriore f<strong>in</strong>o al<br />

presente, che non sembrano <strong>in</strong>terrompersi durante i period! glaciali pleistocenici. Questi riguardano la parte<br />

superiore dei profili, provoc<strong>and</strong>ovi deboli erosioni o l’accumulo di coltri colluviali e loessiche di spessori<br />

moderati e favorendo lo sviluppo dell’alluviazione grossolana. I paleosuoli sepolti evoluti tra il tardo Terziario ed<br />

il Pleistocene <strong>in</strong>feriore, hanno caratteri <strong>in</strong>termedi fra i suoli ferrug<strong>in</strong>osi e fersiallitici e debbono essere perció<br />

ricondotti ad un pedoclima di carattere più marcatamente <strong>in</strong>tertropicale.<br />

Il Capitolo 11 è dedicato alio sviluppo dei vetusuoli e suoli su loess. 1 process! <strong>in</strong> essi dom<strong>in</strong>ant! sono la<br />

decarbonatazione, la traslocazione di argüía. A causa del difficile drenaggio determ<strong>in</strong>ato dalla bassa permeabilita<br />

del materiale. I fenomeni idromorfi vi svolgono un ruolo importante; la rubefazione è di solito assente. I<br />

vetusuoli su loess <strong>in</strong>cludono abitualmente bisequenze litologiche e pedologiche, ed orizzonti con caratteri di<br />

fragipan. Questi sembrano essersi orig<strong>in</strong>ati a partiré da superfici esposte e sottoposte a process! pedogenetici di<br />

carattere isohumico durante fasi <strong>in</strong>terstadial!, poi sepolte da nuovi arrivi di loess.<br />

Le conclusion] generali della ricerca sono I’oggetto del Capitolo 12. Al marg<strong>in</strong>e alp<strong>in</strong>o sono state riconosciute<br />

c<strong>in</strong>que fasi glaciali. La più antica risale al Pleistocene <strong>in</strong>feriore ed è correlabile con lo Stage 22 delle<br />

stratigrafie isotopiche oceaniche. Al marg<strong>in</strong>e dell’Appenn<strong>in</strong>o, soltanto a partiré dal tardo Pleistocene medio si<br />

hanno tracce geologiche di fasi glaciali.<br />

Lo studio dei paleosuoli pone <strong>in</strong> luce che I’<strong>in</strong>izio del Pleistocene glaciale, alla f<strong>in</strong>e del Pleistocene superiore,<br />

segna il limite fra i process! pedogenetici di carattere ferrallitico o ferrug<strong>in</strong>oso (che determ<strong>in</strong>arono lo sviluppo<br />

dei paleosuoli più antichi) e quelli di carattere fersiallitico (che caratterizzano i paleosuoli evolutisi successivamente).<br />

Questi, salvo che <strong>in</strong> situazioni particolari, sono costituiti da vetusuoli, caratterizzati da una sostanziale<br />

cont<strong>in</strong>uita nel processo pedogenetico. II term<strong>in</strong>e vetusuolo è <strong>in</strong>f<strong>in</strong>e ulteriormente discusso, <strong>in</strong> rapporto alia<br />

nomenclatura paleopedologica.


Summary<br />

This Study is concerned with <strong>the</strong> Quaternary cont<strong>in</strong>ental deposits, <strong>vetusols</strong> <strong>and</strong> paleosols of <strong>the</strong> <strong>central</strong> part<br />

of <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> (<strong>No</strong>r<strong>the</strong>rn Italy).<br />

Chapter 1 deals with <strong>the</strong> objectives <strong>and</strong> <strong>the</strong> methods employed. After a short <strong>in</strong>troduction <strong>in</strong>to <strong>the</strong><br />

significance of paleosols <strong>in</strong> Quaternary Geology, <strong>the</strong> author discusses <strong>the</strong> types of paleosols known from <strong>the</strong><br />

literature <strong>and</strong> <strong>the</strong> concepts related to <strong>the</strong>m. It is underl<strong>in</strong>ed that <strong>the</strong> exist<strong>in</strong>g nomenclature is not sufficient to<br />

characterize <strong>the</strong> soils which are marked by a cont<strong>in</strong>uity of pedogenetic processes <strong>in</strong> time. For <strong>the</strong>se soils, which<br />

arc <strong>in</strong> fact very common to <strong>the</strong> Mediterranean region, <strong>the</strong> term «vetusol» is proposed.<br />

The ma<strong>in</strong> aim of this study is to describe <strong>and</strong> analyse <strong>the</strong> paleopedological evidence <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>Po</strong> pla<strong>in</strong>,<br />

<strong>in</strong> order to establish <strong>the</strong> relationships between pedogenetic processes <strong>and</strong> environmental changes dur<strong>in</strong>g <strong>the</strong><br />

Quaternary period <strong>in</strong> an area marg<strong>in</strong>ally affected by glacier expansions.<br />

A survey of <strong>the</strong> Quaternary deposits has been carried out <strong>and</strong> <strong>the</strong> results are given <strong>in</strong> a geological map at<br />

scale 1:250,000. Moreover fifty-four profiles <strong>and</strong> sections have been described <strong>in</strong> detail <strong>and</strong> analysed for <strong>the</strong>ir<br />

micromorphology, m<strong>in</strong>eralogy, granulometry <strong>and</strong> m<strong>in</strong>eralogy. The dat<strong>in</strong>gs <strong>and</strong> correlations of <strong>the</strong> stratigraphical<br />

<strong>and</strong> paleopedological sequences are based on paleomagnetical <strong>and</strong> archaeological data.<br />

The climatic, palaeoclimatic, geological <strong>and</strong> tectonic features of <strong>the</strong> area are discussed <strong>in</strong> chapter 2. The ma<strong>in</strong><br />

palaeoclimatic characteristics of <strong>the</strong> Mediterranean area are discussed on <strong>the</strong> basis of <strong>the</strong> most recent palynological<br />

studies. In <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong>, pollen data concern<strong>in</strong>g <strong>the</strong> Early <strong>and</strong> Middle Pleistocene are very scarce, while many<br />

pollen series are known from <strong>the</strong> Late Pleistocene, sometimes correlated with 14C dates. These data show that a<br />

boreal forest was established <strong>in</strong> <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> dur<strong>in</strong>g glacial periods, while a steppe environment existed all along<br />

<strong>the</strong> marg<strong>in</strong> of <strong>the</strong> pla<strong>in</strong>. <strong>No</strong>wadays <strong>the</strong> climate of <strong>the</strong> area studied has submediterranean characteristics; <strong>the</strong> soil<br />

temperature regime is <strong>the</strong>rmic; <strong>the</strong> soil moisture regime is xeric at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> turns to udic <strong>in</strong> <strong>the</strong><br />

Lombardian pla<strong>in</strong> <strong>and</strong> at <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge.<br />

The essential features of <strong>the</strong> <strong>Po</strong> bas<strong>in</strong> already existed <strong>in</strong> <strong>the</strong> Miocene, be<strong>in</strong>g due to <strong>the</strong> upris<strong>in</strong>g of <strong>the</strong><br />

Apenn<strong>in</strong>e cha<strong>in</strong>. The bas<strong>in</strong> was still occupied by <strong>the</strong> sea dur<strong>in</strong>g most of <strong>the</strong> Pliocene. S<strong>in</strong>ce <strong>the</strong> Early Pleistocene<br />

it was progressively filled with cont<strong>in</strong>ental sediments. From a tectonic po<strong>in</strong>t of view <strong>the</strong> area was strongly active<br />

throughout <strong>the</strong> entire Quaternary.<br />

The regional literature on <strong>the</strong> Quaternary period is discussed <strong>in</strong> chapter 3.<br />

Chapter 4, 5, 6 <strong>and</strong> 7 are devoted to <strong>the</strong> description <strong>and</strong> discussion of <strong>the</strong> Quaternary deposits, <strong>vetusols</strong> <strong>and</strong><br />

paleosols exam<strong>in</strong>ed.<br />

Chapter 4 concerns <strong>the</strong> Lake Garda region. Here, five glacial stages have been dist<strong>in</strong>guished. The oldest dates<br />

from <strong>the</strong> Early Pleistocene (Civilverghe stage), three stages date back to <strong>the</strong> Middle Pleistocene (Monte Faita,<br />

Carpenedolo <strong>and</strong> Sedeña stages) <strong>and</strong> one to <strong>the</strong> Late Pleistocene (Solfer<strong>in</strong>o stage). Glacial <strong>and</strong> fluvioglacial<br />

deposits of <strong>the</strong> first four stages are scarce <strong>and</strong> are often limited to isolated outcrops <strong>and</strong>/or residual terraces.<br />

The oldest loess sediments date from <strong>the</strong> early Middle Pleistocene <strong>and</strong> have been found <strong>in</strong> a few sites, as<br />

<strong>in</strong>tercalations <strong>in</strong> <strong>the</strong> stratigraphical sequences. The late Middle Pleistocene <strong>and</strong> Late Pleistocene loesses are<br />

better represented <strong>and</strong> are widespread over older terraces <strong>and</strong> mora<strong>in</strong>e ridges. Fluvial sediments of non-glacial<br />

orig<strong>in</strong> have also been found. They differ from <strong>the</strong> fluvioglacial ones with regard to <strong>the</strong>ir sedimentological <strong>and</strong><br />

petrographic characteristics. Rubefied <strong>vetusols</strong> with thick argillic horizons are encountered <strong>in</strong> <strong>the</strong> mora<strong>in</strong>es <strong>and</strong><br />

<strong>the</strong> terraces, if not strongly eroded. Their thickness, rubéfaction <strong>and</strong> clay content generally <strong>in</strong>crease with <strong>the</strong> age<br />

of <strong>the</strong> deposits <strong>in</strong> which <strong>the</strong>y developed. Buried paleosols, strongly wea<strong>the</strong>red <strong>and</strong> rubefied <strong>and</strong> at least Early<br />

Pleistocene <strong>in</strong> age, have been recognized at Castenedolo <strong>and</strong> Gavardo.<br />

Chapter 5 deals with <strong>the</strong> Quaternary deposits, <strong>vetusols</strong> <strong>and</strong> paleosols <strong>in</strong> <strong>the</strong> Adda area. The sediments of <strong>the</strong><br />

Bagaggera bas<strong>in</strong> range <strong>in</strong> age from Early Pleistocene up to Late Pleistocene. Five glacial stages are recorded <strong>in</strong><br />

<strong>the</strong> sedimentary sequence, <strong>the</strong> oldest dat<strong>in</strong>g back to <strong>the</strong> late Matuyama Epoch. Five pedogenetic phases can be<br />

dist<strong>in</strong>guished <strong>in</strong> this bas<strong>in</strong>. The olde.st (S5) is represented by a strongly eroded oxisol, developed <strong>in</strong> <strong>the</strong> flysch<br />

bedrock <strong>and</strong> probably predat<strong>in</strong>g <strong>the</strong> lacustr<strong>in</strong>e sedimentation. The fourth (S4) pedogenetic phase <strong>and</strong> <strong>the</strong> third<br />

(S3) consist of superimposed buried paleosols, dat<strong>in</strong>g from respectively, <strong>the</strong> Early <strong>and</strong> <strong>the</strong> Middle Pleistocene.<br />

The second (S2) phase is attributed to <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Late Pleistocene, while <strong>the</strong> most recent (SI) is


18 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

represented by <strong>the</strong> <strong>Po</strong>stglacial pedogenesis <strong>in</strong> loess. In <strong>the</strong> Adda area, dur<strong>in</strong>g <strong>the</strong> Early Pleistocene <strong>the</strong> Cepp)o<br />

d’Adda was deposited, which represents an aggrad<strong>in</strong>g piedmont alluvial fan. Its upper part (<strong>the</strong> Trezzo Member<br />

of <strong>the</strong> Ceppo d’Adda) is probably connected with <strong>the</strong> genesis of <strong>the</strong> Camparada mora<strong>in</strong>e, which formed dur<strong>in</strong>g<br />

an Early Pleistocene glacial stage. In <strong>the</strong> late Early Pleistocene, <strong>the</strong> «Ferretto» vetusof developed <strong>in</strong> <strong>the</strong> Cepp>o<br />

formation. Dur<strong>in</strong>g <strong>the</strong> Middle Pleistocene, <strong>the</strong> Ceppo formation <strong>and</strong> <strong>the</strong> related soils were deeply cut by<br />

fluviatile erosion <strong>and</strong> subsequently surrounded by <strong>the</strong> gravels of <strong>the</strong> «Middle Diluvium» terrace. After a new<br />

phase of terrac<strong>in</strong>g, <strong>the</strong> fluvioglacial sediments connected with <strong>the</strong> Late Pleistocene mora<strong>in</strong>es of <strong>the</strong> Adda<br />

(«Diluvium recente» terrace) were deposited. They extend far to <strong>the</strong> South <strong>and</strong> form <strong>the</strong> Ma<strong>in</strong> Level of <strong>the</strong><br />

Lombardian Pla<strong>in</strong>. <strong>Po</strong>lygenetic loess has been found on top of <strong>the</strong> «Ferretto» <strong>and</strong> <strong>the</strong> «Middle Diluvium»<br />

terrace, while it is completely absent from <strong>the</strong> top of <strong>the</strong> «Recent Diluvium».<br />

Chapter 6 deals with <strong>the</strong> <strong>central</strong> part of <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong>, which is dom<strong>in</strong>ated by <strong>the</strong> «Recent Diluvium» which<br />

formes <strong>the</strong> «Ma<strong>in</strong> level of <strong>the</strong> Pla<strong>in</strong>» <strong>and</strong> by <strong>the</strong> wide Holocene floodpla<strong>in</strong>s of <strong>the</strong> <strong>Po</strong> <strong>and</strong> its ma<strong>in</strong> tributaries.<br />

Some isolated older terraces occur, which rise from <strong>the</strong> Ma<strong>in</strong> Level <strong>in</strong> correspondence with buried tectonic<br />

structures. lx>ess has been found on top of <strong>the</strong>se terraces.<br />

In chapter 7 <strong>the</strong> Quaternary cont<strong>in</strong>ental deposits of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge are described. The Pede-Apenn<strong>in</strong>e<br />

fluviatile sedimentation started at <strong>the</strong> end of <strong>the</strong> late Early Pleistocene. It is represented by me<strong>and</strong>er<strong>in</strong>g <strong>and</strong><br />

braided river deposits <strong>and</strong> by overbank sediments, which show a clear upward coarsen<strong>in</strong>g trend, connected with<br />

<strong>the</strong> progressive upris<strong>in</strong>g of <strong>the</strong> Apenn<strong>in</strong>e marg<strong>in</strong>e. Dur<strong>in</strong>g <strong>the</strong> Middle Pleistocene, at <strong>the</strong> top of <strong>the</strong> «Pede-<br />

Apenn<strong>in</strong>e fluviatile formation» <strong>the</strong> Collechio vetusol started to develope. Subsequent on a tectonically <strong>in</strong>duced<br />

phase of l<strong>and</strong>scape <strong>in</strong>stability, a wide piedmont glacis developed at <strong>the</strong> foot of <strong>the</strong> Apenn<strong>in</strong>es, followed<br />

by a general phase of loess sedimentation. Dur<strong>in</strong>g <strong>the</strong> late Pleistocene <strong>and</strong> Early Holocene alluvial fans were<br />

deposited. The <strong>vetusols</strong> at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge are systematically associated with <strong>the</strong> deposits described above.<br />

Chapter 8 is devoted to <strong>the</strong> stratigraphic correlations between <strong>the</strong> regions studied, <strong>and</strong> to <strong>the</strong> map <strong>and</strong> its<br />

legend. The mapp<strong>in</strong>g units have been formulated accord<strong>in</strong>g to lithostratigraphic, pedostratigraphic <strong>and</strong> morphostratigraphic<br />

criteria.<br />

In chapter 9, <strong>the</strong> literature concern<strong>in</strong>g <strong>the</strong> relevant pedogenetic processes <strong>and</strong> <strong>the</strong> ma<strong>in</strong> features of <strong>the</strong> soils<br />

<strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> area studied are reviewed.<br />

Chapter 10 deals with <strong>the</strong> genesis <strong>and</strong> <strong>the</strong> development of soils, <strong>vetusols</strong> <strong>and</strong> paleosols <strong>in</strong> gravel <strong>and</strong><br />

diamicton. The development of <strong>the</strong>se soils is ma<strong>in</strong>ly due to <strong>the</strong> décalcification <strong>and</strong> dis<strong>in</strong>tegration of coarse<br />

skeletal material, translocation of clay <strong>and</strong> iron, <strong>and</strong> slight hydromorphism. In time, <strong>the</strong> action of <strong>the</strong>se<br />

pedogenetic processes led to <strong>the</strong> thicken<strong>in</strong>g of <strong>the</strong> profiles, which developed a characteristic set of horizons<br />

(B21, B22, B31, B32, Cca), <strong>and</strong> to <strong>the</strong> <strong>in</strong>crease of rubéfaction <strong>and</strong> of <strong>the</strong> accumulation of illuvial clay.<br />

Micromorphological, textural, chemical <strong>and</strong> m<strong>in</strong>eralogical aspects of <strong>the</strong>ir evolution are described <strong>in</strong> some detail.<br />

Vetusols <strong>and</strong> paleosols, of which <strong>the</strong> formation started from <strong>the</strong> late Early Pleistocene onward, are <strong>the</strong><br />

results of fersiallitic processes. Their development was not affected by <strong>the</strong> climatic changes <strong>in</strong>duced by glacial<br />

periods, dur<strong>in</strong>g which only <strong>the</strong> upp>cr part of <strong>the</strong> profiles was affected by slight erosion, colluviation, loess<br />

sedimentation <strong>and</strong>, at microscale, by an <strong>in</strong>crease of coarse illuviation.<br />

The buried paleosols, recorded at Gavardo, Castenedolo <strong>and</strong> Bagaggera, which developed from <strong>the</strong> Late<br />

Tertiary^ to <strong>the</strong> Early Pleistocene, have characteristics <strong>in</strong>termediate between those of ferrug<strong>in</strong>ous <strong>and</strong> of ferrallitic<br />

soils <strong>and</strong>, <strong>the</strong>refore, have developed <strong>in</strong> a more or less tropical pedoclimate.<br />

Chapter 11 is devoted to <strong>the</strong> development of <strong>vetusols</strong> <strong>in</strong> loess. The dom<strong>in</strong>ant processes are décalcification<br />

<strong>and</strong> clay translocation. Due to <strong>the</strong> low permeability of <strong>the</strong> material, hydromorhism is also a relevant process,<br />

while rubefaaion is generally absent. Vetusols <strong>in</strong> loess are often developed <strong>in</strong> polygenetic loess covers. Clear<br />

<strong>in</strong>dications exist that <strong>in</strong> <strong>the</strong> loess, isohumic soils were formed dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terstadial periods; <strong>the</strong>y degraded <strong>and</strong><br />

developed fragipans dur<strong>in</strong>g <strong>the</strong> cold stages. Dur<strong>in</strong>g non-glacial periods <strong>and</strong> <strong>in</strong> <strong>Po</strong>stglacial times lessived soils<br />

marked by pseudogley developed <strong>and</strong> previously acquired characteristics were generally obliterated.<br />

In <strong>the</strong> f<strong>in</strong>al chapter general conclusions are drawn. At <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge five glacial stages can be recognized.<br />

The oldest dates back to <strong>the</strong> Early Pleistocene <strong>and</strong> is correlated to <strong>the</strong> stage 22 of <strong>the</strong> isotopic records from deep<br />

sea cores. Comparison between <strong>the</strong>se results <strong>and</strong> <strong>the</strong> more complete oceanic record <strong>in</strong>dicated that only dur<strong>in</strong>g<br />

periods, <strong>in</strong> which ice accumulation on <strong>the</strong> Alps was particulary strong, piedmont glaciers <strong>and</strong> related mora<strong>in</strong>e<br />

deposits developed. At <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge sediments <strong>and</strong> l<strong>and</strong>forms <strong>in</strong>duced by glacial stages are found only<br />

s<strong>in</strong>ce <strong>the</strong> late Middle Pleistocene.<br />

Comparison of <strong>the</strong> pedogenesis of <strong>the</strong> <strong>vetusols</strong> <strong>and</strong> paleosols leads to <strong>the</strong> conclusion that somewhere <strong>in</strong> <strong>the</strong><br />

Early Pleistocene a break <strong>in</strong> pcdoclimatic conditions occurred. Older soils have characteristics <strong>in</strong>termediate<br />

between ferrug<strong>in</strong>ous <strong>and</strong> ferrallitic soils, <strong>and</strong> developed <strong>in</strong> a tropical climate. Start<strong>in</strong>g from <strong>the</strong> late Early<br />

Pleistocene up to <strong>the</strong> Early Holocene, soils developed through fersiallitic processes <strong>in</strong> a mediterranean climate,<br />

while <strong>the</strong> glacial periods were <strong>in</strong>effective with regard to pedogenesis.<br />

F<strong>in</strong>ally, <strong>the</strong> term vetusol is discussed <strong>in</strong> fur<strong>the</strong>r detail <strong>in</strong> relation with <strong>the</strong> present paleopedological<br />

term<strong>in</strong>ology.


Samenvatt<strong>in</strong>g<br />

Deze Studie h<strong>and</strong>elt over de paleogeomorfologie van de cont<strong>in</strong>entale afzett<strong>in</strong>gen van Kwartaire ouderdom,<br />

<strong>in</strong> relatie tot de ontwikkel<strong>in</strong>g van de palcosolen en de vetusolen <strong>in</strong> het <strong>central</strong>e deel van de <strong>Po</strong> vlakte<br />

(<strong>No</strong>ord'Italie).<br />

In hoofdstuk 1 worden de onderzoeksdoelen en gebruikte methoden toegelicht. Na een körte <strong>in</strong>leid<strong>in</strong>g over<br />

de betekenis van de Studie van paleosolen voor de Kwartairgeologie worden <strong>in</strong> de literatuur gehanturde<br />

typologie van paleosolen <strong>in</strong> de daaraaten gr<strong>and</strong>slag liggende concepteo besproken. Benadrukt wordt, dat de<br />

besta<strong>and</strong>e typologie niet toereikend is voor die bodems, welke gekenmerkt worden door cont<strong>in</strong>uiteit, <strong>in</strong> de tijd,<br />

van de voor hun eigenschappen verantwoorlijke pedogene processen. Voor deze bodems, die <strong>in</strong> feite zeer veel<br />

voorkomen <strong>in</strong> het Mediterrane gebied, wordt de term «vetusol» voorgesteld.<br />

Het belangrijkste doel van deze Studie is de beschrijv<strong>in</strong>g en analyse van de paleosolen <strong>in</strong> de <strong>central</strong>e <strong>Po</strong><br />

vlakte, tene<strong>in</strong>de vast te stellen welke relaties bestünden tussen de pedogene processen en de milieuver<strong>and</strong>er<strong>in</strong>gen<br />

tijdens het Kwartair <strong>in</strong> een gebied, dat marg<strong>in</strong>aal be<strong>in</strong>vloed werd door gletschers.<br />

Het onderzoek bestond uit een karter<strong>in</strong>g van de kwartaire afzett<strong>in</strong>gen met onder meer als resultaat een<br />

geologische kaart op schaal 1:250.000. Daarnaast werden vier en vijftig bodemprofielen en geologische secties<br />

<strong>in</strong> detail beschreven en geanalyseerd voor wat betreff hun micromorfologische, m<strong>in</strong>eralogische, granulometrische<br />

en chemische eigenschappen. De dater<strong>in</strong>gen en ouderdomscorrelaties van de sedimentaire en paleopedologische<br />

sequenties zijn gebaseerd op paleomagnetische en archeologische gegevens.<br />

ln hoofdstuk 2 worden de besta<strong>and</strong>e gegevens over het klimaat, het paleoklimaat, de geologie en de<br />

tcktoniek van het bestudeerde gebied besproken.<br />

Voor wat betreff het paleoklimaat wordt vooral a<strong>and</strong>acht geschonken aan de resultaten van recente palynologische<br />

studies <strong>in</strong> het Mediterrane gebied. Palynologische studies van Vroeg —en Midden —pleistocene afzett<strong>in</strong>gen<br />

<strong>in</strong> de <strong>Po</strong> vlakte zij<strong>in</strong> schaars. Veel palynologisch onderzoek is daarentegen verricht aan Laat-pleistocene<br />

afzett<strong>in</strong>gen, soms ondersteund door C14 dater<strong>in</strong>gen. Deze gegevens tonen aan, dat tijdens glaciale perioden <strong>in</strong><br />

de <strong>Po</strong> vlakte een borcaal bos aanwezig was, terwijl <strong>in</strong> de r<strong>and</strong>zone van deze vlakte steppe condities heersten. Het<br />

huidige klimaat heeft sub-mediterrane kenmerken. Het «temperature regime» is «<strong>the</strong>rmie» en het «moisture<br />

régime» varieert van «xeric» <strong>in</strong> de r<strong>and</strong>zone van de Appenij<strong>in</strong>en tot «udic» <strong>in</strong> de Lombardijse vlakte en de<br />

r<strong>and</strong>zone van de Alpen.<br />

De grootschalige geologische structuur van het huidige <strong>Po</strong> bekken ontstond reeds <strong>in</strong> het Mioceen door de<br />

opheffmg van de Appenijnen. Gedurende het grootste deel van het Plioceen werd het bekken nog <strong>in</strong>genomen<br />

door de zee. Vanaf het Vroeg-pleistoceen werd het echter <strong>in</strong> toenemende mate opgevuld met cont<strong>in</strong>entale<br />

afzett<strong>in</strong>gen. Gedurende het hele kwartair was het gebied tektonisch zeer aktief.<br />

De uitgebreide regionale kwartairgeologische literatuur wordt besproken <strong>in</strong> hoofdstuk 3; de hoofdstukken<br />

4, 5, 6 en 7 zijn gewijld aan de beschrijv<strong>in</strong>g en besprek<strong>in</strong>g van de bestudeerde kwartaire afzett<strong>in</strong>gen, paleosolen<br />

en vetusolen.<br />

Hoofdstuk 4 betreff hef Garda meer gebied. Hier kunnen vijf glaciaties onderscheiden worden. De oudste<br />

dateert uit het Vroeg-pleistoceen (Ciliverghe stage). Drie jongere glaciaties dateren uit het Midden-pleistoceen<br />

(Monte Faita, Carpenedolo en Sedeña stages) en de jongste uit het Laat-pleistoceen (Solfer<strong>in</strong>o stage). Glaciale<br />

en fluvioglaciale afzett<strong>in</strong>gen uit de eerste vier glacialen zijn zelden ontsloten, veelal <strong>in</strong> geisoleerde voorkdomens<br />

cn/of résiduaire terrassen. De audste loessafzett<strong>in</strong>gen dateren mit het vraege Midden-pleistocene. Zij zijn op<br />

enkelc plaatsen gevonden en wel als <strong>in</strong>schakel<strong>in</strong>gen <strong>in</strong> sedimentaire sequenties. Laat Midden-pleistocene en<br />

Laat-pleistocene loessen komen op uitgebreiderc schaal voor als dekken op oudere terrassen en morene ruggen.<br />

Fluviatiele sedimenten van nict-glaciale herkomst komen eveneens voor. Zij verschillen van de fluvioglaciale<br />

afzett<strong>in</strong>gen voor wat betreff hun sedimentologische en petrografische kenmerken. In de morenes en terrassen<br />

worden, <strong>in</strong>dien ze niet sterk geerodeerd zijn, roodgekleurde vetusolen met dikke klei<strong>in</strong>spoel<strong>in</strong>gshorizontcn<br />

gevonden. De dikte, rubificatîe en het kleigehalte van deze bodems nemen <strong>in</strong> het algemeen toe met toenemende<br />

ouderdom van de afzett<strong>in</strong>gen, waar<strong>in</strong> zij zijn ontwikkeld. Begraven paleosolen van m<strong>in</strong>stens Vroeg-pleistocene<br />

ouderdom werden gevonden te Castenedolo en Gavardo. Ze worden gekenmerkt door een Sterke verwer<strong>in</strong>g en<br />

rubificatie.


PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

In hoofdstuk 5 worden de kwartaire afzert<strong>in</strong>gen, paleosolen en vetusolen van het Adda gebied beh<strong>and</strong>eld.<br />

De Sedimenten van het Bagaggera bekken lopen <strong>in</strong> ouderdom uiteen van Vroeg- tot Laat-pleistoceen. In deze<br />

sedimentaire sequentie kunnen vijf glaciale perioden worden onderscheiden, waarvan de oudste dateert uit het<br />

latere deel van de Matuyama Epoch. Daarnaast kunnen vijf pedogenetische fasen worden onderscheiden. De<br />

oudste (S5) wordt vertegenwoordigd door een sterk geerodeerde oxisol, welke is ontwikkeld <strong>in</strong> het<br />

onderliggende vaste gesteente (flysch). «Superimposed buried» paleosolen, daterend uit respectievelijk het<br />

Vroeg-pleistoceen en het Midden-pleistoceen, representeren de vierde (S4) en derde (S3) pedogenetische fase.<br />

De tweede pedogenetische fase (S2) dateert uit het beg<strong>in</strong> van het Laat-pleistoceen, terwijl de jongste fase (S l) de<br />

holocene bodemvorm<strong>in</strong>g omvat.<br />

In het Adda gebied werd tijdens het Vroeg-pleistoceen de Ceppo d’Adda gevoimd, Welke een aggraderende<br />

piedmont pu<strong>in</strong>waaier vertegenwoordigt. Het bovenste deel van deze formatie (de Trezzo Member van de Ceppo<br />

d’Adda) is vermoedelijk gerelateerd aan de Camparada morene, gevormd tijdens een Vroeg-pleistocene glaciatie.<br />

Tijdens het late Vroeg-pleistoceen werd <strong>in</strong> de Ceppo formatie de zogenaamde «Ferretto» vetusol gevormd.<br />

Tijdens het Midden-pleistoceen werden de Ceppo formatie en de daar<strong>in</strong> ontwikkelde bodems fluviatiel sterk<br />

versneden, waarna de gr<strong>in</strong>den van de «Middle Diluvium» terrassen werden afgezet. Na een nieuwe fase van<br />

terrasvorm<strong>in</strong>g werden fluvioglaciale Sedimenten afgezet, welke gerelateerd zijn an de Laat-pleistocene morenes<br />

van de Adda en als het «Recent Diluvium» terras worden aangegeven. Dit terras strekt zieh ver zuidwaarts uit<br />

en vormt het hoofdniveau van de Lombardijse vlakte. Zowel op de Ferretto als of het «Middle Diluvium» terras<br />

is polygenetische loess gevonden. Op de «Recent Diluvium» terras ontbreekt loess geheel.<br />

In hoofdstuk 6 wordt het <strong>central</strong>e deel van de <strong>Po</strong> vlakte besproken. Deze wordt gedom<strong>in</strong>eerd door het<br />

«Recent Diluvium» en door de brede holocene dalvlakten van de <strong>Po</strong> en haar zijrivieren. Enkele geisoleerde<br />

oudere terrassen körnen voor, bedekt met loess. Hun nauwe correlatie met het voorkomen van begraven<br />

tectonische structuren wijst op een Sterke tektonische controle op het voorkomen van deze terrassen.<br />

De kwartaire cont<strong>in</strong>entale afzett<strong>in</strong>gen van de Appenijnse r<strong>and</strong>zone worden beh<strong>and</strong>eld <strong>in</strong> hoofdstuk 7. De<br />

overgang van mariene naar fluviatiele sedimentatie dateert hier uit het laatste deel van het Vroeg-pleistoceen. De<br />

Sedimenten bestaam uit me<strong>and</strong>erende en verwilderende rivierafzett<strong>in</strong>gen. Zij vormen de «Pre-Apenn<strong>in</strong>e fluviatile<br />

formation» en vertonen een duidelijke «coarsen<strong>in</strong>g upward», die samenhangt met de geleidelijke opheff<strong>in</strong>g van<br />

deze r<strong>and</strong>zone. Tijdens het Middenpleistoceen nam de <strong>in</strong>stabiliteit van het l<strong>and</strong>schap af en begon de vorm<strong>in</strong>g van<br />

de Collechio vetusol. Na een tectonische fase, die leidde tot een duidelijke toename van de <strong>in</strong>stabiliteit van het<br />

l<strong>and</strong>schap, werd aan de voet van de Appenijnen een uitgestrekt «piedmont glacis» gewormd. Deze werd <strong>in</strong> latere<br />

<strong>in</strong>stantie met loess bedekt. Tijdens het Laat-pleistoceen en Vroeg-holoceen werden tenslotte pu<strong>in</strong>waaiers gevormd.<br />

Hoofdstuk 8 is gewijd aan de stratigrafische correlaties tussen de diverse deelgebieden en aan de compilatie<br />

door middel van de geologische kaart. Voor het onderscheid tussen de diverse kaarteenheden is gebruikt<br />

gemaakt van litho-, pedo- en morfostratigrafische criteria.<br />

Een overzicht van de literatuur betreffende relevante pedogene processen en van de belangrijkste kenmerken<br />

van de bodems <strong>in</strong> het onderzochte gebied wordt gegeven <strong>in</strong> hoofdstuk 9. Dit vormt de <strong>in</strong>leid<strong>in</strong>g tot twee<br />

daaropvolgende hoofdstukken waar<strong>in</strong> de ontwikkel<strong>in</strong>g van de bodems <strong>in</strong> gr<strong>in</strong>d en diamicton en van de bodems<br />

<strong>in</strong> loess afzonderlijk worden beh<strong>and</strong>eld.<br />

De bodems <strong>in</strong> gr<strong>in</strong>d en diamicton zijn voomamelijk ontstaan door ontkalk<strong>in</strong>g, verwer<strong>in</strong>g van grof skelet<br />

materiaal, verplaats<strong>in</strong>g van klei en ijzer en, tenslotte, zwakke pseudogley<strong>in</strong>g. Deze pedogene processen leidden <strong>in</strong><br />

de loop der tijd tot verdiep<strong>in</strong>g van het solum, welke een karakteristieke horizontopeenvolg<strong>in</strong>g gaat vertonen<br />

(B21, B22, B31, B32, Cca), tot een <strong>in</strong>tensere rubificatie en tot een toenemende accumulatie van <strong>in</strong>gcspoelde<br />

klei. De micromorfologische, granulomtrische, chemische en m<strong>in</strong>eralogische aspecten van deze ontwikkel<strong>in</strong>g<br />

worden uitvoerig beschreven. De vanaf het late Vroeg-pleistoceen ontstane paleosolen en vetusolen kunnen<br />

beschouwd worden als fersiallitische bodems. Hun ontwikkel<strong>in</strong>g werd niet wezenlijk be<strong>in</strong>vloed door de<br />

klimaatscondities tijdens de glacialen. Deze hadden alleen effect op het bovenste deel van de profielen en leiden<br />

tot lichte erosie, colluviatie, afzett<strong>in</strong>g van loess en, op microschaal, tot een toename van «coarse illuviation».<br />

De begraven paleosolen van Gavardo, Castenedolo en Bagaggera, welke gevormd werden vanaf het<br />

Laat-tertiair tot <strong>in</strong> het Vroeg-pleistoceen, hebben kenmerken, die <strong>in</strong>termediair zij<strong>in</strong> tussen die van ferrug<strong>in</strong>euze<br />

en van ferralitische bodems. Daarom wordt aangenomen, dat zij onder een m<strong>in</strong> of meer tropisch pedoklimaat<br />

zij<strong>in</strong> gevormd.<br />

Decalcificatie en kleitranslocatie zijn de belangripcste processen, die geleid hebben tot de vorm<strong>in</strong>g van de<br />

vetusolen <strong>in</strong> loess. Daarnaast speelt, als gevolg van de läge permeabiliteit van het materiaal, hydromorfie een<br />

belangrijke rol, terwijl rubificatie veelal ontbreekt. De vetusolen zj<strong>in</strong> vaak ontwikkeld <strong>in</strong> polygenetische<br />

loessdekken. Er zijn duidelijke aanwyz<strong>in</strong>gen, dat na afzett<strong>in</strong>g eerst isohumische bodems werden gevormd, welke<br />

tijdens de <strong>in</strong>terstadialen degradeerden, waarbij zieh fragipans ontwikkelden. Tijdens <strong>in</strong>terglaciale perioden en <strong>in</strong><br />

het Holoceen trad kleitranslocatie en pseudovergley<strong>in</strong>g op en werden veelal de eerder verkregen bodemkenmerken<br />

uitgewist.<br />

Het laatste hoofdstuk is gewijd aan de meer algemene discussie en conclusies. In de r<strong>and</strong>zone van de Alpen<br />

kunnen vijf glaciaties worden herkend. De oudste dateert uit het Vroeg-pleistoceen en kan mogelijk gecorreleerd<br />

worden met isotopic stage 22. Vergelijk<strong>in</strong>g van de resultaten met de completere, op onderzoek van<br />

diepzeekernen berustende, isotopen kurves wijst erop, dat alleen tijdens perioden, waar<strong>in</strong> Sterke ijsaccumulatie <strong>in</strong><br />

de Alpen optrad, piedmont gletschers en bijdehorende morene Systemen werden gevormd. In de r<strong>and</strong>zone van


SAMENVATTING 21<br />

de Appenijnen komen sedimenten en l<strong>and</strong>vormen, gerelateerd aan glaciaties, slechts voor vanaf het late Middenpleistoceen.<br />

Het onderzoek naar de genese van de bestudeerde paleosolen en vetusolen leidt tot de conclusie, dat tijdens<br />

het Vroeg-pleistoceen een fundaméntele wijzig<strong>in</strong>g <strong>in</strong> de pedoklimatologische condities optrad. Oudere bodems<br />

hebben kenmerken, die <strong>in</strong>termediair zijn tussen die van fermg<strong>in</strong>euze en van ferralitische bodems, en werden<br />

gevormd <strong>in</strong> een tropisch klimaat. Bodems, onstaan vanaf het late Vroeg-pleistoceen tot en met het<br />

Vroeg-holoceen, hebben de kenmerken van fersiallitische bodems, gevormd <strong>in</strong> een mediterraan klimaat en<br />

hieruit wordt geconcludeerd, dat de koude perioden <strong>in</strong> pedogentische z<strong>in</strong> niet effectief waren.<br />

Tenslotte wordt het begrip vetusol uitvoerig besprocken, alsook de relatie tot de huidige paleopedologische<br />

term<strong>in</strong>ologie.


1 .<br />

INTRODUCTION<br />

The subjects of this study are <strong>the</strong> paleosols of <strong>the</strong> <strong>central</strong> part of <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong><br />

(Fig. 1). Its aim is to recognize <strong>and</strong> to describe <strong>the</strong>ir characteristics, <strong>the</strong>ir<br />

stratigraphic <strong>and</strong> areal distribution, <strong>the</strong> factors which controlled <strong>the</strong>ir<br />

development <strong>and</strong> <strong>the</strong> relationships with <strong>the</strong> Quaternary enviromental evolution.<br />

1.1. THE PALEOSOLS IN QUATERNARY GEOLOGY<br />

Paleopedology represents <strong>the</strong> historical branch of pedology (Ruellan, 1971);<br />

<strong>and</strong> its subjects are represented by <strong>the</strong> paleosols which, accord<strong>in</strong>g to a largely<br />

accepted def<strong>in</strong>ition (Yaalon, 1971; Birkel<strong>and</strong>; 1974; Orombelli, 1971; Ferrari<br />

<strong>and</strong> Magaldi, 1983), are <strong>the</strong> soils developed <strong>in</strong> a l<strong>and</strong>scape of <strong>the</strong> past. In<br />

comment<strong>in</strong>g upon <strong>the</strong> def<strong>in</strong>ition, most authors po<strong>in</strong>t out that <strong>the</strong> bioclimatic<br />

environment, <strong>in</strong> which <strong>the</strong> paleosol evolved, must be different from <strong>the</strong> present<br />

one. In Orombelli’s def<strong>in</strong>ition (1971) <strong>the</strong> morphological implications are<br />

particularly emphasized: <strong>the</strong> paleosols are soils developed <strong>in</strong> <strong>the</strong> past, <strong>in</strong> ancient<br />

topographic surfaces.<br />

Generally speak<strong>in</strong>g, <strong>the</strong> surface of <strong>the</strong> emerged l<strong>and</strong>s alternatively undergoes<br />

gradational <strong>and</strong> pedogenetic processes. Accord<strong>in</strong>g to a concept used <strong>in</strong><br />

geomorphology (Chamberla<strong>in</strong> <strong>and</strong> Salisbury, 1904) <strong>the</strong> gradational processes are<br />

those which level by lower<strong>in</strong>g <strong>the</strong> relief through erosion (degradational<br />

processes) <strong>and</strong> by fill<strong>in</strong>g <strong>the</strong> depressions with <strong>the</strong> accumulation of materials<br />

(aggradational processes). The development of a soil takes place where <strong>the</strong>re is a<br />

balance between aggradational <strong>and</strong> degradational processes or where both are<br />

<strong>in</strong>active. Therefore pedogenesis evolves <strong>in</strong> contraposisition to erosion/<br />

sedimentation <strong>and</strong> is connected to <strong>the</strong> stability of <strong>the</strong> surfaces on which it acts<br />

(Bos <strong>and</strong> Sev<strong>in</strong>k, 1975).<br />

It is well known that <strong>in</strong> <strong>the</strong> evolution of <strong>the</strong> lithosphere periods of prevail<strong>in</strong>g<br />

stability (Biostasy), dur<strong>in</strong>g which <strong>the</strong> cont<strong>in</strong>ental areas ma<strong>in</strong>ly undergo<br />

bioclimatic <strong>and</strong> pedogenetic alterations, after all due to <strong>the</strong> plant cover, alternated<br />

with periods of <strong>in</strong>tensive erosion, dur<strong>in</strong>g which <strong>the</strong> surfaces, devoid of<br />

vegetation, have been strongly affected by gradational processes (Resistasy)<br />

(Erhart, 1967).<br />

In <strong>the</strong> geological perspective, dur<strong>in</strong>g very long time-<strong>in</strong>tervals, pedogenesis is<br />

a pulsat<strong>in</strong>g phenomenon. For this reason, <strong>the</strong> stratigraphic record often <strong>in</strong>cludes


i<br />

i i<br />

24 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

pedogenetic bodies which represent fossil evidence of <strong>the</strong> periods of Biostasy.<br />

These represent <strong>the</strong> buried paleosols (Ruellan, 1971), or Geosols (Morrison, 1967;<br />

<strong>No</strong>rth American Stratigraphic code, 1983) or <strong>the</strong> Sols fossiles (Duchafour, 1977).<br />

In this case <strong>the</strong> paleopedological evidence represents a s<strong>in</strong>gle pedogenetic period.<br />

Fig. 1 - The <strong>in</strong>vestigated area <strong>and</strong> its ma<strong>in</strong> physiographic systems. 1) Pre-Quaternary formations; 2)<br />

mora<strong>in</strong>es <strong>and</strong> related fluvioglacial deposits of <strong>the</strong> Adda river, Iseo <strong>and</strong> Garda lakes areas; 3) Ma<strong>in</strong><br />

level of <strong>the</strong> Pla<strong>in</strong>; 4) alluvial pla<strong>in</strong>; 5) Pleistocene terraces of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge; 6) ma<strong>in</strong> scarps.<br />

Fig. 1 - L’area <strong>in</strong> esame ed i pr<strong>in</strong>cipali sistemi fisiografici <strong>in</strong> essa compresi. 1) formazioni prequaternarie;<br />

2) morene e depositi fluvioglaciali dell’area dell’Adda del lago d’lseo e del lago di Garda; 3)<br />

«Livello pr<strong>in</strong>cipale della pianura»; 4) pianura alluvionale; 5) terrazzi pedeappenn<strong>in</strong>lci; 6) pr<strong>in</strong>cipali<br />

scarpate.


INTRODUCTION 25<br />

<strong>in</strong>dependent of its duration <strong>and</strong>, if it has sufficient lateral cont<strong>in</strong>uity <strong>and</strong> clear<br />

diagnostic characteristics, it may be used for stratigraphic studies as a<br />

pedostratigraphic unit. This is def<strong>in</strong>ed at <strong>the</strong> same time by stratigraphic<br />

characteristics <strong>and</strong> pedological characteristics for which specific proof of existence<br />

is required (Work<strong>in</strong>g Group on <strong>the</strong> orig<strong>in</strong> <strong>and</strong> nature of paleosols, 1971;<br />

Ruellan, 1971; F<strong>in</strong>kl, 1980).<br />

A pedostratigraphic unit usually <strong>in</strong>cludes different soils <strong>in</strong> catenary sequence,<br />

or lateral variation (pédologie facies of Morrison, 1967), depend<strong>in</strong>g on <strong>the</strong><br />

orig<strong>in</strong>al topography of <strong>the</strong> surface from which <strong>the</strong> geosol evolved (Birkel<strong>and</strong>,<br />

1974; Gerrard, 1981); <strong>the</strong> buried soils are <strong>the</strong>refore stratigraphic markers <strong>and</strong><br />

have paleogeographic <strong>and</strong> paleoenvironmental significance.<br />

In <strong>the</strong> Quaternary cont<strong>in</strong>ental deposits, <strong>the</strong> geosols are present <strong>in</strong> particular<br />

types of sedimentary environments, ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> thick loesses of <strong>the</strong> Central<br />

Europe (F<strong>in</strong>k, 1954, 1969; Kukla, 1975; Valent<strong>in</strong>e <strong>and</strong> Dalrymple, 1976), <strong>in</strong> <strong>the</strong><br />

slope deposits (Bolt et alii, 1980; Kwaad <strong>and</strong> Miicher, 1979) or <strong>in</strong> subsid<strong>in</strong>g<br />

fluvial pla<strong>in</strong>s. Never<strong>the</strong>less <strong>the</strong>ir study is made particularly difficult by scarcity<br />

<strong>and</strong> casualness of <strong>the</strong> outcrops (fluvial cuts, quarries, construction pits).<br />

ReHct paleosols (Ruellan, 1971) are more common <strong>in</strong> <strong>the</strong> Quaternary<br />

deposits. These paleosols are def<strong>in</strong>ed as soils that, even if not buried, preserve <strong>in</strong><br />

<strong>the</strong>ir profile characteristics which are not <strong>in</strong> equilibrium with <strong>the</strong> present<br />

pedo-environment <strong>and</strong> were produced by soil form<strong>in</strong>g processes which acted <strong>in</strong><br />

<strong>the</strong> past. Time, <strong>the</strong>refore, plays an important role <strong>in</strong> <strong>the</strong>ir genesis.<br />

Yaalon (1971) dist<strong>in</strong>guishes three groups of pedological features accord<strong>in</strong>g to<br />

<strong>the</strong>ir persistence: —rapidly adjust<strong>in</strong>g features, —relatively persistent features (near<br />

<strong>the</strong> steady state), - persistent features produced by self-term<strong>in</strong>at<strong>in</strong>g processes. It<br />

is well known that (Birkel<strong>and</strong>, 1974; Sharpenseel, 1971) accumulation of organic<br />

matter is <strong>the</strong> complex of properties which rapidly reaches <strong>the</strong> steady state <strong>in</strong> time,<br />

rang<strong>in</strong>g from hundreds of years to a few thous<strong>and</strong>s of years. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,<br />

<strong>the</strong> rate <strong>and</strong> nature of this process may be easily altered, be<strong>in</strong>g controlled by<br />

biological cycles. Besides, <strong>the</strong> A horizons, <strong>in</strong> which organic matter is<br />

predom<strong>in</strong>antly <strong>in</strong>cluded, are <strong>the</strong> most subject to erosion. For such reasons <strong>the</strong>y<br />

have been placed by Yaalon (1971) among <strong>the</strong> rapidly adjust<strong>in</strong>g features <strong>and</strong><br />

<strong>the</strong>refore <strong>the</strong>y are little useful <strong>in</strong> <strong>the</strong> study of <strong>the</strong> paleosols, where, on <strong>the</strong><br />

contrary, evidence of past or ancient processes must be searched <strong>in</strong>side <strong>the</strong> B<br />

horizons, <strong>in</strong> which persistent features are generally preserved <strong>and</strong> can be used to<br />

reconstruct past conditions of pedogenesis. Many authors attribute polygenetic<br />

characteristics to relict paleosols: <strong>the</strong>y would have orig<strong>in</strong>ated, through various<br />

different pedogenetic phases that took place <strong>in</strong> time, from <strong>the</strong> same parent<br />

material (sols polycycliques: Duchaufour, 1977), or with <strong>the</strong> <strong>in</strong>terposition of a<br />

th<strong>in</strong> sedimentary cover, which is not sufficient to isolate <strong>the</strong> underly<strong>in</strong>g paleosol<br />

from <strong>the</strong> new pedogenetic cycle (composite paleosols: Morrison, 1967;<br />

polypedomorphic profiles: Bos <strong>and</strong> Sev<strong>in</strong>k, 1975). The development of <strong>the</strong> relict<br />

paleosols is commonly assumed to be connected with <strong>in</strong>terglacial periods, while<br />

dur<strong>in</strong>g <strong>the</strong> glacial ones, <strong>the</strong>re should be a substantial decl<strong>in</strong>e or <strong>in</strong>terruption of<br />

<strong>the</strong> soils form<strong>in</strong>g processes. In fact Birkel<strong>and</strong> (1974) po<strong>in</strong>ts out that some relict<br />

soils are identical to equivalent buried soils covered by sediments of <strong>the</strong> glacial


I9SI<br />

26 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

period <strong>and</strong> deduces that <strong>the</strong> characteristics of both soils must have been<br />

completely acquired dur<strong>in</strong>g <strong>the</strong> preced<strong>in</strong>g <strong>in</strong>terglacial period. Never<strong>the</strong>less<br />

Birkel<strong>and</strong> acknowledges that <strong>in</strong> <strong>the</strong> regions with present climate, comparable to<br />

that of <strong>the</strong> glacial periods, <strong>the</strong>re are well developed soils while, accord<strong>in</strong>g to his<br />

model, <strong>the</strong>re should not be any development of <strong>the</strong> soil.<br />

It must be recalled that <strong>the</strong> tendency to refer <strong>the</strong> formation <strong>in</strong>terval of<br />

paleosols to <strong>in</strong>terglacial periods is based on <strong>the</strong> concepts already expressed by<br />

Penck <strong>and</strong> Brückner (1909) <strong>in</strong> <strong>the</strong> model of <strong>the</strong> stratigraphy of <strong>the</strong> glacial age<br />

proposed by <strong>the</strong>m for <strong>the</strong> Alp<strong>in</strong>e region.<br />

The isotopic studies on oceanic cores (Fl<strong>in</strong>t, 1971; Bowen, 1978) testify <strong>the</strong><br />

complexity of <strong>the</strong> quaternary climatic variations (cf. chapter: 2 .1.1) <strong>and</strong> suggest<br />

prudence <strong>in</strong> <strong>the</strong> correlation of soils, polygenetic paleosols <strong>and</strong> <strong>in</strong>terglacial periods<br />

(Kukla, 1978; Boardman, 1985).<br />

The question <strong>the</strong>refore is: are <strong>the</strong> relict soils <strong>the</strong> product of an evolution<br />

prolongée» or of «évolutions successives» (Duchaufour, 1977)? <strong>the</strong> problem is crucial<br />

to underst<strong>and</strong> <strong>the</strong> significance of <strong>the</strong> paleosols <strong>and</strong> to use <strong>the</strong>m <strong>in</strong> <strong>the</strong> study of<br />

<strong>the</strong> Quaternary. The buried paleosols certa<strong>in</strong>ly testify only <strong>the</strong> pedoclimatic<br />

characteristics of <strong>the</strong> period dur<strong>in</strong>g which <strong>the</strong>y evolved. There is a doubt whe<strong>the</strong>r<br />

thick relict soils still related to <strong>the</strong> surface are ma<strong>in</strong>ly <strong>the</strong> product of a dist<strong>in</strong>ct<br />

pedogenetic phase that lasted for only an <strong>in</strong>terglacial period of for several<br />

cumulated phases. Their evolution, <strong>in</strong> particular conditions, might ra<strong>the</strong>r vary<br />

autonomously with respect to <strong>the</strong> climatic oscillations. Each of <strong>the</strong>se possibilities<br />

implies a paleoenvironmental <strong>and</strong> stratigraphic significance <strong>and</strong> especially <strong>the</strong> last<br />

one puts <strong>the</strong> question of which role is effectively played by <strong>the</strong> climatic factor <strong>in</strong><br />

<strong>the</strong> evolution of soils <strong>in</strong> <strong>the</strong> long cycles.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> numerous authors (<strong>No</strong>vak et aüi, 1971; Icole, 1971;<br />

Hubschman, 1975; Born<strong>and</strong>, 1978; Boardman, 1985), by analys<strong>in</strong>g <strong>the</strong><br />

chronosequences of <strong>the</strong> redit soils of <strong>the</strong> piedmont regions of <strong>the</strong> Pyrenees, of<br />

<strong>the</strong> Alps, <strong>in</strong> Engl<strong>and</strong> <strong>and</strong> <strong>in</strong> Canada, ra<strong>the</strong>r recognize a cont<strong>in</strong>uity of <strong>the</strong><br />

pedogenetic process dur<strong>in</strong>g time, maybe with temporary breaks, but always <strong>in</strong> <strong>the</strong><br />

same direction.<br />

The exist<strong>in</strong>g nomenclature for soils <strong>and</strong> paleosols is unsuited to adequately<br />

characterize <strong>the</strong>se soils which seem to be marked by a cont<strong>in</strong>uity of a specific set<br />

of pedogenetic processes <strong>in</strong> time. They cannot be described as buried soils <strong>in</strong><br />

those <strong>in</strong>stances where <strong>the</strong>y occur at <strong>the</strong> present surface. <strong>No</strong>r can <strong>the</strong>y be<br />

described as polygenetic soils, because <strong>the</strong> processes which determ<strong>in</strong>e <strong>the</strong>ir<br />

characteristics have not changed <strong>in</strong> time. F<strong>in</strong>ally <strong>the</strong>y cannot be considered as<br />

relict soils, as <strong>the</strong>ir evolution is still cont<strong>in</strong>u<strong>in</strong>g.<br />

As <strong>the</strong> term relict soil may lead to misunderst<strong>and</strong><strong>in</strong>g, hav<strong>in</strong>g often been used<br />

to <strong>in</strong>dicate soils, presently occurr<strong>in</strong>g at <strong>the</strong> surface, but formed under entirely<br />

different conditions, <strong>in</strong> this <strong>the</strong>sis <strong>the</strong> term «Vetusol» (after vetus = old) will be<br />

used to <strong>in</strong>dicate all soils which are not buried <strong>and</strong> cannot be characterized as<br />

polygenetic. Whe<strong>the</strong>r <strong>the</strong> <strong>vetusols</strong> are <strong>in</strong>deed <strong>the</strong> product of an «évolution<br />

prolongée», which should be <strong>the</strong> concept of <strong>the</strong>ir genesis, or of «évolutions successives»<br />

(Duchaufour, 1977) is one of <strong>the</strong> topics of this <strong>the</strong>sis.


INTRODUCTION 27<br />

1.2. THE PALEOSOLS OF THE PO PLAIN; THE «FERRETEO»<br />

Geological literature <strong>and</strong> maps have <strong>in</strong>dicated, s<strong>in</strong>ce a long time, <strong>the</strong> presence<br />

of many paleosols <strong>in</strong> <strong>the</strong> Quaternary deposits all along <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> <strong>Po</strong><br />

Pla<strong>in</strong>. In most cases <strong>the</strong>y developed <strong>in</strong> <strong>the</strong> top of fluvial <strong>and</strong> fluvioglacial deposits<br />

<strong>and</strong> <strong>in</strong> mora<strong>in</strong>es, or, locally, <strong>the</strong>y are represented by buried paleosols brought to<br />

light by <strong>the</strong> fluvial erosion or by artificial cuts. Most of <strong>the</strong>m, <strong>in</strong>dependently on<br />

<strong>the</strong>ir age or stratigraphic position, have been <strong>in</strong>dicated with <strong>the</strong> term «FerreUo».<br />

This is a popular term to def<strong>in</strong>e terra<strong>in</strong>s rich <strong>in</strong> iron hydroxides; it has a<br />

Lombardian orig<strong>in</strong> <strong>and</strong> it has been referred to some areas of that region, whose<br />

poor fertility was due to <strong>the</strong> presence of very clayey <strong>and</strong> leached paleosols<br />

(Cornel, 1958, 1968).<br />

The «Ferretto», as a geological entity, appears <strong>in</strong> <strong>the</strong> Italian literature already<br />

from <strong>the</strong> first half of <strong>the</strong> 19th century (Breislack, 1822); it has been particularly<br />

studied by Taramelli (1876) <strong>and</strong> was already correctly <strong>in</strong>terpreted by Sacco<br />

(1896) as <strong>the</strong> product of physico-chemical wea<strong>the</strong>r<strong>in</strong>g of fluvioglacial gravel.<br />

Never<strong>the</strong>less <strong>the</strong> term is used by <strong>the</strong> Italian authors with a certa<strong>in</strong> ambiguity.<br />

It has never been established whe<strong>the</strong>r it designates wea<strong>the</strong>red <strong>and</strong> rubefied gravel<br />

or only <strong>the</strong> f<strong>in</strong>e sediments that systematically overlie <strong>the</strong>m, which Sacco already<br />

calls loess <strong>and</strong> «pseudoloess».<br />

Penck <strong>and</strong> Briickner (1909) clearly def<strong>in</strong>e <strong>the</strong> pedogenetic nature of <strong>the</strong><br />

«Ferretto» <strong>and</strong> describe its characteristics: colour, wea<strong>the</strong>r<strong>in</strong>g of gravel <strong>and</strong><br />

thickness of <strong>the</strong> paleosol profile. On <strong>the</strong> basis of this <strong>the</strong>y dist<strong>in</strong>guished <strong>the</strong><br />

«Ferretto» from similar, but more recent, pedological phenomena <strong>and</strong> po<strong>in</strong>ted<br />

out its concomitance with <strong>the</strong> «Deckenschotier». Therefore <strong>the</strong> paleopedological<br />

evidence is used as a criterion for <strong>the</strong> identification of morphostratigraphic units.<br />

The characteristics of great thickness <strong>and</strong> strong wea<strong>the</strong>r<strong>in</strong>g are correlated with<br />

<strong>the</strong> particularly long duration of <strong>the</strong> M<strong>in</strong>del-Riss Interglacial (<strong>the</strong> Great<br />

Interglacial) of which <strong>the</strong> «Ferretto» is considered <strong>the</strong> stratigraphic marker. This<br />

<strong>the</strong>ory had a remarkable success <strong>and</strong> for more that fifty years geomorphological<br />

surveys of <strong>the</strong> Quaternary deposits of <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> Alps were<br />

based on it (Venzo, 1957, 1965, 1961; Habbe, 1960). More recent studies on<br />

<strong>the</strong> Alp<strong>in</strong>e «Ferrettos» <strong>and</strong> on analogous paleosols do not stray much from <strong>the</strong><br />

stratigraphic ideas of <strong>the</strong> two Austrian authors (Venzo, 1957; Manc<strong>in</strong>i, 1960;<br />

Gabert, 1962; Fraenzle, 1965; Ferrari <strong>and</strong> Magaldi, 1968; Manc<strong>in</strong>i, 1969). First<br />

Ugol<strong>in</strong>i <strong>and</strong> Orombelli (1968) <strong>and</strong> <strong>the</strong>n Billard (1974, 1977) paid attention to<br />

<strong>the</strong> f<strong>in</strong>e sediments ly<strong>in</strong>g on top of <strong>the</strong> «Ferretto» <strong>and</strong> specified <strong>the</strong>ir aeolian<br />

nature. In particular Billard observes that several phases of loess sedimentation<br />

can be recognized <strong>in</strong> <strong>the</strong> silty covers, alternat<strong>in</strong>g with <strong>in</strong>terglacial paleosols,<br />

sometimes «degraded» by periglacial processes. Fur<strong>the</strong>rmore <strong>the</strong> loess overlies<br />

wea<strong>the</strong>red gravels of different ages; <strong>the</strong> «Ferretto» <strong>the</strong>refore may not be <strong>the</strong><br />

expression of a unique <strong>in</strong>terglacial phase. The concept that <strong>the</strong> «Ferretto» could<br />

be developed on morphological units of different ages was not strange even to<br />

Penck <strong>and</strong> Briickner, who record different <strong>and</strong> superimposed «Ferrettos». Several<br />

authors describe regional . variations of <strong>the</strong> «Ferretto» which depend on<br />

differences <strong>in</strong> composition of <strong>the</strong> parent material (Manc<strong>in</strong>i, 1960; Fraenzle,


28 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

1965). Fur<strong>the</strong>rmore soils of <strong>the</strong> «Ferretto» type have been discovered <strong>in</strong><br />

<strong>No</strong>r<strong>the</strong>rn Italy <strong>in</strong> Pleistocene terraces <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge (Pétrucci, 1968).<br />

The term «Ferretto», even if deeply-rooted <strong>in</strong> <strong>the</strong> geological literature, thus<br />

is very ambiguous (<strong>Cremaschi</strong> <strong>and</strong> Orombelli, 1982): from <strong>the</strong> lithostratigraphic<br />

po<strong>in</strong>t of view it refers both to cover<strong>in</strong>g f<strong>in</strong>e deposits <strong>and</strong> to <strong>the</strong> underly<strong>in</strong>g<br />

rubefied gravel. It also refers to coarse deposits (fluvial <strong>and</strong> fluvioglacial gravel<br />

<strong>and</strong> diamicton) of different nature <strong>and</strong> lithologic composition. From a<br />

paleopedologic po<strong>in</strong>t of view, it has never been def<strong>in</strong>ed with regard to its genesis<br />

<strong>and</strong> chronostratigraphy. On <strong>the</strong> contrary it is certa<strong>in</strong> that <strong>the</strong> term has been used<br />

to designate paleopedological phenomena of different age.<br />

In <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> <strong>the</strong> literature describes o<strong>the</strong>r paleosols <strong>in</strong> gravels or <strong>in</strong> loess<br />

which are dist<strong>in</strong>guished by <strong>the</strong>ir m<strong>in</strong>or degree of evolution from <strong>the</strong> «Ferretto»<br />

paleosols (Ugol<strong>in</strong>i <strong>and</strong> Orombelli, 1968; Ven2o, 1965; Manc<strong>in</strong>i, 1969). In<br />

particular some slightly rubefied soils on <strong>the</strong> more <strong>in</strong>ternal mora<strong>in</strong>e ridges of <strong>the</strong><br />

Garda lake system have been placed <strong>in</strong> <strong>the</strong> Riss-Würm Interglacial <strong>and</strong> are considered<br />

to be <strong>the</strong> stratigraphic marker for <strong>the</strong> period. O<strong>the</strong>r paleosols of early<br />

Würm age have been recorded on <strong>the</strong> Late Pleistocene alluvial fans of <strong>the</strong><br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge (<strong>Cremaschi</strong>, 1979 a).<br />

Even if numerous paleosols have been recorded <strong>in</strong> <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong>, an adequate<br />

syn<strong>the</strong>sis on a regional scale <strong>and</strong> a def<strong>in</strong>ition of <strong>the</strong>ir stratigraphic position are<br />

lack<strong>in</strong>g. Fur<strong>the</strong>rmore analytical <strong>in</strong>vestigations by means of modern analytical<br />

techniques are restricted to a small number of profiles (Ferrari <strong>and</strong> Magaldi,<br />

1968; Magaldi <strong>and</strong> Sauro, 1982; <strong>Cremaschi</strong>, 1982 b).<br />

1.3. THE AIMS OF THE STUDY<br />

Accord<strong>in</strong>g to what has been expressed <strong>in</strong> <strong>the</strong> two preced<strong>in</strong>g sections, <strong>the</strong><br />

aims of <strong>the</strong> <strong>in</strong>vestigations on <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> paleosols concentrate on two different,<br />

but strictly connected, levels. First <strong>the</strong> research has aims of a regional character:<br />

to describe, analyse <strong>and</strong> compare <strong>the</strong> paleosols of <strong>the</strong> <strong>Po</strong> pla<strong>in</strong>, by means of a<br />

geological survey <strong>and</strong> a paleopedo logical analysis, <strong>in</strong> order to describe some of<br />

<strong>the</strong> ma<strong>in</strong> soil form<strong>in</strong>g processes which acted <strong>in</strong> <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> dur<strong>in</strong>g <strong>the</strong><br />

Quaternary <strong>and</strong> <strong>the</strong> factors which controlled <strong>the</strong>ir development.<br />

An aim of a more general character concerns <strong>the</strong> relationship between <strong>the</strong><br />

development of <strong>the</strong> soils <strong>and</strong> <strong>the</strong> glacial periods: how <strong>the</strong> advance of <strong>the</strong> Pleistocene<br />

glaciers <strong>and</strong> <strong>the</strong> climatic <strong>and</strong> environmental variations connected with <strong>the</strong>m,<br />

have <strong>in</strong>teracted with <strong>the</strong> pedogenesis. In this perspective <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> has a particular<br />

significance, not only because of <strong>the</strong> amount of well preserved paleopedological<br />

phenomena, but above all, because, hav<strong>in</strong>g been reached by <strong>the</strong> glaciers only<br />

at its nor<strong>the</strong>rn marg<strong>in</strong>, it allows to compare, with<strong>in</strong> <strong>the</strong> same bas<strong>in</strong> <strong>and</strong> along<br />

relatively short distances, <strong>the</strong> evolution of <strong>the</strong> soil form<strong>in</strong>g process of areas<br />

directly reached by <strong>the</strong> glaciers with o<strong>the</strong>r ones which had only been <strong>in</strong>directly<br />

<strong>in</strong>fluenced by <strong>the</strong>m. The <strong>vetusols</strong> are <strong>the</strong> ma<strong>in</strong> subject of this <strong>the</strong>sis. In fact most<br />

paleopedo logical phenomena of <strong>the</strong> area can be grouped <strong>in</strong>to this category. The<br />

aim is to clarify which factors have ma<strong>in</strong>ly controlled <strong>the</strong>ir genesis, whe<strong>the</strong>r <strong>the</strong>y


INTRODUCTION 29<br />

are <strong>the</strong> product of a unique progressive evolution or of different <strong>and</strong> subsequent<br />

phases characterized by different processes. F<strong>in</strong>ally it is to establish <strong>the</strong>ir<br />

significance for <strong>the</strong> paleoenvironmental reconstruction <strong>and</strong> to verify <strong>the</strong>ir use as<br />

pedostratigraphic units <strong>and</strong> chronostratigraphic markers <strong>in</strong> studies of Quaternary<br />

Geology.<br />

1.4. METHODS<br />

1.4.1. Field <strong>and</strong> laboratory techniques<br />

Various methods <strong>and</strong> analytical tecniques have been selected <strong>in</strong> order to reach<br />

<strong>the</strong> aims mentioned <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g sections. The mapp<strong>in</strong>g of <strong>the</strong> Quaternary<br />

deposits represents <strong>the</strong> work on which <strong>the</strong> rest of <strong>the</strong> study is based. The map<br />

enclosed <strong>in</strong> <strong>the</strong> Appendix 6 (cf. chapter 8) has been obta<strong>in</strong>ed by critically<br />

analys<strong>in</strong>g all <strong>the</strong> exist<strong>in</strong>g geological map sheets: Peschiera, Brescia, Treviglio,<br />

Bergamo, Como, Milano, Cremona, Piacenza, Fidenza, Parma, Reggio Emilia,<br />

Mantova, of <strong>the</strong> Geological Map of Italy; Map at 1:100,000 scale of Parma <strong>and</strong><br />

neighbour<strong>in</strong>g areas, (Venzo 1957, 1960, 1965) which have been accurately<br />

checked by means of aerial photographs <strong>and</strong> <strong>in</strong> <strong>the</strong> field. Many areas, especially<br />

on <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> <strong>the</strong> Garda area, have been mapped ex novo at a<br />

1:100,000 scale. More than one hundred profiles <strong>and</strong> stratigraphic sections have<br />

been chosen as representative for <strong>the</strong> whole area; 45 out of <strong>the</strong>m have been<br />

analytically described (Appendix 1) <strong>and</strong> characterized by means of chemical,<br />

physical <strong>and</strong> micromorphological analyses (Appendices 2-5). The descriptions are<br />

generally made accord<strong>in</strong>g to <strong>the</strong> current manuals of Soil Survey (Flodgson ed.,<br />

1976; Sanesi, ed., 1977) sometimes simplified. Designation of <strong>the</strong> horizons of<br />

<strong>vetusols</strong> <strong>and</strong> paleosols <strong>in</strong> gravel <strong>and</strong> diamicton generally strayed from <strong>the</strong><br />

st<strong>and</strong>ard nomenclature; <strong>the</strong>se modifications are discussed <strong>in</strong> detail <strong>in</strong> chapter 10.<br />

The laboratory analyses, of which <strong>the</strong> results <strong>and</strong> <strong>the</strong> technical details with<br />

regard to <strong>the</strong> used methods are listed <strong>in</strong> <strong>the</strong> respective Appendices, are <strong>the</strong><br />

follow<strong>in</strong>g:<br />

— gra<strong>in</strong> size analyses <strong>and</strong> petrographic analyses of gravels <strong>and</strong> lithic fragments<br />

larger than 2 mm.<br />

— gra<strong>in</strong> size analyses of f<strong>in</strong>e earth (f<strong>in</strong>er than 2 mm), chemical analyses (pH,<br />

organic matter content, free-iron content <strong>and</strong> for a fair number of profiles <strong>the</strong><br />

exchange capacity <strong>and</strong> <strong>the</strong> base saturation).<br />

— m<strong>in</strong>eralogical analyses. For most profiles <strong>the</strong> heavy m<strong>in</strong>erals of <strong>the</strong> s<strong>and</strong><br />

fraction have been determ<strong>in</strong>ed, used both as <strong>in</strong>dicator of <strong>the</strong> provenance of <strong>the</strong><br />

parent material (Parfenoff et alii, 1971), <strong>and</strong> as tests of homogeneity of <strong>the</strong><br />

profile, as well as of wea<strong>the</strong>r<strong>in</strong>g (Brewer, 1976). Results <strong>and</strong> technical details<br />

on <strong>the</strong> analytical methods used are presented <strong>in</strong> Appendices 3 <strong>and</strong> 4.<br />

For a representative number of profiles, clay m<strong>in</strong>erals have been determ<strong>in</strong>ed<br />

by means of X-ray analysis. The semiquantitative approach has been considered<br />

sufficient for this study, <strong>in</strong> which <strong>the</strong> general picture of <strong>the</strong> distribution of <strong>the</strong><br />

clay m<strong>in</strong>erals of <strong>the</strong> soils <strong>in</strong> time <strong>and</strong> space is more important than detailed


i<br />

30 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

m<strong>in</strong>eralogical <strong>in</strong>vestigations on particular aspects of <strong>the</strong>ir pedogenetic evolution.<br />

— micromorphological analyses: particular emphasis has been given to this aspect<br />

of <strong>the</strong> study. In fact, 30 profiles have been analysed from <strong>the</strong> micromorphological<br />

po<strong>in</strong>t of view <strong>and</strong> more than one hundred th<strong>in</strong> sections have been<br />

described. As is known (Miicher <strong>and</strong> Morozova, 1983; Fedoroff, 1979)<br />

micromorphology is a technique essential for <strong>the</strong> study of <strong>the</strong> Quaternary<br />

paleosols. The syn<strong>the</strong>tical micromorphological descriptions have been made<br />

accord<strong>in</strong>g to <strong>the</strong> nomenclature of Brewer (1976) <strong>and</strong> are reported <strong>in</strong> Appendix 5.<br />

1.4.2. Geochronometric markers<br />

For <strong>the</strong> aims of <strong>the</strong> present work it is necessary to refer <strong>the</strong> geological <strong>and</strong><br />

paleopedological evidence, traditionally dated with reference to <strong>the</strong> classical<br />

Alp<strong>in</strong>e stratigraphy, to an <strong>in</strong>dependent geochronometric dat<strong>in</strong>g system.<br />

The solution of this problem is not easy <strong>in</strong> <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> as <strong>the</strong>re is an almost<br />

complete lack of pyroclastic formations, generally used for <strong>the</strong> radiometric dat<strong>in</strong>g.<br />

Only exceptionally, dur<strong>in</strong>g Pleistocene times, volcanic ashes, com<strong>in</strong>g from <strong>the</strong><br />

volcanoes of Central Italy (Arias et alii, 1980), were able to cross <strong>the</strong> Apenn<strong>in</strong>es<br />

<strong>and</strong> were deposited, as th<strong>in</strong> lenses, <strong>in</strong>side fluvial deposits. Such deposits recorded<br />

<strong>in</strong> Piedmont <strong>and</strong> <strong>in</strong> Romagna, although carefully looked for, have not been found<br />

<strong>in</strong> <strong>the</strong> studied area.<br />

Radiometric dat<strong>in</strong>gs obta<strong>in</strong>ed with <strong>the</strong> 14C method are limited almost<br />

exclusively to <strong>the</strong> Holocene <strong>and</strong> <strong>the</strong>y are rarely connected with soils (Alessio et<br />

alii, 1980; <strong>Cremaschi</strong>, 1982b). The radiometric dat<strong>in</strong>gs relative to <strong>the</strong> Late<br />

Pleistocene are rarer due to <strong>the</strong> scarcity of organic materials referable to that<br />

epoch (Alessio et alii, 1978).<br />

v>- - - .<br />

z - ,;<br />

V ' v ^ . - ' -<br />

Magnetostratigraphy. It is known that, between <strong>the</strong> Early Pleistocene <strong>and</strong> <strong>the</strong><br />

Middle Pleistocene, <strong>the</strong> geomagnetic field has undergone remarkable variations,<br />

systematically recorded <strong>in</strong> geological strata, which consequently are valuable<br />

markers for stratigraphic dat<strong>in</strong>gs <strong>and</strong> long distance correlations (Cox, 1975;<br />

Koci <strong>and</strong> Sibrava, 1976; Hoffman <strong>and</strong> Fuller, 1978; Mank<strong>in</strong>en <strong>and</strong> Dalrymple,<br />

1979; F<strong>in</strong>k, 1979) (Fig. 2).<br />

The Jaramillo event, dat<strong>in</strong>g from 0.89 MA to 0.95 MA, falls with<strong>in</strong> <strong>the</strong> Late<br />

Matuyama epoch, while <strong>the</strong> paleomagnetic reversal Matuyama-Bruhnes, which<br />

has been chosen as <strong>the</strong> limit between <strong>the</strong> Early <strong>and</strong> Middle Pleistocene by some<br />

authors (Bowen, 1978), is referred to 0.73 MA.<br />

In <strong>the</strong> <strong>in</strong>vestigated area, several thick <strong>and</strong> cont<strong>in</strong>uous stratigraphic sequences,<br />

composed of f<strong>in</strong>e-textured mar<strong>in</strong>e, lacustr<strong>in</strong>e <strong>and</strong> fluviatile deposits have been<br />

successfully <strong>in</strong>vestigated for magnetostratigraphic <strong>in</strong>vestigations. The Jaramillo<br />

episode has been recognized <strong>in</strong> <strong>the</strong> sequences of Bagaggera, Stirone <strong>and</strong> Crostolo<br />

(Bucha et ahi, 1975; Salloway, 1983; <strong>Cremaschi</strong> et alii, 1985).<br />

The limit Matuyama-Bruhnes has been identified <strong>in</strong> <strong>the</strong> sequence of <strong>the</strong><br />

Tiepido <strong>and</strong> <strong>in</strong> <strong>the</strong> Crostolo (Salloway, 1983; Bucha, personal communication).<br />

Reversed stratigraphic <strong>in</strong>tervals belong<strong>in</strong>g to <strong>the</strong> Matuyama epoch have been<br />

recognised <strong>in</strong> several o<strong>the</strong>r sequences (Salloway, 1983; Tucholka, <strong>in</strong> press) <strong>and</strong><br />

*^. jr, -.* '■’


i n t r o d u c t i o n<br />

31<br />

PERIODS<br />

ka BP<br />

ARCHAEOLOGY<br />

HOLOCENE<br />

LATE<br />

GLACIAL<br />

UJ<br />

H I<br />

z<br />

LU<br />

Ü<br />

- 6 -<br />

- 10-<br />

- 2 0 -<br />

-29-<br />

-38-<br />

NEOLITHIC<br />

MESOLITHIC<br />

EPIGRAVETTIAN<br />

GRAVETTIAN<br />

-AURIGNACIAN-<br />

o<br />

óí<br />

CN<br />

XI<br />

U<br />

MOUSTERIAN<br />

-128-<br />

o<br />

LATE ACHEULEAN<br />

■ 200?—<br />

3<br />

cr<br />

LU<br />

Z<br />

LU<br />

Ü<br />

o<br />

W<br />

LU<br />

0.<br />

•400??—<br />

ACHEULEAN<br />

PROTOLEVALLOIS<br />

CLACTONIAN<br />

TECHNIQUES<br />

S)<br />

V«5<br />

V<br />

JC<br />

&<br />

LU<br />

_J<br />

Q<br />

TJ<br />

X<br />

3<br />

X<br />

Cl<br />

-a<br />

C<br />

■700 —<br />

C<br />

50<br />

LU<br />

z<br />

LU<br />

Ü<br />

O<br />

h-<br />

W<br />

LU<br />

_l<br />

CL<br />

><br />

_ J<br />

cr<br />

<<br />

900—<br />

-1 6 0 0 -<br />

&<br />

£<br />

Ú<br />

o<br />

c<br />

o .<br />

U X—-N<br />

JZ<br />

s -<br />

ü 2<br />

G<br />

0<br />

' <strong>in</strong><br />

-o<br />

3<br />

<strong>in</strong><br />

^ 5iD<br />

s<br />

ÜH CQ<br />

t í


w upi<br />

î<br />

32 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

^-‘


2.<br />

GENERAL ASPECTS OF THE AREA<br />

2.1. MAIN CLIMATIC CHARACTERISTICS<br />

2.1.1. The paleoclimates<br />

The isotopic stratigraphy of <strong>the</strong> deep sea drill<strong>in</strong>gs represents up to today <strong>the</strong><br />

method which offers <strong>the</strong> most complete <strong>and</strong> articulate picture of <strong>the</strong> Quaternary<br />

climatic fluctuations on a planetary scale. They clearly show that, dur<strong>in</strong>g <strong>the</strong><br />

Quaternary, climatic fluctuations were much more numerous than earlier<br />

assumed <strong>and</strong> <strong>the</strong>y allow a ra<strong>the</strong>r precise dat<strong>in</strong>g of <strong>the</strong>se fluctuations. Examples of<br />

well-dated reference cores (Shackleton <strong>and</strong> Hall, 1984) are presented <strong>in</strong> Fig. 106.<br />

On <strong>the</strong> cont<strong>in</strong>ents, however, <strong>the</strong> analysis of fossil pollen seems more suitable<br />

for <strong>the</strong> reconstruction of <strong>the</strong> climatic history <strong>and</strong> of environmental changes, not<br />

only for <strong>the</strong> variations of temperature but also of humidity (Fl<strong>in</strong>t, 1971; Bowen,<br />

1978) <strong>and</strong> for <strong>the</strong> seasonal variations. It is <strong>the</strong>refore of primary <strong>in</strong>terest whenever<br />

<strong>the</strong> aim is to <strong>in</strong>vestigate <strong>the</strong> role played by climate <strong>in</strong> <strong>the</strong> development of <strong>the</strong> soils<br />

<strong>and</strong> paleosols. The pollen sequences analysed by Van der Hammen (1979) <strong>in</strong><br />

Eastern Greece can be extended, accord<strong>in</strong>g to that author, to <strong>the</strong> whole <strong>No</strong>r<strong>the</strong>rn<br />

Mediterranean (Greece, Spa<strong>in</strong>, Italy).<br />

The variations of <strong>the</strong> plant cover dur<strong>in</strong>g time, documented by means of <strong>the</strong><br />

analysis of cores drilled <strong>in</strong> <strong>in</strong>tramontane lacustr<strong>in</strong>e deposits, testify an alternation<br />

of temperate forest (oak, beech <strong>and</strong> sometimes typically mediterranean species)<br />

<strong>and</strong> of arid steppes characteri2ed by Artemisia <strong>and</strong> Chenopodiaceae. Along <strong>the</strong><br />

<strong>in</strong>terval of 600,000 years, documented <strong>in</strong> <strong>the</strong> core from Philippi (Van der<br />

Hammen et ahi, 1971), 6 or 7 steppe phases can be recogni2ed alternat<strong>in</strong>g with<br />

as many forest phases, <strong>and</strong> correspond<strong>in</strong>g to seven ma<strong>in</strong> glacial cycles. In spite of<br />

<strong>the</strong> important climatic variations, <strong>the</strong> plant associations dur<strong>in</strong>g this time <strong>in</strong>terval<br />

show few changes.<br />

Some data on <strong>the</strong> plant cover of <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn Mediterranean regions dur<strong>in</strong>g<br />

older ages (Pliocene - Early Pleistocene) can be deduced from <strong>the</strong> recent studies<br />

of Sue (1984) on cores drilled <strong>in</strong> <strong>the</strong> Tyrrhenian sea between Italy <strong>and</strong> France.<br />

Accord<strong>in</strong>g to this author, <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> mediterranean climate occurs<br />

dur<strong>in</strong>g <strong>the</strong> Middle Pliocene (PH ) <strong>and</strong> is marked by <strong>the</strong> appearance of phases of<br />

seasonal aridity (occurrence of a dry season) that leads to <strong>the</strong> decl<strong>in</strong>e of <strong>the</strong><br />

Taxodiaceae which require a cont<strong>in</strong>uously humid climate. Phase P III, correlated<br />

with <strong>the</strong> Praetiglian of <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s (Sue <strong>and</strong> Zagwijn, 1985), <strong>and</strong> dated to<br />

<strong>the</strong> Upper Pliocene, represents <strong>the</strong> first steppe phase <strong>and</strong> marks <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of<br />

a climatic style of <strong>the</strong> Pleistocene character. The follow<strong>in</strong>g period (P IV, PLI)<br />

correlated with <strong>the</strong> Tiglian, is referred to <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of Pleistocene times <strong>and</strong><br />

comprises <strong>the</strong> paleomagnetic Olduvai episode. It has very warm characteristics.


34 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

be<strong>in</strong>g represented by an association of Carya, Ulmus, Zelcova, Carp<strong>in</strong>us <strong>and</strong> A.cer.<br />

Compar<strong>in</strong>g <strong>the</strong> pollen sequences of Macedonia with those of <strong>the</strong> Tyrrhenian<br />

Sea, it seems that <strong>the</strong> Early Pleistocene is still characterized by a clear occurrence<br />

of <strong>the</strong> <strong>the</strong>rmophylous species <strong>and</strong> affected by cold phases which are<br />

less numerous <strong>and</strong> have a smaller <strong>in</strong>tensity compared with those which characterize<br />

<strong>the</strong> Middle <strong>and</strong> Late Pleistocene. Although this data must be cautiously<br />

considered, because <strong>the</strong> compared data have been obta<strong>in</strong>ed from different<br />

analytical approaches <strong>and</strong> <strong>in</strong> different areas, <strong>the</strong>y are <strong>in</strong> agreement with <strong>the</strong> results<br />

obta<strong>in</strong>ed by Cita <strong>and</strong> Ryan (1973) on <strong>the</strong> basis of <strong>the</strong> study of <strong>the</strong> Mediterranean<br />

faunas. In fact <strong>the</strong> authors dist<strong>in</strong>guish a preglacial Pleistocene, that lasts till <strong>the</strong><br />

Late Matuyama epoch, characterized by high temperatures <strong>and</strong> by <strong>the</strong> lack of<br />

clear climatic contrasts <strong>and</strong> a subsequent glacial Pleistocene, dur<strong>in</strong>g which <strong>the</strong><br />

climatic fluctuations are numerous <strong>and</strong> more <strong>in</strong>tense.<br />

This phenomenon is fur<strong>the</strong>r confirmed by <strong>the</strong> isotopic stratigraphy of recently<br />

published high resolution oceanic cores, (Shackleton <strong>and</strong> Hall, 1984).<br />

For <strong>the</strong> aims of <strong>the</strong> present research special attention must be paid to <strong>the</strong><br />

availability of local data on <strong>the</strong> variations on <strong>the</strong> plant cover. In fact <strong>the</strong> studied<br />

area, with regard to its specific physiographic characteristics from <strong>the</strong> climatic<br />

po<strong>in</strong>t of view, differs clearly from <strong>the</strong> rest of <strong>the</strong> mediterranean region<br />

(chapter 2.1.2.) <strong>and</strong> it seems to be <strong>in</strong>termediate between this <strong>and</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

regions. S<strong>in</strong>ce its present ma<strong>in</strong> physiographic characteristics come mostly from<br />

prequaternary events, it is logical to th<strong>in</strong>k that <strong>the</strong>se generated similar differences<br />

also <strong>in</strong> paleoclimates. Unfortunately <strong>the</strong> pollen data for <strong>the</strong> <strong>Po</strong> area are scarce <strong>and</strong><br />

fragmentary. Fig. 3 <strong>and</strong> 4 represent an attempt to assemble <strong>the</strong> most significant<br />

exist<strong>in</strong>g data, by sett<strong>in</strong>g <strong>the</strong>m chronologically on <strong>the</strong> basis of <strong>the</strong> paleomagnetic<br />

stratigraphy deduced from recent studies (Bucha et alii, 1975; Sallow ay, 1983).<br />

Dur<strong>in</strong>g <strong>the</strong> Early Pleistocene, before <strong>the</strong> Jaramillo paleomagnetic event <strong>the</strong> <strong>Po</strong><br />

Pla<strong>in</strong> vegetation still comprises numerous species, such as Carya <strong>and</strong> Pierocarya,<br />

<strong>and</strong> various peaks of conifers clearly testify phases of cool<strong>in</strong>g. A dramatic<br />

decrease of <strong>the</strong> temperature species occurs <strong>in</strong> all <strong>the</strong> sequences analyzed, between<br />

<strong>the</strong> end of <strong>the</strong> Jaramillo <strong>and</strong> <strong>the</strong> Matuyama-Bruhnes reversal (Bertolani Marchetti<br />

et alii, 1979; Accorsi et alii, 1980).<br />

<strong>Po</strong>llen data for <strong>the</strong> subsequent events of <strong>the</strong> Middle Pleistocene are completely<br />

lack<strong>in</strong>g until <strong>the</strong> «Riss-Würm» <strong>in</strong>terglacial. The deposits of phillites of Pianico<br />

Sellere at <strong>the</strong> alp<strong>in</strong>e marg<strong>in</strong> have been referred to this period (Venzo, 1955), as<br />

well as those of <strong>the</strong> Padua subsurface <strong>and</strong> of <strong>the</strong> <strong>Po</strong> Delta (Marchesoni <strong>and</strong><br />

Paganelli, 1960; Paganelli, 1961). The plant cover of <strong>the</strong> R-W <strong>in</strong>terglacial would<br />

differ from that of today, dom<strong>in</strong>ated by <strong>the</strong> mixed oak forest, because of <strong>the</strong><br />

presence of rare archaic species {Zelkova, Abies <strong>No</strong>rdmanniana <strong>and</strong> Keleeteria), of<br />

«warm species» {Kododendrum ponticum) <strong>and</strong> because of a sensible amount of<br />

conifers, associated with <strong>the</strong> temperate forest.<br />

There is a common op<strong>in</strong>ion that <strong>the</strong> presence of a mixed forest of deciduous<br />

trees <strong>and</strong> conifers <strong>in</strong> <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> Riss - Würm Interglacial would<br />

imply temperatures <strong>and</strong> precipitations higher than <strong>the</strong> present (Marchesoni,<br />

1960; Manc<strong>in</strong>i, 1962). Never<strong>the</strong>less, s<strong>in</strong>ce <strong>the</strong> palynological data have a very<br />

poor chronological <strong>and</strong> stratigraphic control, it is not possible to specify whe<strong>the</strong>r


GENERAL ASPECTS OF THE AREA 35<br />

MATUYAMA JARAMILLO BRUNHES<br />

I<br />

Mloril conl<strong>in</strong>antal ^ 2<br />

Fig. ) - <strong>Po</strong>llen diagrams of <strong>the</strong> Stirone, Crostolo <strong>and</strong> Tiepido sequences, dur<strong>in</strong>g Early-Middle<br />

Pleistocene; 1) temperate forest assemblage; 2) cold forest assemblage (P<strong>in</strong>us, Betu/a)-, 3) temperate<br />

forest assemblage; 4) Sequoia, Taxodium-, 5) Sciadopitys\ 6) NAP: non arboreal pollen; 7) o<strong>the</strong>r<br />

species; 8) Abies, Keteleeria-, 9) Picea-, 10) Tsuga, Cedrus\ 1 la) Pirns diploxylotf, lib) P<strong>in</strong>us haploxylon.<br />

Fig. 3 - Diagrammi poll<strong>in</strong>ici del Pleistocene antico e medio delle successioni stratigrafiche dello<br />

Stirone, Crostolo, Tiepido.


GENERAL ASPECTS OF THE AREA 37<br />

this character can be extended to <strong>the</strong> whole <strong>in</strong>terglacial period or represents only<br />

a part of it.<br />

The plant cover of <strong>the</strong> <strong>Po</strong> area dur<strong>in</strong>g <strong>the</strong> glacial phases of <strong>the</strong> Late Pleistocene<br />

is, on <strong>the</strong> contrary, better documented <strong>and</strong> sometimes supported by radiocarbon<br />

dat<strong>in</strong>gs (Bertolani Marchetti, 1963-70; Bertoldi, 1968). Dur<strong>in</strong>g this<br />

period <strong>the</strong> <strong>Po</strong> Valley was dom<strong>in</strong>ated by an association of P<strong>in</strong>us silvestris, P<strong>in</strong>us<br />

mugus <strong>and</strong> Picea <strong>and</strong> to a lesser extent Betula <strong>and</strong> Salix. At its marg<strong>in</strong>s, near <strong>the</strong><br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge (Bertolani Marchetti, 1960; Bisi et alii, 1977) <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

proglacial areas of <strong>the</strong> Alps (Cattani, 1976) <strong>the</strong>re are much more open environments,<br />

where <strong>the</strong> trees represented by P<strong>in</strong>us <strong>and</strong> Betula often are less than 51,<br />

while herbs are largely prevail<strong>in</strong>g {^Artemisia, Compositae l<strong>in</strong>guliflorae <strong>and</strong><br />

Gram<strong>in</strong>aceae)'.<br />

Dur<strong>in</strong>g <strong>the</strong> Late Glacial <strong>and</strong> <strong>the</strong> Holocene <strong>the</strong> whole pla<strong>in</strong> <strong>and</strong> its marg<strong>in</strong>s are<br />

covered by <strong>the</strong> mixed oak forest already s<strong>in</strong>ce <strong>the</strong> Allerod period (Bertolani,<br />

1963-70; Bertoldi, 1968).<br />

In conclusion, <strong>the</strong> stable surfaces at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> Central <strong>Po</strong> Pla<strong>in</strong>, on<br />

which <strong>the</strong> <strong>vetusols</strong> here <strong>in</strong>vestigated developed, were covered dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terglacial<br />

periods by prevail<strong>in</strong>g temperate species of plants, that, start<strong>in</strong>g from <strong>the</strong><br />

Middle Pleistocene, show characteristics very similar to <strong>the</strong> present vegetation.<br />

On <strong>the</strong> contrary dur<strong>in</strong>g <strong>the</strong> glacial periods, especially from <strong>the</strong> Middle Pleistocene<br />

onward but ma<strong>in</strong>ly dur<strong>in</strong>g <strong>the</strong> Late Pleistocene, a boreal forest covered <strong>the</strong><br />

centre of <strong>the</strong> pla<strong>in</strong> <strong>and</strong> passed to steppes of restricted extension at <strong>the</strong> marg<strong>in</strong>s.<br />

It is likely that numerous phases <strong>and</strong> <strong>in</strong>termediate situations occurred dur<strong>in</strong>g<br />

time <strong>and</strong> <strong>in</strong> space. Never<strong>the</strong>less <strong>the</strong>y cannot be recognized with <strong>the</strong> scarce data<br />

available up to now.<br />

2.1.2. The present climate of <strong>the</strong> area<br />

It is generally accepted that <strong>the</strong> characteristics of <strong>the</strong> paleosols have been ma<strong>in</strong>ly<br />

acquired dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terglacial periods, because «<strong>the</strong> effects of wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong><br />

soil formation of a relatively short warm period may easily surpass those of a<br />

long cold period» (Remmelzwaal, 1978). S<strong>in</strong>ce <strong>the</strong> Holocene climatic cycle can<br />

be considered an <strong>in</strong>terglacial phase which had (<strong>and</strong> would have, if man’s activities<br />

had not largely transformed it) a plant cover not very different from that of <strong>the</strong><br />

older <strong>in</strong>terglacial periods, at least from Middle Pleistocene, it can be assumed that<br />

<strong>the</strong> present climate is not very different from that of <strong>the</strong> <strong>in</strong>itial conditions of<br />

<strong>the</strong> soil development (Boardman, 1985). For this reason <strong>the</strong> climatic conditions<br />

of <strong>the</strong> studied area will be described <strong>in</strong> detail <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section. Fig. 5<br />

represents <strong>the</strong> trend of <strong>the</strong> mean annual temperatures <strong>in</strong> <strong>the</strong> <strong>Po</strong> area. In <strong>the</strong><br />

centre of <strong>the</strong> studied area it range from 14°C <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Mantua district to<br />

12°C on <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

At <strong>the</strong> northwestern marg<strong>in</strong> of <strong>the</strong> area <strong>in</strong> correspondence with <strong>the</strong> Lombardian<br />

piedmont, <strong>the</strong> temperature shows a prom<strong>in</strong>ent gradient <strong>and</strong> decreases from<br />

13°C to 10°C. This gradient accentuates towards <strong>the</strong> centre of <strong>the</strong> cha<strong>in</strong> <strong>and</strong> falls<br />

to 4°C <strong>in</strong> a few tens of kilometres (M<strong>in</strong>istero dei Lavori Pubblici, 1969). The<br />

area receives between 1,300 <strong>and</strong> 790 mm of precipitation per year; <strong>the</strong> lowest


T T<br />

38 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

occurs at <strong>the</strong> south of <strong>the</strong> centre of <strong>the</strong> pla<strong>in</strong>. A slight <strong>in</strong>crease can be observed<br />

towards <strong>the</strong> Apenn<strong>in</strong>e <strong>and</strong> Alp<strong>in</strong>e fr<strong>in</strong>ges, <strong>in</strong> correspondence with <strong>the</strong> Garda<br />

lake. A very strong <strong>in</strong>crease of precipitation occurs northwestwards <strong>in</strong> <strong>the</strong> areas<br />

of Bergamo, Adda <strong>and</strong> Milano (M<strong>in</strong>istero dei Lavori Pubblici, 1955).<br />

Ombro<strong>the</strong>rmal diagrams have been calculated (Fig. 6) from <strong>the</strong> data published <strong>in</strong><br />

<strong>the</strong> Annali Idrologici (M<strong>in</strong>istero dei Lavori Pubblici, 1955, 1969) <strong>and</strong> from<br />

o<strong>the</strong>r sources (Rossetti et alii, 1974; Comitato Comprensoriale della Regione<br />

Emilia Romagna, 1981), for some meteorological stations, chosen <strong>in</strong> order to<br />

represent <strong>the</strong> whole area; <strong>the</strong>se show that at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong>re are two<br />

dist<strong>in</strong>ct ra<strong>in</strong>y seasons with maxima <strong>in</strong> April <strong>and</strong> <strong>in</strong> October-<strong>No</strong>vember, separated<br />

by a short dry season (2T > P) between June <strong>and</strong> August. But already at<br />

Belforte, <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> pla<strong>in</strong>, <strong>the</strong>se conditions are different: <strong>the</strong> precipitation<br />

has a more irregular trend <strong>and</strong> is more abundant. The trend becomes<br />

Fig. 5 - Mean annual temperatures <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy (1926-1935), (after M<strong>in</strong>istero dei Lavori pubblici,<br />

1969).<br />

Fig. i - Temperature medie annue nel <strong>No</strong>rd Italia (1926-1935).


GENERAL ASPECTS OF THE AREA 39<br />

Stronger towards <strong>the</strong> <strong>No</strong>rth-West at Chiari <strong>and</strong> Cantu with abundant precipitation<br />

dur<strong>in</strong>g <strong>the</strong> whole year <strong>and</strong> maxima <strong>in</strong> April, May, August <strong>and</strong> <strong>No</strong>vember.<br />

At Desenzano, on <strong>the</strong> Garda Lake, <strong>the</strong>re is a clear decrease of precipitation<br />

between July <strong>and</strong> August, even if for that period one cannot speak of a true dry<br />

season because <strong>the</strong> condition 2 T > P does not occur.<br />

In <strong>the</strong> Unesco Fao Bioclimatic map (1963), <strong>the</strong> <strong>Po</strong> Valley is described as «...<br />

an area of axeric climate, with semi-dry season. Fur<strong>the</strong>rmore, probably, <strong>in</strong> certa<strong>in</strong><br />

parts of it <strong>the</strong>re is a short <strong>and</strong> true dry season, but this does not mean, as often<br />

has been thought, that <strong>the</strong> climate becomes mediterranean». Even if it is not<br />

■C<br />

40-<br />

BELFORTE<br />

©<br />

mm<br />

rlOO<br />

20<br />

G F M A M G L A S O N D<br />

"C MONTECHIARUGOLO rr<br />

•C<br />

SPILAMBERTO<br />

C<br />

DESENZANO<br />

Pig- 6 - Ombro<strong>the</strong>rmic diagrams.<br />

Pig- 6 - Diagrammi ombrotermici.


40 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

=ISi‘<br />

g-''<br />

^-.'V'■*; v-i >EV’'j:<br />

possible to use correctly <strong>the</strong> Unesco Bioclimatic Classification, as some variables<br />

(number of days with fog <strong>and</strong> frost) have not been taken <strong>in</strong>to consideration, by<br />

compar<strong>in</strong>g <strong>the</strong> ombro<strong>the</strong>rmal diagram of <strong>the</strong> studied area with those published <strong>the</strong>re,<br />

it turns out that <strong>the</strong> areas <strong>No</strong>rth of <strong>the</strong> <strong>Po</strong> River can be clearly referred to as hav<strong>in</strong>g<br />

an axeric climate, while <strong>the</strong> subapenn<strong>in</strong>ic belt has submediterranean characteristics.<br />

2.1.3. Tie moisture <strong>and</strong> temperature regime of <strong>the</strong> soils<br />

The mean annual temperature of <strong>the</strong> soils, calculated form <strong>the</strong> atmospheric<br />

data, ranges from 14.9°C to 13.3°C. The <strong>the</strong>rmal regime has <strong>the</strong>refore a mesic<br />

character accord<strong>in</strong>g to <strong>the</strong> Soil Taxonomy (Soil Survey staff, 1975).<br />

In order to evaluate <strong>the</strong> present hydrological regime of <strong>the</strong> studied soils,<br />

among <strong>the</strong> obta<strong>in</strong>ed values. Available Water Capacity (AWC) = 190 mm (calculated<br />

on <strong>the</strong> slightly wea<strong>the</strong>red loess of <strong>the</strong> Val Sorda sequence) has been taken<br />

as representative for <strong>the</strong> f<strong>in</strong>e material (ma<strong>in</strong>ly wea<strong>the</strong>red loesses). The AWC = 87<br />

mm, calculated on <strong>the</strong> horizon IV C of <strong>the</strong> profile of Robbiate (loc. 22) <strong>in</strong> <strong>the</strong><br />

Adda area, has been selected as representative for <strong>the</strong> deposits with coarser<br />

texture. Never<strong>the</strong>less it must be taken <strong>in</strong>to account that materials of this type<br />

sometimes reach AWC = 50 mm.<br />

The climatic data have been elaborated accord<strong>in</strong>g to <strong>the</strong> graphical method<br />

proposed by Billaux (1978) which <strong>in</strong> its turn is based on <strong>the</strong> method of Thornwaite<br />

<strong>and</strong> Ma<strong>the</strong>r (1955). The results are represented <strong>in</strong> Fig. 7, <strong>in</strong>dicated as «Soil<br />

water balance». The value of <strong>the</strong> AWC calculated for <strong>the</strong> soils <strong>in</strong> loess is very<br />

close to <strong>the</strong> <strong>the</strong>oretical AWC = 200 mm, on which <strong>the</strong> Soil Taxonomy bases its<br />

classification of <strong>the</strong> regimes of <strong>the</strong> soil. On <strong>the</strong> basis of it, <strong>the</strong> Cantù <strong>and</strong> Chiari<br />

stations (northwestern part of <strong>the</strong> exam<strong>in</strong>ed area) have an udic regime, <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g ones a xeric regime. Never<strong>the</strong>less it must be observed that <strong>in</strong> <strong>the</strong> coarse<br />

deposits, <strong>in</strong> particular those with AWC = 87 mm, <strong>the</strong> time necessary for <strong>the</strong> soil<br />

to reach a hydrological deficiency decreases with <strong>the</strong> <strong>in</strong>crease of <strong>the</strong> potential<br />

évapotranspiration, so that <strong>the</strong> coarse textured soils can rema<strong>in</strong> dry for longer<br />

periods <strong>and</strong> this accentuates <strong>the</strong>ir xeric nature.<br />

In conclusion <strong>the</strong> sector of <strong>the</strong> <strong>Po</strong> Valley under study, from <strong>the</strong> climatic<br />

po<strong>in</strong>t of view, is transitional between regions with a sub-mediterranean nature to<br />

<strong>the</strong> South-East (Bologna), <strong>and</strong> o<strong>the</strong>r parts with more cont<strong>in</strong>ental climate to <strong>the</strong><br />

<strong>No</strong>rth-West (Milano). The remarkable differences <strong>in</strong> <strong>the</strong> area are not related to<br />

important temperature gradients but ra<strong>the</strong>r to differences <strong>in</strong> ra<strong>in</strong>fall <strong>and</strong> air<br />

humidity. The difference <strong>in</strong> soil moisture regime would be even more remarkable<br />

if one takes <strong>in</strong>to account <strong>the</strong> days of fog, snow <strong>and</strong> frost, not considered here.<br />

2.2. GEOLOGICAL OUTLINE<br />

2.2.1. The Prequatemary Geology<br />

The <strong>Po</strong> Valley is a subsid<strong>in</strong>g bas<strong>in</strong>, bordered by <strong>the</strong> Alps to <strong>the</strong> <strong>No</strong>rth <strong>and</strong><br />

by Apenn<strong>in</strong>es to <strong>the</strong> South. The essential features of this region were already


GENERAL ASPECTS OF THE AREA 41<br />

established <strong>in</strong> <strong>the</strong> Middle Miocene, when also <strong>the</strong> Apenn<strong>in</strong>e cha<strong>in</strong> was uplifted<br />

dur<strong>in</strong>g <strong>the</strong> Tortonian orogenic phase.<br />

Dur<strong>in</strong>g <strong>the</strong> Upper Miocene most of <strong>the</strong> Pre-Alp<strong>in</strong>e marg<strong>in</strong> <strong>and</strong> parts of <strong>the</strong><br />

neighbour<strong>in</strong>g pla<strong>in</strong> emerged (Riz2<strong>in</strong>i <strong>and</strong> Dondi, 1978) <strong>and</strong> were eroded or<br />

subject to cont<strong>in</strong>ental sedimentation. Dur<strong>in</strong>g <strong>the</strong> Mess<strong>in</strong>ian sal<strong>in</strong>ity crisis, which<br />

produced a remarkable fall of <strong>the</strong> sealevel of <strong>the</strong> Mediterranean sea, <strong>the</strong> Pre-<br />

Alp<strong>in</strong>e marg<strong>in</strong> was strongly eroded <strong>and</strong> dur<strong>in</strong>g this period (F<strong>in</strong>ckl, 1978; B<strong>in</strong>i et<br />

alii, 1977) deep canyons were cut, whose relicts are now occupied by <strong>the</strong><br />

AWC 190<br />

mm<br />

rsz<br />

87 S 1i n R 1 s<br />

— •— AiT/V A / ^<br />

CANTU'<br />

a .s .1 . 360<br />

°TC 13,5<br />

Pmm 1317,9<br />

AWC 190<br />

87<br />

r 1 s I u 51 '1 R<br />

* , . yszzv ------------------------------------------ -<br />

S 1 u D 1 R s<br />

—---- ---- - ---<br />

CHIARI<br />

a .s .1.<br />

148 m<br />

n c 12,5<br />

Pmm 912,7<br />

AWC 190<br />

87<br />

R 1 S 1 U D 1 R<br />

--- ------ ----- ------ ---<br />

s 1 u D 1 R s<br />

---- ------------- -<br />

DESENZANO<br />

a .s .1 .<br />

°TC 13,9<br />

Pmm 81 5<br />

70 m<br />

AWC 190<br />

87<br />

R I S 1 U D 1 R<br />

---- ----- -<br />

s I U D 1 R s<br />

---------------- ---- -----------^zvzryzzvzj<br />

BELFORTE<br />

a .s .1.<br />

22 m<br />

°TC 13,2<br />

Pmm 785,3<br />

AWC 190<br />

87<br />

R 1 U D 1 R r<br />

z>z z-sz zs, z^ ZX, z>„ A,z/Nz ZNz A-.-%z A.Z i->z Z-NZzsz z-sz zvz z -----------<br />

R 1 U D 1 R 1<br />

----- ----- -<br />

M A M<br />

O N D Month<br />

MONTECHIARUGOLO<br />

a .s .1 .<br />

°TC 12,3<br />

Pmm 805<br />

121 m<br />

Fig. 7 - Annual soil water balance, <strong>in</strong>dicated as montly averages. (S = surplus; D = deficit; R = recharge;<br />

U = utilisation); 1) moist everywhere; 2) moist <strong>in</strong> some part; 3) dry everywhere.<br />

Fig. 7 - Bilancio idrico dei suoli (S = Surplus; D = deficit; R = ricarica; U = utilizzazione); 1) umido<br />

ovunque; 2) umido <strong>in</strong> qualche parte; 3) secco ovunque.


42 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

sub-Alp<strong>in</strong>e lakes. At <strong>the</strong> Apenn<strong>in</strong>e marg<strong>in</strong> <strong>the</strong> Mess<strong>in</strong>ian is represented by<br />

deposits of hypersal<strong>in</strong>e shallow waters or cont<strong>in</strong>ental sediments (laccar<strong>in</strong>o <strong>and</strong><br />

Papani, 1979).<br />

The Phocene mar<strong>in</strong>e transgression rapidly reestablished an open mar<strong>in</strong>e<br />

environment for a long tract <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>es, <strong>in</strong> <strong>the</strong> whole <strong>Po</strong> area <strong>and</strong> <strong>in</strong>side<br />

<strong>the</strong> Alp<strong>in</strong>e valleys previously shaped. The cont<strong>in</strong>ental sedimentation began ra<strong>the</strong>r<br />

early at <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong>, between <strong>the</strong> Adda <strong>and</strong> <strong>the</strong> Brembo rivers where<br />

(Venzo, 1955; Orombelli, 1979), dur<strong>in</strong>g <strong>the</strong> Late Phocene, important piedmont<br />

fans were deposited. The Late Pliocene <strong>and</strong> <strong>the</strong> Early Pleistocene are not well<br />

known along <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong> of <strong>the</strong> Bergamo area <strong>and</strong> of <strong>the</strong> Garda area.<br />

2.2.2. Ma<strong>in</strong> tectonic data<br />

In spite of <strong>the</strong> apparent homogeneity of its surface, <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> is a tectonically<br />

very active area (Pieri <strong>and</strong> Groppi, 1981). The AGIP drill<strong>in</strong>gs for oil <strong>and</strong><br />

gas (AGIP, 1959), have shown that between <strong>the</strong> <strong>Po</strong> River <strong>and</strong> <strong>the</strong> Apenn<strong>in</strong>es,<br />

buried Miocene to Pleistocene sediments have been folded <strong>and</strong> faulted by structures<br />

trend<strong>in</strong>g NW-SE, due to compressive tectonic activity (Fig. 8). In <strong>the</strong><br />

syncl<strong>in</strong>es, where <strong>the</strong> rate of subsidence is higher, <strong>the</strong> thickness of Quaternary<br />

sediments may be very great (more than 1500 m approx.).<br />

Recent movements of buried structures have exercised a strong <strong>in</strong>fluence on<br />

<strong>the</strong> dra<strong>in</strong>age pattern, produc<strong>in</strong>g several river diversions dur<strong>in</strong>g <strong>the</strong> last two<br />

thous<strong>and</strong> years (Pellegr<strong>in</strong>i, 1969; <strong>Cremaschi</strong> <strong>and</strong> Marches<strong>in</strong>i, 1978).<br />

In <strong>the</strong> Apenn<strong>in</strong>e foothills <strong>the</strong> Quaternary sediments have been folded <strong>and</strong> cut<br />

both by longitud<strong>in</strong>al <strong>and</strong> transverse faults. From a tectonic po<strong>in</strong>t of view this<br />

area is characterized, all along <strong>the</strong> foothills, by a system of flexures, <strong>and</strong> reverse<br />

faults which form <strong>the</strong> pede-Apenn<strong>in</strong>e tectonic l<strong>in</strong>e (Marchetti et alii, 1978;<br />

Panizza <strong>and</strong> Papani, 1979). Sedimentary sequences <strong>and</strong> longitud<strong>in</strong>al tectonic<br />

structures are displaced by transverse faults (NNE-SSW) with very important<br />

geomorphological consequences, which reach <strong>the</strong> Tyrrhenian side of <strong>the</strong> Appenn<strong>in</strong>es.<br />

<strong>No</strong>rth of <strong>the</strong> <strong>Po</strong> River, buried tectonic structures are much less developed. A<br />

bl<strong>and</strong> monocl<strong>in</strong>e, gently folded <strong>and</strong> cut by E-W faults, rises towards <strong>the</strong> <strong>No</strong>rth.


general ASPECTS OF THE AREA<br />

43<br />

10 20 30 km<br />

f \\<br />

\<br />

\<br />

C O L L É C C H IC<br />

\<br />

• A<br />

-ELINO<br />

CO<br />

PR<br />

B<br />

Garda Lake<br />

0 Quaternary<br />

w<br />

Pirns, P li,<br />

Ms, ttn, PG<br />

Tertiary rocks<br />

Mesozoic<br />

(K, Cretaceous)<br />

Fig. 8 - Tectonic map <strong>and</strong> cross sections: 1) <strong>the</strong> limit of <strong>the</strong> pla<strong>in</strong>; 2) reverse faults; 3) isol<strong>in</strong>es of<br />

<strong>the</strong> top of <strong>the</strong> Pliocene deposits, (depth <strong>in</strong> km), (after Fieri & Groppi, 1981).<br />

Fig. 8 - Carta e sezione tettoniche: 1) limiti della pianura; 2) faghe <strong>in</strong>verse; 3) isobate del tetto del<br />

Pliocene (profondita <strong>in</strong> km).


3.<br />

PAST RESEARCH ON THE PHYSIOGRAPHY<br />

AND QUATERNARY GEOLOGY OF THE AREA<br />

AND ITS CONSEQUENCES FOR THIS RESEARCH<br />

3.1. INTRODUCTION<br />

The marg<strong>in</strong> of <strong>the</strong> Alps rises abruptly from <strong>the</strong> pla<strong>in</strong> <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part of<br />

<strong>the</strong> studied area. Only concurrent with <strong>the</strong> deep valleys of <strong>the</strong> Garda, Iseo <strong>and</strong><br />

Lecco lakes (orig<strong>in</strong> of Adda river), <strong>the</strong>re are gradual transitions, caused by tbe<br />

frontal mora<strong>in</strong>es of <strong>the</strong> Quaternary glaciers.<br />

South of <strong>the</strong> mora<strong>in</strong>e ridges, between <strong>the</strong> Olona <strong>and</strong> Brembo rivers <strong>the</strong>re is<br />

a series of at least three stepped terraces, that extend <strong>in</strong>to <strong>the</strong> pla<strong>in</strong> <strong>in</strong> <strong>the</strong> shape<br />

of narrow triangles (Fig. 1).<br />

The lowermost terrace, which is connected with <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> last<br />

glaciation, wraps <strong>the</strong> older terraces <strong>and</strong> extends southward, form<strong>in</strong>g most of <strong>the</strong><br />

«Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>».<br />

Terraces which postdate <strong>the</strong> Last Glaciation are rare East of <strong>the</strong> Brembo river.<br />

Near <strong>the</strong> Garda <strong>and</strong> Iseo lakes, at <strong>the</strong> mouth of <strong>the</strong> Alp<strong>in</strong>e valleys, wide piedmont<br />

fans as well as s<strong>and</strong>ar of Late Pleistocene age occur. Southward <strong>the</strong>se<br />

sedimentary bodies gradually lose <strong>the</strong>ir morphological <strong>in</strong>dividuality <strong>and</strong> merge<br />

<strong>in</strong>to a s<strong>in</strong>glelevel area, co<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> “Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>”, which extends<br />

almost down to <strong>the</strong> <strong>Po</strong> river. Traces of related paleochannels can be recognized<br />

on <strong>the</strong>ir gently undulat<strong>in</strong>g surfaces. In <strong>the</strong> nor<strong>the</strong>rnmost part, where <strong>the</strong> deposits<br />

are mostly gravelly, <strong>the</strong>y show braided river patterns, while to <strong>the</strong> South <strong>the</strong>y<br />

gradually change <strong>in</strong>to me<strong>and</strong>er<strong>in</strong>g patterns.<br />

The great extension <strong>and</strong> <strong>the</strong> relative homogeneity of <strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong><br />

pla<strong>in</strong> are due to <strong>the</strong> subsurface «homocl<strong>in</strong>e», gently dipp<strong>in</strong>g southward (Pieri <strong>and</strong><br />

Groppi, 1981). Locally however this pla<strong>in</strong>, although homogeneous, shows clear<br />

tectonic disturbances, that affect its morphology. For <strong>in</strong>stance, <strong>the</strong> isolated relief<br />

forms of Monte Netto <strong>in</strong> <strong>the</strong> Brescia pla<strong>in</strong>, of Romanengo <strong>in</strong> <strong>the</strong> Crema pla<strong>in</strong>, of<br />

Zorlesco <strong>and</strong> of Casalpusterlengo <strong>in</strong> <strong>the</strong> Milan pla<strong>in</strong> a few km <strong>No</strong>rth of <strong>the</strong> <strong>Po</strong><br />

river, all rise from <strong>the</strong> ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong> <strong>in</strong> correspondence with <strong>the</strong><br />

anticl<strong>in</strong>al axes. The Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong> was dissected dur<strong>in</strong>g <strong>the</strong> Holocene by<br />

<strong>the</strong> ma<strong>in</strong> Alp<strong>in</strong>e water courses which generated valleys with steep erosional<br />

scarps. Each of <strong>the</strong>se as well as <strong>the</strong> Oglio river abruptly change <strong>the</strong>ir direction<br />

from southward to eastward, <strong>in</strong> correspondence with <strong>the</strong> buried structure of<br />

Piadena (Fig. 8).<br />

The Holocene alluvial pla<strong>in</strong> corresponds with <strong>the</strong> area of maximum subsidence.<br />

The <strong>Po</strong> river presently runs <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part of this pla<strong>in</strong> <strong>and</strong> is<br />

accompanied by paleochannels, which show a clear me<strong>and</strong>er<strong>in</strong>g pattern. East of<br />

<strong>the</strong> confluence with <strong>the</strong> Taro river several parallel paleochannels occur with a


1<br />

46 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Km*.<br />

'1<br />

W-E trend, testify<strong>in</strong>g <strong>the</strong> existence of at least two ma<strong>in</strong> parallel dra<strong>in</strong>age systems<br />

dur<strong>in</strong>g <strong>the</strong> Early Holocene (<strong>Cremaschi</strong> et alii, 1980). These merged <strong>in</strong>to a s<strong>in</strong>gle<br />

bed sometime between <strong>the</strong> Roman Age <strong>and</strong> <strong>the</strong> Middle Age, due to <strong>the</strong> uplift of<br />

<strong>the</strong> buried structure of Bagnolo (<strong>Cremaschi</strong> et alii, 1980; Fieri <strong>and</strong> Groppi, 1981)<br />

(Fig. 8).<br />

The Emilian Pla<strong>in</strong>, to <strong>the</strong> South of <strong>the</strong> <strong>Po</strong> river, <strong>in</strong> contrast with <strong>the</strong> situation<br />

<strong>in</strong> <strong>the</strong> <strong>No</strong>rth, is characteri2ed by wide depressed areas with a clayey lithology<br />

<strong>and</strong> with many swamps, which were reclaimed between <strong>the</strong> 15th <strong>and</strong> 19th<br />

century.<br />

The Apenn<strong>in</strong>e fr<strong>in</strong>ge is dom<strong>in</strong>ated by piedmont fans, of a clear <strong>and</strong> well<br />

preserved shape, whose apexes are situated far up <strong>the</strong> mounta<strong>in</strong> valleys. The fans<br />

extend far <strong>in</strong>to <strong>the</strong> pla<strong>in</strong>, enclos<strong>in</strong>g <strong>the</strong> Middle Pleistocene terraces. These were<br />

cut <strong>in</strong>to <strong>the</strong> mar<strong>in</strong>e <strong>and</strong> cont<strong>in</strong>ental deposits of Middle <strong>and</strong> Early Pleistocene<br />

age, present along <strong>the</strong> border of <strong>the</strong> pla<strong>in</strong>. The shape <strong>and</strong> distribution of <strong>the</strong><br />

terraces are very complex <strong>and</strong> are determ<strong>in</strong>ed by tectonic structures parallel<br />

to <strong>the</strong> Apenn<strong>in</strong>e marg<strong>in</strong> <strong>and</strong> by transversal faults (<strong>Cremaschi</strong> <strong>and</strong> Papani,<br />

1975).<br />

In <strong>the</strong> whole area <strong>the</strong> Pleistocene deposits are subject to l<strong>in</strong>ear erosion, which<br />

sometimes produces spectacular gorges, as <strong>in</strong> <strong>the</strong> case of <strong>the</strong> Paderno d’Adda,<br />

where <strong>the</strong> Ceppo conglomerates have been <strong>in</strong>cised to a depth of more than 60 m.<br />

Presently, <strong>in</strong> <strong>the</strong> pla<strong>in</strong>, fluvial erosion prevails over sedimentation, which is<br />

limited to <strong>the</strong> embanked floodpla<strong>in</strong>. This is probably largely due to human<br />

activities: <strong>the</strong> embank<strong>in</strong>g of <strong>the</strong> watercourses, <strong>the</strong> artificial straighten<strong>in</strong>g of <strong>the</strong><br />

riverbeds <strong>and</strong> <strong>the</strong> enormous extraction of material from <strong>the</strong> riverbeds (Pellegr<strong>in</strong>i,<br />

1969).<br />

As can be concluded from <strong>the</strong> description above, physiographically <strong>the</strong> area<br />

studied consists of five major systems; <strong>the</strong> pre-Alp<strong>in</strong>e mora<strong>in</strong>es of <strong>the</strong> Garda area,<br />

<strong>the</strong> fluvioglacial terraces <strong>and</strong> mora<strong>in</strong>es of <strong>the</strong> Adda river, <strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong><br />

pla<strong>in</strong>, <strong>the</strong> Holocene alluvial pla<strong>in</strong> of <strong>the</strong> <strong>Po</strong> <strong>and</strong> its major tributaries, <strong>and</strong> <strong>the</strong><br />

terraces <strong>and</strong> alluvial fans of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge. The exist<strong>in</strong>g geological <strong>and</strong><br />

stratigraphical studies on <strong>the</strong> Quaternary deposits deal with each unit separately,<br />

while studies on <strong>the</strong> system as a whole are non-existent. Never<strong>the</strong>less, <strong>the</strong>se units<br />

are more or less related to each o<strong>the</strong>r <strong>and</strong> represent parts of one large sedimentary<br />

bas<strong>in</strong> that already existed <strong>in</strong> <strong>the</strong> Late Miocene (see section 2.2.1.).<br />

The exist<strong>in</strong>g literature on <strong>the</strong> Quaternary Geology <strong>and</strong> Paleopedology of <strong>the</strong><br />

various parts of <strong>the</strong> <strong>central</strong> <strong>Po</strong> Valley, is reviewed below. With regard to <strong>the</strong><br />

subdivision used, <strong>the</strong> follow<strong>in</strong>g can be stated. The Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong> is very<br />

homogeneous <strong>and</strong> monotonous <strong>and</strong> represents a large outwash pla<strong>in</strong> of Late<br />

Pleistocene age. It forms <strong>the</strong> lateral extension of <strong>the</strong> fluvioglacial fans of <strong>the</strong><br />

Garda, Iseo <strong>and</strong> Adda areas <strong>and</strong> will be discussed <strong>in</strong> that context. The isolated<br />

terraces <strong>in</strong> this pla<strong>in</strong> however will be discussed separately, s<strong>in</strong>ce <strong>the</strong>y are not<br />

related to <strong>the</strong>se fans. <strong>No</strong> attention will be paid here to <strong>the</strong> Holocene alluvial<br />

pla<strong>in</strong>, as it is not relevant for <strong>the</strong>se <strong>in</strong>vestigations.<br />

The literature on <strong>the</strong> loess occurrence <strong>in</strong> <strong>the</strong> Central <strong>Po</strong> valley will be treated<br />

separately, s<strong>in</strong>ce loesses have been observed <strong>in</strong> both <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> <strong>the</strong> Apenn<strong>in</strong>e<br />

fr<strong>in</strong>ges.


PAST RESEARCH ON THE PHYSIOGRAPHY 47<br />

3.2. THE GARDA A R E A AND THE ISEO AR E A<br />

The first geomorphological studies on <strong>the</strong> Garda area go back to <strong>the</strong> second<br />

half of <strong>the</strong> last century, when Paglia (1861) described <strong>the</strong> hills South of <strong>the</strong> lake<br />

as frontal mora<strong>in</strong>es, deposited by Quaternary glaciers. Sacco (1894, 1896),<br />

Nicolis (1899) <strong>and</strong> above all Penck <strong>and</strong> Brückner (1909) (Fig. 9) described<br />

<strong>the</strong>ir stratigraphy <strong>and</strong> first recognized traces of one glacial advance <strong>and</strong>, later, of<br />

four glacial advances. After <strong>the</strong> survey of Cozzaglio (1934), <strong>the</strong> work of Venzo<br />

(1957, 1961 <strong>and</strong> 1965) represents <strong>the</strong> most detailed morphological study of <strong>the</strong><br />

f/j?. 9- The Garda lake mora<strong>in</strong>es <strong>and</strong> related Quaternary deposits. 1) pre-Quatemary rocks never<br />

covered by glaciers; 2) pre-Quatemary rocks covered by glaciers; 3) S. Bartolomeo <strong>and</strong> S. Ambrogio<br />

Pliocene gravel; 4) ancient mora<strong>in</strong>es <strong>and</strong> related fluvioglacial terraces; 5) recent mora<strong>in</strong>es <strong>and</strong> mora<strong>in</strong>e<br />

ridges; 6) ancient fluvioglacial terraces; 7) young fluvioglacial terrace; 8) ancient lake <strong>in</strong> <strong>the</strong><br />

Adige valley, (after Penck <strong>and</strong> Brückner, 1909).<br />

Fig. 9 - Le morene ed i deposit! quaternari connessi nella regione gardesana. 1) rocce prequaternarie<br />

mai raggiunte dai ghiacciai quaternari; 2) rocce prequaternarie raggiunte dai ghiacciai quaternari; 3)<br />

ghiaie plioceniche di S. Ambrogio e S. Bartolomeo; 4) morene antiche e connessi terrazzi fluvioglaciali;<br />

5) morene recent! e pr<strong>in</strong>cipal! cordon! morenici; 6) terrazzi fluvioglacial! antichi; 7) terrazzi<br />

fluvioglacial! recent!; 8) antico lago nella valle dell’Adige.


1<br />

48 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

area, which were comb<strong>in</strong>ed with paleopedological studies by Manc<strong>in</strong>i (1960,<br />

1969). These studies were followed by <strong>the</strong> revisions of Fraenzle (1965, 1969),<br />

Habbe (1969), Chardon (1975) <strong>and</strong> Hantke (1983).<br />

3.2.1. Geological outl<strong>in</strong>e<br />

The Garda lake lies <strong>in</strong> a deep depression along an important tectonic<br />

l<strong>in</strong>eament, which separates blocks of <strong>the</strong> Alp<strong>in</strong>e cha<strong>in</strong> with different tectonic<br />

behaviour (Castellar<strong>in</strong>, 1982). In fact its Pliocene <strong>and</strong> Pleistocene development is<br />

clearly conditioned by a stronger uplift of <strong>the</strong> Brescia area with respect to <strong>the</strong><br />

Verona area. While <strong>the</strong> latter behaved like a plateau dur<strong>in</strong>g of <strong>the</strong> Pleistocene <strong>and</strong><br />

was affected ma<strong>in</strong>ly by pedogenetic processes (Zanferrari,1982), at <strong>the</strong> Brescia<br />

marg<strong>in</strong>, dur<strong>in</strong>g <strong>the</strong> Pliocene <strong>and</strong> Early Pleistocene, thick gravelly piedmont deposits<br />

were formed. The upper gravel deposits at S. Bartolomeo <strong>and</strong> Muscol<strong>in</strong>e probably<br />

belong to <strong>the</strong>se (Fig. 10). Lithologically <strong>the</strong> gravels consist mostly of<br />

Pre-Alp<strong>in</strong>e limestones. The feed<strong>in</strong>g bas<strong>in</strong> dur<strong>in</strong>g this stage did not yet reach <strong>the</strong><br />

Central-Alp<strong>in</strong>e outcrops of porphyrites <strong>and</strong> metamorphic rocks.<br />

Dur<strong>in</strong>g <strong>the</strong> Early Pleistocene <strong>the</strong> distal part of <strong>the</strong> piedmont alluvial fans<br />

<strong>in</strong>terf<strong>in</strong>gered with littoral <strong>and</strong> shallow mar<strong>in</strong>e deposits. These have been found <strong>in</strong><br />

<strong>the</strong> subsurface <strong>in</strong> AGIP drill<strong>in</strong>gs (Percontg, 1956; Cita, 1955) <strong>and</strong> crop out at<br />

Castenedolo.<br />

Beg<strong>in</strong>n<strong>in</strong>g from <strong>the</strong> late Early Pleistocene <strong>the</strong> Pre-Alp<strong>in</strong>e marg<strong>in</strong>, which<br />

corresponds with <strong>the</strong> present Garda lake, was reached several times by <strong>the</strong> Alp<strong>in</strong>e<br />

glacier that each time generated frontal mora<strong>in</strong>e ridges. In time <strong>the</strong> petrographic<br />

composition of <strong>the</strong> clasts changes dist<strong>in</strong>cly. In <strong>the</strong> oldest mora<strong>in</strong>es Pre-Alp<strong>in</strong>e<br />

limestones prevail, while volcanic rocks <strong>and</strong> granitoids are subord<strong>in</strong>ate. In <strong>the</strong><br />

Middle Pleistocene mora<strong>in</strong>es, but <strong>in</strong> particular <strong>in</strong> <strong>the</strong> more recent ones,<br />

granitoids, metamorphic rocks <strong>and</strong> <strong>in</strong> particular porphyries from <strong>the</strong> Alto Adige<br />

become prevail<strong>in</strong>g (<strong>Cremaschi</strong>, <strong>in</strong> press) (Fig.ll).<br />

It is know that <strong>the</strong> chronostratigraphic attribution of <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong><br />

Garda lake is based on <strong>the</strong> classic Alp<strong>in</strong>e stratigraphy, even if <strong>the</strong>re is no univocal<br />

agreement between <strong>the</strong> authors. In Fig. 12 <strong>the</strong> op<strong>in</strong>ions of <strong>the</strong>se authors on <strong>the</strong><br />

age of <strong>the</strong> mora<strong>in</strong>es are presented .The <strong>in</strong>accuracies of <strong>the</strong> classical Alp<strong>in</strong>e stratigraphy<br />

are well known (Kukla, 1978; Bowen, 1978). Therefore <strong>in</strong> this study<br />

each glacial stage will be called by <strong>the</strong> local name of <strong>the</strong> most significant outcrop,<br />

<strong>and</strong> is arranged accord<strong>in</strong>g to a scheme of relative chronology. Both local names<br />

<strong>and</strong> this scheme are also presented In Fig. 12. They are extensively discussed <strong>in</strong><br />

chapters 4, 5.<br />

Accord<strong>in</strong>g <strong>the</strong> German authors <strong>the</strong> mora<strong>in</strong>es adjacent to <strong>the</strong> lake belong to<br />

<strong>the</strong> Würm glaciation, those of Carpenedolo-Faita to <strong>the</strong> Riss glaciation, while a<br />

mora<strong>in</strong>e buried <strong>in</strong> <strong>the</strong> Calvagese sequence is dated as of M<strong>in</strong>del age. Accord<strong>in</strong>g<br />

to <strong>the</strong> Italian authors, ma<strong>in</strong>ly Venzo (1965), <strong>the</strong> mora<strong>in</strong>es adjacent to <strong>the</strong> lake<br />

date from two dist<strong>in</strong>ct glacial periods: <strong>the</strong> more <strong>in</strong>ternal ones are of Würm age,<br />

<strong>the</strong> external ones are of Riss age, while those of Carpenedolo, Montichiari <strong>and</strong><br />

Faita as well those of Ciliverghe belong to <strong>the</strong> M<strong>in</strong>del.


PAST RESEARCH ON THE PHYSIOGRAPHY 49<br />

A<br />

\ J 6<br />

Fig. 10 - General development of <strong>the</strong> Garda area between Late Tertiary —Early Pleistocene <strong>and</strong><br />

Upper Pleistocene; a) Preglacial period (Early Pleistocene or before); b) Ciliverghe <strong>and</strong> Faita glacial<br />

stages; c) Carpenedolo glacial stage; d) Sedeña glacial stage; e) Solfer<strong>in</strong>o glacial stage. 1) uplift<strong>in</strong>g<br />

area; 2) subsident area; 3) alluvial fan; 4) Prealp<strong>in</strong>e Pleistocene (?) gravel; 5) Prealp<strong>in</strong>e Early Pleistocene<br />

S. Ambrogio gravel; 6) outer limit of frontal mora<strong>in</strong>e.<br />

Fig. 10 ■Evoluzione dell’area gardesana tra ü tardo Terziario-Pleistocene <strong>in</strong>feriere ed il Pleistocene<br />

superiore; a) periodo preglaciale (Pleistocene <strong>in</strong>feriere o tardo Terziario); b) fasi glaciali di Ciliverghe<br />

e Monte Faita; c) fase glaciale di Carpenedolo; d) fase glaciale di Sedeña; e) fase glaciale di<br />

Solfer<strong>in</strong>o; 1) area <strong>in</strong> sollevamento; 2) area subsidente; 3) conoidi; 4) depositi ghiaiosi prealp<strong>in</strong>i del<br />

Pleistocene (?); 5) ghiaie di S. Ambrogio, del Pleistocene <strong>in</strong>ferióte; 6) limite estemo delle morene<br />

frontali.


?<br />

50 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Fig. 1 1 - Lithological characteristics of <strong>the</strong> areas surround<strong>in</strong>g <strong>the</strong> Garda lake. A) granite, B)<br />

metamorphic rocks, C) volcanic rocks, D) limestones, E) ma<strong>in</strong> supply dur<strong>in</strong>g glacial stages, F)<br />

ma<strong>in</strong> supply dur<strong>in</strong>g <strong>in</strong>terglacial periods.<br />

Fig. 11- Caratteristiche litologiche dell’area circostante il lago di Garda. A) graniti, B) rocce metamorfiche,<br />

C) rocce vulcaniche, D) calcari, E) provenienza dei clasti durante le fasi glaciali, F)<br />

provenienza dei clasti durante le fasi <strong>in</strong>terglaciali.


!<br />

PAST r esearch o n t h e p h y s io g r a p h y 51<br />

n =>■S'<br />

n > O cn<br />

r<br />

cn<br />

■n ■D m O n<br />

< > ni U ■q<br />

n z C m m<br />

72 m CTQ Z<br />

0 D Wc_ ><br />

1 O C w'<br />

2<br />

m r Q- 3"<br />

O<br />

O (tl Q.<br />

VILLA<br />

F R A N C H I A N<br />

G U N Z<br />

only one glacial<br />

M I N D E L<br />

RISS<br />

period<br />

W U R M<br />

LO<br />

- ><br />

oo VOX<br />

ON D<br />

O<br />

’T3<br />

• m<br />

O<br />

t-<br />

><br />

o<br />

><br />

CD H<br />

><br />

O<br />

w<br />

CO<br />

G U N Z<br />

(fluvloglacial)<br />

M I N D E L<br />

RISS I<br />

W U R M<br />

+<br />

RISS II<br />

n ><br />

n<br />

><br />

f<br />

G U N Z<br />

(fluviatile)<br />

M I N D E L<br />

W U R M<br />

+<br />

RISS<br />

o<br />

_ N<br />

^ N<br />

U) ><br />

Ni O<br />

G U N Z<br />

M I N D E L I<br />

M I N D E L II<br />

W U R M I,II<br />

RISS I,II<br />

<<br />

—m<br />

M3<br />

Ln<br />

M I N D E L<br />

RISS<br />

W U R M<br />

"H<br />

:d<br />

- > vo m<br />

ON2<br />

Ln<br />

N<br />

m<br />

M I N D E L<br />

G U N Z I, II<br />

M I N D E L II<br />

W U R M I, II<br />

RISS I, II<br />

^ 9<br />

Ln 2<br />

NO NJ<br />

G U N Z<br />

(fluvioglacial)<br />

M I N D E L<br />

RISS<br />

W U R M<br />

n I<br />

o\ "<br />

Ol O Oz<br />

<strong>in</strong>^thi^stud^^<br />

stratigraphical attributions of <strong>the</strong> glacial stages, <strong>in</strong> <strong>the</strong> Garda system, described<br />

12 - I.e differenti attribuzioni stratigrafiche relative alle fasi glacial!, descritte <strong>in</strong> questo lavoro.


52 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

3.2.2. The paleo sols<br />

Penck <strong>and</strong> Bruckner (1909) were <strong>the</strong> first to systematically record paleosols<br />

<strong>in</strong>terbedded with mora<strong>in</strong>e deposits <strong>and</strong> to recognize <strong>the</strong> presence of a «Ferretto»<br />

on top of Carpenedolo-Monte Faita mora<strong>in</strong>e system <strong>and</strong> of a similar buried<br />

paleosol <strong>in</strong> <strong>the</strong> Ciliverghe sequence. Venzo (1965) <strong>and</strong> Manc<strong>in</strong>i (1960, 1969)<br />

described for <strong>the</strong> first time <strong>the</strong> paleosols <strong>in</strong> <strong>the</strong> complex stratigraphic sequence of<br />

Ciliverghe <strong>and</strong> Gavardo, as well as o<strong>the</strong>r profiles along <strong>the</strong> Carpenedolo mora<strong>in</strong>es,<br />

already recognized by Penck <strong>and</strong> Brückner. They identified as «Ferretto»<br />

every red coloured soil show<strong>in</strong>g evidence of deep wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong>, accord<strong>in</strong>g to <strong>the</strong><br />

<strong>the</strong>ory of <strong>the</strong> «great <strong>in</strong>terglacial» of Penck <strong>and</strong> Brückner, date this soil to <strong>the</strong><br />

M<strong>in</strong>del-Riss <strong>in</strong>terglacial. They use it as a chronostratigraphic marker for that<br />

period <strong>and</strong> based most of <strong>the</strong> stratigraphy of <strong>the</strong> whole Garda system on it.<br />

Venzo (1965) described, along <strong>the</strong> slopes of <strong>the</strong> mora<strong>in</strong>e ridges of <strong>the</strong> Solfer<strong>in</strong>o<br />

stage, a sometimes eroded <strong>and</strong> slightly rubefied soil, <strong>and</strong> <strong>in</strong>terpreted this soil as a<br />

paleosol developed dur<strong>in</strong>g <strong>the</strong> Riss-Würm <strong>in</strong>terglacial.<br />

The mora<strong>in</strong>e system of <strong>the</strong> Iseo lake is far less complicated than that of <strong>the</strong><br />

Garda lake. It has already been studied by Sacco (1894), Penck <strong>and</strong> Brückner<br />

(1909) <strong>and</strong>, more recently, by Vecchia (1954). Only two mora<strong>in</strong>e ridges occur,<br />

which have been correlated on basis of geomorphological criteria with <strong>the</strong> two<br />

most recent mora<strong>in</strong>e ridges of <strong>the</strong> Garda lake, i.e. <strong>the</strong> Solfer<strong>in</strong>o stage <strong>and</strong> <strong>the</strong><br />

Sedeña stage accord<strong>in</strong>g to <strong>the</strong> nomenclature adopted for this research.<br />

Because of <strong>the</strong> lack of any outcrops of older formations <strong>and</strong> <strong>the</strong> very simple<br />

structure of <strong>the</strong> mora<strong>in</strong>e system, which already has been well studied <strong>and</strong> with<br />

regard to <strong>the</strong> paleosols strongly resembles <strong>the</strong> Garda system, <strong>in</strong> this study little<br />

attention will be paid to this area.<br />

3.3. THE ADDA BASIN<br />

3.3.1. General outl<strong>in</strong>e<br />

In contrast to <strong>the</strong> Garda area, tectonically <strong>the</strong> Adda area has been more<br />

stable. As a result of this, <strong>the</strong> Pleistocene deposits occur ei<strong>the</strong>r as <strong>in</strong>fills of<br />

narrow valleys <strong>in</strong> <strong>the</strong> Pre-Alps, which already as <strong>in</strong>fills of narrow valleys <strong>in</strong> <strong>the</strong><br />

Pre-Alps, which already date back <strong>the</strong> Late Miocene (Mess<strong>in</strong>ian) (B<strong>in</strong>i et alii,<br />

1978; <strong>Cremaschi</strong> et alii, 1984) or as stepped terraces <strong>in</strong> <strong>the</strong> Pre-Alp<strong>in</strong>e fr<strong>in</strong>ge.<br />

Thus far <strong>the</strong> valley fills have received very little attention (Venzo, 1948); <strong>the</strong><br />

ra<strong>the</strong>r specialized literature on <strong>the</strong>se fills will not be discussed here, but <strong>in</strong> section<br />

5.5. Much more attention has been paid to <strong>the</strong> Pre-Alp<strong>in</strong>e fr<strong>in</strong>ge.<br />

In <strong>the</strong> classic literature (Penck <strong>and</strong> Brückner, 1909; Riva, 1957) three different<br />

frontal mora<strong>in</strong>e systems <strong>and</strong> three associated fluvioglacial terraces have been<br />

dist<strong>in</strong>guished. The mora<strong>in</strong>es have been dated as of Würm, Riss <strong>and</strong> M<strong>in</strong>del age<br />

respectively, while <strong>the</strong> terraces are described as «Diluvium recente», «Diluvium<br />

medio» <strong>and</strong> «Diluvium antico» (Fig. 13).<br />

In general, with <strong>the</strong> exception of Venzo (1948), <strong>the</strong>se morphostratigraphic


past research on <strong>the</strong> physiography 53<br />

o<br />

O 00<br />

o<br />

O<br />

T3<br />

-a<br />

^ &•<br />

^ G<br />

« E<br />

CuO<br />

i 'V<br />

E<br />

3 ci<br />

1 _E &■<br />

“ u<br />

Q ”<br />

o C<br />

N • «<br />

u _ ^<br />

UOJ c^<br />

'o<br />

C'C<br />

O S<br />

'cl<br />

rv ^<br />

(U<br />

^ s<br />

g §<br />

m<br />

c


lWlUTJ(f<br />

54 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

SLirX-i/, i?:<br />

dat<strong>in</strong>gs are accepted as correct, also <strong>in</strong> more recent geomorphological studies<br />

(Riva, 1957; Gabert, 1962) <strong>and</strong> seem <strong>in</strong> agreement with <strong>the</strong> stratigraphy of <strong>the</strong><br />

loesses (Ugol<strong>in</strong>i <strong>and</strong> Orombelli, 1968; Orombelli, 1979); <strong>in</strong> fact <strong>the</strong> terraces of<br />

<strong>the</strong> «Diluvium recente» are devoid of a loess cover, those of <strong>the</strong> «Diluvium<br />

medio» are overla<strong>in</strong> by one cover, while those of <strong>the</strong> «Diluvium antico» have a<br />

cover of at least two loesses. Fur<strong>the</strong>rmore it has been observed that more developed<br />

soils are associated with older surfaces (Ugol<strong>in</strong>i <strong>and</strong> Orombelli, 1968; see<br />

Fig. 44). In particular <strong>the</strong> highest terrace has deep, rubefied <strong>and</strong> clay-rich<br />

paleosols, known <strong>in</strong> <strong>the</strong> literature as «Ferretto» (Garbert, 1962; Billard, 1977;<br />

<strong>Cremaschi</strong> <strong>and</strong> Orombelli, 1982).<br />

The terms used <strong>in</strong> <strong>the</strong> literature to describe <strong>the</strong> three terrace systems occurr<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> Adda area have also been used <strong>in</strong> <strong>the</strong> more detailed description of <strong>the</strong>se<br />

units, presented below. Flowever, <strong>in</strong> <strong>the</strong> next <strong>the</strong>y will be referred to as <strong>the</strong><br />

«Ferretto terrace» («Diluvium antico» or Old Diluvium), <strong>the</strong> DJVI. terrace<br />

(«Diluvium medio» or Middle Diluvium) <strong>and</strong> <strong>the</strong> «Ma<strong>in</strong> level of Pla<strong>in</strong>»<br />

(«Diluvium recente» or Recent Diluvium).<br />

3.3.2. The «Old Diluvium» terrace<br />

Considerable attention has been paid to <strong>the</strong> «Ferretto» terraces (Old<br />

Diluvium ), of which <strong>the</strong> stratigraphic sequence is very well exposed <strong>in</strong> <strong>the</strong> deep<br />

gorge of <strong>the</strong> Adda river near Paderno. This site has attracted all geologists who<br />

for more than a century dealt with <strong>the</strong> Pleistocene of <strong>the</strong> Lombardian Piedmont.<br />

The sequence (see Fig. 14) recently has been critically re-exam<strong>in</strong>ed by Orombelli<br />

(1979). The follow<strong>in</strong>g units have been recognized:<br />

From bottom to top:<br />

PD l: fluvial silty clay, cropp<strong>in</strong>g out along <strong>the</strong> river bed. A jaw of Mastodon<br />

avernensis was collected <strong>in</strong> this unit (Venzo, 1957).<br />

PD2: Ceppo dell’Adda, Paderno Member (Orombelli, 1979). This member consists<br />

of poorly sorted fluvial gravel, often matrix supported <strong>and</strong> with rare<br />

pelitic <strong>in</strong>tercalations. The clasts are generally well rounded. Bedd<strong>in</strong>g,<br />

where visible, is often planar parallel <strong>and</strong> poorly def<strong>in</strong>ed, <strong>and</strong> sometimes is<br />

<strong>in</strong>cl<strong>in</strong>ed at low angle. The unit represents a piedmont fan facies.<br />

Petrographically (Orombelli <strong>and</strong> Gnaccol<strong>in</strong>i, 1978; Orombelli, 1979) <strong>the</strong><br />

clasts ma<strong>in</strong>ly consist of limestone <strong>and</strong> calcareous s<strong>and</strong>stones, orig<strong>in</strong>at<strong>in</strong>g<br />

from <strong>the</strong> Pre-Alp<strong>in</strong>e marg<strong>in</strong>, <strong>and</strong> of rare pebbles of quartz <strong>and</strong> of<br />

metamorphic rocks. The heavy m<strong>in</strong>eral assemblage ma<strong>in</strong>ly consists of<br />

metamorphic m<strong>in</strong>erals, especially epidotes <strong>and</strong> amphiboles, <strong>and</strong> of a certa<strong>in</strong><br />

amount of anatase <strong>and</strong> brookite, which are residual m<strong>in</strong>erals from<br />

limestones (<strong>Cremaschi</strong> et alii, 1985). The passage to <strong>the</strong> overly<strong>in</strong>g unit<br />

consists of a sub-horizontal erosional surface.<br />

PD3: Ceppo dell’Adda, Trezzo Member (Orombelli, 1979). It consists of very’<br />

poorly sorted gravels <strong>and</strong> boulders up to 50 cm <strong>in</strong> diameter <strong>and</strong> with a<br />

s<strong>and</strong>y matrix. This member is frequently massive with r<strong>and</strong>omly arranged<br />

clasts or more rarely shows poorly def<strong>in</strong>ed, non-parallel, discont<strong>in</strong>uous<br />

planar bedd<strong>in</strong>g. The clasts are generally well rounded. Petrographically


PAST RESEARCH ON THE PHYSIOGRAPHY 55<br />

<strong>the</strong>y still largely consist of limestome <strong>and</strong> calcareous s<strong>and</strong>stones but<br />

pebbles of crystall<strong>in</strong>e rocks,<strong>in</strong> particular those of metamorphic orig<strong>in</strong>, are<br />

present <strong>in</strong> appreciable amounts. The heavy m<strong>in</strong>eral assemblage is<br />

characterized by a strong <strong>and</strong> marked <strong>in</strong>crease <strong>in</strong> staurolite (<strong>Cremaschi</strong> et<br />

alii, 1985).<br />

Both members, constitu<strong>in</strong>g <strong>the</strong> Ceppo dell’Adda, are strongly cemented,<br />

although, accord<strong>in</strong>g to Orombelli <strong>and</strong> Gnaccol<strong>in</strong>i (1978), <strong>in</strong> <strong>the</strong> lower member<br />

(PD3) cementation is more <strong>in</strong>tensive than <strong>in</strong> <strong>the</strong> upper member (PD2).Observations<br />

from drill<strong>in</strong>gs for water wells (CavalUn et alii, 1983) however <strong>in</strong>dicate that<br />

cementation is stronger <strong>and</strong> more cont<strong>in</strong>uous along <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong> terrace<br />

than <strong>in</strong> <strong>the</strong> more <strong>central</strong> parts of <strong>the</strong> terrace bodies. The upper limit of <strong>the</strong> unit<br />

PD3 co<strong>in</strong>cides with <strong>the</strong> décalcification front of <strong>the</strong> «Ferretto» soil.<br />

I'he «Ferretto» terrace of <strong>the</strong> Camparada area <strong>in</strong> fact consists of glacial <strong>and</strong><br />

fluvioglacial deposits, which are strongly wea<strong>the</strong>red, but can still be identified as<br />

a frontal mora<strong>in</strong>e <strong>and</strong> associated outwash sediments deposits (Riva, 1957;<br />

L'gol<strong>in</strong>i <strong>and</strong> Orombelli, 1968). Because of this strong wea<strong>the</strong>r<strong>in</strong>g <strong>the</strong> stratigraphic<br />

relations between <strong>the</strong>se fluvioglacial <strong>and</strong> till deposits <strong>and</strong> <strong>the</strong> Trezzo<br />

member of <strong>the</strong> Ceppo dell’Adda could not be established.<br />

Adda river<br />

Fij^. 14 - The Paderno d’Adda sequence (after Orombelli, 1979). PDl = fluvial silty clay, PD2 =<br />

Ceppo del!Adda, Paderno Member, poorly sorted fluvial gravel; PD3 = Ceppo dell’Adda, Trezzo<br />

■Member, very poorly sorted gravels <strong>and</strong> boulders; PD4 = fluvioglacial gravels of <strong>the</strong> «Middle Dilu-<br />

Fig. 14 - La successione stratigrafíca di Paderno d’Adda. PDl = argille limóse fluviali; PD2 =<br />

Ceppo dell’Adda membro di Paderno, ghiaie fluviali; PD3 = Ceppo dell’Adda, membro di Trezzo,<br />

ghiaie; PD4 = ghiaie fluvioglaciali del Diluvium medio.


56 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

3.3.3. The «Middle Diluvium» terrace<br />

In <strong>the</strong> Paderno d’Adda section <strong>the</strong> Ceppo is covered by more recent deposits,<br />

described as «Ceppo <strong>and</strong> polygenic gravels» by Orombelli (1979). These deposits<br />

are <strong>in</strong>dicated <strong>in</strong> Fig. 14 as unit PD4 <strong>and</strong> can be described as follows:<br />

PD4: Fluvioglacial gravels, which are locally cemented <strong>and</strong> consist of pebbles of<br />

which <strong>the</strong> diameter is less than 30 centimeters (Orombelli <strong>and</strong> Gnaccol<strong>in</strong>i,<br />

1978). Bedd<strong>in</strong>g ranges from poorly evident, planar non parallel <strong>and</strong><br />

discont<strong>in</strong>uous, to oblique at low angle. Lenses of coarse s<strong>and</strong> are present.<br />

Igneous <strong>and</strong> metamorphic elements can be very abundant <strong>and</strong> locally<br />

prevail over calcareous elements. In <strong>the</strong> heavy m<strong>in</strong>eral fraction unstable<br />

metamorphic m<strong>in</strong>erals, among which amphiboles, kyanite, sillimanite,<br />

epidotes, etc., prevail (<strong>Cremaschi</strong> et alii, 1985). The boundary with <strong>the</strong><br />

underly<strong>in</strong>g Ceppo dell’Adda is erosional <strong>and</strong> has <strong>the</strong> shape of a deep gorge.<br />

The «Middle Diluvium» terraces. West of <strong>the</strong> «.Old Diluvium» terrace of<br />

Paderno, consist of <strong>the</strong> «Ceppo <strong>and</strong> polygenic gravels» («Ceppo <strong>Po</strong>ligenico»). In<br />

<strong>the</strong>se terraces a ra<strong>the</strong>r deep, rubefied paleosol is present, overla<strong>in</strong> by a loess cover<br />

of variable thickness (Ugol<strong>in</strong>i <strong>and</strong> Orombelli, 1968).<br />

3.3.4. The «Recent Diluvium» terrace<br />

The «Recent Diluvium» forms a terrace which fills <strong>the</strong> valleys cut <strong>in</strong>to <strong>the</strong><br />

older morphological units <strong>in</strong> <strong>the</strong> Pre-Alp<strong>in</strong>e fr<strong>in</strong>ge, <strong>and</strong> fur<strong>the</strong>r to <strong>the</strong> South<br />

forms <strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong> <strong>in</strong> <strong>the</strong> Adda area. To <strong>the</strong> East this pla<strong>in</strong> merges<br />

<strong>in</strong>to <strong>the</strong> Late Pleistocene fluvioglacial pla<strong>in</strong> of <strong>the</strong> Garda-Iseo area.<br />

Accord<strong>in</strong>g to Ugol<strong>in</strong>i <strong>and</strong> Orombelli (1968) <strong>the</strong> «Recent Diluvium» can be<br />

correlated with <strong>the</strong> Wiirmian mora<strong>in</strong>e of <strong>the</strong> Brianza <strong>and</strong> <strong>the</strong> Adda glaciers, of<br />

which it represents <strong>the</strong> fluvioglacial pla<strong>in</strong>.<br />

At <strong>Po</strong>ntida, glaciolacustr<strong>in</strong>e sediments, enclosed <strong>in</strong> <strong>the</strong> outer Late Pleistocene<br />

mora<strong>in</strong>e ridge of <strong>the</strong> Adda system, have been dated by radiocarbon method to<br />

17,700 ± 360 years B.P. This age can also be given to <strong>the</strong> ice marg<strong>in</strong> location<br />

of <strong>the</strong> Adda piedmont glacier, <strong>and</strong> to its first phase of retreat (Alessio et alii,<br />

1978).<br />

3.4. THE ISOLATED TERRACES IN THE PO PLAIN<br />

In <strong>the</strong> Lombardian fluvioglacial pla<strong>in</strong> isolated terraces occur which, accord<strong>in</strong>g<br />

to Desio (1965), represent strips of older fluvial deposits which have been<br />

up-lifted as a result of local tectonic activity connected with buried tectonic<br />

structures. Fraenzle (1965) <strong>and</strong> <strong>Cremaschi</strong> (1974) mention that <strong>the</strong> terraces have<br />

a loess cover but provide no fur<strong>the</strong>r <strong>in</strong>formation on <strong>the</strong>ir stratigraphy. Detailed<br />

studies on <strong>the</strong>se terraces o<strong>the</strong>r than that by Desio are lack<strong>in</strong>g. These terraces have<br />

been <strong>in</strong>dicated on <strong>the</strong> various geological maps at scale 1:100,000, but with a poorK<br />

def<strong>in</strong>ed age. They occur at Monte Netto, South of Brescia (sheet Brescia), at<br />

Romanengo (sheet Treviglio), at Zorlesco <strong>and</strong> Casalpusterlengo (sheet Piacenza).


PAST RESEARCH ON THE PHYSIOGRAPHY 57<br />

3.5. THE APENNINE FRINGE<br />

At <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge Pleistocene mar<strong>in</strong>e <strong>and</strong> cont<strong>in</strong>ental deposits occur.<br />

The mar<strong>in</strong>e deposits are of coastal <strong>and</strong> littoral facies <strong>and</strong> differ from <strong>the</strong> Pliocene<br />

mar<strong>in</strong>e deposits only with respect to <strong>the</strong>ir biostratigraphy. They crop out <strong>in</strong> thick<br />

sequences along <strong>the</strong> Apenn<strong>in</strong>e marg<strong>in</strong> (Pelosio, 1960; Pelosio <strong>and</strong> Raffi, 1973;<br />

Annovi et alii, 1979). The cont<strong>in</strong>ental deposits consist of gravel, s<strong>and</strong>s <strong>and</strong> clays,<br />

represent<strong>in</strong>g different facies of a fluvial system which can be described as<br />

piedmont alluvial fans <strong>and</strong> alluvial pla<strong>in</strong>s (<strong>Cremaschi</strong>, 1982a). In contrast with<br />

<strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge mora<strong>in</strong>es <strong>and</strong> fluvioglacial deposits are completely absent but<br />

loesses abound.<br />

.Ml along <strong>the</strong> piedmont marg<strong>in</strong> which separates <strong>the</strong> first foothills of <strong>the</strong><br />

.Apenn<strong>in</strong>es from <strong>the</strong> alluvial deposits of <strong>the</strong> Holocene pla<strong>in</strong>, <strong>the</strong> cont<strong>in</strong>ental<br />

Quaternary deposits occur as a narrow but cont<strong>in</strong>uous belt. Terraces, glacis <strong>and</strong><br />

related erosional surfaces have been cut <strong>in</strong>to <strong>the</strong>se deposits. The deposits are<br />

locally folded <strong>and</strong> faulted. As a result of this tectonic activity <strong>the</strong>ir present surface<br />

locally shows a monocl<strong>in</strong>al trend <strong>in</strong> <strong>the</strong> form of a regular dip towards <strong>the</strong> pla<strong>in</strong>.<br />

It also shown local fault<strong>in</strong>g <strong>and</strong> local deformations connected with subsurface<br />

teaonic stmetures. These surfaces thus have a strong tectonic control <strong>and</strong> reflect<br />

<strong>the</strong> Quaternary tectonic evolution along <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> <strong>the</strong> nearby<br />

pla<strong>in</strong> (<strong>Cremaschi</strong> <strong>and</strong> Papani, 1975; Marchetti et alii, 1978; Pieri <strong>and</strong> Groppi,<br />

1981).<br />

The first systematic studies on <strong>the</strong> cont<strong>in</strong>ental deposits of <strong>the</strong> Apenn<strong>in</strong>e<br />

piedmont have been carried out dur<strong>in</strong>g <strong>the</strong> second half of <strong>the</strong> 1960’s <strong>and</strong> are<br />

summarized <strong>in</strong> <strong>the</strong> map 1:100,000 of Parma <strong>and</strong> neighbour<strong>in</strong>g areas coord<strong>in</strong>ated<br />

by VTnzo. On this map a series of terraces has been dist<strong>in</strong>guished, dated accord<strong>in</strong>g<br />

to <strong>the</strong> Alp<strong>in</strong>e stratigraphy <strong>and</strong> hav<strong>in</strong>g different paleosols (Venzo et alii,<br />

1965). Some years later (Ferrari <strong>and</strong> Magaldi, 1968; <strong>Cremaschi</strong>, 1978) <strong>the</strong><br />

systematic presence of loess on top of rubefied paleosols <strong>in</strong> <strong>the</strong> oldest terraces<br />

was recognized. They were dated as of M<strong>in</strong>del-Riss <strong>in</strong>terglacial age, <strong>in</strong> analogy<br />

with <strong>the</strong> Alp<strong>in</strong>e «Ferretto».<br />

Strong river erosion <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e piedmont, which occurred especially<br />

dur<strong>in</strong>g <strong>the</strong> n<strong>in</strong>eteen-seventies as a result of uncontrolled excavations, led to <strong>the</strong><br />

exposure of complex stratigraphic sequences of cont<strong>in</strong>ental deposits, <strong>in</strong>tercalated<br />

between <strong>the</strong> Calabrian mar<strong>in</strong>e deposits <strong>and</strong> <strong>the</strong> surfaces of <strong>the</strong> oldest terraces.<br />

Rich vertebrate faunas (Cigala Fulgosi, 1976; Ambrosetti <strong>and</strong> <strong>Cremaschi</strong>, 1975)<br />

were collected <strong>in</strong> <strong>the</strong>se sequences. The biostratigraphy, sedimentology <strong>and</strong><br />

magnetostratigraphy of a few sequences were studied <strong>in</strong> detail (Annovi et alii,<br />

1979; <strong>Cremaschi</strong>, 1982a). In particular <strong>the</strong> magnetostratigraphic sequences along<br />

<strong>the</strong> Stirone, Crostolo, Tiepido <strong>and</strong> Panaro rivers (Bucha <strong>and</strong> Sibrava, 1977;<br />

Salloway, 1983) provide a geochronometric base for <strong>the</strong> dat<strong>in</strong>g of <strong>the</strong> sequences<br />

of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> for <strong>the</strong>ir correlation with <strong>the</strong> Alp<strong>in</strong>e sequences.<br />

The systematic <strong>and</strong> detailed correlation of <strong>the</strong> various Quaternary deposits <strong>in</strong><br />

<strong>the</strong> .Apenn<strong>in</strong>e fr<strong>in</strong>ge is largely based on <strong>the</strong> results of <strong>the</strong> research carried out for<br />

this <strong>the</strong>sis <strong>and</strong> will be discussed <strong>and</strong> described <strong>in</strong> chapter 7.


58 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

;l !<br />

3.6. THE LOESSES IN THE PO PLAIN<br />

iKS<br />

Jtj.-<br />

Although <strong>the</strong>y do not reach <strong>the</strong> thickness <strong>and</strong> <strong>the</strong> development of those<br />

beyond <strong>the</strong> Alps, loesses are widely distributed <strong>in</strong> <strong>the</strong> <strong>Po</strong> Valley (Fraenzle, 1963;<br />

<strong>Cremaschi</strong>, 1979b <strong>and</strong> 1984). At both <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ges <strong>the</strong>y<br />

nearly always overlie <strong>the</strong> Pleistocene non-aeolian deposits or <strong>the</strong> paleosurfaces <strong>in</strong><br />

<strong>the</strong> mounta<strong>in</strong> areas, <strong>and</strong> form part of <strong>in</strong>fills of karst cavities.<br />

Stratigraphic studies <strong>in</strong>dicate that <strong>the</strong> oldest loess sedimentation dates from<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Middle Pleistocene. Never<strong>the</strong>less only loesses of late Middle<br />

Pleistocene age <strong>and</strong> of Late Pleistocene age are preserved over large areas. In<br />

particular <strong>the</strong> loesses of Late Pleistocene age show lateral variations <strong>in</strong> characteristics<br />

that enable <strong>the</strong> identification of <strong>the</strong> direction of <strong>the</strong> prevail<strong>in</strong>g w<strong>in</strong>ds that<br />

caused <strong>the</strong>ir sedimentation (<strong>Cremaschi</strong>, 1983; see Fig. 15). These variations are: a<br />

decrease of <strong>the</strong> average size of <strong>the</strong> particles <strong>and</strong> of <strong>the</strong> thickness of <strong>the</strong> aeolian<br />

covers, depend<strong>in</strong>g on <strong>the</strong> distance form <strong>the</strong> source area, <strong>and</strong> thicker accumulation<br />

along leeward scarps.<br />

The loess covers usually have a limited thickness (approx. 0.5-2 m) <strong>and</strong> are<br />

consequently strongly affected by pedogenesis. Therefore unwea<strong>the</strong>red loess has<br />

not been preserved <strong>in</strong> <strong>the</strong> area, except for some special stratigraphic situations.<br />

These occur <strong>in</strong> <strong>the</strong> Riparo Tagliente <strong>in</strong> <strong>the</strong> Less<strong>in</strong>i plateau, (Bartolomei et alii,<br />

1982), a few kilometers NE of <strong>the</strong> area surveyed, where strata of fresh loess<br />

alternate with hearths <strong>and</strong> liv<strong>in</strong>g floors, dat<strong>in</strong>g back to <strong>the</strong> late Upper Palaeolithic.<br />

Fur<strong>the</strong>rmore, loess not affected by post-glacial pedogenesis can be found <strong>in</strong><br />

<strong>the</strong> sequence of <strong>the</strong> Torrion della Val Sorda (Chapter 4) where <strong>the</strong> loess, which<br />

is about 5 m thick, has been buried by a mora<strong>in</strong>e of <strong>the</strong> last Pleniglacial. The<br />

gra<strong>in</strong> size distribution of such sediments (Fig. 35) <strong>in</strong>dicates a good sort<strong>in</strong>g around<br />

<strong>the</strong> value of silt <strong>and</strong> a low clay content (10-15?). The unwea<strong>the</strong>red loess conta<strong>in</strong>s<br />

a small amount of calcium carbonate (1-5?). With regard to <strong>the</strong> heavy m<strong>in</strong>erals<br />

it is characterized by a strong prevalence of unstable m<strong>in</strong>erals of metamorphic<br />

paragenesis such as amphiboles <strong>and</strong> epidotes, com<strong>in</strong>g from <strong>the</strong> outwash pla<strong>in</strong> of<br />

<strong>the</strong> Garda glacier (Fig. 16).<br />

3.7. THE PRESENT INVESTIGATIONS<br />

To achieve <strong>the</strong> objectives of <strong>the</strong>se <strong>in</strong>vestigations (see section 1.3) it is<br />

essential to study <strong>the</strong> Quaternary l<strong>and</strong>scape genesis of <strong>the</strong> Central <strong>Po</strong> valley as a<br />

whole. It is evident from <strong>the</strong> review of <strong>the</strong> literature on <strong>the</strong> various parts ot <strong>the</strong><br />

Central <strong>Po</strong> valley, that <strong>the</strong> exist<strong>in</strong>g knowledge is often fragmental <strong>and</strong> of different<br />

quality <strong>and</strong> nature. With regard to correlations, if exist<strong>in</strong>g at all, <strong>the</strong> classical<br />

Alp<strong>in</strong>e stratigraphy has often been used, but this concept is far too simplistic <strong>and</strong><br />

unrealiable for this purpose. Therefore <strong>in</strong> so far as <strong>the</strong> l<strong>and</strong>scape genesis is<br />

concerned, <strong>the</strong> present <strong>in</strong>vestigations have followed an <strong>in</strong>ductive method, which<br />

comprises a number of phases. These determ<strong>in</strong>e <strong>the</strong> structure of <strong>the</strong> chapters 4,<br />

5,6. Their essentials are described as follows:<br />

— with<strong>in</strong> each ma<strong>in</strong> physiographic system a series of paleopedological <strong>and</strong>


esearch ON THE PHYSIOGRAPHY 59<br />

PAST<br />

T3<br />

C<br />

O-<br />

O<br />

o<br />

p-<br />


60 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

stratigraphic units has been identified, based on field observations <strong>and</strong><br />

analyses, as well as on a critical review of <strong>the</strong> exist<strong>in</strong>g local literature on <strong>the</strong><br />

Quaternary stratigraphy, soils <strong>and</strong> deposits.<br />

paleopedological <strong>and</strong> stratigraphic units with<strong>in</strong> each ma<strong>in</strong> physiographic system<br />

have been dated, as far as possible, by <strong>in</strong>dependent methods, <strong>in</strong> particular by<br />

magnetostratigraphy <strong>and</strong> archaeology (see Appendix 7).<br />

<strong>in</strong> mapp<strong>in</strong>g <strong>the</strong> physiographic units, areas compris<strong>in</strong>g lithostratigraphic <strong>and</strong><br />

pedostratigraphic entities have been identified <strong>and</strong> del<strong>in</strong>eated. This correlation<br />

is based on <strong>the</strong> <strong>in</strong>dependent methods, mentioned above.<br />

Met<br />

Vole<br />

ST<br />

Fig. 16 - Heavy m<strong>in</strong>eral composition of Upper Pleistocene loess. Met.: Heavy m<strong>in</strong>erals of metamorphic<br />

paragenesis (amphiboles, epidotes, kyanite etc.); Ko/r: Heavy m<strong>in</strong>erals of volcanic paragenesis<br />

(ma<strong>in</strong>ly Augites); Si: Stable heavy m<strong>in</strong>erals (zircon, tourmal<strong>in</strong>es <strong>and</strong> Ti ox.). A) Heavy m<strong>in</strong>eral<br />

composition related to Apenn<strong>in</strong>e s<strong>and</strong>stones; B) Heavy m<strong>in</strong>eral composition related to fluviatilc<br />

s<strong>and</strong> (1; Adige outwash pla<strong>in</strong>, 2; Garda outwash pla<strong>in</strong>, 3: <strong>Po</strong> river, 4: Secchia river; Middle Pleistocene<br />

fluvioglacial sediments: 5: Monte Netto, 6: Bagaggera); C) Late Pleistocene loess, (after <strong>Cremaschi</strong>,<br />

1983).<br />

Fig. 16 - Composizione <strong>in</strong> m<strong>in</strong>erali pesanti dei loess del Pleistocene superiore. Met.: m<strong>in</strong>erali pesanti<br />

di paragenesi metamorfica; vole.: m<strong>in</strong>erali pesanti di orig<strong>in</strong>e vulcanica; st: m<strong>in</strong>erali pesanti stabili.<br />

A) Composizione <strong>in</strong> m<strong>in</strong>erali pesanti delle arenarie appenn<strong>in</strong>iche; B) Composizione <strong>in</strong> m<strong>in</strong>erali<br />

pesanti di sabbie fluviali (1: piaña fluvioglaciale delTAdige, 2: piaña fluvioglaciale del Garda, 3:<br />

flume <strong>Po</strong>, 4: flume Secchia, sedimenti mediopleistocenici, 5, Monte Netto, 6, Bagaggera); C)<br />

composizione <strong>in</strong> m<strong>in</strong>erali pesanti dei loess del Pleistocene superiore.


4.<br />

QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS<br />

IN THE GARDA AREA*<br />

4.1 THE .n'RATIGRAPHIC SEQUENCE AND THE PALEOSOLS OF THE<br />

GARVARDO QUARRY (/oc. 1)<br />

This stratigraphic sequence is situated <strong>in</strong> a small valley SW of Gavardo<br />

bordered to <strong>the</strong> <strong>No</strong>rth, to <strong>the</strong> South <strong>and</strong> to <strong>the</strong> West by limestone hills of <strong>the</strong><br />

Coma Formation (Boni <strong>and</strong> Cass<strong>in</strong>is, 1973). To <strong>the</strong> East, <strong>the</strong> valley is separated<br />

from ancient mora<strong>in</strong>es <strong>and</strong> fluvioglacial deposits of <strong>the</strong> Garda Lake (stages of<br />

Monte Faita <strong>and</strong> Carpenedolo), which it may be correlated with (Fig. 17) by <strong>the</strong><br />

bed of <strong>the</strong> Chiese River <strong>and</strong> its Late Pleistocene deposits.<br />

The area were <strong>the</strong> Gavardo sequence has been described represents, accord<strong>in</strong>g<br />

to Fraenzle (1965), an ancient polje, downthrown to <strong>the</strong> pla<strong>in</strong> level because of<br />

teaonic lower<strong>in</strong>g of <strong>the</strong> pre-Alp<strong>in</strong>e marg<strong>in</strong>, <strong>and</strong> subsequently eroded by <strong>the</strong> Chiese<br />

river. This hypo<strong>the</strong>sis is <strong>in</strong> agreement with <strong>the</strong> neotectonic evidence observed <strong>in</strong> <strong>the</strong><br />

field survey of <strong>the</strong> area <strong>and</strong> it has been accepted <strong>in</strong> <strong>the</strong> present work.<br />

Luzzago M.<br />

E 3 2 H s H I 4 n U i 6 I___ I 7<br />

Fig. 17 - Cross section between Gavardo <strong>and</strong> <strong>the</strong> Monte Faita mora<strong>in</strong>e. 1) Coma limestone, 2)<br />

Scaglia limestone, 3) GAV 1 stratigraphic unit, 4) Middle Pleistocene mora<strong>in</strong>e <strong>and</strong> related fluvioglacial<br />

deposits, 5) Late Pleistocene mora<strong>in</strong>e <strong>and</strong> related fluvioglacial deposits; 6) GAV 4, 5, 6, 7<br />

stratigraphic units; 7) Holocene deposits along <strong>the</strong> Chiese river.<br />

Fig. 17 - Sezione Geológica fra Gavardo e la morena di Monte Faita; 2) calcare della formazione<br />

«Coma», 2) Scaglia; 3) unirá stratigrafica GAV 1; 4) morena del Pleistocene medio e depositi<br />

fluvKJglaciali connessi; 5) morena del Pleistocene superiore e depositi fluvioglacial! connessi; 6)<br />

umta stratigraflche GAV 4, 5, 6, 7; 7) depositi olocenici adiacenti I’alveo del Fiume Chiese.<br />

• Detailed descriptions of soil profiles, discussed <strong>in</strong> chapters 4, 5, 6 are <strong>in</strong>cluded <strong>in</strong> Appendix<br />

1 <strong>and</strong> la; equally <strong>the</strong> textural, micromorphological, m<strong>in</strong>eralogical <strong>and</strong> chemical analyses mentioned<br />

have been respectively recorded <strong>in</strong> Appendix 2, 3, 4, 5. The number of each locality or profile<br />

lexJoc. 1) refers to <strong>the</strong> location <strong>in</strong> <strong>the</strong> geological map enclosed <strong>in</strong> <strong>the</strong> Appendix 6.


62 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Inside <strong>the</strong> Gavardo Valley two morphological units can be dist<strong>in</strong>guished.<br />

They are separated by a ra<strong>the</strong>r smooth scarp, cut through <strong>the</strong> quarries, where <strong>the</strong><br />

stratigraphic sequence has been studied (Fig. 18). Venzo (1965) <strong>and</strong> Manc<strong>in</strong>i<br />

(1969) identified, at <strong>the</strong> base of <strong>the</strong> sequence, gravels that <strong>the</strong>y referred to as<br />

Günz mora<strong>in</strong>e. These gravels are overla<strong>in</strong> by glaciolacustr<strong>in</strong>e clay of <strong>the</strong> same<br />

age. These deposits would be covered by a M<strong>in</strong>del mora<strong>in</strong>e wea<strong>the</strong>red by a thick<br />

«Ferretto», which is <strong>in</strong> its turn overla<strong>in</strong> by loess of Riss <strong>and</strong> Würm age.<br />

The open<strong>in</strong>g of a deeper quarry, near <strong>and</strong> parallel to <strong>the</strong> previously described<br />

one, has allowed a more detailed study of <strong>the</strong> sequence. In particular <strong>the</strong> gravels<br />

referred to Günz <strong>and</strong> <strong>the</strong> overly<strong>in</strong>g lacustr<strong>in</strong>e clays are not at <strong>the</strong> base of <strong>the</strong><br />

sequence, but <strong>the</strong>y lie upon a flexure <strong>and</strong> belong to a younger sedimentary cycle.<br />

The base of <strong>the</strong> sequence is represented by <strong>the</strong> «Colluvial Clays» of Venzo, which<br />

actually are a paleosol <strong>in</strong> situ (Fig. 19).<br />

The follow<strong>in</strong>g stratigraphic units can be dist<strong>in</strong>guished from top to bottom of<br />

<strong>the</strong> new pit (Fig. 19).<br />

'f: I<br />

*T- ■<br />

GAV 7; colluvial silt loam; at its base fragments of bricks, stones <strong>and</strong><br />

archaeologic rema<strong>in</strong>s of a Roman age kiln are exposed.<br />

On <strong>the</strong>se sediments a profile with Ap/B horizon has been observed: macroscopic<br />

<strong>in</strong>dications of clay translocation are completely absent; l<strong>in</strong>ear, erosive<br />

boundary to:<br />

GAV 6: strongly wea<strong>the</strong>red loess, mottled <strong>and</strong> <strong>in</strong>clud<strong>in</strong>g common Fe-Mn<br />

nodules, ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> lower part.<br />

At <strong>the</strong> base of <strong>the</strong> unit Middle Palaeolithic artifacts have been collected (some<br />

flackes <strong>and</strong> a déjete scraper), belon<strong>in</strong>g to <strong>the</strong> Mousterian culture (Fig. 36)<br />

(Baroni et alii, <strong>in</strong> press). The artifacts show sharp edges <strong>and</strong> <strong>the</strong>y have not<br />

undergone any postdepositional transport; l<strong>in</strong>ear limit to:<br />

GAV 5: lacustr<strong>in</strong>e s<strong>and</strong> <strong>and</strong> silt with scattered gravel. The sediments are<br />

massive, with poorly evident planar bedd<strong>in</strong>g; dark <strong>in</strong> color at <strong>the</strong> top (5 YR<br />

3/1), <strong>and</strong> gray-green <strong>in</strong> <strong>the</strong> lower part (5 GY 6/4).


q u a te r n a r y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 63<br />

GAVARDO l o g 1<br />

----------A p<br />

G A V 7<br />

G R A IN S IZ E Fe 2 W.<br />

10 15 20% 0 1 2<br />

G A V 6<br />

nB2t<br />

G A V 5<br />

G A V 4<br />

nZB32t<br />

r<br />

^ M o u s te r ia n a r t ifa c t s<br />

Fig. 19 - The Gavardo profile,<br />

f/ j. - II profile di Gavardo.


T T<br />

64 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

They p<strong>in</strong>ch out <strong>No</strong>rthwards, <strong>and</strong> thicken towards <strong>the</strong> South. Fur<strong>the</strong>rmore<br />

<strong>the</strong>y <strong>in</strong>clude scarce pollen of Pirns, Cupressaceae <strong>and</strong> Cyperaceae (<strong>Cremaschi</strong>, <strong>in</strong><br />

press). Abrupt <strong>and</strong> erosive limit to:<br />

GAV 4: poorly sorted gravel <strong>and</strong> s<strong>and</strong>, composed of prevail<strong>in</strong>g clasts of<br />

metamorphic, crystall<strong>in</strong>e <strong>and</strong> volcanic rocks. Bedd<strong>in</strong>g has been observed only <strong>in</strong><br />

<strong>the</strong> lower part, were it is discont<strong>in</strong>uous <strong>and</strong> planar.<br />

The gravels are wea<strong>the</strong>red <strong>and</strong> horizons IV B31t, <strong>and</strong> IB B32t can be<br />

dist<strong>in</strong>guished; not exposed boundary.<br />

Units 4, 5 <strong>and</strong> 6 p<strong>in</strong>ch out laterally aga<strong>in</strong>st <strong>the</strong> scarp produced hy a flexure<br />

which displaces <strong>the</strong> older units that can be described as follows.<br />

'V rA"i'<br />

i'<br />

■"'-■•'’i ’-^ " - '- -'•is - -:#2<br />

3iv-5ià5'3ni.'


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 6 5<br />

The cumulative curves (Fig. 20) of <strong>the</strong> horizons of <strong>the</strong> GAV 1 unit, do not<br />

represent <strong>the</strong> real gra<strong>in</strong> size distribution of <strong>the</strong> soil horizons, due to <strong>the</strong> high<br />

amount of iron hydroxides, <strong>and</strong> consequent poor dispersion of <strong>the</strong> sample dur<strong>in</strong>g<br />

<strong>the</strong> gra<strong>in</strong> size analysis (see Appendix 2).<br />

Micromorphological characteristics. Horizon II B2t (G AV 6) developed from <strong>the</strong><br />

eolian deposits, shows evident hydromorphic characteristics. In fact many areas<br />

with low iron content <strong>and</strong> consequently discoloured can be observed <strong>in</strong>side <strong>the</strong><br />

plasma as well as some gra<strong>in</strong>y cutans <strong>and</strong> Fe-Mn nodules. The pédologie features<br />

ma<strong>in</strong>ly consist of complex cutans where <strong>the</strong> coarse illuviation is well<br />

developed. Fur<strong>the</strong>rmore fluidal trends of <strong>the</strong> mica-lithorelicts can be observed.<br />

The characteristics of <strong>the</strong> loess of GAV 2 (horizons VI B/C) <strong>in</strong>dicate a slight<br />

wea<strong>the</strong>r<strong>in</strong>g: <strong>the</strong> matrix is slightly sepic <strong>and</strong> <strong>the</strong> <strong>in</strong>dications for translocation of<br />

clay are very poor.<br />

The horizons IV B31t <strong>and</strong> V B32t (GAV 4) differ from <strong>the</strong> overly<strong>in</strong>g<br />

horizons by <strong>the</strong> more pronounced rubéfaction of <strong>the</strong> plasma <strong>and</strong> by a clear<br />

<strong>in</strong>crease of <strong>the</strong> ferri-argillans wich represent almost entirely <strong>the</strong> plasmatic fraction<br />

<strong>in</strong>side horizon V B31t. Both soils developed <strong>in</strong> GAV 3 (V B22t, V B31t, V<br />

B32t) <strong>and</strong> GAV 4 (IV B22, IV B31) units are characterized by a high concentration<br />

of ferri-argillans. Inside <strong>the</strong> GAV 3 horizons, <strong>the</strong> very thick ferri-argillans<br />

are lam<strong>in</strong>ated <strong>and</strong> strongly biréfr<strong>in</strong>gent, while <strong>in</strong> <strong>the</strong> G AV 4 unit <strong>the</strong>y are much<br />

more wea<strong>the</strong>red, less biréfr<strong>in</strong>gent <strong>and</strong> lam<strong>in</strong>ation becomes discont<strong>in</strong>uos <strong>and</strong> less<br />

evident.<br />

The horizons V B22t <strong>and</strong> V- B31t conta<strong>in</strong> a great amount of pedorelicts,<br />

which orig<strong>in</strong>ate from <strong>the</strong> horizons VII B21 <strong>and</strong> B22 (GAV 1). Their abundant<br />

presence po<strong>in</strong>ts to a strong truncation of <strong>the</strong> underly<strong>in</strong>g paleosol <strong>and</strong> <strong>the</strong> poor<br />

capability of selection of <strong>the</strong> sedimentary agent by which GAV 3 was deposited,<br />

which must be <strong>the</strong>refore related <strong>in</strong>to a proximal fluvioglacial sedimentary facies.<br />

The paleosol of <strong>the</strong> GAV 1 unit shows characteristics different from those of<br />

<strong>the</strong> overly<strong>in</strong>g paleosol. In horizons VII B21 <strong>and</strong> B22 <strong>the</strong> argillans are absent, <strong>the</strong><br />

plasma consists ma<strong>in</strong>ly of strongly rubefied iron hydroxides <strong>and</strong> it is poorly<br />

biréfr<strong>in</strong>gent <strong>and</strong> sometimes isotic.<br />

.•\ngular polyhedric micropeds of s<strong>and</strong> size are common (pseudos<strong>and</strong>s).<br />

Glomerular micropeds <strong>and</strong> pedotubules covered by manganese are present especially<br />

<strong>in</strong> horizon VII B21. They <strong>in</strong>dicate a strong mix<strong>in</strong>g of <strong>the</strong> horizon by<br />

biological activity. A few ferri-argillans, slightly biréfr<strong>in</strong>gent <strong>and</strong> poorly<br />

separated, are present <strong>in</strong>side <strong>the</strong> largest pores <strong>in</strong> <strong>the</strong> lowermost horizons.<br />

The pores of <strong>the</strong> paleosol of unit G A V l are covered by ferri-mangans that<br />

overlie all <strong>the</strong> o<strong>the</strong>r plasmic separations, <strong>and</strong> <strong>the</strong>refore <strong>the</strong>y have to be regarded<br />

as <strong>the</strong> last micromorphological event which affected <strong>the</strong> paleosol.<br />

Si<strong>in</strong>eralogical charachteristics. Heavy m<strong>in</strong>erals of metamorphic paragenesis are<br />

already present <strong>in</strong> <strong>the</strong> lowermost horizons (GAV I unit) of <strong>the</strong> Gavardo<br />

sequence. This proves that also <strong>in</strong> <strong>the</strong>se layers <strong>the</strong> parent material, from which<br />

paleosol GAV 1 developed, has a provenance outside <strong>the</strong> Pre-Alp<strong>in</strong>e area, where<br />

limestones are preval<strong>in</strong>g <strong>in</strong> which heavy m<strong>in</strong>erals of metamorphic paragenesis are


Ill<br />

66 PALEOSOLS AND VETUSOLS IN THE CENTRAL PQ pla<strong>in</strong><br />

Fig. 20 - The cumulative curves of <strong>the</strong> Gavardo profile, (t) = top, (b) = bottom.<br />

Fig. 20 - Curve granulometriche cumulative del profile di Gavardo.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 6 7<br />

virtually absent. This is <strong>in</strong>dicated by <strong>the</strong> heavy m<strong>in</strong>eral composition of <strong>the</strong><br />

Pliocene s<strong>and</strong>s of S. Bartolomeo (Appendix 4), where Ti oxides <strong>and</strong> zircon are<br />

prevalent, which should be reguarded of Pre-Alp<strong>in</strong>e orig<strong>in</strong>.<br />

In <strong>the</strong> stratigraphic sequence (Fig. 19) <strong>the</strong> heavy m<strong>in</strong>eral association varies<br />

accord<strong>in</strong>g to <strong>the</strong> <strong>in</strong>tensity of <strong>the</strong> pedogenetic processes. Even if it rema<strong>in</strong>s qualitatively<br />

similar, <strong>the</strong>re is a gradual downward <strong>in</strong>crease of stable species. The X-ray<br />

analyses do not display significant differences of <strong>the</strong> clay m<strong>in</strong>eral composition<br />

<strong>in</strong>side <strong>the</strong> sequence. These are represented by k<strong>and</strong>ite, illite <strong>and</strong> vermicuhte.<br />

Chtmical characteristics. In <strong>the</strong> Gavardo sequence, carbonates are absent, <strong>the</strong><br />

exchange capacity <strong>and</strong> base saturation are low <strong>and</strong> consequently <strong>the</strong> pH is low.<br />

Free iron content rises with depth, <strong>and</strong> shows a clear <strong>in</strong>crease <strong>in</strong> <strong>the</strong> VII B21<br />

horizon, that po<strong>in</strong>ts to strong wea<strong>the</strong>r<strong>in</strong>g, also proved by <strong>the</strong> micromorphological<br />

analysis. Both CEC <strong>and</strong> base saturation (Appendix 3) are ra<strong>the</strong>r<br />

low throughout <strong>the</strong> whole profile.<br />

Paltomagnetic stratigraphy. The Gavardo stratigraphic sequence was found to<br />

have direct magnetic polarity (Tucholka, <strong>in</strong> press). This should not a priori be<br />

<strong>in</strong>terpreted by relat<strong>in</strong>g <strong>the</strong> whole sequence to <strong>the</strong> Bruhnes Epoch as this would<br />

be <strong>in</strong> clear contradiction to <strong>the</strong> stratigraphy <strong>and</strong> <strong>the</strong> regional geological sett<strong>in</strong>g.<br />

On <strong>the</strong> basis of <strong>the</strong> micromorphological study it is more likely that <strong>the</strong> last<br />

generation of mangans <strong>and</strong> ferrans which are prevail<strong>in</strong>g <strong>in</strong> <strong>the</strong> paleosol of unit<br />

G.'W 1, took place when <strong>the</strong> ma<strong>in</strong> features of <strong>the</strong> paleosol <strong>in</strong> unit GAV 1 had<br />

already been developed, probably for a long time already, with a consequent<br />

obliteration of <strong>the</strong> previous magnetism.<br />

Therefore, <strong>the</strong> magnetostratigraphy is not, by itself, suitable to date <strong>the</strong><br />

Gavardo sequence. On <strong>the</strong> base of correlation with <strong>the</strong> o<strong>the</strong>r sequences of<br />

Ciliverghe, Chiese <strong>and</strong> Castenedolo, discussed <strong>in</strong> fur<strong>the</strong>r sections, <strong>the</strong> GAV 1<br />

unit <strong>and</strong> <strong>the</strong> GAV 2 probably, could be older than <strong>the</strong> Brunhes Epoch.<br />

Discussion. The orig<strong>in</strong> of <strong>the</strong> parent material of <strong>the</strong> paleosol of G AV 1 is<br />

uncerta<strong>in</strong>.<br />

It cannot be represented by <strong>the</strong> limestone <strong>in</strong>to which <strong>the</strong> Gavardo valley is<br />

cut, given <strong>the</strong> presence of <strong>the</strong> metamorphic heavy m<strong>in</strong>erals <strong>and</strong> <strong>the</strong> rare pebbles<br />

of chert that can be found sporadically <strong>in</strong> <strong>the</strong> paleosol. These suggest a fluvial<br />

orig<strong>in</strong> <strong>and</strong> a wide feed<strong>in</strong>g bas<strong>in</strong>. A glacial period with formation of ice wedges<br />

<strong>and</strong> deposition of loess (GAV 2) <strong>in</strong>terrupts <strong>the</strong> evolution of <strong>the</strong> deepest paleosol<br />

<strong>and</strong> buries it def<strong>in</strong>itively. The deposition of <strong>the</strong> fluvioglacial sediments of unit<br />

GAV 3 should be related to <strong>the</strong> same glacial period. This unit, accord<strong>in</strong>g to <strong>the</strong><br />

geological sett<strong>in</strong>g, can be correlated with one of <strong>the</strong> oldest glacial advances <strong>in</strong> <strong>the</strong><br />

Garda area.<br />

A long pedogenetic phase follows <strong>the</strong>ir deposition <strong>and</strong> precedes <strong>the</strong> tectonic<br />

dislocation of <strong>the</strong> sequence. It is <strong>the</strong>refore probable that an important stratigraphic<br />

hiatus separates unit GAV 3 from unit GAV 4.<br />

Ihe deposits of unit GAV 4 have a fluvioglacial orig<strong>in</strong> too. Never<strong>the</strong>less <strong>the</strong><br />

smaller size of <strong>the</strong> clasts <strong>in</strong>dicates that <strong>the</strong> fronts of <strong>the</strong> glaciers were much


68 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

- -<br />

.'1 . j w y i 'S<br />

i<br />

far<strong>the</strong>r removed from <strong>the</strong> Gavardo site than dur<strong>in</strong>g <strong>the</strong> previous stages. In <strong>the</strong><br />

top <strong>the</strong> next paleosol develops, which <strong>in</strong> its turn is buried by lacustr<strong>in</strong>e sediments<br />

(GAV 5) <strong>and</strong> loess (GAV 6) which, accord<strong>in</strong>g to its sedimentological chararteristics,<br />

to <strong>the</strong> pollen content <strong>and</strong> to <strong>the</strong> archaeological (Mousterian artifaas)<br />

content can be referred to <strong>the</strong> last glacial period. In Holocene times, dur<strong>in</strong>g <strong>the</strong><br />

Roman age, <strong>the</strong> loesses were exploited for brick production. The thick layer of<br />

colluvium which buries <strong>the</strong> Roman brick-works <strong>in</strong>dicates a phase of generalized<br />

erosion of <strong>the</strong> area dur<strong>in</strong>g latest Holocene times.<br />

Therefore <strong>in</strong> <strong>the</strong> Gavardo sequence <strong>the</strong> occurrence is recorded, dur<strong>in</strong>g <strong>the</strong><br />

Pleistocene, of at least 4 glacial stages, followed by a pedogenetic phase. The<br />

first stage <strong>and</strong> <strong>the</strong> last are testified by loess.<br />

The paleosol developed <strong>in</strong> <strong>the</strong> GAV 1 unit represents a long wea<strong>the</strong>r<strong>in</strong>g<br />

period with non-glacial climatic conditions <strong>and</strong> its paleonvironmental significance<br />

will be fur<strong>the</strong>r discussed.<br />

In spite of <strong>the</strong> complexity of <strong>the</strong> sequence, direct dat<strong>in</strong>gs are scarce <strong>and</strong><br />

concern only <strong>the</strong> uppermost units (GAV 5, GAV 6). By means of stratigraphic<br />

correlations (see section 4, 9) <strong>the</strong> units G AV 4, 3, could be referred to <strong>the</strong><br />

Middle Pleistocene, <strong>the</strong> GAV 1 <strong>and</strong> probably GAV 2 unit, possibly to <strong>the</strong> Early<br />

Pleistocene.<br />

4.2. THE STRATIGRAPHIC SEQUENCE OF THE CILIVERGHE HILL<br />

(loc. 7)<br />

Near <strong>the</strong> Ciliverghe village, a terrace rises from <strong>the</strong> fluvioglacial pla<strong>in</strong>. This<br />

terrace has an elongated shape trend<strong>in</strong>g N-NE, <strong>and</strong> is about 1 km long. It<br />

consists of Pleistocene cont<strong>in</strong>ental deposits, already known <strong>in</strong> <strong>the</strong> older geological<br />

literature; (Sacco, 1896) reports mar<strong>in</strong>e s<strong>and</strong>s at <strong>the</strong> base of cont<strong>in</strong>ental sequence.<br />

Penck (1909) recognizes <strong>in</strong>side <strong>the</strong> sequence a mora<strong>in</strong>e deposit which he refers<br />

to <strong>the</strong> M<strong>in</strong>del, covered by alluvial sediments. Caldera (1916) <strong>and</strong> Bonom<strong>in</strong>i<br />

(1926) consider <strong>the</strong> whole sequence to be cont<strong>in</strong>ental deposits, among which <strong>the</strong><br />

most ancient ones should date back to <strong>the</strong> Gi<strong>in</strong>z. Venzo (1965) published a field<br />

survey at 1:25,000 scale of <strong>the</strong> hill <strong>and</strong> refers it to a M<strong>in</strong>del mora<strong>in</strong>e overly<strong>in</strong>g<br />

fluvial conglomerate. More recently Capponi (1968) described <strong>in</strong> <strong>the</strong> lower part<br />

of <strong>the</strong> Ciliverghe sequence till deposits buried by fluvial deposits which are <strong>in</strong><br />

<strong>the</strong>ir turn overla<strong>in</strong> by fluvioglacial deposits <strong>and</strong> loess. Manc<strong>in</strong>i (1969) studied <strong>the</strong><br />

soil formation <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> sequence <strong>and</strong> recognized a paleosol of <strong>the</strong><br />

«Ferretto» type, referred to <strong>the</strong> M<strong>in</strong>del-Riss.<br />

In <strong>the</strong> last years <strong>the</strong> southwestern edge of <strong>the</strong> Ciliverghe hill has been cut as<br />

a result of road works for <strong>the</strong> Brescia-Lonato higway; <strong>the</strong> stratigraphic sequence<br />

described below was exposed <strong>in</strong> <strong>the</strong> SW edge of <strong>the</strong> Ciliverghe hill. From <strong>the</strong> top<br />

<strong>the</strong> follow<strong>in</strong>g units (Fig. 21) can be recognized.<br />

' -iii ■<br />

CIL 6: polygenic cover of loess which fills a depression cut <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g<br />

stratigraphic unit. Field observations, textural features <strong>and</strong> heavy m<strong>in</strong>eral analyses<br />

(App. 3, 4, 5) allow to recognize <strong>in</strong>side this unit three superimposed layers of<br />

Irlii


quaternary d e p o s it s, v e t u s o l s a n d p a l e o s o l s 69<br />

loess separated by two pedogenetic sequa.<br />

The uppermost consists of a sequence of horizons Ap, B l, II B21tx, II B22 cn,<br />

II B23g. The horizon II B22 cn <strong>in</strong>cludes a lithic <strong>in</strong>dustry of Mousterian typology<br />

Baroni et alii, 1984) (Fig. 36). This proves <strong>the</strong> presence <strong>in</strong>side <strong>the</strong> loess cover,<br />

of a buried surface <strong>and</strong> allows to assert that this cover actually consists of dist<strong>in</strong>ct<br />

layers belong<strong>in</strong>g to <strong>the</strong> same pedological sequum. Ano<strong>the</strong>r cover of wea<strong>the</strong>red<br />

loess is present underneath, with<strong>in</strong> which <strong>the</strong> horizons III Bl III B21tx, III B2tg<br />

can be recognized. Numerous fragments of chert with sharp edges <strong>and</strong> of<br />

colluvial orig<strong>in</strong> can be found at <strong>the</strong> base of this horizon. This cover overlies, with<br />

<strong>and</strong> abrupt contact <strong>and</strong> a clear angular unconformity, o<strong>the</strong>r silty sediments of<br />

probable eolian orig<strong>in</strong>, which show evident rubéfaction <strong>and</strong> well developed<br />

structure (I\" B21t). The boundary to <strong>the</strong> underly<strong>in</strong>g unit is gradual.<br />

Cll. 5: poorly sorted fluvioglacial gravel, consist<strong>in</strong>g of strongly wea<strong>the</strong>red<br />

crystall<strong>in</strong>e <strong>and</strong> volcanic rocks. The vetusol that has developed <strong>in</strong> <strong>the</strong>se gravels<br />

consists of <strong>the</strong> horizons V B22t, V B31t <strong>and</strong> VI C ca. The salient characteristics<br />

of <strong>the</strong> profile are <strong>the</strong> rubéfaction, <strong>the</strong> strong accumulation of clay, <strong>the</strong> heavy<br />

wea<strong>the</strong>r<strong>in</strong>g of stones <strong>and</strong> <strong>the</strong> accumulation of calcium carbonate at <strong>the</strong> base of<br />

<strong>the</strong> profile form<strong>in</strong>g a strongly cemented calcic horizon with abrupt <strong>and</strong><br />

undulat<strong>in</strong>g upper boundary; gradual lower boundary to:<br />

2) ■The (aliverghc sequence.<br />

21 - successione stratigrafica di Ciliverghe.


70 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAji,<br />

CIL 4: gravel <strong>and</strong> loose fluvial crossbedded s<strong>and</strong>s. The pebbles are well<br />

rounded with a maximum diameter rang<strong>in</strong>g from 3 to 5 cm. Black limestone of<br />

<strong>the</strong> Valsabbia are prevail<strong>in</strong>g. The upper part of <strong>the</strong> unit is discont<strong>in</strong>uously cemented;<br />

clear l<strong>in</strong>ear boundary to:<br />

CIL 3; glaciolacustr<strong>in</strong>e deposits: lam<strong>in</strong>ated calcareous marls <strong>in</strong>terbedded with<br />

f<strong>in</strong>e s<strong>and</strong> <strong>and</strong> clayey silt. The boundary to <strong>the</strong> underly<strong>in</strong>g unit is abrupt, displaced<br />

along a fault (Fig. 21). The unit is sightly tilted towards <strong>the</strong> East.<br />

V* j- ¿i ^'4<br />

•J '• a^,A - ^--1«<br />

V'^' ~*wiiif '’<br />

CIL 2: loose mora<strong>in</strong>e deposits, consist<strong>in</strong>g of gravel with pebbles <strong>and</strong> poork<br />

sorted angular blocks of pre-Alp<strong>in</strong>e limestone <strong>and</strong> of few volcanics, metamorphic<br />

<strong>and</strong> granitoid rocks (Fig. 21). The clasts are matrix-supported <strong>and</strong> show clear<br />

glacial striations. The contact with <strong>the</strong> underly<strong>in</strong>g unit, <strong>in</strong> a stratigraphic sense,<br />

is abrupt <strong>and</strong> subvertical due to fault<strong>in</strong>g.<br />

CIL 1: strongly cemented mora<strong>in</strong>e deposits, of <strong>the</strong> same composition as that<br />

of <strong>the</strong> overly<strong>in</strong>g one, <strong>in</strong>clud<strong>in</strong>g angular blocks of several cubic metres of volume,<br />

consist<strong>in</strong>g of limestone of <strong>the</strong> «Coma» type. The deposit is usually non-bedded,<br />

but westwards it shows a slight planar bedd<strong>in</strong>g. The lower limit cannot be<br />

observed.<br />

Textural characteristics. The loesses of CIL 6 show unimodal curves, <strong>in</strong>dicative<br />

of moderate sort<strong>in</strong>g, with maxima around <strong>the</strong> values of medium <strong>and</strong> coarse sik<br />

(Fig. 23).<br />

The s<strong>and</strong> content ranges from 6 to 15? <strong>and</strong> can be attributed to <strong>the</strong> suppiv<br />

of more or less s<strong>and</strong> dur<strong>in</strong>g <strong>the</strong> aeolian sedimentation. The clay content range?<br />

from 17 to 31? <strong>and</strong> its <strong>in</strong>crease <strong>in</strong> directly correlated with <strong>the</strong> presence o:<br />

argillans <strong>and</strong> with <strong>the</strong> Bt horizons. The vetusol <strong>in</strong> gravel (CIL 5) conta<strong>in</strong>s up<br />

59.7? of clay, <strong>the</strong> s<strong>and</strong> content ranges form 15.5? <strong>in</strong> B22t horizon up to 19.4J <strong>in</strong><br />

V B31t horizon.<br />

Micromorphological characteristics. The three upper loess covers, with<strong>in</strong> <strong>the</strong> Cil 1<br />

unit show similar characteristics. The aeolian nature of <strong>the</strong> sediment is well<br />

testified by <strong>the</strong> moderate selection of <strong>the</strong> skeleton gra<strong>in</strong>s <strong>and</strong> <strong>the</strong> scarce<br />

occurrence of lithorelicts. The plasma is slightly sepic, except for horizon II<br />

B23g, where also <strong>the</strong> illuvial clay content is higher than usual.<br />

The basic fabric is commonly porphyroskelic, except <strong>in</strong> <strong>the</strong> buried III Bl,<br />

where it is agglomeroplasmic.<br />

The voids are represented by channells, vughs <strong>and</strong> chambers. The metavugh?.<br />

sometimes with vesicular shape, characterize especially <strong>the</strong> fragipan horizons that<br />

lie on top of each sequum. Iron manganese redistributions or reduction-oxidation<br />

phenomena are common <strong>in</strong> all horizons <strong>and</strong> <strong>the</strong>y show a distribution <strong>in</strong> accordance<br />

with <strong>the</strong> field observations, s<strong>in</strong>ce <strong>the</strong>y become very frequent <strong>in</strong>side <strong>the</strong><br />

pseudogley horizons. They consist of mangans <strong>and</strong> neomangans, gra<strong>in</strong>y cutans.


d e p o s it s , v e t u s o l s a n d p a l e o s o l s 71<br />

quaternary<br />

CILIVERGHE<br />

L O G 7<br />

GRAIN SIZE<br />

W.l.<br />

0 50 100% 0 0,5<br />

i— 1__I__1_L<br />

C IL 6<br />

L<br />

CIL 5<br />

rO<br />

-3 m<br />

22 - The Cilivcrghe profile.<br />

22 - II profile di Cilivcrghe.


î<br />

i [<br />

72 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PlAl,<br />

■'î :<br />

m<br />

iron <strong>and</strong> manganese nodules. The plasma is generally separated <strong>in</strong>to reduced <strong>and</strong><br />

oxidized areas. While <strong>in</strong> <strong>the</strong> latter it is dark coloured <strong>and</strong> shows patterns of iron<br />

accumulation, <strong>in</strong> <strong>the</strong> former it is strongly bleached <strong>and</strong> <strong>the</strong> ferri-argillans arc<br />

iron depleted <strong>and</strong> wea<strong>the</strong>red. The reduced areas prevail along <strong>the</strong> faces of <strong>the</strong> peds<br />

<strong>and</strong> correspond to <strong>the</strong> tongues, at a macroscopic level.<br />

In all B horizons developed <strong>in</strong> loess, illuviation cutans are well evident arw<br />

are represented both by ferri-argillans <strong>and</strong> argillans, often decolourized <strong>and</strong><br />

biréfr<strong>in</strong>gent, <strong>and</strong> by complex cutans. They are present throughout <strong>the</strong> profil«,<br />

but <strong>the</strong>ir presence <strong>and</strong> <strong>the</strong>ir ratios are strongly variable <strong>and</strong> very significant for<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> pedogenetic discont<strong>in</strong>uities. In <strong>the</strong> uppermost loess cover th<strong>in</strong>, well<br />

preserved ferri-argillans prevail. On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> II <strong>and</strong> III B21ti<br />

horizons, <strong>the</strong> complex cutans are strongly developed, especially <strong>in</strong> those panse<br />

<strong>the</strong> B horizons which have a fragipan character. In each sequum, below thc^t<br />

fragipans <strong>the</strong>y gradually decrease.<br />

The IV B21t horizon, <strong>in</strong> addition to <strong>the</strong> complex cutans described above bs<br />

a plasma which is much higher <strong>in</strong> iron content, <strong>and</strong> has thick <strong>and</strong> well préservai<br />

ferri-argillans.<br />

In <strong>the</strong> paleosol <strong>in</strong> gravel (B 22t, B31t), <strong>the</strong> plasma is very rich <strong>in</strong> iror.<br />

content <strong>and</strong> shows an evident rubéfaction, <strong>the</strong> basic fabric is porphyroskelic ana<br />

<strong>the</strong> plasmic fabric varies from argillasepic to bimasepic.<br />

The distribution of cutans is remarkable: <strong>the</strong> complex cutans prevail <strong>in</strong> <strong>the</strong><br />

uppermost horizons, while <strong>the</strong> fairly abundant ferry-argillans have a low birefngence<br />

<strong>and</strong> poor <strong>in</strong>ternal lam<strong>in</strong>ation. Downward <strong>the</strong> complex cutans decrease <strong>and</strong><br />

ferri-argillans become dom<strong>in</strong>ant <strong>and</strong> represent most of <strong>the</strong> plasma. The latter<br />

cutans gradually change <strong>in</strong>to strongly biréfr<strong>in</strong>gent lam<strong>in</strong>ated cutans. The prc'<br />

are represented ma<strong>in</strong>ly by planes, due to <strong>the</strong> large amount of clay.<br />

The C ca horizon has a cry Stic plasma, due to <strong>the</strong> presence of sparry calcitc<br />

which covers <strong>and</strong> cements <strong>the</strong> skeleton gra<strong>in</strong>s.<br />

M<strong>in</strong>eralogical characteristics. The heavy m<strong>in</strong>erals are ma<strong>in</strong>ly represented by<br />

amphiboles <strong>and</strong> epidotes <strong>and</strong> o<strong>the</strong>r of metamorphic paragenesis (Appendix 5)<br />

Along <strong>the</strong> sequence <strong>the</strong> ratios between stable <strong>and</strong> unstable m<strong>in</strong>erals change'<br />

clearly <strong>and</strong> <strong>in</strong>dicates, as <strong>in</strong> Gavardo, a progressively stronger wea<strong>the</strong>r<strong>in</strong>g towari<br />

<strong>the</strong> base. The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex of horizon IIIB24 (Fig. 22), ra<strong>the</strong>r high, show' j<br />

different tendency. This can be expla<strong>in</strong>ed by consider<strong>in</strong>g that, s<strong>in</strong>ce <strong>the</strong> honzr^<br />

is of colluvial nature, it consists of eroded material from older soils <strong>and</strong> frtsn<br />

loess. In <strong>the</strong> CIL 5 soil a gradual decrease of <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex from topic<br />

bottom can be observed between horizons B2 <strong>and</strong> B3. The X-ray analyses of <strong>the</strong><br />

clay do not po<strong>in</strong>t to significant differences <strong>in</strong> clay m<strong>in</strong>eralogy: <strong>in</strong> all horizon'<br />

<strong>the</strong> clay fractions consist of vermiculite, chlorite <strong>and</strong> smectite as well as o'<br />

k<strong>and</strong>ite.<br />

Chemical analyses. The carbonates are leached from units Cil 6 <strong>and</strong> Cil -•<br />

while <strong>the</strong>ir amount is high <strong>in</strong> <strong>the</strong> horizon C ca, at <strong>the</strong> lower part of <strong>the</strong> Cil 5 und<br />

where <strong>the</strong>y strongly <strong>the</strong> underly<strong>in</strong>g s<strong>and</strong>s <strong>and</strong> gravels (CIL 4).<br />

The peaks of <strong>the</strong> free iron content are clearly related to <strong>the</strong> clay accumui»-<br />

tions along <strong>the</strong> profile.


q u a t e r n a r y<br />

d e p o s it s, v e t u s o l s a n d p a l e o s o l s<br />

7 3<br />

— T “<br />

1- t) I5B21t C<br />

2- b) I7B21t C<br />

3- VB22 t<br />

4.7B31t<br />

5-VB31t<br />

u<br />

b]<br />

1 ^<br />

^


74 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAA<br />

Paleomagnetic stratigraphy. It has not been possible to measure <strong>the</strong> residual<br />

magnetism of units CIL 1 <strong>and</strong> CIL 2, because of <strong>the</strong> type of sediment <strong>and</strong> of <strong>the</strong><br />

strong cementation which did not allow a good sampl<strong>in</strong>g. The rema<strong>in</strong><strong>in</strong>g uniu<br />

CIL 3 <strong>and</strong> CIL 4 turned out to be of direct magneti2ation <strong>and</strong> <strong>the</strong>refore <strong>the</strong>s<br />

belong to <strong>the</strong> Bruhnes epoch (Tukolka, <strong>in</strong> press).<br />

Discussion. Units CIL 1 <strong>and</strong> CIL 2 represent <strong>the</strong> most outly<strong>in</strong>g mora<strong>in</strong>e of <strong>the</strong><br />

Garda mora<strong>in</strong>e system. Their base does not crop out, but if <strong>the</strong> observations of<br />

Sacco are accepted, it should consist of mar<strong>in</strong>e sediments. The contact between<br />

units CIL 2 <strong>and</strong> CIL 3 is due to fault<strong>in</strong>g.<br />

Unit CIL 3, barren of pollen, must be <strong>in</strong>terpreted as a deposit of a progladal<br />

lake, <strong>the</strong> overly<strong>in</strong>g gravels (CIL 4) are of fluviatile orig<strong>in</strong> <strong>and</strong> are composed of<br />

black limestones com<strong>in</strong>g from <strong>the</strong> Pre-Alp<strong>in</strong>e Jurassic limestones of <strong>the</strong> Val<br />

Sabbia (Fig. 11). They completely lack metamorphic or crystall<strong>in</strong>e rocks of gladal<br />

orig<strong>in</strong> (see section 3. 2.1.); <strong>the</strong>refore when <strong>the</strong>y were deposited no glacier was<br />

occupy<strong>in</strong>g <strong>the</strong> Garda lake <strong>and</strong> <strong>the</strong> Brescia pla<strong>in</strong>.<br />

The gravels of <strong>the</strong> CIL 5 unit, even if <strong>the</strong>y are strongly affected by wea<strong>the</strong>r<strong>in</strong>g,<br />

clearly consist of materials of Central Alp<strong>in</strong>e orig<strong>in</strong> (volcanics, metamorphic<br />

<strong>and</strong> granitoid rocks) <strong>and</strong> <strong>the</strong>ir deposition co<strong>in</strong>cides with a new advance of a<br />

glacier along <strong>the</strong> Garda furrow.<br />

Wea<strong>the</strong>r<strong>in</strong>g processes acted under non-glacial conditions <strong>in</strong> <strong>the</strong> gravels of <strong>the</strong><br />

CIL 5 unit <strong>and</strong> alternated at least three times with loess sedimentation <strong>in</strong> <strong>the</strong> CIL<br />

6 unit.<br />

The cronological data are however very poor. The upper loess cover is<br />

referred to <strong>the</strong> Last Glacial Period on <strong>the</strong> basis of <strong>the</strong> Mousterian artifacts <strong>in</strong>side<br />

<strong>the</strong> deposit. The underly<strong>in</strong>g loess could be dated as Early Würm.<br />

Each of <strong>the</strong> units CIL 1 -I- 2 -t- 3, CIL 5, <strong>and</strong> loess covers CIL 6, VI B21t, CIL 6,<br />

IIIBl, niB 21t, CIL 6, A p B l IIB21t, IIB22cn IIB23g, represent a glacial stage<br />

<strong>in</strong> which <strong>the</strong> glaciers reached <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge. The loess covers <strong>and</strong> <strong>the</strong> CIL 5<br />

unit, on <strong>the</strong> ground of <strong>the</strong> paleomagnetic measurements <strong>and</strong> archaeological<br />

contents, can be dated to <strong>the</strong> Late <strong>and</strong> Middle Pleistocene. <strong>No</strong> <strong>in</strong>tr<strong>in</strong>sic <strong>in</strong>dications<br />

exist for <strong>the</strong> oldest mora<strong>in</strong>e (CIL 1-2) dat<strong>in</strong>g, which can be supplied by<br />

correlation with <strong>the</strong> Chiese sequence, <strong>and</strong> will be discussed <strong>in</strong> section 4.4.<br />

4.3. THE STRATIGRAPHIC SEQUENCE OF THE CASTENEDOLO HILL<br />

(toe. 8)<br />

This is a terrace, ris<strong>in</strong>g for about to m from <strong>the</strong> fluvioglacial Brescia pla<strong>in</strong>,<br />

which surrounds it from every side, a few km West of Ciliverghe. Its emergent<br />

sett<strong>in</strong>g is due to <strong>the</strong> neotectonic activity of a buried structure (Desio, 1965).<br />

The stratigraphy of <strong>the</strong> hill has been studied already <strong>in</strong> <strong>the</strong> last century, but<br />

it attracted <strong>the</strong> attention of scientists, also <strong>in</strong> relatively recent time, as <strong>in</strong>side <strong>the</strong><br />

deposits of <strong>the</strong> hill <strong>the</strong>re is <strong>the</strong> transition of <strong>the</strong> Pleistocene cont<strong>in</strong>ental sediments<br />

to <strong>the</strong> mar<strong>in</strong>e formations (Perconig, 1956; Cita, 1955; Ven2o, 1965). The


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 75<br />

Stratigraphy (Fig. 24) surveyed by Cacciamali (1896) on <strong>the</strong> eastern side of <strong>the</strong><br />

hill, also on <strong>the</strong> basis of <strong>the</strong> AGIP well (Perconig, 1956) drilled near <strong>the</strong> hill,<br />

has been chronostratigraphically <strong>in</strong>terpreted by Venzo (1965). He refers <strong>the</strong><br />

outcropp<strong>in</strong>g littoral deposits to <strong>the</strong> Emilian (post-Calabrian mar<strong>in</strong>e Pleistocene),<br />

N<br />

sublitoral<br />

sediments<br />

150m ^<br />

neritic sublitoral<br />

sediments<br />

F f 24 - Cross section <strong>and</strong> AGIP drill stratigraphy (after Perconig, 1955) of <strong>the</strong> Castenedolo hill.<br />

! ; üttoral sediments <strong>and</strong> paleosol <strong>in</strong> <strong>the</strong>ir top; 2) cont<strong>in</strong>ental sediments <strong>and</strong> «Ferretto» vetusol <strong>in</strong><br />

<strong>the</strong>ir top; 3) loess cover.<br />

F« 24 ■II colie di Castenedolo: sezione geológica e stratigrafica del pozzo AGIP. 1) deposit! Litoral!<br />

e pileosuolo al loro tetto; 2) depositi cont<strong>in</strong>entali ed il vetusuolo «Ferretto»; 3) coperture loessiche.


78 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

The stratigraphic sequence described here shows strong similarities with <strong>the</strong><br />

one that Cacciamalli (1896) observed on <strong>the</strong> eastern flank of <strong>the</strong> hill (Fig. 25).<br />

Here <strong>the</strong> lower paleosol that developed <strong>in</strong> <strong>the</strong> littoral deposits is almost completely<br />

eroded. Fur<strong>the</strong>rmore <strong>the</strong> fluvial gravels of unit CAST 3, called «Ceppo», are<br />

thicker.<br />

Some detailed analyses have been carried out on <strong>the</strong> vetusol <strong>and</strong> paleosol<br />

developed <strong>in</strong> units CAST 4 <strong>and</strong> CAST 2 (see Appendix 3.5).<br />

-rx. ,, •• ¡ V.:? ' A<br />

Micromorphology. The B31t horizon of <strong>the</strong> vetusol developed <strong>in</strong> <strong>the</strong> top of<br />

CAST 4 unit shows higly sepic plasmic fabric <strong>and</strong> well preserved, strongly<br />

biréfr<strong>in</strong>gent ferri-argillans.<br />

On <strong>the</strong> contrary <strong>the</strong> paleosols developed <strong>in</strong> <strong>the</strong> CAST 2 unit, has an argillasepic<br />

to undulic plasmic fabric. The horizon IV B21 almost completely lacks cutans.<br />

Cherty lithorelicts, <strong>in</strong> <strong>the</strong> IV 22, <strong>in</strong>dicate that <strong>the</strong> parent material has probably<br />

been cherty limestone gravel. The plasma is slightly biréfr<strong>in</strong>gent, very rich <strong>in</strong><br />

iron oxides <strong>and</strong> micropedality (pseudos<strong>and</strong>) <strong>in</strong> well expressed. Plasma separations<br />

are not very developed, <strong>the</strong> argillans are very disturbed, <strong>the</strong>y are poorly biréfr<strong>in</strong>gent,<br />

<strong>and</strong> <strong>the</strong> orig<strong>in</strong>al lam<strong>in</strong>ation has been destroyed.<br />

M<strong>in</strong>eralogical characteristics. The clay m<strong>in</strong>erals of <strong>the</strong> lowermost paleosol of<br />

Castenedolo (CAST 2) consist exclusively of illite <strong>and</strong> kaol<strong>in</strong>ite, while smectite is<br />

present <strong>in</strong> <strong>the</strong> uppermost one (CAST 4).<br />

Paleomagnetic stratigraphy. The units CAST 4 <strong>and</strong> CAST 3 show normal polarity;<br />

<strong>the</strong> underly<strong>in</strong>g paleosol (CAST 2) shows reversed polatiry, <strong>in</strong> <strong>the</strong> upper part,<br />

<strong>and</strong> normal polarity (Tucholka, <strong>in</strong> press) (Fig. 25). The paleomagnedc sequence<br />

could be <strong>in</strong>terpreted as follows: <strong>the</strong> units CAST I <strong>and</strong> CAST 2 (upper pan)<br />

belong to <strong>the</strong> Matuyama epoch, <strong>the</strong> normaly magnetized part of <strong>the</strong> CAST 2 unit<br />

should be referred to <strong>the</strong> Jaramillo event; <strong>the</strong> units CAST 3 <strong>and</strong> CAST 4 belong<br />

to <strong>the</strong> Brunhes epoch.<br />

Discussion. The loess at <strong>the</strong> top of <strong>the</strong> sequence, as that of <strong>the</strong> Ciliverghe<br />

sequence, is referred, also <strong>in</strong> <strong>the</strong> ground of <strong>the</strong> archaelogical content, to <strong>the</strong> Late<br />

Pleistocene.<br />

The CAST 4 unit has clear fluvioglacial orig<strong>in</strong>, be<strong>in</strong>g ma<strong>in</strong>ly composed of<br />

methamorphic <strong>and</strong> volcanic rocks. It has been subjected to strong wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong><br />

rubéfaction. Therefore all limestone gravel orig<strong>in</strong>ally present has been dissolved<br />

<strong>and</strong> <strong>the</strong> unit may have been much thicker.<br />

The unit CAST 3, on <strong>the</strong> ground of <strong>the</strong> paleomagnetic measurements, was<br />

sedimented <strong>in</strong> early Middle Pleistocene or probably also <strong>in</strong> late Early Pleistocene<br />

(late Matuyama epoch); it is comoposed by limestone of prevail<strong>in</strong>g pre-Alp<strong>in</strong>e<br />

orig<strong>in</strong> <strong>and</strong> completely lacks metamorphic of volcanic rocks, usually associated<br />

with glacial <strong>and</strong> fluvioglacial sediments of <strong>the</strong> Garda area. Therefore, as discussed<br />

above for <strong>the</strong> unit CIL 3 of <strong>the</strong> Ciliverghe sequence, it must have been deposited<br />

dur<strong>in</strong>g an «<strong>in</strong>terglacial» period when <strong>the</strong> area was free of glaciers. The unit <strong>in</strong> <strong>the</strong><br />

NE part of <strong>the</strong> Castenedolo hill consists of a gravel which southwestwards


w<br />

QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 79<br />

<strong>in</strong>terf<strong>in</strong>gers hill with pelitic sediments: it should be <strong>the</strong>refore <strong>in</strong>terpreted as <strong>the</strong><br />

distal fr<strong>in</strong>ge of a piedmont alluvial fan at its boundary with alluvial pla<strong>in</strong><br />

sediments.<br />

Unit CAST 2 consist of a very developed paleosol whose characteristic <strong>and</strong><br />

paleoenvironmental significance will be discussed <strong>in</strong> <strong>the</strong> next chapters. Its upper<br />

horizons are developed <strong>in</strong> probably gravelly sediments, while its lower horizons<br />

are <strong>in</strong> litoral deposits which represent <strong>the</strong> unit CAST 1. They date back to <strong>the</strong><br />

Early Pleistocene Matuyama epoch (probably pre-Jaramillo).<br />

4.4. THE CHIESE SEQUENCE (loc. 2: S. Biagio; loc. 3: Mocas<strong>in</strong>a; loc. 4: Torre<br />

di Mocas<strong>in</strong>a; loc. 5: Terzago; loc. 6: M. Kotondo)<br />

Between Carpenedolo <strong>and</strong> Calc<strong>in</strong>ato (Fig. 9, 26) <strong>the</strong>re is evidence of a unique<br />

mora<strong>in</strong>e ridge, which at present is split up <strong>in</strong>to various strongly eroded hills<br />

surrounded by <strong>the</strong> Late Pleistocene fluvioglacial pla<strong>in</strong>. On <strong>the</strong> contrary. <strong>No</strong>rth<br />

of Calc<strong>in</strong>ato, several mora<strong>in</strong>e ridges lean aga<strong>in</strong>st or overUe each o<strong>the</strong>r <strong>and</strong> form<br />

<strong>the</strong> undulat<strong>in</strong>g Cantr<strong>in</strong>a plateau. Their identification poses problems as <strong>the</strong>ir<br />

morphology has been altered by periglacial processes <strong>and</strong> <strong>the</strong> whole area is<br />

covered by colluvial deposits <strong>and</strong> loess.<br />

The Chiese River, near Mocas<strong>in</strong>a <strong>and</strong> Calvagese, cuts <strong>the</strong> Cantr<strong>in</strong>a plateau<br />

<strong>and</strong> exposes a complex stratigraphic sequence, already described by <strong>the</strong> geologists<br />

who studied <strong>the</strong> Garda area <strong>in</strong> earlier periods (Penck <strong>and</strong> Brückner, 1909;<br />

Feruglio, 1929; Venzo, 1957; Fraenzle, 1965) (Fig. 27). A large part of <strong>the</strong><br />

section is still accessible today, so it has been described aga<strong>in</strong> more precisely from<br />

top to bottom.<br />

CM 8: loess cover, rubefied vetusol <strong>and</strong> underly<strong>in</strong>g mora<strong>in</strong>e deposits. This<br />

upper p>art of <strong>the</strong> unit will be described <strong>in</strong> detail as Mocas<strong>in</strong>a profile (loc. 3), <strong>in</strong><br />

section 4.5. The mora<strong>in</strong>e deposits <strong>in</strong>clude limestone blocks several cubic meters<br />

sized <strong>and</strong> poorly sorted gravels matrix supported, represented by limestone,<br />

crystall<strong>in</strong>e, metamorphic <strong>and</strong> volcanic rocks; clear boundary to:<br />

CM 7: fluvial gravels, ma<strong>in</strong>ly composed by black <strong>and</strong> dark grey limestone<br />

from Val Sabbia source: <strong>the</strong>y have a discont<strong>in</strong>uous planar bedd<strong>in</strong>g <strong>and</strong> a clear<br />

upward coarsen<strong>in</strong>g trend; abrupt erosive boundary to:<br />

CH6: glaciolacustr<strong>in</strong>e <strong>and</strong> fluviatile deposits: marly clay with planar parallel<br />

bedd<strong>in</strong>g, overla<strong>in</strong> by s<strong>and</strong> with planar parallel bedd<strong>in</strong>g, outcropp<strong>in</strong>g for a<br />

thickness of 1 metre. Both hthotypes are barren of pollen. Manc<strong>in</strong>i (1960) <strong>and</strong><br />

Fraenzle (1965) report <strong>in</strong> association with this unit some loess deposits, which<br />

we could not observe; clear boundary to:<br />

CH5: mora<strong>in</strong>e deposits or proximal fluvioglacial gravel, with large blocks of<br />

volcanic crystall<strong>in</strong>e <strong>and</strong> metamorphic rocks. They are strongly cemented <strong>and</strong><br />

conta<strong>in</strong> clayey pedorelicts, which are rounded, <strong>and</strong> range from 5 to 40 cm <strong>in</strong> size.


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 81<br />

Fig. 26 ■Schematic geological map of <strong>the</strong> western area of <strong>the</strong> Garda lake. 1) pre-Quaternary rocks;<br />

2) Gliverghe mora<strong>in</strong>e, Early Pleistocene; 3) Monte Paita mora<strong>in</strong>e ridges; early Middle Pleistocene;<br />

4) Gavardo gravel, fluviogladial deposits, related to 3, early Middle Pleistocene; 5a) Carpenedolo<br />

mora<strong>in</strong>e ridges. Middle Pleistocene; 5b) Carpenedolo mora<strong>in</strong>e ridges, very eroded areas, Middle<br />

Pleistocene; 6) Paitone gravel, fluvioglacial deposits related to 5, Middle Pleistocene; 7) Gavardo<br />

valley lacustr<strong>in</strong>e deposits <strong>and</strong> loess, Late Pleistocene; 8) Sedeña mora<strong>in</strong>e ridges, late Middle Pleistocene;<br />

9) outwash pla<strong>in</strong> connected with 10, Late Pleistocene; 10) Solfer<strong>in</strong>o mora<strong>in</strong>e ridges. Late<br />

Pleistocene; 11) Holocene pla<strong>in</strong>; 12) cross section <strong>in</strong> Fig. 27.<br />

Fig 26 - Carta geológica schematica della regione occidentale del lago di Garda. 1) rocce prequaternafk;<br />

2) morena di Ciliverghe, Pleistocene <strong>in</strong>ferióte; 3) morena di Monte Paita, antico Pleistocene<br />

medio; 4) ghiaie di Gavardo: depositi fluvioglaciali connessi all’unita 3, antico Pleistocene medio; 5a)<br />

ustcma morenico di Carpenedolo, Pleistocene medio; 5b) morene di Carpenedolo, aree fortemenete<br />

crose. Pleistocene medio; 6) Ghiaie di Paitone, depositi fluvioglaciali connessi all’unita 5, Pleistocene<br />

medio; depositi lacustri e loess della vallecola di Gavardo, Pleistocene superiore; 8) sistema<br />

morenico di Sedeña, Pleistocene medio recente; 9) piaña fluvioglaciale connessa all’unita 10, Pleisto-<br />

.cne superiore; 10) sistema morenico di Solfer<strong>in</strong>o, Pleistocene superiore; 11) pianura olocenica; 12)<br />

tnenato della sezione di Fig. 27.


82<br />

PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PL/^^<br />

CHIESE SEQUENCES<br />

Cavalgese<br />

Burago<br />

Orologlo R.<br />

le Tese<br />

Falta M<br />

A2<br />

^<br />

i •<br />

•<br />

►<br />

.<br />

*1 <<br />

•if 4 »<br />

- -- - —<br />

m<br />

__<br />

‘ Scaglia'<br />

litoral deposits t?)<br />

Fig. 27 - Cross section between Monte Faita mora<strong>in</strong>e <strong>and</strong> Calvagese.<br />

Fig. 27 - Sezione stratigrafica tra la morena di Mónte Faita e Calvagese.<br />

At <strong>the</strong> top <strong>the</strong>y are wea<strong>the</strong>red by a strongly eroded rubefied paleosol of which<br />

<strong>the</strong> B32 hori2on <strong>and</strong> underly<strong>in</strong>g C ca horizon, have been preserved (see profile<br />

Torre di Mocas<strong>in</strong>a, loc. 3); gradual boundary to:<br />

CH4: fluvial gravels, locally cemented, consist<strong>in</strong>g ma<strong>in</strong>ly of dark coloured<br />

limestones, com<strong>in</strong>g from <strong>the</strong> Valsabbia, with discont<strong>in</strong>uous planar bedd<strong>in</strong>g <strong>and</strong>i<br />

sharp upward coarsen<strong>in</strong>g trend; clear l<strong>in</strong>ear boundary to:<br />

CH3: glaciolacustr<strong>in</strong>e deposits: <strong>the</strong>y consist of highly calcareous silts <strong>and</strong> s<strong>and</strong><br />

with planar parallel bedd<strong>in</strong>g <strong>and</strong> th<strong>in</strong> lam<strong>in</strong>ation; <strong>the</strong>y abruptly onlap <strong>the</strong><br />

underly<strong>in</strong>g CH2 unit <strong>and</strong> pass towards <strong>the</strong> top s<strong>and</strong>s with wavy lam<strong>in</strong>ation;<br />

abrupt boundary to:<br />

CH2: monogenic breccia, composed of Coma limestone, angular boulders<br />

(with a diameter of about 1 meter), medium <strong>and</strong> f<strong>in</strong>e sized angular clasts. The<br />

deposits show discont<strong>in</strong>uous stratification, dipp<strong>in</strong>g 25° towards <strong>the</strong> NE. It should be<br />

<strong>in</strong>terpreted as a detritus overly<strong>in</strong>g <strong>the</strong> ground mora<strong>in</strong>e, clear l<strong>in</strong>ear boundan to.<br />

CHI: ground mora<strong>in</strong>e, composed by large «Coma» limestone blocks <strong>and</strong><br />

poorly sorted gravels, often with striae, matrix supported.<br />

Characteristics of <strong>the</strong> pedorelicts <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> unit CH5. They are fragments of a<br />

B horizon <strong>and</strong> consist of strongly rubefied clay. They are poorly rounded, which<br />

implies that <strong>the</strong>y have not been transported for a long distance. Cherty <strong>and</strong><br />

metamorphic lithorelicts testify that <strong>the</strong>y come from a soil developed <strong>in</strong> fluvial or<br />

fluvioglacial deposits. On microscale <strong>the</strong> plasmic fabric is isotic or undulic. The<br />

Ca COj nodules are present <strong>in</strong>side voids <strong>and</strong> seem developed after <strong>the</strong><br />

sedimentation of <strong>the</strong> pecloreUcts. The heavy m<strong>in</strong>eral assemblage consists ma<strong>in</strong>h<br />

of stable m<strong>in</strong>erals <strong>and</strong> <strong>the</strong>refore testifies a strong pedogenetic wea<strong>the</strong>r<strong>in</strong>g<br />

(Appendix 4).


d e po s its, VETUSOLS AND PALEOSOLS<br />

gy^NARY<br />

83<br />

Mocas<strong>in</strong>a profile<br />

(loc 3)<br />

CH8<br />

CH7<br />

CH6<br />

CH5<br />

Torre profile<br />

(loc 4)<br />

pedorelicts<br />

CH4<br />

D<br />

= 0<br />

? 0<br />

ID<br />

10<br />

ID<br />

CH3<br />

CH2<br />

0<br />

D<br />

CH1<br />

m<br />

rO<br />

^ 5 m<br />

fig. 2S - The (Tiiese sequence.<br />

f% 7 * - L a succcssionc stratigrafica del Chiese.


84 PALEOSOLS AND VETUSOLS IN THE CENTRAL P0PLM|"<br />

4î:!^<br />

Characteristcs of <strong>the</strong> buried paleosol at <strong>the</strong> top of unit CH5. (Torre di Mousnu<br />

profile) (loc. 4). The clay content is very high (Appendix 2). From %I%<br />

micromorphological po<strong>in</strong>t of view <strong>the</strong> matrix is hightly sepic, with prom<strong>in</strong>ent f<br />

stress cutans <strong>and</strong> abundant planes. The ferri-argillans are very abundant <strong>and</strong> |<br />

disturbed by stress. Complex cutans are completely absent. The calcium carbonaï |<br />

nodules are due to recarbonatation that occurred after <strong>the</strong> burial of <strong>the</strong> paleosol.<br />

As far as <strong>the</strong> clay m<strong>in</strong>erals are concerned, smectite, illite <strong>and</strong> chlorite are presen;<br />

Among <strong>the</strong> heavy m<strong>in</strong>erals, amphiboles are <strong>the</strong> most common <strong>and</strong> unstable ,<br />

m<strong>in</strong>erals such as epidotes prevail over stable ones (zircon <strong>and</strong> tourmal<strong>in</strong>e) (set .<br />

Appendix 4).<br />

I<br />

Paleomagnetic stratigraphy. CFf3 has shown a clear reversed paleomagnctic<br />

polarity, while CFf6 has a direct magnetic polarity. Units CFfl, 2 <strong>and</strong> 3 <strong>the</strong>reto;: ;<br />

belong to <strong>the</strong> Matuyama epoch, units CFf4 <strong>and</strong> 5 have an underterm<strong>in</strong>ed ’<br />

position, while <strong>the</strong> uppermost units belong to <strong>the</strong> Bruhnes period. (Tucholka <strong>in</strong><br />

press).<br />

4.5. THE VETUSOLS AND LOESS A T THE TOP OF THE CHIESE<br />

SEQUENCE<br />

A ra<strong>the</strong>r complex pedostratigraphic situation has been observed on <strong>the</strong> sur<br />

face of <strong>the</strong> Carpenedolo-Monte Faita area (Fig. 29). The unwea<strong>the</strong>red sediments<br />

crop out on <strong>the</strong> top of <strong>the</strong> mora<strong>in</strong>e ridges, which have been severely affected bt<br />

<strong>the</strong> periglacial denudation. On <strong>the</strong> contrary loess covers, sometimes overh<strong>in</strong>g<br />

rubefied soils developed <strong>in</strong> <strong>the</strong> mora<strong>in</strong>es, are present <strong>in</strong> areas protected frar<br />

erosion.<br />

Field evidence demonstrates that <strong>in</strong> <strong>the</strong> area closed to <strong>the</strong> Monte Faita mora<strong>in</strong>es,<br />

as already observed by Venzo (1965) <strong>the</strong> <strong>vetusols</strong> are stronger developcc<br />

than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r localities of <strong>the</strong> Cantr<strong>in</strong>a plateau.<br />

■ji ■<br />

sn<br />

The S. Biagio profile (loc. 2 ). The S. Biagio vetusol is representative of this arc;<br />

(Fig. 29). The profile is preserved for more than four metres, tmneated at <strong>the</strong><br />

top <strong>and</strong> covered by colluvial sediments with aeolian matrix <strong>and</strong> carbonated clast'<br />

It consists of <strong>the</strong> horizons: II B22t, IIB31t, IIB32t, <strong>and</strong> II C ca. The stronger<br />

wea<strong>the</strong>r<strong>in</strong>g occurs <strong>in</strong> <strong>the</strong> uppermost horizon, where very few fragments of stoneare<br />

preserved, <strong>the</strong> rubéfaction is stronger, <strong>the</strong> amount of clay is higher than tr<br />

<strong>the</strong> o<strong>the</strong>r horizons (Fig. 30) <strong>and</strong> <strong>the</strong> structure is strongly developed. At <strong>the</strong> base<br />

<strong>the</strong>re is a C ca horizon, which tightly cements <strong>the</strong> underly<strong>in</strong>g mora<strong>in</strong>e deposits<br />

Gra<strong>in</strong> size distribution characteristics are given <strong>in</strong> Fig. 30.<br />

Micromorphological observations. From <strong>the</strong> micromorphological po<strong>in</strong>t of vie\r <strong>the</strong><br />

prevail<strong>in</strong>g characteristic of B31t horizon is <strong>the</strong> large amount of large <strong>and</strong> thid<br />

ferri-argillans. Neverthless <strong>the</strong>y are strongly disturbed: <strong>the</strong> birefr<strong>in</strong>gence is lo».<br />

microlam<strong>in</strong>ation shows an irregular undulat<strong>in</strong>g pattern <strong>and</strong> can often be hardh<br />

observed. They apparently have been partly <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> matrix which ¡'


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 85<br />

MOCASINA<br />

LOG 3<br />

TERZ AGO<br />

LOO 5<br />

Ap<br />

B2 1t<br />

nB22t<br />

m B31t<br />

\Q<br />

Oo<br />

Ll m<br />

Fif 29 - The profiles of <strong>the</strong> Monte Falta <strong>and</strong> Chiese area.<br />

29 - I profili delle aree di Monte Falta e del Chiese.<br />

vcT)’ dynamic, due to its high clay content. In fact <strong>the</strong> voids of various types of<br />

planes <strong>and</strong> stress cutans abound.<br />

Si<strong>in</strong>eralogical characteristics. Clay m<strong>in</strong>erals are ma<strong>in</strong>ly represented by smectite,<br />

vithout significant differentiation along <strong>the</strong> profile. As far as <strong>the</strong> heavy m<strong>in</strong>erals<br />

arc concerned, those produced by metamorphic paragenesis are prevail<strong>in</strong>g <strong>and</strong><br />

<strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex rema<strong>in</strong>s ra<strong>the</strong>r low.<br />

The Mocas<strong>in</strong>a profile (loc. 3). In <strong>the</strong> area of Mocas<strong>in</strong>a, Cantr<strong>in</strong>a <strong>and</strong> Terzago,<br />

where some mora<strong>in</strong>es lean aga<strong>in</strong>st each o<strong>the</strong>r <strong>and</strong> represent <strong>the</strong> morphological<br />

expression of <strong>the</strong> stratigraphic unit CHS, <strong>the</strong>re are no deeply wea<strong>the</strong>red <strong>vetusols</strong>.<br />

The section described near Mocas<strong>in</strong>a can be considered representative of <strong>the</strong><br />

whole area between Calvagese <strong>and</strong> Calc<strong>in</strong>ato. In fact <strong>the</strong> profile of Terzago (loc.<br />

5) is completely similar (Fig. 29) as well as <strong>the</strong> profile of Calvagese Belvedere,<br />

not described here but already recorded by Venzo (1965, 1969), <strong>and</strong> <strong>the</strong> one<br />

already studied by Fraenzle (1965) probably a few hundreds of metres far from<br />

<strong>the</strong> one here described.<br />

Four lithologic discont<strong>in</strong>uities can be dist<strong>in</strong>guished from <strong>the</strong> top <strong>and</strong> <strong>the</strong>y<br />

correspond along <strong>the</strong> profile to as many stratigraphic discont<strong>in</strong>uities.<br />

The Ap <strong>and</strong> B1 horizons are developed <strong>in</strong> colluvial loess <strong>and</strong> <strong>the</strong> II B21t<br />

horizon is developed <strong>in</strong> wea<strong>the</strong>red loess. The III B2t horizon consists ma<strong>in</strong>ly of<br />

angular clasts of chert, embedded <strong>in</strong> illuvial clay; <strong>the</strong> chert comes from <strong>the</strong>


Fig. 30 - The cumulative curves of <strong>the</strong> Chiese area paleosols <strong>and</strong> veutosols (above), <strong>and</strong> of <strong>the</strong><br />

S. Biagio profile (below).<br />

Fig. 30 Curve granulometriche cumulative relative ai paleosuoli e vetusuoli dell’area del Chkic<br />

(basso), e del profilo di S. Biagio (alto).


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 87<br />

erosion <strong>and</strong> <strong>the</strong> wash<strong>in</strong>g of <strong>the</strong> underly<strong>in</strong>g unit. The IV B31t <strong>and</strong> IV C ca<br />

horizons represent <strong>the</strong> wea<strong>the</strong>red top of <strong>the</strong> mora<strong>in</strong>e <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> stratigraphic<br />

unit CHS. The former, rich <strong>in</strong> clay, shows slickensides <strong>and</strong> is rubefied. The<br />

gravels are strongly wea<strong>the</strong>red. The latter shows a clear accumulation of calcium<br />

carbonate but it is discont<strong>in</strong>uous <strong>and</strong> not completely lithified.<br />

.Micromorphologicaly (Appendix 5) <strong>the</strong> II B21t horizon shows a strong<br />

accumulation of illuvial clay <strong>in</strong> <strong>the</strong> form of ferri-argillans. The presence of a fair<br />

amount of lithorelicts suggests that <strong>the</strong> loess is partly of colluvial nature. Complex<br />

cutans are scarce.<br />

Inside <strong>the</strong> horizon IE B22t <strong>the</strong> basic fabric can be def<strong>in</strong>ed as chitonic (Brewer,<br />

1976) or closed porphyroskelic because <strong>the</strong> soil consists exclusively of angular<br />

clasts of chert, coated only by illuvial clay which forms most of <strong>the</strong> plasma.<br />

.\mong <strong>the</strong> cutans, siltans, matrans <strong>and</strong> skeletans are prevail<strong>in</strong>g <strong>and</strong> <strong>the</strong>y alternate<br />

with ferri-argillans <strong>and</strong> a few gra<strong>in</strong>y cutans.<br />

The horizon IV B31t shows completely different characteristics; <strong>the</strong> matrix is<br />

veiy rich <strong>in</strong> clay, is crossed by numerous planes <strong>and</strong> is strongly sepic. The<br />

ferri-argillans are very abundant <strong>and</strong>, <strong>in</strong> spite of <strong>the</strong> strong deformations, <strong>the</strong>ir<br />

lam<strong>in</strong>ation can be dist<strong>in</strong>ctly recognized.<br />

The B2 horizons of <strong>the</strong> Calvagese Belvedere <strong>and</strong> Terzago profiles show<br />

(.Appendix 2, 5) identical patterns <strong>and</strong> <strong>the</strong>refore <strong>the</strong>y can be considered as<br />

betong<strong>in</strong>g to <strong>the</strong> same pedostratigraphic unit. As far as <strong>the</strong> clay m<strong>in</strong>erals are<br />

concerned <strong>the</strong> horizon consists ma<strong>in</strong>ly of illite, smectite <strong>and</strong> k<strong>and</strong>ite.<br />

On <strong>the</strong> isolated mora<strong>in</strong>e hills between Montichiari <strong>and</strong> Carpenedolo <strong>the</strong><br />

pedostratigraphic situation is similar (Coltorti <strong>and</strong> <strong>Cremaschi</strong>, 1978). The<br />

mora<strong>in</strong>e ridge is deeply eroded <strong>and</strong> narrow outcrops of a vetusol, similar to that<br />

of <strong>the</strong> Mocas<strong>in</strong>a profile are preserved <strong>in</strong> situ, <strong>and</strong> colluviated rubefied soil<br />

material has been observed along <strong>the</strong> slopes of <strong>the</strong> mora<strong>in</strong>e ridges. The Monte<br />

Rotondo profile (loc. 39), (Fig. 31 <strong>and</strong> 32) is an example of such a situation.<br />

Fj. )l - The Monte Rotondo section (loc. 39). 1) mora<strong>in</strong>e deposits, 2) vetusol <strong>and</strong> underly<strong>in</strong>g C<br />

a horizon developed <strong>in</strong> <strong>the</strong> mora<strong>in</strong>e. 3) loess <strong>and</strong> colluvial deposits, 4) Late Pleistocene fluvioglacul<br />

pla<strong>in</strong>; 5) Early Palaeolithic artifacts.<br />

it - Ij sezione di Mónte Rotondo (loc. 39). 1) deposit! morenici, 2) vetusuolo e sottostante<br />

orizzonte calcico, sviluppatosi nel deposito morenico; 3) loess e deposit! colluvial!; 4) piaña fluviogUaale<br />

del Pleistocene superiore; 5) giacitura dei manufatti paleolitici.


,r^«><br />

1^i<br />

-'i<br />

s » ^<br />

32 - Curve granulometriche cumulative relative alia sezione di Monte Rotondo.<br />

Fur<strong>the</strong>rmore a fl<strong>in</strong>t tool assemblage, attributed to <strong>the</strong> Early Palaeolithic, (late<br />

«Riss») has been found here, at <strong>the</strong> top of <strong>the</strong> eroded vetusol (Coltorti <strong>and</strong><br />

<strong>Cremaschi</strong>, 1978).<br />

At least four glacial stages, (dur<strong>in</strong>g which glaciers reached <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge,<br />

or climate became cold <strong>and</strong> dry enough to <strong>in</strong>duce <strong>the</strong> formation of loess covers)<br />

are represented by piled-up mora<strong>in</strong>e accumulations, separated by fluvial<br />

sediments, <strong>the</strong> last one consists of loess. The mora<strong>in</strong>e accumulations of <strong>the</strong><br />

' l i ’


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 89<br />

second <strong>and</strong> third stages are strongly wea<strong>the</strong>red with rubefied paleosols <strong>and</strong><br />

<strong>vetusols</strong> which development started dur<strong>in</strong>g <strong>in</strong>terglacial periods (Torre di<br />

Mocas<strong>in</strong>a <strong>and</strong> Mocas<strong>in</strong>a profiles).<br />

The absence of a paleosol on <strong>the</strong> lowermost mora<strong>in</strong>e can be expla<strong>in</strong>ed by <strong>the</strong><br />

fact that it consists of a ground mora<strong>in</strong>e on which, after <strong>the</strong> retreat of <strong>the</strong> glacier,<br />

breccia (CH2) <strong>and</strong> glaciolacustr<strong>in</strong>e sediments (CH3) were first deposited,<br />

followed later by fuviatile sedimentation (CH4).<br />

The composition of <strong>the</strong>se fluviatile (CH4) gravels <strong>in</strong>dicates a Pre-Alp<strong>in</strong>e<br />

source (\'al Sabbia) (See section 4.3., 4.4.) <strong>and</strong> excludes a provenance from <strong>the</strong><br />

Valle Sarca along which glaciers were flow<strong>in</strong>g dur<strong>in</strong>g glacial periods (Fig. 11);<br />

<strong>and</strong> which supplied metamorphic <strong>and</strong> crystall<strong>in</strong>e rocks. Even if not of<br />

fluvioglacial orig<strong>in</strong>, <strong>the</strong>y seem to be connected with a progressive <strong>in</strong>crease of <strong>the</strong><br />

upstream erosion, which was probably enhanced by <strong>the</strong> climatic degradation<br />

<strong>in</strong>duced by <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> glacial period.<br />

The presence of deposits strictly associated with glades is <strong>in</strong>dicated by <strong>the</strong><br />

occurrence of Central Alp<strong>in</strong>e materials. In <strong>the</strong> stratigraphic sequence <strong>the</strong>se materiah<br />

suddenly appear without any visible discont<strong>in</strong>uity <strong>in</strong> sedimentation.<br />

Dur<strong>in</strong>g <strong>the</strong> Late Pleistocene only loess covers reached, dur<strong>in</strong>g glacial stages,<br />

<strong>the</strong> area near Chiese: <strong>in</strong> that period, <strong>in</strong> fact <strong>the</strong> glacier came to a st<strong>and</strong> <strong>in</strong> a more<br />

western position.<br />

Field observations <strong>in</strong> three deep sections between <strong>the</strong> Monte Faita Mora<strong>in</strong>e<br />

<strong>and</strong> <strong>the</strong> Chiese sequence (Fig. 27) allow <strong>the</strong> correlation of <strong>the</strong> unit CFI5 with <strong>the</strong><br />

Monte F'aita mora<strong>in</strong>e (<strong>Cremaschi</strong> <strong>in</strong> press).<br />

The latter would <strong>the</strong>refore represent <strong>the</strong> most ancient mora<strong>in</strong>e ridge of <strong>the</strong><br />

area, still preserv<strong>in</strong>g its morphological evidence. The follow<strong>in</strong>g mora<strong>in</strong>es that are<br />

piled up <strong>in</strong> Chiese sequence would here have been juxtaposed to this ridge.<br />

The paleomagnetic stratigraphy allows to refer <strong>the</strong> deposits of <strong>the</strong> first glacial<br />

stage (CFll, CF12) to <strong>the</strong> Early Pleistocene (Matuyama Epoch). The dat<strong>in</strong>g of <strong>the</strong><br />

second stage is uncerta<strong>in</strong> (CH5), while <strong>the</strong> third (CF48) one must be certa<strong>in</strong>ly<br />

referred to <strong>the</strong> Middle Pleistocene. Due to <strong>the</strong> strong expression of <strong>the</strong> pedogenetic<br />

characteristics, also <strong>the</strong> loesses of Mocas<strong>in</strong>a must be referred to <strong>the</strong> Middle<br />

Pleistocene. The Late Pleistocene loess forms discont<strong>in</strong>uous covers <strong>in</strong> <strong>the</strong> area<br />

<strong>and</strong> it has been described <strong>in</strong> <strong>the</strong> profile of Monte Rotondo. It shows a texture clearly<br />

different from that of Mocas<strong>in</strong>a <strong>and</strong> sometimes artifacts (Fig. 37) of <strong>the</strong> Middle<br />

Palaeolithic (Coltorti, 1983; Baroni et alii, <strong>in</strong> press) have been collected <strong>in</strong> it.<br />

4.6. THE STRATIGRAPHIC SEQUENCE OF V A L SORDA {loe. 6)<br />

AND THE PALEOSOL DEVELOPED ON THE MORAINES OF THE<br />

.SEDEÑA GLACIAL STAGE (map unit A 6)<br />

Geomorphological evidence <strong>and</strong> sedimentary facies, sedimentary (see map<br />

.Appendix 6) strongly suggests that <strong>the</strong> deeply eroded hills, ly<strong>in</strong>g westward of <strong>the</strong><br />

outer ridges of <strong>the</strong> Late Pleistocene mora<strong>in</strong>e complex (see Fig. 26), are <strong>the</strong><br />

rema<strong>in</strong>s of a mora<strong>in</strong>e ridge deposited dur<strong>in</strong>g <strong>and</strong> <strong>in</strong>dependent glacial stage, which<br />

will be <strong>in</strong>dicated <strong>in</strong> this study as <strong>the</strong> Sedeña stage (see also Fig. 10 <strong>and</strong> 12).


90 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO P l^<br />

Av ^<br />

' A V J<br />

1<br />

0cm____ 3<br />

¥ig, 37 - Palaeolithic artifacts from <strong>the</strong> Garda area; 1 - 5 M. Rotondo (Early Palaeolithic); 6 M.Rotonde<br />

(Middle Palaeolithic).<br />

¥ig. 37 - Manufatti paleolitici dell’area gardesana; 1-5 Monte Rotondo (Paleolítico <strong>in</strong>feriore); 6,<br />

Monte Rotondo (Paleolítico medio).<br />

In <strong>the</strong> western part of <strong>the</strong> Garda amphi<strong>the</strong>atre <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Sedeña<br />

stage are deeply eroded <strong>and</strong> bear shallow soils with Ap/C profiles, developed<br />

directly <strong>in</strong> <strong>the</strong> unwea<strong>the</strong>red mora<strong>in</strong>e material.<br />

In <strong>the</strong> eastern part of this mora<strong>in</strong>e system along <strong>the</strong> deep cut of <strong>the</strong> Val<br />

Sorda, below <strong>the</strong> Late Pleistocene mora<strong>in</strong>e <strong>and</strong> loess deposits, <strong>the</strong> Sedeña gladal<br />

deposit <strong>and</strong> a paleosol developed <strong>in</strong> it can be observed. The Val Sorda sequence<br />

has been known for a almost a century. It was described <strong>in</strong> detail by fs'icolis<br />

(1898) <strong>and</strong> subsequently by Venzo (1957, 1959), by Manc<strong>in</strong>i (1960) <strong>and</strong> by<br />

Fraenzle (1965).<br />

The follow<strong>in</strong>g units have been observed from top to bottom (Fig. 33).<br />

VS4: Late Pleistocene mora<strong>in</strong>e, boulders <strong>and</strong> gravels of various sizes, often<br />

with glacial striations, matrix-supported; <strong>the</strong>y consist of limestone, dolomites.


quaternary d e p o s it s, v e t u s o l s a n d p a l e o s o l s 91<br />

m a.s.I.r 300<br />

-250<br />

1<br />

F^. j j - Cross section of <strong>the</strong> Val Sorda, 1) Miocene limestone, 2) loess <strong>and</strong> overly<strong>in</strong>g Middle<br />

Pleistocene mora<strong>in</strong>e (Sedeña stage) <strong>and</strong> fluvioglacial deposits; 3) loess <strong>and</strong> colluvial deposits; 4)<br />

Late Pleistcxxne mora<strong>in</strong>e (Solfer<strong>in</strong>o stage).<br />

- Sezione stratigrafica della Val Sorda; 1) calcareniti mioceniche; 2) loess e sovrastanti<br />

depositi, dapprima morena del Medio Pleistocene (fase di Sedeña) e successivamente depositi fluviogbaali;<br />

3) loess e depositi colluviali; 4) morena del Pleistocene superiore (fase di Solfer<strong>in</strong>o).<br />

'0 ''


92 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PUUh<br />

¿î-i:<br />

■3:^<br />

MM<br />

ïï“<br />

S<br />

volcanic, metamorphic <strong>and</strong> crystall<strong>in</strong>e rocks. Abrupt, undulat<strong>in</strong>g erosive<br />

boundary to:<br />

VS3: loess deposits; at <strong>the</strong> base <strong>the</strong>re are colluvial deposits, <strong>in</strong>clud<strong>in</strong>g many<br />

angular chert fragments which gradually pass upward to loess; clear l<strong>in</strong>ear<br />

boundary to:<br />

VS2: mora<strong>in</strong>e (ground mora<strong>in</strong>e) <strong>and</strong> fluvioglacial sediments: medium-sized<br />

gravel <strong>and</strong> small stones (diam. max up to 20 cm), matrix supported; many of<br />

<strong>the</strong>m show glacial striations; <strong>the</strong>y consist of limestone, dolomites, prophyries,<br />

metamorphic <strong>and</strong> crystall<strong>in</strong>e rocks. The sediments upwards become gradualK<br />

f<strong>in</strong>er <strong>and</strong> gravel <strong>and</strong> cobbles are <strong>in</strong>terbedded with s<strong>and</strong>y layers. At <strong>the</strong> top a<br />

rubefied, clayey, 0,80 cm thick paleosol is preserved. The boundary to <strong>the</strong> lower<br />

unit is not exposed.<br />

V Sl: wea<strong>the</strong>red loess, 1 m thick, explored only with h<strong>and</strong> drill; <strong>the</strong> loess is<br />

discont<strong>in</strong>uous, <strong>and</strong> sometimes <strong>the</strong> VS2 directly overlies <strong>the</strong> bedrock.<br />

The whole sequence lies on Miocene calcarenites with evidence of wea<strong>the</strong>r<strong>in</strong>g<br />

at <strong>the</strong> top: a B horizon, about 0,50 m thick has a reddish bown colour (7.5 YR<br />

4/4), <strong>and</strong> is decalcified. It probably corresponds to <strong>the</strong> «Ferretto <strong>in</strong>feriore» of<br />

Nicolis ( 1899).<br />

Microntorphological <strong>and</strong> m<strong>in</strong>eralogical characteristics. The IV B31t horizon of <strong>the</strong><br />

buried paleosol at <strong>the</strong> top of <strong>the</strong> VS2 unit (Fig. 34) has a porphyroschelic fabric,<br />

embedd<strong>in</strong>g chert <strong>and</strong> metamorphic lithorelicts; <strong>the</strong> dense red plasma shows<br />

strong sepic fabric; ferri-argillans are common but often strongly deformed by<br />

swell<strong>in</strong>g, complex cutans are absent. At <strong>the</strong> bottom of VS3, <strong>the</strong> III C2 horizon,<br />

developed <strong>in</strong> colluvial sediments, lacks cutans <strong>and</strong> shows low sepicity <strong>in</strong> <strong>the</strong><br />

plasma, but it <strong>in</strong>cludes many papules <strong>and</strong> pedorelicts derived of <strong>the</strong> underly<strong>in</strong>g<br />

soil.<br />

The ma<strong>in</strong> micromorphologic features <strong>in</strong> <strong>the</strong> loess (VS3 Al/C) are <strong>the</strong><br />

pedotubules. Due to <strong>the</strong> high content of organic matter <strong>the</strong> plasmic fabric is<br />

asepic; common calcitans occur <strong>in</strong> tubular voids.<br />

The clay m<strong>in</strong>erals of <strong>the</strong> buried paleosol at <strong>the</strong> top of VS2 are represented by<br />

smectite, illite <strong>and</strong> k<strong>and</strong>ite. Among <strong>the</strong> heavy m<strong>in</strong>erals, unstable species of<br />

metamorphic paragenesis prevail such as amphiboles <strong>and</strong> epidotes.<br />

Chemical <strong>and</strong> textural characteristics. The organic matter content <strong>and</strong> <strong>the</strong> clay<br />

<strong>and</strong> calcium carbonate distribution are summarized <strong>in</strong> Fig. 34. The VS3 loess has<br />

an important s<strong>and</strong>y fraction at <strong>the</strong> base. The s<strong>and</strong> gradually decreases <strong>and</strong><br />

rema<strong>in</strong>s constant around 5?, <strong>the</strong>n it <strong>in</strong>creases aga<strong>in</strong> towards <strong>the</strong> top. The clay<br />

reaches m<strong>in</strong>imum values towards 2 <strong>and</strong> 3 metres <strong>and</strong> slightly <strong>in</strong>creases at <strong>the</strong> top.<br />

Clay <strong>and</strong> organic matter contents correlate <strong>in</strong> <strong>the</strong> first three metres of <strong>the</strong> profile.<br />

The carbonates are abundant at <strong>the</strong> top. The colluvium at <strong>the</strong> base of <strong>the</strong><br />

loess is very clayey <strong>and</strong> rich <strong>in</strong> carbonates. The buried soil IV B31t with a higher


, . V O . P O S . S , V ^ U S O . S . N O ,<br />

93<br />

v a l sorda<br />

g r a <strong>in</strong> s iz e C 3 C O- C.org<br />

%40 0 %3<br />

J__ I<br />

1<br />

0-1<br />

W - The palcosols of <strong>the</strong> Val Sorda sequence.<br />

^-4 - I palcosuoli della successione della Val Sorda.


94 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAInI<br />

m -i<br />

+ •<br />

clay content than <strong>the</strong> colluvium, is completely devoid of carbonates. These appeay<br />

aga<strong>in</strong> <strong>in</strong> large amounts <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g IV C ca.<br />

Interpretation of <strong>the</strong> stratigraphic sequence of Val Sorda. In agreement with most"<br />

of <strong>the</strong> literature (Venzo, 1957; Fraenzle, 1965) <strong>the</strong> topmost mora<strong>in</strong>e (VS4) is<br />

referred to <strong>the</strong> last Pleniglacial. In fact it is connected with <strong>the</strong> more eastern<br />

ridges of <strong>the</strong> mora<strong>in</strong>e here referred to <strong>the</strong> Solfer<strong>in</strong>o stage (see Fig. 10 <strong>and</strong> 12 <strong>and</strong><br />

next section).<br />

Unit VS3, consist<strong>in</strong>g of loess <strong>and</strong> colluvium at its base, can be probably<br />

referred to <strong>the</strong> Early Wiirm.<br />

It must be stated that <strong>in</strong>side this loess near S. Michele (Venzo, 1957;<br />

Manc<strong>in</strong>i, 1960) a Mousterian artifact was collected <strong>in</strong> situ.<br />

In unit VS2, on a stratigraphic basis, accord<strong>in</strong>g to Venzo (1957), Manc<strong>in</strong>i<br />

(1960), Habbe (1965), <strong>Cremaschi</strong> (<strong>in</strong> press) <strong>the</strong> mora<strong>in</strong>e should be referred to<br />

<strong>the</strong> Penultimate Glacial Period <strong>and</strong> <strong>the</strong>refore should be correlated with <strong>the</strong><br />

Sedeña Stage.<br />

In <strong>the</strong> top of VS2 a shallow rubefied paleosolis developed (IV B31t IV C ca)<br />

which can be referred to part of <strong>the</strong> Riss-Wiirm <strong>in</strong>terglacial accord<strong>in</strong>g to Penck<br />

<strong>and</strong> Briickner’s term<strong>in</strong>ology.<br />

The mora<strong>in</strong>e of <strong>the</strong> VS2 unit lies on an older loess (V S l) that overlies <strong>the</strong><br />

Miocene wea<strong>the</strong>red bedrock. The Val Sorda sequence allows a ra<strong>the</strong>r detailed<br />

stratigraphy stratigraphic reconstruction.<br />

The ma<strong>in</strong> characteristics of <strong>the</strong> paleosol at <strong>the</strong> top of <strong>the</strong> VS2 unit are<br />

rubéfaction, high clay content, <strong>and</strong> evidence of ferri-argilluviation; <strong>in</strong> <strong>the</strong> B31t<br />

horizon limestone gravels have been dissolved , but volcanic, crystall<strong>in</strong>e <strong>and</strong><br />

metamorphic ones are only slightly wea<strong>the</strong>red. This paleosol certa<strong>in</strong>ly evolved <strong>in</strong><br />

non-glacial conditions. The end of <strong>the</strong> development of <strong>the</strong> pedogenetic process is<br />

po<strong>in</strong>ted out by erosion of <strong>the</strong> paleosol <strong>and</strong> by its burial by a colluvial cover, that<br />

mostly comes from <strong>the</strong> dismantl<strong>in</strong>g of <strong>the</strong> soil itself, s<strong>in</strong>ce it conta<strong>in</strong>s many chert<br />

fragments <strong>and</strong> <strong>in</strong> particular also pedorelicts.<br />

In <strong>the</strong> unit VS3 <strong>the</strong> early aeolian sedimentation is still accompanied by<br />

colluvial supply, s<strong>in</strong>ce <strong>the</strong>re is a gradual passage between <strong>the</strong> colluvium <strong>and</strong> <strong>the</strong><br />

loess. Fur<strong>the</strong>rmore <strong>the</strong> loess (Fraenzle, 1965) is clearly more s<strong>and</strong>y at <strong>the</strong> base<br />

<strong>and</strong> it becomes progressively more silty upwards.<br />

The buried soil that evolved <strong>in</strong> it (Al/C), as already recognized by Manc<strong>in</strong>i<br />

(1960), shows characteristics of a chernosem (sol isohumique) fur<strong>the</strong>r supported by<br />

micromorphological analysis. Never<strong>the</strong>less <strong>the</strong> great thickness of <strong>the</strong> solum <strong>and</strong><br />

<strong>the</strong> gradual decrease of <strong>the</strong> organic matter with depth would suggest a cumulative<br />

soil (Birkel<strong>and</strong>, 1974), developed dur<strong>in</strong>g <strong>the</strong> last phases of <strong>the</strong> loess accumulation<br />

<strong>and</strong> later.<br />

The wea<strong>the</strong>r<strong>in</strong>g processes <strong>in</strong> loess deposits, responsible for <strong>the</strong> considerable<br />

accumulation of organic matter, should be attributed to an <strong>in</strong>terstadial stage,<br />

fur<strong>the</strong>r <strong>in</strong>terrupted by <strong>the</strong> last Pleniglacial glacier advance, <strong>and</strong> by result<strong>in</strong>g<br />

deposition of <strong>the</strong> VS4 mora<strong>in</strong>e.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 95<br />

Fig. 35 - The cumulative curves of <strong>the</strong> Val Sorda paleosols.<br />

Fig. 35 - Curve granulometriche cumulative dei paleosuoli della Val Sorda.<br />

4.7. THE SOILS IN THE MORAINES OF THE SOLFERINO STAGE (loc. 9,<br />

10, 11; map unit A 7 )<br />

The glacial period <strong>in</strong> which <strong>the</strong> well preserved mora<strong>in</strong>es <strong>and</strong> related glacial<br />

deposits, surround<strong>in</strong>g <strong>the</strong> Garda lake, were deposited, is <strong>in</strong>dicated as Solfer<strong>in</strong>o<br />

stage (see section 3.2. Fig. 10).


96<br />

PALEOSOLS AND VETUSOLS IN THE ppm.<br />

^NTRal<br />

, n<br />

0 c m 3<br />

n<br />

F/¿. 36 - Palaeolithic artifacts from <strong>the</strong> Garda area, 1 - 2 Gavardo; 3 - 7 Ciliverghe; 8<br />

Fig. 36 - Manufatti paleolitici dell’area del Garda (Paleolítico medio); 1-2 Gavardo; 3 ' i<br />

8 Castenedolo.


Qy^TEBNARY DEPOSITS, VETUSOLS AND PALEOSOLS 97<br />

In <strong>the</strong> mora<strong>in</strong>es <strong>and</strong> fluvioglacial deposits of <strong>the</strong> Solfer<strong>in</strong>o stage generally<br />

Jeep soils (Fig. 38 <strong>and</strong> 39) have been preserved. The profile of Ronchi di<br />

Pastrengo (loc. 11) shows a situation typical of <strong>the</strong> gentle slopes of <strong>the</strong> mora<strong>in</strong>e,<br />

<strong>the</strong> one of Fontanelle di <strong>Po</strong>lpenazze (loc. 10) shows that of very steep slopes, <strong>and</strong><br />

<strong>the</strong> Solfer<strong>in</strong>o profile (lo c. 9) represents <strong>the</strong> situation <strong>in</strong> a ra<strong>the</strong>r flat bottom of a<br />

mek-water valley. It must be added that, unlike what has been said by previous<br />

juthors (Venzo, 1965) such profiles do not characterize only <strong>the</strong> external mori<strong>in</strong>cs,<br />

but <strong>the</strong>\- have been found also <strong>in</strong> <strong>the</strong> <strong>in</strong>ternal mora<strong>in</strong>es, next to <strong>the</strong> lakes.<br />

S<strong>in</strong>ce <strong>the</strong> field characteristics were found to be <strong>the</strong> same for all <strong>the</strong> profiles<br />

taken <strong>in</strong>to consideration (see Appendix 1), only <strong>the</strong> profile of Solfer<strong>in</strong>o will be<br />

liescnbed here <strong>and</strong> comparisons will be be made which <strong>the</strong> o<strong>the</strong>r ones.<br />

Tb* So^rr<strong>in</strong>o profile (loc. 9). The morphological <strong>and</strong> textural characteristic<br />

<strong>in</strong>dicate a clear lithological discont<strong>in</strong>uity <strong>in</strong>side <strong>the</strong> profile (Fig. 38). The upper<br />

part of <strong>the</strong> profile All, A12 consists of colluvial materials with abundant calcareous<br />

stones <strong>and</strong> fragments of bricks of <strong>the</strong> Roman period.


98 PALEOSOLS AND VETUSOLS IN THE1<br />

N<br />

Solfer<strong>in</strong>o stage mora<strong>in</strong>e<br />

^5<br />

' & ' i<br />

Fig. 39 - The Ronchi di Pastrengo profile.<br />

Fig. 3? - II profilo di Ronchi di Pastrengo.<br />

In <strong>the</strong> underly<strong>in</strong>g II B31 <strong>and</strong> B32 horizons, <strong>the</strong> clay content is around 2.t<br />

with an <strong>in</strong>crease of 10? with respect to <strong>the</strong> mora<strong>in</strong>e (II C ca) that represents tht<br />

parent material (Fig. 40). Micromorphologically <strong>the</strong> matrix is only slightly sepic<br />

<strong>and</strong> <strong>the</strong> argillans, present only <strong>in</strong>side <strong>the</strong> II B31 horizon are very scarce.<br />

From <strong>the</strong> m<strong>in</strong>eralogical po<strong>in</strong>t of view <strong>the</strong> heavy m<strong>in</strong>eral (App. 4) assemblage<br />

consists of unstable species, especially amphiboles. As far as <strong>the</strong> clay m<strong>in</strong>erals arc<br />

concerned, <strong>the</strong> whole profile is remarkably homogeneous with traces of smeaitc.<br />

abundant vermiculite <strong>and</strong> chlorite, illite <strong>and</strong> k<strong>and</strong>ite.<br />

The B31 <strong>and</strong> B32 horizons show a slight rubéfaction, <strong>the</strong>y are decalcified <strong>and</strong><br />

a calcic horizon (II C ca), with lamellar fabric <strong>and</strong> non-<strong>in</strong>durated, is present at<br />

<strong>the</strong>ir base.<br />

The micromorphological observations show that <strong>the</strong> B horizons of <strong>the</strong>se soils<br />

developed <strong>in</strong> situ because <strong>the</strong>y are devoid of pedorelicts <strong>and</strong> of o<strong>the</strong>r <strong>in</strong>dications<br />

suggest<strong>in</strong>g rework<strong>in</strong>g. The profile of Fontanelle that has formed on a steeper<br />

slope, is slightly shallower than <strong>the</strong> Solfer<strong>in</strong>o profile <strong>and</strong>, at least macroscopicalK.<br />

shows a greater amount of illuvial clay. The colluvium that overlies <strong>the</strong> B<br />

horizons is considerably thicker, but always rich <strong>in</strong> organic matter.<br />

The profile of Pastrengo (Fig. 39) is very similar to that of Solfer<strong>in</strong>o. Also <strong>in</strong><br />

this case fragments of brick have been observed <strong>in</strong> <strong>the</strong> colluvium.<br />

Profiles similar to <strong>the</strong>se have also been mentioned by Fraenzle (1965) at<br />

Strasse <strong>and</strong> by Manc<strong>in</strong>i (1969) at S. Rocco. These soils, accord<strong>in</strong>g to Venzo<br />

( 1965), would be <strong>the</strong> result of <strong>the</strong> Riss-Würm pedogenesis <strong>and</strong> would have been<br />

eroded, deposited along <strong>the</strong> slopes of <strong>the</strong> mora<strong>in</strong>e dur<strong>in</strong>g <strong>the</strong> Würm Anaglacial<br />

<strong>and</strong> covered by colluvium of <strong>the</strong> same age. This is <strong>in</strong> contradiction with two<br />

facts: <strong>the</strong> B horizons show clear <strong>in</strong>dications of development <strong>in</strong> situ. The<br />

colluvium that covers <strong>the</strong>m bears fragments of bricks <strong>and</strong> must be of historical<br />

age; it is probably related to agricoltural activities dur<strong>in</strong>g <strong>the</strong> Roman period.


Q U A T E R N A R Y DEPOSITS, VETUSOLS AND PALEOSOLS 99<br />

Fig. 40 - The cumulative curves of <strong>the</strong> Solfer<strong>in</strong>o profile.<br />

40 - Curve granulometriche cumulative del profilo di Solfer<strong>in</strong>o.<br />

Late Pleistocene loess is absent on <strong>the</strong> mora<strong>in</strong>e of <strong>the</strong> Solfer<strong>in</strong>o stage <strong>and</strong> <strong>in</strong><br />

<strong>the</strong> soils. If <strong>the</strong>y were of Riss age it should be present. It must be concluded that<br />

<strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Solfer<strong>in</strong>o stage can be referred to <strong>the</strong> last glaciation <strong>and</strong> <strong>the</strong><br />

soils developed <strong>in</strong> <strong>the</strong>m must be related to <strong>the</strong> postglacial pedogenesis.<br />

i


100 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

4.8. THE FEUVIOGLACIAL PLAIN OF THE SOLFERINO MORAINE<br />

SYSTEM (loc. 12, 13, 14, 40, 47, 48, 49; map. unit C2)<br />

South of <strong>the</strong> frontal mora<strong>in</strong>e of <strong>the</strong> Garda Lake, referred to as <strong>the</strong> Solfer<strong>in</strong>o<br />

stage, lies <strong>the</strong> fluvioglacial pla<strong>in</strong> (s<strong>and</strong>ur), which developed downstream <strong>the</strong><br />

Garda glacier dur<strong>in</strong>g <strong>the</strong> last pleniglacial period <strong>and</strong> of which <strong>the</strong> shape is still<br />

well preserved. It has been deeply cut by ma<strong>in</strong> rivers that cross it from <strong>No</strong>rth to<br />

South.<br />

Lithologically <strong>the</strong> superficial sediments of <strong>the</strong> fluvioglacial pla<strong>in</strong> show a<br />

gradual decrease of <strong>the</strong> gra<strong>in</strong> size of <strong>the</strong> clastic material from <strong>No</strong>rth to South:<br />

close to <strong>the</strong> mora<strong>in</strong>es it is represented by coarse pebbles, which are progressively<br />

replaced by f<strong>in</strong>er pebbles <strong>and</strong> by s<strong>and</strong>.<br />

From <strong>the</strong> pedo logical po<strong>in</strong>t of view <strong>the</strong> situation is more complex. In fact <strong>the</strong><br />

area is strongly eroded, especially <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rnmost zones where <strong>the</strong> texture of<br />

<strong>the</strong> material is coarser.<br />

The profiles of Medole (loc. 40) <strong>and</strong> Ca Barcaccia (loc. 12) are characteristic<br />

of this area. The B horizon is poorly developed <strong>and</strong>, even if slightly rubefied, it<br />

still conta<strong>in</strong>s carbonate clasts. More to South, where <strong>the</strong> parent material is f<strong>in</strong>er<br />

sized, <strong>the</strong>re are wide areas, particularly where protected from erosion, that<br />

preserve well developed deep soils, of which <strong>the</strong> profiles of Ca’ Pegoroni (loc.<br />

13), Sp<strong>in</strong>eda (loc. 48), S. Mart<strong>in</strong>o (loc. 47), Fontanelle (loc. 49) can be<br />

considered as typical examples (Fig. 41a). The Ap <strong>and</strong> B2 horizons, consist<strong>in</strong>g of<br />

colluvial deposits, slightly carbonated, overlie a truncated soil, where <strong>the</strong><br />

horizons II B2t <strong>and</strong> II C ca can be recognized.<br />

A similar profile has been observed at Casatico di Marcarla (loc. 14)<br />

(<strong>Cremaschi</strong>, 1982b) where a large pit of Neolithic age is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> II B2<br />

horizon (Fig. 41b).<br />

In <strong>the</strong> most strongly eroded area on <strong>the</strong> top of <strong>the</strong> fluvioglacial pla<strong>in</strong> <strong>the</strong> deep<br />

soils are miss<strong>in</strong>g <strong>and</strong> shallow soils with profile Ap/C have developed (profile loc.<br />

14a). Also <strong>in</strong> <strong>the</strong> archaeological structures soils are generally better preserved:<br />

<strong>the</strong> profile of Casatico PIV, (loc. 14c) dat<strong>in</strong>g back to Copper age, <strong>and</strong> developed<br />

<strong>in</strong> a pit, consists of a thick A1 <strong>and</strong> of a well developed calcic horizon at it base.<br />

Soil form<strong>in</strong>g processes of more recent age are testified by <strong>the</strong> soil profile,<br />

developed <strong>in</strong> <strong>the</strong> fill of a ditch of a Roman age (loc. 14b), consist<strong>in</strong>g, below <strong>the</strong><br />

Ap, of a cambie horizon, <strong>and</strong> overly<strong>in</strong>g a slightly developed C ca (<strong>Cremaschi</strong>,<br />

1982b).<br />

M<strong>in</strong>eralogical characteristics of <strong>the</strong> Ca Pegoroni profile (loc. 13). The heavy m<strong>in</strong>eral<br />

assemblage is dom<strong>in</strong>ated by m<strong>in</strong>eral species of metamorphic paragenesis. The<br />

petrographic composition is not very different from that of <strong>the</strong> mora<strong>in</strong>e of <strong>the</strong><br />

Solfer<strong>in</strong>o stage. Never<strong>the</strong>less <strong>the</strong> variations, even if modest, of <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g<br />

<strong>in</strong>dex with depth <strong>in</strong>dicate <strong>the</strong> pedological discont<strong>in</strong>uity already shown by <strong>the</strong><br />

profile description <strong>and</strong> gra<strong>in</strong> size characteristics (Fig. 41 <strong>and</strong> 42).<br />

Micromorphological characteristics. The IIB2t horizon of <strong>the</strong> profile of Ca<br />

Pegoroni <strong>and</strong> Casatico have strong sepic plasmic fabric <strong>and</strong> above all illuvial


q u a t e r n a r y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 101<br />

CA’ PECORONI<br />

l o g 13<br />

GRAIN SIZE<br />

0 50 I<br />

CaCO^<br />

% 100 0 %40 0<br />

J__I__ I__L<br />

Fe203<br />

%4<br />

J _ J ___ I___ l_<br />

s<strong>and</strong><br />

nB2t<br />

silt<br />

clay<br />

cm<br />

0^<br />

nCca<br />

50<br />

Fig. 41a - The Ca Pegoroni profile.<br />

Fig. 41a II profilo di Ca’ Pegoroni.<br />

Ap<br />

C<br />

Cg<br />

3<br />

M c<br />

0 100 m<br />

R o m a n age<br />

d ra <strong>in</strong> a g e<br />

T<br />

N e o lith ic pit<br />

T<br />

P IV<br />

T<br />

w<br />

41b - Cross section <strong>in</strong> <strong>the</strong> Casatico di Marcaria locality (loc. 14) <strong>and</strong> described profiles.<br />

Fig. 41b - Sezione stratigrafica di un dosso presso Casatico di Marcaria e profili descritti.


102 PALEOSOLS AND VETUSOLS INTHE CENTRAL PO PLAIN<br />

Fig. 42 - The cumulative curves of <strong>the</strong> Ca Pegoroni profile (above) <strong>and</strong> of Casatico profiles<br />

(below).<br />

Fig.42 - Curve granulometriche cumulative del profilo di Ca Pegorani (sopra) e dei profili di<br />

Casatico (sotto).


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 103<br />

cutans (argillans <strong>and</strong> ferri-argillans). The fact that <strong>the</strong>y can also be found <strong>in</strong> <strong>the</strong><br />

II B22t of <strong>the</strong> Casatico profile, whose parent material is an anthropic pit fill of<br />

Neolithic age, demonstrates that <strong>the</strong> clay translocation was still active dur<strong>in</strong>g <strong>the</strong><br />

Atlantic period. The ferri-argillans are sometimes covered by calcitans which are<br />

problably due to <strong>the</strong> supply of calcium carbonate conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> colluvial<br />

deposits that overlie <strong>the</strong> B2t horizon.<br />

Both <strong>the</strong> profile P IV developed from <strong>the</strong> Copper age (II Millenium B.C.)<br />

(Biagi et alii, 1985) <strong>and</strong> <strong>the</strong> «Roman ditch» profile, whose pedogenesis started<br />

from <strong>the</strong> 2nd century B.C., do not show any evidence of clay translocation. In<br />

<strong>the</strong>se profiles <strong>the</strong> carbonates occur as nodules <strong>in</strong>side <strong>the</strong> plasma <strong>and</strong> as calcitans<br />

<strong>in</strong>side <strong>the</strong> pores. The plasmatic fabric is only slightly sepic <strong>and</strong> <strong>the</strong> plasma is<br />

ma<strong>in</strong>ly characterized by a certa<strong>in</strong> content of organic matter.<br />

Evidence from <strong>the</strong>se profiles on <strong>the</strong> age of <strong>the</strong> fluvioglacial pla<strong>in</strong> of <strong>the</strong> <strong>central</strong> <strong>Po</strong> Valley<br />

(Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>). The literature (see <strong>Cremaschi</strong>, 1982b) has <strong>in</strong>ferred a<br />

Middle Pleistocene age for <strong>the</strong> «Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>», which is strongly <strong>in</strong><br />

contrast with <strong>the</strong> data collected dur<strong>in</strong>g this study.<br />

From <strong>the</strong> geomorphological po<strong>in</strong>t of view, <strong>the</strong> «Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>» is<br />

connected with <strong>the</strong> frontal mora<strong>in</strong>es of <strong>the</strong> Solfer<strong>in</strong>o, which date back to Late<br />

Pleistocene; fur<strong>the</strong>rmore remnants of Elephas primigenius, Bison priscus <strong>and</strong> o<strong>the</strong>r<br />

Late Pleistocene mammals have been collected <strong>in</strong> its sediments (Sala, 1986). Both<br />

géomorphologie <strong>and</strong> stratigraphic data strongly po<strong>in</strong>t to a Late Pleistocene dat<strong>in</strong>g<br />

for <strong>the</strong> sedimentation of <strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>. The slightly rubefied soils<br />

with an argillic horizon present <strong>in</strong> its top (Cà Pegoroni profile, horizon II B2t,<br />

Casatico profile, horizon II B22t), as discussed above, ma<strong>in</strong>ly developed dur<strong>in</strong>g<br />

<strong>the</strong> Atlantic period. S<strong>in</strong>ce <strong>the</strong> Subboreal period <strong>the</strong> pedogenetic processes were<br />

<strong>in</strong>terrupted at different times by erosional <strong>and</strong> colluvial phases, which, be<strong>in</strong>g<br />

systematically connected with archaeological materials, probably have been produced<br />

ma<strong>in</strong>ly by human activities (<strong>Cremaschi</strong>, 1982b). The soils developed <strong>in</strong> parent<br />

materials dur<strong>in</strong>g this period lack evidence of clay translocation <strong>and</strong> rubéfaction.<br />

4.9. DISCUSSION ON THE CHRONOSTRATIGRAPHY OF THE GARDA<br />

SYSTEM<br />

Fig. 43 summarizes <strong>the</strong> correlations <strong>and</strong> <strong>the</strong> chronostratigraphic position of<br />

each unit ot <strong>the</strong> described sequences. The correlations are based on lithostratigraphic,<br />

paleopedostratigraphic, magnetostratigraphic <strong>and</strong> archaeostratigraphic criteria.<br />

<strong>No</strong>ne of <strong>the</strong>se criteria, taken by itself, would have allowed to set all <strong>the</strong><br />

stratigraphic <strong>in</strong>dications <strong>in</strong> a chronological network. This however has been<br />

possible by means of a critical comparison <strong>and</strong> with <strong>the</strong> reciprocal <strong>in</strong>tegration of<br />

<strong>the</strong> different data.<br />

The most significant stratigraphic marker which has characteristics which are<br />

homogeneous <strong>and</strong> well identifiable <strong>in</strong> <strong>the</strong> field, is <strong>the</strong> vetusol which evolves <strong>in</strong><br />

<strong>the</strong> GAV 3, CAST 4, CIL 5, CH 5 units <strong>and</strong> S. Biagio profile. It allows to<br />

establish between <strong>the</strong>se a temporal relationship.


104 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

.tóJ<br />

C A S T E N E D O L O C H IE S E S O L F E R IN O g la cia l<br />

G A V A R D O C IL IV E R G H E V A L S O R D A &<br />

o u tw a s h p la <strong>in</strong><br />

s ta g e s<br />

H O L O C E N E<br />

S O L F E R IN O<br />

C - Í ',.* ;*Tr--<br />

igpj?:<br />

Q.<br />

S E D E Ñ A<br />

C A R P E N E D O L O<br />

C IL IV E R G H E<br />

Fig. 43 - Correlation between stratigraphic units of <strong>the</strong> Garda area <strong>and</strong> <strong>the</strong>ir chronological<br />

position, (see legend <strong>in</strong> Fig. 43a). Localities: Gavardo = loc. 1, Castenedolo = loc. 8, Ciliverghe =<br />

loc. 7, Chiese sequence = loc. 2, 3, 4, 5, 39, Val Sorda = loc. 6, Solfer<strong>in</strong>o <strong>and</strong> outwash pla<strong>in</strong> pla<strong>in</strong><br />

= loc. 9, 10, 11, 12, 13, 14, 40, 47, 48, 49 (legend: Fig. 88a).<br />

Fig. 43 - Correlazioni fra le unita stratigrafiche dell’area gardesana (per la legenda vedi Fig. 88a).


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 105<br />

Therefore it is possible to assert that <strong>the</strong> units GAV 3, CAST 4 <strong>and</strong> CIL 5<br />

represent fragments of a fluvioglacial pla<strong>in</strong>, connected to <strong>the</strong> mora<strong>in</strong>es of unit CH<br />

5 <strong>and</strong> of Monte Faita. On <strong>the</strong> basis of lithostratigraphic criteria <strong>the</strong> paleomagnetic<br />

stratigraphy of <strong>the</strong> Chiese sequence (loc. 3, 4) can be extended to <strong>the</strong> Ciliverghe<br />

sequence (loc. 7): mora<strong>in</strong>e CIL 1 <strong>and</strong> 2 <strong>and</strong> that of CH 1 belong to <strong>the</strong> same<br />

sedimentary body <strong>and</strong> <strong>the</strong>refore both must be referred to <strong>the</strong> Matuyama epxDch<br />

(section 4.4). The possibility that <strong>the</strong> glaciolacustr<strong>in</strong>e marls of CH 3 <strong>and</strong> CIL 3<br />

may be referred to a different magnetic polarity, seems unlikely, keep<strong>in</strong>g <strong>in</strong>to<br />

account <strong>the</strong> geological sett<strong>in</strong>g.<br />

The fact that <strong>the</strong> Ciliverghe glaciolacustr<strong>in</strong>e unit, unlike those of Chiese,<br />

shows a direct polarity can be due to <strong>the</strong> different geological sett<strong>in</strong>g of <strong>the</strong> first.<br />

Its contact with <strong>the</strong> mora<strong>in</strong>es is not a stratigraphic passage, but a fault contact<br />

<strong>and</strong> this could have disturbed <strong>the</strong> orig<strong>in</strong>al magnetism. Fur<strong>the</strong>rmore <strong>the</strong> sampl<strong>in</strong>g<br />

has not reached <strong>the</strong> base of <strong>the</strong> unit, as at Calvagese.<br />

Therefore <strong>the</strong> passage from direct to reserved polarity could be present <strong>in</strong> <strong>the</strong><br />

marls of Ciliverghe at a depth not reached by <strong>the</strong> profile sampled.<br />

S<strong>in</strong>ce <strong>the</strong>y consist of similar gravels com<strong>in</strong>g from <strong>the</strong> Val Sabbia, units CH4,<br />

CIL 3, CAST 3 can be correlated on a lithostratigraphic basis <strong>and</strong> should belong<br />

to <strong>the</strong> same alluvial fan.<br />

On <strong>the</strong> basis of <strong>the</strong> stratigraphic positions <strong>the</strong> loess of GAV 2 should be<br />

regarded as contemporaneous with <strong>the</strong> CIL 1 <strong>and</strong> 2 <strong>and</strong> CH 1 mora<strong>in</strong>es. The<br />

paleosol GAV 1 must <strong>the</strong>refore be correlated with <strong>the</strong> one of CAST 1, to which<br />

it is similar also for its pedogenetic-characteristics. Because of <strong>the</strong> reversed<br />

polarity of this paleosol <strong>and</strong> on <strong>the</strong> basis of stratigraphic position, both paleosols<br />

should be referred to <strong>the</strong> Matuyama epoch, that is to <strong>the</strong> Early Pleistocene.<br />

Among <strong>the</strong> Late Pleistocene deposits <strong>the</strong> loesses can be easily correlated both<br />

on <strong>the</strong> basis of <strong>the</strong> lithostratigraphic characteristics <strong>and</strong> of <strong>the</strong> palaeolithic<br />

artifacts collected <strong>in</strong> <strong>the</strong>m.<br />

In conclusion, <strong>in</strong> <strong>the</strong> Garda area <strong>the</strong> follow<strong>in</strong>g results appear from stratigraphic<br />

correlations:<br />

- 5 phases of glacial advance <strong>in</strong> <strong>the</strong> piedmont area have been documented, one<br />

dur<strong>in</strong>g <strong>the</strong> Early Pleistocene (Ciliverghe stage), three dur<strong>in</strong>g <strong>the</strong> Middle<br />

Pleisfocene (Monte Faita, Carpenedolo <strong>and</strong> Sedeña stages) <strong>and</strong> one dur<strong>in</strong>g <strong>the</strong><br />

Late Pleistocene (Solfer<strong>in</strong>o stage), which can be subdivided <strong>in</strong>to two<br />

substages.<br />

- The glacial stages are preceded by <strong>and</strong> alternate with non-glacial phases, <strong>in</strong><br />

which fluvial sedimentation <strong>and</strong> pedogenesis are <strong>the</strong> ma<strong>in</strong> processes.


5.<br />

QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS<br />

IN THE ADDA AREA<br />

5.1. THE «OLD DILUVIUM» TERRACE (map units B2 <strong>and</strong> B3)<br />

The profiles described below have been selected <strong>in</strong> order to represent <strong>the</strong><br />

different geomorphological conditions which occur at <strong>the</strong> top of <strong>the</strong> «Old<br />

Diluvium » terrace (Fig. 44). The profiles of Camparada (loc. 16) <strong>and</strong> Vivaldi<br />

(loc. 15) are situated <strong>in</strong> correspondence with <strong>the</strong> Camparada mora<strong>in</strong>e ridge (see<br />

section 3.3, 3.4) (Fig. 13); <strong>the</strong> profiles of Cernusco (loc. 17) <strong>and</strong> <strong>Po</strong>rto d’Adda<br />

(loc. 19) represent <strong>the</strong> situation on <strong>the</strong> gently undulat<strong>in</strong>g surface of <strong>the</strong> Ferretto<br />

terrace close to <strong>the</strong> Adda River. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> Bivio Missaglia profile<br />

(loc. 18) represents a very local situation <strong>in</strong> which <strong>the</strong> Ferretto is covered not<br />

only by loess sheets but also by a th<strong>in</strong> gravel layer.<br />

Camparada <strong>and</strong> Vivaldi profiles. The surface of <strong>the</strong> «Old Diluvium» terrace,<br />

between Lesmo <strong>and</strong> Camparada, consists of an evident ridge <strong>and</strong> o<strong>the</strong>r less<br />

prom<strong>in</strong>ent undulations related to mora<strong>in</strong>e accumulation. In <strong>the</strong>se deposits, a deep<br />

vetusol («Ferretto»), marked by strong wea<strong>the</strong>r<strong>in</strong>g, is observed (Ugol<strong>in</strong>i <strong>and</strong><br />

OrombeUi, 1968). The here described profiles have been described at Camparada<br />

on <strong>the</strong> topmost part of <strong>the</strong> mora<strong>in</strong>e (Camparada profile) <strong>and</strong> along <strong>the</strong> flanks of<br />

<strong>the</strong> mora<strong>in</strong>e itself, <strong>in</strong> <strong>the</strong> trench of Via Vivaldi (Vivaldi profile).<br />

The relationships between <strong>the</strong> two profiles are schematically represented <strong>in</strong><br />

Fig. 45.<br />

Both profiles have a loess cover at <strong>the</strong>ir top. In <strong>the</strong> Vivaldi profile <strong>the</strong> loess<br />

lies on a stone l<strong>in</strong>e composed of strongly wea<strong>the</strong>red gravels. The underly<strong>in</strong>g<br />

horiaon (IV B22t), exposed for about three metres, is strongly mbefied <strong>and</strong> rich<br />

<strong>in</strong> clay, while <strong>the</strong> gravels are almost absent <strong>and</strong> consist of angular fragments of<br />

quartz <strong>and</strong> chert, which are more abundant <strong>and</strong> coarser towards <strong>the</strong> base.<br />

In <strong>the</strong> profile of Camparada only <strong>the</strong> lower part of <strong>the</strong> B22t horizon, already<br />

richer <strong>in</strong> stones, has been preserved. The transition between <strong>the</strong> B22t <strong>and</strong> B31t<br />

is marked by a progressive <strong>and</strong> gradual <strong>in</strong>crease of <strong>the</strong> gravels with respect to <strong>the</strong><br />

matrix. In <strong>the</strong> underly<strong>in</strong>g B32t horizon gravels prevail over <strong>the</strong> f<strong>in</strong>e earth. They<br />

have reta<strong>in</strong>ed <strong>the</strong>ir shape but are friable <strong>and</strong> can easily be broken by h<strong>and</strong>. There<br />

is still an appreciable amount of matrix <strong>and</strong> many thick ferri-argillans are present.<br />

The latter are rubefied <strong>and</strong> visible with <strong>the</strong> naked eye. The base of <strong>the</strong> B horizon<br />

is not exposed, even at seven meters depth.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 109<br />

Textural characteristics. The loess cover of both profiles has a homogeneous<br />

texture, a low amount of s<strong>and</strong> {6-11), <strong>and</strong> a moderate clay content (between 24<br />

<strong>and</strong> 2?>l) (Fig. 46).<br />

The great amount of silt <strong>and</strong> <strong>the</strong> low percentages of clay of <strong>the</strong> curves of<br />

Vivaldi III B21t <strong>and</strong> IV B22t, which are <strong>in</strong> contrast with <strong>the</strong> field evidence <strong>and</strong><br />

with <strong>the</strong> gra<strong>in</strong> size distribution of <strong>the</strong> deepest horizons of both profiles, must be<br />

attributed to poor peptisation dur<strong>in</strong>g analysis (see Appendix 2).<br />

V IV A L D I<br />

LOG 15<br />

C A M P A R A D A<br />

LOG 16<br />

% 45 - The Vivaldi <strong>and</strong> Camparada profiles.<br />

45-1 profili di Camparada e Vivaldi.


110 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

The III B21t horizon of <strong>the</strong> Vivaldi profile, differs from <strong>the</strong> underly<strong>in</strong>g IV<br />

B22t <strong>in</strong> its greater s<strong>and</strong> <strong>and</strong> gravel content present as a stone l<strong>in</strong>e. The slightly<br />

coarse texture is evidently due to admixture of material eroded from <strong>the</strong> top-most<br />

part of <strong>the</strong> mora<strong>in</strong>e, where <strong>the</strong> vetusol had been more deeply eroded. The<br />

gram size distribution of <strong>the</strong> IV B22t horizon of <strong>the</strong> Vivaldi profile <strong>and</strong> III B22t, III<br />

I331t, B32t of <strong>the</strong> Camparada profile, belong<strong>in</strong>g to <strong>the</strong> same sequum, shows a regular<br />

decrease <strong>in</strong> clay content, balanced by a progressive <strong>in</strong>crease <strong>in</strong> s<strong>and</strong> content.<br />

Fig. 46 - The cumulative curves of <strong>the</strong> Camparada <strong>and</strong> Vivaldi profiles.<br />

■t<br />

Fig. 46 - Curve granulometriche cumulative dei profili di Camparada e Vivaldi.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 111<br />

Micromorphological characteristics. The loess cover of <strong>the</strong> two profiles, especially<br />

<strong>the</strong> horl2ons II B21t <strong>and</strong> II B22tx of Vivaldi <strong>and</strong> II B21t of Camparada show<br />

very similar characteristics. The plasma is slightly sepic, rang<strong>in</strong>g from silasepic to<br />

<strong>in</strong>sepic. The voids are ma<strong>in</strong>ly vughs <strong>and</strong> metavughs, of which <strong>the</strong> latter characterize<br />

<strong>the</strong> II B22tx horizon of <strong>the</strong> Vivaldi profile that has <strong>the</strong> characteristics of a<br />

fragipan. The complex cutans are particularly evident <strong>and</strong> consist of an alternation<br />

of siltans <strong>and</strong> skeletans. In <strong>the</strong> S-matrix sometimes fluidal patterns can be<br />

observed, evidenced by preferential orientation of skeleton-sized micas <strong>and</strong> by<br />

th<strong>in</strong> silty strata.<br />

The vetusol <strong>in</strong> mora<strong>in</strong>e <strong>in</strong> both profiles (B22t, B31t <strong>and</strong> B32t horizons) has<br />

different properties. The plasma is strongly rubefied, rich <strong>in</strong> iron <strong>and</strong> very little<br />

biréfr<strong>in</strong>gent. In <strong>the</strong> uppermost horizons <strong>the</strong> prevail<strong>in</strong>g cutans consist of<br />

ferri-argillans alternat<strong>in</strong>g with siltans <strong>and</strong> skeletans. In <strong>the</strong> lowermost horizons<br />

thick ferri-argillans dom<strong>in</strong>ate, but <strong>the</strong>y are strongly disturbed, <strong>and</strong> complex<br />

cutans are less frequent. Fur<strong>the</strong>rmore a micropedality of <strong>the</strong> pseudos<strong>and</strong> type is<br />

evident <strong>in</strong> <strong>the</strong> S - matrix.<br />

M<strong>in</strong>eralogical characteristics. M<strong>in</strong>eralogically <strong>the</strong> loess cover of <strong>the</strong> profiles of<br />

Camparada <strong>and</strong> of Vivaldi shows no clear differences, nei<strong>the</strong>r <strong>in</strong> <strong>the</strong> heavy<br />

m<strong>in</strong>eral composition nor <strong>in</strong> <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex.<br />

The loesses conta<strong>in</strong> a wide variety of metamorphic m<strong>in</strong>erals, particularly<br />

amphiboles <strong>and</strong> epidotes, while staurolite is much less frequent.<br />

The composition of <strong>the</strong> wea<strong>the</strong>red mora<strong>in</strong>e is different because staurolite is<br />

largely prevail<strong>in</strong>g <strong>and</strong> amphiboles <strong>and</strong> epidotes are much rarer due to wea<strong>the</strong>r<strong>in</strong>g.<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex is very high, especially <strong>in</strong>side horizon IV B22t of <strong>the</strong><br />

Vivaldi profile <strong>and</strong> decreases <strong>in</strong> <strong>the</strong> deepest horizon of <strong>the</strong> Camparada profile.<br />

The clay m<strong>in</strong>erals consist of scarce smectite <strong>and</strong> of vermiculite, illite <strong>and</strong> k<strong>and</strong>ite<br />

m<strong>in</strong>erals. The vetusol evolved <strong>in</strong> <strong>the</strong> mora<strong>in</strong>e deposits shows clearly a lower<br />

content of vermiculite <strong>and</strong> higher content of k<strong>and</strong>ite.<br />

Chemical characteristics. All <strong>the</strong> horizons are decarbonated <strong>and</strong> have a pH lower<br />

than 5. The exchange capacity of <strong>the</strong> B22t, B31t, B32t horizons of <strong>the</strong> vetusol<br />

on mora<strong>in</strong>e is low, as well as <strong>the</strong> base saturation, which reaches only <strong>the</strong> 18?.<br />

The free iron content is high, both <strong>in</strong> <strong>the</strong> loess <strong>and</strong> <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g horizons,<br />

where it reaches 10.5?.<br />

Paleomagnetic stratigraphy. Measurements were made on samples of Vivaldi<br />

profile (Salloway, 1983) which turns out to have a direct residual magnetic<br />

polarity.<br />

The magnetic dips rema<strong>in</strong> positive, but at <strong>the</strong> base of <strong>the</strong> profile <strong>the</strong><br />

decl<strong>in</strong>ation shows a marked direction towards <strong>the</strong> South <strong>and</strong> gives an <strong>in</strong>termediate<br />

VGP.<br />

This could be <strong>in</strong>terpreted as a tendency of <strong>the</strong> polarity to become reversed<br />

with depth.<br />

The Cernusco profile (loc. 17). The profile has been described along <strong>the</strong> road


112 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

-ifI<br />

cut Cernusco-Merate at <strong>the</strong> top of <strong>the</strong> «Old Diluvium» terrace (Fig. 47); it has<br />

already been syn<strong>the</strong>tically described by Orombelli (1979). The upper part consists<br />

of two dist<strong>in</strong>ct loess covers; <strong>the</strong> first one is slightly wea<strong>the</strong>red, friable, <strong>and</strong> has a<br />

soils with an Ap/B2 horizon sequence. The second loess, more strongly<br />

wea<strong>the</strong>red, dense <strong>and</strong> with <strong>the</strong> characteristics of a fragipan, constituites <strong>the</strong> II<br />

B2Itx horizon. The loess covers have an abrupt <strong>and</strong> wavy limit <strong>and</strong> fill a few<br />

depressions of <strong>the</strong> underly<strong>in</strong>g horizons developed <strong>in</strong> <strong>the</strong> gravels of <strong>the</strong> terrace.<br />

These are clearly rubefied <strong>and</strong> show characteristics of a strong wea<strong>the</strong>r<strong>in</strong>g. The<br />

horizons III B31t, III B32t can be dist<strong>in</strong>guished from one ano<strong>the</strong>r by <strong>the</strong><br />

remarkable <strong>in</strong>crease of <strong>the</strong> stones <strong>in</strong> <strong>the</strong> latter.<br />

Along <strong>the</strong> scarp of <strong>the</strong> Molgora Stream, Orombelli (1979) described <strong>the</strong><br />

lowermost horizons of <strong>the</strong> Ferretto vetusol, that consist of about 7 metres of <strong>the</strong><br />

III B32 horizons, where <strong>the</strong> clasts, even if strongly wea<strong>the</strong>red, prevail over <strong>the</strong><br />

matrix.<br />

The C ca horizon crops out along <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong> terrace, even if not <strong>in</strong><br />

cont<strong>in</strong>uity with <strong>the</strong> profile. It consists of <strong>the</strong> top of <strong>the</strong> Ceppo, Trezzo Member<br />

which is <strong>in</strong>durated by CaCOj.<br />

The boundary with <strong>the</strong> B horizons is abrupt <strong>and</strong> very irregular, consist<strong>in</strong>g of<br />

p<strong>in</strong>nacles <strong>and</strong> cemented rock that penetrate more or less deeply <strong>in</strong>to <strong>the</strong> B32<br />

horizon.<br />

Textural characteristics. The cumulative gra<strong>in</strong> size curves of <strong>the</strong> loesses show a<br />

unimodal shape <strong>and</strong> a considerable amount of clay, even <strong>in</strong> <strong>the</strong> upper most loess<br />

(Fig. 48).<br />

As discussed above for <strong>the</strong> Vivaldi profile, <strong>the</strong> great amount of silt <strong>and</strong> <strong>the</strong><br />

low percentage of clay <strong>in</strong> <strong>the</strong> III B31t <strong>and</strong> III B32t horizons must be due to poor<br />

peptization dur<strong>in</strong>g analysis (see Appendix 2).<br />

Micromorphological characteristics. The B21t <strong>and</strong> II B2Itx horizons evolved <strong>in</strong><br />

loess show moderately high sepicity, dist<strong>in</strong>ct <strong>and</strong> abundant ferri-argillans <strong>and</strong> a<br />

predom<strong>in</strong>ance of vughs among <strong>the</strong> voids.<br />

Areas of reduced plasma, <strong>in</strong>dicate that <strong>the</strong> B21tx horizon was subjected to<br />

pseudogley<strong>in</strong>g, subsequent on <strong>the</strong> illuviation of clay.<br />

The III B3It horizon of <strong>the</strong> vetusol <strong>in</strong> gravel shows characteristics similar to<br />

those of <strong>the</strong> IV B22t horizon of <strong>the</strong> Vivaldi profile.<br />

The matrix is rubefied <strong>and</strong> slightly sepic, <strong>the</strong> ferri-argillans are abundant,<br />

sometimes strongly wea<strong>the</strong>red <strong>and</strong> disturbed, be<strong>in</strong>g partly <strong>in</strong>corporated <strong>in</strong> <strong>the</strong><br />

matrix. Papules are common.<br />

M<strong>in</strong>eralogical characteristics. Similar to <strong>the</strong> Camparada <strong>and</strong> Vivaldi profiles, <strong>the</strong><br />

heavy m<strong>in</strong>eral assemblage <strong>in</strong> <strong>the</strong> loess is composed of a greater variety of heavy<br />

m<strong>in</strong>erals of metamorphic paragenesis, while <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g vetusol stauroUte<br />

abounds <strong>and</strong> <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex is much higher. The latter also <strong>in</strong> absolute<br />

values is similar to those obta<strong>in</strong>ed for <strong>the</strong> Camparada <strong>and</strong> Vivaldi profiles.<br />

Throughout <strong>the</strong> profile <strong>the</strong> clay fraction largely consists of vermicuhte, illite<br />

<strong>and</strong> k<strong>and</strong>ite.


q u a te r n a r y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 113<br />

CERNUSCO<br />

LOG 17<br />

BIVIO MISSAGLIA<br />

LOG 18<br />

PORTO<br />

D’ADDA<br />

LOO 19<br />

Fig. 47 - The Cernusco, Bivio Missaglia <strong>and</strong> <strong>Po</strong>rto d’Adda profiles.<br />

Fig. 47-1 profili di Cernusco, Bivio Massaglia e <strong>Po</strong>rto d’Adda,


114 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Bivio Missaglia profile (loc. 18). The place lies on <strong>the</strong> same geomorphological<br />

unit as <strong>the</strong> profiles described up to now, but fur<strong>the</strong>r upstream, at <strong>the</strong> foot of <strong>the</strong><br />

relief of <strong>the</strong> Bergamo Flysch represented by <strong>the</strong> Monte Vecchia hill.<br />

In <strong>the</strong> upper part of <strong>the</strong> profile (Fig. 47) <strong>the</strong> loess covers are well developed.<br />

The follow<strong>in</strong>g horizons have been dist<strong>in</strong>guished: a horizon of friable loess (Ap),<br />

reworked by plough<strong>in</strong>g, at <strong>the</strong> base of which artifacts referable to <strong>the</strong> Upper<br />

1 =B 2<br />

2 =OB2 1 tx<br />

3 = IIB 2 2 tx<br />

4=rnB3 It CO<br />

5 =niB3 1 1 Cbi<br />

/ L<br />

m<br />

I ------<br />

0 2 3 4 5 6 7 8 0 9<br />

1 mm 0.062<br />

0,002<br />

Fig. 48 - The cumulative curves of <strong>the</strong> Cernusco profile; (t) = top; (b) = bottom.<br />

Fig. 48 - Curve granulometriche cumulative del profilo di Cernusco.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 115<br />

Palaeolithic have been found, <strong>and</strong> an underly<strong>in</strong>g thick layer of loess (II B21tx) with<br />

fragipan characteristics. This horizon, especially at <strong>the</strong> base, is particularly rich <strong>in</strong><br />

iron <strong>and</strong> manganese nodules. This is followed by a platy horizon (II B22t). In<br />

th<strong>in</strong> section, this loess layer is characterized by a great amount of complex cutans,<br />

by fluidal patterns of <strong>the</strong> skeleton gra<strong>in</strong>s <strong>and</strong> by zones of clean silt.<br />

Underneath <strong>the</strong>re is s<strong>and</strong>y silt (III B23t) that passes through a lam<strong>in</strong>ar<br />

horizon (IV B24t) to decarbonated gravels (IV B/C).<br />

In th<strong>in</strong> section <strong>the</strong> III B23t shows characteristics similar to those of <strong>the</strong><br />

overly<strong>in</strong>g loess, but a poor sort<strong>in</strong>g of <strong>the</strong> skeleton gra<strong>in</strong>s <strong>and</strong> <strong>the</strong> presence of<br />

lithorelicts demonstrates that it represents <strong>the</strong> f<strong>in</strong>e (pelitic) top of a fluviatile<br />

deposit of which <strong>the</strong> gravels represent <strong>the</strong> base.<br />

These gravels, with a very wavy erosional contact, overlie a strongly rubefied<br />

paleosol of which only th VB 31t horizon has been observed which, <strong>in</strong> th<strong>in</strong><br />

section, has a highly sepic plasmic fabric <strong>and</strong> common thick complex cutans <strong>and</strong><br />

disturbed ferri-argillans. This horizon is similar to <strong>the</strong> horizon III B 31t of <strong>the</strong><br />

Cernusco profile.<br />

On <strong>the</strong> Paderno d’Adda terrace a polygenic cover of about two metres of<br />

loess overlies a rubefied vetusol on gravel, (<strong>Po</strong>rto d’Adda profile, loc. 19) similar<br />

to those described above.<br />

The lower boundary of <strong>the</strong> vetusol is well exposed along <strong>the</strong> Paderno d’Adda<br />

gorge (Orombelli, 1979). The contact between B32 horizon <strong>and</strong> <strong>the</strong> C ca is<br />

abrupt <strong>and</strong> highly irregular <strong>and</strong> locally has isolated p<strong>in</strong>nacles about one metre<br />

long of cemented material, which penetrate <strong>in</strong>to B horizons <strong>and</strong> generate a<br />

pattern known as Geologische Orgeln (Penck <strong>and</strong> Brückner, 1909).<br />

The stratigraphic situation of <strong>the</strong> Calusco terrace, on <strong>the</strong> left side of <strong>the</strong><br />

Adda River, does not differ from that of <strong>the</strong> Paderno terrace.<br />

5.2. OBSERVATIONS ON THE «OLD DILUVIUM» TERRACE<br />

The parent materials <strong>in</strong> which <strong>the</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> top of <strong>the</strong> «Old Diluvium»<br />

developed, range from mora<strong>in</strong>e deposits <strong>in</strong> <strong>the</strong> area of Camparada <strong>and</strong> fluvial or<br />

fluvioglacial sediments for <strong>the</strong> easternmost areas.<br />

Special attention will be paid to <strong>the</strong> correlation between <strong>the</strong> Trezzo member<br />

of <strong>the</strong> Ceppo d’Adda because it is very important for <strong>the</strong> Quaternary stratigraphy<br />

of <strong>the</strong> whole Alp<strong>in</strong>e marg<strong>in</strong>. Although <strong>the</strong> Trezzo member lacks volcanic roks<br />

which characterize <strong>the</strong> Camparada mora<strong>in</strong>e, <strong>the</strong> high amount of staurolite, which<br />

is typical of both units <strong>and</strong> <strong>the</strong> local stratigraphic context strongly suggest that<br />

<strong>the</strong> Trezzo d’Adda member sedimentation has been strictly connected with <strong>the</strong><br />

Camparada mora<strong>in</strong>e deposition, <strong>and</strong> should represent its fluvioglacial deposits.<br />

The absence <strong>in</strong> it of <strong>the</strong> volcanic rocks can be due to <strong>the</strong> strong wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> Ferretto, or by local feed<strong>in</strong>g from a lateral valleys not occupied by glaciers.<br />

The surface of <strong>the</strong> «Old Diluvium» terrace has undergone subsequent phases<br />

of erosion, colluvium <strong>and</strong> eolian sedimentation.


116 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

5.3. THE TERRACE OF THE «MIDDLE DILUVIUM» (map unit B51)<br />

The terrace of <strong>the</strong> «Middle Diluvium» is <strong>in</strong>tensively cultivated <strong>and</strong> good<br />

sections <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> <strong>and</strong> loess covers are ra<strong>the</strong>r scarce. In <strong>the</strong> first place <strong>the</strong><br />

profiles of Ronco Briant<strong>in</strong>o <strong>and</strong> <strong>No</strong>vedrate, already described by Ugol<strong>in</strong>i <strong>and</strong><br />

Orombelli (1968), are described here. In addition <strong>the</strong> Copreno profile will be<br />

also exam<strong>in</strong>ed, although it is located beyond <strong>the</strong> western limit of <strong>the</strong> area here<br />

(Fig. 49).<br />

!i I...,.<br />

Tbe Ronco Briant<strong>in</strong>o profile (loc. 20). The upper part of <strong>the</strong> profile consists of<br />

friable loess, colluviated, ly<strong>in</strong>g on a clearly identifiable erosional surface.<br />

Underneath occurs a vetusol developed <strong>in</strong> fluvioglacial gravels. The II B22t<br />

II B31t <strong>and</strong> II B32t hori2ons can be dist<strong>in</strong>guished; <strong>the</strong>y differ from each o<strong>the</strong>r<br />

because of a strong <strong>in</strong>crease <strong>in</strong> gravel, <strong>in</strong> porosity <strong>and</strong> of a decrease of<br />

rubéfaction towards <strong>the</strong> bottom.<br />

The gra<strong>in</strong> size curve of <strong>the</strong> loess sample (n. 1) shows a s<strong>and</strong>y tail that<br />

<strong>in</strong>dicated its colluvial nature (Fig. 50). The curves of <strong>the</strong> samples from <strong>the</strong> soil<br />

<strong>in</strong> gravel (n. 2/5) are sufficiently homogeneous as far as <strong>the</strong>ir shape is concerned,<br />

but <strong>the</strong>y show significant gra<strong>in</strong> size variations due to wea<strong>the</strong>r<strong>in</strong>g. In fact one can<br />

observe a clear <strong>in</strong>crease of clay towards <strong>the</strong> base of <strong>the</strong> B31t, which decreases <strong>in</strong><br />

<strong>the</strong> B32t. The s<strong>and</strong>y fraction shows an opposite trend, s<strong>in</strong>ce it <strong>in</strong>creases between<br />

<strong>the</strong> B31t <strong>and</strong> <strong>the</strong> B32t.<br />

In th<strong>in</strong> section <strong>the</strong> vetusol <strong>in</strong> gravel has a moderately sepic plasmic fabric <strong>and</strong><br />

many highly biréfr<strong>in</strong>gent <strong>and</strong> lam<strong>in</strong>ated ferri-argillans, locally <strong>in</strong>terbedded with<br />

complex cutans; however <strong>the</strong> ferri-argillans slightly decrease <strong>in</strong> number with<br />

depth. Clay m<strong>in</strong>eral composition does not show any significant change along <strong>the</strong><br />

profile. The heavy m<strong>in</strong>eral association is very similar to that of <strong>the</strong> «Ceppo<br />

<strong>Po</strong>ligenico» (Section 3.5.). The difference <strong>in</strong> garnet content, which can simply<br />

depend on different sedimentary conditions <strong>in</strong> <strong>the</strong> two sampl<strong>in</strong>g localities<br />

(Partenoff et alii, 1971), is not considered to be significant.<br />

The <strong>No</strong>vedrate profile (near loc. 20, see Fig. 49) described by Ugol<strong>in</strong>i <strong>and</strong><br />

Orombelli, (1968), exposes <strong>the</strong> contact, not reached by <strong>the</strong> former profile,<br />

between <strong>the</strong> B horizons of <strong>the</strong> soil <strong>in</strong> gravels <strong>and</strong> <strong>the</strong> underly<strong>in</strong>g cemented gravel.<br />

Fur<strong>the</strong>rmore <strong>the</strong> loess cover is thicker. In fact <strong>the</strong> profile consists of a loess<br />

cover, 1.90 m thick, <strong>in</strong> which <strong>the</strong> A l, B1 <strong>and</strong> B2 horizons can be recognized.<br />

Erosion <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g soil has been so severe that an important part of <strong>the</strong> B<br />

horizon has been removed, except for <strong>the</strong> B32 horizon which is 6 m thick <strong>in</strong> <strong>the</strong><br />

whole <strong>and</strong> pass to C ca horizon with an abrupt, strongly undulat<strong>in</strong>g boundary.<br />

The contact shows characteristic of Geologische Orgeln, similar to those described<br />

for <strong>the</strong> «Old Diluvium» terraces.<br />

n<br />

The Copreno profile (loc. 21). This profile, brought to light by <strong>the</strong> road-cut on<br />

<strong>the</strong> eastern marg<strong>in</strong> of <strong>the</strong> terrace of <strong>the</strong> «Middle Diluvium», has already been<br />

studied <strong>in</strong> detail some 50 m West of our locality by Orombelli (1970) <strong>and</strong> this<br />

has been subsequently discussed by Billard (1977) (Fig. 51).<br />

Three loess covers can be dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> section studied by Orombelli


q u a te r n ar y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 117<br />

NOVEDRATE<br />

(a fte r U gol<strong>in</strong>i<br />

<strong>and</strong> O rom bellT)<br />

RONCO<br />

BRIANTINO<br />

LOG 20<br />

COPRENO<br />

LOG 2 1<br />

Fi^. 49 - The profiles on <strong>the</strong> «Middle Diluvium» terrace (map unit B51).<br />

Fig. 49-1 proflli del terrazzo del Diluvium medio.


118 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO |<br />

(1968). They lie on a colluviated paleosol evolved <strong>in</strong> <strong>the</strong> gravels of <strong>the</strong> «Middle<br />

Diluvium»; from top to bottom:<br />

COP 1: A1 + Cl, 0-2 m; silty s<strong>and</strong>y loess; <strong>the</strong> thick A1 horizon, <strong>in</strong>cludes<br />

fragments of pottery dat<strong>in</strong>g back to <strong>the</strong> Iron Age (VI - IV sec. B.C.); <strong>the</strong><br />

boundary with <strong>the</strong> next layer is marked by a th<strong>in</strong> lam<strong>in</strong>ary horizon.<br />

100-<br />

90-<br />

1= A P + B 1<br />

2=ni<br />

322t<br />

80 —<br />

70<br />

__ 3=n 3 3 1 1<br />

4=n<br />

5=n<br />

3321 (t<br />

I<br />

332tCb I<br />

-----<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0 L 0 9<br />

1mm 0,062 0,002<br />

Fig. 50 - The cumulative curves of <strong>the</strong> Ronco Briant<strong>in</strong>o profile; (t) = top, (b) = bottom.<br />

Fig. 50 - Curve granulometriche cumulative del profilo di Ronco Briant<strong>in</strong>o.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 119<br />

COP 2: C2, 2 2.90 m: silty s<strong>and</strong>y loess, coarser textured at <strong>the</strong> base <strong>and</strong> f<strong>in</strong>er<br />

at <strong>the</strong> top, <strong>in</strong> <strong>the</strong> upper part some lam<strong>in</strong>ar horizons are developed.<br />

COP 3: C3, 2.90 - 4.25 m: silty s<strong>and</strong>y loess; not lam<strong>in</strong>ated layer, show<strong>in</strong>g a<br />

cler upward f<strong>in</strong><strong>in</strong>g trend, at <strong>the</strong> top a th<strong>in</strong> lam<strong>in</strong>ar horizon.<br />

COP 4: 4.25 - 6.50 m: colluviated paleosol <strong>and</strong> decarbonated gravels of <strong>the</strong><br />

«Middle Diluvium» terrace.<br />

The textural characteristis, derived from Orombelli (1970) are reported <strong>in</strong><br />

Fig. 51.<br />

G RAIN SIZE<br />

A1<br />

COP 1<br />

C1<br />

COP 2<br />

C2<br />

COP 3<br />

C3<br />

COP 4<br />

o r~<br />

1“<br />

c HmO*D>nmOc/)<br />

O<br />

51 - The Copreno (near loc. 91) profile described by Orombelli (1970).<br />

i i - II profilo di Copreno (presso la localita 21) descritto da Orombelli (1970).


120 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

The lam<strong>in</strong>ar hori2ons, <strong>in</strong> <strong>the</strong> loess part of <strong>the</strong> profile ma<strong>in</strong>ly developed <strong>in</strong> <strong>the</strong><br />

Orombelli’s profile, recall <strong>the</strong> “ limons a doublet” of <strong>No</strong>rm<strong>and</strong>y, described by<br />

Latridou <strong>and</strong> Giresse (1980), <strong>and</strong> be<strong>in</strong>g a typical feature of <strong>the</strong> Copreno profile,<br />

<strong>the</strong>y have been studied <strong>in</strong> th<strong>in</strong> sections. On microscale, <strong>the</strong>y appear to be slightly"<br />

sorted, due to <strong>the</strong> removal of <strong>the</strong> f<strong>in</strong>er fractions. The lam<strong>in</strong>ation is due to<br />

alternat<strong>in</strong>g lamellae with oxidi2ed <strong>and</strong> reduced plasma; ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> reduced area<br />

<strong>the</strong>re are th<strong>in</strong> <strong>and</strong> discont<strong>in</strong>uous <strong>in</strong>tergranular argillans.<br />

Those characteristics would suggest that <strong>the</strong> lam<strong>in</strong>ar hori2ons <strong>in</strong> loess developed<br />

because of ra<strong>in</strong> wash or melt water (Miicher <strong>and</strong> Vreeken, 1981). Likely<br />

<strong>the</strong>se phenomena took place dur<strong>in</strong>g <strong>the</strong> last glacial period <strong>and</strong> must be considered<br />

almost contemporaneous to <strong>the</strong> sedimentation of <strong>the</strong> loess itself.<br />

On <strong>the</strong> contrary <strong>the</strong> accumulation of illuvial clay must be referred to Holocene<br />

times. The clay is observable both from <strong>the</strong> microscopic <strong>and</strong> textural po<strong>in</strong>ts<br />

of view <strong>and</strong> its accumulation took place along lithological discont<strong>in</strong>uities, probably<br />

<strong>in</strong> correspondence with <strong>the</strong> formation of hang<strong>in</strong>g aquifers, accord<strong>in</strong>g to <strong>the</strong><br />

mechanisms described by Dijkerman et alii (1968) (Section 9.2.).<br />

In <strong>the</strong> profile described <strong>in</strong> detail by <strong>the</strong> present author <strong>in</strong> this study (Appendix<br />

1, loc. 21) 50 m east of that already studied by Orombelli (1970), <strong>the</strong> loess ,<br />

cover is only 2 metres thick. The underly<strong>in</strong>g paleosol is mostly preserved <strong>in</strong> situ<br />

<strong>and</strong> below an erosional surface, <strong>the</strong> II B21t, III B31t, III B32 hori2ons are clearly<br />

developed (Fig. 52).<br />

COPRENO<br />

LOC 21


q u a te r n a r y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 121<br />

'Ihe gra<strong>in</strong> size of <strong>the</strong>se horizons <strong>in</strong>dicate a textural difference already present<br />

<strong>in</strong> <strong>the</strong> parent material (Fig. 53). The II B21t horizon evolved on fluvial silty<br />

sediments <strong>in</strong> top of <strong>the</strong> gravels <strong>in</strong> which <strong>the</strong> horizons III B31t <strong>and</strong> III B32 have<br />

developed.<br />

A large content of free iron corresponds to <strong>the</strong> rubéfaction of <strong>the</strong> II B21t, <strong>the</strong><br />

pH is clearly acid <strong>and</strong> <strong>the</strong> exchange complex is strongly desaturated. Unstable<br />

Pig- 5} - The cumulative curves of <strong>the</strong> Copreno profile.<br />

Pig- 5} - Curve granulometriche cumulative del profilo di Copreno.


122 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

metamorphic m<strong>in</strong>erals ( amphiboles <strong>and</strong> epidotes ) prevail among <strong>the</strong> heavy m<strong>in</strong>erals.<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex shows a slight decrease with depth. Among <strong>the</strong> clay<br />

m<strong>in</strong>erals, vermiculite <strong>and</strong> chlorite are prevail<strong>in</strong>g, while illite <strong>and</strong> k<strong>and</strong>ite are<br />

scarce.<br />

In th<strong>in</strong> section, <strong>the</strong> II B21t horizon has a strongly sepic fabric, shows weak<br />

rubéfaction of <strong>the</strong> plasma <strong>and</strong> conta<strong>in</strong>s common th<strong>in</strong> ferri-argillans.<br />

O, .<br />

5.4. THE TERRACE OF THE «RECENT DILUVIUM» (map unit C 2)<br />

The gently roll<strong>in</strong>g surface of <strong>the</strong> «Recent Diluvium» is devoid of loess cover;<br />

well-developed soils are generally present below <strong>the</strong> plough<strong>in</strong>g horizon, <strong>in</strong> permeable<br />

materials, or where strong erosion did not occur. The Robbiate profile is<br />

a representative example.<br />

Robbiate profile (loc. 22). The profile consists of Ap, B31t, B32t <strong>and</strong> C ca<br />

horizons, <strong>the</strong> decarbonation front is at a depth of 1.5 m, <strong>the</strong> calcic horizon differs<br />

from that of older <strong>vetusols</strong> because it only forms discont<strong>in</strong>uous crusts developed<br />

especially on <strong>the</strong> lower part of <strong>the</strong> pebbles (Fig. 54).<br />

R O B B IA T E<br />

In <strong>the</strong> shghtly rubefied B31t horizon <strong>the</strong> gravels are strongly wea<strong>the</strong>red. The<br />

presence of a maximum of clay <strong>in</strong>dicated by <strong>the</strong> gra<strong>in</strong> size curves (Fig. 55) <strong>and</strong><br />

of clay cutans, evident <strong>in</strong> th<strong>in</strong> sections, even if poorly developed on <strong>the</strong> larger<br />

structural elements, allow to identify an argillic horizon.<br />

The amount of free iron is about half of that of <strong>the</strong> vetusol <strong>in</strong> <strong>the</strong> Middle<br />

Diluvium (see Ronco Briant<strong>in</strong>o profile p. 5.3.). The heavy m<strong>in</strong>eral fraction of<br />

<strong>the</strong> Bt largely consists of unstable metamorphic m<strong>in</strong>erals <strong>and</strong> has undergone only<br />

slight wea<strong>the</strong>r<strong>in</strong>g.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 123<br />

5.5. THE STRATIGRAPHIC SEQUENCE OF THE BAGAGGERA BASIN<br />

(map unit B4, loc. 23)<br />

The stratigraphic <strong>in</strong>terest of <strong>the</strong> sequence exposed <strong>in</strong> <strong>the</strong> clay pit near<br />

Bagaggera (Merate, Como) is <strong>in</strong> its particular geo-morphological situation (Fig.<br />

56). The quarry exposed <strong>the</strong> fill<strong>in</strong>g of <strong>the</strong> valley of <strong>the</strong> Curone Stream which,<br />

dur<strong>in</strong>g <strong>the</strong> Early Pleistocene, at several times, was dammed by <strong>the</strong> Ceppo dell-<br />

- The cumulative curves of <strong>the</strong> Robbiate profile.<br />

A - Curve granulometriche cumulative del profile di Robbiate.


124 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

’Adda grave] <strong>and</strong> was subsequently surrounded, but never reached, by <strong>the</strong> piedmont<br />

lobes of <strong>the</strong> Adda glacier.<br />

Pleistocene lacustr<strong>in</strong>e, fluvial, fluvioglacial <strong>and</strong> eolian deposits, <strong>in</strong>terbedded<br />

with several paleosols, were formed <strong>in</strong> this valley, which is here called Bagaggera<br />

bas<strong>in</strong>. The paleomagnetic stratigraphy (Billard et alii, 1982; Salloway, 1983;<br />

<strong>Cremaschi</strong> et alii, 1985), as well as <strong>the</strong> palaeolithic artifacts found <strong>in</strong> <strong>the</strong><br />

uppermost units, allow to date <strong>the</strong> whole sequence <strong>in</strong> a sufficiently precise way.<br />

w<br />

Case del Soldato<br />

Ftg. 56 - Cross section between <strong>the</strong> Bagaggera bas<strong>in</strong> fill, <strong>the</strong> Adda terraces <strong>and</strong> <strong>the</strong> Late Pleistocene<br />

mora<strong>in</strong>e. 1) Bergamo Flysch, 2) Ceppo dell’Adda formation, 3) Bagaggera bas<strong>in</strong> fill, 4) Late<br />

Pleistocene mora<strong>in</strong>e <strong>and</strong> related fluvioglacial deposits, 5) Holocene deposits.<br />

Fig. 56 - Sezione stratigrafica tra il hac<strong>in</strong>o di Bagaggera, i terrazzi dell’Adda e la morena del<br />

Pleistocene superiore. 1) Flysch di Bergamo; 2) Ceppo dell’Adda; 3) riempimento del hac<strong>in</strong>o di<br />

Bagaggera; 4) morena del Pleistocene superiore e depositi fluvioglaciali ad essa connessi; 5) depositi<br />

olocenici.<br />

Description of <strong>the</strong> sequence. The <strong>in</strong>fill-sediments <strong>in</strong> <strong>the</strong> Curone valley are transversally<br />

cut by <strong>the</strong> quarry. They are subdivided <strong>in</strong>to two sub-bas<strong>in</strong>s by an high of<br />

<strong>the</strong> Bergamo Flysch bedrock (Fig. 57).<br />

The follow<strong>in</strong>g units can be dist<strong>in</strong>guished from top to bottom:<br />

BAG 9: loess cover<strong>in</strong>g <strong>the</strong> whole bas<strong>in</strong>: two dist<strong>in</strong>ct loess covers can be<br />

recognized, represent<strong>in</strong>g <strong>the</strong> Ap, B1 <strong>and</strong> II B21tx <strong>and</strong> II B22t horizons of <strong>the</strong><br />

pédologie profile of Bagaggera 2 (SI). In <strong>the</strong> heavy m<strong>in</strong>eral fraction, amphiboles<br />

largely prevail; erosional boundary to:<br />

BAG 8: fluviatile gravel <strong>and</strong> s<strong>and</strong>. In <strong>the</strong> nor<strong>the</strong>rn part of <strong>the</strong> bas<strong>in</strong>, thick<br />

layers of massive or poorly bedded gravels prevail. Southwards, beyond <strong>the</strong>


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 125<br />

Flysch threshold, on which <strong>the</strong> gravel lies with erosional contact, s<strong>and</strong> prevails.<br />

Here <strong>the</strong> unit consits of discont<strong>in</strong>uous parallel planar layers of s<strong>and</strong>, <strong>in</strong>terbedded<br />

with th<strong>in</strong> layers of f<strong>in</strong>e gravel. Petrographically <strong>the</strong> gravel consists of decarbonated<br />

s<strong>and</strong>stones <strong>and</strong> of a fair amount of granitoid <strong>and</strong> metamorphic rocks. The<br />

heavy m<strong>in</strong>erals consist ma<strong>in</strong>ly of epidotes <strong>and</strong> amphiboles. In <strong>the</strong> top of this unit<br />

a shallow rubefied vetusol has developed (S2); erosional undulat<strong>in</strong>g boundary to:<br />

BAG 7: fiuviatile silt; <strong>the</strong> unit crops out only <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn part of <strong>the</strong><br />

bas<strong>in</strong>. It consists of a massive bed of clayey s<strong>and</strong>y silt <strong>and</strong> conta<strong>in</strong>s r<strong>and</strong>omly<br />

distributed pebbles. The unit can be <strong>in</strong>terpreted as <strong>the</strong> topmost pelitic part of an<br />

upward f<strong>in</strong><strong>in</strong>g fiuviatile cycle.<br />

A deep paleosol (S3) developed <strong>in</strong> this unit, cont<strong>in</strong>u<strong>in</strong>g <strong>in</strong>to <strong>the</strong> underly<strong>in</strong>g<br />

unit BAG 6.<br />

The sedimentary cont<strong>in</strong>uity between units 7 <strong>and</strong> 6 is demonstrated by <strong>the</strong> fact<br />

that at <strong>the</strong>ir contact, allochtonous blocks of unit BAG 1, transported as pebbles,<br />

are present, partly <strong>in</strong> one unit <strong>and</strong> partly <strong>in</strong> <strong>the</strong> o<strong>the</strong>r one.<br />

A th<strong>in</strong> <strong>and</strong> discont<strong>in</strong>uous loess cover occurs at <strong>the</strong> bottom of <strong>the</strong> unit; clear<br />

boundary, marked by a lam<strong>in</strong>ar hori2on to:<br />

BAG 6: fiuviatile gravels <strong>and</strong> s<strong>and</strong>s. Also this unit crops out only <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn sub-bas<strong>in</strong>, it consists of s<strong>and</strong>y-clayey silt with a few pebbles. It has<br />

strongly been affected by <strong>the</strong> development of <strong>the</strong> paleosol S3 (see BAG 7) <strong>and</strong><br />

<strong>the</strong> sedimentary structures are consequently poorly evident. The pebbles <strong>in</strong>crease<br />

<strong>in</strong> frequency <strong>and</strong> size towards <strong>the</strong> Flysch threshold. As far as <strong>the</strong> heavy m<strong>in</strong>erals are<br />

concerned, <strong>the</strong> unit shows a slight decrease of staurolite <strong>and</strong> a remarkable <strong>in</strong>crease of<br />

<strong>the</strong> stable m<strong>in</strong>erals, probably due to wea<strong>the</strong>r<strong>in</strong>g; erosional boundary to:<br />

BAG 5: fiuviatile gravel <strong>and</strong> s<strong>and</strong>s. The unit crops out only <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

sub-bas<strong>in</strong> <strong>and</strong> consists of layers of silty-clayey s<strong>and</strong>, <strong>in</strong>terbedded with lenses of<br />

rounded pebbles which <strong>in</strong>crease <strong>in</strong> number southwards.<br />

The unit is strongly wea<strong>the</strong>red, conta<strong>in</strong>s a buried paleosol (S4) <strong>and</strong> <strong>the</strong><br />

sedimentary structures are competely erased. Among <strong>the</strong> clasts decarbonated<br />

s<strong>and</strong>stones are prevail<strong>in</strong>g, <strong>the</strong> metamorphic rocks <strong>and</strong> granitoids are subord<strong>in</strong>ate,<br />

limestones are absent because dissolved by wea<strong>the</strong>r<strong>in</strong>g.<br />

With regard to <strong>the</strong> heavy m<strong>in</strong>erals <strong>the</strong> unit is characterized by <strong>the</strong> staurolite<br />

that reaches by itself 472, followed by edpidote <strong>and</strong> to a much lesser extent by<br />

unstable metamorphic m<strong>in</strong>erals <strong>and</strong> by stable m<strong>in</strong>erals. Erosional boundary to<br />

BAG 1 unit.<br />

BAG 4: (exclusively <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>) fluviolacustr<strong>in</strong>e s<strong>and</strong> <strong>and</strong> silt.<br />

Two subunits can be recognized. The first one (4a) consists of massive layers of<br />

clay, with mollusca <strong>and</strong> plant remnants, pass<strong>in</strong>g to clayey silts, lam<strong>in</strong>ated <strong>and</strong><br />

<strong>in</strong>terbedded with th<strong>in</strong> s<strong>and</strong>y layers. Upwards <strong>the</strong> s<strong>and</strong>y <strong>in</strong>terbeds <strong>in</strong>crease <strong>in</strong><br />

number <strong>and</strong> thickness <strong>and</strong> layers of small pebbles appear.<br />

The second one (4b) consists of at least four upward f<strong>in</strong><strong>in</strong>g cycles. Each cycle<br />

has an erosional base <strong>and</strong> starts with s<strong>and</strong>s <strong>and</strong> pebbles with cross-lam<strong>in</strong>ation.


NORTHERN SUB-BASIN<br />

SOUTHERN SUB-BASIN<br />

-0<br />

><br />

r-<br />

m<br />

O<br />

C/3<br />

O<br />

O) 1“<br />

><br />

z<br />

o<br />

<<br />

m<br />

H<br />

C<br />

03<br />

O<br />

Fig. 57a - (see. Fig. 57b).<br />

Fig. 57a - (ved. Fig. 57b).<br />

I<br />

m<br />

o<br />

><br />

profile 3<br />

D<br />

profWe 2<br />

<<br />

m<br />

H<br />

C<br />

03<br />

o n<br />

03<br />

><br />

“0 >1“m<br />

O<br />

03<br />

O<br />

Fig. 57h - The Bagaggera b.i' <strong>in</strong> fill: <strong>the</strong> bas<strong>in</strong> cross section, <strong>and</strong> <strong>the</strong> stratigraphic <strong>and</strong> pedostratigraphic units (B = Brunhes; J = Jaramillo; M<br />

Matuyama).<br />

Fig. 57b -II riempimento del b;it<strong>in</strong>o di Bagaggera; sezione stratigrafica ed unita pedostratigrafiche.


128 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

followed by s<strong>and</strong>s with low angle bedd<strong>in</strong>g <strong>and</strong> sometimes ripple-marks. On top<br />

of each sequence <strong>the</strong>re is silty clay <strong>and</strong> clay rich <strong>in</strong> organic matter; erosional<br />

boundary to:<br />

BAG 3: (exclusively <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>) s<strong>and</strong> <strong>and</strong> cherty fluviatile<br />

gravels. It consists of s<strong>and</strong>s <strong>and</strong> f<strong>in</strong>e gravels, with cross lam<strong>in</strong>ation, <strong>and</strong> conta<strong>in</strong>s<br />

(Venzo, 1949) plant rema<strong>in</strong>s, among which Abies alba. The base <strong>and</strong> <strong>the</strong> top are<br />

erosional. With regard to heavy m<strong>in</strong>erals, <strong>the</strong> ultrastables as well as garnets are<br />

prevail<strong>in</strong>g. The metamorphic ones, epidotes <strong>and</strong> amphiboles, represent only H of<br />

<strong>the</strong> total. The pebbles consist mostly of chert fragments, quartz, s<strong>and</strong>stones <strong>and</strong><br />

decalcified marls <strong>and</strong> of very rare volcanic clasts. The nature of this deposit is<br />

clearly residual: pebbles of quartz, s<strong>and</strong>stones <strong>and</strong> marls come from <strong>the</strong> decarbonated<br />

Flysch, while <strong>the</strong> chert concentrated <strong>in</strong> such a way must derive from <strong>the</strong><br />

solution of a great amount of cherty limestones, that is, from a strongly wea<strong>the</strong>red<br />

soil, whose prevail<strong>in</strong>g process has been <strong>the</strong> leach<strong>in</strong>g of carbonates. The<br />

pebbles of quartz <strong>and</strong> chert are broken by gelifraction. This fact <strong>and</strong> <strong>the</strong> paleobotanic<br />

context <strong>in</strong>dicate that <strong>the</strong>se deposits have a periglacial character. Erosional<br />

boundary to BAG 1 unit.<br />

BAG 2: (nor<strong>the</strong>rn sub-bas<strong>in</strong>) slope deposits, coarse textured, consist<strong>in</strong>g of<br />

angular fragments of <strong>the</strong> Flysch of <strong>the</strong> bedrock, strongly wea<strong>the</strong>red <strong>and</strong> are<br />

<strong>in</strong>cluded, <strong>in</strong> apparent sedimentary cont<strong>in</strong>uity, <strong>in</strong> <strong>the</strong> unit 1, fur<strong>the</strong>rmore, <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn edge of <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong> <strong>the</strong>y liey on <strong>the</strong> eroded Flysch bedrock.<br />

BAG 1: silty lacustr<strong>in</strong>e clays. They crop out both <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>,<br />

where <strong>the</strong>y lie normally, <strong>and</strong> <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn one where <strong>the</strong>y are slightly tilted<br />

<strong>and</strong> folded. They consist of silty clay <strong>and</strong> f<strong>in</strong>e s<strong>and</strong>s, with some carbonates, with<br />

planar parallel lam<strong>in</strong>ation, sometimes massive <strong>and</strong> with mollusc shells. In <strong>the</strong><br />

nor<strong>the</strong>rn sub-bas<strong>in</strong> <strong>the</strong>y lie on <strong>the</strong> erosional surface which cuts <strong>the</strong> Bergamo<br />

Flysch. In <strong>the</strong> sou<strong>the</strong>rn bas<strong>in</strong> <strong>the</strong> lower boundary was not reached by <strong>the</strong> quarry<br />

excavations.<br />

The heavy m<strong>in</strong>eral assemblage consists ma<strong>in</strong>ly of metamorphic m<strong>in</strong>erals,<br />

epidotes <strong>and</strong> amphiboles, of a great amount of garnet <strong>and</strong> to a lesser extent of<br />

tourmal<strong>in</strong>e <strong>and</strong> Ti-oxides (anatase, brookite, rutile, titanite).<br />

Paleomagnetic stratigraphy of <strong>the</strong> lacustr<strong>in</strong>e units. The lower lacustr<strong>in</strong>e deposits<br />

(unit 1) show a reversed magnetic polarity (Billard et alii, 1983; <strong>Cremaschi</strong> et<br />

alii, 1985). At <strong>the</strong>ir top, just under <strong>the</strong> erosional surface that puts <strong>the</strong>m <strong>in</strong>to<br />

contact with unit 3, J. Salloway (1983) has discovered <strong>in</strong> sedimentary cont<strong>in</strong>uity<br />

<strong>the</strong> passage to normal polarity. On <strong>the</strong> basis of <strong>the</strong> transitional pattern of <strong>the</strong><br />

magnetic pole, this has been <strong>in</strong>terpreted as <strong>the</strong> passage between <strong>the</strong> lower<br />

Matuyama <strong>and</strong> <strong>the</strong> Jaramillo (0.9 MA).<br />

The paleosols. In <strong>the</strong> Bagaggera sequence five different pedogenetic phases<br />

consist<strong>in</strong>g of <strong>vetusols</strong> <strong>and</strong> paleosols, are preserved. They are <strong>in</strong>dicated <strong>in</strong> Fig. 57<br />

as SI, S2, S3, S4 <strong>and</strong> S5. Their characteristics <strong>and</strong> <strong>the</strong>ir distribution are strictly<br />

¡iliii


q u aternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 129<br />

related to <strong>the</strong> morphology of <strong>the</strong> bas<strong>in</strong> <strong>and</strong> to <strong>the</strong> different sedimentary facies of<br />

<strong>the</strong> fill<strong>in</strong>g. Three different situations can be dist<strong>in</strong>guished:<br />

1 - At <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> bas<strong>in</strong>, <strong>the</strong>re is a vetusol (S1/S4) developed<br />

<strong>in</strong> slope deposits, which cover a buried paleosol developed <strong>in</strong> Flysch bedrock<br />

(S5).<br />

2 - In <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong>, where <strong>the</strong> fluvial <strong>and</strong> fluvioglacial deposits are<br />

prevail<strong>in</strong>g, <strong>the</strong>re are several superimposed buried paleosols.<br />

3 - In <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>, at <strong>the</strong> top of <strong>the</strong> fluviolacustr<strong>in</strong>e sequence, <strong>the</strong>re<br />

is a unique vetusol, covered by a th<strong>in</strong> loess sheet (S1/S2).<br />

Profile 1 is representive of <strong>the</strong> first situation, profile 2 of <strong>the</strong> third, profile 3<br />

of <strong>the</strong> second.<br />

Profile 1 (Section A , Fig. 57). In <strong>the</strong> profile three important both lithological<br />

<strong>and</strong> pédologie discont<strong>in</strong>uities can be dist<strong>in</strong>guished (Fig. 58).<br />

The A l/ B l horizon consists of loess belong<strong>in</strong>g to <strong>the</strong> colluviated BAG 9<br />

unit. The II B21tx - IV B22t horizons are developed <strong>in</strong> colluvial sediments of<br />

BAG 8, 7, 6 <strong>and</strong> 2 with a prevail<strong>in</strong>g eolian component, <strong>and</strong> embedd<strong>in</strong>g at <strong>the</strong>ir<br />

base <strong>the</strong> monogenic breccia described as unit BAG 2, <strong>and</strong> f<strong>in</strong>ally <strong>the</strong> V B3, VC<br />

<strong>and</strong> VR horizons developed <strong>in</strong> <strong>the</strong> bedrock consist<strong>in</strong>g of Bergamo Flysch (S5).<br />

The slope deposits show three dist<strong>in</strong>ct horizons with strongly expressed<br />

structure, <strong>in</strong>terpedal glosses <strong>and</strong> hydromorphic patterns (mottl<strong>in</strong>g <strong>and</strong><br />

concretions), separated by two lam<strong>in</strong>ar horizons. The rubéfaction, already well<br />

evident <strong>in</strong> <strong>the</strong> uppermost horizon, becomes stronger toward <strong>the</strong> base, <strong>the</strong><br />

lowermost horizon conta<strong>in</strong>s <strong>the</strong> monogenic breccia of unit BAG 2, which<br />

consists of angular pedorelicts derived from <strong>the</strong> paleosol developed <strong>in</strong> <strong>the</strong><br />

Bergamo Flysch. The latter is strongly eroded. The orig<strong>in</strong>al bedd<strong>in</strong>g of <strong>the</strong> Flysch<br />

can already be seen <strong>in</strong> its uppermost horizons. Never<strong>the</strong>less <strong>in</strong> <strong>the</strong> upper horizon<br />

of <strong>the</strong> wea<strong>the</strong>red Flysch, rubéfaction is particularly expressed, it decreases<br />

gradually downward. The VC horizon shows olive brown colours <strong>and</strong> along <strong>the</strong><br />

bedd<strong>in</strong>g-jo<strong>in</strong>ts <strong>and</strong> <strong>the</strong> fractures, thick <strong>and</strong> cont<strong>in</strong>ous red ferri-argillans occur. At<br />

about 18 metres from <strong>the</strong> surface, embedded <strong>in</strong> <strong>the</strong> C horizon, isolated strips of<br />

carbonated rock (core-stones) were observed that prelude <strong>the</strong> unwea<strong>the</strong>red rock<br />

which is not outcropp<strong>in</strong>g along <strong>the</strong> section. Along <strong>the</strong> whole norhtern sub-bas<strong>in</strong>,<br />

up to <strong>the</strong> threshold, <strong>the</strong> Flysch shows <strong>the</strong> same characteristics of <strong>the</strong> C horizon<br />

of profile 1. In correspondence with threshold a hydromorphic horizon (profile<br />

2, Cg) has developed <strong>in</strong> horizon C, with large mottles, white, green <strong>and</strong><br />

violet-coloured <strong>and</strong> with zones hardened by siliceous cement.<br />

Textural characteristics. The gra<strong>in</strong> size <strong>in</strong>dicates <strong>the</strong> already described lithologic<br />

discont<strong>in</strong>uities. Three types of curves (Fig. 59) can be dist<strong>in</strong>guished: those of<br />

A l/ B l horizon, those relative to <strong>the</strong> horizons from <strong>the</strong> II B21tto <strong>the</strong> IV B22t<br />

<strong>and</strong> those relative to <strong>the</strong> paleosol <strong>in</strong> <strong>the</strong> Flysch. The difference <strong>in</strong> clay <strong>and</strong> silt<br />

content is considered to be of largely pedogenetic orig<strong>in</strong>. As shown by <strong>the</strong><br />

diagram of Fig. 58 <strong>the</strong> maxima of clay content correspond to <strong>the</strong> lamellar<br />

horizons II B22t <strong>and</strong> III B22t.


QUATERNAR'r DEPOSITS, VETUSOLS AND PALEOSOLS 131<br />

Fig. 59 - The cumulative curves of <strong>the</strong> Bagaggera 1<br />

profile.<br />

Fig. 59 - Curve granulometriche cumulative del<br />

profilo di Bagaggera 1.<br />

Micromorphological characteristics. The ferri-argillans <strong>in</strong>terbedded with siltans,<br />

skeletans <strong>and</strong> matrans (complex cutans) are common <strong>in</strong> all <strong>the</strong> horizons from II<br />

B21tto rV B22t. They are particularly abundant <strong>in</strong> <strong>the</strong> tongues <strong>and</strong> <strong>in</strong> <strong>the</strong> area<br />

where <strong>the</strong> plasma is decoloured; <strong>the</strong>y are frequent everywhere, but decrease<br />

clearly towards <strong>the</strong> base of <strong>the</strong> IV B22t. The ferri-argillans, especially <strong>in</strong> <strong>the</strong><br />

IV B22t horizons, are very thick <strong>and</strong> disturbed. They have lost <strong>the</strong>ir birefr<strong>in</strong>gence<br />

<strong>and</strong> <strong>the</strong>ir <strong>in</strong>ternal lam<strong>in</strong>ation <strong>and</strong> locally <strong>the</strong>y grade <strong>in</strong>to <strong>the</strong> S-Matrix.<br />

The lam<strong>in</strong>ar horizons consist of alternat<strong>in</strong>g zones of reduced plasma <strong>and</strong> oxidized<br />

plasma. The accumulation of illuvial clay is well developed <strong>in</strong> both areas.


132 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Never<strong>the</strong>less <strong>in</strong> <strong>the</strong> former, gra<strong>in</strong>y cutans prevail toge<strong>the</strong>r with complex cutans,<br />

while <strong>the</strong> ferri-argillans prevail <strong>in</strong> <strong>the</strong> latter.<br />

All horizons mentioned show hydromorphic features i.e. an alternation of<br />

reduced <strong>and</strong> oxidized zones, <strong>the</strong> former especially abundant <strong>and</strong> cont<strong>in</strong>uous<br />

<strong>in</strong>side <strong>the</strong> glosses. Mangans or ferrans are present especially <strong>in</strong> <strong>the</strong> oxidized areas<br />

of <strong>the</strong> lam<strong>in</strong>ar horizons.<br />

Pedorelicts <strong>and</strong> papules which <strong>in</strong> most cases represent allochtonous fragments<br />

of argillans, are common <strong>in</strong> all horizons. Pedorelicts from <strong>the</strong> V B3 are present<br />

almost exclusively <strong>in</strong> <strong>the</strong> IV B21t <strong>and</strong> IV B22thorizons, while <strong>in</strong> <strong>the</strong> overly<strong>in</strong>g<br />

horizons one can also observe papules com<strong>in</strong>g from more <strong>and</strong> more recent<br />

horizons. The II B21thorizon is very rich <strong>in</strong> papules <strong>and</strong> pedorelicts orig<strong>in</strong>at<strong>in</strong>g<br />

from all underly<strong>in</strong>g paleosols. It also shows particular features like washed silt<br />

<strong>and</strong> fluidal patterns of mica skeleton gra<strong>in</strong>s. The characteristics of <strong>the</strong> V B3<br />

horizon are very different: argillans are almost completely absent, <strong>the</strong> plasma is<br />

clearly isotic (undulic) <strong>and</strong> <strong>the</strong> S-Matrix has an agglomeroplasmic or <strong>in</strong>tertextic<br />

character. Silica coat<strong>in</strong>gs can be observed <strong>in</strong> <strong>the</strong> Cg, <strong>in</strong>side <strong>the</strong> pores.<br />

M<strong>in</strong>eralogkal characteristics. As far as <strong>the</strong> heavy m<strong>in</strong>erals are concerned, <strong>the</strong><br />

stable ones <strong>in</strong>crease towards <strong>the</strong> base of <strong>the</strong> profile. An anomalous peak <strong>in</strong><br />

correspondence with <strong>the</strong> IV B22t is probably due to a mistake <strong>in</strong> sampl<strong>in</strong>g, as <strong>the</strong><br />

sample <strong>in</strong>cludes a fragment of strongly wea<strong>the</strong>red breccia.<br />

The V B3 <strong>and</strong> VC horizons are characterized by <strong>and</strong> association of stable<br />

m<strong>in</strong>erals only: zircon, tourmal<strong>in</strong>e <strong>and</strong> Ti-oxides. This must be due to pedogenetic<br />

wea<strong>the</strong>r<strong>in</strong>g: a clear amount of alterable m<strong>in</strong>erals is still present <strong>in</strong> <strong>the</strong> fresch<br />

Flysch (see Appendix 4).<br />

Illite prevails among <strong>the</strong> clay m<strong>in</strong>erals along <strong>the</strong> whole profile. Vermiculite is<br />

particularly abundant <strong>in</strong> <strong>the</strong> topmost loess, but it is present, even if <strong>in</strong> small<br />

amounts, all along <strong>the</strong> profile, toge<strong>the</strong>r with smectite. The k<strong>and</strong>ite m<strong>in</strong>erals<br />

show a clear concentration <strong>in</strong> <strong>the</strong> V B3 horizon.<br />

Chemical characteristics. Carbonates are absent along <strong>the</strong> whole profile <strong>and</strong><br />

appear only <strong>in</strong> <strong>the</strong> v.core stonesr> at a depth of 18 m.<br />

The pH shows clearly acid values <strong>and</strong> <strong>the</strong> exchange complex is strongly<br />

desaturated all along <strong>the</strong> profile, but ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> V B3 horizon.<br />

The free iron content <strong>in</strong>creases, towards <strong>the</strong> base of <strong>the</strong> profile <strong>and</strong> rema<strong>in</strong><br />

constant <strong>in</strong> <strong>the</strong> III B21t <strong>and</strong> B22t horizons.<br />

Valeomagnetic stratigraphy. The upper part of <strong>the</strong> profile shows normal magnetic<br />

polarity. On <strong>the</strong> contrary <strong>the</strong> base of horizon IV B22t shows reversed magnetic<br />

polarity, <strong>the</strong> V B3 <strong>and</strong> VC horizons show aga<strong>in</strong> positive magnetic polarity<br />

(<strong>Cremaschi</strong> et alii, 1985).<br />

Profiles 2 <strong>and</strong> 3 (Fig. 60). Profile 2 characterizes <strong>the</strong> top of <strong>the</strong> sequence, both<br />

<strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn <strong>and</strong> <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>. The sequence described here has been<br />

observed near <strong>the</strong> box of <strong>the</strong> pipel<strong>in</strong>e, at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> scarp along <strong>the</strong><br />

Curone stream (section I, Fig. 57).<br />

\r'


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 133<br />

BAGAGGERA<br />

LOG 23<br />

SIZE<br />

0 50<br />

F© i 2 o U3 Oq<br />

2 4 6 8 10<br />

I I I I I<br />

o<br />

a<br />

I<br />

0) ^<br />

CO •—<br />

o<br />

a.<br />

/ \ Upper P a la e o lith ic a rtifa c ts<br />

I<br />

M iddle P a la e o lith ic CM ousterian) a r tifa c ts<br />

Fig. 60 - The Bagaggera 2 (section I) <strong>and</strong> 3 profiles (composite: Section D <strong>and</strong> lower part of section F),<br />

Fig. 60-1 profili di Bagaggera 2 (section I) e Bagaggera 3 (section 2).


134 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

- .<br />

ré‘ if.si’rtg. •<br />

»• *rS<br />

At <strong>the</strong> top <strong>the</strong>re are two different loess sheets (Ap, Bl/II B21tx, B22t) at<br />

whose boundary some hundreds fl<strong>in</strong>t artifacts have been collected (<strong>Cremaschi</strong> et<br />

alii, 1985) (Fig. 62).<br />

They lie on one s<strong>in</strong>gle level <strong>and</strong> have no evidence of postdepositional distur- -<br />

bances: some flakes have been refitted with cores. Fire damages on artifacts <strong>and</strong><br />

some charcoals <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> archaeological level <strong>in</strong>dicate <strong>the</strong> presence of<br />

hearths. These archaeological observations testify a settlement of Upper Palaeolithic<br />

age <strong>and</strong> consequently <strong>the</strong> existence of a surface divid<strong>in</strong>g <strong>the</strong> two loess<br />

covers, exposed for some time.<br />

The II B21t horizon immediately under this surface shows characteristics of a<br />

fragipan. A lam<strong>in</strong>ar horizon is present at its base (II B22t).<br />

Below this, <strong>the</strong>re are <strong>the</strong> III B21t <strong>and</strong> III B22t horizons of a rubefied soil<br />

with evident polyhedric structure, on top of which Mousterian artifacts of non<br />

levallois technique have been found (Fig. 62).<br />

The passage between B <strong>and</strong> C horizons is marked (see Appendix 1, profile<br />

Bagaggera) by a progressive decrease of <strong>the</strong> Hue from red to ohve-brown as well<br />

as of <strong>the</strong> degree of expression of <strong>the</strong> structure.<br />

Already <strong>in</strong> <strong>the</strong> Cl horizon <strong>the</strong> sedimentary structures are evident: alternations<br />

of s<strong>and</strong>y layers <strong>and</strong> silty-clayey beds that characterize <strong>the</strong> top of unit 8.<br />

In <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong> (profile 3) <strong>the</strong> III B22t horizon passes laterally to<br />

<strong>the</strong> IV B32t horizon <strong>in</strong> gravel which has a lamellar structure. It overlies an<br />

erosional surface which cuts an older pédologie sequum, developed <strong>in</strong> <strong>the</strong> units<br />

BAG 7, BAG 6 <strong>and</strong> BAG 5.<br />

The V B it horizon is composed of th<strong>in</strong> lenses of loess which discont<strong>in</strong>uously<br />

overlie <strong>the</strong> VI B21t horizon. The latter is rubefied <strong>and</strong> characterized by its well<br />

expressed prismatic structure. The underly<strong>in</strong>g horizon (VI B22t) is traversed by<br />

discoloured tongues <strong>and</strong> shows evident pseudogley phenomena. At its base a<br />

lithological discont<strong>in</strong>uity with <strong>the</strong> underly<strong>in</strong>g gravel is outl<strong>in</strong>ed by a horizon, rich<br />

<strong>in</strong> Fe/Mn nodules (VII B22cn). The lowermost VIII B2t (BAG 5) horizon<br />

differs from <strong>the</strong> former by a strong <strong>in</strong>crease of wea<strong>the</strong>red stones.<br />

Gra<strong>in</strong> size distribution characteristics of <strong>the</strong> profiles 2 <strong>and</strong> 3 are given <strong>in</strong> Fig.<br />

61.<br />

Micromorphological characteristics. A relevant characteristic of <strong>the</strong>se profiles is<br />

represented by <strong>the</strong> cutans: ferri-argillans, gra<strong>in</strong>y cutans <strong>and</strong> complex cutans.<br />

They are well expressed throughout <strong>the</strong> profiles described with two<br />

exepeptions. The first exception is represented by <strong>the</strong> B1 horizon: absence of<br />

cutans, low sepicity <strong>in</strong> <strong>the</strong> matrix <strong>and</strong> agglomeroplasmic basic fabric render it<br />

transitional between an eluvial <strong>and</strong> illuvial horizon. Similar characteristics are<br />

shown by <strong>the</strong> V B1 horizon <strong>in</strong> <strong>the</strong> loess which could be <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> same<br />

way. Inside <strong>the</strong> sequum <strong>the</strong> horizons that show <strong>the</strong> greatest amount of cutans are<br />

<strong>the</strong> thick B2 horizons, especially those with a coarse texture.<br />

This fact is evident <strong>in</strong> <strong>the</strong> paleosol developed <strong>in</strong> unit BAG 7 <strong>and</strong> BAG 6<br />

(S3); <strong>the</strong> f<strong>in</strong>e-textured uppermost horizons <strong>in</strong> spite of well-developed structure,<br />

rubéfaction <strong>and</strong> clay content have very few cutans, which on <strong>the</strong> contrary are<br />

very well developed <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g VII B21t ma<strong>in</strong>ly consist<strong>in</strong>g of gravel.


quaternary deposits, <strong>vetusols</strong> <strong>and</strong> paleosols 135<br />

Fig. 61 - The cumulative curves of <strong>the</strong> Bagaggera 2 <strong>and</strong> 3 profiles; (t) = top; (b) = bottom,<br />

Fig. 61 - Curve granulometriche cumulative dei profili di Bagaggera 2 e 3.


136 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PUIN


quaternary deposits, <strong>vetusols</strong> <strong>and</strong> paleosols 137<br />

The cutans <strong>in</strong> <strong>the</strong> VIII B2t horizon, ma<strong>in</strong>ly ferri-argillans, differ from all<br />

those of <strong>the</strong> overly<strong>in</strong>g horizons; <strong>the</strong>y are very thick <strong>and</strong> strongly disturbed <strong>and</strong><br />

sometimes broken.<br />

Features produced by periodical hydromorphy appear <strong>in</strong> each B horizon.<br />

Besides <strong>the</strong> gra<strong>in</strong> cutans <strong>the</strong>re are sesquans <strong>and</strong> neosesquans as well as iron <strong>and</strong><br />

manganese nodules <strong>and</strong> zones of reduced plasma, especially along <strong>the</strong> tongues,<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> lamellar horizons.<br />

M<strong>in</strong>eralogical characteristics. In <strong>the</strong>se profiles <strong>the</strong> heavy m<strong>in</strong>eral composition<br />

(Appendix 4) <strong>and</strong> <strong>the</strong> trend <strong>in</strong> <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex are <strong>in</strong>fluenced more by <strong>the</strong><br />

composition of <strong>the</strong> parent material than by <strong>the</strong> pedogenetic processes. The<br />

<strong>in</strong>crease of <strong>the</strong> amount of <strong>the</strong> stable m<strong>in</strong>erals reflects especially <strong>the</strong> <strong>in</strong>crease of<br />

staurolite, of <strong>the</strong> Ti-oxides <strong>and</strong> of zircon <strong>and</strong> tourmal<strong>in</strong>e, already present <strong>in</strong> <strong>the</strong><br />

parent materials of units BAG 5 <strong>and</strong> BAG 4.<br />

The clay m<strong>in</strong>eral composition, ma<strong>in</strong>ly ilUte, vermiculite <strong>and</strong> k<strong>and</strong>ite, rema<strong>in</strong>s<br />

ra<strong>the</strong>r constant throughout <strong>the</strong> profiles.<br />

Chemical characteristics. The whole profile is largely devoid of carbonates; <strong>the</strong>se<br />

appear aga<strong>in</strong> only <strong>in</strong> profile 2, at a depth of 13 metres (see Appendix 1), but<br />

without generat<strong>in</strong>g calcic horizons. The pH <strong>in</strong> <strong>the</strong> Ap <strong>and</strong> B1 horizons is strongly<br />

acid: it goes up to 6 for <strong>the</strong> horizons <strong>in</strong> loess <strong>and</strong> goes down aga<strong>in</strong> to values<br />

rang<strong>in</strong>g from 5 to 5.5.<br />

The pH is less acid at <strong>the</strong> bottom of profile 3 <strong>in</strong> <strong>the</strong> horizons VII B21t, <strong>and</strong><br />

VIII B2t. Concurrently <strong>the</strong> base saturation of <strong>the</strong> exchange complex varies; it is<br />

very low <strong>in</strong> <strong>the</strong> B 1 <strong>and</strong> <strong>in</strong>creases clearly <strong>in</strong> <strong>the</strong> deepest horizons.<br />

The trend of <strong>the</strong> free iron is shown <strong>in</strong> Fig. 60, it gradually <strong>in</strong>creases with<br />

depth, apart from <strong>the</strong> peak which corresponds with a maximum <strong>in</strong>crease of <strong>the</strong><br />

clay <strong>in</strong> <strong>the</strong> II B22t horizon.<br />

Paleomagtietic stratigraphy. The loesses at <strong>the</strong> top of <strong>the</strong> sequence, <strong>the</strong><br />

underly<strong>in</strong>g paleosol <strong>and</strong> units BAG 7 <strong>and</strong> 6 have turned out to be of normal<br />

polarity. The VIII B2t horizon (BAG 5) <strong>and</strong> <strong>the</strong> underly<strong>in</strong>g lacustr<strong>in</strong>e clays of<br />

unit BAG 1 are of reversed polarity (Salloway, 1983).<br />

Discussion on <strong>the</strong> paleosols of <strong>the</strong> Bagaggera Bas<strong>in</strong>. In <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>, <strong>the</strong><br />

profile 2 shows a paleosol (S2) developed <strong>in</strong> <strong>the</strong> top of <strong>the</strong> unit BAG 8 <strong>and</strong><br />

covered by <strong>the</strong> loess of unit BAG 9; no buried paleosol is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> lower<br />

stratigraphic sequence.<br />

In <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong> on <strong>the</strong> contrary <strong>the</strong> situation of profile 3 is ra<strong>the</strong>r<br />

more complex: <strong>the</strong> BAG 8 unit covers two dist<strong>in</strong>ct superimposed buried<br />

paleosols (S3 <strong>and</strong> S4) (Fig. 60) developed respectively <strong>in</strong> <strong>the</strong> top of <strong>the</strong> BAG 7<br />

<strong>and</strong> BAG 5 unit.<br />

In profile 1 <strong>the</strong> paleosol developed <strong>in</strong> <strong>the</strong> Bergamo Flysch (S5), is covered by<br />

several wea<strong>the</strong>red layers <strong>in</strong> <strong>the</strong> top of which a vetusol has evolved.<br />

Due to excellent exposure <strong>the</strong>se profiles could be correlated by means of<br />

lateral cont<strong>in</strong>uity as <strong>in</strong>dicated <strong>in</strong> Fig. 57, <strong>and</strong> <strong>the</strong>refore lateral variations of each


138 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAInI<br />

horizon <strong>in</strong> <strong>the</strong> different profiles can be observed. The characteristics of <strong>the</strong>!<br />

horizons vary widely, depend<strong>in</strong>g on <strong>the</strong>ir position with<strong>in</strong> <strong>the</strong> bas<strong>in</strong> <strong>and</strong> on<br />

<strong>in</strong>ternal dra<strong>in</strong>age.<br />

The horizons of profile 1 are more rubefied than <strong>the</strong> correspond<strong>in</strong>g ones<br />

profile 3. Complex cutans are prevail<strong>in</strong>g <strong>in</strong> <strong>the</strong> former, whereas hydromorphyicl<br />

features are better expressed <strong>in</strong> <strong>the</strong> latter.<br />

For example, <strong>the</strong> II B21t of profile 1 (Fig. 58), where <strong>the</strong> ferri-argillans^<br />

alternat<strong>in</strong>g with coarse cutans are very well expressed, corresponds stratigraphi-^<br />

cally to <strong>the</strong> IV B23t of profile 3 (Fig. 60), where on <strong>the</strong> contrary <strong>the</strong> hydromorphic<br />

features are well expressed <strong>and</strong> <strong>the</strong> scarce cutans are represented mostly by<br />

gra<strong>in</strong>y cutans, <strong>and</strong> where Fe-Mn concretions or nodules are abundant.<br />

The lateral cont<strong>in</strong>uity with<strong>in</strong> <strong>the</strong> large exposure shows clearly however, that<br />

<strong>the</strong>y are a part of <strong>the</strong> same horizon.<br />

In <strong>the</strong> nor<strong>the</strong>rn bas<strong>in</strong> (profiles 1-3) most lamellar horizons towards <strong>the</strong> centre<br />

of <strong>the</strong> bas<strong>in</strong> grade laterally to horizons rich <strong>in</strong> Fe-Mn concretions. Until a few<br />

years ago it was possible to observe here that <strong>the</strong> IV B23t horizon of profile 3<br />

was at least 70 cm thick <strong>and</strong> consisted of strongly cemented Fe-Mn nodules.<br />

Equally <strong>the</strong> paleosol <strong>in</strong> Flysch (S5, V B3) of profile 3 (Fig. 57 <strong>and</strong> 60) -<br />

situated <strong>in</strong> <strong>the</strong> threshold, shows hydromorphic characteristics (S5, Cg) which are<br />

absent <strong>in</strong> profile 1. This <strong>in</strong>dicates that poor dra<strong>in</strong>age conditions <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

sub-bas<strong>in</strong> existed at least locally dur<strong>in</strong>g <strong>the</strong> development of this paleosol.<br />

The paleotopography of <strong>the</strong> bas<strong>in</strong> <strong>and</strong> its sedimentary evolution have played a<br />

very important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> number <strong>and</strong> nature of <strong>the</strong> paleosols <strong>and</strong><br />

<strong>the</strong> characteristics of <strong>the</strong>ir profiles.<br />

In <strong>the</strong> sou<strong>the</strong>rn sub-bas<strong>in</strong>, where sedimentation prevailed for a long time,<br />

only at <strong>the</strong> top <strong>the</strong> sequence a vetusol (S l/ 2 ) occurs. In <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong>,<br />

where a more strongly expressed alternation of sedimentation <strong>and</strong> soil formation<br />

took place, five separate superimposed soils have developed. At <strong>the</strong> nor<strong>the</strong>rn<br />

marg<strong>in</strong> of <strong>the</strong> bas<strong>in</strong>, where sedimentation was limited <strong>and</strong> <strong>the</strong> erosional <strong>and</strong><br />

colluvial phases prevailed, <strong>the</strong> same pedogenetic processes led to formation of a<br />

polygenetic soil.<br />

5.6 . THE CHRONOSTRATIGRAPHY OF THE BAGAGGERA BASIN AND<br />

OF THE AD D A TERRAGES (FIG. 63)<br />

,,|,U I,.<br />

The erosional surface that cuts <strong>the</strong> Bergamo Flysch, can be related on <strong>the</strong><br />

basis of <strong>the</strong> regional geological sett<strong>in</strong>g (see section 2 .2 .1 .) to <strong>the</strong> erosional phase<br />

which affected <strong>the</strong> Pre-Alp<strong>in</strong>e fr<strong>in</strong>ge dur<strong>in</strong>g <strong>the</strong> Mess<strong>in</strong>ian period (Rizz<strong>in</strong>i <strong>and</strong><br />

Dondi, 1978; B<strong>in</strong>i et alii, 1978). It is not certa<strong>in</strong> whe<strong>the</strong>r <strong>the</strong> paleosol S5 <strong>in</strong> <strong>the</strong><br />

Bagaggera bas<strong>in</strong> developed <strong>in</strong> <strong>the</strong> erosional surface, or that it was itself affected<br />

by <strong>the</strong> erosion <strong>and</strong> <strong>the</strong>refore existed before it. The preserved horizons of this<br />

paleosols however do not seem to reflect <strong>the</strong> steep slopes produced by a valley<br />

cut, but ra<strong>the</strong>r a flat morphology, which suggests that it predates <strong>the</strong> erosional<br />

phase.<br />

The precise period <strong>in</strong> which <strong>the</strong> sedimentation <strong>in</strong> <strong>the</strong> Bagaggera bas<strong>in</strong> started


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 139<br />

Fi¿. 63 - Stratigraphic correlations between <strong>the</strong> Bagaggera units <strong>and</strong> <strong>the</strong> Adda terraces (see section<br />

3.3.2. <strong>and</strong> 33.3, for <strong>the</strong> legend see Fig. 88a).<br />

F ;¿. 63 - Correlaaioni fra le unita stratigrafiche del hac<strong>in</strong>o di Bagaggera e quelle dei terrazzi<br />

dell’Adda (per la legenda vedi Fig. 88a).


ml<br />

1<br />

140 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO' PUIN J<br />

IS not known. Dur<strong>in</strong>g <strong>the</strong> Matuyama epoch, before <strong>the</strong> Jaramillo event, <strong>the</strong>^<br />

lacustr<strong>in</strong>e deposits (BAG 1) had already covered <strong>the</strong> S5 paleosol. In <strong>the</strong> sou<strong>the</strong>rn<br />

sub-bas<strong>in</strong> <strong>the</strong> lacustr<strong>in</strong>e sedimentation seems to have cont<strong>in</strong>ued, without relevant<br />

changes, up to <strong>the</strong> erosional surface at <strong>the</strong> <strong>in</strong>terface which is now found<br />

between BAG 1 <strong>and</strong> BAG 3 <strong>and</strong> near which <strong>the</strong> boundary Matuyama —Brunhes<br />

occurs.<br />

In tbe nor<strong>the</strong>rn sub-bas<strong>in</strong>, on <strong>the</strong> contrary, already dur<strong>in</strong>g <strong>the</strong> Matuyama<br />

epoch, <strong>the</strong> sedimentation environment underwent several important changes.<br />

The monogenic breccia (BAG 2) which has been sedimented dur<strong>in</strong>g this<br />

period, has been <strong>in</strong>terpreted as <strong>the</strong> result of a glacial period as is also <strong>the</strong> case<br />

with <strong>the</strong> deposition of <strong>the</strong> gravel of <strong>the</strong> BAG 5 unit. Later, but still dur<strong>in</strong>g <strong>the</strong><br />

Matuyama epoch, <strong>in</strong> this gravel <strong>the</strong> S4 paleosol developed.<br />

In <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> Bagaggera bas<strong>in</strong> a glacial stage is <strong>in</strong>dicated by <strong>the</strong><br />

unit BAG 3, which has been sedimented at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Brunhes period<br />

(Salloway, 1983); its sediments have been produced by <strong>the</strong> erosion of strongly<br />

wea<strong>the</strong>red soils (probably <strong>the</strong> S5 <strong>and</strong> S4 paleosols) <strong>and</strong> <strong>in</strong>clude paleobotanic<br />

materials <strong>in</strong>dicative of a cold climate <strong>and</strong> pebbles broken by gelifraction.<br />

Tbe BAG 7 <strong>and</strong> BAG 6 units, occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn sub-bas<strong>in</strong>, must be<br />

referred to <strong>the</strong> same sedimentary phase. The buried paleosol S3, developed <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn sub-bas<strong>in</strong>, <strong>in</strong>dicates a pedogenetic phase dur<strong>in</strong>g <strong>the</strong> Middle Pleistocene.<br />

In a follow<strong>in</strong>g glacial stage, at <strong>the</strong> top of this paleosol a th<strong>in</strong> loess cover has been<br />

deposited which <strong>in</strong> its turn has been buried, without <strong>the</strong> <strong>in</strong>terposition of any<br />

important pedological event, by <strong>the</strong> fluvioglacial gravel of <strong>the</strong> BAG 8 unit. In <strong>the</strong><br />

top of this unit a slightly rubefied soil developed, which should be dated to <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Late Pleistocene period (Riss-Würm Interglacial accord<strong>in</strong>g to<br />

Alp<strong>in</strong>e stratigraphy), due to its stratigraphic position <strong>and</strong> <strong>the</strong> archaeological<br />

content (Mousterian artifacts) (Fig. 62). The whole Bagaggera bas<strong>in</strong> is covered<br />

by a th<strong>in</strong> loess sheet, dat<strong>in</strong>g back to <strong>the</strong> last glacial period (Würm glaciation, <strong>in</strong><br />

Alp<strong>in</strong>e stratigraphy), which is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> S1/S2 vetusol development.<br />

Accord<strong>in</strong>g to<strong>the</strong> stratigraphic regional context (<strong>Cremaschi</strong> et alii, 1985) (see<br />

Fig. 56), <strong>the</strong> BAG 1 unit should be regarded as a lateral sedimentary equivalent of<br />

<strong>the</strong> Ceppo d’Adda formation.<br />

The heavy m<strong>in</strong>eral assemblage strongly suggests <strong>the</strong> correlation between <strong>the</strong><br />

BAG 5 unit <strong>and</strong> <strong>the</strong> Tre22o member of <strong>the</strong> Ceppo d’Adda formation <strong>and</strong> consequently<br />

with <strong>the</strong> Camparada mora<strong>in</strong>e. All <strong>the</strong>se units toge<strong>the</strong>r should be<br />

<strong>in</strong>terpreted as <strong>the</strong> result of an important glacial stage dur<strong>in</strong>g <strong>the</strong> Early Pleistocene<br />

(Late Matuyama Epoch).<br />

The heavy m<strong>in</strong>eral analyses, <strong>the</strong> palaeomagnetic data <strong>and</strong> <strong>the</strong> general<br />

stratigraphy (see also Fig. 64) give reason to correlate <strong>the</strong> S4 paleosol <strong>in</strong> <strong>the</strong><br />

Bagaggera sequence with <strong>the</strong> «Ferretto» vetusol; <strong>the</strong> development of this<br />

paleosol has been <strong>in</strong>terrupted by <strong>the</strong> deposition of <strong>the</strong> BAG 6 unit dur<strong>in</strong>g early<br />

Middle Pleistocene (Fig. 64).<br />

The BAG 3, BAG 7 <strong>and</strong> BAG 6 represent sedimentary cycles characteristic<br />

<strong>and</strong> exclusive ot tiie iiagaggera iiasm anti na\e no siiaiigiaplneaih ee|ui\alciit<br />

phenomena <strong>in</strong> <strong>the</strong> Adtla terraces.


QUATERNARY DEPOSITS. VETUSOLS AND PALEOSOLS 141<br />

«OLD DILUVIUM»<br />

BAGAGGERA BASIN<br />

Ü<br />

O I-wm<br />

LiJ<br />

<<br />

Z<br />

UJ<br />

Ü<br />

O<br />

Q<br />

Ü<br />

O<br />

!-<br />

W<br />

LU<br />

_l<br />

CL<br />

C<br />

<<br />

LU<br />

F e rre tto vetusol developm ent<br />

buried paleosols form ation<br />

F/^. 64 - Comparison between <strong>the</strong> soil development <strong>in</strong> <strong>the</strong> «Old Diluvium» terrace <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

Bagaggera bas<strong>in</strong>: <strong>the</strong> formation of <strong>vetusols</strong>.<br />

Fig. 64 - Raffronto fra lo sviluppo del suolo sui terrazzi del Diluvium antico e nel Bac<strong>in</strong>o di<br />

Bagaggera: genesi dei vetusuoli.


142 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Petrographic composition, stratigraphy <strong>and</strong> géomorphologie sett<strong>in</strong>g lead to<br />

<strong>the</strong> correlation between <strong>the</strong> BAG 8 unit <strong>and</strong> <strong>the</strong> gravel of <strong>the</strong> PD4 unit (see<br />

action 5.6.).<br />

_<br />

Therefore <strong>the</strong> most recent fluvioglacial deposits of <strong>the</strong> Bagaggera bas<strong>in</strong><br />

correspond, from <strong>the</strong> stratigraphic po<strong>in</strong>t of view, to <strong>the</strong> «Middle Diluvium»<br />

terrace.


6 .<br />

S O I L S A N D V E T U S O L S I N T H E T O P<br />

O F T H E I S O L A T E D T E R R A C E S I N T H E P L A I N { m ap u n it C 1 )<br />

The profiles described below are from <strong>the</strong> terraces of Romanengo (Melotta<br />

profile) <strong>and</strong> from <strong>the</strong> terrace of Zorlesco (Zorlesco profile).<br />

A similar sequence of soil horizons <strong>and</strong> of stratigraphic units have been<br />

observed on <strong>the</strong> top of <strong>the</strong> Monte Netto <strong>and</strong> Costa Fagioli terraces (loc. 51, 50)<br />

<strong>and</strong> <strong>the</strong>se have been briefly described <strong>in</strong> Appendix la.<br />

M elotta { loc. 3 7 ) a n d Z orlesco { loc. 3 8 ) p r o file s . The stratigraphy of <strong>the</strong> topmost<br />

part of <strong>the</strong> terrace of Romanengo can be observed <strong>in</strong> a clay quarry <strong>in</strong> <strong>the</strong> western<br />

part of <strong>the</strong> terrace. This consists of a loess cover (A 2, B21tx, B22tx, B23cn),<br />

ly<strong>in</strong>g on s<strong>and</strong>y clays <strong>and</strong> fluvial s<strong>and</strong>s, outcropp<strong>in</strong>g for about 3 metres (Fig. 65).<br />

Pedogenetically an A2 horizon can be dist<strong>in</strong>guished, with mottl<strong>in</strong>g <strong>and</strong><br />

Fe-Mn concretions. An argillic horizon follows with well-expressed structure,<br />

<strong>in</strong>trapedal tongues <strong>and</strong> fragipan characteristics <strong>in</strong> <strong>the</strong> top. At its base a horizon of<br />

Fe-Mn concretions (B23cn) occurs, which is at least 30 cm thick, tightly<br />

cemented, <strong>and</strong> has a wavy lower boundary.<br />

The B23cn has developed at <strong>the</strong> contact with <strong>the</strong> fluvial clay which has<br />

hydromorphic characteristics <strong>and</strong> carbonate nodules.<br />

The profile described on <strong>the</strong> terrace of Zorlesco resembles that of Melotta but<br />

for <strong>the</strong> greater thickness of <strong>the</strong> loess. In <strong>the</strong> section <strong>in</strong> which <strong>the</strong> profile has been<br />

described <strong>the</strong> A2 is miss<strong>in</strong>g hav<strong>in</strong>g been removed by <strong>the</strong> excavations, but it is<br />

preserved <strong>in</strong> pockets with a glossic lower limit along <strong>the</strong> same side of <strong>the</strong> quarry.<br />

It is followed by a B21t horizon which, without any apparent discont<strong>in</strong>uity, lies<br />

on a II B22tx horizon with fragipan characteristics which are prom<strong>in</strong>ent but<br />

decrease with depth.<br />

The B21t, II B22t horizons, <strong>and</strong> <strong>the</strong> follow<strong>in</strong>g III B23 are crossed by a dense<br />

network of decoloured tongues.<br />

As <strong>in</strong> <strong>the</strong> Melotta profile, a horizon of Fe-Mn nodules marks <strong>the</strong> contact with<br />

<strong>the</strong> underly<strong>in</strong>g fluvial sediments. These crop out for only two metres. At <strong>the</strong> base<br />

<strong>the</strong>y consist of medium <strong>and</strong> coarse s<strong>and</strong>s with cross bedd<strong>in</strong>g. They cover a buried<br />

B horizon, which is slightly rubefied <strong>and</strong> developed <strong>in</strong> silty clay.<br />

T ex tu ra l ch a ra cteristics. The loess deposits <strong>in</strong> both profiles show similar<br />

cumulative curves, with a ma<strong>in</strong> mode of coarse silt, few s<strong>and</strong> <strong>and</strong> a clay percentage<br />

rang<strong>in</strong>g from 16 to 262 (Fig. 6 6).<br />

In <strong>the</strong> Melotta profile a gradual <strong>in</strong>crease of clay towards <strong>the</strong> bottom can be


144 PALEOSOLS AND VETUSOLS IN THE CENTRALTPO PLAIN K<br />

observed, while <strong>in</strong> <strong>the</strong> Zorlesco profile <strong>the</strong> clay shows two superimposed maxim^<br />

that <strong>in</strong>dicate a lithological <strong>and</strong> pedological bisequence <strong>in</strong>side <strong>the</strong> loess cover.<br />

M<strong>in</strong>eralogical characteristics. Among <strong>the</strong> heavy m<strong>in</strong>erals, amphiboles are largely<br />

prevail<strong>in</strong>g, followed by epidotes.<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex is low <strong>and</strong> rema<strong>in</strong>s constant <strong>in</strong> <strong>the</strong> Melotta profile.<br />

MELOTTA<br />

LOG 37<br />

ZORLESCO<br />

LOG 38<br />

m<br />

Fig. 65 - Melotta <strong>and</strong> Zorlesco profiles.<br />

Fig. 65-1 profil! di Melotta e Zorlesco.


SOILS AND VETUSOLS<br />

145<br />

Fig. 66 - The cumulative curves of <strong>the</strong> Melotta (top) <strong>and</strong> Zorlesco (base) profiles; (t) —top, (b) =<br />

bottom.<br />

Fig. 66 - Curve granulometriche cumulative dei profili di Melotta e Zorlesco.


146 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

K<strong>and</strong>ite m<strong>in</strong>erals are present <strong>in</strong> both profiles <strong>in</strong> small amounts, smectite <strong>and</strong><br />

chlorite occur as traces <strong>and</strong> illite <strong>and</strong> vermiculite prevail. The last m<strong>in</strong>eral shows<br />

a clear <strong>in</strong>crease at <strong>the</strong> top of <strong>the</strong> profiles.<br />

Chemical characteristics. The loesses are decarbonated <strong>and</strong> calcium carbonate<br />

nodules are present <strong>in</strong> <strong>the</strong> fluvial sediments at <strong>the</strong> base of <strong>the</strong> profiles; <strong>the</strong> soils<br />

are almost neutral.<br />

The clay/free iron ratio, constant all along <strong>the</strong> Melotta profile, <strong>in</strong>dicates that<br />

<strong>the</strong> iron moves toge<strong>the</strong>r with <strong>the</strong> clay, with <strong>the</strong> exception of <strong>the</strong> II B22tx horÍ2on<br />

where an enrichment <strong>in</strong> free iron can be observed.<br />

Micromorphological characteristics. The observations refer only to <strong>the</strong> Melotta<br />

profile.<br />

In <strong>the</strong> A2 plasma is scarce, <strong>the</strong> S-Matrix is <strong>in</strong>tertextic <strong>and</strong> sepicity is ra<strong>the</strong>r<br />

low. Argillans <strong>and</strong> ferri-argillans are common, but are strongly disturbed <strong>and</strong><br />

broken, <strong>and</strong> often reduced to papules. The sepicity of <strong>the</strong> plasma <strong>and</strong> <strong>the</strong> degree<br />

of expression of <strong>the</strong> cutans <strong>in</strong>creases <strong>in</strong> <strong>the</strong> B21t. There, besides ferri-argillans,<br />

gra<strong>in</strong>y cutans <strong>and</strong> complex cutans are present. In <strong>the</strong> B22t horizons <strong>and</strong> B23cn<br />

cutans are very scarce, but <strong>the</strong> plasmic fabric is strongly sepic <strong>and</strong> stress cutans<br />

are present <strong>and</strong>, <strong>in</strong> <strong>the</strong> B23 cn, Fe-Mn nodules <strong>and</strong> concretions prevail. Along <strong>the</strong><br />

whole profile <strong>the</strong> plasma shows decoloured, reduced zones <strong>and</strong> oxidized zones; <strong>the</strong><br />

former largely prevail <strong>in</strong> <strong>the</strong> horizon A2, <strong>the</strong> latter <strong>in</strong>crease with depth.<br />

Discussion. There is no direct evidence for <strong>the</strong> dat<strong>in</strong>g of <strong>the</strong> loesses of <strong>the</strong><br />

isolated terraces, but due to <strong>the</strong> textural <strong>and</strong> m<strong>in</strong>eralogical characteristics,<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> absence of strong pedogenetic alterations, <strong>the</strong>y can be referred to<br />

<strong>the</strong> last Pleniglacial.<br />

The loess lies on slightly wea<strong>the</strong>red or unwea<strong>the</strong>red deposits of fluvial<br />

sedimentary facies (Fig. 67). These probably have already been uplifted (see<br />

section 3.4.) dur<strong>in</strong>g <strong>the</strong> sedimentation of <strong>the</strong> surround<strong>in</strong>g gravelly fluvioglacial<br />

pla<strong>in</strong>. It may also be supposed that before <strong>the</strong> sedimentation of <strong>the</strong> fluvioglacial<br />

pla<strong>in</strong> <strong>the</strong> isolated terraces have been eroded <strong>and</strong> <strong>the</strong>refore <strong>the</strong>y should be<br />

regarded as remnants of much larger terraces.<br />

Fig. 67 - K schematic cross section of isolated terraces: 1) fluviatile sediments; 2) pelitic top of <strong>the</strong><br />

fluviatile sediments <strong>and</strong> associated paleosols; 3) loess cover; 4) fluvioglacial gravels belong<strong>in</strong>g to<br />

<strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>.<br />

Fig. 67 - Sezione geológica schematica dei terrazzi isolati: 1) depositi fluviali; 2) tetto pelitico dei<br />

depositi fluviali e paleosuoli associati; 3) copertura loessica; 4) ghiaie fluvioglaciali appartenenti al<br />

«Livello pr<strong>in</strong>cipale della pianura».


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS<br />

IN THE APENNINE FRINGE<br />

7.1. STRATIGRAPHY OF THE CONTINENTAL QUATERNARY<br />

DEPOSITS, VETUSOLS AND PALEOSOLS<br />

In <strong>the</strong> Quaternary deposits of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> follow<strong>in</strong>g units have<br />

been dist<strong>in</strong>guished (Fig. 68 <strong>and</strong> 69):<br />

AM 1; littoral s<strong>and</strong>s: f<strong>in</strong>e <strong>and</strong> medium s<strong>and</strong>s, yellow, with wedge-shaped<br />

low-angle crossbedd<strong>in</strong>g <strong>and</strong> with peUtic <strong>in</strong>tercalations. The unit can be found all<br />

over <strong>the</strong> area studied <strong>and</strong> has <strong>the</strong> same characteristics between <strong>the</strong> Stirone <strong>and</strong><br />

Panaro rivers.<br />

On <strong>the</strong> basis of <strong>the</strong> paleomagnetic stratigraphy it is assumed to have been<br />

deposited (Salloway, 1983) dur<strong>in</strong>g <strong>the</strong> Jaramillo event, i.e. at <strong>the</strong> end of Early<br />

Pleistocene, <strong>and</strong> to be roughly synchronic all along <strong>the</strong> part of <strong>the</strong> Apenn<strong>in</strong>e<br />

fr<strong>in</strong>ge described here. This unit occurs at <strong>the</strong> top of <strong>the</strong> Pleistocene mar<strong>in</strong>e<br />

sequences of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge (section 3.5.).<br />

AM 2: (map units D1 <strong>and</strong> D2), Pede-Apenn<strong>in</strong>e fluviatile formation: gravelly,<br />

s<strong>and</strong>y, silty <strong>and</strong> clayey cont<strong>in</strong>ental deposits, <strong>in</strong> which several sedimentary facies<br />

of <strong>the</strong> fluvial environment can be recognized:<br />

FI, piedmont alluvial fan deposits: gravels with large clasts, matrix<br />

supported, without bedd<strong>in</strong>g or with a slight planar non-parallel bedd<strong>in</strong>g,<br />

deposited by debris flow.<br />

F2, cyclo<strong>the</strong>ms of braided river deposits: medium <strong>and</strong> coarse gravel with<br />

planar discont<strong>in</strong>uous bedd<strong>in</strong>g; at <strong>the</strong> top <strong>the</strong>y may show s<strong>and</strong>s with crossbedd<strong>in</strong>g<br />

<strong>and</strong> massive or lam<strong>in</strong>ated pelites.<br />

F3, cyclo<strong>the</strong>ms of me<strong>and</strong>er<strong>in</strong>g river deposits: f<strong>in</strong>e gravel <strong>and</strong> s<strong>and</strong> with<br />

oblique low-angle bedd<strong>in</strong>g, which can be <strong>in</strong>terpreted as po<strong>in</strong>t bar deposits. They<br />

also consist of s<strong>and</strong> <strong>and</strong> silt with cross lam<strong>in</strong>ation, <strong>in</strong>terpreted as natural levees,<br />

<strong>and</strong> of f<strong>in</strong>e pelites, represent<strong>in</strong>g <strong>the</strong> fill<strong>in</strong>g of ab<strong>and</strong>oned channels.<br />

AL, silty clays, sometimes s<strong>and</strong>y <strong>and</strong> massive, sometimes with parallel planar<br />

beds of slightly variable texture. They enclose <strong>and</strong> embed <strong>the</strong> fluvial bodies of <strong>the</strong><br />

previous facies. They must be <strong>in</strong>terpreded as backswamp deposits of a periodically<br />

flooded fluvial pla<strong>in</strong>.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 149<br />

The contact between <strong>the</strong> AMI <strong>and</strong> AM2 units is erosional <strong>and</strong> sometimes<br />

shows an angular unconformity.<br />

In <strong>the</strong> western sequences (Stirone <strong>and</strong> Crostolo) <strong>the</strong> lower part of <strong>the</strong> AM 2<br />

formation consists of alluvial pla<strong>in</strong> <strong>and</strong> of me<strong>and</strong>er<strong>in</strong>g river sediments, while,<br />

towards <strong>the</strong> top, a general <strong>in</strong>crease of <strong>the</strong> gra<strong>in</strong>-size of <strong>the</strong> clasts <strong>and</strong> a progressive<br />

change of <strong>the</strong> fluvial facies, from me<strong>and</strong>er<strong>in</strong>g to braided, can be observed.<br />

Also <strong>the</strong> eastern sequences Tiepido-Panaro, although consist<strong>in</strong>g of fan<br />

deposits from <strong>the</strong>ir base on, show a clear upwards <strong>in</strong>crease <strong>in</strong> frequency <strong>and</strong><br />

gra<strong>in</strong> size of <strong>the</strong> gravel bodies.<br />

This general trend of coarsen<strong>in</strong>g upwards is connected with <strong>the</strong> prograd<strong>in</strong>g<br />

of <strong>the</strong> piedmont alluvial fans that cover sediments of <strong>the</strong> alluvial pla<strong>in</strong> or distal<br />

parts of previously deposited fans. It is due to <strong>the</strong> progressive northward mov<strong>in</strong>g<br />

of <strong>the</strong> Apenn<strong>in</strong>e marg<strong>in</strong> <strong>and</strong> its uplift<strong>in</strong>g (Ricchi Lucchi et alii, 1982).<br />

The various paleomagnetic studies carried out on <strong>the</strong> Stirone sequence (Bucha<br />

<strong>and</strong> Sibrava, 1974; Salloway, 1983), <strong>the</strong> Crostolo sequence (Bucha, personal<br />

communication; Salloway, 1983), <strong>and</strong> <strong>the</strong> Tiepido-Panaro (Salloway, 1983) all<br />

locate <strong>the</strong> Matuyama-Bruhnes reversal at <strong>the</strong> base of <strong>the</strong> fluviatile formation (Fig.<br />

68). This formation <strong>the</strong>refore is considered to be deposited between <strong>the</strong> end of<br />

<strong>the</strong> Early Pleistocene <strong>and</strong> <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Middle Pleistocene.<br />

The biostratigraphic data are <strong>in</strong> good agreement with this dat<strong>in</strong>g. A rich late<br />

Villafranchian fauna with E. meridionalis, D. estruscus, D. nesti, etc. has been found<br />

<strong>in</strong> <strong>the</strong> Crostolo <strong>and</strong> Stirone rivers (<strong>Cremaschi</strong> <strong>and</strong> Ambrosetti, 1975; <strong>Cremaschi</strong><br />

<strong>and</strong> Sala, 1982) <strong>in</strong>side <strong>the</strong> Matuyama levels of <strong>the</strong> formation. A cranium of D.<br />

hemitoecus has been collected <strong>in</strong> <strong>the</strong> Stirone <strong>in</strong>side <strong>the</strong> sediments dat<strong>in</strong>g from <strong>the</strong><br />

Bruhnes epoch (Cigala Fulgosi, 1976).<br />

A rubefied vetusol, which will be described as <strong>the</strong> Collecchio vetusol (map<br />

unit D31) (section 7.2.) has developed <strong>in</strong> <strong>the</strong> top of <strong>the</strong> formation.<br />

Locally, i.e. <strong>in</strong> <strong>the</strong> area of Spezzano <strong>and</strong> Formig<strong>in</strong>e, after <strong>the</strong> onset of <strong>the</strong><br />

development of <strong>the</strong> Collecchio vetusol, erosion <strong>and</strong> subsequent fluvial sedimenta-<br />

D32 D6 D7<br />

W<br />

Fig. 69 - Relationships between <strong>the</strong> stratigraphic units <strong>and</strong> <strong>the</strong> carthographic units of <strong>the</strong> Apenn<strong>in</strong>e<br />

fr<strong>in</strong>ge.<br />

Fig. 69 - Rapporti fra le unita stratigrafiche e cartografiche del marg<strong>in</strong>e appenn<strong>in</strong>ico.


150 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PUIN<br />

tion led to <strong>the</strong> formation of unit AM2’, which largely consists of gravel. In this<br />

terrace a more recent vetusol (Rex vetusol) was formed. Because of <strong>the</strong>ir only<br />

local occurrence <strong>the</strong>se deposits have not been separately <strong>in</strong>dicated (Fig. 69).<br />

Due to <strong>the</strong> subsequent tectonic deformation (fold<strong>in</strong>g, tilt<strong>in</strong>g, fault<br />

displacement) of <strong>the</strong> fluviatile formation, <strong>the</strong> surface <strong>in</strong> which <strong>the</strong> <strong>vetusols</strong><br />

developed has been folded <strong>and</strong> faulted <strong>and</strong> subsequently eroded to a Middle<br />

Pleistocene piedmont glacis (map unit D5). In fact, <strong>the</strong> tectonic deformation<br />

locally (Tiepido) already started dur<strong>in</strong>g <strong>the</strong> later part of <strong>the</strong> deposition of AM2<br />

sediments.<br />

-V " .i. /<br />

-^v.Pirr-r» >‘.'-P-iX".%-^.-.-*‘i‘<br />

AM3: (map unit D4) Borzano gravels: <strong>the</strong> deposits ma<strong>in</strong>ly consist of gravels,<br />

which are poorly bedded or show discont<strong>in</strong>ous non-parallel planar bedd<strong>in</strong>g. Some<br />

s<strong>and</strong> lenses occur as well as, towards <strong>the</strong> top of <strong>the</strong> formation, lenticular pelitic<br />

bodies (see Borzano La Cittadella profile, loc. 43).<br />

The deposits must be <strong>in</strong>terpreted as braided river deposits. They occur <strong>in</strong><br />

valleys cut <strong>in</strong>to <strong>the</strong> AM 2 unit, which can be completely <strong>in</strong>filled (Fig. 70).<br />

<strong>Po</strong>ssibilities for absolute dat<strong>in</strong>g of <strong>the</strong> unit are lack<strong>in</strong>g, but it can be referred to<br />

<strong>the</strong> Middle Pleistocene on <strong>the</strong> basis of <strong>the</strong> stratigraphy. Artifacts of Clactonian<br />

<strong>and</strong> Protolevalloisian techniques with evidence of postdepositional transport (Fig.<br />

71) were found <strong>in</strong> this unit (<strong>Cremaschi</strong> <strong>and</strong> Peretto, 1977).<br />

AM4: Ghiardo loess. This unit consists of a polygenic loess cover about one<br />

metre thick, (conta<strong>in</strong><strong>in</strong>g several covers which were deposited dur<strong>in</strong>g subsequent<br />

phases). The characteristics of soils <strong>in</strong> it will be described <strong>in</strong> detail <strong>in</strong> a follow<strong>in</strong>g<br />

section.<br />

The cover systematically overlies <strong>the</strong> Borzano gravels, <strong>the</strong> fluviatile formation<br />

<strong>and</strong> <strong>the</strong> erosional surface, which <strong>in</strong> <strong>the</strong> legend to <strong>the</strong> geologic map (Appendix 6;<br />

unit D5) <strong>and</strong> <strong>in</strong> section 8, is described as piedmont glacis. The Ghiardo loesses<br />

conta<strong>in</strong> at <strong>the</strong>ir base, <strong>and</strong> sometimes bury, an Acheulean <strong>in</strong>dustry (<strong>Cremaschi</strong> <strong>and</strong><br />

Peretto, 1977; <strong>Cremaschi</strong> <strong>and</strong> Christofer, 1984), which allows to refer its cover<br />

to <strong>the</strong> end of <strong>the</strong> Middle Pleistocene (Fig. 79).<br />

fr- I-<br />

AM 5 (map unit D 6) Cavriago gravels: Piedmont alluvial fan deposits. These<br />

consist of ma<strong>in</strong>ly gravelly sedimentary bodies that, although <strong>the</strong>ir specific morphological<br />

characteristics are preserved unareserved unaltered, are deeply cut by <strong>the</strong><br />

present Apenn<strong>in</strong>e watercourses. A ra<strong>the</strong>r th<strong>in</strong> rubefied soil has developed <strong>in</strong> its<br />

top. In strongly subsid<strong>in</strong>g areas (East of <strong>the</strong> Secchia river or at <strong>the</strong>ir sou<strong>the</strong>rn<br />

marg<strong>in</strong>s) <strong>the</strong>se are buried by Holocene sediments of <strong>the</strong> alluvial pla<strong>in</strong> (map unit<br />

D7).<br />

They date from <strong>the</strong> Late Pleistocene, as can be <strong>in</strong>ferred from stratigraphic<br />

correlations <strong>and</strong> radiocarbon dat<strong>in</strong>gs: <strong>the</strong> deposits that cover <strong>the</strong>ir sou<strong>the</strong>rn marg<strong>in</strong>s<br />

<strong>in</strong>clude archaeological f<strong>in</strong>ds of <strong>the</strong> ancient Neolithic <strong>and</strong> of <strong>the</strong> Mesolithic.<br />

The organic matter of an alluvial soil, dated <strong>in</strong> a quarry of Fiorano <strong>and</strong> overly<strong>in</strong>g<br />

<strong>the</strong> fan, has shown an age of 12,000 years B.P. (Alessio et aUi, 1980) (Fig. 86).<br />

At <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>vetusols</strong> have developed <strong>in</strong> <strong>the</strong> top of <strong>the</strong><br />

Pede-Apenn<strong>in</strong>e formation (Middle Pleistocene), <strong>in</strong> <strong>the</strong> Ghiardo loess (late


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 151<br />

Middle Pleistocene) <strong>and</strong> <strong>in</strong> <strong>the</strong> Late Pleistocene alluvial fans. In <strong>the</strong> next sections<br />

<strong>the</strong> soil developed <strong>in</strong> Holocene alluvial fans will also be briefly discussed <strong>and</strong><br />

compared with older phenomena.<br />

7.2. THE VETUSOLS IN THE TOP OF THE PEDE-APENNINE<br />

FLUVIATILE FORMATION (map unit D3.1)<br />

The <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> top of <strong>the</strong> fluviatile formation, developed ma<strong>in</strong>ly <strong>in</strong> gravels<br />

<strong>and</strong> systematically covered by <strong>the</strong> Ghiardo loess, shows <strong>the</strong> same characteristics<br />

all over <strong>the</strong> area studied. Among <strong>the</strong> numerous profiles observed those of<br />

Ghiardo <strong>and</strong> Ronco have been studied <strong>in</strong> detail <strong>and</strong> are representative for <strong>the</strong><br />

whole area.<br />

They are schematically <strong>in</strong>dicated <strong>in</strong> Fig. 72, toge<strong>the</strong>r with two similar profiles<br />

(Ghiardo, loc. 25; Collecchio, loc. 44), which will not be discussed here.<br />

A special pedostratigraphical situation has been found <strong>in</strong> a small area East of<br />

<strong>the</strong> Tiepido river: under <strong>the</strong> Ghiardo loess <strong>the</strong>re is a vetusol with much less<br />

developed pedogenetic characteristics, while <strong>in</strong>side <strong>the</strong> AM2 unit a buried paleosol<br />

displaced by faults (Tiepido profile) has been exposed.<br />

The Ghiardo Vigneto <strong>and</strong> Ronco profiles (loc. 26 <strong>and</strong> 27; map unit D31). Both<br />

profiles have a solum of about 6 metres <strong>and</strong> consist of a similar sequence of soil<br />

(Fig. 72) horizons: B21t, B22t, B31t, B32, C Ca.<br />

S<strong>in</strong>ce <strong>the</strong> top of <strong>the</strong> <strong>vetusols</strong> has clearly been subject to erosion, <strong>the</strong> thickness<br />

of <strong>the</strong> B21t horizon can vary. The horizon is characterized by a strongly<br />

developed prismatic or medium blocky structure, accentuated by a strong accumulation<br />

of brown iron hydroxides near <strong>the</strong> ped faces; only <strong>the</strong> ped <strong>in</strong>teriors are<br />

rubefied. Both horizontal <strong>and</strong> vertical ped faces are bleached <strong>and</strong> give a reticular<br />

n.Groppo<br />

R.Lavachiello<br />

F;¿. 70 - Cross section of a Pleistocene terrace close to Borzano (Reggio E.). 1) Pede-Apenn<strong>in</strong>e<br />

fluviatile formation; 2) Collecchio vetusol; 3) Borzano gravel (AM4); 4) f<strong>in</strong>e-textured sediments at<br />

<strong>the</strong> top of <strong>the</strong> Borzano gravel; 5) Ghiardo loess; 6) Late Pleistocene gravel; 7) Late Acheulean<br />

artifacts, 8) Clactonian <strong>and</strong> Protolevalloisian artifacts; A) Borzano La Cittadella profile (loc. 43);<br />

B) Borzano profile (loc. 42).<br />

F/g. 70 - Sezione geológica dei terrazzi pedeappenn<strong>in</strong>ici nei pressi di Borzano (RE). 1) formazione<br />

fluviale pedeappenn<strong>in</strong>ica; 2) vetusuolo di Collecchio; 3) ghiaie di Borzano; 4) depositi f<strong>in</strong>i al tetto<br />

delle ghiaie di Borzano; 5) loess del Ghiardo; 6) ghiaie del Pleistocene superiore; 7) manufatti tardo<br />

acheuleani; 8) manufatti clactoniani e protolevalloisiani; A) profilo di Borzano la Cittadella (loc.<br />

43); B) profilo di Borzano (loc. 42).


PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PL,aim


quaternar y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 153<br />

appearance to <strong>the</strong> horizon. In <strong>in</strong>trapedal cracks <strong>and</strong> voids common carbonate<br />

nodules occur, probably as a result of decarbonation of <strong>the</strong> overly<strong>in</strong>g loess.<br />

In <strong>the</strong> B22t horizon <strong>the</strong> structure <strong>and</strong> <strong>the</strong> concentration of nodules decreases<br />

clearly while <strong>the</strong> mottl<strong>in</strong>g <strong>in</strong>creases. The stones, completely absent <strong>in</strong> <strong>the</strong> B21t,<br />

beg<strong>in</strong> to appear at <strong>the</strong> top of <strong>the</strong> B22t horizon <strong>and</strong> consist of small angular chert<br />

fragments. Towards <strong>the</strong> base <strong>the</strong>y <strong>in</strong>crease clearly <strong>in</strong> number <strong>and</strong> also decalcified<br />

fragments of s<strong>and</strong>stone <strong>and</strong> marly limestone start to appear. The decalcified <strong>and</strong><br />

wea<strong>the</strong>red gravel prevails <strong>in</strong> <strong>the</strong> B3 horizons. The ma<strong>in</strong> differences between B31t<br />

<strong>and</strong> B32t are <strong>the</strong> weaker rubéfaction <strong>and</strong> lower amount of f<strong>in</strong>e earth <strong>in</strong> <strong>the</strong> latter.<br />

The C ca horizon, <strong>in</strong> <strong>the</strong> profile of Ghiardo Vigneto, co<strong>in</strong>cides with a<br />

lithological change <strong>and</strong> consists of clays with abundant carbonate nodules. In <strong>the</strong><br />

Ronco profile it consists of gravels strongly cemented to a great depth. The<br />

contact between <strong>the</strong> B3 <strong>and</strong> C ca horizon has not been observed.<br />

GHIARDO -<br />

VIGNETO §<br />

UIB21t<br />

fluviatlle<br />

silt <strong>and</strong> clay<br />

IS B22t<br />

ISB31t<br />

ISB32<br />

nzcc<br />

fluviatlle<br />

clay<br />

L 1m<br />

BK- 72 - The <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> top of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatlle formation.<br />

P'S- 72-1 vetusuoli al tetto della formazione fluviale pedeappenn<strong>in</strong>ica.


154 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

■<br />

í<br />

V- >4<br />

' •►'í<br />

Textural characteristics. The gra<strong>in</strong> si2e curves (Fig. 73) <strong>in</strong>dicate a clear difference<br />

between <strong>the</strong> texture of <strong>the</strong> B2 <strong>and</strong> B3 hori2ons. This difference is mostly<br />

due to a pre-exist<strong>in</strong>g lithological discont<strong>in</strong>uities <strong>in</strong> <strong>the</strong> parent material. At least<br />

<strong>the</strong> B21t horixon, devoid of stones, will have developed <strong>in</strong> a pelitic lense on top<br />

of <strong>the</strong> gravels.<br />

Micromorphological characteristics. All <strong>the</strong> B horixons have a porphyroskeHc<br />

related fabric. Lithorelicts are very scarce <strong>in</strong> <strong>the</strong> B21t, <strong>the</strong>y <strong>in</strong>crease slightly <strong>in</strong> <strong>the</strong><br />

B22t, where <strong>the</strong>y are almost exclusively represented by chert fragments. In <strong>the</strong><br />

B3 horixons <strong>the</strong>y <strong>in</strong>crease clearly <strong>and</strong> consist ma<strong>in</strong>ly of s<strong>and</strong>stones <strong>and</strong> decarbonated<br />

marls. In <strong>the</strong> B2 horixons <strong>the</strong> plasma is characterixed by alternat<strong>in</strong>g reduced<br />

<strong>and</strong> oxidixed areas.<br />

The first arc particularly abundant at <strong>the</strong> top of B21t (Ghiardo Vigneto<br />

profile) <strong>and</strong> gradually decrease with depth. The plasmatic fabric is strongly sepic<br />

<strong>in</strong> <strong>the</strong> reduced xones, where stress cutans can also be observed. In <strong>the</strong> oxidixed<br />

xones, due to <strong>the</strong> great amount of iron (hydr)oxides, <strong>the</strong> sepicity is much lower<br />

<strong>and</strong> <strong>the</strong> (hydr)oxides mask <strong>the</strong> ferri-argillans which are more evident <strong>in</strong> <strong>the</strong><br />

underly<strong>in</strong>g B22t.<br />

In <strong>the</strong> B22t, <strong>the</strong> cutanic features, toge<strong>the</strong>r with <strong>the</strong> papules, form most of <strong>the</strong><br />

plasma. Among <strong>the</strong> cutans <strong>the</strong> ferri-argillans prevail, <strong>the</strong>y are th<strong>in</strong>ly lam<strong>in</strong>ated,<br />

thick <strong>and</strong> strongly biréfr<strong>in</strong>gent, usually well preserved, but slightly deformed <strong>in</strong><br />

<strong>the</strong> lowermost horixons. Complex cutans are present everywhere <strong>in</strong> clear<br />

amounts, <strong>and</strong> <strong>the</strong>y alternate with <strong>the</strong> ferri-argillans without any apparent order.<br />

In <strong>the</strong> C ca horixon fragments of calcarenites, s<strong>and</strong>stones, ophiolites <strong>and</strong> scarce<br />

s<strong>and</strong> form <strong>the</strong> skeleton, <strong>the</strong> crystic plasma consists of sparry calcite, <strong>and</strong> almost<br />

completely fills <strong>the</strong> <strong>in</strong>tergranular voids, where never<strong>the</strong>less rare vughs, with few<br />

discont<strong>in</strong>uous th<strong>in</strong> ferri-mangans, are present.<br />

M<strong>in</strong>eralogical characteristics. The heavy m<strong>in</strong>eral composition strongly depends<br />

on <strong>the</strong> primary characteristics of <strong>the</strong> parent materials. In <strong>the</strong> Ghiardo Vigneto<br />

profile <strong>the</strong> m<strong>in</strong>erals of metamorphic paragenesis, among which a fair amount of<br />

glaucophane, prevail while <strong>the</strong> heavy m<strong>in</strong>eral assemblage of <strong>the</strong> Ronco profile is<br />

ma<strong>in</strong>ly represented by opaque m<strong>in</strong>erals <strong>and</strong> sp<strong>in</strong>els (ma<strong>in</strong>ly picotite) com<strong>in</strong>g<br />

from <strong>the</strong> ophiolites which are very abundant <strong>in</strong> <strong>the</strong> parent material (Appendix<br />

4). Never<strong>the</strong>less <strong>in</strong> both profiles <strong>the</strong>re is a clear difference between <strong>the</strong> B21t<br />

horixons <strong>and</strong> <strong>the</strong> underly<strong>in</strong>g horixons; <strong>the</strong> B21t has a larger variety of m<strong>in</strong>eral<br />

species <strong>and</strong> a lower wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex probably due to some admixture from <strong>the</strong><br />

overly<strong>in</strong>g loess.<br />

An higher concentration of stable m<strong>in</strong>erals can be observed <strong>in</strong> <strong>the</strong> B22t<br />

horixon, beneath which <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex generally decreases with depth. The<br />

clay m<strong>in</strong>erals, studied <strong>in</strong> <strong>the</strong> Ronco profile, consist of vermicuhte, smectite, illite<br />

<strong>and</strong> k<strong>and</strong>ite; <strong>the</strong> latter m<strong>in</strong>eral decreases <strong>in</strong> <strong>the</strong> lower horixons.<br />

1 t» •t! ...M<br />

Chemical characteristics. The B21t, B22t, B31t <strong>and</strong> B32 horixons are mostly<br />

decalcified <strong>and</strong> massive carbonate precipitation occurs only <strong>in</strong> <strong>the</strong> C ca horixons.<br />

However, <strong>the</strong> presence of sligh amounts of Ca C03 <strong>in</strong> <strong>the</strong> f<strong>in</strong>e earth fraction.


q u a t e r n a r y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 155<br />

Fig. 73 - The cumulative curves of <strong>the</strong> Ronco <strong>and</strong> Ghiardo Vigneto profiles.<br />

Fig. 73 - Curve granulometriche cumulative dei profili di Ronco e ghiardo Vigneto.


156 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

development of Ca C03 nodules <strong>in</strong> ma<strong>in</strong> voids <strong>and</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> base saturation<br />

percentage, which occurs <strong>in</strong> <strong>the</strong> B21t or B22t horizons, strongly po<strong>in</strong>t to recalcification<br />

due to supply of calcium from <strong>the</strong> overly<strong>in</strong>g loess cover.<br />

The amount of free iron is generally high, but unusually high contents are<br />

reached <strong>in</strong> <strong>the</strong> Ronco profile, because of <strong>the</strong> high content of ophiolithic rocks <strong>in</strong><br />

<strong>the</strong> parent material.<br />

7.3. THE TERRACES OF SPEZZANO AND FORMIGINE, THE PROFILES<br />

OF TIEPIDO AND REX (map units D3.1 <strong>and</strong> D3.2; loc. 24 <strong>and</strong> 28)<br />

rWM<br />

In <strong>the</strong> area between <strong>the</strong> Fossa di Spezzano <strong>and</strong> <strong>the</strong> Tiepido river, <strong>the</strong> Ghiardo<br />

loess covers two terraces of different age; <strong>in</strong> <strong>the</strong>se different rubefied soils have<br />

been observed (Fig. 69). On <strong>the</strong> upper terrace (map unit D3.1) a vetusol occurs<br />

whose profile is completely similar to <strong>the</strong> Ghiardo <strong>and</strong> Ronco <strong>vetusols</strong> (see<br />

<strong>Cremaschi</strong>, 1978, Ca di Sola profile), <strong>and</strong> to <strong>the</strong> Collecchio vetusol, after which<br />

<strong>the</strong> mapp<strong>in</strong>g unit is named.<br />

Representative for <strong>the</strong> vetusol of <strong>the</strong> lower terrace (map unit D32) is <strong>the</strong> Rex<br />

profile described close to <strong>the</strong> brick kiln «Rex», Fiorano (MO). Also <strong>in</strong> <strong>the</strong> area<br />

mentioned above, with<strong>in</strong> <strong>the</strong> upper gravel deposits of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile<br />

formation (AM2) a paleosol (<strong>the</strong> Tiepido profile) was observed. The<br />

stratigraphic position of <strong>the</strong> Rex <strong>and</strong> Tiepido profiles is <strong>in</strong>dicated <strong>in</strong> Fig. 74.<br />

Rex profile. The uppermost part of <strong>the</strong> profile is developed <strong>in</strong> <strong>the</strong> Ghiardo<br />

loess (B21t, B22cn) <strong>and</strong> underly<strong>in</strong>g fluviatile clay (II B23ca), while <strong>the</strong> lower<br />

horizons are developed <strong>in</strong> <strong>the</strong> top of <strong>the</strong> terrace deposits; <strong>the</strong>se comprise <strong>the</strong><br />

follow<strong>in</strong>gs horizons: III B21t, IV B31t, FV B32t, IV C ca (Fig. 74 <strong>and</strong> 75).<br />

The essential difference <strong>in</strong> gra<strong>in</strong> size distribution between <strong>the</strong> III B21t<br />

horizon <strong>and</strong> <strong>the</strong> IV B32t horizons (see Fig. 76) is considered to be due to a<br />

primary lithological discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> parent material: that is, to <strong>the</strong> presence<br />

of a politic cover on <strong>the</strong> top of <strong>the</strong> gravel formation.<br />

Micromorphologically, <strong>the</strong> Rex vetusol resembles <strong>the</strong> Ronco <strong>and</strong> Ghiardo<br />

profiles. The plasma shows an alternation of reduced <strong>and</strong> oxidized areas<br />

throughout <strong>the</strong> whole profile, but pseudogley<strong>in</strong>g is not as prom<strong>in</strong>ent. Plasma is<br />

strongly separated. Lithorelicts are present everywhere, but <strong>the</strong>y become dom<strong>in</strong>ant<br />

<strong>in</strong> <strong>the</strong> IV B3 horizons; <strong>the</strong> cutans (argillans, ferri-argillans <strong>and</strong> complex<br />

cutans) are well preserved <strong>in</strong> solution pores <strong>and</strong> crack <strong>in</strong> decalcified stones. In<br />

<strong>the</strong>se, stress cutans abound <strong>and</strong> illuviation cutans are strongly deformed; only<br />

occasionally <strong>the</strong> primary lam<strong>in</strong>ation can be recognized.<br />

Cutans are abundant <strong>in</strong> <strong>the</strong> IV B31t <strong>and</strong> decrease strongly <strong>in</strong> <strong>the</strong> IV B32t.<br />

<strong>No</strong>dules, cutans <strong>and</strong> neocutans of iron <strong>and</strong> manganese, are well developed <strong>in</strong> <strong>the</strong><br />

topmost horizon. In <strong>the</strong> IV C ca horizon <strong>the</strong> calcareous cement almost completely<br />

fills <strong>the</strong> <strong>in</strong>tergranular voids.<br />

In <strong>the</strong> heavy m<strong>in</strong>eral fractions unstable species of metamorphic paragenesis<br />

<strong>and</strong> sp<strong>in</strong>els, com<strong>in</strong>g from <strong>the</strong> ophiolites prevail (Appendix 4). The change <strong>in</strong> <strong>the</strong><br />

ratio between micas <strong>and</strong> opaque m<strong>in</strong>erals po<strong>in</strong>ts to a lithologic discont<strong>in</strong>uity


-C a<br />

&<br />

q u a te r n ar y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 157<br />

ou<br />

D-<br />

o<br />

-Td 'Oh V<br />

H<br />

-a c<br />


158 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

between III B21t <strong>and</strong> IV B31t already <strong>in</strong>dicated by <strong>the</strong> gra<strong>in</strong> size analyses. The<br />

clay m<strong>in</strong>erals consist of smectite, vermiculite, illite <strong>and</strong> k<strong>and</strong>ite <strong>in</strong> <strong>the</strong> B horizons;<br />

<strong>the</strong> C horizon seems slightly richer <strong>in</strong> smectite <strong>and</strong> chlorite.<br />

Carbonates are absent <strong>in</strong> <strong>the</strong> III B2 horizons, <strong>the</strong>y are present as traces <strong>in</strong> <strong>the</strong><br />

IV B3 <strong>and</strong> are abundant <strong>in</strong> <strong>the</strong> IV C horizon. The 111 B21t is slightly acid, while<br />

<strong>the</strong> lower horizons are alkal<strong>in</strong>e. The base saturation is high. It is very likely that<br />

<strong>the</strong> upper horizon underwent a slight resaturation by <strong>the</strong> overly<strong>in</strong>g sediments.<br />

The IV B3 horizons are clealrly richer <strong>in</strong> free iron than <strong>the</strong> overly<strong>in</strong>g parts of<br />

<strong>the</strong> B horizons. This is most likely due to differences <strong>in</strong> lithology <strong>and</strong> not <strong>in</strong><br />

pedogenesis, <strong>the</strong> gravels be<strong>in</strong>g rich <strong>in</strong> ophiolite fragments.<br />

Tiepido profile (loc. 24). The paleosol is exposed <strong>in</strong> <strong>the</strong> bed of <strong>the</strong> Tiepido<br />

river <strong>in</strong> <strong>the</strong> upper gravel deposits of <strong>the</strong> fluviatile formation (AM 2) <strong>and</strong> consists<br />

of B horizons, broken <strong>in</strong>to three ma<strong>in</strong> blocks <strong>and</strong> displaced by reverse faults.<br />

TIEPIDO<br />

S'


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 159<br />

Fig. 76 - Cumulative curves of <strong>the</strong> Tiepido <strong>and</strong> Rex profiles; (t) = top; (b) = bottom.<br />

Fig. 76 - Curve granulometriche cumulative, relative ai profili del Tiepido e di Rex.


160 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

i .<br />

%<br />

li<br />

k: -<br />

I'-<br />

•■• •• -I<br />

m<br />

with small displacement (Fig. 74). In each block <strong>the</strong> same sequum of pedological<br />

horizons has been observed; while <strong>in</strong> <strong>the</strong> two blocks upstream <strong>the</strong>y are slightly<br />

eroded, <strong>in</strong> <strong>the</strong> downstream block <strong>the</strong> B21t <strong>and</strong> B22t horizons are well preserved,<br />

<strong>and</strong> <strong>the</strong> lower boundary of <strong>the</strong> B32t horizon is a fault plane, show<strong>in</strong>g clear<br />

striations.<br />

On <strong>the</strong> top of <strong>the</strong> B21t, an about 10 cm thick horizon of black clay occurs<br />

(Fig. 75). This clay, free of carbonates conta<strong>in</strong>s an appreciable amount of organic<br />

matter <strong>and</strong> has <strong>the</strong>refore been <strong>in</strong>dicated as A lb horizon. It has a heavy m<strong>in</strong>eral<br />

composition similar to that of <strong>the</strong> paleosol, but ra<strong>the</strong>r different from that of <strong>the</strong><br />

parent material of <strong>the</strong> paleosol. A fragment of a tibia of a great mammal has been<br />

found <strong>in</strong> this layer. These clays can be <strong>the</strong>refore <strong>in</strong>terpreted as sediments<br />

deposited <strong>in</strong> a swamp on top of <strong>the</strong> paleosol, <strong>and</strong> <strong>the</strong>ir sedimentation <strong>in</strong>cluded<br />

<strong>the</strong> rework<strong>in</strong>g of <strong>the</strong> uppermost horizons of <strong>the</strong> paleosol itself.<br />

The overly<strong>in</strong>g sediments, lam<strong>in</strong>ated silty s<strong>and</strong>s <strong>and</strong> fluvial gravels, <strong>in</strong>dicate a<br />

sedimentary environment of higher energy <strong>and</strong> seem to <strong>in</strong>dicate <strong>the</strong> progressive<br />

approach<strong>in</strong>g of a fluvial channel of braided facies towards <strong>the</strong> paleosol.<br />

The gra<strong>in</strong> size analyses (Fig. 76) show that <strong>the</strong> B horizons of <strong>the</strong> paleosol<br />

have a similar clay content, with a weak maximum <strong>in</strong> <strong>the</strong> II B22t. S<strong>and</strong> content<br />

progressively <strong>in</strong>creases towards <strong>the</strong> base, which corresponds macroscopically to<br />

an <strong>in</strong>crease of stones.<br />

The II B21t horizon has a clearly different texture as it shows a clear<br />

maximum <strong>in</strong> <strong>the</strong> silt fraction. This suggests that, although chert fragments <strong>and</strong><br />

lithorelicts are present, <strong>the</strong> II B21t horizon developed <strong>in</strong> a more pelitic cover on<br />

<strong>the</strong> top of <strong>the</strong> gravel.<br />

The ma<strong>in</strong> micromorphological characteristics are as follows; <strong>in</strong> <strong>the</strong> B21t <strong>and</strong><br />

B22t horizons <strong>the</strong> plasma is highly sepic <strong>and</strong> stress cutans <strong>and</strong> papules abound,<br />

but <strong>the</strong> cutans are poorly expressed, be<strong>in</strong>g partially destroyed <strong>and</strong> absorbed <strong>in</strong> <strong>the</strong><br />

S-matrix; slight pseudogley<strong>in</strong>g occurs ma<strong>in</strong>ly along voids.<br />

On <strong>the</strong> contrary <strong>in</strong> <strong>the</strong> II B31t <strong>the</strong> plasmatic fabric is argillasepic <strong>and</strong> <strong>the</strong><br />

ferri-argillans are strongly expressed <strong>and</strong> almost completely fill <strong>the</strong> <strong>in</strong>tergranular<br />

spaces between <strong>the</strong> lithorelicts. The ferri-argillans are always deformed <strong>and</strong><br />

broken. Sometimes microlam<strong>in</strong>ation cannot be seen any more <strong>and</strong> cutans have a<br />

low birefr<strong>in</strong>gence. Complex cutans were not observed. Fe-Me nodules, present<br />

especially at <strong>the</strong> top of <strong>the</strong> paleosol, <strong>and</strong> neosesquans <strong>in</strong>dicate conditions of<br />

temporary hydromorphism throughout <strong>the</strong> whole profile.<br />

The heavy m<strong>in</strong>eral assemblage. In <strong>the</strong> parent material (IV C), largely consists<br />

of unstable heavy m<strong>in</strong>erals, which on <strong>the</strong> contrary are severely depleted <strong>in</strong> <strong>the</strong><br />

paleosol, <strong>in</strong> which ma<strong>in</strong>ly, Ti oxides (anastase, rutile, brookite etc.), sp<strong>in</strong>el <strong>and</strong><br />

opaque m<strong>in</strong>erals occur.<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex shows a progressive decrease towards <strong>the</strong> bottom.<br />

Among <strong>the</strong> clay m<strong>in</strong>erals smectite, chlorite + vermiculite, illite <strong>and</strong> kaol<strong>in</strong>ite are<br />

present almost <strong>in</strong> <strong>the</strong> same amount <strong>in</strong> each horizon of <strong>the</strong> profile, with a slight<br />

concentration of illite <strong>in</strong> <strong>the</strong> A1 <strong>and</strong> II B21t.


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 161<br />

7.4. THE SOILS AND VETUSOLS MAINLY DEVELOPED IN THE<br />

GHIARDO LOESS ( stratigraphic unit AM4 )<br />

The general trend <strong>in</strong> <strong>the</strong> profiles of Ghiardo (loc. 25), Ghiardo Cave (loc.<br />

29), Collecchio (loc. 44), Boscone (loc. 30), Merl<strong>in</strong>e (loc. 32) <strong>and</strong> Niviano<br />

Gastello (loc. 31) is representative for <strong>the</strong> ma<strong>in</strong> types of <strong>vetusols</strong>, observed <strong>in</strong><br />

many of sections <strong>and</strong> outcrops (Fig. 77).<br />

TTie field characteristics <strong>in</strong>dicate that <strong>the</strong> profiles <strong>in</strong> <strong>the</strong> Ghiardo loess actually<br />

consist of at least two superimposed sequa (Al, A2, B21, B22cn/II B21, II<br />

B22cn).<br />

The upper sequum <strong>in</strong>creases clearly <strong>in</strong> thickness eastwards. Close to <strong>the</strong><br />

Trebbia river where it is particularly well expressed (Niviano Castello <strong>and</strong><br />

Merl<strong>in</strong>e profiles) a fur<strong>the</strong>r discont<strong>in</strong>uity can be recognized <strong>in</strong>side this upper<br />

sequum, represented at Niviano Castello by a th<strong>in</strong> but dist<strong>in</strong>ct. Fe-Mn horizon<br />

(B21cn) <strong>and</strong> at Merl<strong>in</strong>e by a horizon with characteristics of a fragipan (B22tx).<br />

The Ghiardo loess conta<strong>in</strong>s artifacts that belong to different palaeolithic<br />

cultures <strong>and</strong> are very helpful <strong>in</strong> establish<strong>in</strong>g its stratigaphy (Fig. 79 <strong>and</strong> 80).<br />

Underneath <strong>the</strong> A l or <strong>the</strong> Ap horizons frequently an A2 horizon occurs;<br />

where absent, this is commonly due to plough<strong>in</strong>g. The A2 horizon is, <strong>in</strong> most<br />

cases, one decimetre thick <strong>and</strong> conta<strong>in</strong>s Fe-Mn concretions <strong>and</strong> locally is mottled.<br />

Its lower limit is clear <strong>and</strong> l<strong>in</strong>ear, <strong>and</strong> sometimes abrupt. An argillic B horizon<br />

follows, with moderately expressed characteristics. Fe-Mn concretions <strong>and</strong><br />

nodules are present <strong>and</strong> <strong>in</strong>crease towards <strong>the</strong> bottom of this horizon <strong>and</strong><br />

eventually form a B cn horizon. This horizon, with a lower boundary which is<br />

clear to abrupt, overlies a lower argillic horizon which is very prom<strong>in</strong>ent <strong>and</strong> has<br />

dist<strong>in</strong>ct <strong>in</strong>terpedal tongues. In <strong>the</strong> field it is clearly dist<strong>in</strong>guishable from <strong>the</strong><br />

overly<strong>in</strong>g argillic horizon.<br />

Tile characteristics of <strong>the</strong> soils developed <strong>in</strong> <strong>the</strong> Ghiardo loess vary depend<strong>in</strong>g<br />

on <strong>the</strong> thickness of <strong>the</strong> eolian cover <strong>and</strong> on <strong>the</strong> nature of <strong>the</strong> substratum on<br />

which it lies (Fig. 77).<br />

In <strong>the</strong> profiles <strong>in</strong> which <strong>the</strong> loess lies on earlier soil horizons <strong>in</strong> gravel,<br />

generally an horizon consist<strong>in</strong>g of Fe-Mn nodules (B22cn) generally occurs<br />

which occasionally can be very hard due to cementation of Fe-Mn glaabules. In<br />

<strong>the</strong> Collecchio <strong>and</strong> Merl<strong>in</strong>e profiles it is replaced by a strongly expressed lam<strong>in</strong>ar<br />

horizon.<br />

Where <strong>the</strong> loess overlies unwea<strong>the</strong>red fluviatile clay, <strong>the</strong> soil developed <strong>in</strong> it<br />

has an abrupt <strong>and</strong> strongly wavy lower boundary (Boscone profile).<br />

The Ghiardo Cave profile (loc. 29) of such a type but it shows noticeable<br />

characteristics: <strong>the</strong> A2 horizon is particularly thick <strong>and</strong> it overlies, with a l<strong>in</strong>ear<br />

<strong>and</strong> abrupt erosional limit, an argillic horizon which is <strong>in</strong> its upper part lamellar<br />

<strong>and</strong> strongly prismatic below. This horizon is often discont<strong>in</strong>uous, fill<strong>in</strong>g concave<br />

depressions (Fig. 78) <strong>in</strong> underly<strong>in</strong>g clay belong<strong>in</strong>g to <strong>the</strong> Pede-Apenn<strong>in</strong>e<br />

fluviatile formation (AM2).<br />

In <strong>the</strong> area close to <strong>the</strong> Ghiardo Cave profiles (loc. 29) an Early Palaeolithic<br />

settlement, ly<strong>in</strong>g at <strong>the</strong> base of <strong>the</strong> loess has been explored through systematic<br />

archaeological excavations (<strong>Cremaschi</strong> <strong>and</strong> Christopher, 1984). These excavations


PALEOSOLS AND VETUSOLS IN THE CENTRAL PQ<br />

c \ + - c<br />

Ü X. T— Ü T-<br />

CM CM CM<br />

CM CÛ \ CM CD<br />

CQ 1=1 \ CD<br />

\ t d<br />

B<br />

-------- E 7 c - ^<br />

Ü T— CM o •«—<br />

y CM CM C M ,- - ^ CO CM<br />

GÛ .<br />

CD ^ C D CM CD<br />

m o n CD<br />

n<br />

a<br />

4-< c 1 C3) c<br />

o CM o<br />

CM CM CM CM CO<br />

CD CM CD CD CM<br />

CD Ö Ö / CD<br />

1=1<br />

■*—


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 163<br />

allowed detailed observations on <strong>the</strong> shape of <strong>the</strong> boundary between <strong>the</strong> loess <strong>and</strong><br />

underly<strong>in</strong>g clay over a large area (Fig. 78). The boundary shows round<br />

depressions up to a metre deep <strong>and</strong> one to two metres wide, separated by narrow<br />

ridges: this is iLgilgai microrelief accord<strong>in</strong>g to <strong>the</strong> def<strong>in</strong>ition of Hallsworth et alii<br />

(1955). The Acheulean artifacts, which do not show postdepositional damages<br />

are associated with small rounded fragments of s<strong>and</strong>stone or silicified mudstone.<br />

They are not concentrated <strong>in</strong> <strong>the</strong> concave depressions, but, on <strong>the</strong> contrary, <strong>the</strong>y<br />

Fig. 78 - T h e g ilg a i m ic r o r e lie f <strong>in</strong> th e G h ia r d o C a v e I (lo c . 2 9 a ) p r o file ; a n d b e lo w , th e is o l<strong>in</strong> e s o f<br />

<strong>the</strong> b o u n d a ry b e tw e e n th e 11 B 2 2 t / ll B 2 3 c n o n a n d th e 111 B 2 4 h o r iz o n s ; d e p th is <strong>in</strong> d ic a te d <strong>in</strong> cm<br />

b elo w th e lo w e r b o u n d a r y o f th e A 2 h o r iz o n . T h e la te A c h e u le a n a r tif a c ts h a v e b e e n c o lle c te d<br />

m a <strong>in</strong> ly <strong>in</strong> th e IIB 2 3 c n h o riz o n .<br />

Fig. 78 - II m ic r o r ilie v o g ilg a i n e l p r o filo d i G h ia r d o C a v e I ( lo c . 2 9 a ) . A ) is o ip s e d e l lim ite fr a g li<br />

o riz z o n ti II B 2 2 t, II B 2 3 c n e l’o r iz z o n te III B 2 4 ; la p r o fo n d itá é <strong>in</strong> d ic a ra <strong>in</strong> c e n tim e tr i d a lla b a s e<br />

d e ll’ o r iz z o n te A 2 .


q u aternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 165<br />

are uniformely distributed, <strong>in</strong> a th<strong>in</strong> layer, at <strong>the</strong> boundary between <strong>the</strong> loess <strong>and</strong><br />

<strong>the</strong> underly<strong>in</strong>g clay.<br />

They <strong>in</strong>dicate <strong>the</strong>refore that <strong>the</strong> surface, at present deformed by <strong>the</strong> gilgai,<br />

orig<strong>in</strong>ally must have been nearly flat, but sufficiently <strong>in</strong>cl<strong>in</strong>ed to allow <strong>the</strong> transport<br />

of small clasts <strong>and</strong> has formed part of <strong>the</strong> widest piedmont glacis that<br />

developed on top of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile formation (<strong>Cremaschi</strong> <strong>and</strong><br />

Christofer, 1984; section 3.5. <strong>and</strong> 7.1.).<br />

Textural characteristics. The gra<strong>in</strong>size distribution of <strong>the</strong> soil horizons<br />

developed <strong>in</strong> loess is clearly unimodal, <strong>the</strong> median is between <strong>the</strong> values of coarse<br />

<strong>and</strong> medium silt, <strong>the</strong>y are moderately sorted <strong>and</strong> show a marked positive asymmetry<br />

(Fig. 81 <strong>and</strong> 82). The s<strong>and</strong> content is very low, while <strong>the</strong> clay content<br />

ranges from \A1 to 50?, depend<strong>in</strong>g on <strong>the</strong> pedogenetic processes that affected <strong>the</strong><br />

horizon, from which <strong>the</strong> sample was collected. The trend of <strong>the</strong> clay content<br />

versus depth is congruent with <strong>the</strong> sequa <strong>in</strong>dicated by <strong>the</strong> field descriptions. In<br />

<strong>the</strong> upper sequum of each profile <strong>the</strong> clay content regularly <strong>in</strong>creases go<strong>in</strong>g<br />

through Ap, A2, B21t <strong>and</strong> B22cn horizons.<br />

The lower sequum lacks an A2 horizon <strong>and</strong> consists of II B21t, II B22g <strong>and</strong><br />

II B23cn horizons. Where thick <strong>and</strong> well preserved (Boscone profile, loc. 30), it<br />

first shows an <strong>in</strong>crease <strong>and</strong> <strong>the</strong>n a decrease <strong>in</strong> clay content. This <strong>in</strong>crease must be<br />

attributed to accumulation of illuvial clay, as <strong>the</strong> s<strong>and</strong>y fraction rema<strong>in</strong>s almost<br />

constant.<br />

The clay percentage <strong>in</strong> <strong>the</strong> lower sequum on <strong>the</strong> average is higher (between<br />

40 <strong>and</strong> 50?) than that of <strong>the</strong> upper sequum.<br />

¥ig. 80 - M id d le a n d U p p e r P a la e o lith ic a r tif a c ts fro m th e G h ia r d o lo e s s . 1 -2 , M id d le P a la e o lith ic<br />

B o s c o n e ; 3 , U p p e r P a la e o lith ic , M e r l<strong>in</strong> e .<br />

Fig. 80 - M a n u fa tti d e l P a le o lític o s u p e r io r e e m e d io p r o v e n ie n ti d a l lo e s s d e l G h ia r d o ; 1 -2 ,<br />

P a le o lític o m e d io , B o s c o n e ; 3 , P a le o lític o s u p e r io r e , M e r l<strong>in</strong> e .


166<br />

' : Í-<br />

i t<br />

' - ■. * V'i'' ■'<br />

f''íX''íí?-?-S.í4Siíííí<br />

F / ¿. 81 - T h e c u m u la tiv e c u r v e s o f th e G h ia r d o c a v e p r o file s . (C a v e I a b o v e ; C a v e II, b e lo w ).<br />

F / ¿. 81 - C u rv e g r a n u lo m e tr ic h e c u m u la tiv e d e i p r o fili d i G h ia r d o C a v e . ( C a v e I s o p r a , C a v e II<br />

s o tto ).


q u a te r n ar y d e p o s it s , v e t u s o l s a n d p a l e o s o l s 167<br />

Fig. 82 - T h e c u m u la tiv e c u r v e s o f th e B o s c o n e ( a b o v e ) a n d N iv ia n o G a ste llo ( b e lo w ) p r o file s .<br />

Fig. 82 - C u r v e g r a n u lo m e tric h e c u m u la tiv e d e l p ro fili d i B o s c o n e ( s o p r a ) e d i N iv ia n o G a ste llo<br />

( s o t t o ) .


168 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Micromorphologtcal characteristics. In <strong>the</strong> Collecchio profile, <strong>the</strong> upper sequum<br />

shows a progressive <strong>in</strong>crease <strong>in</strong> sepicity of <strong>the</strong> matrix at <strong>the</strong> passage from <strong>the</strong> A2<br />

to <strong>the</strong> B21 <strong>and</strong> B22cn which corresponds with a progressive <strong>in</strong>crease <strong>in</strong> plasma<br />

content. Cutans are completely absent <strong>in</strong> <strong>the</strong> A2, poorly developed <strong>in</strong> <strong>the</strong> B21<br />

<strong>and</strong> much more developed <strong>in</strong> <strong>the</strong> B23, even if strongly disturbed by <strong>the</strong> Fe-Mn<br />

concretions. This would <strong>in</strong>dicate that <strong>the</strong> accumulation of <strong>the</strong> illuvial clay has<br />

preceeded <strong>the</strong> development of <strong>the</strong> Fe-Mn nodules <strong>and</strong> concretions <strong>and</strong> that of <strong>the</strong><br />

neosequans. Coarse cutans are rare. The II B21t horizon strongly differs from <strong>the</strong><br />

overly<strong>in</strong>g ones: <strong>the</strong> plasma consists of alternat<strong>in</strong>g oxidized <strong>and</strong> reduced areas. In<br />

<strong>the</strong> first <strong>the</strong> plasmic fabric is argillasepic or <strong>in</strong>sepic, <strong>and</strong> abundant, lam<strong>in</strong>ated,<br />

thick <strong>and</strong> strongly biréfr<strong>in</strong>gent ferri-argillans occur. These oxidized areas form<br />

polyhedric fragments surrounded by reduced areas where <strong>the</strong> plasmic fabric is<br />

much more sepic <strong>and</strong> which show stress- <strong>and</strong> gra<strong>in</strong>y cutans. Papules are very<br />

common.<br />

The lam<strong>in</strong>ar structure, which characterizes <strong>the</strong> II B23 horizon, at a microlevel<br />

is composed of alternat<strong>in</strong>g oxidized <strong>and</strong> reduced b<strong>and</strong>s. In <strong>the</strong> oxidized b<strong>and</strong>s, <strong>the</strong><br />

iron ( hydro )xide concentrations sometimes hide <strong>the</strong> thick <strong>and</strong> lam<strong>in</strong>ated ferriargillans<br />

.<br />

The reduced areas show a skel-vo-masepic fabric, mangans <strong>and</strong> abundant<br />

stress- <strong>and</strong> gra<strong>in</strong>y cutans.<br />

In <strong>the</strong> Ghiardo Cave I profile <strong>the</strong> A2 horizon conta<strong>in</strong>s, toge<strong>the</strong>r with Fe-Mn<br />

nodules <strong>and</strong> papules, few ferri-argillans. They are, th<strong>in</strong>, decoloured <strong>and</strong> slightly<br />

biréfr<strong>in</strong>gent. The A2 shows a slightly sepic fabric. Inside <strong>the</strong> B horizons <strong>the</strong><br />

plasma is characterized by alternat<strong>in</strong>g reduced <strong>and</strong> oxidized zones that locally take<br />

<strong>the</strong> shape of horizontal b<strong>and</strong>s.<br />

The strong sepicity of <strong>the</strong> matrix <strong>and</strong> <strong>the</strong> presence of stress cutans are<br />

accompanied by a weak development of <strong>the</strong> argillans. Apart from a great amount<br />

of nodules <strong>and</strong> Fe-Mn coat<strong>in</strong>gs <strong>in</strong> <strong>the</strong> II B23cn, argillans, ferri-argillans <strong>and</strong><br />

gra<strong>in</strong>y cutans occur, which seem to be more abundant than <strong>in</strong> <strong>the</strong> overly<strong>in</strong>g<br />

horizons.<br />

M<strong>in</strong>eralogical characteristics. The heavy m<strong>in</strong>eral composition of <strong>the</strong> loesses<br />

resembles that of <strong>the</strong> piedmont alluvia (Fig. 16) (<strong>Cremaschi</strong> 1978, 1979).<br />

Never<strong>the</strong>less heavy m<strong>in</strong>erals with smaller specific weight concentrate <strong>in</strong> <strong>the</strong><br />

loesses (for example amphiboles, ra<strong>the</strong>r than garnets) (Ferrari <strong>and</strong> Magaldi,<br />

1968). Unstable m<strong>in</strong>erals of metamorphic paragenesis prevail such as amphiboles,<br />

glaucophanes <strong>and</strong> epidotes which are abundantly present <strong>in</strong> <strong>the</strong> Miocene<br />

s<strong>and</strong>stones of <strong>the</strong> Apenn<strong>in</strong>es.<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex shows a marked peak at <strong>the</strong> top of each of <strong>the</strong> superimposed<br />

sequa <strong>and</strong> subsequently decreases with depth (Fig. 105).<br />

The clay m<strong>in</strong>erals, determ<strong>in</strong>ed only for <strong>the</strong> profile of Ghiardo Cave II, consist<br />

of vermiculite, chlorite <strong>and</strong> smectite. They are particularly abundant <strong>in</strong> <strong>the</strong> II B<br />

horizons, while smectite was only observed, as a small trace, <strong>in</strong> <strong>the</strong> A2 horizon.<br />

Chemical characteristics. The loesses are completely decarbonated <strong>and</strong> slightly<br />

acid. The carbonates which are assumed to have been orig<strong>in</strong>ally present, have


QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 169<br />

been leached <strong>and</strong> now form nodules <strong>in</strong>side <strong>the</strong> clayey bedrock or <strong>in</strong> <strong>the</strong> rubefied<br />

<strong>vetusols</strong> on which <strong>the</strong> loesses sometimes rest. The CEC is low <strong>in</strong> <strong>the</strong> A2<br />

horizons <strong>and</strong> <strong>in</strong>creases <strong>in</strong> <strong>the</strong> B horizons where it shows ra<strong>the</strong>r high values <strong>and</strong><br />

po<strong>in</strong>ts to <strong>the</strong> presence of clay m<strong>in</strong>erals like vermiculite <strong>and</strong> montmorillonite.<br />

The base saturation is high: it ranges from 48? <strong>in</strong> <strong>the</strong> A2 of <strong>the</strong> Boscone<br />

profile to more than 80? <strong>in</strong> <strong>the</strong> B horizons. Its trend with depth, especially <strong>in</strong><br />

<strong>the</strong> Boscone profile, correlates with <strong>the</strong> bisequum already def<strong>in</strong>ed by <strong>the</strong> o<strong>the</strong>r<br />

characteristics. The amount of free iron varies clearly <strong>in</strong> <strong>the</strong> various profiles <strong>and</strong><br />

ranges from 2-3? up to a maximum of 11-13? <strong>in</strong> <strong>the</strong> II B22cn horizon of Ghiardo<br />

Cave II. In each profile <strong>the</strong> iron tends to be leached from <strong>the</strong> upper horizons <strong>and</strong><br />

to accumulate at <strong>the</strong> base. The clay/free iron ratio is not constant <strong>and</strong> <strong>in</strong>dicates<br />

separate transport of iron <strong>and</strong> clay, due to hydromorphism.<br />

Discussion on <strong>the</strong> Ghiardo loess. Field <strong>and</strong> laboratory data, toge<strong>the</strong>r with <strong>the</strong><br />

archaeological evidence, <strong>in</strong>dicate that <strong>the</strong> Ghiardo loess is actually composed of<br />

at least two sequa.<br />

The lower sequum was subjected after its sedimentation to strong wea<strong>the</strong>r<strong>in</strong>g<br />

<strong>and</strong> soil formation, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> development oigilgai microrelief. After subsequent<br />

erosion, it has been buried by a new loess cover.<br />

The sedimentation of <strong>the</strong> lower sequum, consider<strong>in</strong>g its archaeological content,<br />

most probably dates from <strong>the</strong> Late Middle Pleistocene, <strong>and</strong> its wea<strong>the</strong>r<strong>in</strong>g<br />

should have started from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Late Pleistocene (Riss-Würm<br />

<strong>in</strong>terglacial); <strong>the</strong> sedimentation of <strong>the</strong> loess of <strong>the</strong> upper sequum will date from<br />

Late Pleistocene (Würm glacial period).<br />

7.5. THE SOILS OF THE LATE PLEISTOCENE AND HOLOCENE A L ­<br />

LU VIAL FANS (map units D6 <strong>and</strong> D7)<br />

The soils on <strong>the</strong> surface of <strong>the</strong> Late Pleistocene fans at <strong>the</strong> mouth of <strong>the</strong> ma<strong>in</strong><br />

Apenn<strong>in</strong>e valleys show homogeneous characteristics over wide areas <strong>and</strong> are well<br />

represented by <strong>the</strong> three profiles described <strong>in</strong> detail: <strong>the</strong> Spilamberto, Cavriago<br />

<strong>and</strong> Settima (Fig. 83) (loc. 33/35).<br />

They are composed of a solum about 140 cm thick, which comprises <strong>the</strong><br />

follow<strong>in</strong>g horizons: Ap, B l, II B2t, II B3t, <strong>and</strong> II C ca. The first Ap <strong>and</strong> B1 are<br />

<strong>in</strong> an alluvial cover over a more ancient soil (II B2t <strong>and</strong> II B3t) developed <strong>in</strong> <strong>the</strong><br />

sediments of <strong>the</strong> Pleistocene fan.<br />

The Ap <strong>and</strong> BI horizons of <strong>the</strong> Cavriago profile (loc. 34) <strong>and</strong> <strong>the</strong> Ap of<br />

Settima (loc. 35) consist of silty deposits than can be <strong>in</strong>terpreted as overbank<br />

sediments of <strong>the</strong> nearby watercourses <strong>and</strong> <strong>the</strong> latter conta<strong>in</strong>s fragments of brick<br />

of Roman age.<br />

In <strong>the</strong> Spilamberto profile (loc. 33) <strong>the</strong> alluvial cover is thicker <strong>and</strong> conta<strong>in</strong>s<br />

<strong>the</strong> archaeological remnants of a Neolithic settlement (<strong>Cremaschi</strong>, 1979a).<br />

In <strong>the</strong> soil evolved on <strong>the</strong> Late Pleistocene fan <strong>the</strong> II B2t, III B3t <strong>and</strong> II C ca<br />

horizons are preserved, <strong>the</strong> II B2t horizon developed <strong>in</strong> <strong>the</strong> pelitic top, <strong>and</strong> <strong>the</strong><br />

111 B3t <strong>and</strong> C ca <strong>in</strong> <strong>the</strong> gravel. They show shght rubéfaction, <strong>and</strong> well-developed


170 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

S tru c tu re , a re d e v o id o f c a rb o n a te s a n d s h o w sca rce e v id e n c e o f h y d ro m o r­<br />

p h is m .<br />

The boundary with <strong>the</strong> C horizon is l<strong>in</strong>ear <strong>and</strong> clear. Well developed calcic<br />

horizons are lack<strong>in</strong>g, carbonate concretions be<strong>in</strong>g only developed on <strong>the</strong> lower<br />

surface of <strong>the</strong> pebbles.<br />

Textural characteristics. The gra<strong>in</strong>size distribution of <strong>the</strong> f<strong>in</strong>e earth (Fig. 84)<br />

gives proof of <strong>the</strong> lithologic discont<strong>in</strong>uities already <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> field descriptions.<br />

Those of <strong>the</strong> pelitic top show a shghtly expressed s<strong>and</strong>y tail <strong>and</strong> <strong>the</strong> ma<strong>in</strong><br />

mode falls <strong>in</strong> <strong>the</strong> silt fraction. On <strong>the</strong> contrary those of <strong>the</strong> gravel deposits have<br />

a high s<strong>and</strong> content. The silt is very scarce <strong>and</strong> <strong>the</strong> sort<strong>in</strong>g is very poor. The<br />

highest clay content can be observed <strong>in</strong> <strong>the</strong> II/III B3t horizon where it constitutes<br />

almost 302 of <strong>the</strong> f<strong>in</strong>e earth; it decreases regularly with depth <strong>and</strong> is slightly<br />

greater than 102 <strong>in</strong> <strong>the</strong> horizon C.<br />

Micromorphological characteristics. Only <strong>the</strong> Settima profile has been studied <strong>in</strong><br />

this respect. Features produced by biological activity <strong>and</strong> by organic matter<br />

prevail <strong>in</strong> <strong>the</strong> Ap horizon; argillans are absent, <strong>the</strong> plasma fabric is only slightly<br />

sepic. In <strong>the</strong> II B2t <strong>and</strong> B3t horizons <strong>the</strong> plasmic fabric is strongly sepic, especially<br />

<strong>in</strong> <strong>the</strong> former, where ferri-argillans are scarce; <strong>the</strong>se cutans, as well as a few<br />

matrans associated with <strong>the</strong>m, are abundant <strong>in</strong> <strong>the</strong> B3t horizon. Pseudogley<br />

phenomena are absent <strong>and</strong> a moderate amount of Fe-Mn nodules is scattered <strong>in</strong><br />

<strong>the</strong> matrix.<br />

CAVRIAGO<br />

LOG 34<br />

SETTIMA<br />

LOG 35<br />

SAVIGNANO<br />

LOG 36


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 171<br />

M<strong>in</strong>eralogical characteristics. Unstable metamorphic m<strong>in</strong>erals prevail among <strong>the</strong><br />

heavy m<strong>in</strong>erals: epidotes <strong>and</strong> secondly amphiboles, but garnets are also abundant.<br />

Their distribution with depth po<strong>in</strong>ts to lithological discont<strong>in</strong>uities already<br />

<strong>in</strong>dicated <strong>in</strong> <strong>the</strong> field descriptions <strong>and</strong> by <strong>the</strong> gra<strong>in</strong> size analyses.<br />

The Settima profile, compared with those of Spilamberto <strong>and</strong> Cavriago, turns<br />

out to be much higher <strong>in</strong> picotite due to <strong>the</strong> fair amount of ophiolites <strong>in</strong> <strong>the</strong><br />

parent material. The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex, even though <strong>in</strong>fluenced by <strong>the</strong> different<br />

composition of <strong>the</strong> sediments, reflects a weak wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> B2 <strong>and</strong> B3<br />

horizons, with respect to <strong>the</strong> unwea<strong>the</strong>red sediments. The same clay m<strong>in</strong>erals are<br />

present along <strong>the</strong> whole profile: smectite, vermiculite <strong>and</strong> chlorite, illite <strong>and</strong><br />

k<strong>and</strong>ite, with a sUght <strong>in</strong>crease of <strong>the</strong> latter two species <strong>in</strong> <strong>the</strong> uppermost horizon.<br />

Chemical characteristics. Calcium carbonate is present <strong>in</strong> appreciable amounts <strong>in</strong><br />

<strong>the</strong> Ap <strong>and</strong> B1 horizons. It is completely absent <strong>in</strong> <strong>the</strong> B2 <strong>and</strong> B3 horizons, but<br />

abounds <strong>in</strong> <strong>the</strong> C ca horizon. The soils <strong>in</strong> <strong>the</strong> Late Pleistocene fans have been<br />

leached of carbonates, <strong>in</strong> a first phase. Recarbonation may have occurred after<br />

<strong>the</strong>ir burial by <strong>the</strong> sediments <strong>in</strong> which <strong>the</strong> Ap <strong>and</strong> B1 horizons developed. Soil<br />

reaction is near neutral, <strong>the</strong> CEC <strong>and</strong> <strong>the</strong> base saturation are high. The free<br />

iron content is much higher <strong>in</strong> <strong>the</strong> B2 <strong>and</strong> B3 than <strong>in</strong> <strong>the</strong> unwea<strong>the</strong>red parent<br />

material, its trend is parallel to that of <strong>the</strong> clay. The unusual amount of free iron<br />

present <strong>in</strong> <strong>the</strong> Settima profile is probably due to <strong>the</strong> great amount of ophiolites<br />

<strong>in</strong> <strong>the</strong> parent material.<br />

Dur<strong>in</strong>g <strong>the</strong> Holocene at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> Pleistocene terraces ma<strong>in</strong>ly f<strong>in</strong>etextured<br />

sediments of alluvial pla<strong>in</strong> facies were deposited. Gravelly alluvial fans,<br />

which are <strong>the</strong> ma<strong>in</strong> type of sedimentary deposits formed dur<strong>in</strong>g <strong>the</strong> late Pleistocene,<br />

were deposited along <strong>the</strong> ma<strong>in</strong> Apenne rivers (Panaro, Secchia, Enza).<br />

The usually shallow soils developed <strong>in</strong> <strong>the</strong>se have been studied <strong>in</strong> detail near<br />

Savignano (loc. 36) (Fig. 85) on <strong>the</strong> fan of <strong>the</strong> Panaro river, <strong>in</strong> an area with a<br />

Neolithic settlement (Bernabo Brea M. <strong>and</strong> Steffe G., unpublished data), covered<br />

by planar convex lenses of clay one decimetre thick, surrounded by <strong>the</strong> outcropp<strong>in</strong>g<br />

gravels. Vertisols are present <strong>in</strong> correspondence with <strong>the</strong> clay while poorly<br />

developed lessived soils are present <strong>in</strong> <strong>the</strong> gravels.<br />

Both <strong>the</strong> soils <strong>in</strong> gravel <strong>and</strong> <strong>the</strong> soils <strong>in</strong> clay are truncated by an erosional<br />

surface which is ma<strong>in</strong>ly subhorizontal but also comprises small channel <strong>in</strong>cisions.<br />

This surface is covered by s<strong>and</strong>y <strong>and</strong> silty sediments, which, consider<strong>in</strong>g <strong>the</strong><br />

associated archaeological material, must have been deposited dur<strong>in</strong>g <strong>the</strong> Iron Age<br />

(Subatlantic).<br />

In <strong>the</strong> studied section (Savignano profile, loc. 36) <strong>the</strong> soil <strong>in</strong> gravel is slightly<br />

truncated. A B2 horizon about 30 cm thick is preserved. The gravels are<br />

fractured <strong>and</strong> only <strong>in</strong>side <strong>the</strong> largest pebbles primary carbonates are preserved.<br />

Discont<strong>in</strong>uous argillans are present on <strong>the</strong> surface of <strong>the</strong> pebbles <strong>and</strong> of <strong>the</strong><br />

aggregates. The boundary towards <strong>the</strong> wea<strong>the</strong>red gravels is clear <strong>and</strong> l<strong>in</strong>ear <strong>and</strong><br />

is marked by <strong>the</strong> presence of carbonate nodules. This soil passes laterally to <strong>the</strong><br />

vertisol developed <strong>in</strong> <strong>the</strong> clayey deposits.<br />

Archaeologic structures have been excavated start<strong>in</strong>g from <strong>the</strong> surface of <strong>the</strong>


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 173<br />

soils <strong>in</strong> gravel <strong>and</strong> <strong>in</strong> clay respectively. These have been subjected to <strong>the</strong> same<br />

pedogenetic processes as <strong>the</strong> surround<strong>in</strong>g soils. The age of <strong>the</strong> archaeological<br />

fill<strong>in</strong>g of <strong>the</strong> structures (radiocarbon dat<strong>in</strong>g on charcoals) is approximately <strong>the</strong><br />

same as that of <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> evolution of <strong>the</strong> soils <strong>in</strong> <strong>the</strong> fan ' (Bernabo<br />

Brea et alii, <strong>in</strong> press).<br />

SAVIGNANO PROFILE LOG 36<br />

bronze age pottery<br />

nB3<br />

neolithic pit<br />

neolithic pit<br />

nCca<br />

Fi£. 85 - S c h e m a tic s e c tio n o f th e to p o f th e a llu v ia l fa n , c lo s e to th e S a v ig n a n o p r o f ile ; 1 - c la y ,<br />

2 - g ra v e l.<br />

Fig. 85 - S e z io n e s c h e m a tic a d e l te tto d e l c o n o id e a llu v io n a le p r e s s o il p r o filo d i S a v ig n a n o ,<br />

1 -arg illa, 2 -g h ia ia .<br />

7.6. CONCLUSIONS ON THE STRATIGRAPHY OF THE QUATERNARY<br />

PALEOSOLS AND VETUSOLS AND CONTINENTAL DEPOSITS IN THE<br />

APENNINE FRINGE (FIG. 86)<br />

The deposits of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile formation (AM2) <strong>in</strong>dicate that<br />

<strong>the</strong> present fr<strong>in</strong>ge of Apenn<strong>in</strong>es dur<strong>in</strong>g most of <strong>the</strong> iVliddle Pleistocene, constituited<br />

a fluvial pla<strong>in</strong> with sedimentation rates which generally were too high <strong>and</strong>/or<br />

too constant to allow <strong>the</strong> formation of well-developed soils.<br />

Never<strong>the</strong>less soil form<strong>in</strong>g processes must have occurred, more <strong>in</strong>side <strong>the</strong><br />

Apenn<strong>in</strong>es on surfaces which at present lack any older well-developed soil<br />

(paleosol or vetusol).<br />

Allochtonous blocks of rubefied paleosol material, observed by <strong>Cremaschi</strong><br />

<strong>and</strong> Papani (1975) <strong>in</strong> <strong>the</strong> fan gravels of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile formation<br />

at Rio Monticelli (Reggio Emilia), provide evidence for such soil formation.<br />

T e le d y n e Iso to p e s L a b o r a to r y : 6 3 1 0 + 2 1 0 y e a r s b p .


174 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO<br />

Where not strongly eroded, <strong>the</strong> Pleistocene terraces cut <strong>in</strong>to <strong>the</strong> fluviatile<br />

formation at <strong>the</strong> foot of <strong>the</strong> Apenn<strong>in</strong>es have a rubefied vetusol, developed ma<strong>in</strong>ly<br />

<strong>in</strong> pebbly materials. Most characteristic are its topmost horizons which are<br />

marked by a strong accumulation of Fe-Mn nodules <strong>and</strong> clay, a slight <strong>in</strong>crease <strong>in</strong><br />

k<strong>and</strong>ite content, décalcification to a depth of at least 6 metres <strong>and</strong>, where <strong>the</strong><br />

parent material is pebbly, formation of a thick calcic horizon. The vetusol, whose<br />

proprieties are virtually identical <strong>in</strong> all profiles observed <strong>in</strong> <strong>the</strong> area studied (see<br />

section 7.2.) can be considered as a pedostratigraphic unit for <strong>the</strong> whole<br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge. This unit (map unit D 31) has been called (<strong>Cremaschi</strong> 1978,<br />

1982) <strong>the</strong> «Collecchio paleosol» after <strong>the</strong> place where it has first been recorded<br />

(Ferrari <strong>and</strong> Magaldi, 1968). The dat<strong>in</strong>g of this pedostratigraphic unit is<br />

5:<br />

4:<br />

'lílliii'iíiiih 'iíi<br />

w u /m :-.<br />

T IJJT T jrnjm<br />

'////////////-'Z'/''/<br />

¥ig. 86 - S tr a tig r a p h ic s e c tio n <strong>in</strong> th e F io r a n o q u a r r y ( lo c . 4 5 ) . 1 ) p a le o s o l a t th e to p o f th e L ate<br />

P le is to c e n e a llu v ia l f a n , 2 ) b u r ie d A 1 p a le o s o l, d a te d b a c k to 1 1 ,8 4 5 ± 8 0 b p ; 3 ) b u r ie d A 1 p a le o so l<br />

<strong>in</strong> c lu d <strong>in</strong> g N e o lith ic f <strong>in</strong> d s ; 4 ) b u r ie d A1 p a le o s o l <strong>in</strong> c lu d <strong>in</strong> g B ro n z e a g e f<strong>in</strong> d s ; 5 ) b u r ie d A 1 p a le o so l<br />

<strong>in</strong> c lu d <strong>in</strong> g Iro n a g e f<strong>in</strong> d s .<br />

Fig. 86 - S e z io n e s tr a tig r a f ic a d e lla C a v a d i F io r a n o ( lo c . 4 5 ) . 1 ) p a le o s u o lo a l te tto d e l c o n o id e d el<br />

P le is to c e n e s u p e r io r e ; 2 ) o riz z o n te Al s e p o lto , d a ta to a 1 1 .8 4 5 ± 8 0 b .p .; 3 ) o r iz z o n te Al sep o lto<br />

c o n te n e n te r e s ti a r c h e o lo g ic i d ’e tá n e o lit ic a ;4 ) o r iz z o n te Al s e p o lto , c o n te n e n te r e s ti a rc h e o lo g ic i<br />

d e ll’e ta d e l B r o n z o ; 5 ) o r iz z o n te Al se p o lto c o n te n e n te m a te r ia li a r c h e o lo g ic i d e ll’e ta d e l F e r ro .<br />

5m


1<br />

QUATERNARY DEPOSITS, VETUSOLS AND PALEOSOLS 175<br />

somewhat uncerta<strong>in</strong>. Accord<strong>in</strong>g to Salloway (1983) <strong>the</strong> Collecchio vetusol dates<br />

from <strong>the</strong> Brunhes paleomagnetic epoch. The gravelly sediments <strong>in</strong> which it<br />

developed conta<strong>in</strong> a palaeolithic <strong>in</strong>dustry (Bisi, <strong>Cremaschi</strong> <strong>and</strong> Peretto, 1979) of<br />

Clactonian <strong>and</strong> Protolevalloisian techniques which clearly dates from <strong>the</strong> Early<br />

Palaeolithic. It is covered by <strong>the</strong> Ghiardo loess, <strong>in</strong> which is found a late Acheulean<br />

<strong>in</strong>dustry dat<strong>in</strong>g from <strong>the</strong> end of <strong>the</strong> Middle Pleistocene. The development of<br />

<strong>the</strong> Collecchio vetusol <strong>the</strong>refore cannot be dated more precisely than of Middle<br />

Pleistocene age.<br />

The pedostratigraphic situation of <strong>the</strong> Tiepido profile (loc. 24) is quite unusual<br />

<strong>and</strong> different from that observed elsewhere. This paleosol, displaced by<br />

fault<strong>in</strong>g, is buried <strong>in</strong>side <strong>the</strong> topmost part of <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile formation,<br />

which at Tiepido has a gravelly facies. It shows characteristics similar<br />

to those of <strong>the</strong> Collecchio vetusol but it is more rubefied, <strong>and</strong> shows an higher<br />

degree of wea<strong>the</strong>r<strong>in</strong>g.<br />

In <strong>the</strong> same stratigraphic position as that of <strong>the</strong> Collecchio vetusol, i.e.<br />

covered by <strong>the</strong> Ghiardo loess, <strong>and</strong> <strong>in</strong> <strong>the</strong> top of gravelly deposits, ano<strong>the</strong>r (Rex)<br />

vetusol occurs (map unit D32), which resembles <strong>the</strong> Collecchio soil but is less<br />

wea<strong>the</strong>red.<br />

This twofold development of a Collecchio type vetusol is probably caused by<br />

<strong>the</strong> specific tectonic evolution of <strong>the</strong> area east of <strong>the</strong> Secchia river, where<br />

pedogenetic <strong>and</strong> erosive phases apparently were not synchronous with those of<br />

<strong>the</strong> adjacent region. The <strong>in</strong>terpretation is that <strong>the</strong> Tiepido paleosol developed,<br />

was displaced by faults <strong>and</strong> buried, while <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g areas sedimentation<br />

still cont<strong>in</strong>ued. On <strong>the</strong> contrary <strong>the</strong> deposition of gravels on <strong>the</strong> top of <strong>the</strong><br />

Tiepido profile probably still cont<strong>in</strong>ued after <strong>the</strong> time at which <strong>the</strong> Collecchio<br />

vetusol started to develop, as <strong>in</strong>dicated by <strong>the</strong> lower degree of wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong><br />

Rex vetusol subsequently developed <strong>in</strong> <strong>the</strong>se gravels. Between <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of<br />

<strong>the</strong> evolution of <strong>the</strong> Collecchio vetusol <strong>and</strong> <strong>the</strong> deposition of <strong>the</strong> Ghiardo loess<br />

along <strong>the</strong> fr<strong>in</strong>ge of <strong>the</strong> Apenn<strong>in</strong>es, important tectonic events occured. The<br />

surface <strong>in</strong> which <strong>the</strong> Collecchio vetusol formed is tilted, folded <strong>and</strong> displaced by<br />

faults. The result<strong>in</strong>g complex relief has been levelled through <strong>the</strong> development of<br />

a piedmont glacis at <strong>the</strong> marg<strong>in</strong>s of which <strong>the</strong> Borzano gravels (AM 3) were<br />

deposited. The Ghiardo loess lies on both: <strong>the</strong> development of glacis <strong>the</strong>refore<br />

must date from <strong>the</strong> late Middle Pleistocene, after <strong>the</strong> development of <strong>the</strong><br />

Collecchio vetusol <strong>and</strong> before <strong>the</strong> deposition of <strong>the</strong> Ghiardo loess.<br />

The Ghiardo loess consists of at least of two loess covers, separated by a<br />

period <strong>in</strong> which <strong>the</strong> oldest loess cover was subjected to wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong> soil<br />

formation. On <strong>the</strong> basis of <strong>the</strong> archaeological content, <strong>the</strong> lower loess deposits<br />

can be dated to <strong>the</strong> late Middle Pleistocene <strong>and</strong> <strong>the</strong> upper to <strong>the</strong> Late Pleistocene.<br />

The erosion <strong>and</strong> terrac<strong>in</strong>g of <strong>the</strong> Borzano gravel (AM 3) (Fig. 69) were<br />

followed by a subsequent cycle of piedmont fan deposition <strong>in</strong> <strong>the</strong> Late Pleistocene,<br />

as determ<strong>in</strong>ed on <strong>the</strong> basis of stratigraphic arguments (<strong>Cremaschi</strong>, 1979) <strong>and</strong> of a<br />

radiocarbon dat<strong>in</strong>g from <strong>the</strong> Fiorano sequence (Alessio et alii, 1980) (Fig. 87).<br />

The stratigraphic sequence of <strong>the</strong> Fiorano quarry clearly <strong>in</strong>dicated that <strong>the</strong><br />

Late Pleistocene alluvial fan must already have been buried dur<strong>in</strong>g <strong>the</strong> Early<br />

Holocene. The soil of <strong>the</strong> Cavriago <strong>and</strong> Spilamberto type (loc. 34 <strong>and</strong> 33, Fig.


176 PALEOSOLS AND VETUSOLS IN THE CENTRAL PQ<br />

PUiN<br />

TR EBBIA<br />

river area<br />

STIRONE<br />

river area<br />

C R O STO LO<br />

river area<br />

TIEPIDO<br />

river area<br />

Fig. 87 - C o rre la tio n b e tw e e n th e s tratig ra p h ic u n its o f th e A p e n n <strong>in</strong> e fr<strong>in</strong> g e ; see le g e n d o f F ig . 8 8 a.<br />

Fig. 87 - C o rre la c io n e fra le u n ita s tratig ra fic h e d el m a rg <strong>in</strong> e a p p e n n <strong>in</strong> ic o ; p e r la le g e n d a , c fr. F ig. 8 8 a.


quaternary d e p o s it s , v e t u s o l s a n d p a l e o s o l s 177<br />

83) developed <strong>in</strong> it must <strong>the</strong>refore date from <strong>the</strong> latest Pleistocene <strong>and</strong> perhaps<br />

<strong>the</strong> Late-Glacial.<br />

Dur<strong>in</strong>g Holocene times ma<strong>in</strong>ly sediments of alluvial pla<strong>in</strong> facies have been<br />

deposited at <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong> Pleistocene terraces. The sedimentation of<br />

gravelly fans cont<strong>in</strong>ued only where <strong>the</strong> ma<strong>in</strong> rivers reached <strong>the</strong> pla<strong>in</strong>.<br />

Lessived soils of Holocene age have been preserved <strong>in</strong> <strong>the</strong> top of <strong>the</strong><br />

Holocene fan of <strong>the</strong> Panaro River. On <strong>the</strong> basis of <strong>the</strong> archaeological evidence<br />

<strong>and</strong> of radiocarbon dat<strong>in</strong>gs <strong>the</strong>y can be referred to <strong>the</strong> Atlantic period.


GENERAL CORRELATION;<br />

MAP OF THE QUATERNARY FORMATIONS<br />

8.1. CORRELATIONS OF THE LITHOSTRATIGRAPHIC AND<br />

PEDOSTRATIGRAPHIC UNITS OVER THE WHOLE<br />

INVESTIGATED AR E A<br />

In this section <strong>the</strong> general correlation of <strong>the</strong> units (see Fig. 88) identified<br />

with<strong>in</strong> <strong>the</strong> various areas will be discussed, start<strong>in</strong>g from <strong>the</strong> oldest units. Their<br />

regional correlation has been discussed <strong>in</strong> <strong>the</strong> chapters 4, 5, 6, 7 <strong>and</strong> is<br />

schematically <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> figures 43, 63, 86. The correlations, as described<br />

before (see section 1.4.2.), are largely based on <strong>the</strong> magnetostratigraphy <strong>and</strong> <strong>the</strong><br />

archaeostratigraphy.<br />

The genetic <strong>in</strong>terpretation of <strong>the</strong> various stratigraphic units <strong>and</strong> <strong>the</strong><br />

paleogeographic reconstruction will not be systematically discussed here, but <strong>in</strong><br />

<strong>the</strong> f<strong>in</strong>al chapter.<br />

Pre-Pleistocene. The only clear example of a paleosol which is of<br />

Pre-Pleistocene age is <strong>the</strong> polygenetic soil S5 of <strong>the</strong> Bagaggera sequence, which<br />

developed <strong>in</strong> Flysch.<br />

Early Pleistocene. The fluviatile units at <strong>the</strong> base of <strong>the</strong> sequence of <strong>the</strong> Adda<br />

(PDl <strong>and</strong> PD2) <strong>and</strong> <strong>the</strong>ir lateral lacustr<strong>in</strong>e equivalent at Bagaggera (BAG 1)<br />

represent <strong>the</strong> oldest evidences of sedimentation <strong>in</strong> a terrestrial environment <strong>and</strong><br />

can be correlated with mar<strong>in</strong>e deposits along <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> <strong>the</strong><br />

Garda area.<br />

In <strong>the</strong> Garda area <strong>the</strong> oldest known mora<strong>in</strong>e, i.e. <strong>the</strong> mora<strong>in</strong>e of Ciliverghe,<br />

dates from <strong>the</strong> Matuyama epoch. The loess at Gavardo (GAV 2), which covers<br />

a strongly <strong>and</strong> deeply wea<strong>the</strong>red paleosol, most probably correlated with this<br />

mora<strong>in</strong>e.<br />

In <strong>the</strong> Adda area, deposits which date from this epoch, are those of units<br />

BAG 2 <strong>and</strong> BAG 5 at Bagaggera. The first have been <strong>in</strong>terpreted as a periglacial<br />

breccia, while <strong>the</strong> facies of <strong>the</strong> second <strong>in</strong> terms of glacial, or non-glacial is less<br />

clear. The paleomagnetic analyses of <strong>the</strong> stratigraphic sections <strong>in</strong>dicate that <strong>the</strong><br />

periglacial phase dates from <strong>the</strong> post-Jaramillo <strong>in</strong>terval of <strong>the</strong> Matuyama epoch.<br />

The Trezzo Member (PD 3), also <strong>in</strong> <strong>the</strong> Adda area, represents <strong>the</strong> lateral<br />

transition of <strong>the</strong> mora<strong>in</strong>e of Camparada which could not be dated by itself.


PALEOSOLS AND VETUSOLS IN THE CENTRAL PQ Pla<strong>in</strong><br />

IS O LA TED TERRAC ES<br />

APENNINE FRINGE


general CORRELATION 181<br />

Fi¿. 88 - Correlation between <strong>the</strong> ma<strong>in</strong> stratigraphic units of <strong>the</strong> whole studied area (paleosols <strong>and</strong><br />

<strong>vetusols</strong> are not <strong>in</strong>cluded).<br />

Garda sequences: 1) littoral sediments (CAST 1); 2) Ciliverghe glacial stage (CIL 1, 2; CH 1 <strong>and</strong><br />

GAV 2 loess); 3) fluviatile gravel (CH 3); 4) Monte Faita glacial stage (Monte Faita mora<strong>in</strong>e, CH<br />

5, <strong>and</strong> related fluviogladal deposits (GAV 3, CIL 5, CAST 4); 5) fluviatile deposits (CH 6); 6)<br />

Carpenedolo glacial stage (CH 8) <strong>and</strong> loess; 7) Sedeña glacial stage: mora<strong>in</strong>es, related fluviogladal<br />

<strong>and</strong> loess; 8) Solfer<strong>in</strong>o glacial stage: mora<strong>in</strong>es,related fluviogladal <strong>and</strong> loess.<br />

Bagaggera <strong>and</strong> Adda sequences. 1) f<strong>in</strong>e textured fluvial sediments (P D l); 2) Ceppo (Paderno<br />

member) <strong>and</strong> BAG 1 lacustr<strong>in</strong>e deposits; 3) Camparada mora<strong>in</strong>e <strong>and</strong> fluvioglacial (?) related<br />

deposits (Ceppo, Trez2o member <strong>and</strong> BAG 5 gravel); 4) BAG 3; 5) BAG 6 <strong>and</strong> BAG 7; 6) BAG<br />

8, «Middle Diluvium» <strong>and</strong> loess; 7) BAG 9 (loess), «Recent Diluvium», Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>.<br />

Isolated terraces. 1) fluviatile sediments; 2) loess covers.<br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge. 1) litoral s<strong>and</strong>s (AM I); 2) fluviatile Pede-Apenn<strong>in</strong>e formation (AM2), ma<strong>in</strong>ly<br />

f<strong>in</strong>e-textured; 3) fluviatile Pede-Apenn<strong>in</strong>e formation (AM2), ma<strong>in</strong>ly coarse-textured; 4) piedmont<br />

glacis <strong>and</strong> Borzano gravel (AM3); 5) Ghiardo loess (AM4); 6) Pede-Apenn<strong>in</strong>e alluvial fans <strong>and</strong><br />

Late Pleistocene loess.<br />

Fig. 88 - Correlazione fra le pr<strong>in</strong>cipal! unita stratigrafiche dell’<strong>in</strong>tera area studiata;sono escluse le<br />

evidenze paleopedologiche.<br />

Succession! gardesane: 1) deposit! litoral! (CAST 1); 2) fase glaciale di Ciliverghe (CIL 1, CH 1) e<br />

loess (GAV 2); ghiaie fluviali (CH3); fase glaciale di Monte Faita (Morena di Monte Faita, CH5 e<br />

deposit! fluvioglacial! connessi (GAV 3, CIL 5, CAST 4); deposit! fluviali (CH 6); 6) fase glaciale<br />

di Carpenedolo (CH 8) e deposit! loessici ad essa connessi; 7) fase glaciale di Sedeña, deposit!<br />

fluvioglacial! e loess connessi; 8) fase glaciale di Solfer<strong>in</strong>o, morene, deposit! fluvioglacial! e loess.<br />

Succession! stratigrafiche di Bagaggera e dell’Adda. 1) deposit! fluviali f<strong>in</strong>i (PD 1); 2) Ceppo di<br />

Paderno e deposit! lacustri BAG 1; 3) morena di Camparada e deposit! fluvioglacial! (?) connessi<br />

(Ceppo di Trezzo e ghiaie BAG 5); 4) BAG 3; 5) BAG 6 e BAG 7; 6) BAG 8, «Diluvium» medio<br />

e loess; 7) BAG 9 (loess), «Diluvium recente», Livello pr<strong>in</strong>cipale della pianura.<br />

Terrazzi isolati. 1) sediment! fluviali; 2) coperture loessiche.<br />

Marg<strong>in</strong>e appenn<strong>in</strong>ico. 1) sabbie litoral! (AM 1); 2) formazione fluviale pedeappenn<strong>in</strong>ica (AM 2) a<br />

tessitura f<strong>in</strong>e; 3) formazione fluviale pedeappenn<strong>in</strong>ica, di tessitura grossolana prevalente (AM 2);<br />

4) glacis pedemontano e ghiaie di Borzano (AM 3); 5) Ghiardo loess (ÁM 4); 6) conoidi<br />

alluvionali e loess del Pleistocene superiore.<br />

F/¿. 88a - The legend of <strong>the</strong> correlation - schemes: 1) mar<strong>in</strong>e sediments, 2) litoral sediments, 3)<br />

lacustr<strong>in</strong>e deposits, 4) glaciolacustr<strong>in</strong>e deposits, 5) f<strong>in</strong>e textured fluviatile sediments, 6) coarse textured<br />

fluviatile sediments; 7) mora<strong>in</strong>e deposits; 8) fluvioglacial gravel, 9) breccia, 10) loess, 11) colluvial<br />

deposits, 12) soils <strong>and</strong> paleosols, 13) erosion, 14) angular unconformity, 15) Upper Palaeolithic artifacts,<br />

16) Middle Palaeolithic artifacts.<br />

Fig. 88a - Legenda degli scherai di correlazione: 1) sediment! mar<strong>in</strong>i, 2) sediment! litoral!, 3) deposit!<br />

lacustri, 4) deposit! glaciolacustri, 5) deposit! fluviali a tessitura f<strong>in</strong>e, 6) deposit! fluviali a tessitura<br />

grossolana; 7) deposit! morenici, 8) ghiaie fluvioglacial!, 9) brecce, 10) loess, 11) deposit! colluvial!, 12)<br />

suoli e paleosuoli, 13) superficie erosiónale, 14) discordanza angolare, 15) manufatti del Paleolítico<br />

superiore, 16) manufatti del Paleolítico medio.


182 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Paleomagnetic analyses <strong>in</strong>dicate that soil formation <strong>in</strong> <strong>the</strong> Trez2o Member already<br />

started <strong>in</strong> <strong>the</strong> Matuyama epoch (see Vivaldi profile <strong>and</strong> S4 Bagaggera paleosol),<br />

<strong>in</strong>dicat<strong>in</strong>g a Matuyama age for this member. As discussed <strong>in</strong> chapter 5, <strong>the</strong> heavy<br />

m<strong>in</strong>eral composition of BAG 5 is similar to that of <strong>the</strong> Trezzo Member <strong>and</strong><br />

<strong>in</strong>dicates that <strong>the</strong>se units can be correlated with each o<strong>the</strong>r (see also Fig. 63).<br />

Such correlation implies that also unit BAG 5 dates from a glacial period.<br />

The stratigraphic observations thus po<strong>in</strong>t to <strong>the</strong> occurrence, dur<strong>in</strong>g <strong>the</strong><br />

Matuyama epoch, of at least one major glaciation, which reached <strong>the</strong> Pre-Alp<strong>in</strong>e<br />

fr<strong>in</strong>ge throughout <strong>the</strong> area studied. Although it cannot be excluded that more<br />

than one glaciation occurred, <strong>the</strong> absence of evidence for more than one<br />

glaciation <strong>in</strong> each of <strong>the</strong> sections studied strongly suggests that only dur<strong>in</strong>g one<br />

period glaciers reached <strong>the</strong> fr<strong>in</strong>ge. Evidence from <strong>the</strong> sections at Bagaggera<br />

<strong>in</strong>dicate that this glaciation dates from <strong>the</strong> <strong>Po</strong>st-Jaramillo <strong>in</strong>terval of <strong>the</strong><br />

Matuyama epoch.<br />

Soil formation <strong>in</strong> <strong>the</strong> Trezzo Member started later <strong>in</strong> <strong>the</strong> Matuyama epoch<br />

(see Vivaldi profile). The «Ferretto» thus represents <strong>the</strong> oldest vetusol <strong>in</strong> <strong>the</strong> area<br />

studied. The paleosol <strong>in</strong> <strong>the</strong> BAG 5 unit (S4) should be considered as <strong>the</strong><br />

stratigraphic equivalent of <strong>the</strong> «Ferretto», but it has been buried dur<strong>in</strong>g <strong>the</strong><br />

Middle Pleistocene (Fig. 64).<br />

The glacial <strong>and</strong> related deposits cover terrestrial <strong>and</strong> mar<strong>in</strong>e deposits as well<br />

as deep <strong>and</strong> strongly wea<strong>the</strong>red soils (Bagaggera, Castenedolo, Gavardo).<br />

Along <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge between <strong>the</strong> Jaramillo event <strong>and</strong> <strong>the</strong> end of <strong>the</strong><br />

Matuyama epoch, <strong>the</strong> sedimentary facies gradually changed from mar<strong>in</strong>e-littoral<br />

to cont<strong>in</strong>ental, conditioned by tectonic activity. Evidence for a climatic<br />

deterioration is limited to <strong>the</strong> section of Crostolo <strong>and</strong> Tiepido where a sharp<br />

<strong>in</strong>crease <strong>in</strong> cold elements was found <strong>in</strong> <strong>the</strong> pollen record (section 2 .1 .1 .).<br />

Middle Pleistocene. The correlation of <strong>the</strong> units dat<strong>in</strong>g from <strong>the</strong> earlier parts of<br />

Middle Pleistocene is hampered by <strong>the</strong> fact that <strong>the</strong> paleomagnetism provides no<br />

clues <strong>and</strong> that <strong>the</strong> rare artifacts found do not allow more that a general <strong>in</strong>dication<br />

of <strong>the</strong>ir age.<br />

In <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge, except for <strong>the</strong> late Middle Pleistocene, <strong>the</strong> stratigraphy<br />

of <strong>the</strong> Middle Pleistocene is largely based on <strong>the</strong> sequences of <strong>the</strong> Garda area. In<br />

<strong>the</strong> Adda area, units of middle <strong>and</strong> early Middle Pleistocene age are relatively<br />

rare <strong>and</strong> fragmental.<br />

The mora<strong>in</strong>e of Monte Faita (Garda) represents <strong>the</strong> best preserved mora<strong>in</strong>e<br />

from <strong>the</strong> earliest part of <strong>the</strong> Middle Pleistocene. In <strong>the</strong> section of Chiese (CHS)<br />

this mora<strong>in</strong>e rests on sediments dat<strong>in</strong>g from <strong>the</strong> Matuyama epoch <strong>and</strong> is covered<br />

by sediments dat<strong>in</strong>g from <strong>the</strong> Brunhes epoch. In <strong>the</strong> Baggagera section (Adda)<br />

<strong>the</strong> unit BAG 3 consists of fluvioglacial deposits, conta<strong>in</strong><strong>in</strong>g plant rema<strong>in</strong>s of<br />

cold species; <strong>the</strong>se deposits date from <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Brunhes epoch. The<br />

units CH 5 of <strong>the</strong> Garda area, <strong>and</strong> BAG 3, of <strong>the</strong> Adda area, are of related facies<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> same stratigraphic position; <strong>the</strong>y may <strong>the</strong>refore be correlated with each<br />

o<strong>the</strong>r.<br />

In <strong>the</strong> Garda area many remnants of <strong>the</strong> fluvioglacial pla<strong>in</strong> connected with<br />

<strong>the</strong> Monte Faita mora<strong>in</strong>e exist (CIL 5, CAST 4, GAV 3). In both types of<br />

w m


g eneral c o r r e l a t io n 183<br />

deposits subsequently a soil developed, presently exposed as a vetusol or buried<br />

by more recent deposits (Torre profile). In <strong>the</strong> Adda area, apart from <strong>the</strong><br />

Bagaggera section, traces of this glacial phase are lack<strong>in</strong>g.<br />

In <strong>the</strong> Garda area a follow<strong>in</strong>g glacial phase, represented by <strong>the</strong> Carpenedolo<br />

mora<strong>in</strong>e (CHS), can be dist<strong>in</strong>guished. This phase dates from <strong>the</strong> middle part of<br />

<strong>the</strong> Middle Pleistocene. It is younger than CH5 <strong>and</strong> older than VS2 mora<strong>in</strong>e; <strong>the</strong><br />

former is proved by superposition, <strong>the</strong> latter is proved by <strong>the</strong> geomorphological<br />

position. The loess of CIL 6 can be correlated with <strong>the</strong> Carpenedolo mora<strong>in</strong>e<br />

(CHS) <strong>and</strong> dates from <strong>the</strong> same phase. In <strong>the</strong> Adda area this phase probably is<br />

represented at Bagaggera by fluvioglacial gravels <strong>and</strong> well sorted loams,<br />

(probably of eolian orig<strong>in</strong>) (BAG 7/6), <strong>and</strong> at Vivaldi by an important erosive<br />

phase (Vivaldi stone-l<strong>in</strong>e).<br />

Deep <strong>and</strong> strongly wea<strong>the</strong>red <strong>vetusols</strong> occur <strong>in</strong> <strong>the</strong> Carpenedolo mora<strong>in</strong>e,<br />

testify<strong>in</strong>g that strong pedogenesis occurred from this phase onwards. At<br />

Bagaggera also soil formation started, but this was <strong>in</strong>terrupted, result<strong>in</strong>g <strong>in</strong> a<br />

buried paleosol (Bagaggera, S3).<br />

Fluvial sediments, <strong>in</strong>tercalated between deposits from <strong>the</strong> early glacial stages,<br />

are only encountered <strong>in</strong> <strong>the</strong> Garda area <strong>and</strong> comprise <strong>the</strong> units CH4, CIL4 <strong>and</strong><br />

CAST3, covered by <strong>the</strong> Monte Faita mora<strong>in</strong>e <strong>and</strong> associated units, <strong>and</strong> unit CH7,<br />

<strong>in</strong>tercalated between <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Carpenedolo <strong>and</strong> Faita stages. In <strong>the</strong><br />

Adda area only scattered <strong>and</strong> fragmental fluvial deposits of ill-def<strong>in</strong>ed age occur<br />

(Missaglia gravel).<br />

In <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge ma<strong>in</strong>ly dur<strong>in</strong>g <strong>the</strong> Middle Pleistocene fluvial<br />

sediments were deposited, form<strong>in</strong>g <strong>the</strong> Pede-Apenn<strong>in</strong>e fluviatile formation.<br />

These sediments show a clear coarsen<strong>in</strong>g upwards, i.e. towards <strong>the</strong> top of <strong>the</strong><br />

formation gravels become predom<strong>in</strong>ant <strong>and</strong> at <strong>the</strong> end of this sedimentary phase<br />

everywhere along <strong>the</strong> fr<strong>in</strong>ge ma<strong>in</strong>ly gravels were deposited. As discussed above<br />

(chapter 7) this sedimentary evolution was tectonically controlled. Locally <strong>the</strong><br />

sedimentation has been <strong>in</strong>terrupted as evidenced by <strong>the</strong> presence of <strong>the</strong> Tiepido<br />

paleosol. The artifacts found <strong>in</strong> <strong>the</strong> top of <strong>the</strong> gravel deposits, postdat<strong>in</strong>g <strong>the</strong><br />

Tiepido paleosol, can be identified as Clactonian <strong>and</strong> <strong>the</strong>refore <strong>in</strong>dicate that <strong>the</strong><br />

sedimentation stopped <strong>in</strong> <strong>the</strong> middle of <strong>the</strong> Middle Pleistocene (about 0.4 MY<br />

BP). From this time on <strong>the</strong> vetusol of Collecchio developed, which is <strong>the</strong> oldest<br />

vetusol <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

In contrast to <strong>the</strong> earlier glacial stages, all along <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong> mora<strong>in</strong>es<br />

<strong>and</strong> associated deposits of <strong>the</strong> last glacial stage of <strong>the</strong> Middle Pleistocene<br />

are widespread <strong>and</strong> generally well-preserved. Along <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge no<br />

glacial formations have been observed but, for <strong>the</strong> first time, periglacial<br />

morphogenetic systems <strong>and</strong> sediments are encountered. The sediments, <strong>in</strong><br />

particular loess, can be correlated by <strong>the</strong>ir lithology <strong>and</strong> stratigraphy, but also <strong>in</strong><br />

particular by <strong>the</strong> associated artifacts. These, for this period of <strong>the</strong> Middle<br />

Pleistocene, enable more reliable dat<strong>in</strong>gs (Appendix 7).<br />

l^ate Pleistocene. Deposits dat<strong>in</strong>g from <strong>the</strong> Last Interglacial have not been<br />

encountered along <strong>the</strong> fr<strong>in</strong>ges of <strong>the</strong> Alps <strong>and</strong> <strong>the</strong> Apenn<strong>in</strong>es, but <strong>the</strong> fluvial<br />

deposits of <strong>the</strong> isolated hills <strong>in</strong> <strong>the</strong> pla<strong>in</strong> are supposed, on lithostratigraphic


■UIIIJI' ' i l l J i H B g a<br />

184 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

y-',-<br />

I 1<br />

evidence, to date form this phase. Soils which started to form dur<strong>in</strong>g this period<br />

however, abundantly occur <strong>in</strong> both <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ges. In <strong>the</strong><br />

Adda area <strong>the</strong>y comprise <strong>the</strong> <strong>vetusols</strong> developed <strong>in</strong> <strong>the</strong> «Middle Diluvium» <strong>and</strong><br />

<strong>in</strong> <strong>the</strong> BAG 8 unit. In <strong>the</strong> Garda area <strong>the</strong>y consist of a buried paleosol <strong>in</strong> <strong>the</strong><br />

Torrion della Val Sorda sequence (see Fig. 33). In <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong>y are<br />

represented by <strong>vetusols</strong> <strong>in</strong> loess.<br />

Deposits dat<strong>in</strong>g from <strong>the</strong> Late Pleistocene glacial period are very widespread<br />

<strong>and</strong> well preserved. They comprise mora<strong>in</strong>es, fluvioglacial deposits, loess <strong>and</strong><br />

alluvial fan deposits. As <strong>the</strong> loess is associated with abundant Middle <strong>and</strong> Upper<br />

Palaeolithic artifacts, a relatively ref<strong>in</strong>ed stratigraphic scheme of <strong>the</strong> Late<br />

Pleistocene deposits could be developed.<br />

In <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge mora<strong>in</strong>es <strong>and</strong> fluvioglacial deposits dom<strong>in</strong>ate. The latter<br />

from <strong>the</strong> Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>. Its upper strata are considered to date from <strong>the</strong><br />

Pleniglacial, <strong>and</strong>, from <strong>the</strong> Late-Glacial, its top is subjected to soil development.<br />

In <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge loesses from this period are th<strong>in</strong> <strong>and</strong> discont<strong>in</strong>uous.<br />

Two phases of alluvial fan deposition can be recognized, of which <strong>the</strong> first<br />

stopped somewhere <strong>in</strong> <strong>the</strong> Last Glacial period, while <strong>the</strong> second has cont<strong>in</strong>ued up<br />

to <strong>the</strong> Early Holocene.<br />

8.2. GENERAL CONCEPTS OF THE MAP<br />

The map produced <strong>in</strong> Appendix 6 shows <strong>the</strong> areal distribution of <strong>the</strong><br />

stratigraphic units, as <strong>the</strong>y have been def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> conclusive sections of <strong>the</strong><br />

chapters 4, 5, 6, 7 <strong>and</strong> mapped <strong>in</strong> <strong>the</strong> field on <strong>the</strong> basis of <strong>the</strong>ir lateral cont<strong>in</strong>uity<br />

<strong>and</strong> correlation. The units have been formulated aga<strong>in</strong>st <strong>the</strong> background of <strong>the</strong><br />

general requirements of nomenclature <strong>in</strong> Quaternary stratigraphy, as discussed by<br />

Richmond (1959, 1962) Fl<strong>in</strong>t (1971), Orombelli (1971), <strong>Po</strong>rter (1972) <strong>and</strong> <strong>the</strong><br />

<strong>No</strong>rth American Commission on stratigraphic nomenclature (1983).<br />

Apart from <strong>the</strong> Ceppo dell’Adda, a unit already formalized by Orombelli<br />

(1979), only <strong>in</strong>formal units have been adopted <strong>in</strong> this study, which implies that<br />

<strong>the</strong>se are not strictly def<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> codes of stratigraphic<br />

nomenclature. The major reason for this is that <strong>the</strong> present knowledge on <strong>the</strong><br />

Quaternary of <strong>the</strong> region is still far from complete.<br />

Most «paleosols» associated with Quaternary deposits, described <strong>in</strong> <strong>the</strong><br />

previous sections, have to be def<strong>in</strong>ed as <strong>vetusols</strong>. They are clearly recognizable <strong>in</strong><br />

<strong>the</strong> field <strong>and</strong> are laterally cont<strong>in</strong>uous over large areas. Dur<strong>in</strong>g <strong>the</strong> field work for<br />

<strong>the</strong> compilation of <strong>the</strong> map <strong>the</strong>y have been used as pedostratigraphic units,<br />

stray<strong>in</strong>g from <strong>the</strong> american code of stratigraphy which establishes for this<br />

category one class only, <strong>the</strong> geosols, that are by def<strong>in</strong>ition buried paleosols.<br />

Geosols can be time-transgressive <strong>and</strong> <strong>the</strong>refore cannot be used as time<br />

stratigraphic marker. At a regional level, <strong>vetusols</strong> formed <strong>in</strong> similar parent<br />

materials <strong>and</strong> show<strong>in</strong>g <strong>the</strong> same characteristics can be used as a pedostratigraphic<br />

unit: <strong>the</strong>y were formed dur<strong>in</strong>g <strong>the</strong> same period <strong>and</strong> thus <strong>in</strong>dicate that <strong>the</strong><br />

morphological surfaces <strong>in</strong> which <strong>the</strong>y developed are isochronous.<br />

The term «Ferretto» generally very loosely def<strong>in</strong>ed (see section 1.2.) has been


GENERAL CORRELATION 185<br />

used here <strong>in</strong> a very strict sense, i.e. for <strong>the</strong> <strong>vetusols</strong> developed <strong>in</strong> <strong>the</strong> highest<br />

terrace level of <strong>the</strong> upper lombardian pla<strong>in</strong> («Old Diluvium» Terrace).<br />

Most of <strong>the</strong> units recognized are lithostratigraphic units («rock bodies which<br />

are dist<strong>in</strong>guished <strong>and</strong> delimitated on <strong>the</strong> basis of lithic characteristics <strong>and</strong><br />

stratigraphic position»; <strong>No</strong>rth American Commission, 1983). Only unit D5,<br />

which refers to a glacis with aeolian covers, has been def<strong>in</strong>ed accord<strong>in</strong>g to<br />

morphostratigraphic criteria (Frey <strong>and</strong> Wilman, 1962). Only four pedostratigraphic<br />

units (B l, B3, D31 <strong>and</strong> D32) have been used as <strong>in</strong>dependent mapp<strong>in</strong>g<br />

units. O<strong>the</strong>r units are based on lithostratigraphic as well as on pedostratigraphic<br />

criteria. In such cases <strong>the</strong>re is a mutual relationship between soil <strong>and</strong> lithostratigraphic<br />

unit: <strong>the</strong> former represent<strong>in</strong>g an important key for <strong>the</strong> recognition <strong>and</strong><br />

delimitation of <strong>the</strong> latter.<br />

The mapp<strong>in</strong>g units differ slightly from <strong>the</strong> stratigraphic units described <strong>in</strong> <strong>the</strong><br />

forego<strong>in</strong>g chapters. For example, <strong>the</strong> loess described <strong>in</strong> <strong>the</strong> text as separate<br />

lithostratigraphic units, have not been mapped as <strong>in</strong>dependent units. With<strong>in</strong> <strong>the</strong><br />

context of this <strong>the</strong>sis emphasis has been put on <strong>the</strong> sedimentary body on which<br />

<strong>the</strong>y rest. Their presence is only recorded <strong>in</strong> <strong>the</strong> legend. Fur<strong>the</strong>rmore, <strong>the</strong> Ma<strong>in</strong><br />

level of <strong>the</strong> pla<strong>in</strong> <strong>and</strong> <strong>the</strong> Isolated Terraces <strong>in</strong> this pla<strong>in</strong> have been grouped<br />

toge<strong>the</strong>r <strong>in</strong>to one ma<strong>in</strong> physiographic system.<br />

8.3. THE STRUCTURE OF THE LEGEND<br />

The ma<strong>in</strong> physiographic systems <strong>in</strong>to which <strong>the</strong> various mapp<strong>in</strong>g units have<br />

been grouped, are <strong>in</strong>dicated with capital letters <strong>and</strong> comprise:<br />

A: Alp<strong>in</strong>e Fr<strong>in</strong>ge - Garda <strong>and</strong> Iseo mora<strong>in</strong>es<br />

B: Alp<strong>in</strong>e fr<strong>in</strong>ge - Adda mora<strong>in</strong>es <strong>and</strong> terraces<br />

C: The Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong> <strong>and</strong> Isolated Terraces<br />

D: Apenn<strong>in</strong>e fr<strong>in</strong>ge<br />

E: Alluvial pla<strong>in</strong>.<br />

With<strong>in</strong> each physiographic system <strong>the</strong> mapp<strong>in</strong>g units are chronologically ordered<br />

from <strong>the</strong> oldest to <strong>the</strong> more recent <strong>and</strong> are <strong>in</strong>dicated with an arabic<br />

number. Each unit, except <strong>in</strong> <strong>the</strong> system E, is <strong>in</strong>dicated with a syn<strong>the</strong>tic name<br />

derived from <strong>the</strong> stratigraphic analysis (for example: Collecchio vetusol, Pede-<br />

Apenn<strong>in</strong>e Fluviatile Formation, etc.) followed by a short description of <strong>the</strong> ma<strong>in</strong><br />

lithologic, paleopedologic <strong>and</strong> physiographic characteristics. For detailed descriptions<br />

<strong>and</strong> analyses, references to <strong>the</strong> text are given.<br />

The tentative dat<strong>in</strong>g of <strong>the</strong> units, based on <strong>the</strong> stratigraphic analysis (section<br />

7.7.) <strong>and</strong> on correlations, is <strong>in</strong>dicated us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g subdivisions: Early<br />

Pleistocene, Middle Pleistocene, Late Pleistocene, Holocene.<br />

On <strong>the</strong> map (Appendix 6 ) <strong>the</strong> ma<strong>in</strong> characteristics of <strong>the</strong> mapp<strong>in</strong>g units are<br />

schematically <strong>in</strong>dicated; <strong>the</strong>y <strong>in</strong>clude:


186 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

— symbols <strong>and</strong> name of <strong>the</strong> units;<br />

— <strong>the</strong> highest <strong>and</strong> <strong>the</strong> lowest altitude, for each unit, <strong>in</strong> metres above sea level;<br />

— lithology, <strong>in</strong>clud<strong>in</strong>g only <strong>the</strong> ma<strong>in</strong> characteristics; <strong>in</strong> <strong>the</strong> case of pedostratigra-j<br />

phic units this concerns <strong>the</strong> parent materials;<br />

— sedimentary facies, reference is generally made to Read<strong>in</strong>g ed. (1982);<br />

— pedology, depth of <strong>the</strong> boundary between B <strong>and</strong> C horizons <strong>in</strong> metres isj<br />

<strong>in</strong>dicated, <strong>and</strong> <strong>the</strong> hues of <strong>the</strong> B horizons are given;<br />

J<br />

— presence of loess <strong>and</strong>/or colluvial covers;<br />

— age^ 1<br />

- '• i»-<br />

«fei<br />

;r ■■4'<br />

8.4. DESCRIPTION OF THE MAPPING UNITS<br />

A )<br />

Al<br />

A2<br />

Alp<strong>in</strong>e fr<strong>in</strong>ge (Garda <strong>and</strong> Iseo lakes systems). -j<br />

Ciliverghe mora<strong>in</strong>e (units Cil 1, Cil 2, CH 1, CH 2). Massive diamicton, <strong>in</strong>clud<strong>in</strong>g angular boulders |<br />

of Coma limestone, locally strongly cemented. It is often associated with lam<strong>in</strong>ated highly carbona-1<br />

ted silt of glaciolacustr<strong>in</strong>e facies (units Cil 3, CH 3); from 180 to 160 m a^J. -<br />

Early Pleistocene. !<br />

Monte Faita mora<strong>in</strong>e.<br />

^<br />

Frontal mora<strong>in</strong>e ridge, strongly eroded, composed of heterometric diamicton, covered by^<br />

loess; with a strongly rubefied (Hue 2.5 YR of B horizons), strongly eroded, up to 4 m ■<br />

thick <strong>vetusols</strong> (S. Biagio profile); from 350 to 300 m a.s.l.<br />

Early Middle Pleistocene.<br />

Gavardo gravel (Unit GAV 3).<br />

Coarse fluvioglacial gravel systematically covered by loess, with a rubefied (Hue of B<br />

horizons 2.5 to 5 YR) up to 4 m thick vetusol, marked by strong wea<strong>the</strong>r<strong>in</strong>g, <strong>and</strong><br />

moderately eroded. (Gavardo, Ciliverghe <strong>and</strong> Castenedolo profiles); from 200 to 120 m a.s.l.<br />

Early Middle Pleistocene.<br />

Carpenedolo mora<strong>in</strong>e.<br />

Frontal mora<strong>in</strong>e ridge, strongly eroded, composed of heterometric diamicton, systematically<br />

covered by loess, with a rubefied (Hue of B horizons 5 YR) up to 3 m thick, strongly<br />

eroded vetusol, (Mocas<strong>in</strong>a profile); from 250 to 74 m a.s.l.<br />

Middle Pleistocene.<br />

Paitone gravel.<br />

Fluvioglacial gravel, gently merg<strong>in</strong>g <strong>in</strong> to <strong>the</strong> Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong> (C2), <strong>and</strong> covered by<br />

loess sheets; with a moderately rubefied (Hue of B horizons 5 YR) vetusol, up to one m<br />

thick; from 195 to 170 m a.s.l.<br />

Middle Pleistocene.<br />

Sedeña Mora<strong>in</strong>e<br />

Complex, strongly eroded, mora<strong>in</strong>e ridge, composed of heterometric diamicton, with Ap/C<br />

soils <strong>in</strong> its top, <strong>in</strong> <strong>the</strong> Garda area; <strong>vetusols</strong> have been observed <strong>in</strong> it <strong>in</strong> <strong>the</strong> Iseo area; from 119<br />

to 76 m a.s.l.<br />

Late - Middle Pleistocene.<br />

Solfer<strong>in</strong>o mora<strong>in</strong>e.<br />

Complex, well preserved, mora<strong>in</strong>e system, <strong>in</strong>clud<strong>in</strong>g slightly eroded mora<strong>in</strong>e ridges,<br />

composed of heterometric diamicton, <strong>and</strong> käme terraces, composed of stratified gravel <strong>and</strong><br />

s<strong>and</strong>, with a slightly rubefied (Hue of B horizons 7.5 YR to 5 YR) one metre thick (B<br />

horizons) soil (Solfer<strong>in</strong>o, Fontanelle <strong>and</strong> Pastengo profiles); from 284 to 100 a.s.1.<br />

Late Pleistocene.<br />

Alp<strong>in</strong>e fr<strong>in</strong>ge (Adda mora<strong>in</strong>es <strong>and</strong> terraces).<br />

Bagaggera complex polysol (Bagaggera 1 profile).<br />

Strongly rubefied (Hue of B horizons 2.5 YR) polygenetic soil, developed <strong>in</strong> limestones or


GENERAL CORRELATION 187<br />

B2<br />

B3<br />

B4<br />

calcareous LTysch bedrock, highly eroded profiles, up to 10 m thick (B <strong>and</strong> C horizons),<br />

systematically covered by colluvial sediments <strong>and</strong> loess; from 370 to 300 m a.s.l.<br />

Upper Pliocene-Early Pleistocene.<br />

Ceppo d’Adda (unit PD2).<br />

Fluviatile gravel, often strongly cemented, ma<strong>in</strong>ly poorly bedded, occasionally with cross<br />

bedd<strong>in</strong>g: upper or <strong>in</strong>termediate parts of alluvial fans, strongly dissected by present rivers;<br />

from 250 to 145 m a.s.l.<br />

Upper Pliocene - Early Pleistocene.<br />

«Ferretto» vetusol.<br />

Rubefied (Hue of B horizons 2.5 YR) vetusol, developed <strong>in</strong> gravel up to 10 m thick (B<br />

horizons), slighly eroded, systematically covered by loess (Camparada, Vivaldi, Cernusco<br />

profiles); from 300 to 150 m a.s.l.<br />

Early Pleistocene.<br />

Bivio Massaglia gravel.<br />

Gravel <strong>and</strong> s<strong>and</strong> (no bedd<strong>in</strong>g observed), <strong>and</strong> overbank clay; fluviatile sediments, fill<strong>in</strong>g<br />

small erosional valleys, cut <strong>in</strong>to <strong>the</strong> «Old Diluvium» terrace (Bivio Missaglia profile). It is<br />

systematically covered by loess; from 330 to 150 m a.s.l.<br />

Middle Pleistocene.<br />

B51 «Middle Diluvium» («Diluvium medio») (unit PD4 of section 3.3.3.).<br />

Gravel <strong>and</strong> s<strong>and</strong>, poorly bedded, fluvioglacial sediments: upper <strong>and</strong> middle part of s<strong>and</strong>ar<br />

<strong>and</strong> systematically covered by loess deeply dissected by present rivers; with a vetusol,<br />

moderately rubefied (Hue of B horizons 5 YR) up to (B horizons) 5 m thick, slightly eroded<br />

(Copreno, Ronco Briant<strong>in</strong>o, Bagaggera 3 profiles); from 300 to 150 m a.s.l.<br />

Late Middle Pleistocene.<br />

B52 Missaglia mora<strong>in</strong>e.<br />

Frontal mora<strong>in</strong>e ridge, moderately eroded, composed of diamicton. In <strong>the</strong> top <strong>the</strong> same<br />

vetusol <strong>and</strong> loess as unit B51; from 300 to 150 m a.s.l.<br />

Late Middle Pleistocene.<br />

B6 Merate mora<strong>in</strong>e.<br />

Frontal mora<strong>in</strong>e ridge composed of diamicton, well preserved morphology; <strong>the</strong> small<br />

outcrops of this unit <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> map have generaly slightly developed soils (Ap <strong>and</strong> B<br />

horizons less than 0,50 m thick); from 320 to 280 m a.s.l.<br />

Late Pleistocene.<br />

C)<br />

Cl<br />

C2<br />

Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong> <strong>and</strong> Isolated Terraces.<br />

Isolated Terraces Fluvial Formation.<br />

Cross-bedded s<strong>and</strong> <strong>and</strong> gravel of braided river facies; <strong>in</strong> some cases (Melotta <strong>and</strong> Monte<br />

Netto) with a shallow paleosol (B horizon 0,5 m thick <strong>and</strong> Hue 7.5 YR); <strong>the</strong>y are systematically<br />

covered by loess (Melotta, Zorlesco <strong>and</strong> Monte Netto profiles); from 120 to 80 m a.s.l.<br />

Late Middle Pleistocene.<br />

Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong>.<br />

Outwash pla<strong>in</strong> connected with Pede-Alp<strong>in</strong>e mora<strong>in</strong>e systems (B6, A7); coarse gravel <strong>in</strong> <strong>the</strong><br />

proximal part, gradually pass<strong>in</strong>g <strong>in</strong>to bedded s<strong>and</strong> <strong>and</strong> silt <strong>in</strong> <strong>the</strong> distal part, strongly<br />

dissected by present rivers. Its top is undulat<strong>in</strong>g <strong>and</strong> slightly eroded <strong>and</strong> has a slightly<br />

rubefied (5 YR to 7.5 YR Hue of B horizons) soil one metre thick (B horizons), (Ca<br />

Pegoroni, Robbiate <strong>and</strong> Casatico profiles); from 267 to 20 m a.s.l.<br />

Late Pleistocene.<br />

D) Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

D1 Pede-Apenn<strong>in</strong>e Fluvial Formation (unit AM2).<br />

F<strong>in</strong>e-textured fluvial deposits: cross bedded s<strong>and</strong> <strong>and</strong> f<strong>in</strong>e s<strong>and</strong> (with epsilon cross bedd<strong>in</strong>g)<br />

(lithofacies F3), po<strong>in</strong>t bars <strong>and</strong> natural levees of me<strong>and</strong>er<strong>in</strong>g watercourses; overbanck<br />

deposits; clays, silts <strong>and</strong> silty clay with planar parallel bedd<strong>in</strong>g (lithofacies AL); from 200 to<br />

85 m a.s.l.<br />

Early Middle Pleistocene.


188 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PL<br />

' ■<br />

r V •'<br />

D2<br />

D31<br />

D32<br />

D4<br />

D5<br />

Pede-Apenn<strong>in</strong>e Fluvial Formation (Unit AM2).<br />

Coarse-textured fluvial deposits (gravel <strong>and</strong> gravelly s<strong>and</strong>), locally with planar parallel<br />

bedd<strong>in</strong>g (lithofacies FI, F2), represent<strong>in</strong>g piedmont fans, <strong>in</strong> particular <strong>the</strong>ir middle or<br />

proximal part; from 270 to 90 m a.s.l.<br />

Early-Middle Pleistocene.<br />

Collecchio vetusol.<br />

Rubefied (Hue of B horizons 5 YR-2.5 YR) vetusol, up to 5 m thick; developed ma<strong>in</strong>ly <strong>in</strong><br />

gravelly sediments; <strong>the</strong>se older parent materials are systematically covered <strong>the</strong> Ghiardo loess<br />

(Unit AM4); from 245 to 60 m a.s.l.<br />

Middle Pleistocene.<br />

Rex vetusol.<br />

Moderately rubefied (Hue of B horizons 5 YR-7.5 YR) vetusol, solumn is up to 2.5 m thick<br />

(Rex profile), <strong>the</strong> parent material consists ma<strong>in</strong>ly of gravel (Unit AM2), <strong>and</strong> is from 125 to<br />

100 m a.s.l.<br />

Middle Pleistocene.<br />

Borzano gravel.<br />

Coarse fluviatile gravel, ma<strong>in</strong>ly poorly bedded; proximal parts of alluvial fans, systematically<br />

covered by <strong>the</strong> Ghiardo loess; from 125 to 100 m a.s.l.<br />

Middle Pleistocene.<br />

Piedmont glacis.<br />

Erosional surfaces cut <strong>in</strong>to <strong>the</strong> Pede-Apenn<strong>in</strong>e Fluvial Formation or <strong>in</strong>to older mar<strong>in</strong>e<br />

sediments; They are associated with th<strong>in</strong> covers of colluvial deposits <strong>and</strong> systematically<br />

covered by <strong>the</strong> Ghiardo loess; from 426 to 166 m a.s.l.<br />

Middle Pleistocene.<br />

Cavriago gravel.<br />

Coarse fluviatile deposits (poorly bedded gravel <strong>and</strong> gravelly s<strong>and</strong> with planar bedd<strong>in</strong>g)<br />

constitu<strong>in</strong>g well-preserved alluvial fans, dissected by <strong>the</strong> present rivers, with a slightly<br />

rubefied vetusol (Hue 7.5 to 5 YR) to 1.5 m thick (Cavriago <strong>and</strong> Spilamberto profiles);<br />

from 133 to 60 m a.s.l. Late Pleistocene.<br />

Savignano gravel.<br />

Coarse fluviatile sediments, gravel <strong>and</strong> s<strong>and</strong> with poorly developed planar bedd<strong>in</strong>g<br />

constitut<strong>in</strong>g well preserved alluvial fans, dissected by <strong>the</strong> present watercourses; with non<br />

rubefied lessived soil, 0,50 m thick (Savignano profile); from 120 to 50 m a.s.l.<br />

Early Holocene.<br />

Alluvial pla<strong>in</strong>.<br />

Gravelly unit.<br />

Gravel <strong>and</strong> s<strong>and</strong> ma<strong>in</strong>ly with planar <strong>and</strong> cross stratification: fluvial sediments of braided<br />

facies; <strong>the</strong>y form <strong>the</strong> beds of present rivers, cut <strong>in</strong>to <strong>the</strong> «Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong>» (C2) or<br />

at <strong>the</strong> distal marg<strong>in</strong> of <strong>the</strong> present Apenn<strong>in</strong>e alluvial fans; weakey developed soils (Entisols<br />

<strong>and</strong> Inceptisols); from 50 to 20 m a.s.l.<br />

Holocene.<br />

Loamy unit.<br />

Loamy s<strong>and</strong> clay <strong>and</strong> silt, planar stratification: overbanck deposits of paleochannels <strong>and</strong><br />

present rivers; weakly developed soils (Entisols <strong>and</strong> Inceptisols); from 50 to 20 m a.sJ.<br />

Holocene.<br />

S<strong>and</strong>y unit.<br />

S<strong>and</strong>y deposits of present channels <strong>and</strong> paleochannels of <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> rivers; <strong>the</strong>y <strong>in</strong>clude<br />

ma<strong>in</strong>ly natural levee <strong>and</strong> crevasse splay facies; weakly developed soils (Entisols <strong>and</strong><br />

Inceptisols); from 50 to 20 m a.s.l.<br />

Holocene.<br />

Clay unit.<br />

Clayey, massive or poorly stratified sediments: <strong>the</strong>y were part of distal food bas<strong>in</strong>s <strong>and</strong> permanent<br />

ponds up to <strong>the</strong> Late Medioeval period, reclaimed ma<strong>in</strong>ly dur<strong>in</strong>g <strong>the</strong> Renaissance <strong>and</strong> <strong>the</strong> Modem<br />

period; weakly developed soils (Entisols/Vertisols); from 50 to 20 m asL<br />

Holocene.


9.<br />

I N T R O D U C T I O N I N T O T H E G E N E S I S A N D D E V E L O P M E N T<br />

O F T H E P A L E O S O L S A N D V E T U S O L S<br />

9.1. THE PEDOGENETIC PHASES<br />

From <strong>the</strong> stratigraphical studies, <strong>the</strong> correlation of <strong>the</strong> stratigraphic units <strong>and</strong><br />

<strong>the</strong> survey, it clearly appears that, <strong>in</strong> <strong>the</strong> Quaternary deposits, soils have been<br />

formed of which <strong>the</strong> characteristics strongly change <strong>in</strong> time. On <strong>the</strong> basis of <strong>the</strong><br />

correlations discussed <strong>in</strong> Section 8.1. <strong>the</strong> paleosols <strong>and</strong> <strong>vetusols</strong> can be subdivided<br />

<strong>in</strong>to five groups of soils. Each of <strong>the</strong>se groups embraces soils which may be of a<br />

different nature, but which started to form <strong>in</strong> <strong>the</strong> same period. Significant differences<br />

<strong>in</strong> age between members of a group may lead to <strong>the</strong> dist<strong>in</strong>ction of<br />

subgroups. For <strong>the</strong>se groups <strong>the</strong> term «pedogenetic phase» has been used, which<br />

only has a stratigraphic implication. The phases recognized are (Fig. 89):<br />

PI)ase 1, this phase comprises <strong>the</strong> most recent <strong>vetusols</strong> <strong>and</strong> concerns <strong>the</strong> soils<br />

which developed from <strong>the</strong> Late Glacial (phase 1 B) or from <strong>the</strong> early Holocene<br />

(phase lA ) onward. It comprises <strong>the</strong> profiles of Savignano, Cavriago, Settima for<br />

<strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> profiles of Robbiate, Solfer<strong>in</strong>o, Pastrengo, Belforte <strong>and</strong><br />

Ca Pegoroni for <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong> <strong>and</strong> <strong>the</strong> Lombardian pla<strong>in</strong>.<br />

Phase 2, dated to <strong>the</strong> early Late Pleistocene, comprises <strong>the</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong><br />

Ghiardo loess at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> profiles of Copreno, Ronco Briant<strong>in</strong>o,<br />

Bagaggera 2 <strong>and</strong> <strong>the</strong> buried paleosols <strong>in</strong> gravels of Gavardo IV <strong>and</strong> of Val Sorda<br />

at <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong>.<br />

Phase 3, dat<strong>in</strong>g from <strong>the</strong> Middle Pleistocene, comprises <strong>the</strong> Collecchio vetusol<br />

at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>the</strong> <strong>vetusols</strong> of Ciliverghe <strong>and</strong> Calvagese. It is not<br />

clearly represented <strong>in</strong> <strong>the</strong> Adda Bas<strong>in</strong>, but may be represented by <strong>the</strong> buried<br />

paleosol (VI B21t) of profile 3 at Bagaggera.<br />

Phase 4, dat<strong>in</strong>g from to <strong>the</strong> late Early Pleistocene <strong>and</strong> early Middle Pleistocene<br />

is, probably with <strong>the</strong> exception of <strong>the</strong> Tiepido buried paleosol, not represented at<br />

<strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge; it comprises <strong>the</strong> soils of <strong>the</strong> «Old Diluvium» terrace <strong>in</strong> <strong>the</strong><br />

Adda area which have probably developed from <strong>the</strong> late Early Pleistocene, <strong>and</strong><br />

<strong>the</strong> buried paleosol <strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> mora<strong>in</strong>e <strong>and</strong> related deposits of <strong>the</strong> Monte<br />

Faita glacial stage <strong>in</strong> <strong>the</strong> Garda area (S. Biagio GAV IV, Cil IV profiles),<br />

developed from <strong>the</strong> early Middle Pleistocene.<br />

Phase 5: dat<strong>in</strong>g from <strong>the</strong> Early Pleistocene to <strong>the</strong> Late Tertiary, it comprises<br />

<strong>the</strong> buried paleosols of <strong>the</strong> Gavardo sequence (GAV 1), <strong>the</strong> Castenedolo sequence<br />

(CAST 1) <strong>and</strong> Bagaggera bas<strong>in</strong> sequence (S5); stratigraphic evidence <strong>in</strong>dicates<br />

that <strong>the</strong>se paleosols have been already buried <strong>in</strong> <strong>the</strong> early Middle Pleistocene.


INTRODUCTION INTO THE GENESIS AND DEVELOPMENT 191<br />

The beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> development of <strong>the</strong> Gavardo <strong>and</strong> Castenedolo paleosols<br />

dates from <strong>the</strong> Early Pleistocene; <strong>the</strong> paleosol S5 of Bagaggera should even date<br />

from an older period (Late Tertiary).<br />

Phase 5 comprises paleosols only, but soils from <strong>the</strong> o<strong>the</strong>r phases are mostly<br />

<strong>vetusols</strong>. The <strong>vetusols</strong> represent chronosequences of which <strong>the</strong> members exhibit<br />

characteristics of which <strong>the</strong> expression <strong>in</strong>creases <strong>in</strong> time. The sequences can be<br />

described as post-<strong>in</strong>cisive chronosequences accord<strong>in</strong>g to <strong>the</strong> term<strong>in</strong>ology of<br />

Vreeken (1965) <strong>and</strong> Bockheim (1980).<br />

In <strong>the</strong> follow<strong>in</strong>g sections attention will be paid to <strong>the</strong> identification <strong>and</strong><br />

quantification of <strong>the</strong> ma<strong>in</strong> pedogenetic processes active <strong>in</strong> <strong>the</strong>se soils dur<strong>in</strong>g <strong>the</strong><br />

Quaternary. The effect of <strong>the</strong> pedogenetic processes not only depends on <strong>the</strong><br />

factor time but is also affected by <strong>the</strong> nature of <strong>the</strong> parent material. Therefore <strong>the</strong><br />

chronosequences <strong>in</strong> gravel <strong>and</strong> diamicton <strong>and</strong> <strong>in</strong> loess will be treated separately.<br />

9.2. RELEVANT PEDOGENETIC PROCESSES AND PEDOLOGICAL<br />

FEATURES<br />

In this section a review will be given of <strong>the</strong> exist<strong>in</strong>g literature on pedogenetic<br />

processes <strong>and</strong> features, which occur or can be expected to occur <strong>in</strong> <strong>the</strong> Central <strong>Po</strong><br />

Valley. <strong>No</strong> attention will be paid to <strong>the</strong> genesis of <strong>the</strong> A horizons as all soils studied<br />

have an A horizon which has been ploughed or is o<strong>the</strong>rwise disturbed by man.<br />

Fersiallisation. This pedogenetic process is considered to be characteristic of<br />

<strong>the</strong> mediterranean environment (Duchaufour 1968, 1977; Born<strong>and</strong>, 1978;<br />

Boula<strong>in</strong>e, 1961; Remmelzwaal, 1978; Sev<strong>in</strong>k et alii, 1984).<br />

The conditions required for fersiallitisationare, apart from <strong>the</strong> climatic<br />

conditions, a good <strong>in</strong>ternal soil dra<strong>in</strong>age <strong>and</strong> a ma<strong>in</strong>ly calcareous parent material,<br />

but with a sufficient amount of silicate material. Leach<strong>in</strong>g of carbonates <strong>and</strong> <strong>the</strong><br />

resultant <strong>in</strong>crease <strong>in</strong> voids volume slows down <strong>the</strong> compaction of <strong>the</strong> horizons<br />

<strong>and</strong> assures <strong>the</strong> ma<strong>in</strong>tenance of a good <strong>in</strong>ternal dra<strong>in</strong>age (Born<strong>and</strong>, 1978).<br />

From <strong>the</strong> geochemical <strong>and</strong> m<strong>in</strong>eralogical po<strong>in</strong>ts of view, fersiallitisation<br />

st<strong>and</strong>s for <strong>the</strong> process of bisiallitisation (Pedro, 1968). It is characterized by a<br />

slight removal of silica, <strong>the</strong> formation of clays of <strong>the</strong> 2/1 type (smectite) <strong>and</strong> <strong>the</strong><br />

<strong>in</strong>heritance of clay m<strong>in</strong>erals present <strong>in</strong> <strong>the</strong> bedrock or <strong>in</strong> <strong>the</strong> parent material.<br />

Neoformation, especially of k<strong>and</strong>ite, is weak. Accord<strong>in</strong>g to Duchaufour (1983)<br />

fersiallitisation is <strong>the</strong> first stage of pedogenetic alteration <strong>in</strong> warm (sub)-tropical<br />

climates. It is replaced, with <strong>in</strong>creas<strong>in</strong>g temperature <strong>and</strong> decreas<strong>in</strong>g seasonal<br />

contrast, by ferrug<strong>in</strong>ation <strong>and</strong> by ferrallitisation. These two processes are<br />

characterized by <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity of wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong> neoformation of more<br />

alum<strong>in</strong>ous clay m<strong>in</strong>erals (k<strong>and</strong>ite <strong>and</strong> gybbsite). Décalcification, rubéfaction <strong>and</strong><br />

lessivage (clay translocation), are considered as processes connected with<br />

fersiallitisation.<br />

Rubrfaction. It is well know (Kubiena, 1956; Duchaufour, 1977;<br />

Remmelzwaal, 1979; Sev<strong>in</strong>k et alii, 1984) that a red colour characterizes <strong>the</strong>


192 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

mediterranean soils developed <strong>in</strong> a wide range of parent materials (tufa,<br />

limestones, gravels). It is also a typical characteristics of a large number of<br />

paleosols <strong>in</strong> <strong>the</strong> <strong>Po</strong> Valley <strong>and</strong> it is implicit <strong>in</strong> <strong>the</strong> term «Ferretto» used for most<br />

such paleosols.<br />

Accord<strong>in</strong>g to Schwertmann et alii (1974) rubéfaction results from <strong>the</strong><br />

dehydratation of pedogenic iron hydroxides (transformation of <strong>the</strong> paracrystall<strong>in</strong>e<br />

hydroxide ferrihydrite <strong>in</strong>to hematite) <strong>in</strong> a pedoclimate with strong seasonal<br />

contrast, alternat<strong>in</strong>g between humid conditions <strong>and</strong> dessiccation <strong>and</strong> with ra<strong>the</strong>r<br />

high temperatures.<br />

Fur<strong>the</strong>rmore a good <strong>in</strong>ternal <strong>and</strong> external dra<strong>in</strong>age, as conditioned by <strong>the</strong><br />

texture <strong>and</strong>/or by <strong>the</strong> morphologic position of <strong>the</strong> soil, was found to promote<br />

rubéfaction (Born<strong>and</strong>, 1978; Sev<strong>in</strong>k et alii, 1984).<br />

Many studies show that a direct correlation exists between iron content, age<br />

of <strong>the</strong> paleosols <strong>and</strong> red colour (see for example: Torrent et alii, 1980; Ardu<strong>in</strong>o<br />

et alii, 1983). Therefore it is often assumed (Duchaufour, 1977) that pedogenetic<br />

iron hydroxides <strong>in</strong> time change <strong>in</strong>to reddish coloured oxides. Consider<strong>in</strong>g <strong>the</strong><br />

forego<strong>in</strong>g it is evident that rubéfaction tends to be particularly expressed <strong>in</strong> <strong>the</strong><br />

soils <strong>and</strong> paleosols <strong>in</strong> a mediterranean (paleo) environment.<br />

Never<strong>the</strong>less, Schwertman et alii (1982) record Holocene rubefied soils <strong>in</strong><br />

Würm fluvioglacial deposits <strong>No</strong>rth of <strong>the</strong> Alps <strong>in</strong> an axeric climate, <strong>and</strong> po<strong>in</strong>t out<br />

<strong>the</strong> fundamental role of <strong>the</strong> parent material <strong>in</strong> <strong>the</strong> development of rubéfaction. It<br />

cannot be excluded that <strong>the</strong> profiles described form that area date from earlier <strong>in</strong><br />

<strong>the</strong> Holocene, when <strong>the</strong> climate was warmer <strong>and</strong> drier than at present.<br />

Décalcification <strong>and</strong> accumulation of Ca CO y Exclusive of hot arid areas,<br />

décalcification is among <strong>the</strong> first pedogenetic processes, active <strong>in</strong> soils <strong>in</strong><br />

calcareous parent materials. The rate of <strong>the</strong> process is controlled by a great<br />

number of factors, among which climate is dom<strong>in</strong>ant. The carbonate dissolution<br />

is <strong>in</strong>ter alia controlled by <strong>the</strong> partial CO2 pressure. The solubility of CO2 gas <strong>in</strong><br />

water <strong>in</strong>creases with decreas<strong>in</strong>g temperature. Therefore <strong>in</strong> cold climates <strong>the</strong> dissolution<br />

of carbonates may proceed more rapidly than <strong>in</strong> warm climates even<br />

though <strong>the</strong> biological activity <strong>and</strong> <strong>the</strong> concurrent <strong>in</strong>crease of CO2 production are<br />

smaller. The décalcification is directly correlated with <strong>the</strong> leach<strong>in</strong>g <strong>in</strong>tensity,<br />

which, if <strong>the</strong> dra<strong>in</strong>age is good, depends on climate (Wilke, 1975). Lastly, <strong>in</strong> non<br />

arid climates <strong>and</strong> under leach<strong>in</strong>g conditions <strong>the</strong> deepen<strong>in</strong>g of <strong>the</strong> décalcification<br />

front is a function of time.<br />

Several authors have tried to quantify <strong>the</strong> rate of this process (Birkel<strong>and</strong>,<br />

1974; Wilke, 1975; Spaargaren, 1979; Van der Meer, 1982). However <strong>the</strong> loss of<br />

carbonates can only rarely be considered a l<strong>in</strong>ear chronofunction. It tends to<br />

decelerate with time i.e. <strong>in</strong>creas<strong>in</strong>g depth of décalcification (Scheffer etahi, 1962).<br />

Fur<strong>the</strong>rmore it is logical to expect that dur<strong>in</strong>g long pedogenetic cycles rates<br />

accelerated or decelerated <strong>in</strong> response to <strong>the</strong> Quaternary climatic changes.<br />

The dissolution of calcareous gravel <strong>and</strong> a consequent reduction of <strong>the</strong><br />

volume of <strong>the</strong> material constitut<strong>in</strong>g <strong>the</strong> soil horizons is an aspect of <strong>the</strong> décalcification<br />

process described <strong>in</strong> a great detail by Born<strong>and</strong> ( 1978). The chemical attack<br />

on <strong>the</strong> calcareous clasts is strong from <strong>the</strong> first phases of soil development


<strong>in</strong> tr o d u c tio n <strong>in</strong> to t h e g e n e s is a n d d e v e lo p m e n t 193<br />

onwards, <strong>and</strong> it is immediately followed by <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g through hydrolysis<br />

of <strong>the</strong> plutonic <strong>and</strong> metamorphic clasts.<br />

The ratios between chert <strong>and</strong> quartz (which generally are not affected by<br />

wea<strong>the</strong>r<strong>in</strong>g) present <strong>in</strong> <strong>the</strong> parent material <strong>and</strong> those <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> (Born<strong>and</strong>,<br />

1978; Brewer, 1976) allow to estimate <strong>the</strong> orig<strong>in</strong>al thickness of <strong>the</strong> sediment at<br />

<strong>the</strong> expenses of which <strong>the</strong> <strong>vetusols</strong> developed. The losses of thickness are very<br />

great: Born<strong>and</strong> (1978) calculated between 55 <strong>and</strong> 100 metres for <strong>the</strong><br />

«Villafranchian» terraces <strong>and</strong> between 11 <strong>and</strong> 15 metres for those of <strong>the</strong> Early<br />

<strong>and</strong> Middle Pleistocene.<br />

Generally, at some depth <strong>in</strong> <strong>the</strong> soil, <strong>the</strong> soil solution becomes supersaturated<br />

<strong>and</strong> calcium carbonate precipitates to form soft powdery lime <strong>and</strong>/or nodules<br />

(calcic horizons) or cont<strong>in</strong>uous phases (petrocalcic horizons) (Soil Survey Staff,<br />

1975). Gile et alii (1965) attribute <strong>the</strong> name of K horizon to <strong>the</strong> horizons of<br />

which <strong>the</strong> fabric ma<strong>in</strong>ly consists of calcareous cement. Several authors (Gile et<br />

alii, 1966; Ruellan 1968, 1970, 1973) recognize various types of calcium<br />

carbonate accumulations classified accord<strong>in</strong>g to an <strong>in</strong>crease of cementation,<br />

hardness <strong>and</strong> crystall<strong>in</strong>ity, which are functions of time <strong>and</strong> of genesis (such as a<br />

cont<strong>in</strong>uous lateral supply).<br />

Translocation <strong>and</strong> accumulation of clay. In soils <strong>in</strong> relatively humid climates for<br />

peptization to occur ra<strong>the</strong>r specific requirements must be met with: clay^humus<br />

complexes should not be too stable <strong>and</strong>, for example, must be less stable than<br />

those encountered <strong>in</strong> isohumic or calcimagnesian soils (Duchanfour, 1977); <strong>and</strong><br />

<strong>the</strong> base saturation (ma<strong>in</strong>ly by Ca^"^) must be fairly high, but not too high, as for<br />

example <strong>in</strong> soils conta<strong>in</strong><strong>in</strong>g f<strong>in</strong>ely divided lime. These conditions are often found<br />

<strong>in</strong> decalcified soils, with a pH between 5 an 7 <strong>and</strong> under forest (Hallsworth,<br />

1963; Scheffer <strong>and</strong> Schachtschabel, 1976; Duchaufour, 1977), but sometimes<br />

evidences of clay translocation have been recorded <strong>in</strong> calcareous materials (Allen<br />

<strong>and</strong> Goss, 1974). The process is caused by <strong>the</strong> lower<strong>in</strong>g of <strong>the</strong> electrolyte content<br />

of <strong>the</strong> liquid phase. Such dilution occurs <strong>in</strong> particular <strong>in</strong> climates with contrast<strong>in</strong>g<br />

seasons, through rapid wett<strong>in</strong>g of <strong>the</strong> soil dur<strong>in</strong>g <strong>the</strong> wet season (Duchaufour,<br />

1983). The dispersed clay is transported with <strong>the</strong> <strong>in</strong>filtrat<strong>in</strong>g water through <strong>the</strong><br />

non-capillary pores of <strong>the</strong> soil <strong>and</strong> it is deposited where electrolyte concentrations<br />

<strong>in</strong>crease <strong>and</strong>/or where <strong>the</strong> water is absorbed by <strong>the</strong> capillary pores, i.e. on <strong>the</strong><br />

walls of <strong>the</strong> voids <strong>and</strong> of <strong>the</strong> structural elements. This clay generally forms th<strong>in</strong>ly<br />

bedded coat<strong>in</strong>gs (illuvial cutans) (Dalrymple <strong>and</strong> Theocharopoulos, 1984).<br />

The illuvial accumulation of clay causes <strong>the</strong> formation of argilhc horizons<br />

(Soil Survey Staff, 1975), but <strong>the</strong> evidence <strong>in</strong> <strong>the</strong> form of coat<strong>in</strong>gs can disappear<br />

when <strong>the</strong> clay is subsequently absorbed <strong>in</strong> <strong>the</strong> matrix (Me Keague, 1983). This<br />

phenomenon is particularly common where swell<strong>in</strong>g clay m<strong>in</strong>erals are present <strong>in</strong><br />

<strong>the</strong> profile <strong>and</strong> alternate shr<strong>in</strong>k<strong>in</strong>g <strong>and</strong> swell<strong>in</strong>g occur. The clay tends to accumulate<br />

progressively dur<strong>in</strong>g time, lead<strong>in</strong>g to a gradual thicken<strong>in</strong>g of <strong>the</strong> argillic<br />

horizon (Birkel<strong>and</strong>, 1974).<br />

The argillic horizon is a persistent feature, produced by processes that can<br />

become irreversible <strong>and</strong> selfterm<strong>in</strong>at<strong>in</strong>g (Yaalon, 1971) <strong>and</strong> <strong>the</strong>refore it tends to


194 PALEOSOLS AND VETUSOLS IN THE CENTRAL. PO PLAIN<br />

be preserved <strong>in</strong> <strong>the</strong> geological record <strong>and</strong> represents an important marker <strong>in</strong> <strong>the</strong><br />

pedological <strong>and</strong> soil-stratigraphic studies.<br />

When <strong>the</strong> argillans <strong>and</strong> ferri-argillans are not rapidly absorbed by <strong>the</strong> matrix,<br />

<strong>the</strong>y also show a clear evolution with time: a progressive crystallization of <strong>the</strong><br />

iron hydroyides <strong>and</strong> concurrent progressive destruction of <strong>the</strong> microlam<strong>in</strong>ation<br />

<strong>and</strong> lower<strong>in</strong>g of <strong>the</strong> biref<strong>in</strong>gence of <strong>the</strong> cutans (Br<strong>in</strong>kman et alii, 1973;<br />

Remmelzwaal, 1978, 1979).<br />

'/.'.■^i.u.t,-r<br />

'”9A-<br />

^-'' V' “i<br />

vT^,-<br />

Hydromorphic features. As discussed by Sev<strong>in</strong>k et alii (1984), water stagnation<br />

<strong>in</strong>duc<strong>in</strong>g pseudogley<strong>in</strong>g, plays <strong>and</strong> important role also <strong>in</strong> mediterranean areas. It<br />

is well known that this process is <strong>in</strong>duced by lithology <strong>and</strong> topographic position<br />

ra<strong>the</strong>r than by climate (Duchaufour, 1977). In conditions of poor dra<strong>in</strong>age <strong>the</strong><br />

soil can be saturated with water for a prolonged period <strong>and</strong> iron <strong>and</strong> manganese<br />

may be reduced (Van Schuylenborgh, 1973). When <strong>the</strong> soil subsequently beg<strong>in</strong>s<br />

to dry, <strong>the</strong> entrance of oxygen along fissures <strong>and</strong> large pores causes <strong>the</strong> oxidation<br />

of iron <strong>and</strong> manganese which precipitate <strong>and</strong> form concretions <strong>and</strong> mottles.<br />

<strong>No</strong>dules <strong>and</strong> concretions are formed more frequently <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong><br />

horizon affected by alternat<strong>in</strong>g reduction <strong>and</strong> oxidation, while <strong>the</strong> mottles are<br />

best developed <strong>in</strong> <strong>the</strong> lower part of this horizon (B<strong>in</strong>i et alii, 1977). The<br />

processes connected with pseudogley have been extensively described by Van<br />

Schuylenborgh (1973).<br />

This type of temporary hydromorphism <strong>in</strong>duces <strong>the</strong> formation of bleached<br />

zones, or tongues, along <strong>the</strong> major pedfaces through a gradual diffusion of Fe <strong>and</strong><br />

Mn <strong>in</strong>to <strong>the</strong> peds (Bouma et alii, 1968; Soil Survey Staff, 1975). In <strong>the</strong> upper<br />

part of <strong>the</strong> bleached tongues, at <strong>the</strong> passage from <strong>the</strong> A2 horizon to <strong>the</strong> Bt<br />

horizon, clay degradation may occur, which leads to transformation of clay 2: 1<br />

m<strong>in</strong>erals <strong>in</strong>to alum<strong>in</strong>ium chlorites <strong>and</strong> to residual concentration of <strong>in</strong>herited<br />

kaol<strong>in</strong>ite (Duchaufour, 1983). The clay fraction thus can be partly destroyed <strong>and</strong><br />

<strong>the</strong> s<strong>and</strong> <strong>and</strong> silt fractions can accumulate residually.<br />

The argillans that form <strong>in</strong> such situations are iron depleted, light coloured<br />

<strong>and</strong> show a low birefr<strong>in</strong>gence (gra<strong>in</strong>y cutans) (Br<strong>in</strong>kman et alii, 1973).<br />

That <strong>the</strong> characteristic features of <strong>the</strong> tongues, which are also frequently<br />

observed <strong>in</strong> <strong>the</strong> area studied, are brought about by pseudogley<strong>in</strong>g, is generally<br />

agreed upon. However, considerable disagreement exists between various authors<br />

about <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> tongues.<br />

Many authors (Bouma et aUi, 1968; Jamagne, 1973; Soil Survey Staff, 1975)<br />

believe that <strong>the</strong>y characterize <strong>the</strong> later stages of development of lessived soils <strong>in</strong><br />

a humid climate.<br />

O<strong>the</strong>r authors (Billard <strong>and</strong> Fedoroff, 1977) consider <strong>the</strong> tongues as<br />

<strong>in</strong>dications of degradation of <strong>in</strong>terglacial soils, due to a climatic worsenn<strong>in</strong>g at<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of a glacial period or (Billard, 1977) <strong>the</strong>y assume that <strong>the</strong> cracks<br />

along which <strong>the</strong> tongues developed are permafrost cracks (polygonal soils).<br />

Fragipan. Accord<strong>in</strong>g to Smalley <strong>and</strong> Dav<strong>in</strong> (1982) <strong>the</strong> fragipan can be<br />

described, <strong>in</strong> agreement with <strong>the</strong> def<strong>in</strong>ition of <strong>the</strong> soil Survey Staff (1975), <strong>and</strong><br />

accord<strong>in</strong>g to <strong>the</strong> flow diagram proposed by Thomas et alii (1979), as a


INTRODUCTION INTO THE GENESIS AND DEVELOPMENT 195<br />

subsurface horizon of loamy texture (more rarely s<strong>and</strong>y) which has a higher bulk<br />

density as compared with <strong>the</strong> upper horizon. It is very hard when dry, <strong>and</strong> brittle<br />

when moist. It is very low <strong>in</strong> organic matter <strong>and</strong> crumbles when immersed <strong>in</strong><br />

water. Is shows coarse prismatic structure, bordered by decoloured b<strong>and</strong>s <strong>and</strong> its<br />

upper limit is clear to abrupt <strong>and</strong> l<strong>in</strong>ear, while <strong>the</strong> lower limit is gradual.<br />

Micromorphologically it is characterized by a dense pack<strong>in</strong>g <strong>and</strong> low porosity;<br />

<strong>the</strong> voids have often subsphericaf shape, are ma<strong>in</strong>ly <strong>in</strong>trapedal <strong>and</strong> are sometimes<br />

coated by argillans, but ma<strong>in</strong>ly by matrans, skeletans <strong>and</strong> siltans. Bridges of clay<br />

connect<strong>in</strong>g <strong>the</strong> skeleton gra<strong>in</strong>s can be observed especially with <strong>the</strong> scann<strong>in</strong>g<br />

electron microscope (Fitzpatrick, 1976; De Kimpe, 1976; Miller et ahi, 1971;<br />

Payton, 1981). Such characteristics agree with <strong>the</strong> idea expressed by Sev<strong>in</strong>k<br />

(1974) that <strong>the</strong> high density of <strong>the</strong> fragipan comes from <strong>the</strong> structural collapse of<br />

<strong>the</strong> soil <strong>and</strong> <strong>the</strong> concurrent illuviation of <strong>the</strong> matrix.<br />

The various hypo<strong>the</strong>ses about <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> fragipan can be subdivided<br />

<strong>in</strong>to three great groups: 1) periglacial orig<strong>in</strong> (Fitzpatrick, 1956, 1976; Sev<strong>in</strong>k <strong>and</strong><br />

V<strong>in</strong>k, 1969; Van Vhet <strong>and</strong> Langhor, 1978); <strong>the</strong> fragipan would have been<br />

formed <strong>in</strong> a periglacial environment <strong>and</strong> be connected with permafrost of which<br />

it would be a fossil evidence; 2 ) <strong>the</strong> formation of <strong>the</strong> fragipan is connected with<br />

«normal» soil form<strong>in</strong>g processes; it may have been formed by <strong>in</strong>terparticle<br />

cementation of alum<strong>in</strong>um, silica <strong>and</strong> clay bridges (Wang et alii, 1974; Romans,<br />

1976; Hallmark <strong>and</strong> Smeck, 1979; Ste<strong>in</strong>hardt <strong>and</strong> Franzmeier, 1979); 3) buried<br />

soil <strong>the</strong>ory (Smalley <strong>and</strong> Dav<strong>in</strong>, 1982): <strong>the</strong> harden<strong>in</strong>g of <strong>the</strong> fragipan can have<br />

taken place beg<strong>in</strong>n<strong>in</strong>g from an ancient exposed surface on which pedogenetic<br />

processes acted (for example shr<strong>in</strong>k<strong>in</strong>g <strong>and</strong> swell<strong>in</strong>g) <strong>and</strong> which was afterwards<br />

buried by fresh loose material. In this case <strong>the</strong> fragipan would have formed<br />

ma<strong>in</strong>ly because of processes of <strong>in</strong>cipient pedogenesis (see also: Sev<strong>in</strong>k <strong>and</strong> V<strong>in</strong>k,<br />

1969). This model is particularly applicable to <strong>the</strong> fragipans developed <strong>in</strong> eolian<br />

deposits.<br />

Coarse cutans. This term <strong>in</strong>dicates <strong>the</strong> cutans composed of f<strong>in</strong>e s<strong>and</strong>, silt gra<strong>in</strong>s<br />

<strong>and</strong>/or matrix (skeletans, siltans, matrans), that frequently alternate with <strong>the</strong><br />

argillans to form composite cutans (Brewer, 1977, Fedoroff, 1979).<br />

They are clearly <strong>the</strong> result of a strong decrease <strong>in</strong> structural stability or even<br />

collapse of structure of <strong>the</strong> upper horizons <strong>and</strong> concurrent mobilization not only<br />

of <strong>the</strong> clay, but of <strong>the</strong> whole matrix or of <strong>the</strong> coarse part of it (Miller et alii^<br />

1971). They have been described <strong>in</strong> particular <strong>in</strong> boreal soils <strong>in</strong> Canada (see:<br />

Fedoroff <strong>and</strong> Goldbergh, 1982), <strong>in</strong> <strong>the</strong> dernovo podsolic soils (Targulian et alii,<br />

1974) where <strong>the</strong>y are called partcutans. They have also been described from a<br />

series of polygenic soils, dat<strong>in</strong>g back to <strong>the</strong> Late Pleistocene <strong>in</strong> Western Europe<br />

(Fedoroff <strong>and</strong> Billard, 1977; Eimberk Roux, 1980; Fedoroff <strong>and</strong> Goldbergh,<br />

1982). As regards <strong>the</strong>ir orig<strong>in</strong>, Nettleton et alii (1969) <strong>and</strong> Sev<strong>in</strong>k (1974)<br />

suppose that <strong>the</strong>y were generated by wett<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g cycles, Fitzpatrick<br />

(1956) assumes that <strong>the</strong>y are due to freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g cycles, while Russian<br />

authors (Targulian) relate <strong>the</strong>m to massive water <strong>in</strong>puts that occur <strong>in</strong>side <strong>the</strong><br />

dernovo podsolic soils dur<strong>in</strong>g <strong>the</strong> periods of snow melt<strong>in</strong>g.<br />

The connection between coarse cutans <strong>and</strong> «boreal» climatic conditions or <strong>in</strong>


196<br />

PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PUIN<br />

general with large water supplies seems accepted by most authors. When <strong>the</strong><br />

cutans are clearly fossil features, <strong>the</strong>y are commonly <strong>in</strong>terpreted as evidence of<br />

cold <strong>and</strong> sometimes periglacial climatic conditions (Billard <strong>and</strong> Feroroff, 1977;<br />

Eimberck Roux, 1976; Fedoroff <strong>and</strong> Goldsbergh, 1982).


10.<br />

THE PALEOSOLS AND VETUSOLS<br />

IN GRAVELS AND IN DIAMICTON<br />

10.1. THE PARENT MATERIAL<br />

The parent material of this group of soils consist of gravelly sediments. The<br />

gravel is ma<strong>in</strong>ly composed of calcareous <strong>and</strong> silicate rocks (granitoids,<br />

metamorphics, volcanics, quartz-feldspathic s<strong>and</strong>stones) (Appendix 2, tab. 4).<br />

For <strong>the</strong> gravel fraction (Appendix 2) <strong>the</strong> ratio between calcareous <strong>and</strong> silicate<br />

rocks is 5.5 for <strong>the</strong> Garda region, 1.1 for <strong>the</strong> Middle <strong>and</strong> Recent Diluvium of <strong>the</strong><br />

Adda bas<strong>in</strong> <strong>and</strong> 3.6 for <strong>the</strong> rocks of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge. The ratio (limestone +<br />

marly limestone)/(s<strong>and</strong>stone with non-calcareous cement + cherts), a measure<br />

for <strong>the</strong> silicate residue <strong>in</strong> <strong>the</strong> carbonate rocks, is 3.5 for <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, 5.8<br />

for <strong>the</strong> Adda bas<strong>in</strong> <strong>and</strong> on <strong>the</strong> average 30 for <strong>the</strong> Garda area. It can thus be<br />

concluded that at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> <strong>the</strong> Adda bas<strong>in</strong>, <strong>the</strong> parent material<br />

conta<strong>in</strong>s an important amount of silicate rocks, whereas limestone prevails <strong>in</strong> <strong>the</strong><br />

Garda area.<br />

10.2. CHARACTERISTICS AND DEVELOPMENT OF THE HORIZONS<br />

In <strong>the</strong> gravels of Middle <strong>and</strong> Early Pleistocene age, subsequent to <strong>the</strong>ir<br />

deposition, soil formation occurred. Where a loess <strong>and</strong>/or colluvial cover is now<br />

absent, ei<strong>the</strong>r because it never existed or because it was eroded away <strong>in</strong> later<br />

(historical?) times, <strong>the</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> gravels are clearly more or less truncated.<br />

Where a cover of loesses <strong>and</strong>/or colluvial materials is present, <strong>the</strong> previously<br />

formed soils <strong>in</strong> gravel appear to have been truncated to <strong>the</strong> B horizon or deeper<br />

before be<strong>in</strong>g covered. The younger sediments <strong>in</strong> <strong>the</strong>ir turn have been affected by<br />

later soil formation, of <strong>the</strong> same or similar nature as <strong>the</strong> previous soil formation.<br />

These soils thus consist of upper horizons <strong>in</strong> more recent sediments, over lower<br />

horizons <strong>in</strong> gravels, which toge<strong>the</strong>r constitute a vetusol. Here only <strong>the</strong> lower<br />

horizons <strong>in</strong> gravels will be discussed. The <strong>vetusols</strong> <strong>in</strong> Late Pleistocene <strong>and</strong><br />

Holocene deposits on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> show Ap <strong>and</strong> B1 horizons developed <strong>in</strong><br />

anthropogenic colluvial covers; <strong>the</strong>se overlie <strong>the</strong> orig<strong>in</strong>al sediments <strong>in</strong> which <strong>the</strong><br />

B2 <strong>and</strong> B3 horizons are found (cf. Solfer<strong>in</strong>o, Ca Pegoroni, Savignano profiles).<br />

The systematic presence of fragments of bricks <strong>and</strong> ceramics both protohistorical<br />

<strong>and</strong> more recent <strong>in</strong> <strong>the</strong> B1 horizons demonstrates <strong>the</strong> anthropogenic


198 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

‘M.<br />

nature of <strong>the</strong> colluvium <strong>and</strong> relates <strong>the</strong>ir orig<strong>in</strong> to phases of stability <strong>and</strong><br />

<strong>in</strong>stability created by <strong>the</strong> long last<strong>in</strong>g agricultural use of <strong>the</strong> area.<br />

The genesis of <strong>the</strong> B horizons <strong>in</strong> gravels <strong>and</strong> diamicton, is more complex.<br />

They show a characteristic sequence from top to bottom:<br />

— B21 horizon: <strong>the</strong> characteristic feature is <strong>the</strong> absence of coarse fragments. As<br />

mentioned <strong>in</strong> section 5.7 <strong>and</strong> <strong>in</strong> section 7.5 for <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong><br />

horizon, <strong>in</strong> several localities, developed from a pelitic cover, deposited on top<br />

of <strong>the</strong> gravelly sediments <strong>in</strong> which <strong>the</strong> o<strong>the</strong>r horizons developed, 'fhe B<br />

horizon characteristics are strongly expressed. These concern <strong>in</strong> particular <strong>the</strong><br />

clay accumulation, <strong>the</strong> colour, <strong>the</strong> cutans <strong>and</strong> <strong>the</strong> Fe-Mn concretions. The<br />

boundary towards <strong>the</strong> underly<strong>in</strong>g horizons is l<strong>in</strong>ear <strong>and</strong> clear <strong>in</strong> <strong>the</strong> relatively<br />

young <strong>vetusols</strong>, while it tends to be gradual <strong>in</strong> <strong>the</strong> older <strong>vetusols</strong>;<br />

— B22 horizon: <strong>the</strong> orig<strong>in</strong>al gravel is reduced to small <strong>and</strong> rare fragments of<br />

quartz or chert. The characteristics of a B are strongly expressed. These concern<br />

<strong>the</strong> clay accumulation <strong>and</strong> <strong>the</strong> rubéfaction, <strong>the</strong> presence of Fe-Mn nodules <strong>and</strong><br />

concretions, <strong>the</strong> structural development of <strong>the</strong> horizon <strong>and</strong> locally <strong>the</strong> presence of<br />

bleached tongues;<br />

— B.51 horizon: <strong>the</strong> wea<strong>the</strong>red pebbles are clearly dist<strong>in</strong>guishable, <strong>the</strong> rubéfaction<br />

is always strongly expressed, <strong>the</strong> plasma prevails over skeleton, clay cutans are<br />

very abundant <strong>and</strong> systematically cover <strong>the</strong> pebble surface. <strong>Po</strong>res <strong>and</strong> fractures,<br />

due to dissolution of carbonates determ<strong>in</strong>e <strong>the</strong> voids <strong>and</strong> <strong>the</strong> pedality;<br />

— B32 horizon: <strong>the</strong> pebbles, even if decarbonated <strong>and</strong> wea<strong>the</strong>red usually preserve<br />

<strong>the</strong>ir orig<strong>in</strong>al shape. Rubéfaction <strong>and</strong> clay illuviation are much less expressed<br />

than <strong>in</strong> <strong>the</strong> overly<strong>in</strong>g horizons <strong>and</strong> decrease gradually with depth. On <strong>the</strong> o<strong>the</strong>r<br />

h<strong>and</strong> <strong>the</strong> porosity <strong>in</strong>creases clearly <strong>and</strong> <strong>the</strong> skeleton tends to prevail on <strong>the</strong><br />

matrix;<br />

— C ca horizon: its characteristic feature is <strong>the</strong> accumulation of carbonates partly<br />

leached from <strong>the</strong> overly<strong>in</strong>g horizons.<br />

Where parent material consists of gravel, <strong>in</strong> phase 1 <strong>the</strong> C ca horizon conta<strong>in</strong>s<br />

carbonate nodules encrust<strong>in</strong>g <strong>the</strong> lower part of <strong>the</strong> pebbles, which <strong>in</strong> phase 2<br />

tend to be cemented. Beg<strong>in</strong>n<strong>in</strong>g from phase 3 a petrocalcic horizon develops,<br />

which can reach several metres <strong>in</strong> thickness. While <strong>the</strong> lower limit is diffuse,<br />

<strong>the</strong> upper is generally abrupt <strong>and</strong> very wavy <strong>and</strong> has a very irregular karst-like<br />

surface. The trend described is very similar to <strong>the</strong> development of <strong>the</strong> calcic<br />

horizons <strong>in</strong> o<strong>the</strong>r pedoclimatic environments, described by Gile et alii (1966),<br />

Flach et alii ( 1969) <strong>and</strong> Ruellan ( 1968, 1970). The nature of <strong>the</strong> calcic horizon<br />

also depends to some extent on <strong>the</strong> lithology of <strong>the</strong> C horizon: at Solfer<strong>in</strong>o for<br />

example due to <strong>the</strong> impermeability <strong>and</strong> <strong>the</strong> strong compaction of <strong>the</strong> mora<strong>in</strong>e,<br />

it shows an evident lam<strong>in</strong>ar structure. In s<strong>and</strong>y <strong>and</strong> pelitic sediments (Ghiardo<br />

V, Rivarolo) on <strong>the</strong> contrary it consists of nodules.<br />

The thickness of <strong>the</strong> horizons <strong>and</strong> <strong>the</strong> depth of <strong>the</strong> décalcification front (Fig.<br />

90, 91, 92, 93) <strong>in</strong>crease with time but, at a different rate, <strong>in</strong> each area.<br />

The B22 horizon generally is absent <strong>in</strong> <strong>the</strong> first stage of soil development; it<br />

appears <strong>in</strong> <strong>the</strong> 2nd or 3rd phase, as a result of strong wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> upper<br />

horizons.


THE PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 199<br />

The profiles of <strong>the</strong> paleosols of <strong>the</strong> 5th pedogenetic phase have specific<br />

characteristics which cannot be fitted <strong>in</strong>to <strong>the</strong> model of horizon development<br />

described here for <strong>the</strong> <strong>vetusols</strong> developed <strong>in</strong> gravel.<br />

In <strong>the</strong> Gavardo profile a VIII B22 horizon is exposed, which is at least 6<br />

metres thick. With regard to its degree of rubéfaction, structure <strong>and</strong> Fe-Mn<br />

coat<strong>in</strong>gs, it differs strongly from those of <strong>the</strong> phases 1-4. The paleosol S5 of <strong>the</strong><br />

Bagaggera bas<strong>in</strong> sequence, which is severely eroded, consists of a shallow B3<br />

which has oxic characteristics <strong>and</strong> a Cl horizon.<br />

The latter horizon is a saprolite which is sometimes mottled <strong>and</strong> locally shows<br />

cementation by silica; it passes to <strong>the</strong> unwea<strong>the</strong>red calcareous rock through a co re<br />

sto n es zone without an <strong>in</strong>termediate calcic horizon.<br />

Fig. 9 0 - The rates of <strong>in</strong>creas<strong>in</strong>g thickness of <strong>the</strong> B horizons (Garda <strong>vetusols</strong>). Thickness <strong>in</strong>dicated<br />

are mean thickness of <strong>the</strong> various, non eroded, B horizons of each phase.<br />

Fig. 9 0 - Le variazioni di spessore degli orizzonti B (vetusuoli gardesani).


200 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

10.3. WEATHERING OF THE COARSE FRACTION ( > 2 mm)<br />

The décalcification leads to a residual concentration o£ silicate rocks <strong>in</strong> <strong>the</strong><br />

B horizons, (Appendix 2). With progressive wea<strong>the</strong>r<strong>in</strong>g also <strong>the</strong> quartzitic<br />

feldspathic s<strong>and</strong>stones, volcanic <strong>and</strong> metamorphic rocks are <strong>in</strong>creas<strong>in</strong>gly attacked |<br />

<strong>and</strong> are gradually wea<strong>the</strong>red to f<strong>in</strong>e earth ( > 2 mm). Thus, <strong>in</strong> each profile <strong>the</strong> j<br />

fragmentation <strong>and</strong> alteration of stones <strong>in</strong>crease from bottom to top, i.e. form <strong>the</strong><br />

B32 to <strong>the</strong> B22 horizons. The chert clasts which rema<strong>in</strong> after <strong>the</strong> dissolution of<br />

limestone <strong>and</strong> <strong>the</strong> quartz pebbles are fractured <strong>and</strong> reduced <strong>in</strong> size.<br />

The concentration of chert fragments with respect to <strong>the</strong> parent material<br />

<strong>in</strong>creases with time; <strong>in</strong> <strong>the</strong> Garda region <strong>in</strong> <strong>vetusols</strong> of <strong>the</strong> phase 1 <strong>the</strong> ratio is—<br />

about 3, <strong>in</strong> <strong>vetusols</strong> of phase 2 about 6, <strong>in</strong> older <strong>vetusols</strong> <strong>in</strong> ranges from 6 to 10.


THE PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 201<br />

Removal of carbonates <strong>and</strong> concurrent concentration of chert are at <strong>the</strong> same<br />

time <strong>the</strong> cause of an important reduction <strong>in</strong> thickness of soil horizons with<br />

respect to <strong>the</strong> orig<strong>in</strong>al parent material. For a limited number of profiles, this<br />

reduction, has been calculated accord<strong>in</strong>g to <strong>the</strong> formula of Brewer (1976); chert,<br />

quartz <strong>and</strong> s<strong>and</strong>stones with siliceous cement have been chosen as stable matefials.<br />

The results presented <strong>in</strong> Tab. 1 which are based on a limited number of data,<br />

have only an <strong>in</strong>dicative value. Never<strong>the</strong>less <strong>the</strong>y po<strong>in</strong>t to a strong decrease <strong>in</strong><br />

thickness of <strong>the</strong> parent material <strong>in</strong> particular for <strong>the</strong> oldest <strong>vetusols</strong>. The<br />

obta<strong>in</strong>ed values are not very different from those calculated by Born<strong>and</strong> (1978)<br />

for <strong>the</strong> <strong>vetusols</strong> of <strong>the</strong> Rhone valley.<br />

Fig. 92 - The rates of <strong>in</strong>creas<strong>in</strong>g thickness of <strong>the</strong> B horizons (Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>vetusols</strong>).<br />

Fig. 92 - Le variazioni di spessore degli orizzonti B (vetusoli del marg<strong>in</strong>e appenn<strong>in</strong>ico).


202 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN!<br />

Table 1 - Thickness reduction of paleosols <strong>in</strong> gravel. Q = <strong>the</strong> parent material quotient (% by weight I<br />

of <strong>the</strong> stable constituents <strong>in</strong> <strong>the</strong> parent material / 12 by weight <strong>the</strong> stable constituents <strong>in</strong> *<br />

<strong>the</strong> present day soil horizons); Vs: volume of present day soil horizons, Vp = volume of ;<br />

<strong>the</strong> parent material; Ts = thickness of <strong>the</strong> present day soil horizon; Tp = orig<strong>in</strong>al<br />

thickness of <strong>the</strong> parent material.<br />

><br />

Q Vs/Vp Tp Ts Tp - Ts<br />

m m m<br />

Holocene (Phase 1)<br />

Alps B 31 0.68 0.74 0.72 0.54 0.2<br />

Apenn<strong>in</strong>es B 31 0.45 0.49 0.91 0.55 0.4<br />

Upper Pleistocene (Phase 2)<br />

Alps B 31 0.45 0.47 2.13 1.00<br />

B 32 0.47 0.49 4.10 2.00<br />

6.23 3.00 3<br />

Middle Pleistocene (Phase 3)<br />

Apenn<strong>in</strong>es B 22 0.11 0.12 6.40 0.70<br />

B 31 0.26 0.27 5.50 1.50<br />

B 32 0.36 0.38 7.90 3.00<br />

19.80 5.20 15<br />

Middle late Early Pleistocene (Phase 4)<br />

Alps B 22 0.12 0.13 19.20 2.50<br />

B 31 0.20 0.20 30.00 6.60<br />

B 32 0.33 0.34 29.40 10.00<br />

78.60 18.50 61<br />

10.4. EVOLUTION OF THE FINE EARTH (See also section 9.1. <strong>and</strong> Fig. 89)<br />

The unwea<strong>the</strong>red parent material conta<strong>in</strong>s a relatively small amount of f<strong>in</strong>e<br />

earth ( < mm), from 30 to 10?i, which largely consists of s<strong>and</strong> size material.<br />

The f<strong>in</strong>e earth content <strong>in</strong>creases clearly <strong>in</strong> each profile from bottom to top<br />

<strong>and</strong> <strong>in</strong>side each <strong>in</strong>dividual horizon, from more recent <strong>vetusols</strong> to older <strong>vetusols</strong><br />

(App. 2, Tab. 3).<br />

In <strong>the</strong> B 22 horizons of <strong>the</strong> older phases <strong>the</strong> percentage of <strong>the</strong> coarse fraction<br />

is sometimes reduced from 60-70? parent material down to 1?.<br />

In order to evaluate <strong>the</strong> enrichment <strong>in</strong> clay of each horizon <strong>the</strong> clay B<br />

max/clay C-ratio has been calculated (Fig. 94).<br />

The analytically determ<strong>in</strong>ed horizon of maximum clay content is <strong>the</strong> B31 for a<br />

great number of <strong>vetusols</strong> <strong>and</strong> more rarely <strong>the</strong> B22. This phenomenon, often <strong>in</strong>


1<br />

<strong>the</strong> PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 203<br />

contrast with <strong>the</strong> field <strong>in</strong>dications, can be due to <strong>the</strong> strong concentration of iron<br />

hydroxides <strong>in</strong> <strong>the</strong> B22 which have not allowed an appropriate dispersion of clay<br />

dur<strong>in</strong>g analyses.<br />

The <strong>in</strong>crease <strong>in</strong> clay, dist<strong>in</strong>ct already <strong>in</strong> vetusol <strong>and</strong> paleosols from <strong>the</strong> first<br />

pedogenetic phase, tends to <strong>in</strong>crease ra<strong>the</strong>r regularly with time. It is slightly<br />

stronger <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>the</strong> Adda area than <strong>in</strong> <strong>the</strong> Garda region. The<br />

clay content of <strong>the</strong> buried soils does not differ considerably from that of <strong>the</strong><br />

<strong>vetusols</strong> of <strong>the</strong> same phase.<br />

10-<br />

5-<br />

0 -<br />

I I I I I IV<br />

phases<br />

93 - The deepen<strong>in</strong>g of <strong>the</strong> décalcification front.<br />

P'g- 93 - L’approfondirsi del fronte di decalcificazione.


204 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

10.5. MICROMORPHOLOGICAL CHARACTERISTICS (Tab. 2 <strong>and</strong> 3)<br />

-"i<br />

Already <strong>in</strong> <strong>vetusols</strong> of <strong>the</strong> first phases <strong>the</strong> soil matrix is porphyroskelic. This<br />

<strong>in</strong>dicates that already dur<strong>in</strong>g <strong>the</strong> first stages of <strong>the</strong> pedogenetic evolution a<br />

massive production of clay took place.<br />

The plasma is usually rich <strong>in</strong> iron <strong>and</strong> rubefied; <strong>in</strong> <strong>the</strong> oldest phases often a<br />

redistribution of <strong>the</strong> iron due to hydromorphism was observed.<br />

The voids ma<strong>in</strong>ly consist of <strong>in</strong>terconnected channels, chambers <strong>and</strong> vughs.<br />

They are particularly developed at <strong>the</strong> base of <strong>the</strong> profiles. In <strong>the</strong> B32 horizons,<br />

<strong>and</strong> decrease <strong>in</strong> <strong>the</strong> upper horizons, especially <strong>in</strong> <strong>the</strong> B22t where <strong>the</strong> planes<br />

dom<strong>in</strong>ate.<br />

The plasmic fabric shows significant variations, both <strong>in</strong>side each profile <strong>and</strong><br />

<strong>in</strong> time. The sepicity of <strong>the</strong> plasma is strongest <strong>in</strong> <strong>the</strong> B21t <strong>and</strong> B22t horizons<br />

<strong>and</strong> decreases considerably <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g horizons. The soil chronosequences<br />

first exhibit an <strong>in</strong>crease of <strong>the</strong> sepicity, due to a progressive organization of <strong>the</strong><br />

plasmatic structure, while <strong>in</strong> <strong>the</strong> oldest profiles (some phases IV, phases V of <strong>the</strong><br />

Garda <strong>and</strong> of <strong>the</strong> Adda) <strong>the</strong> plasma is undulic or isotic <strong>and</strong> very rich <strong>in</strong> iron, <strong>and</strong><br />

shows a polyhedric or glomerular microfabric (pseudos<strong>and</strong>s).


<strong>the</strong> PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 205<br />

Table 2 - The micromorphological characteristics of <strong>the</strong> paleosols <strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge<br />

(legend <strong>in</strong> Tab. 3).<br />

Alp<strong>in</strong>e Marg<strong>in</strong> - Garda mora<strong>in</strong>es<br />

pedogenic horizon voids plasma plasmic cutans glabulae<br />

phases<br />

fabric<br />

1 B 31 v+ch (cc) clear brown <strong>in</strong>sepic A l(c) Fe Mn (f)<br />

Holocene<br />

2 B 31 V (f), pi (m) brown red mosepic A1 (cc), A2 (f) pap (c)<br />

Upper Pleist.<br />

Acorn (m)<br />

3 B 22 v+ch+pl (c) red brown masepic A1 (c) Fe Mn (c)<br />

Middle Pleist. A com (m) pap (c)<br />

B 31 ch+pl (c) red brown masepic A1 (m) Fe Mn (c)<br />

A com (cc) pap (c)<br />

B 32 ch+pl (c) red brown argillasepic A1 (mm) Fe Mn (f)<br />

A com (c) pap (f)<br />

4 B 22 pi (m) red argillasepic A1 (m) Fe Mn (c)<br />

A com (c)<br />

Middle Pleist.<br />

B 31 pl+ch (cc) red brown argil-<strong>in</strong>sepic A1 (m) Fe Mn (c)<br />

5 B 21 V (c) ch (f) dark red isotic undulic Fe Mn (c)<br />

Late Early «pseudos<strong>and</strong> » -<br />

Pleist. B 22 V (c) ch (f) dark red undulic A1 (ff) Fe Mn (c)<br />

Alp<strong>in</strong>e marg<strong>in</strong> - Gecco piedmont<br />

Pedogenic horizon voids plasma plasmic cutans glabulae<br />

phases<br />

fabric<br />

1 B 31 ch+chm (cc) clear brown argillasepic A1 (c) pap (ff)<br />

Holocene<br />

Acom (ff)<br />

2 B 22 v+ch+chm (c) brown red vo-mosepic A1 (m) Fe Mn (f)<br />

Upper<br />

Acom (m)<br />

Pleist. B 31 v+ch+chm+pl brown red <strong>in</strong>sepic A1 (c) pap (c)<br />

(c)<br />

Acom (cc)<br />

4 B 21 v+ch+chm (c) red brown argillasepic A1 (c) Fe Mn (c)<br />

Late Early B 22 v+ch+chm (cc )red brown argillasepic A1 (m) Fe Mn (c)<br />

Pleist.<br />

A com (cc) pap (c)<br />

B 31 ch+chm (cc) brown red argillasepic A1 (c)<br />

A com (m)<br />

B 32 ch+chm (m) brown red argillasepic A1 (mm)<br />

A com (c)<br />

5 B 3 v (f) red isotic-undulic — FeMm (f)<br />

Early Pleist.<br />

Late Plioc.


206 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAlhT<br />

7m<br />

1 able i - The micromorphological characteristics of <strong>the</strong> paleosols <strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> Apcnn<strong>in</strong>e '<br />

fr<strong>in</strong>ge. -<br />

Apenn<strong>in</strong>e marg<strong>in</strong><br />

Pedogenetic horizon<br />

phases<br />

voids plasma plasmic<br />

fabric<br />

cutans<br />

glabulae<br />

1 B 21 v+ch (c) clear brown <strong>in</strong>sepic A1 (ff) Fe Mn (c)<br />

Holocene - B 31 v+ch-l-pl (c) clear brown vomosepic A1 (m) Fe Mn (c)<br />

Late Pleist.<br />

A com (f)<br />

2 B 21 v+ch+pl (f) clear brown mosepic A1 (c) Fe Mn (c)<br />

Middle<br />

A com (cc)<br />

Pleist. B 22 v+ch+pl (c) clear brown mosepic A1 (f) Fe Mn (c)<br />

A com (cc)<br />

B 31 v-l-ch (m) brown <strong>in</strong>sepic A1 (cc) Fe Mn (c)<br />

A com (cc)<br />

3 B 21 v+ch-tpl (f-c) red argilbimasepic<br />

A1 (cc), A2 Fe Mn (c)<br />

(cc)<br />

Middle A com (c) pap .(c)<br />

Pleist. B 22 v-l-ch (c) red brown (bi)masepic A1 (m), A2 (f)Fe Mn (c)<br />

A com (c) pap.(c)<br />

B 31 v-tch (m) brown argillasepic A1 (mm) Fe Mn (c)<br />

A com (f)<br />

V = vughs; ch = channels; chm = chambers; pi = planes<br />

A1 = ferri-argillans, A2 = argillans, gra<strong>in</strong>y cutans, C com = complex cutans<br />

Fe Mn = Fe Mn nodules <strong>and</strong> concretions; pap = papulae<br />

f = few; c = common; m = many.<br />

Illuvial cutans are scarce <strong>in</strong> <strong>the</strong> B2 horizons, <strong>the</strong>y <strong>in</strong>crease appreciably <strong>in</strong> <strong>the</strong><br />

B31 <strong>and</strong> reach <strong>the</strong>ir maximum <strong>in</strong> <strong>the</strong> B32. This distribution is expla<strong>in</strong>ed by <strong>the</strong><br />

mechanism of deposition of <strong>the</strong> cutans <strong>and</strong> by <strong>the</strong> dynamic nature of <strong>the</strong> uppermost<br />

horizons. The greatest concentration of illuvial cutans is at <strong>the</strong> top of <strong>the</strong><br />

B3 horizons, because of <strong>the</strong> secondary porosity <strong>and</strong> <strong>the</strong> fragmentation of <strong>the</strong><br />

skeleton caused by <strong>the</strong> décalcification. The amount of argillans is much lower <strong>in</strong><br />

<strong>the</strong> B21t <strong>and</strong> B22t horizons, although <strong>the</strong>se horizons conta<strong>in</strong> high percentages of<br />

clay. It is well known (Nettleton et alii, 1969; Me Keague, 1983) that swell <strong>and</strong><br />

shr<strong>in</strong>k <strong>and</strong> biological homogenization <strong>in</strong> <strong>the</strong>se clayey horizons may destroy<br />

exist<strong>in</strong>g cutans <strong>and</strong> lead to <strong>the</strong>ir <strong>in</strong>corporation <strong>in</strong>to <strong>the</strong> matrix.<br />

The occurrence, thickness <strong>and</strong> development of argillans <strong>in</strong>crease with time,<br />

while <strong>the</strong>ir birefr<strong>in</strong>gence <strong>and</strong> <strong>in</strong>ternal lam<strong>in</strong>ation <strong>in</strong>crease from <strong>the</strong> first to <strong>the</strong><br />

second phase <strong>and</strong> <strong>the</strong>n decrease clearly: <strong>the</strong> cutans loose <strong>the</strong>ir lam<strong>in</strong>ation, birefr<strong>in</strong>gence<br />

<strong>and</strong> degree of separation from <strong>the</strong> S-matrix. Complex cutans are characteristic<br />

for <strong>the</strong> <strong>vetusols</strong> studied: <strong>the</strong>y consist of skeletans, siltans, matrans, but<br />

<strong>the</strong>se are irregularly alternat<strong>in</strong>g with argillans <strong>and</strong> ferri-argillans. This implies that<br />

i!lii


<strong>the</strong> PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 207<br />

<strong>the</strong> process which caused <strong>the</strong>ir formation, must have alternated <strong>in</strong> annual or<br />

seasonal short cycles with <strong>the</strong> normal process of clay translocation. Consider<strong>in</strong>g<br />

<strong>the</strong> nature of <strong>the</strong> complex cutans, it seems very unlikely that <strong>the</strong> coarse cutans are<br />

connected with dramatic phases of soil degradation; on <strong>the</strong> contrary, <strong>the</strong>y seem<br />

to be a ra<strong>the</strong>r normal phenomenon. Among <strong>the</strong> factors that led to <strong>the</strong> formation<br />

of <strong>the</strong> coarse cutans, <strong>the</strong> alternation of freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g <strong>in</strong> <strong>the</strong> superficial<br />

horizons of <strong>the</strong> soil <strong>and</strong> <strong>the</strong> large water <strong>in</strong>put connected with snow melt<strong>in</strong>g seem<br />

to play a major role. In <strong>the</strong> area studied <strong>the</strong>re are 40-50 days of frost per year <strong>and</strong><br />

snow persists for 15-25 days (M<strong>in</strong>istero dei Lavori Pubblici, 1973). Comparison<br />

of <strong>the</strong> frequency of complex cutans with <strong>the</strong> age of <strong>the</strong> <strong>vetusols</strong> shows that <strong>the</strong><br />

cutans are slightly expressed <strong>in</strong> <strong>vetusols</strong> of <strong>the</strong> first phase (Holocene or Late<br />

Pleistocene) where <strong>the</strong>y occur as matrans <strong>and</strong> discont<strong>in</strong>uous skeletans, <strong>in</strong>terbedded<br />

with th<strong>in</strong> ferri-argillans. Start<strong>in</strong>g from <strong>the</strong> second phase (Late <strong>and</strong> Middle<br />

Pleistocene), complex cutans become numerous <strong>and</strong> strongly expressed; <strong>the</strong>y are<br />

composed of thick, cont<strong>in</strong>uous siltans <strong>and</strong> skeletans <strong>and</strong> <strong>in</strong> a smaller amount by<br />

matrans, <strong>in</strong>terbedded with well developed ferri-argillans. Although <strong>the</strong> coarse<br />

cutans are well developed <strong>in</strong> <strong>vetusols</strong> <strong>the</strong>y are absent from <strong>the</strong> correspond<strong>in</strong>g<br />

buried paleosol (compare, for <strong>in</strong>stance <strong>the</strong> II B21t horizon of <strong>the</strong> Bagaggera<br />

1 profile with <strong>the</strong> correspond<strong>in</strong>g VI B21t horizon of <strong>the</strong> Bagaggera 3 profile, <strong>and</strong><br />

<strong>the</strong> buried paleosol <strong>in</strong> <strong>the</strong> Calvagese sequence with <strong>the</strong> S. Biagio profile). Coarse<br />

cutans thus are connected with upper horizons of strongly developed soils, i.e.,<br />

hav<strong>in</strong>g B horizons which are clayey <strong>and</strong> have a dist<strong>in</strong>ct porosity. It must be<br />

stressed that complex cutans are dom<strong>in</strong>ant micromorphologic features <strong>in</strong> <strong>vetusols</strong><br />

which have undergone one or more glacial periods.<br />

In <strong>the</strong> upper horizons (B21t <strong>and</strong> B22t) of <strong>the</strong> paleosols of phase 5 <strong>the</strong><br />

argillans are almost completely absent <strong>and</strong> only <strong>in</strong> <strong>the</strong> deepest horizons of <strong>the</strong>se<br />

paleosols th<strong>in</strong> weakly separated ferri-argillans occur.<br />

In <strong>the</strong> buried paleosol <strong>in</strong> Flysch <strong>in</strong> <strong>the</strong> Bagaggera sequence (phase 5) cutanic<br />

features are developed <strong>in</strong> VCg horizon, <strong>the</strong>y consist of silica (silans) <strong>in</strong>side <strong>the</strong><br />

pores of <strong>the</strong> Cl horizon <strong>and</strong> probably cause <strong>the</strong> slight cementation of that<br />

horizon.<br />

Micromorphological features related to hydromorphic conditions (glabulae,<br />

cutanic <strong>and</strong> neocutanic features, mottl<strong>in</strong>g <strong>and</strong> gra<strong>in</strong>y cutans) are generally well<br />

represented <strong>in</strong> <strong>the</strong> top horizons of <strong>the</strong> <strong>vetusols</strong>; <strong>the</strong>y are clearly due to <strong>the</strong> poor<br />

<strong>in</strong>ternal dra<strong>in</strong>age <strong>in</strong>duced by <strong>the</strong> high clay content. Fe-Mn concentrations both <strong>in</strong><br />

<strong>the</strong> form of glabules <strong>and</strong> of cutans are particularly developed <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> of<br />

<strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

Vetusols of Phase 3 <strong>in</strong> <strong>the</strong> studied area show prom<strong>in</strong>ent pseudogley <strong>in</strong> <strong>the</strong><br />

B21t <strong>and</strong> B22t horizons.<br />

10.6. RUBEFACTION AND FREE IRON CONTENT<br />

The redness rat<strong>in</strong>g <strong>in</strong>dex has been calculated, accord<strong>in</strong>g to Torrent et alii<br />

(1980), for <strong>the</strong> B22t <strong>and</strong> B31t horizons, of most of <strong>the</strong> profiles described <strong>in</strong><br />

Appendix 1. The results are represented <strong>in</strong> Fig. 95.


208 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

In <strong>the</strong> Apenn<strong>in</strong>e as well as <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> redness <strong>in</strong>dex of <strong>the</strong><br />

<strong>vetusols</strong> <strong>in</strong>creases with time; it must be emphasi2ed that <strong>in</strong> older <strong>vetusols</strong> <strong>the</strong><br />

higher rubéfaction values are associated with <strong>the</strong> presence of crystall<strong>in</strong>e hematite<br />

recorded by X ray-analysis (Appendix 4).<br />

Fur<strong>the</strong>rmore <strong>the</strong> rubéfaction curve is systematically higher, for each pedogenetic<br />

phase <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> <strong>the</strong> Garda <strong>vetusols</strong> than <strong>in</strong> <strong>the</strong><br />

Adda ones. Rubéfaction <strong>the</strong>refore seems directly correlated with <strong>the</strong> moisture<br />

regime of <strong>the</strong> soils, which is xeric at <strong>the</strong> Appenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>in</strong> Garda <strong>and</strong> udic<br />

<strong>in</strong> <strong>the</strong> Adda region (Section 2.1.3).<br />

In <strong>the</strong> older pedogenetic phases (4 <strong>and</strong> 5) <strong>the</strong> redness <strong>in</strong>dex is occasionally<br />

lower than <strong>in</strong> more recent phases; this is due to hydromorphic phenomena which<br />

affect <strong>the</strong> upper horizons of <strong>the</strong>se soils.<br />

10.7. MINERALOGICAL CHARACTERISTICS AND CATION<br />

EXCHANCE PROPERTIES<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex (Brewer 1977, see also Appendix 4), calculated on <strong>the</strong><br />

basis of <strong>the</strong> heavy m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> s<strong>and</strong> fraction 250-63 microns, tends to decrease<br />

ra<strong>the</strong>r regularly along each profile (from top to bottom), demonstrat<strong>in</strong>g <strong>the</strong><br />

sensivity of <strong>the</strong> heavy m<strong>in</strong>erals to <strong>the</strong> pedogenetic wea<strong>the</strong>r<strong>in</strong>g.


THE PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 209<br />

Never<strong>the</strong>less, s<strong>in</strong>ce <strong>the</strong> heavy m<strong>in</strong>eral associations vary clearly because of <strong>the</strong><br />

difference <strong>in</strong> composition of <strong>the</strong> parent materials, <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dexes,<br />

calculated from <strong>the</strong>m, cannot have an absolute value. In order to compare <strong>the</strong><br />

degree of wea<strong>the</strong>r<strong>in</strong>g deduced form <strong>the</strong> heavy m<strong>in</strong>eral compositions for all soils<br />

of <strong>the</strong> area, <strong>the</strong> ratio between <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex of <strong>the</strong> B horizons <strong>and</strong> that<br />

of <strong>the</strong> parent material has been calculated for each profile . In this manner effects<br />

caused by <strong>the</strong> variability of <strong>the</strong> parent materials are excluded. The wea<strong>the</strong>r<strong>in</strong>g<br />

<strong>in</strong>dex calculated <strong>in</strong> this way (Fig. 96) turns out to <strong>in</strong>crease gradually with time<br />

for <strong>the</strong> four phases, even though <strong>the</strong> values of some profiles are higher than<br />

normal due to local factors.<br />

The ratios of <strong>the</strong> <strong>vetusols</strong> of <strong>the</strong> GAV 3 unit, for example (see section 4)<br />

po<strong>in</strong>t to stronger wea<strong>the</strong>r<strong>in</strong>g than those of <strong>the</strong> correspond<strong>in</strong>g <strong>vetusols</strong> of <strong>the</strong><br />

WI B3 1 horizon<br />

WI C horizon<br />

T g . 96 - I n c r e a s e o f th e w e a t h e r <strong>in</strong> g <strong>in</strong> d e x <strong>in</strong> th e p e d o g e n e tic p h a s e s .<br />

Fig. 96 - L ’a u m e n to d e ll’<strong>in</strong> d ic e d i a lte r a z io n e n e lle fa si p e d o g e n e tic h e .


210 PALEOSOLS AND VETUSOLS IN THE CENTRAL<br />

same pedogenetic phase. This is most likely due to <strong>the</strong> abundant presence ot'J<br />

pedorelicts orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong> older paleosol of phase 5.<br />

The soils of phase 5, both of <strong>the</strong> Adda <strong>and</strong> of <strong>the</strong> Garda area, strongly differ<br />

from <strong>the</strong> <strong>vetusols</strong> of <strong>the</strong> previous phases <strong>and</strong> show a much more pronunced<br />

alteration.<br />

The <strong>vetusols</strong> of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge conta<strong>in</strong> ma<strong>in</strong>ly smectite, vermicuUte,<br />

illite, <strong>and</strong> k<strong>and</strong>ite. Chlorite appears exclusively <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> from <strong>the</strong> first two<br />

phases, while <strong>in</strong> those of <strong>the</strong> third one, especially <strong>in</strong> <strong>the</strong> B22t horizon of Ronco _<br />

(loc. 27, see section 7.2.), a slight tendency towards higher k<strong>and</strong>ite contents can<br />

be observed.<br />

The cation exchange capacity is ra<strong>the</strong>r high, <strong>in</strong> accordance with <strong>the</strong> observed ~<br />

composition of clay m<strong>in</strong>erals.<br />

The composition of <strong>the</strong> <strong>vetusols</strong> of <strong>the</strong> Garda region is similar. Never<strong>the</strong>less<br />

one can observe a higher k<strong>and</strong>ite contents <strong>in</strong> those of phase 4.<br />

In <strong>the</strong> Adda <strong>vetusols</strong>,smectite is present <strong>in</strong> appreciable amounts only <strong>in</strong> soils<br />

from <strong>the</strong> first <strong>and</strong> second phases while chlorite is present only <strong>in</strong> <strong>the</strong> first one.<br />

Vermiculite is particularly abundant <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> of phase 3, while it decreases<br />

<strong>in</strong> <strong>the</strong> older <strong>vetusols</strong>. In <strong>the</strong> phases 4 <strong>and</strong> 5 k<strong>and</strong>ite <strong>and</strong> illite become <strong>the</strong><br />

prevail<strong>in</strong>g clay m<strong>in</strong>erals. The cation exchange capacity of <strong>the</strong> Adda <strong>vetusols</strong> on<br />

<strong>the</strong> average it also lower than those of <strong>the</strong> o<strong>the</strong>r regions.<br />

The analyses clearly show that, with<strong>in</strong> each chronosequence, <strong>vetusols</strong> of <strong>the</strong><br />

pedogenetic phases 1 to 4 have a clay m<strong>in</strong>eralogy which shows little change with<br />

time <strong>and</strong> is largely <strong>in</strong>herited from <strong>the</strong> parent material. Transformation <strong>and</strong><br />

neoformation of clay m<strong>in</strong>erals apparently play a subord<strong>in</strong>ate role.<br />

However a clear <strong>in</strong>crease <strong>in</strong> k<strong>and</strong>ite m<strong>in</strong>erals, <strong>in</strong>dicative for a more<br />

pronounced neoformation, has been recorded <strong>in</strong> <strong>the</strong> vetusol of phase 5.<br />

In conclusion, clay m<strong>in</strong>eral formation seems to have been ra<strong>the</strong>r weak <strong>and</strong> to<br />

have been dom<strong>in</strong>ated by <strong>the</strong> heritage mechanism (Duchaufour 1977), ra<strong>the</strong>r than<br />

by neoformation. It certa<strong>in</strong>ly does not exceed <strong>the</strong> characteristics of <strong>the</strong> bisiallitic<br />

alteration as def<strong>in</strong>ed by Pedro (1968).<br />

10.8. CONCLUSIONS: THE DEVELOPMENT OF THE VETUSOLS AND<br />

PALEOSOLS IN GRAVEL AND DIAMICTON<br />

Apart from physical wea<strong>the</strong>r<strong>in</strong>g, which although certa<strong>in</strong>ly of importance, was<br />

not separately studied here, four ma<strong>in</strong> pedogenetic processes have determ<strong>in</strong>ed <strong>the</strong><br />

development of <strong>the</strong> paleolsols <strong>and</strong> <strong>vetusols</strong> of this group dur<strong>in</strong>g <strong>the</strong> first four<br />

pedogenetic phases (late Early Pleistocene to Early Holocene):<br />

1 . décalcification of <strong>the</strong> f<strong>in</strong>e earth, dissolution of <strong>the</strong> limestone gravel, <strong>and</strong><br />

development of a calcic/petrocalcic horizon at <strong>the</strong> base of <strong>the</strong> profiles.<br />

2 . rubéfaction.<br />

3. translocation <strong>and</strong> accumulation of illuvial clay.<br />

4. shght hydromorphy <strong>in</strong> upper horizons of <strong>the</strong> profiles.<br />

The décalcification leads to a discernible reduction of <strong>the</strong> volume of <strong>the</strong><br />

parent material <strong>and</strong> to a release of a considerable amount of clay <strong>and</strong> iron (hydr)


THE PALEOSOLS AND VETUSOLS IN GRAVELS AND IN DIAMICTON 211<br />

oxides. The décalcification develops through soutirage or altération hypodermique<br />

(Born<strong>and</strong>, 1978), caus<strong>in</strong>g especially at <strong>the</strong> base of <strong>the</strong> B32 high secondary<br />

porosity that improves <strong>the</strong> <strong>in</strong>ternal dra<strong>in</strong>age of <strong>the</strong> soil. This process <strong>the</strong>refore<br />

tends to enhance itself, caus<strong>in</strong>g <strong>the</strong> progressive lower<strong>in</strong>g of <strong>the</strong> décalcification<br />

front.<br />

Orig<strong>in</strong>ally <strong>the</strong> penomenon takes place at <strong>the</strong> expense of <strong>the</strong> loose parent<br />

material; it cont<strong>in</strong>ues by dissolv<strong>in</strong>g <strong>the</strong> calcic horizon previously formed,<br />

generat<strong>in</strong>g <strong>the</strong> typical features called Geologische Orgeln.<br />

The wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> decarbonated fragments proceeds rapidly through <strong>the</strong><br />

dis<strong>in</strong>tegration of clasts. The heavy m<strong>in</strong>eral analyses testify that <strong>the</strong> hydrolysis of<br />

<strong>the</strong> silicate m<strong>in</strong>erals occurs from <strong>the</strong> early beg<strong>in</strong>n<strong>in</strong>g <strong>and</strong> cont<strong>in</strong>ues progressively<br />

with time.<br />

Rubéfaction, even if slightly expressed, already exists <strong>in</strong> more recent soils <strong>and</strong><br />

tends to <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tensity with time. The clay accumulation rate shows a quite<br />

similar trend. The clay m<strong>in</strong>erals are largely <strong>in</strong>herited <strong>and</strong> neoformation is at most<br />

weakly expressed. From <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g on, plasma with sepic fabric develops. The<br />

ferri-argillans are very common, but <strong>the</strong>ir distribution varies <strong>in</strong>side <strong>the</strong> profiles:<br />

<strong>in</strong> <strong>the</strong> B21t <strong>and</strong> B22t horizons <strong>the</strong>y are often destroyed <strong>and</strong> <strong>in</strong>corporated <strong>in</strong> <strong>the</strong><br />

matrix, whereas <strong>the</strong>y are strongly expressed <strong>in</strong> <strong>the</strong> B31t horizons. In <strong>the</strong> latter<br />

<strong>the</strong>y sometimes represent <strong>the</strong> whole plasma. They evolve with time <strong>in</strong> a way<br />

comparable to that recorded <strong>in</strong> <strong>the</strong> soils of <strong>the</strong> Maremma Toscana (Ferrari, 1968)<br />

or <strong>in</strong> Latium (Remmelzwaal, 1979): dur<strong>in</strong>g <strong>the</strong> first two pedogenetic phases,<br />

<strong>the</strong>y <strong>in</strong>crease <strong>in</strong> amount, <strong>in</strong> complexity <strong>and</strong> thickness, but already from <strong>the</strong> third<br />

phase <strong>the</strong>y tend to loose <strong>the</strong>ir separation <strong>and</strong> birefr<strong>in</strong>gence.<br />

In time soil formation leads to a thicken<strong>in</strong>g of <strong>the</strong> solum, which can be<br />

subdivided <strong>in</strong>to a characteristic sequence of horizons (Fig. 97): B21t, B22t, B31t,<br />

B32t, C ca. The A horizons, where preserved, have developed <strong>in</strong> colluvial<br />

deposits ly<strong>in</strong>g on erosional surfaces <strong>in</strong> <strong>the</strong> top part of <strong>the</strong> <strong>vetusols</strong>. The B21t<br />

generally developed <strong>in</strong> a pelitic layer on <strong>the</strong> top of gravel.<br />

The well-developed B22t only occurs <strong>in</strong> soils from <strong>the</strong> second or third phase<br />

or older, as it is result of a strong dis<strong>in</strong>tegration of gravel <strong>and</strong> of strong<br />

wea<strong>the</strong>r<strong>in</strong>g.<br />

<strong>Po</strong>or dra<strong>in</strong>age, <strong>in</strong>duced by strong clay accumulation <strong>in</strong> <strong>the</strong> B21t <strong>and</strong> B22t<br />

horizons dur<strong>in</strong>g older phases, leads to <strong>the</strong> development of hydromorphic features<br />

(pseudogley).<br />

In some cases geomorphological surfaces, which were already subjected to<br />

soil form<strong>in</strong>g processes, were partly buried dur<strong>in</strong>g glacial periods by very thick<br />

sedimentary covers. This precluded any fur<strong>the</strong>r soil development. These<br />

stratigraphic situations allow to compare buried paleosols with <strong>the</strong> correspond<strong>in</strong>g<br />

<strong>vetusols</strong> <strong>and</strong> to <strong>in</strong>fer <strong>the</strong> <strong>in</strong>itial conditions of pedogenesis.<br />

By compar<strong>in</strong>g for example <strong>the</strong> buried paleosol of Torre di Mocas<strong>in</strong>a (loc, 4)<br />

with <strong>the</strong> correpsond<strong>in</strong>g vetusol of <strong>the</strong> S. Biagio profile (loc. 2), <strong>and</strong> <strong>the</strong> Copreno<br />

one (loc. 21) with <strong>the</strong> Ronco Briant<strong>in</strong>o profile (loc. 20), one can observe that<br />

<strong>in</strong> buried paleosols rubéfaction, clay translocation <strong>and</strong> dis<strong>in</strong>tegration of gravel are<br />

already well developed <strong>and</strong> similar to <strong>the</strong> features of <strong>the</strong> <strong>vetusols</strong>.<br />

The pedogenetic features produced dur<strong>in</strong>g a s<strong>in</strong>gle <strong>in</strong>terglagial period thus do


PALEOSOLS AND VETUSOLS IN THE CENTRAL PO I


t<br />

XUC <strong>the</strong> p a l e o s o l s a n d v e t u s o l s <strong>in</strong> g r a v e l s a n d <strong>in</strong> d ia m ic t o n 213<br />

not differ qualitatively from those of a vetusol which developed over a longer<br />

time which lasted several glacial periods.<br />

The difference consists ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> thickness along which <strong>the</strong> pedogenetic<br />

features occur, which is much higher <strong>in</strong> <strong>the</strong> <strong>vetusols</strong> <strong>and</strong>, at a microscale, <strong>in</strong> <strong>the</strong><br />

presence of coarse illuviation which is typical for <strong>the</strong> upper horizons of <strong>the</strong>se<br />

<strong>vetusols</strong>.<br />

The expression of most pedological processes <strong>in</strong>creases with time without any<br />

apparent deceleration <strong>in</strong> <strong>the</strong> more recent (f<strong>in</strong>al) phases: décalcification <strong>and</strong> clay<br />

translocato<strong>in</strong> are still active processes. Therefore <strong>the</strong> soil system, <strong>in</strong> any stage of<br />

vetusol development, has losses that largely exceed <strong>the</strong> ga<strong>in</strong>s <strong>and</strong> has not reached<br />

<strong>the</strong> steady state as def<strong>in</strong>ed by Yaalon, 1971 (see also Bockheim, 1980).<br />

Given strong similarities between parent materials, some of <strong>the</strong> observed<br />

differences <strong>in</strong> soil characteristics seem to be related to differences between <strong>the</strong><br />

local climates with<strong>in</strong> <strong>the</strong> studied area.<br />

In <strong>the</strong> soils of <strong>the</strong> Adda zone, where at present (section 2.1.2.) <strong>the</strong> ra<strong>in</strong>fall is<br />

higher <strong>and</strong> <strong>the</strong> moisture regime is udic, <strong>the</strong> décalcification front is deeper, <strong>the</strong><br />

accumulation of clay is less, <strong>and</strong> <strong>the</strong> hydromorphy of <strong>the</strong> upper horizons less<br />

developed <strong>in</strong> comparison with <strong>the</strong> soils of <strong>the</strong> Garda <strong>and</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, where<br />

<strong>the</strong> present climate is drier <strong>and</strong> <strong>the</strong> moisture regime xeric.<br />

S<strong>in</strong>ce <strong>the</strong>se differences can be found systematically <strong>in</strong> each member of <strong>the</strong><br />

chronosequences, it is possible that, <strong>in</strong> non glacial periods dur<strong>in</strong>g <strong>the</strong> Pleistocene,<br />

<strong>the</strong> present differences <strong>in</strong> climate with<strong>in</strong> <strong>the</strong> area were already exist<strong>in</strong>g.<br />

The buried paleosols of <strong>the</strong> phase 5 are enclosed <strong>in</strong> <strong>the</strong> lower parts of <strong>the</strong><br />

Gavardo (GAV 1) (loc. 1), Castenedolo (CAST 2) (loc. 8) <strong>and</strong> Bagaggera (S5)<br />

(loc. 23) sequences (sections 7.1., 7.3., 7.5).<br />

The stratigraphic evidence <strong>in</strong>dicates that <strong>the</strong>se soils were fully developed, <strong>and</strong><br />

did not evolve any more, beg<strong>in</strong>n<strong>in</strong>g from <strong>the</strong> Early Pleistocene.<br />

In fact pedorehcts of those soils have been found <strong>in</strong> early Middle Pleistocene<br />

mora<strong>in</strong>e (Calvagese) <strong>and</strong> <strong>in</strong> fluvioglacial deposits of <strong>the</strong> same age (Gavardo).<br />

As discussed before, <strong>the</strong> paleosols of phase 5 are <strong>the</strong> results of stronger<br />

wea<strong>the</strong>r<strong>in</strong>g than <strong>in</strong> younger soils. From a micromorphological po<strong>in</strong>t of view, <strong>the</strong>y<br />

show oxic features (accord<strong>in</strong>g to Stoops, 1983) but <strong>the</strong>ir m<strong>in</strong>eralogical <strong>and</strong><br />

chemical characteristics do not reach <strong>the</strong> requirements for ferrallitic processes (Soil<br />

Survey Staff, 1975; Duchaufour, 1977; Fitzpatrick, 1980) <strong>and</strong> should be regarded<br />

as <strong>in</strong>termediate between ferrug<strong>in</strong>ous <strong>and</strong> ferrallitic soils.<br />

Therefore it seems probable that <strong>the</strong> climate dur<strong>in</strong>g <strong>the</strong>ir formation was<br />

warmer than <strong>the</strong> present <strong>and</strong> precipitation might have been higher <strong>and</strong> more<br />

evenly distributed than it is to-day.<br />

The Bagaggera, loc. (23), (S5) paleosol, however, has some specific<br />

characteristics; it has developed <strong>in</strong> an erosional surface, cut <strong>in</strong>to <strong>the</strong> Bergamo<br />

Flysch. Below <strong>the</strong> B horizon which has clear oxic characteristics, <strong>the</strong>re is a thick<br />

saprolite <strong>and</strong> a discont<strong>in</strong>uous silcrete. Therefore it shows better expressed<br />

«tropical» features than o<strong>the</strong>r paleosols <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> same phase. As discussed<br />

<strong>in</strong>section 3.2.7., on <strong>the</strong> basis of <strong>the</strong> stratigraphic context, it should be dated back<br />

at least to late Tertiary.


11.<br />

T H E S O I L S A N D V E T U S O L S I N L O E S S<br />

As has already been discussed <strong>in</strong> section 3.6, <strong>the</strong> loesses encountered consist<br />

of th<strong>in</strong> strata which have been affected by pedogenic processes to such an extent<br />

that <strong>the</strong>ir orig<strong>in</strong>al characteristics are obliterated. For <strong>in</strong>formation on <strong>the</strong>se<br />

characteristics reference is made to <strong>the</strong> above mentioned section.<br />

11.1. MORPHOLOGY AND MICRO MORPHOLOGY OF THE SOIL<br />

HORIZONS<br />

The profiles <strong>in</strong> loess of <strong>the</strong> Adda area consist (loc. 15, 17, 18, 19, 23) of<br />

several superimposed loess covers.<br />

The <strong>vetusols</strong> developed <strong>in</strong> <strong>the</strong> loesses overly<strong>in</strong>g <strong>the</strong> «Middle Diluvium»<br />

consist of <strong>the</strong> follow<strong>in</strong>g horzons Ap, B l, II B21tx, II B22t (Fig. 98). The Ap +<br />

B1 horizons represent <strong>the</strong> remnant of <strong>the</strong> older A1 <strong>and</strong> A 2, transformed by<br />

agriculmral activities. They correspond to <strong>the</strong> youngest loess cover, <strong>the</strong><br />

discont<strong>in</strong>uity of which with <strong>the</strong> underly<strong>in</strong>g loess is <strong>in</strong>dicated by Upper Palaeolithic<br />

artifacts found at Bagaggera (loc. 23).<br />

Micromorphologically <strong>the</strong>se A horizons are devoid of plasmatic separations<br />

<strong>and</strong> <strong>the</strong> plasma itself has low birefr<strong>in</strong>gence.<br />

The underly<strong>in</strong>g II B21tx horizon shows well developed structure, bleached<br />

<strong>in</strong>terpedal tongues, yellow-brown colours <strong>and</strong> <strong>in</strong>dications of temporary<br />

hydromorphy (mottl<strong>in</strong>g, Fe-Mn nodules). The plasmic fabric ranges from <strong>in</strong>sepic<br />

to masepic. Complex cutans are strongly developed while argillans, locally with<br />

gra<strong>in</strong>y characteristics are also present.<br />

The strong consistence, <strong>the</strong> presence of bleached tongues arranged <strong>in</strong>to an<br />

hexagonal pattern <strong>and</strong> <strong>the</strong> o<strong>the</strong>r morphological characteristics allow to classify<br />

this horizon as afragipan (Soil Survey Staff, 1975; Smalley <strong>and</strong> Dav<strong>in</strong>, 1982). The<br />

pores are particularly characteristic, represented ma<strong>in</strong>ly by metavughs.<br />

Wavy patterns of <strong>the</strong> skeleton gra<strong>in</strong>s <strong>and</strong> zones of washed s<strong>and</strong> <strong>and</strong> silt are<br />

also typical for this horizon. At <strong>the</strong> contact with <strong>the</strong> underly<strong>in</strong>g deposits , <strong>the</strong>re<br />

is a horizon with marked lamellar structure, consist<strong>in</strong>g of alternat<strong>in</strong>g lam<strong>in</strong>ae of<br />

reduced <strong>and</strong> oxidized matrix, separated by argillans <strong>and</strong> gra<strong>in</strong>y cutans.<br />

This same sequence of horizons is locally present <strong>in</strong> <strong>the</strong> top of <strong>the</strong> loess<br />

covers of <strong>the</strong> «Old Diluvium» terrace, although <strong>the</strong>re it has often been eroded.<br />

An older cover of strongly wea<strong>the</strong>red loess underneath preserves a B21tx which


216 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

differs from <strong>the</strong> overly<strong>in</strong>g loess cover <strong>in</strong> colour <strong>and</strong> higher clay content. This<br />

horizon however also has characteristics of a fragipan <strong>and</strong>, from <strong>the</strong> micromorphological<br />

po<strong>in</strong>t of view, it has a more sepic plasma than <strong>the</strong> upper fragipan. The<br />

ferri-argillans are extremely abundant <strong>and</strong> locally <strong>the</strong>y cover <strong>the</strong> metavughs. Also<br />

<strong>in</strong> this case <strong>the</strong> wavy patterns <strong>and</strong> <strong>the</strong> zones of washed silt are well expressed.<br />

The soils <strong>in</strong> loess of <strong>the</strong> Garda region (loc. 6, 7) are similar. At <strong>the</strong> base of<br />

<strong>the</strong> profiles <strong>the</strong>re is a colluvial horizon formed by erosion of <strong>the</strong> underly<strong>in</strong>g soil<br />

(«Fliesserde»: Fraenzle, 1965). The sequence of horizons, which is <strong>the</strong> same as_<br />

already described for <strong>the</strong> Adda, is locally truncated by erosion. At Ciliverghe (loc.<br />

7) at least 4 superimposed loess covers with three dist<strong>in</strong>ct soils have been<br />

preserved <strong>in</strong> a morphological depression. The first two have a clear sequum with<br />

similar sequence of horizons (Bl/II B21tx, II B22t, II B23g, III B l, III B21tx).<br />

The B2Itx horizons show clear characteristics of a fragipan.<br />

The lithological discont<strong>in</strong>uity at <strong>the</strong> base of <strong>the</strong> II B21tx, <strong>in</strong>dicated also by<br />

Middle Palaeolithic artifacts <strong>in</strong> situ, is marked by a horizon consist<strong>in</strong>g entirely of<br />

Fe-Mn concretions. The ma<strong>in</strong> micromorphological features are <strong>the</strong> strong<br />

expression of <strong>the</strong> complex cutans <strong>and</strong> of <strong>the</strong> zones of washed s<strong>and</strong> <strong>and</strong> silt <strong>and</strong><br />

<strong>the</strong> fluidal patterns of mica skeleton gra<strong>in</strong>s . The hydromorphic characteristics.<br />

C E R N U S C O B IV IO M IS S A G L IA B A G A G G E R A P O R T O D 'A D D A<br />

L O C 17 L O C 18 L O C 2 3 L O C 19


THE SOILS AND VETUSOLS IN LOESS 217<br />

particularly developed <strong>in</strong> <strong>the</strong> lower horizons, are represented by areas of reduced<br />

bleached plasma which prevail over <strong>the</strong> oxidized patches <strong>and</strong> also by gra<strong>in</strong>y<br />

cutans. The lowermost soil, consist<strong>in</strong>g only of a unique B21t horizon, is slightly<br />

rubefied <strong>and</strong>, micromorphologically, is rich <strong>in</strong> thick <strong>and</strong> well expressed ferriargillans,<br />

alternat<strong>in</strong>g with complex cutans.<br />

The profile <strong>in</strong> loess of <strong>the</strong> sequence of Torrion della Val Sorda (loc. 6) is<br />

particularly significant, because <strong>the</strong> overly<strong>in</strong>g mora<strong>in</strong>e of <strong>the</strong> Solfer<strong>in</strong>o phase<br />

prevented it from be<strong>in</strong>g affected by post-glacial pedogenesis. From <strong>the</strong> stratigraphic<br />

po<strong>in</strong>t of view it shows <strong>the</strong> same features as are observed <strong>in</strong> most loesses of<br />

<strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong>. The colluvial component at <strong>the</strong> base of <strong>the</strong> profile is gradually<br />

<strong>and</strong> def<strong>in</strong>itively replaced upwards by loess deposits. In <strong>the</strong>se, evidence for clay<br />

translocation <strong>and</strong> hydromorphic features are completely absent. The soil is characterized<br />

by <strong>the</strong> organic matter that gives it a black colour, by a hig porosity with<br />

pores sometimes filled by secondary carbonates <strong>and</strong> by <strong>in</strong>dications of biological<br />

activity.<br />

The soils <strong>and</strong> <strong>the</strong> paleosols <strong>in</strong> loess of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge (loc. 25, 29, 30,<br />

31, 32, 44) (Fig. 77) also show composite profiles developed <strong>in</strong> lithologic <strong>and</strong><br />

pédologie bisequences. East of <strong>the</strong> Trebbia River <strong>the</strong>re is <strong>the</strong> sequence of<br />

horizons A2/B21t/B22cn/II B21t/II B22cn ( or B22 lam.), while west of it<br />

(Merl<strong>in</strong>e profile, loc. 32) <strong>the</strong> upper sequum has a great thickness <strong>and</strong> consists of<br />

<strong>the</strong> follow<strong>in</strong>g horizons: Ap, B21t, B22tx, B23t <strong>and</strong> B24cn. It represents, <strong>in</strong> <strong>the</strong><br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> only profile with a hardened horizon, with poorly expressed<br />

characteristics of a fragipan. This horizon probably <strong>in</strong>dicates a lithologic discont<strong>in</strong>uity.<br />

Apart from <strong>the</strong> Ghiardo profile (loc. 25), <strong>in</strong> which <strong>the</strong> A2 horizon is<br />

ra<strong>the</strong>r thick <strong>and</strong> has an abrupt boundary towards <strong>the</strong> II B21t, <strong>the</strong> A2 horizons<br />

are generally poorly developed; at microscale <strong>the</strong>y have a silasepic fabric with low<br />

sepicity <strong>and</strong> sometimes a few fragments of argillans, <strong>and</strong> show pseudogley<strong>in</strong>g <strong>and</strong><br />

Fe-Mn nodules.<br />

The lower limit is gradual: <strong>in</strong> <strong>the</strong> Ghiardo Cave II (loc. 29) it is clearly glossic.<br />

The B21t horizon, brown coloured, shows a higher sepicity <strong>and</strong> an amount of<br />

ferri-argillans sufficient for an argillic B horizon.<br />

The underly<strong>in</strong>g II B21t has a strong structure <strong>and</strong> bleached vertical tongues.<br />

Its plasmic fabric is highly sepic <strong>and</strong> it <strong>in</strong>cludes a large amount of ferri-argillans.<br />

In <strong>the</strong> Ghiardo profile, <strong>the</strong> cutans are poorly expressed due to shr<strong>in</strong>k<strong>in</strong>g <strong>and</strong><br />

swell<strong>in</strong>g which led to <strong>the</strong>ir destruction.<br />

Thick horizons consist<strong>in</strong>g ma<strong>in</strong>ly of Fe-Mn nodules are typical for <strong>the</strong>se loess<br />

soils. They develop along lithological (stratigraphic) discont<strong>in</strong>uities. Their lower<br />

limit is abrupt, while <strong>the</strong> upper one gradually passes <strong>in</strong>to <strong>the</strong> overly<strong>in</strong>g horizon<br />

through a progressive decrease <strong>in</strong> concentration of nodules. At <strong>the</strong> Ghiardo Cave<br />

1 (loc. 29), as already discussed (section 7.4.), Acheulean artifacts are <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> Ben horizon.<br />

The Fe-Mn nodules <strong>and</strong> concretions are found on <strong>the</strong> surfaces of <strong>the</strong><br />

artifacts: fur<strong>the</strong>rmore <strong>the</strong>y conta<strong>in</strong> charcoal of hearths, which acted as nuclei for<br />

crystallization. Therefore <strong>the</strong> concretions <strong>and</strong> nodules of <strong>the</strong> Ben horizons should<br />

be regarded as formed <strong>in</strong> situ; micromorphologically <strong>the</strong>y show abrupt limits <strong>and</strong><br />

are surrounded by a highly sepic matrix.


218 PALEOSOLS AND VETUSOLS IN THE CENTRAL<br />

At Collecchio (loc. 44) <strong>the</strong> Fe-Mn concretions are replaced by a lam<strong>in</strong>ar^<br />

horizon, while <strong>in</strong> <strong>the</strong> Merl<strong>in</strong>e profile (loc. 32) nodules <strong>and</strong> lam<strong>in</strong>ae were“<br />

observed to coexist <strong>in</strong> <strong>the</strong> same horizon.<br />

Characteristics <strong>in</strong>termediate between those of <strong>the</strong> profiles <strong>in</strong> loess of <strong>the</strong><br />

Apenn<strong>in</strong>e <strong>and</strong> those of Alp<strong>in</strong>e marg<strong>in</strong>s are shown by <strong>the</strong> Isolated Terraces of <strong>the</strong><br />

Pla<strong>in</strong>.<br />

The Melotta profile (loc. 37) consists of a monogenetic cover of loess<br />

represented by A2/B21tx/B22tx/B23cn horizons, while <strong>the</strong> Zorlesco profile<br />

<strong>in</strong>cludes a lithological bisequence. Micromorphologically, features due to<br />

hydromorphism prevail <strong>and</strong> <strong>the</strong> sepicity of <strong>the</strong> plasma is low with <strong>the</strong> exception<br />

of <strong>the</strong> B23 horizon, where cutans are very poorly expressed. Complex cutans are<br />

abundant, along <strong>the</strong> whole profile.<br />

1<br />

11.2. TEXTURAL CHARACTERISTICS<br />

The loess has a characteristic gra<strong>in</strong> size distribution: <strong>the</strong> cumulative curves are<br />

unimodal, with moderate sort<strong>in</strong>g, <strong>the</strong> median rang<strong>in</strong>g from 5 to 6 phi. The s<strong>and</strong><br />

percentage is generally low. The amount of clay ranges from \D°L to 401,<br />

depend<strong>in</strong>g on <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g.<br />

The diagram <strong>in</strong> Fig. 99 constructed from <strong>the</strong> gra<strong>in</strong> size analyses of loess,<br />

recorded <strong>in</strong> this study (about 70 samples), evidences <strong>the</strong> differences between<br />

fresh or slightly wea<strong>the</strong>red <strong>and</strong> very wea<strong>the</strong>red loesses which have become poorly<br />

sorted <strong>and</strong> show an <strong>in</strong>crease <strong>in</strong> f<strong>in</strong>e silt, clay <strong>and</strong> s<strong>and</strong>, <strong>and</strong> a consequent decrease<br />

of coarse silt (see also Fig. 100).<br />

The clay accumulation rate <strong>in</strong> <strong>the</strong> B horizons has been calculated by means of<br />

of <strong>the</strong> ratio: Clay 1 <strong>in</strong> <strong>the</strong> B hor./Clay 1 <strong>in</strong> <strong>the</strong> fresh loess (Fig. 101).<br />

In comparison with unwea<strong>the</strong>red loess, <strong>the</strong> clay <strong>in</strong>creases from 2 to 4 times<br />

<strong>in</strong> <strong>the</strong> postglacial soils, <strong>and</strong> from 3 to 6.5 times <strong>in</strong> <strong>the</strong> older <strong>vetusols</strong>. The<br />

<strong>in</strong>crease <strong>in</strong> clay content is progressive from <strong>the</strong> A2 horizon to <strong>the</strong> B2t, <strong>and</strong> for<br />

<strong>the</strong> younger soils it has a similar trend all over <strong>the</strong> studied area, while <strong>the</strong> Middle<br />

Pleistocene wea<strong>the</strong>red loesses are clearly richer <strong>in</strong> clay at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

11.3. MINERALOGICAE AND CHEMICAL CHARACTERISTICS<br />

As already discussed (section 10.7) <strong>the</strong> variations with depth of <strong>the</strong><br />

wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex, calculated on <strong>the</strong> basis of <strong>the</strong> different stabilities of <strong>the</strong> heavy<br />

m<strong>in</strong>erals, allow to recognize <strong>in</strong> <strong>the</strong> profiles <strong>the</strong> lithologic <strong>and</strong> pedogenetic<br />

discont<strong>in</strong>uities (Fig. 102).<br />

The clay m<strong>in</strong>erals consist ma<strong>in</strong>ly of illite, k<strong>and</strong>ite, vermiculite <strong>and</strong> chlorite.<br />

While illite is present everywhere, k<strong>and</strong>ite is ma<strong>in</strong>ly found <strong>in</strong> <strong>the</strong> profiles of <strong>the</strong><br />

Alp<strong>in</strong>e marg<strong>in</strong>e. Vermiculite <strong>and</strong> chlorite tend to concentrate <strong>in</strong> each profile <strong>in</strong><br />

<strong>the</strong> uppermost horizons <strong>and</strong> to decrease with depth.<br />

The cation exchange capacity, concurrent with <strong>the</strong> clay m<strong>in</strong>eralogy, is higher<br />

at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge than <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e one (App. 2, Tab. 2).


<strong>the</strong> s o ils a n d v e t u s o l s <strong>in</strong> l o e s s 219<br />

The pH is generally slightly acid (rang<strong>in</strong>g from 5 to 6) <strong>in</strong> <strong>the</strong> soils of <strong>the</strong><br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> tends to <strong>in</strong>crease with depth, <strong>in</strong>dicat<strong>in</strong>g a leach<strong>in</strong>g towards<br />

<strong>the</strong> lower B horizon of cations (Fig. 103). At <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong> it has somewhat<br />

lower values, from 5 to 5.5, <strong>and</strong> rema<strong>in</strong>s constant or even decreases with depth;<br />

lo e s s .<br />

Fig. 99 - C a m p o d i v a r ia b ilitá d e lla te s s itu r a d e i lo e s s : 1 ) lo e ss fre s c o o d e b o lm e n te a lt e r a to ; 2 ) lo e ss<br />

a lte r a to .


220 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

<strong>in</strong> this area <strong>the</strong>refore <strong>the</strong> leach<strong>in</strong>g of cations seems to have been more effective<br />

<strong>and</strong> deeper.<br />

The rubéfaction is usually absent <strong>in</strong> <strong>the</strong> soils <strong>in</strong> loess; <strong>the</strong>ir colours are<br />

generally <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> lO YR <strong>and</strong> 2.5 Y hue. Only <strong>the</strong> IV B21 <strong>and</strong> IV B22<br />

hori2ons of <strong>the</strong> Cihverghe sequence (loc. 7) show reddish brown colours.<br />

The free iron <strong>in</strong> <strong>the</strong> soils <strong>in</strong> loess ranges from 3 to 52, with maximum peaks<br />

of 11 <strong>and</strong> 72 <strong>in</strong> horizons of Fe-Mn concretions. Usually it tends to <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

deepest horizons. The ratio Fe/clay <strong>in</strong> <strong>the</strong> soils of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge is almost<br />

constant along <strong>the</strong> profiles; <strong>the</strong> migration of iron seems to be concomitant with<br />

that of clay.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> <strong>in</strong> <strong>the</strong> soils <strong>and</strong> <strong>vetusols</strong> of <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge (Fig. 103) it<br />

shows an irregular trend <strong>and</strong> <strong>in</strong>dicates that <strong>the</strong> iron, due to hydromorphic processes,<br />

migrates at least partly separately with respect to <strong>the</strong> clay.<br />

mmâm'..<br />

siK<br />

1 0 0 %<br />

silt<br />

1 0 0 %<br />

silt<br />

100%<br />

Fig. 100 - G r a <strong>in</strong> siz e o f s o ils a n d v e tu s o ls <strong>in</strong> lo e s s ; A ) A lp <strong>in</strong> e lo e s s ; B ) A p e n n <strong>in</strong> e lo e ss a n d ( t r ia n g le s )<br />

lo e s s o f th e is o la te d te r r a c e s .<br />

Fig. 100 - C a r a tte r i t e s s itu r a li d e i s u o li e v e tu s u o ll s v ilu p p a tis i <strong>in</strong> lo e s s ; A ) lo e s s a lp <strong>in</strong> i, B ) lo ess<br />

a p p e n n <strong>in</strong> ic i e ( t r ia n g o li) lo e s s d e i te r r a z z i is o la ti.


THE SOILS AND VETUSOLS IN LOESS 221<br />

A systematic concentration of iron with respect to <strong>the</strong> clay occurs at <strong>the</strong> top<br />

of <strong>the</strong> fragipan horizons.<br />

11.4. THE MAIN SOIL FORMING PROCESSES IN LOESS<br />

Three ma<strong>in</strong> processes contributed to <strong>the</strong> development of soils <strong>in</strong> loess:<br />

- décalcification <strong>and</strong> acidification of <strong>the</strong> soil;<br />

- translocation of clay <strong>and</strong> slight transformation of clay m<strong>in</strong>erals;<br />

- release, translocation, reduction/oxidation <strong>and</strong> precipitation of iron <strong>and</strong> manganese,<br />

through hydromorphic processes.<br />

A<br />

Adda<br />

8 -<br />

7<br />

O Garda<br />

□ Apenn<strong>in</strong>e<br />

* Isolated terraces<br />

B 6<br />

CO<br />

E<br />

+-•<br />

c<br />

Ï 5<br />

a<br />

>^<br />

_co<br />

u.<br />

o<br />

^ 3<br />

>,<br />

JO<br />

O<br />

2<br />

□<br />

I*1<br />

*<br />

□<br />

o<br />

□<br />

□ e □<br />

o<br />

* % " o 0<br />

#o<br />

1<br />

0<br />

A2<br />

— I-----------1-------------- 1— 11— I------------1----------------1<br />

B1 B21 B22 A2 B21 B22<br />

Upper sequum<br />

Lower sequum<br />

Fig. 101 - Clay accumulation rate.<br />

Fig. 101 - Accumulo dell’argilla.


222 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO P U IN ^<br />

The existence of Ca CO3 nodules <strong>in</strong> soils underly<strong>in</strong>g <strong>the</strong> wea<strong>the</strong>red loess<br />

demonstrates that <strong>the</strong> parent material will have conta<strong>in</strong>ed a certa<strong>in</strong> amount of<br />

free carbonates. Décalcification has probably been a prime process followed by<br />

<strong>the</strong> leach<strong>in</strong>g of cations <strong>and</strong> subsequent acidification of <strong>the</strong> soil which improved<br />

<strong>the</strong> conditions for clay translocation.<br />

Clay translocation, well documented both with regard to <strong>the</strong> granulometry<br />

<strong>and</strong> <strong>the</strong> micromorphology, is accompanied by wea<strong>the</strong>r<strong>in</strong>g of <strong>the</strong> clay m<strong>in</strong>erals <strong>in</strong><br />

<strong>the</strong> upper part of <strong>the</strong> profiles, which part often meets <strong>the</strong> requirements for an<br />

albic horizon. This wea<strong>the</strong>r<strong>in</strong>g is evidenced by <strong>the</strong> prevalence of vermiculite <strong>and</strong><br />

chlorite <strong>and</strong> by <strong>the</strong> lower cation exchange capacity. Accord<strong>in</strong>g to Jamagne (1973)<br />

<strong>and</strong> Duchaufour (1977) <strong>the</strong> phenomena can be ascribed to a progressive alum<strong>in</strong>isation<br />

of <strong>the</strong> clay m<strong>in</strong>erals, which has also been described as a characteristic<br />

feature of ferrolysis (Br<strong>in</strong>kman, 1969). In particular for <strong>the</strong> Ghiardo <strong>and</strong> Melotta<br />

profiles, which are close to Planosols, <strong>the</strong> latter explanation seems very likely.<br />

The soils developed <strong>in</strong> loesses <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge have an A2 horizon <strong>and</strong><br />

show pronounced hydromorphic features, due to stagnation on <strong>the</strong> Bt horizon as<br />

well as on Lithological <strong>and</strong> pedological discont<strong>in</strong>uities lower <strong>in</strong> <strong>the</strong> solum. These<br />

features consist of bleached tongues <strong>and</strong> of more or less <strong>in</strong>durated Fe-Mn<br />

nodules, which often occur <strong>in</strong> more than one horizon. The formation of <strong>the</strong><br />

nodular horizons seems to be strongly dependent on <strong>the</strong> occurrence of profile<br />

discont<strong>in</strong>uities. The lower horizon developed at <strong>the</strong> transition from <strong>the</strong> rubefied<br />

paleosol to <strong>the</strong> Middle Pleistocene loess. It is clearly related to soil formation,<br />

which started immediately after its deposition. The upper horizon on <strong>the</strong> contrary<br />

GHIARDO CAVE 1<br />

LOG 29<br />

0.1 0.2 0.3 0.4<br />

_ j _______ I______j _______ I<br />

BOSCONE<br />

LOG 30<br />

0.1 0.2 0.3 0.4<br />

Fig. 102 - The changes with depth of <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex <strong>in</strong> two profiles <strong>in</strong> loess (loc. 29 <strong>and</strong> 30).<br />

Fig. 102 - Variazioni con la profondita dell’<strong>in</strong>dice di alterazione <strong>in</strong> due profili nel loess.


<strong>the</strong> s o ils a n d v e t u s o l s <strong>in</strong> l o e s s<br />

223<br />

Fe/Clay<br />

0,2<br />

0,1<br />

0,07<br />

F6203<br />

% 7<br />

A Adda<br />

O Garda<br />

□ Apenn<strong>in</strong>e<br />

4fc Isolated terraces<br />

6<br />

5H<br />

4<br />

3H<br />

2<br />

B21 B22 B23<br />

A2 B21 B22<br />

- Upper sequum ----------<br />

— Lower sequum------<br />

Fig. 103 - Chemical characteristics of soils <strong>and</strong> <strong>vetusols</strong> developed <strong>in</strong> loess.<br />

Fig. 103 - Caratteristiche chimiche dei suoli e vetusuoli sviluppati nel loess.


224 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

n j ^ - T r r f r i r . t v<br />

h d i<br />

;i|<br />

.' I<br />

is clearly related to soil formation which started after <strong>the</strong> deposition of <strong>the</strong> Late<br />

Pleistocene loess. Where <strong>the</strong> Middle Pleistocene loess has been strongly eroded<br />

before be<strong>in</strong>g covered, or <strong>the</strong> Late Pleistocene loess is th<strong>in</strong> or absent, <strong>the</strong> lower<br />

<strong>and</strong> upper nodular horizons may merge <strong>in</strong>to one s<strong>in</strong>gle horizon. In figure 104<br />

<strong>the</strong>se processes are graphically illustrated.<br />

Locally <strong>the</strong> nodules constitute up to 802 of <strong>the</strong> horizon <strong>in</strong> which <strong>the</strong>y occur.<br />

If present <strong>in</strong> such large amounts a sedimentary orig<strong>in</strong> would seem likely. In th<strong>in</strong><br />

sections <strong>the</strong> nodules often show abrupt limits, which <strong>in</strong> <strong>the</strong> literature is sometimes<br />

<strong>in</strong>terpreted as a proof for <strong>the</strong> allochtony of <strong>the</strong> nodules. However <strong>the</strong><br />

abrupt limits can also be due to <strong>the</strong> repeated alternation of oxidation <strong>and</strong> reduction,<br />

caus<strong>in</strong>g a sharp separation between glaebules, high <strong>in</strong> iron, <strong>and</strong> iron depleted<br />

matrix, <strong>in</strong> comb<strong>in</strong>ation with vertic processes. Proof for such an <strong>in</strong> situ<br />

formation is that <strong>the</strong> Palaeolithic artifacts, which are stricly <strong>in</strong> situ, have been<br />

cemented by <strong>the</strong> Fe-Mn accumulations (Ghiardo loess, loc. 25, 29, section 7.4.).<br />

As regards <strong>the</strong> provenance of <strong>the</strong> iron <strong>and</strong> manganese, it must be assumed<br />

that lateral transport played an important role. The major reason for this is that<br />

<strong>the</strong> clay/free iron ratios <strong>in</strong> <strong>the</strong> upper parts of <strong>the</strong> sola are ra<strong>the</strong>r constant <strong>and</strong><br />

po<strong>in</strong>t aga<strong>in</strong>st a massive removal of sesquioxides from <strong>the</strong>se horizons.<br />

In comparison with <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>the</strong> soils from <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge<br />

less commonly show dist<strong>in</strong>ct nodular horizons <strong>and</strong> where occurr<strong>in</strong>g <strong>the</strong>se are less<br />

pronounced. They are restricted to areas with poor dra<strong>in</strong>age <strong>and</strong> laterally grade<br />

<strong>in</strong>to lam<strong>in</strong>ar horizons. The latter, as are <strong>the</strong> nodular horizons, are systematically<br />

found at lithological <strong>and</strong> pedological discont<strong>in</strong>uities.<br />

In <strong>the</strong> oldest soils (see for example Bagaggera profiles 2 <strong>and</strong> 3, section 5.5.)<br />

<strong>the</strong> lam<strong>in</strong>ar horizons consist of lam<strong>in</strong>ae high <strong>in</strong> iron (hydr)oxides <strong>and</strong> ferriargillans,<br />

<strong>and</strong> of bleached lam<strong>in</strong>ae with a sepic matrix <strong>and</strong> complex cutans.<br />

Individual lam<strong>in</strong>ae can be easily identified. On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> less wea<strong>the</strong>red<br />

younger loess (see for example Copreno profile, loc, 21, section 5.3.) <strong>the</strong> lam<strong>in</strong>ar<br />

horizons are less expressed <strong>and</strong> show far less clay illuviation features, but <strong>the</strong>y<br />

still exist. In <strong>the</strong>se th<strong>in</strong> b<strong>and</strong>s, oxidized plasma alternates with b<strong>and</strong>s of reduced<br />

plasma <strong>and</strong> with th<strong>in</strong> <strong>in</strong>tergranular <strong>and</strong> iron-depleted argillans.<br />

In <strong>the</strong> soils <strong>in</strong> loess of <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge, <strong>and</strong>, at lesser extent, <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e<br />

fr<strong>in</strong>ge (<strong>in</strong> <strong>the</strong> Piacenza area), numerous fragipan horizons occur, which meet <strong>the</strong><br />

requirements as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Soil Taxonomy (1975), by Thomas et alii (1979) <strong>and</strong><br />

by Smalley <strong>and</strong> Dav<strong>in</strong> (1982). They are very frequently connected with buried<br />

surfaces, which can be identified as such by <strong>the</strong> presence of Palaeolithic artifacts.<br />

The fragipans have a number of micromorphological characteristics <strong>in</strong> common:<br />

<strong>the</strong> S. matrix is usually silasepic (more rarely skel-vo-masepic), voids are<br />

rare <strong>and</strong> consist of vesicular metavughs <strong>and</strong> coarse cutans abound. In addition <strong>the</strong><br />

skeleton, <strong>in</strong> particular <strong>the</strong> micas, exhibits wavy patterns associated with areas of<br />

washed silt. These patterns resemble <strong>the</strong> «structures lenticulaires» described by<br />

Van Vliet <strong>and</strong> Langhor (1981) <strong>and</strong> by Dumanski (1964). They are less prom<strong>in</strong>ent<br />

than those described by <strong>the</strong> above mentioned authors, who consider this phenomenon<br />

to be <strong>the</strong> product of repeated alternate freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g. <strong>Cremaschi</strong><br />

<strong>and</strong> Lanz<strong>in</strong>ger (1983) observed <strong>the</strong> same phenomenon <strong>in</strong> loess wedge casts <strong>in</strong> <strong>the</strong><br />

Trento Alps <strong>and</strong> here cryogenic processes must be held responsible for its formation.


1<br />

THE SOILS AND VETUSOLS IN LOESS 225<br />

The general sequence of pedogenetic processes <strong>in</strong> <strong>the</strong> loesses is clear <strong>and</strong> is<br />

essentially identical to that <strong>in</strong> diamicton <strong>and</strong> gravel <strong>in</strong> so far as <strong>the</strong> décalcification,<br />

lessivage <strong>and</strong> hydromorphism, <strong>in</strong>duced by stagnation, are concerned. The soils <strong>in</strong><br />

loess, however, have fragipan horizons. In <strong>the</strong> literature (see section 9.2.) disagreement<br />

exists on <strong>the</strong> conditions under which <strong>the</strong>y were formed <strong>and</strong> consequently<br />

several hypo<strong>the</strong>ses can be formulated on <strong>the</strong>ir position with<strong>in</strong> <strong>the</strong> genetic<br />

sequence.<br />

A genesis as a result of permafrost can be excluded, as any <strong>in</strong>dependent<br />

evidence (pollen analyses, paleotemperature reconstructions, permafrost features)<br />

for <strong>the</strong> occurrence of permafrost <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge lacks.<br />

For several reasons it must be assumed that <strong>the</strong> fragipans were formed close<br />

to <strong>the</strong> surface, most probably by repeated alternate freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g. The<br />

fragipans are so closely associated with buried surfaces with<strong>in</strong> <strong>the</strong> loesses, that it<br />

is higly improbable that <strong>the</strong>y were not formed near <strong>the</strong>se surfaces <strong>in</strong> <strong>the</strong> <strong>in</strong>tervals<br />

between <strong>the</strong> phases of loess deposition. Climatic conditions dur<strong>in</strong>g <strong>the</strong>se <strong>in</strong>tervals<br />

should be considered to have had <strong>in</strong>terstadial characteristics: consider<strong>in</strong>g <strong>the</strong> <strong>in</strong>terruption<br />

of <strong>the</strong> loess deposition, <strong>the</strong> climate must have been more humid <strong>and</strong> temperate.<br />

Isohumic soil formation dur<strong>in</strong>g <strong>the</strong>se <strong>in</strong>tervals is testified by <strong>the</strong> presence of a thick<br />

chernosem <strong>in</strong> loess, <strong>in</strong> <strong>the</strong> Val Sorda (loc. 6) seguence. The transition to more glacial<br />

conditions, led, <strong>in</strong> <strong>the</strong> Val Sorda seguence, to <strong>the</strong> deposition of a pleniglacial mora<strong>in</strong>e<br />

(Solfer<strong>in</strong>o stage). In loess deposited on stable surfaces this transition is accompanied<br />

by a strong <strong>in</strong>crease of <strong>the</strong> effects of alternate freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g <strong>and</strong><br />

conseguently to fragipan formation. The wavy skeleton patterns, of which <strong>the</strong><br />

presumed genesis has been described above, also strongly po<strong>in</strong>t such a phenomenon.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> <strong>the</strong> paleolithic hunters, whose artifacts occur on <strong>the</strong>se<br />

buried surfaces, are known to have lived <strong>in</strong> a prairie steppe system (<strong>Cremaschi</strong><br />

1979). The absence of isohumic soils <strong>in</strong> loesses not covered by mora<strong>in</strong>e, can be<br />

easily expla<strong>in</strong>ed as be<strong>in</strong>g due to <strong>the</strong>ir obliteration by <strong>Po</strong>stglacial soil formation.<br />

Additional <strong>in</strong>dication for <strong>the</strong> occurrence of strong alternate freez<strong>in</strong>g <strong>and</strong><br />

thaw<strong>in</strong>g is <strong>the</strong> systematic presence <strong>in</strong> <strong>the</strong> Garda area, at <strong>the</strong> base of each<br />

<strong>in</strong>dividual loess cover, of deposits described as colluvial <strong>in</strong> chapter 5, which,<br />

probably, could have been formed by solifluction.<br />

Fig. 104 summarizes <strong>the</strong> phases of sedimentation <strong>and</strong> of pedogenesis <strong>in</strong> loess<br />

for <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge. The development of <strong>the</strong> soils of<br />

<strong>the</strong> Ghiardo Cave type is <strong>in</strong>dicated separately. In this type of profile, which only<br />

occurs <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge (Ghiardo <strong>and</strong> Boscone, loc. 25, 26, 29, 30, section<br />

7.2.), <strong>the</strong> underly<strong>in</strong>g clayey horizons show a gilgai microrelief.<br />

Strong evidence exists that this gilgai relief has been formed before <strong>the</strong> deposition<br />

of <strong>the</strong> overly<strong>in</strong>g loess (see chapter 7) dur<strong>in</strong>g <strong>the</strong> Last Interglacial Period.<br />

Fig. 104 illustrates that considerable differences exist between <strong>the</strong> soils of <strong>the</strong><br />

Alp<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> those of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge. In <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong> deposition<br />

of a loess cover is systematically preceded by solifluction, fragipans abound<br />

<strong>and</strong> hydromorphism is relatively weakly expressed. In <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge soils<br />

exhibit more pronounced hydromorphic features <strong>and</strong> lessivage, <strong>and</strong>, if with a<br />

clayey subsoil, show features due to strong swell <strong>and</strong> shr<strong>in</strong>k. These differences


226 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

toge<strong>the</strong>r <strong>in</strong>dicate that <strong>the</strong> climate <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge on <strong>the</strong> whole was<br />

characterized by a more pronunced seasonal contrast than that <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e<br />

fr<strong>in</strong>ge. This, at least for <strong>the</strong> Holocene, fits with <strong>the</strong> known data on <strong>the</strong> climate of<br />

<strong>the</strong> area, discussed <strong>in</strong> chapter 2 .<br />

loess<br />

se d im enta tion<br />

CR - W 3<br />

wea<strong>the</strong>r<strong>in</strong>g<br />

e ro sio n / lo e s s<br />

sedim en tation<br />

lo e s s<br />

s e d im .<br />

H olocen e<br />

wea<strong>the</strong>r<strong>in</strong>g<br />

A p<br />

TTTTTfP<br />

A1<br />

G h ia rd o<br />

c la y e y<br />

s u b s o il<br />

L£ci><br />

g ilg a<br />

" n e t c a v e I<br />

p ro file<br />

n B c n<br />

m B / c<br />

A 2<br />

1 1 TT<br />

B1<br />

Bt<br />

B en<br />

DBt<br />

n B c n<br />

Apenn<strong>in</strong>e<br />

lo e s s<br />

o ld e r<br />

Alp <strong>in</strong> e<br />

lo e s s<br />

Fi£. 104 - Soil form<strong>in</strong>g processes <strong>in</strong> loess.<br />

Fig. 104 - Process! pedogenetici nei loess.


12.<br />

CONCLUSIONS<br />

12.1. THE QUATERNARY GEOLOGY<br />

The development of <strong>the</strong> <strong>Po</strong> bas<strong>in</strong>, surrounded by <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> Apenn<strong>in</strong>e<br />

cha<strong>in</strong>s, where orogenesis has not yet term<strong>in</strong>ated, is essentially conditioned by <strong>the</strong><br />

geodynamic activity of <strong>the</strong> area. <strong>No</strong>t only <strong>in</strong> <strong>the</strong> Pliocene but also later, <strong>in</strong> <strong>the</strong><br />

Quaternary, <strong>the</strong> area was unstable; l<strong>and</strong>form <strong>and</strong> sedimentary facies of <strong>the</strong> Quaternary<br />

deposits were found to depend strongly on <strong>the</strong> tectonic development of<br />

<strong>the</strong> geological structures.<br />

The oldest Plio-Pleistocene cont<strong>in</strong>ental sedimentation is found at <strong>the</strong> Alp<strong>in</strong>e<br />

marg<strong>in</strong>: <strong>in</strong> <strong>the</strong> Adda area <strong>and</strong> <strong>in</strong> <strong>the</strong> valley <strong>in</strong> which <strong>the</strong> Garda lake is situated,<br />

<strong>and</strong> it is represented by aggrad<strong>in</strong>g piedmont fans, already active dur<strong>in</strong>g <strong>the</strong> Late<br />

Pliocene. This is <strong>the</strong> result of <strong>the</strong> uplift of <strong>the</strong> Pre-Alps, which is a part of <strong>the</strong><br />

greater Villafranchian tectonic phase described by various authors (Gabert, 1962;<br />

Chardon 1-975).<br />

At <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong> mar<strong>in</strong>e sedimentation cont<strong>in</strong>ued dur<strong>in</strong>g most of<br />

<strong>the</strong> Early Pleistocene <strong>and</strong> perhaps cont<strong>in</strong>ued until <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Jaramillo<br />

event. <strong>No</strong> products of cont<strong>in</strong>ental environments of this age has been preserved<br />

<strong>in</strong> <strong>the</strong> area <strong>in</strong>vestigated, nor <strong>in</strong>side <strong>the</strong> Apenn<strong>in</strong>e cha<strong>in</strong> of <strong>the</strong> Emilia region. The<br />

cont<strong>in</strong>ental sedimentation seems only to have started dur<strong>in</strong>g <strong>the</strong> late Matuyama<br />

epoch <strong>and</strong> shows sedimentological characteristics of an alluvial pla<strong>in</strong> <strong>and</strong> of<br />

alluvial fans. With<strong>in</strong> <strong>the</strong> stratigraphic sequences, pollen data <strong>in</strong>dicate important<br />

climatic fluctuations, which had however no effects on <strong>the</strong> sedimentary facies.<br />

At <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong>, <strong>the</strong> late-Early <strong>and</strong> Middle Pleistocene cont<strong>in</strong>ental<br />

sediments mostly consist of mora<strong>in</strong>es, fluvioglacial deposits <strong>and</strong> loess; sedimentation<br />

was <strong>the</strong>refore strongly determ<strong>in</strong>ed by <strong>the</strong> glacial periods.<br />

This sedimentation however, was also conditioned by tectonics, giv<strong>in</strong>g rise to<br />

differences <strong>in</strong> <strong>the</strong> geographical distribution of glacial <strong>and</strong> fluvioglacial deposits.<br />

The first of <strong>the</strong> Pleistocene glaciations dur<strong>in</strong>g which <strong>the</strong> glaciers reached <strong>the</strong><br />

sou<strong>the</strong>rn limit of <strong>the</strong> Alps, goes back to <strong>the</strong> late Matuyama epoch, probably<br />

post-J aramillo. This is testified by <strong>the</strong> mora<strong>in</strong>es of <strong>the</strong> Ciliverghe stage <strong>and</strong><br />

probably also by that of Camparada. The latter covers <strong>the</strong> older fluvial body,<br />

represented by <strong>the</strong> Ceppo dell’Adda formation, <strong>the</strong> former overlies presumably<br />

littoral deposits. Dur<strong>in</strong>g this phase, <strong>in</strong> this area <strong>the</strong> Como <strong>and</strong> Garda lakes seem<br />

to have been <strong>the</strong> only possible paths for glaciers to reach <strong>the</strong> pla<strong>in</strong>. Dur<strong>in</strong>g <strong>the</strong><br />

Brunhes epoch <strong>the</strong> glaciers reached <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> pla<strong>in</strong> four times <strong>and</strong> only


228 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

for <strong>the</strong> last two <strong>the</strong>re is clear evidence that <strong>the</strong>y were able to reach <strong>the</strong> pla<strong>in</strong> also<br />

along <strong>the</strong> valley of <strong>the</strong> Iseo <strong>and</strong> Lecco lakes.<br />

In contrast to <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge, <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge no <strong>in</strong>dication was<br />

found for a climatic control of <strong>the</strong> sedimentary facies: from <strong>the</strong> late Early<br />

Pleistocene to <strong>the</strong> middle part of <strong>the</strong> Middle Pleistocene, alluvial fans <strong>and</strong> alluvial<br />

pla<strong>in</strong> facies dom<strong>in</strong>ate. In time <strong>the</strong>se show a gradual shift from f<strong>in</strong>er to coarser<br />

textured sediments, as a result of <strong>the</strong> progressive uplift of <strong>the</strong> marg<strong>in</strong> of <strong>the</strong><br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge. This tectonic activity probably slowed down considerably somewhere<br />

<strong>in</strong> <strong>the</strong> Middle Pleistocene <strong>and</strong> <strong>the</strong>refore <strong>the</strong> surface of <strong>the</strong> large system of<br />

coalesc<strong>in</strong>g alluvial fans became stable <strong>and</strong> a deep soil was formed. Subsequently<br />

tectonic movements <strong>in</strong>creased aga<strong>in</strong>, produc<strong>in</strong>g <strong>the</strong> tilt<strong>in</strong>g, fold<strong>in</strong>g <strong>and</strong> fault<strong>in</strong>g of<br />

<strong>the</strong> previously developed surface. Dur<strong>in</strong>g <strong>the</strong> late Middle Pleistocene, a large<br />

erosional glacis developed cutt<strong>in</strong>g <strong>the</strong> older surfaces; this morphological feature<br />

has been <strong>in</strong>terpreted here as <strong>the</strong> first evidence of a periglacial morphosystem<br />

occurr<strong>in</strong>g at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> Apenn<strong>in</strong>es.<br />

Evidence of permafrost lacks completely <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge for this<br />

period, while <strong>in</strong> <strong>the</strong> <strong>in</strong>vestigated area of <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong> only dubious evidence<br />

has been found; this consists of <strong>the</strong> ice wedge casts of <strong>the</strong> Gavardo loess (GAV<br />

2, section 4.1).<br />

Eolian sedimentation is a typical characteristic of <strong>the</strong> glacial periods at <strong>the</strong><br />

marg<strong>in</strong> of <strong>the</strong> pla<strong>in</strong>. The loesses belong<strong>in</strong>g to <strong>the</strong> early Middle Pleistocene are<br />

represented by small outcrops at <strong>the</strong> Alp<strong>in</strong>e marg<strong>in</strong> only. Beg<strong>in</strong>n<strong>in</strong>g from <strong>the</strong> end<br />

of <strong>the</strong> Middle Pleistocene, dur<strong>in</strong>g <strong>the</strong> Late Pleistocene <strong>and</strong> <strong>the</strong> Late-Glacial, <strong>the</strong><br />

eolian sedimentation affected wide areas <strong>in</strong> both <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> Apenn<strong>in</strong>e<br />

marg<strong>in</strong>s, as well as <strong>the</strong> isolated terraces <strong>in</strong> <strong>the</strong> pla<strong>in</strong>.<br />

Three different phases of large scale loess sedimentation could be dist<strong>in</strong>guished.<br />

The first phase dates from <strong>the</strong> late Middle Pleistocene; deposits from<br />

this phase are ma<strong>in</strong>ly encountered <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge. Their Scarcity <strong>in</strong> <strong>the</strong><br />

Alp<strong>in</strong>e fr<strong>in</strong>ge may be due to periglacial erosion dur<strong>in</strong>g later periods.<br />

Loess deposits from <strong>the</strong> second <strong>and</strong> third phases generally occur <strong>in</strong> close<br />

association <strong>and</strong> both date from <strong>the</strong> Last Glacial period. Archaeological evidence<br />

po<strong>in</strong>ts to a Mousterian <strong>and</strong> an Upper Palaeolithic age respectively (see also<br />

Appendix 7).<br />

The loesses of <strong>the</strong> second <strong>and</strong> third phases are ma<strong>in</strong>ly found along <strong>the</strong> Alp<strong>in</strong>e<br />

fr<strong>in</strong>ge, while, along <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>the</strong>y are generally th<strong>in</strong> <strong>and</strong> discont<strong>in</strong>uous<br />

<strong>and</strong> are fully represented only <strong>in</strong> <strong>the</strong> Piacenza area. The expansion of <strong>the</strong><br />

loess sedimentation over <strong>the</strong> whole <strong>Po</strong> bas<strong>in</strong> <strong>in</strong> <strong>the</strong> late Middle Pleistocene is<br />

remarkable. Its deposition follows <strong>the</strong> first presumably periglacial planation phase<br />

<strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge (see above). Both phenomena strongly suggest that,<br />

dur<strong>in</strong>g <strong>the</strong> glacial phases <strong>in</strong> this later part of <strong>the</strong> Pleistocene, <strong>the</strong> climate of <strong>the</strong><br />

<strong>Po</strong> area became more cont<strong>in</strong>ental. This could be due to <strong>the</strong> progressive uplift of<br />

<strong>the</strong> Tosco-Emilian Apenn<strong>in</strong>es, which led to isolation of <strong>the</strong> <strong>Po</strong> bas<strong>in</strong> from<br />

Tyrrhenian <strong>in</strong>fluences. Losacco (1949), us<strong>in</strong>g o<strong>the</strong>r k<strong>in</strong>ds of evidence, also assumes<br />

such an uplift.<br />

The number of glacial advances recognized <strong>in</strong> <strong>the</strong> <strong>Po</strong> valley does not stray


CONCLUSIONS 229<br />

much from <strong>the</strong> classical model of <strong>the</strong> quadripartite glacial Pleistocene, while it<br />

strongly deviates from <strong>the</strong> polyglacial <strong>the</strong>ory that assumes eleven glacial<strong>in</strong>terglacial<br />

cycles for <strong>the</strong> Brunhes epoch (F<strong>in</strong>k <strong>and</strong> Kukla, 1977). The contradiction<br />

is actually only an apparent one as it is well known that <strong>the</strong> cont<strong>in</strong>ental<br />

record is <strong>in</strong>complete <strong>in</strong> comparison with <strong>the</strong> oceanic system (Gibbons et alii,<br />

1984). This <strong>in</strong>complete record, at least <strong>in</strong> <strong>the</strong> <strong>Po</strong> area, may have two explanations:<br />

- <strong>the</strong> area was tectonically active <strong>and</strong> <strong>the</strong>refore changes <strong>in</strong> sedimentation <strong>and</strong><br />

sediment composition may be tectonically <strong>in</strong>duced; this tectonic control may<br />

overrule <strong>the</strong> effects of climatic fluctuations. The sedimentation along <strong>the</strong> Apenn<strong>in</strong>e<br />

fr<strong>in</strong>ge dur<strong>in</strong>g <strong>the</strong> early Middle Pleistocene forms a typical example of<br />

such a tectonic control;<br />

- <strong>the</strong> area was at <strong>the</strong> sou<strong>the</strong>rn limit of <strong>the</strong> Alp<strong>in</strong>e ice cap <strong>and</strong> <strong>the</strong>refore will have<br />

been reached only dur<strong>in</strong>g <strong>the</strong> periods of greatest extension of <strong>the</strong> glaciers. In<br />

<strong>the</strong> Alps phases of smaller glacial advances <strong>in</strong> that case may have left clear<br />

geological <strong>in</strong>dications, but <strong>the</strong>se have <strong>the</strong>n been erased <strong>in</strong> subsequent periods<br />

of greater advance; or, <strong>in</strong> <strong>the</strong> fr<strong>in</strong>ge <strong>the</strong>y did not lead to recognized changes <strong>in</strong><br />

sediment patterns or <strong>in</strong> <strong>the</strong> composition of <strong>the</strong> sediments.<br />

Isotopic curves of oceanic cores are known to register variations <strong>in</strong> ice<br />

volume, i.e. <strong>in</strong> <strong>the</strong> accumulation of ice on polar caps <strong>and</strong> on <strong>the</strong> cont<strong>in</strong>ents.<br />

Therefore it is generally assumed that <strong>the</strong> peaks of higher delta O'* values<br />

correspond to periods of greater ice accumulation, dur<strong>in</strong>g which chances for <strong>the</strong><br />

Alp<strong>in</strong>e glaciers to reach <strong>the</strong> sou<strong>the</strong>rn marg<strong>in</strong> of <strong>the</strong> cha<strong>in</strong> evidently were greater.<br />

On <strong>the</strong> basis of this criterion a tentative correlation has been made between <strong>the</strong><br />

glacial phases recognized <strong>in</strong> this study <strong>and</strong> <strong>the</strong> high-resolution isotopic curves,<br />

recently elaborated (V 28-239, DESDP 504; Shackleton <strong>and</strong> Hall, 1984). These<br />

curves as well as <strong>the</strong> correlation are presented <strong>in</strong> Fig. 106.<br />

Paleomagnetic evidence <strong>and</strong> stratigraphic correlations, already discussed <strong>in</strong><br />

section (8.1. strongly support <strong>the</strong> correlation between <strong>the</strong> Early Pleistocene<br />

Ciliverghe glacial stage <strong>and</strong> <strong>the</strong> related glacial evidence of <strong>the</strong> Adda area with <strong>the</strong><br />

isotopic stage 22. Little doubt also exists on <strong>the</strong> correlation of <strong>the</strong> Late Pleistocene<br />

Solfer<strong>in</strong>o glacial stage <strong>the</strong> correspond<strong>in</strong>g Merate mora<strong>in</strong>e (Fig. 13) <strong>and</strong><br />

related deposits dated by radiocarbon analyses <strong>and</strong> by geomorphological evidence,<br />

with isotopic stages 2 <strong>and</strong> 4.<br />

As discussed <strong>in</strong> section 1.4.2. it is not possible to exactly date <strong>the</strong> pede-<br />

Alp<strong>in</strong>e mora<strong>in</strong>es <strong>and</strong> related glacial deposits of Middle Pleistocene age. Therefore<br />

<strong>the</strong>ir correlation with <strong>the</strong> isotopic stages is tentative <strong>and</strong> is based on <strong>the</strong> assumption<br />

that <strong>the</strong> piedmont mora<strong>in</strong>es of <strong>the</strong> South-Alp<strong>in</strong>e glaciers have been formed<br />

<strong>in</strong> periods of maximal glaciation of <strong>the</strong> Alps. This is <strong>in</strong> accordance with <strong>the</strong><br />

<strong>the</strong>oretical model by Gibbon et alii (1984). In this way <strong>the</strong> Faita stage, which is<br />

dated as of early Middle Pleistocene age, can be correlated with isotopic stage<br />

16. In <strong>the</strong> same manner <strong>the</strong> Sedeña stage ,which dates from <strong>the</strong> Penultimate<br />

Glacial is correlated with isotopic stage 6. The Carpenedolo stage, of which <strong>the</strong><br />

age is <strong>in</strong>termediate between <strong>the</strong> Faita stage <strong>and</strong> <strong>the</strong> Sedeña stage, thus probably<br />

correlates with isotopic stage 12.<br />

Assum<strong>in</strong>g that <strong>the</strong> forego<strong>in</strong>g correlations are correct, this would mean that


230 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

<strong>the</strong> isotopic stages 8, 10, 14, 18 <strong>and</strong> 20 left no traces <strong>in</strong> <strong>the</strong> Quaternary stratigraphic<br />

record <strong>in</strong> <strong>the</strong> <strong>central</strong> <strong>Po</strong>-valley.<br />

The results of this study <strong>in</strong> so far as <strong>the</strong> Quaternary geology is concerned,<br />

<strong>the</strong>refore po<strong>in</strong>t to a general agreement between <strong>the</strong> paleoclimatic record, as<br />

<strong>in</strong>ferred from deep-sea cores, <strong>and</strong> <strong>the</strong> pede-Alp<strong>in</strong>e Quaternary stratigraphy. Only<br />

major phases of ice accumulation seem connected with major glacier advances.<br />

The part of <strong>the</strong> Alp<strong>in</strong>e fr<strong>in</strong>ge, described <strong>in</strong> this <strong>the</strong>sis, thus might be considered<br />

as a regional demonstration of <strong>the</strong> <strong>the</strong>oretical model of Gibbon.<br />

V 28-239<br />

EQUATORIAL PACIFIC 03°<br />

à '°0%ovs PDB<br />

DSDP Hole 504<br />

PANAMA BASIN 01°<br />

SO IL D EV ELO PM EN T<br />

PO VALLEY<br />

ADDA GARDA APENNINE<br />

I'<br />

G L A C IA L PERIODS<br />

ADDA GARDA APENNiNt<br />

A Solfer<strong>in</strong>o A<br />

A Sedeña A<br />

I I<br />

A Carpenedoio<br />

A Falta<br />

A Ciliverghe<br />

Fig. 106 - Correlation between glacial stages, pedogenetic phases <strong>in</strong> <strong>the</strong> Central <strong>Po</strong> pla<strong>in</strong> <strong>and</strong> ocean<br />

isotopic records.<br />

Fig. 106 - Correlazione fra le fasi glaciali, le fasi pedogenetiche della pianura padana <strong>central</strong>e e<br />

le curve isotopiche oceaniche.


CONCLUSIONS 231<br />

12.2. THE SOIL FORMING PROCESSES<br />

The soils, <strong>vetusols</strong> <strong>and</strong> paleosols studied can be divided <strong>in</strong>to two major<br />

groups. The first group comprises buried soils, dat<strong>in</strong>g from Late Tertiary to Early<br />

Pleistocene. These soils exhibit features characteristic for soils which are <strong>in</strong>termediate<br />

between ferrug<strong>in</strong>ous <strong>and</strong> ferrallitic soils. The second group comprises fersiallitic<br />

soils, developed <strong>in</strong> deposits of wideley vary<strong>in</strong>g age, i.e. from late Early<br />

Pleistocene to Early Holocene (Atlantic). These soils toge<strong>the</strong>r form post-<strong>in</strong>cisive<br />

chronosequences (Vreeken, 1974) <strong>the</strong> most ancient of which beg<strong>in</strong> at <strong>the</strong> end of<br />

<strong>the</strong> Matuyama epoch. The soils formed after <strong>the</strong> Early Holocene are marked by<br />

<strong>the</strong>ir limited profile development <strong>and</strong> by redistribution of carbonates <strong>and</strong> as such<br />

constitute a separate group. In <strong>the</strong> follow<strong>in</strong>g text <strong>the</strong> youngest soils will be<br />

treated first. It should be realized that <strong>the</strong> Holocene time-scale is of <strong>the</strong> order of<br />

some thous<strong>and</strong>s of years only, <strong>the</strong> Pleistocene scale should be read <strong>in</strong> tenthous<strong>and</strong>s<br />

to hundred-thous<strong>and</strong>s. The Pliocene to Early Pleistocene scale must be<br />

read <strong>in</strong> hundred-thous<strong>and</strong>s to some millions of years.<br />

The <strong>Po</strong>st-Atlantic soils. Although <strong>the</strong> present climate seems compatible with <strong>the</strong><br />

argilluviation <strong>and</strong> rubéfaction processes which characterize <strong>the</strong> second group of<br />

soils mentioned above, features deriv<strong>in</strong>g from <strong>the</strong>se processes have not been<br />

observed <strong>in</strong> <strong>the</strong> post-Atlantic soils of <strong>the</strong> area. These limited <strong>in</strong>dications of soil<br />

development are probably due to <strong>the</strong> strong man-<strong>in</strong>duced erosion of <strong>the</strong> soils,<br />

which already started <strong>in</strong> <strong>the</strong> Bronze Age.<br />

The late Early Pleistocene to Early Holocene soils. The soils developed between<br />

<strong>the</strong> late Early Pleistocene <strong>and</strong> <strong>the</strong> Early Holocene, as discussed <strong>in</strong> chapter 10,<br />

resemble each o<strong>the</strong>r strongly with regard to <strong>the</strong>ir pedogenetic characteristics, i.e.<br />

<strong>the</strong>y are fersiallitic soils. Therefore <strong>the</strong>y are considered to represent stages <strong>in</strong> a<br />

progressive pedogenetic evolution («cycle long» of Duchaufour, 1983) ra<strong>the</strong>r<br />

than a summation of vairous pedogenetic processes connected with different pedoclimates.<br />

The latter, which is <strong>the</strong> essential characteristic of polygenetic soils, has<br />

thusfar not been observed here.<br />

The observations discussed <strong>in</strong> this study strongly <strong>in</strong>dicate that <strong>the</strong> pedoclimate<br />

dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terglacials did not differ from that dur<strong>in</strong>g <strong>the</strong> Atlantic, i.e. it<br />

will have been of <strong>the</strong> mediterranean type. This is <strong>in</strong> fair agreement with <strong>the</strong><br />

present concepts on paleoclimates <strong>in</strong> <strong>the</strong> mediterranean area (see chapter 2a).<br />

The presence of erosional surfaces, of loess covers, <strong>and</strong> of colluvial deposits<br />

<strong>in</strong> <strong>the</strong> upper parts of <strong>the</strong>se profiles, seems to be <strong>in</strong> contradiction with <strong>the</strong> model<br />

of a progressive evolution of <strong>the</strong> soils. These phenomena are products of periglacial<br />

morphosystems, which even might have <strong>in</strong>terrupted <strong>the</strong> soil form<strong>in</strong>g processes<br />

<strong>and</strong> may have changed <strong>the</strong>ir general trend. Never<strong>the</strong>less <strong>the</strong> contradiction<br />

is only apparent. In fact o'nly <strong>the</strong> upper part of <strong>the</strong> profiles was affected by<br />

degradational processes, caus<strong>in</strong>g slight erosion <strong>and</strong>, at microscale, coarse illuviation,<br />

or by deposition of th<strong>in</strong> loess covers. The lower parts, on <strong>the</strong> contrary,<br />

deepened progressively by décalcification, wea<strong>the</strong>r<strong>in</strong>g of silt, s<strong>and</strong> <strong>and</strong> silicate<br />

gravel <strong>and</strong> by clay translocation, act<strong>in</strong>g at ever lower depth.


232 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

The fact that <strong>the</strong> soil development has not been more severely hampered<br />

dur<strong>in</strong>g <strong>the</strong> glacial periods is somewhat surpris<strong>in</strong>g, but is considered to be due to<br />

<strong>the</strong> specific climatic conditions <strong>in</strong> <strong>the</strong> area studied (Fig. 105). In fact, unlike <strong>the</strong><br />

conditions <strong>in</strong> Central <strong>and</strong> Western Europe, permafrost did not occur <strong>and</strong> <strong>the</strong><br />

WESTERN EUROPE<br />

m e a n<br />

annual<br />

<strong>in</strong>terglacial<br />

forest<br />

boreal forest<br />

steppe<br />

tundra<br />

polar desert<br />

soil d evelopm ent<br />

p erm afrost<br />

s o liflu c tio n<br />

soil developm ent<br />

m e a n<br />

NORTHERN ITALY<br />

annual<br />

<strong>in</strong> te rg la cia l<br />

forest<br />

P<strong>in</strong>us forest<br />

steppe<br />

. ru b e fa c tio n / ferrolysis<br />

local e ro sio n<br />

Fig. 105 - Comparison of <strong>the</strong> soil development dur<strong>in</strong>g a Glacial-Interglacial cycle, between Western<br />

Europe <strong>and</strong> <strong>No</strong>r<strong>the</strong>rn Italy (after: Bowen, 1978, van der Hammen, 1979).<br />

Fig. 105-1 process! pedogenetici nell’arco di un ciclo glaciale-<strong>in</strong>terglaciale; raffronto fra TEuropa<br />

occidental ed il <strong>No</strong>rd Italia.


CONCLUSIONS 233<br />

climatic conditions dur<strong>in</strong>g <strong>the</strong> glacial periods were generally milder due to a<br />

geographic isolation which was comparable to that of today.<br />

The result<strong>in</strong>g differences <strong>in</strong> vegetation can be described as follows: to <strong>the</strong><br />

<strong>No</strong>rth of <strong>the</strong> Alps, dur<strong>in</strong>g <strong>the</strong> glacial periods <strong>the</strong> temperate forest was replaced<br />

by a tundra-steppe <strong>and</strong> sometimes by a polar desert. In <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> <strong>the</strong> mixedoak<br />

<strong>in</strong>terglacial forest was replaced by a P<strong>in</strong>us forest <strong>and</strong> grassl<strong>and</strong>s <strong>and</strong> steppes<br />

existed only <strong>in</strong> narrow belts along <strong>the</strong> marg<strong>in</strong>s of <strong>the</strong> pla<strong>in</strong>.<br />

Because of <strong>the</strong> absence of permafrost <strong>and</strong> <strong>the</strong> presence of a protective vegetational<br />

cover, sohfluction <strong>and</strong> periglacial erosion <strong>in</strong> <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> were of very<br />

m<strong>in</strong>or importance. This is <strong>in</strong> contrast to <strong>the</strong> situation <strong>in</strong> a great part of Europe<br />

where <strong>the</strong>y were <strong>the</strong> cause of severe erosion, <strong>in</strong>clud<strong>in</strong>g complete removal of <strong>the</strong><br />

previously developed soils.<br />

Coarse illuviation <strong>and</strong> related degradational processes occurred due to <strong>the</strong><br />

<strong>in</strong>tense alternate freez<strong>in</strong>g <strong>and</strong> thaw<strong>in</strong>g, <strong>the</strong> higher precipitation <strong>and</strong> longer last<strong>in</strong>g<br />

snow covers, but <strong>the</strong>se processes affected only <strong>the</strong> upper part of <strong>the</strong> profiles.<br />

Clear <strong>in</strong>dications exist that <strong>in</strong> <strong>the</strong> loess isohumic soils were formed, dur<strong>in</strong>g<br />

<strong>in</strong>terstadials which degraded <strong>in</strong>to fragipan <strong>in</strong> subsequent glacial conditions. Dur<strong>in</strong>g<br />

non-glacial periods lessived soils marked by pseudodogley developed <strong>and</strong> this<br />

obliterated many of <strong>the</strong> previously acquired characteristics. These soils are characterized<br />

by décalcification <strong>and</strong> lessivage, but <strong>the</strong>y lack rubéfaction because of <strong>the</strong><br />

poor <strong>in</strong>ternal dra<strong>in</strong>age of <strong>the</strong> parent material.<br />

It can <strong>the</strong>refore be concluded that although <strong>the</strong> processes will have acted at<br />

different rates, <strong>the</strong> general trend <strong>in</strong> pedogenesis <strong>in</strong> soils <strong>in</strong> <strong>the</strong> stablc^urfaces was<br />

not <strong>in</strong>terrupted.<br />

Although all soils exhibit <strong>the</strong> same general trend, this does not imply that<br />

with<strong>in</strong> <strong>the</strong> area studied slight differences <strong>in</strong> soil formation did not exist. On <strong>the</strong><br />

contrary, presumably climatically controlled regional differences <strong>in</strong> soil formation<br />

occur <strong>in</strong> all members of <strong>the</strong> chronosequences. The most evident differences are:<br />

— more pronounced pseudogley <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge, <strong>in</strong> <strong>the</strong> soils <strong>in</strong> gravel as<br />

well as <strong>in</strong> loess, to be attributed to a climate with a stronger seasonal contrast;<br />

— more pronounced <strong>and</strong> moife frequent development of fragipans <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e<br />

fr<strong>in</strong>ge, to be attributed to lower temperatures <strong>in</strong> glacial periods close to <strong>the</strong><br />

glacier front;<br />

— deeper décalcification <strong>in</strong> <strong>the</strong> Adda area, to be attributed to higher precipitation<br />

rates.<br />

The explanation given for <strong>the</strong>se phenomena conforms with <strong>the</strong> present day<br />

climatic differences <strong>in</strong> <strong>the</strong> area studied <strong>and</strong> thus suggests that similar variations<br />

also occurred dur<strong>in</strong>g <strong>the</strong> Pleistocene.<br />

The Tate Tertiary to Early Pleistocene soils. The paleosols buried <strong>in</strong> <strong>the</strong> lower<br />

part of <strong>the</strong> Gavardo, Castenedolo <strong>and</strong> Bagaggera sequences represent soils formed<br />

over a very long period of time (see above). They owe <strong>the</strong>ir characteristics<br />

to pedogenetic processes which were active <strong>in</strong> <strong>the</strong> Late Tertiary <strong>and</strong> Early<br />

Pleistocene only: <strong>the</strong> soils show characteristics <strong>in</strong>termediate between ferrallitic<br />

<strong>and</strong> ferrug<strong>in</strong>ous soils <strong>and</strong> must have been formed <strong>in</strong> a more tropical climate, i.e.


234 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO<br />

t<br />

with higher temperatures <strong>and</strong> higher summer precipitations (weaker seasonal<br />

contrast <strong>in</strong> precipitation) than prevail <strong>in</strong> today’s mediterranean regions.<br />

Comparison of <strong>the</strong>se pedoclimatic conditions with those occurr<strong>in</strong>g later <strong>in</strong> <strong>the</strong><br />

Pleistocene leads to <strong>the</strong> conclusion that somewhere <strong>in</strong> <strong>the</strong> Early Pleistocene a<br />

break <strong>in</strong> <strong>the</strong> paleoenvironmental evolution occurred: dur<strong>in</strong>g <strong>the</strong> Early Pleistocene<br />

(Pre Jaramillo) a more or less tropical climate prevailed, while <strong>the</strong> Middle <strong>and</strong><br />

Late Pleistocene were characterized by climates of a more mediterranean type; <strong>the</strong><br />

latter frequently alternat<strong>in</strong>g with glacial periods.<br />

Isotopic <strong>and</strong> faunal studies by Cita <strong>and</strong> Ryan (1972) led <strong>the</strong>se authors to<br />

dist<strong>in</strong>guish a Preglacial Pleistocene from a Glacial one. Similar conclusions were<br />

drawn by Ruggeri et alii (1984) <strong>and</strong> Rio et alii (<strong>in</strong> press) on <strong>the</strong> basis of studies<br />

of mediterranean microfaunas. They can also be drawn from recently published<br />

high-resolution isotopic curves (Shackleton et alii, 1984; see Fig. 106).<br />

Comparison of <strong>the</strong>se results shows that <strong>the</strong> transition is generally assumed to<br />

have taken place at <strong>the</strong> end of <strong>the</strong> Early Pleistocene, which agrees very well with<br />

<strong>the</strong> conclusion based on <strong>the</strong> evidence presented by <strong>the</strong> paleosols <strong>and</strong> <strong>vetusols</strong>.<br />

12.3. THE VETU SOT CONCEPT<br />

A major conclusion of <strong>the</strong> discussion on <strong>the</strong> genesis of <strong>the</strong> late Early Pleistocene<br />

<strong>and</strong> younger soils constitu<strong>in</strong>g <strong>the</strong> post-<strong>in</strong>cisive chronosequences, is that<br />

<strong>the</strong>se soils are not paleosols <strong>in</strong> <strong>the</strong> sense of <strong>the</strong> def<strong>in</strong>ition by Yaalon (1971). They<br />

are pedogenetic bodies still <strong>in</strong> evolution, <strong>and</strong> undergo<strong>in</strong>g <strong>the</strong> same or similar<br />

processes from <strong>the</strong>ir start up to <strong>the</strong> present time i.e. <strong>in</strong> this case <strong>the</strong> dom<strong>in</strong>ant<br />

process of ferri-argilluviation. Such soils very closely approach <strong>the</strong> etimon «vêtus»<br />

(Lat<strong>in</strong>: old), <strong>the</strong>y are very old soils developed without an important break<br />

<strong>in</strong> <strong>the</strong>ir pedogenesis. The exist<strong>in</strong>g nomenclature for paleosols <strong>and</strong> soils is <strong>in</strong>adequate<br />

for <strong>the</strong>se soils (see section 1.3.). Therefore <strong>the</strong> term «vetusol» is proposed<br />

<strong>and</strong> used <strong>in</strong> this <strong>the</strong>sis to characterize those soils meet<strong>in</strong>g <strong>the</strong> requirements<br />

described above. Vetusols are frequently encountered <strong>in</strong> mediterranean areas <strong>and</strong><br />

have been described from various parts of mediterranean Europe. The <strong>in</strong>troduction<br />

of this concept facilitates <strong>the</strong> dist<strong>in</strong>ction of four different categories of<br />

profiles <strong>and</strong> materials which conta<strong>in</strong> <strong>in</strong>dications of soil formation <strong>in</strong> <strong>the</strong> past.<br />

— (buried) paleosols: soils <strong>the</strong> development of which took place dur<strong>in</strong>g some<br />

period or periods <strong>in</strong> <strong>the</strong> past, <strong>and</strong> is not active any more to-day, due to deep<br />

burial <strong>in</strong>side stratigraphic sequences.<br />

— pedorelicts: materials conta<strong>in</strong><strong>in</strong>g retransported remnants of past pedogenesis.<br />

— polysols = «polygenetic soils»: soils which show pedogenetic phenomena<br />

from two or more periods with marked differences <strong>in</strong> one or more of <strong>the</strong> soil<br />

form<strong>in</strong>g factors e.g. climate.<br />

— <strong>vetusols</strong>: soils actually at <strong>the</strong> surface, which underwent <strong>the</strong> same or very<br />

similar processes of soil formation over a generally long period of time, <strong>in</strong>clud<strong>in</strong>g<br />

at least some part of <strong>the</strong> Pleistocene.


REFERENCES<br />

Accorsi C., Bad<strong>in</strong>i Ma2zanti F. <strong>and</strong> Bertolani Marchetti D., 1980. «Primi cenni sul diagramma<br />

poll<strong>in</strong>ico della successione pleistocenica del Torrente Tiepido (Appenn<strong>in</strong>o modenese)».<br />

CN.R., Vrogetto F<strong>in</strong>alivxflto Geod<strong>in</strong>ámica, pubbl. 356. Contributi alla realizzazione della Carta<br />

neotettonica dTtalia, Roma, pp. 1455-1456.<br />

A.G.I.P., 1959. 1 giacimenti gassiferi deU'Europa occidentale. Atti Conv. Milano. Accademia Nazionale<br />

dei L<strong>in</strong>cei, vol. 2, Roma, pp. 564.<br />

Alessio M., Allegri L., Belli F., Belluom<strong>in</strong>i G., Calderoni G., Cortesi C., Improta S., Manfra L. <strong>and</strong><br />

Orombelli G., 1978. «1 depositi lacustri di Rovagnate, <strong>Po</strong>ntida e Pianico <strong>in</strong> Lombardia:<br />

datazione con il C 14», Geogr. Fis. D<strong>in</strong>am. Quai., vol. 1, pp. 131-137.<br />

Alessio M., Allegri L., Bella E., Calderoni G., Cortesi C., <strong>Cremaschi</strong> M., Improta S., Papani G. <strong>and</strong><br />

Petrone V., 1980. «Le datazioni 14 C della pianura tardowurmiana ed olocenica nell’Emilia<br />

occidentale». C.NH., Progetto F<strong>in</strong>alizxflto Geod<strong>in</strong>ámica, pubbl. 356. Contributi prelim<strong>in</strong>ari alla<br />

realizzazione della Carta Neotettonica dTtalia, vol. 3 (2), Roma, pp. 1411-1435.<br />

Allen B. L. <strong>and</strong> Goss D. W., 1974. « Micromorphology of paleosols from <strong>the</strong> semiarid Sou<strong>the</strong>rn<br />

high pla<strong>in</strong>s of Texas». In Ru<strong>the</strong>rford K., (ed). Soil Microscopy, Proc. 4th Int. Work<strong>in</strong>g Meet<strong>in</strong>g Soil<br />

Micromorph. Limestone Press, K<strong>in</strong>gstone, Canada, pp. 28-48.<br />

Ambrosetti P. <strong>and</strong> <strong>Cremaschi</strong> M., 1975. «Segnalazione di una fauna villafranchiana superiore con<br />

“ Libralces gallicus” nei livelli fluviolacustri soprastanti aile faune calabriane ad “Arctica<br />

islándica” nei d<strong>in</strong>torni di Reggio Emilia». Boll. Soc. Geol. It., vol. 94, pp.1361-1374.<br />

Annovi A., <strong>Cremaschi</strong> M., Fregni P. <strong>and</strong> Gasperi G., 1979. La successione pleistocenica mar<strong>in</strong>a e<br />

cont<strong>in</strong>entale del T. Tiepido (Appenn<strong>in</strong>o modenese)». Geogr. Fis. D<strong>in</strong>am. Quat., vol. 2, pp. 83-104.<br />

Ardu<strong>in</strong>o F., Barberis E., Carraro F. <strong>and</strong> Forno M. G., 1984. «Estimat<strong>in</strong>g relative ages from<br />

iron-oxide, total iron ratios, of soils <strong>in</strong> <strong>the</strong> Western <strong>Po</strong> Valley (Italy)», Geoderma, vol. 33, pp.<br />

39-52.<br />

Arias C., Bigazzi G. <strong>and</strong> Bonadonna F. P., 1980. «Studio cronológico e paleomagnetico di alcune<br />

serie sedimentarie dellTtalia appenn<strong>in</strong>ica». CJ9 K., Progetto F<strong>in</strong>alizzato Geod<strong>in</strong>ámica, pubbl. 356.<br />

Contributi per la realizzazione della Carta neotettonica dTtalia, Roma, vol. 3, pp, 1441-1448.<br />

Bagol<strong>in</strong>i B. <strong>and</strong> Biagi P., 1975. «II Neolítico di Vhô di Piadena». Preistoria Alp<strong>in</strong>ayoX. 11, pp.<br />

77-121.<br />

Bagol<strong>in</strong>i B. <strong>and</strong> Biagi P., 1976. «The orig<strong>in</strong>s of <strong>the</strong> Neolithic <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy». Actes IX Congrès<br />

U.I.S.P.P. (Nice), pp. 58-73.<br />

Bagol<strong>in</strong>i B. <strong>and</strong> Biagi P., 1977. «Current Culture History, Issues <strong>in</strong> <strong>the</strong> study of <strong>the</strong> Neolithic of<br />

<strong>No</strong>r<strong>the</strong>rn Italy». B»//. Inst. Archael. vol. 14, pp. 143-166.<br />

Bagol<strong>in</strong>i B. <strong>and</strong> Biagi P., 1980. «The Mesolithic <strong>and</strong> Early Neolithic Settlements of <strong>No</strong>r<strong>the</strong>rn Italy».<br />

In Problèmes de la Néolithisation dans certa<strong>in</strong>es régions de l'Europe. <strong>Po</strong>lska Akad. Nauk, Krakowo,<br />

pp. 9-26.<br />

Baroni C., <strong>Cremaschi</strong> M. <strong>and</strong> Peretto C., <strong>in</strong> press. «Recenti ritrovamenti paleolitici <strong>in</strong> Lombardia».<br />

A tti del 2° convegno di archeologia lombarda. Como 1984.<br />

Bartolomei G. <strong>and</strong> Broglio A., 1964. «Primi risultati delle ricerche della Grotta M<strong>in</strong>ore di S.


236 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Bernard<strong>in</strong>o nei Colli Berici». Ann. Univ. Ferrara. Sez. XV, I (8), pp. 157-185.<br />

Bartolomei G., Broglio A., Cattani L., <strong>Cremaschi</strong> M., Guerreschi A., Mantovani F., Peretto C. <strong>and</strong><br />

Sala B., 1982. «I deposit! Wiirmiani del Riparo Tagliente». Ann. Univ. Ferr., sez. XV., Paleont.<br />

Urn. Paletn., vol. 3 (4), pp.61-105.<br />

Bartolomei G., Broglio A., Cattani L., <strong>Cremaschi</strong> M., Laz<strong>in</strong>ger M. <strong>and</strong> Leonard! P., 1985. «Risultati<br />

prelim<strong>in</strong>ari delle nuove ricerche nella grotta Pa<strong>in</strong>a». Jager und Sammelm Jahr. Bern. Flistorish.<br />

Mus. 65 pp. 43-54.<br />

Benayas J. <strong>and</strong> Guerra A., 1972. «Contribution to <strong>the</strong> micromorphological study of red mediterranean<br />

soils of Spa<strong>in</strong>. IIP <strong>in</strong>ternational work<strong>in</strong>g meet<strong>in</strong>g on soil micromorphology».<br />

IFROCLAW-1969. Zes. Prop/, post. Nau. Kol., z. 123, pp. 429-444.<br />

Bernabo Brea M., <strong>Cremaschi</strong> M. <strong>and</strong> Steffè G., <strong>in</strong> press. «Neolithic communities <strong>and</strong> <strong>the</strong>ir<br />

environment <strong>in</strong> <strong>the</strong> Panaro valley, <strong>in</strong> light of <strong>the</strong> excavation at Savignano». In Premieres<br />

communautés paysannes en Mediterranée occidentale (Montpellier, 1983).<br />

Bertolani Marchetti D., 1960. Keperti paleohotanici <strong>in</strong> un <strong>in</strong>ghiottitoio fossile dei gessi bolognesi. Atti Soc.<br />

Nat. Mat. di Modena. Vol. 91, pp. 3-11.<br />

Bertolani Marchetti D., 1963-1970. «Clima e paleoclimax della pianura Padana Veneta». AfcOToni di<br />

Biogeografia Adriático, vol. 8, pp. 63-77.<br />

Bertolani Marchetti D., Accorsi C. A., Pelosio G. <strong>and</strong> Raffi S., 1979. «Pal<strong>in</strong>ology <strong>and</strong> Stratigraphy<br />

of <strong>the</strong> Plio-Pleistocene sequence of <strong>the</strong> Stirone River (<strong>No</strong>r<strong>the</strong>rn Italy)». <strong>Po</strong>llen é r Spores, vol.<br />

21 (1 e 2), pp.149-167.<br />

Bertoldi R., 1968. «Ricerche pal<strong>in</strong>ologiche sullo sviluppo della vegetazione tardiglaciale e postglaciale<br />

nella regione del Lago di Garda». Stud. Trent. Sc. Nat., B, vol. 1, pp. 87-162.<br />

Biagi P., 1980. «Some aspects of <strong>the</strong> Prehistory of <strong>No</strong>r<strong>the</strong>rn Italy from <strong>the</strong> f<strong>in</strong>al Paleolithic to <strong>the</strong><br />

Middle Neolithic, a riconsideration of <strong>the</strong> evidence available to date». Proceed<strong>in</strong>gs of <strong>the</strong> Prehistoric<br />

Soriety, vol. 46, pp. 3-18.<br />

Biagi P., Castelletti L., <strong>Cremaschi</strong> M., Sala B. <strong>and</strong> Tozzi C., 1980. «<strong>Po</strong>polazione e territorio nell’Appenn<strong>in</strong>o<br />

Tosco-Emiliano e nel tratto <strong>central</strong>e del Bac<strong>in</strong>o del <strong>Po</strong> tra il IX ed il V millcnnio».<br />

Emilia Preromana, vol. 8, pp. 13-36.<br />

Biagi P., <strong>Cremaschi</strong> M. <strong>and</strong> Nisbet R., 1985. « Palaecological implications for <strong>the</strong> later prehistory ot<br />

<strong>No</strong>r<strong>the</strong>rn Italy». In Malone C. <strong>and</strong> Stoddert S. (eds). Papers <strong>in</strong> Italian Archaeology IV, part 2,<br />

Prehistory BAR <strong>in</strong>ternational series, 244, pp.272-281.<br />

Billard A., 1975. «Paléosols quaternaires de Taita pianura de Milan, <strong>in</strong>térpretation stratigraphique<br />

et paléoclimatique». Bull. Ass. Franç. Etude Quat., pp. 267-286.<br />

Billard A., 1977. «Quaternary stratigraphy of stepped glaciofluviarile terraces <strong>in</strong> <strong>the</strong> Italien<br />

piedmont of <strong>the</strong> Alps; a criticism <strong>and</strong> a proposal of new criteria of classification». ICGP Project<br />

73/1/24, Rep. n.4, pp. 53-66.<br />

Billard A. <strong>and</strong> Fedoroff N., 1977. «Interglacial-periglacial pedogenetic cycle <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy <strong>and</strong><br />

France». X INQJJA Congress, Abstracts, Birm<strong>in</strong>gham, vol. 10, p. 35.<br />

Billard A., Bucha V., Horacek I. <strong>and</strong> Orombelli G., 1983. «Prelim<strong>in</strong>ary paleomagnetic <strong>in</strong>vestigation<br />

on Pleistocene sequences <strong>in</strong> Lombardy, <strong>No</strong>r<strong>the</strong>rn Italy». Kiv. It. Paleont. Strat. vol. 88 (2), pp.<br />

295-318.<br />

Billaux P., 1978. «Estimation du “regime hydrique” des sols au moyen des données climatiques».<br />

Cah. ORSTOM, ser. Ped, vol.16, n° 3, pp. 317-338.<br />

B<strong>in</strong>i C., Busoni C. <strong>and</strong> Ferrari G. A , 1977. «Figure pedologiche nei paleosuoli: orizzonti a<br />

pseudogley <strong>in</strong> un suolo della Valdichiana». Boll. Soc. Geol. It., vol. 95, pp. 169-186.<br />

B<strong>in</strong>i A., Cita B. M. <strong>and</strong> Gaétan! M., 1977. «Sou<strong>the</strong>rn Alp<strong>in</strong>e Lakes; hypo<strong>the</strong>sis of an erosional<br />

orig<strong>in</strong> related to <strong>the</strong> Mess<strong>in</strong>ian entrenchment». Mar<strong>in</strong>e Geology, n. 27, pp. 217-288.<br />

Birkel<strong>and</strong> P. W., 1974. Pedology, wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong> geomorphological research. Oxford Univ. Press. New<br />

York, London, Toronto, p. 285.<br />

Bisi F., Cattani L., Peretto C., Sala B. <strong>and</strong> <strong>Cremaschi</strong> M., 1977. «II riempimento di alcuni <strong>in</strong>ghiotti-


REFERENCES 2 3 7<br />

toi fossili nei gessi bolognesi: sedimenti, poll<strong>in</strong>i, faune, <strong>in</strong>dustrie». Preistoria Alp<strong>in</strong>a, vol. 13, pp.<br />

11-19.<br />

Bisi F., Cretnaschi M. <strong>and</strong> Peretto C., 1982. «Le <strong>in</strong>dustrie del Paleolítico <strong>in</strong>feriore del conoide<br />

pleistocenico del torrente Idice (Bologna)». In I.IP.P. Atti della XXIII Riunione Scienl^tca<br />

dell’Istituto Italiano di Preistoria e Protostoria, Firenze 1980, pp. 259-271.<br />

Bisi F., Broglio A., Guerreschi A. <strong>and</strong> Radmilli A. M., 1983. «L’Epigravettien évolué et f<strong>in</strong>al dans<br />

la zone haute et moyenne adriatyque». Kivista di Scienze Preistoriche, vol.38. Fase. 1.2. pp.<br />

223-265.<br />

Boardman J., 1985. «Comparison of soils <strong>in</strong> Midwestern United States <strong>and</strong> <strong>the</strong> <strong>in</strong>terglacial record».<br />

Quaternary Research, vol. 23, pp.62-75.<br />

Bockheim J. G., 1980. «Solution <strong>and</strong> use of chro nofun a ions <strong>in</strong> study<strong>in</strong>g soil development».<br />

Geoderma, vol. 24, pp. 71-85.<br />

Bolt A .J.J., Miicher H.J., Sev<strong>in</strong>k J. <strong>and</strong> Verstraten J. L., 1980. «A study on loess derived colluvia<br />

<strong>in</strong> Sou<strong>the</strong>rn Limhourg». y. Agrie. Sei. 28, pp. 110-126.<br />

Boni A. <strong>and</strong> Cass<strong>in</strong>is G., 1973. «Carta geológica delle Prealpi bresciane a sud deH’Adamello. (<strong>No</strong>te<br />

illustrative della Legenda stratigrafica)». Atti 1st. Geol. Unir. Paria, vol. 13, pp. 119-157.<br />

Bonom<strong>in</strong>i C., 1925. «11 conglomerato di Odolo e Preseglie nella Prov<strong>in</strong>cia di Brescia». Boll. Soc.<br />

Geol. Ital., vol.44, fase. 2, pp. 118-120.<br />

Bordes F., 1961. «Typologie du Paléolitique ancien et moyen». Publ. de Plst. Prehist. Unir. Bordeaux.<br />

Mem. 1, Bordeaux, pp. 81.<br />

Bornard M., 1978. Altération des matériaux flurioglaciaires, genèse et érolution des sols sur terrasses<br />

quaternaires dans le moyenne rallèe du RJiône. Thesis Univ. Sciences et Techniques du Languedoc<br />

Ed. Inst. Nat. Rec. Agr, Montpellier, 329 pp.<br />

Bos R. H. G. <strong>and</strong> Sev<strong>in</strong>k J., 1975. «Introduction of gradational <strong>and</strong> pedomorphic features <strong>in</strong><br />

descriptions of soils»./ Soil. Sei., vol. 26,3,pp.223-233.<br />

Boula<strong>in</strong>e J., 1961. «Factors <strong>in</strong> <strong>the</strong> formation of mediterranean soils». Afr. Soils, vol. 6 (1), pp.<br />

263-272.<br />

Boula<strong>in</strong>e J., 1966. «Sur les facteurs climatiques de la genèse des sols rouges». G. R. Conf. Intern. Sols<br />

Méditerranéens, Madrid, pp. 35-68.<br />

Bouma J., <strong>Po</strong>ns L.J. <strong>and</strong> Schuylenborgh, van J., 1968. «On soil genesis <strong>in</strong> temperate humid climate.<br />

VI. The formation of a glossudalf <strong>in</strong> loess. Neth»./ Agrie. Sc., vol. 16, pp. 58-70.<br />

Bowen D. Q., \S)19>. Quaternary Geology. Pergamon Press. Oxford, New York, Toronto, Sydney,<br />

Paris, Frankfurt, pp.221.<br />

Breislak S., 1822. Descrizione geológica della pror<strong>in</strong>cia di Milano. Imperiale Regia Stamperia, Milano, 260<br />

PP-<br />

Brewer R., 1976. Fabric <strong>and</strong> m<strong>in</strong>eral analysis of soils, Krieger, Hunt<strong>in</strong>gton, New York, pp. 482.<br />

Br<strong>in</strong>kman R., 1979. «Ferrolysis, a soil form<strong>in</strong>g process <strong>in</strong> hydromorphic conditions». Agrie. Res.<br />

Rep., 887, PUDOC, Wagen<strong>in</strong>ghen, pp. 92.<br />

Br<strong>in</strong>kman R., Jongmans A. G., Midema R. <strong>and</strong> Maaskant P., 1973. «Clay decomposition <strong>in</strong><br />

seasonally wet acid soils, micromorphological, chemical <strong>and</strong> m<strong>in</strong>eralogical evidence from<br />

<strong>in</strong>dividual argillans». Geoderma vol. 10, pp. 259-270.<br />

Broglio A., 1964. «Le <strong>in</strong>dustrie Musteriane della grotta del Broion. Mem. Museo Gir. St. Nat. Verona.<br />

XII: 369-390.<br />

Broglio A., 1973. «L’Epipaléolitique de la valee de l’Adige». VAntropologie. LVIl, pp. 5-33.<br />

Broglio A., 1984a. «Significato cronostratigrafico delle <strong>in</strong>dustrie del Pleistocene Superiore».<br />

Geografía física e D<strong>in</strong>ámica Quatemaria vol. 6 (2) 1983; pp. 184-188.<br />

Broglio A., 1984b. «Paleolítico e Mesolitico». In Aspes, A. (ed) 11 Veneto nell’antichità. Pr«i/ona e<br />

Protostoria vol. Verona pp. 167-444.<br />

Broglio A. <strong>and</strong> Lunz R., 1983. «Osservazione prelim<strong>in</strong>are sull’utilizzazione del cristallo di rocca<br />

nelle <strong>in</strong>dustrie mesolitiche del Bac<strong>in</strong>o dell’Adige». Preistoria Alp<strong>in</strong>a vol. 19, pp. 201-208.


238 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Broglio A., Corai P. <strong>and</strong> Lunz R., 1983. «Risultati preMm<strong>in</strong>ari delle prospezioni nei siti mesolitici<br />

della Val Gardena e degli scavi del Plan di Frea». hull. Soc. Prehist. Alp<strong>in</strong>es XV pp. 19-53.<br />

Bucha V., Horacek J., Koci A., Sibrava V. <strong>and</strong> Lozek V., 1975. «Paleomagnedc correlations of<br />

Pleistocene Sediments of Central Europe». I.G.C.POaa/. Glac. <strong>in</strong> <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn Hemisbh. Praga,<br />

Rep. 2, pp. 9-36.<br />

Bucha V. <strong>and</strong> Sibrava V., 1977. «On <strong>the</strong> correlation of Quaternary stages <strong>in</strong> <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn<br />

Hemisphere». Project 73/1/24 \GCP. Quaternary Glaciations <strong>in</strong> <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn Hemisphere. Rep. 4,<br />

pp. 91-101.<br />

Cacciamali G., 1896. «Geología della coll<strong>in</strong>a di Castenedolo e connessavi questione dell’uomo<br />

pliocenico». Comm. Ateneo Brest., vol. 93, pp. 26-79.<br />

CacciamaH G. B., 1914. «Appunti sull’anfiteatro morenico benacese». Rend. R. 1st. Lomb. Sc.<br />

Lett.,vo\. 47 (9), pp. 431-450.<br />

Caldera F., 1916. «Antica e recente pianura del Chiese». Bo//. Soc. Geol. It., vol.35 (3), pp. 329-345.<br />

Capponi M., 1968. «La coll<strong>in</strong>a di Ciliverghe». Natura Bresciana, vol. 5, pp. 39-44.<br />

Castellar<strong>in</strong> A., 1982. «Carta tettonica delle Alpi meridionali alia scala 1:200.000». CNR., Progetto<br />

F<strong>in</strong>alizxflto Geod<strong>in</strong>ámica, pubbl. n. 441, Napoli, pp. 200.<br />

Cattani L., 1976. «Primi risultati delle anahsi poll<strong>in</strong>iche dei deposit! tardiglaciali del Riparo<br />

TagUente nei Monti Less<strong>in</strong>i». Ann. Unit/. Ferrara, sez. XV, vol. 2 (10), pp. 331-341.<br />

Cattani L. <strong>and</strong> Renault Miskowski J., 1984. «Étude poll<strong>in</strong>ique du remplissage de la grotte du Broion<br />

(Vicenza Italy): paleoclimatologie du Würmien en Vénétie». Bull. A.F.E.Q., vol. 16 (4), pp.<br />

197-212.<br />

Cavall<strong>in</strong> A., Francani V. <strong>and</strong> Mazzarella S., 1983. «Studio Idrogeologico della pianura compresa fra<br />

Adda e Tic<strong>in</strong>o». Costitusrjoni, 326-237, pp. 1-39.<br />

Chal<strong>in</strong>e J., 1972. Fe Quaternaire. Do<strong>in</strong>, Paris, 338 pp.<br />

Chamberla<strong>in</strong> T. C. <strong>and</strong> Salisbury R. D., 1904. Geology, vol<br />

Holt <strong>and</strong> Co., New York, pp. 454.<br />

Chardon M., 1975. Fes Prealpes lombardes et leurs bordures.<br />

1, Geologic processes <strong>and</strong> <strong>the</strong>ir results. Henry<br />

Libraire Champion, Paris, 655 pp.<br />

Cigala Fulgosi F., 1976. o.Dicerorh<strong>in</strong>us hemitoecus (Falconer) del post villafranchiano fluviolacustre del<br />

torrente Stirone». Boll. Soc. Paleont. It., vol. 15 (1), pp. 59-72.<br />

Cita M. B., 1955. «Studi stratigrafici sul Terziario subalp<strong>in</strong>o. <strong>No</strong>ta V. Paleogeografía del Terziario<br />

nella regione gardesana». Riv. It. Paleont. e Strat., vol. 3, pp. 1-25.<br />

Cita M. B. <strong>and</strong> Ryan W. B. F., 1973. «Time scale <strong>and</strong> general syn<strong>the</strong>sis». Init. Rep. D.S.D.P., vol.<br />

13 (2), pp. 1405-1415.<br />

Clark J. G. D., 1969, Europa Preistorica. Ed. E<strong>in</strong>audi, Tor<strong>in</strong>o, 452 pp.<br />

Coltorti M., 1980. «Segnalazione di manufatti del Paleolítico <strong>in</strong>feriore-medio sulle coll<strong>in</strong>e<br />

moreniche di Carpenedolo (Brescia)». Natura Bresciana, vol. 17, pp. 235-242.<br />

Coltorti M. <strong>and</strong> <strong>Cremaschi</strong> M., 1978. «Deposito paleolítico a Monte Rotondo». Natura Bresciana,<br />

vol. 15, pp. 45-59.<br />

Coltorti M., <strong>Cremaschi</strong> M., Peretto C. <strong>and</strong> Sala B., 1982. «Il Paleolítico Inferióte nella Lombardia<br />

Orientale, nei Veneto, nell’Emilia Romagna e nelle Marche». Act. XXIII Riun. Sc. IIPP, pp.<br />

123-146. Firenze.<br />

Combler J., 1976. «Stades évolutifs et fades du Paleolitique Inferieur dans le Bass<strong>in</strong> du Rhône et<br />

l’est du Massif Central». UISPP. coll. X: l’évolution de l'Acheuléen en Europe, Nice 1976, pp.<br />

134-135.<br />

Comel A., 1958. v.Ricerche sull’orig<strong>in</strong>e del term<strong>in</strong>e pedológico “Ferretto”». A tti del 1° Convegno friulano di<br />

Scienter Naturali. Ud<strong>in</strong>e, pp. 146-158.<br />

Comel A., 1968. Studi sul Ferretto. Nuovi studi della stazione Chimico-Agraria di Ud<strong>in</strong>e, pubbl. 94,<br />

Ud<strong>in</strong>e, pp. 111.<br />

Corti B., 1896. «Sul deposito villafranchiano di Castenedolo». A tti Soc. It. Sc. Nat., vol 36<br />

87-88.<br />

pp.


eferences 239<br />

Cozzüglio A., 1934. Carta geológica delle Tre Vemzie, Foglio Peschiera, Magistrate delle Acque,<br />

sezione geológica, Venezia.<br />

Cozzaglio A., 1932. «Le formazioni glacial! del Lago di Garda». Memorie dell’Ateneo di Said, vol. 2,<br />

pp. 7-14.<br />

Cox A., 1975. «The frequency of geomagnetic reversals <strong>and</strong> <strong>the</strong> symmetry of <strong>the</strong> non-dipole field».<br />

Kev. Geophys. Space Phys., n. 13, pp. 35-51.<br />

<strong>Cremaschi</strong> M., 1974. «Manufatti del Paleolítico <strong>in</strong>feriore-medio provenienti da Monte Netto di<br />

Brescia e loro rapport! con i deposit! quaternari del Colle». Natura Bresciana, v o l.ll, pp. 41-57.<br />

<strong>Cremaschi</strong> M., 1978a. «The source of <strong>the</strong> fl<strong>in</strong>t artifacts from <strong>the</strong> Central <strong>Po</strong> Valley <strong>and</strong> Apenn<strong>in</strong>e<br />

sites between <strong>the</strong> 7th <strong>and</strong> 2nd millenium B. C». Ill Fl<strong>in</strong>t Symposium. Maastricht, pp. 139-142.<br />

<strong>Cremaschi</strong> M., 1978b. «Unità litostratigrafiche e pedostratigrafiche nei terreni quaternari<br />

pedeappenn<strong>in</strong>ici; loess e paleosuoli tra il fiume Taro ed il torrente Sillaro». Geogr. Fis. D<strong>in</strong>am.<br />

Quat., vol. 1, pp. 4-22.<br />

<strong>Cremaschi</strong> M., 1979a. «Alcune osservazioni sul paleosuolo delle conoidi «würmiane», poste al piede<br />

dell’Appenn<strong>in</strong>o emiliano». Geogr. Fis. D<strong>in</strong>am. Quat., vol. 2, pp. 187-195.<br />

<strong>Cremaschi</strong> M., 1979b. «The loess of <strong>the</strong> <strong>central</strong>-eastern <strong>Po</strong> valley». Proc. 15th meet<strong>in</strong>g «Geomorphological<br />

Survey <strong>and</strong> Mapp<strong>in</strong>g». Modena, pp. 103-115.<br />

<strong>Cremaschi</strong> M., 1982a. «La formazione fluviolacustre del Pleistocene <strong>in</strong>feriore-medio nel<br />

pedeappenn<strong>in</strong>o emiliano». In Cremoni G. <strong>and</strong> Ricci Lucchi F., (eds) Guida alla geología del<br />

marg<strong>in</strong>e appenn<strong>in</strong>ico-padano, Guide geol. Reg. S.G.I., Bologna, pp. 145-149.<br />

<strong>Cremaschi</strong> M., 1982b. «Strutture neolitiche e suoli olocenici nella pianura mantovana e cremonese».<br />

In Biagi P., Barker G. W. <strong>and</strong> <strong>Cremaschi</strong> M., Fa stasdone di Casatico di Marcia nel quadro<br />

pakoambientale ed archeologico dell'Olocene antico nella valle padana <strong>central</strong>e. Istituto Universitario<br />

di Bergamo, Studi Archéologie!, vol. 2, Bergamo, pp. 7-19.<br />

<strong>Cremaschi</strong> M., 1983. «I loess del Pleistocene superiore nellTtalia settentrionale». Geog. Fis. D<strong>in</strong>.<br />

Quat., vol. 6, pp. 189-191.<br />

<strong>Cremaschi</strong> M., <strong>in</strong> press. Stratigrafia del depositi quaternari gardesani. E.N.E.L. studi geologici per la<br />

realitczadone delle <strong>central</strong>i termonucleari padane.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Papani G., 1975. «Contributo prelim<strong>in</strong>are alia neotettonica del marg<strong>in</strong>e padano<br />

dell’Appenn<strong>in</strong>o: le forme terrazzate cómprese tra Cavriago e Quattro Castella». Ateneo<br />

Parmense, vol. 11, pp. 336-372.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Peretto C., 1977. «I depositi quaternari di Borzano, rio Groppo, Toscanella:<br />

sedimenti, paleosuoli, <strong>in</strong>dustrie». Annali Università di Ferrara, vol. 5(3, 1), pp. 1-28.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Marches<strong>in</strong>i A., 1978. «L’evoluzione di un tratto di pianura padana, <strong>in</strong> rapporto<br />

agli <strong>in</strong>sediamenti ed alle strutture geologiche tra il XV sec. a.C. ed il XI sec. d.C». Archeologia<br />

Medioevale, vol. 5, pp. 542-547.<br />

<strong>Cremaschi</strong> M., Benarbo Brea M., Tirabassi J., D’Agost<strong>in</strong>i A., Dall’Aglio P., Magri S., Baricchi W.,<br />

Marches<strong>in</strong>i A. <strong>and</strong> Nepoti S., 1980. «L’evoluzione della pianura emiliana durante I’Eta del<br />

Bronzo, I’Eta Romana e I’Alto Medioevo; geomorfologia ed <strong>in</strong>sediamenti». Padusa, pp. 1-106.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Orombelli G., 1982. «I paleosuoli del Pleistocene medio nel settore <strong>central</strong>e della<br />

pianura padana: il problema del “Ferretto” nella stratigrafia del Quatemario Cont<strong>in</strong>entale».<br />

Geogr. Fis. D<strong>in</strong>am. Quat., vol. 5, pp. 253-255.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Sala B., 1982. «Resti di E. Meridionalis <strong>in</strong> sedimenti del Pleistocene <strong>in</strong>ferioremedio<br />

del fiume Panaro». Geogr. Fis. D<strong>in</strong>am. Quat., vol. 5 (1 ), pp. 256-257.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Christopher C., 1984. «Environment <strong>and</strong> palaeolithic settlements <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn<br />

Italy dur<strong>in</strong>g <strong>the</strong> middle Pleistocene: <strong>the</strong> Ghiardo site». In Malone C., Stoddart S. (eds.) Papers<br />

<strong>in</strong> Italian Archaeology FN. The Cambridge Conference Part. 1°: <strong>the</strong> Human L<strong>and</strong>scape; BAR <strong>in</strong>ternational<br />

series m. 243, pp. 87-104.<br />

<strong>Cremaschi</strong> M. <strong>and</strong> Lanz<strong>in</strong>ger M., 1984. «La successione stratigrafica e le fasi pedogenetiche del sito<br />

epigravettiano di Andalo, i loess tardiglaciali della Val d’Adige». Preistoria Alp<strong>in</strong>a, vol. 19, pp.<br />

179-188.


240 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

<strong>Cremaschi</strong> M., Orombelli G. <strong>and</strong> Salloway J. C., 1985. «Quaternary stratigraphy <strong>and</strong> soil development<br />

at <strong>the</strong> sou<strong>the</strong>rn border of <strong>the</strong> Central Alps (Italy): <strong>the</strong> Bagaggera sequence». R>!>. PaJeo/it.<br />

Strut., vol. 90 (4), pp. 565-603.<br />

Dalrymple J. B. <strong>and</strong> Theocharopoulos S. P., 1984. «Intrapedal cutans; experimental production of<br />

depositional (illuviation) channels argillans». Geoderma, vol. 33, pp.237-243.<br />

De Kimpe C. R., 1976. «Influence of parent material <strong>and</strong> moisture regime on soil genesis <strong>in</strong> <strong>the</strong><br />

Appalachian Highl<strong>and</strong>s, Quebec». Can. J. Soil. Sei., vol. 56, pp. 271-283.<br />

Desio A., 1965. «I rilievi isolati della pianura lombarda ed i movimenti tettonici del Quaternario».<br />

Rend. 1st. Lomh. Cl. Sc., (A), vol. 99, pp. 881-894.<br />

Dijkerman J. C., Cl<strong>in</strong>e M. G. <strong>and</strong> Wolson G. W., 1967. «Properties <strong>and</strong> genesis of textural subsoil<br />

lamellae». Soil Sei., vol. 104 (1), pp. 7-16.<br />

Duchaufour Ph., 1968. Uévolution des sols; essais sur la dynamique des profils. Masson et Cie. (ed), Paris,<br />

93 pp.<br />

Duchaufour Ph., 1977. Précis de Pédologie, Paris-New York-Barcellone-Milan, 477 pp.<br />

Duchaufour Ph., 1983. Pédologie, Tomo 1, Pédogenese et classification. Masson et Cie, Paris-New<br />

York-Barcellone-Milan, 531 pp.<br />

Dumanski J., 1964. A micropedological study of eluviated horizons. M. S. Thesis. Saskatoon University,<br />

94 pp.<br />

Eimbereck-Roux M., 1976. Ces Sols lessivés glossiques à pseudogley de l’Argonne méridionale. Thèse<br />

Pédologie, Université de Dijon, pp. 107.<br />

Eimbereck-Roux M., 1980. «Le sols lessivés glossiques a pseudogley de l’Argonne méridionale.<br />

Caractérisation micromorphologique et m<strong>in</strong>éralogique». Sc. du Sol, n. 3, pp. 81-93.<br />

McEUi<strong>in</strong>ny M. W., 1973. Paleomagnetism <strong>and</strong> plate tectonics. Cambridge, 342 pp.<br />

Engels F., 1876. «Parte avuta dal lavoro nel processo di umanizzazione delle scimmie». In Dialektik<br />

der nature. Italian ed., 1971, L. Lombardo Radice (ed.), Dialettica della natura. Editor! Riuniti,<br />

Tor<strong>in</strong>o, pp. 183-196.<br />

Erhärt H., 1967. Ca genèse des sols en tant que phénomène géologique. Masson et Cie. Paris, 177 pp.<br />

Fedoroff N., 1979. «Organisation du sol a l’échelle microscopique». In Bonneau M. <strong>and</strong> Souchier<br />

B. (ed.). Pédologie, vol. 2, Constituants et Propiétes du sol. Masson, Paris-New York-Barcellona-<br />

Milano, pp. 251-265.<br />

Fedoroff N. <strong>and</strong> Goldberg P., 1982. «Comparative micromorphology of two late Pleistocene<br />

<strong>Paleosols</strong>». Catena, vol. 9, pp. 227-251.<br />

Ferrari G., 1968. «Aspetti micromorfologici di alcuni suoli della Maremma Laziale e Toscana».^«/<br />

Soc. Tose. Sc. Nat., Mem. S. A. 75, pp. 494-522.<br />

Ferrari G. <strong>and</strong> Magaldi D., 1968. «I paleosuoH di Collecchio (Parma) ed il loro significato». Ateneo<br />

Parmense, Acta Naturalia, vol. 4 (2), pp. 57-92.<br />

Ferrari G. <strong>and</strong> Magaldi D., 1974. «Il problema dei loess». In: Gruppo di Studio del Quaternario<br />

padano. Studio <strong>in</strong>terdiscipl<strong>in</strong>are del rilievo isolate di Tr<strong>in</strong>o, Quaderno n° 3, Massara e S<strong>in</strong>chetto<br />

(Ed), Tor<strong>in</strong>o, pp. 244-247.<br />

Ferrari G. <strong>and</strong> Magaldi D., 1983. «Significato ed applicazioni della Paleopedologia nella Stratigrafia<br />

del Quaternario». Boll. Museo Civico Storia Naturale di Verona, vol. 10, pp. 315-340.<br />

Feruglio E., 1929. «Una visita alie morene antiche del Garda». Giom. Geol., s. 2, vol. IV, pp. 3-15.<br />

F<strong>in</strong>ckl P. G., 1978. «Are sou<strong>the</strong>rn Alp<strong>in</strong>e lakes former mess<strong>in</strong>ian canyons? Geophysical evidence<br />

for preglacial erosion <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn alp<strong>in</strong>e lakes». Mar<strong>in</strong>e Geology, vol. 27, pp. 289-302.<br />

F<strong>in</strong>k J., 1954. «Die Fossilen Böden im Österreichischen loess».¿»artó'r 61, pp. 85-107.<br />

F<strong>in</strong>k J., 1969. «Les progrès de l’étude des loess en Europe». In: Ca Stratigraphie des loess d’Europe.<br />

Supplément au Bullet<strong>in</strong> de l'Assoaation Française pour lEtude du Quaternaire, pp. 3-12.<br />

F<strong>in</strong>k J., 1969. «La stratigraphie des loess d’Europe». Supplement au Bull, de l’Ass. Française pour<br />

l'Etude du Quaternaire, pp. 3-12.<br />

F<strong>in</strong>k J., 1979. «Paleomagnetic research <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern foothills of <strong>the</strong> Vienna Bas<strong>in</strong>». Ada<br />

Geológica Academiae Scientiarum Hungaricae, vol. 22 (1-4), pp. 111-124.<br />

51


F<strong>in</strong>k J. <strong>and</strong> Kukla G .J., 1977. «Pleistocene climates <strong>in</strong> Central Europe; at least 17 <strong>in</strong>terglacial after<br />

<strong>the</strong> Olduvai . Quaternary 'Research, vol. 7, pp. 363-371.<br />

F<strong>in</strong>kl P. G., 1980. «Stratigraphic pr<strong>in</strong>ciples <strong>and</strong> practices as related to soil mantles». Catena, vol. 7,<br />

pp. 169-194.<br />

Fitzpatrick E. A., 1956. «An <strong>in</strong>durated soil horizon formed by permafrost»./, ^oil. Sei., vol. 7, pp.<br />

248-254.<br />

Fitzpatrick A. E., 1976. «Cryons <strong>and</strong> isons». Proceed<strong>in</strong>gs of <strong>the</strong> <strong>No</strong>rth of Engi<strong>and</strong> Soil Discussion Group.<br />

vol. 11, pp. 31-43.<br />

Fitzpatrick E. A., 1980. Soils, <strong>the</strong>ir formation, classification <strong>and</strong> distribution. Longman, London <strong>and</strong> New<br />

York, 535 pp.<br />

Flach K. W., Nettleton W. D., Gile L. H. <strong>and</strong> Cady J. G., 1969. «Pedocementation: <strong>in</strong>duration by<br />

silica carbonates <strong>and</strong> sesquioxides <strong>in</strong> <strong>the</strong> Quaternary». Soil Sei., vol. 107 (6), pp. 442-453.<br />

FHnt R. F., 1971. Glanai <strong>and</strong> Quaternary Geology.]. Wiley <strong>and</strong> Sons Inc, New York-London-Sydney-<br />

Toronto, 892 pp.<br />

Fraenzle O., 1965. «Die Pleistozaene Klima und L<strong>and</strong>schaftsentwicklung der nördlichen <strong>Po</strong> Ebene<br />

im Lichte bodengeographischer Untersuchungen». Wiss. Eit. Ahh. Mat. Nat. Kl., vol. 8,<br />

pp. 336-456.<br />

Fraenzle O., 1969. «Les loess rissiens et würmiens de l’Italie du <strong>No</strong>rd». In La Stratigraphie des loess<br />

en Europe. Supplément au Bullet<strong>in</strong> de l’Association Française pour l’Etude du Quaternaire, pp. 93-97.<br />

Frei E., 1974. Mikromorphologie e<strong>in</strong>es polygenetischen Luvisol im Schweitcßrischen Mittell<strong>and</strong>. In: Ru<strong>the</strong>rford,<br />

G. K., (ed.). Soil Microscopy, Proceed<strong>in</strong>g of <strong>the</strong> IV International Work<strong>in</strong>g Meet<strong>in</strong>g on Soil<br />

Micromorphology; Ontario; pp. 542-552.<br />

Frye J. C. <strong>and</strong> William H. B., 1962. «Stratigraphic commission, note 27. Morphostratigraphic units<br />

<strong>in</strong> Pleistocene stratigraphy». Bull. Amer. Ass. Petr. GeoL, vol. 46, pp. 112-113.<br />

Gabert P., 1962. Les pla<strong>in</strong>es occidentales du <strong>Po</strong> et leur piedmonts (Piémont, Lombardie occidentale et <strong>central</strong>e):<br />

Etude morphologique. Louis Jean, Gap; 531 pp.<br />

Gerrard A. j., 1981. Soils <strong>and</strong> L<strong>and</strong>forms', G. Allen & Unw<strong>in</strong>, London, Boston <strong>and</strong> Sydney, 219 pp.<br />

Gibbons A. B., Megeath J. D. <strong>and</strong> Pierce K. L., 1984. «Probability of mora<strong>in</strong>e survival, <strong>in</strong> a<br />

succession of glacial advances». Geology, vol. 12, pp. 327- 330.<br />

Gile L. H., Peterson F. F. <strong>and</strong> Grosman R. B., 1966. «Morphological <strong>and</strong> genetic sequences of<br />

carbonate accumulation <strong>in</strong> desert soils». Soil Sei., vol. 101 (5), pp. 316-360.<br />

Glossary of Soil Science Terms, 1965. Soil Sc. Soc. Am. Proc., vol. 29, pp. 330-351.<br />

Guerreschi A., 1983a. «Structures d’habitat epigravettiennes dans I’Abri Tagliente (Verone) et dans<br />

la grotte du Prete (Ancona)». Goll. Structures d'habitat du Paleolitique Supérieur en Europe. Reisemburg,<br />

pp. 125-142.<br />

Guerreschi A., 1983b. «Tendenze evolutive <strong>in</strong> senso mesolitico dell’Epigravettiano itálico f<strong>in</strong>ale<br />

dell’Italia <strong>No</strong>rd-orientale». Preistoria Alp<strong>in</strong>a, vol. 19, pp. 209-219.<br />

Guerreschi A., 1984. «La f<strong>in</strong>e del Paleolítico Superiore (Epigravettiano F<strong>in</strong>ale)». A. Aspes, (ed). J/<br />

Veneto nell’Anchità Preistoria e Protostoria, Verona, pp. 243-265.<br />

Flabbe K. A., 1960. «Zur Klimatischen Morfologie des Alpensudolr<strong>and</strong>s- Unterschungen <strong>in</strong> den<br />

Moranenamphi<strong>the</strong>a<strong>the</strong>rn der Etsch und Gardasees». Nachr. Akad. Wiss. <strong>in</strong> Gott<strong>in</strong>gen, II. Math.<br />

Phys. KL, vol. 10, pp. 179-203.<br />

Flabbe K. A., 1968. «The Riss-Würm boundary <strong>in</strong> <strong>the</strong> <strong>No</strong>rthwestern part of <strong>the</strong> Lake Garda<br />

term<strong>in</strong>al mora<strong>in</strong>e bas<strong>in</strong> of <strong>No</strong>r<strong>the</strong>rn Italy». Univ. Colorado Stud. Earth Sciences n. 7; Glaciation<br />

of <strong>the</strong> Alps, pp. 80-84.<br />

Hallmark C. T. <strong>and</strong> Smeck N. E., 1979. «The effect of extractable allum<strong>in</strong>ium, iron, <strong>and</strong> silicon on<br />

strenght <strong>and</strong> bond<strong>in</strong>g of fragipans of <strong>No</strong>r<strong>the</strong>rn Ohio». Soil Sei. Soc. Am. ]., vol. 43, pp.<br />

145-150.<br />

Hallsworth E. G., Robertson G. K. <strong>and</strong> Gibbons F. R., 1955. «Studies <strong>in</strong> pedogenesis <strong>in</strong> New<br />

South Wales, VII, <strong>the</strong> “Gilgai” soils»./. Soil Sei., vol. 6 (1 ), pp. 1-31.<br />

Hallsworth E. G., 1963. «An exam<strong>in</strong>ation of some factors affect<strong>in</strong>g <strong>the</strong> movement of clay <strong>in</strong> an<br />

241


242 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PUIN<br />

artificial soil»./. Soil Sei., vol. 14, pp. 360-371.<br />

Hantke R., 1983. Eiszßitalter, vol. 3: Die Jüngste Erdgeschichte der Schweiz und ihrer Nachbargebeite. O.<br />

Verlag Thum Basel; pp. 635.<br />

Hodgson J. M. (ed.), 1976. «Soil survey field h<strong>and</strong>book». Soil Survey Technical Monograph, n. 5,<br />

Harpenden, pp. 99.<br />

Hoffman K. A. <strong>and</strong> Fuller M., 1978. «Transitional field configurations <strong>and</strong> geomagnetic reversal».<br />

Nature, n. 273, p. 715.<br />

Hubschman J., 1975. «Morphogenèse et pédogènes quaternaires dans les piedmont des Pyrénées<br />

garonnaises et ariégoises». Thesis Fac. Toulouse, Ed. Champion, Paris; pp. 48.<br />

laccar<strong>in</strong>o S. <strong>and</strong> Papani G., 1979. «Il Mess<strong>in</strong>iano dell’Appenn<strong>in</strong>o settentrionale della Val d’Arda<br />

alla Val Secchia: stratigrafia e rapport! con il substrato ed il Pleistocene». Volume <strong>in</strong> Memoria di<br />

S. Venzo, STEP, Parma, pp. 15-46.<br />

Icole M., 1971. «Essai de paléopédologie du Quaternaire: enseignements tirés d’une étude sut le<br />

piédmont nord-pyrénéen». Sei. Sol. vol. 1, pp. 93-110.<br />

Jamagne M., 1973. «Sols et paleosols sur loess dans le <strong>No</strong>rd de la France. IX Congrès <strong>in</strong>ternationale<br />

de riNQUA; Le Quaternaire, Geod<strong>in</strong>amique, stratigraphie et environment». Supplement au<br />

Bullet<strong>in</strong> de l’Association Française pour l'Etude du Quaternaire, Paris, pp. 360-372.<br />

Jamagne M. <strong>and</strong> jeanson C., 1977. «Illuviation primaire et secondaires dans les sols lessivés sur<br />

matériaux limoneux; micromorphologie et microanalyse élémentaire». Froc. 5th Int. Meet. Soit<br />

Micromorph. Grenade; pp. 935-965.<br />

McKeague J. A., 1983. «Clay sk<strong>in</strong>s <strong>and</strong> argillic horizons». In Bullock, P. <strong>and</strong> Murphy, C. P. (eds.).<br />

Soil Micromorphology, vol. 1, AB Academie Publishers, Dordrecht, pp. 367-388.<br />

Koci A. <strong>and</strong> Sibrava V., 1976. «The Brunhes-Matuyama boundary at Central European localities».<br />

Project I.G.CP. 73/1/24. Quaternary Glaciations <strong>in</strong> <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn Flemisphere. Rep. n. 3, pp.<br />

135-137.<br />

Kubiena W. L., 1956. « Rubefizierung und Lateritisierung (zu ihrer Unterscheidung durch mikromorphologische<br />

Merkmale)». 6th Congr. Int. Sei. Sol. Paris, Varis, vol. 5, pp. 247-249.<br />

Kukal Z,, 1971. Geology of recent sediments. Press London <strong>and</strong> New York, 290 pp.<br />

Kukla G. j., 1975. «Loess stratigraphy of Central Europe». In Afier <strong>the</strong> Australopi<strong>the</strong>c<strong>in</strong>es, K. W.<br />

Butzer <strong>and</strong> G. L. Isaac (eds.), <strong>the</strong> Hague, Mouton Publishers, pp. 99-188.<br />

Kukla G. j., 1978. «The Classical European Glacial Stages. Correlation with deep-sea sediments».<br />

Transactions of <strong>the</strong> Nebraska Academy of sciences, vol. 6, pp. 57-93.<br />

Kwaad F. J. <strong>and</strong> Mücher H. j., 1979. «The formation <strong>and</strong> evolution of alluvium on arable l<strong>and</strong> <strong>in</strong><br />

nor<strong>the</strong>rn Luxembourg». Geoderma-, vol. 22 (3), pp. 173-192.<br />

Lautridou P. j. <strong>and</strong> Giresse P., 1980. «Genèse et signification paléoclimatique des limons à doublets<br />

de <strong>No</strong>rm<strong>and</strong>ie». Biuletynperyglacjalny, vol. 28, pp. 149-161.<br />

Leonard! P. <strong>and</strong> Broglio A., 1965. Il Paleolítico del Veneto. Miscelánea en Homenaje al Abate H. Breuil.<br />

Tom. II pp. 31-73. Barcelona.<br />

Leroi-Gourhan A., 1964. «Le geste et la parole». Technique et langage. Editions Alb<strong>in</strong> Michel, Paris,<br />

342 pp.<br />

Lona F. <strong>and</strong> Bertoldi R., 1973. «La storia del Plio-Pleistocene italiano <strong>in</strong> alcune sequenze<br />

vegetazionali lacustri e miiùne.yi. Accademia Nazionale dei L<strong>in</strong>cei, vol. 8 (11), pp. 1-45.<br />

Losacco U., 1949. «La glaciazione quaternaria dell’Appenn<strong>in</strong>o settentrionale». Riv. Geogr. Ita., vol.<br />

56, fas. 2, pp. 104-208.<br />

Lumley de - Woodyear H., 1971. «Le Paléolitique <strong>in</strong>férieur et Moyen du Midi Méditerranéen dans<br />

son cadre Géologique». V. Supplément a Gallia Prehistoric Tomes 1 e 2, pp. 538.<br />

Magaldi D., Peretto C., <strong>and</strong> Sauro U., 1981. «Deposit! di versante cont<strong>in</strong>ental! e reperti del<br />

Paleolítico <strong>in</strong>feriore nell’Alta Val Pantena». Boll. Museo Civ. St, Nat. di Verona, vol. 7, pp.<br />

bSl-GTh.<br />

Magaldi D. <strong>and</strong> Sauro U., 1982. «L<strong>and</strong>forms <strong>and</strong> soil evolution <strong>in</strong> some karstic areas of <strong>the</strong> Less<strong>in</strong>i<br />

mounta<strong>in</strong>s <strong>and</strong> Monte Baldo». Geogr. Fis. D<strong>in</strong>am. Quat., vol. 5 (1 ), pp. 82-101.<br />

« t »“ •■“I'W'.C'<br />

■ ' ■ i l J ï )


eferences 243<br />

Manc<strong>in</strong>i F., 1960. «Osservazioni sui loess e sui paleosuoli dell’Anfiteatro orientale del Garda e di<br />

qucllo di Rivoli Veronese». Atti Soc. It. Sc. Nat., vol. 99 (3), pp. 221-250.<br />

Manc<strong>in</strong>i F., 1962. «Le variazioni climatiche <strong>in</strong> Italia dalla f<strong>in</strong>e del Riss all’Olocene». Boll.Soc. Geol.<br />

It., vol. 81 (1), pp. 3-36.<br />

Manc<strong>in</strong>i F., 1969. «<strong>No</strong>tizie sui paleosuoli e sui loess dell’anfiteatro occidentale e frontale del<br />

Garda». Atti Soc. It. Sc. Nat., vol. 109, (2), pp. pi6-219.<br />

Mank<strong>in</strong>en E. <strong>and</strong> Dalrymple G. B., 1979. «Revised geomagnetic polarity scale, for <strong>the</strong> <strong>in</strong>terval<br />

0-6M». Y. B.P.J. Geophys. Res., vol. 84, pp. 614-626.<br />

Marchesoni V., 1960. «L<strong>in</strong>eamenti paleobotanici dell’lnterglaciale Riss-Würm nella pianura<br />

padana». N. gior. Bot. It., vol. 67, pp. 306-311.<br />

Marchesoni V. <strong>and</strong> Paganelli A., 1960. «Ricerche sui Quaternario della pianura padana. L’analisi<br />

poll<strong>in</strong>iche di sedimenti torbo-lacustri di Padova e Sacile». Rend. 1st. Sc. Camer<strong>in</strong>o, vol. 1 (1 ),<br />

pp. 47-54.<br />

Marchetti G., Papani G. <strong>and</strong> Sgavetti M., 1978. «Evidence of neotectonics <strong>in</strong> <strong>the</strong> <strong>No</strong>rth-West<br />

Apenn<strong>in</strong>es-PO side». In Gloss H. <strong>and</strong> Schmidt K., (eds.), Alps, Apenn<strong>in</strong>es, Hellenides. Inter<br />

Union Comm. Geodyn., Scient. Rep. Vol. 38, pp. 283-288.<br />

Miller F. P., Wil<strong>in</strong>d L. P., <strong>and</strong> Holowaychuk N., 1971. «Canfield silt loam, a Fragiudalf. Micromorphology<br />

physical <strong>and</strong> chemical proprieties». Soil Sc. Soc. Am. Proc., vol. 35, pp. 324-331.<br />

Milner H. B., 1962. Sedimentary Petrography, vol. II. Allen & Unw<strong>in</strong>, London, 715 pp.<br />

M<strong>in</strong>istern dei Lavori puhblici, 1955. ¡.(.Precipitazioni medie mensili ed annue e numero deigiornipiovosiper<br />

il trentennio 1921-1950». Pubbl. n. 10, Fase. 3, Roma, pp. 215.<br />

M<strong>in</strong>istero dei Lavori puhblici, Servizio idrografico, 1969. «La distrihuzione della temperatura dell'aria<br />

<strong>in</strong> Italia, net trentennio 1926-1955». Pubbl. n. 21, Roma, pp. 116.<br />

M<strong>in</strong>istero dei Lavori puhblici, 1973. «L« nevosità <strong>in</strong> Italia nel quarantennio 1920-1960 (gelo, neve manto<br />

nevoso)». Pubbl. n. 26. Roma, pp. 211.<br />

Morrison R. B., 1967. «Pr<strong>in</strong>ciples of Quaternary soil stratigraphy». In: Morrison, R. B. <strong>and</strong> Wright<br />

H. E. (eds.). Quaternary Soils. Proceed<strong>in</strong>g of <strong>the</strong> 7th INQUA Congress, vol. 9, pp. 1-69.<br />

Mücher H. J. <strong>and</strong> Vreeken W. J., 1981. «(Re)deposition of loess <strong>in</strong> Sou<strong>the</strong>rn Limbourg, The<br />

Ne<strong>the</strong>rl<strong>and</strong>s. 2) Micromorphology of <strong>the</strong> lower silt complex <strong>and</strong> comparison with deposit<br />

produced under laboratory conditions». Earth surface processes <strong>and</strong> E<strong>and</strong>orms, vol. 6, pp.<br />

355-363.<br />

Mücher H. J. <strong>and</strong> Morozova I. D., 1983. «The Application of Soil micromorphology <strong>in</strong> Quaternary<br />

Geology <strong>and</strong> Geomorphology». In Bullock P. <strong>and</strong> Murphy C. P. (eds.) Soil Micromorphology, vol.<br />

I, AB Academic Publishers., Dordrecht, pp. 151-194.<br />

Müller Karpe H., 1968. H<strong>and</strong>buch der Vorgeschichte //.Jungste<strong>in</strong>zeit. Beck, München, 591 pp.<br />

Nettleton W. D., Daniels R. B. <strong>and</strong> MeCraken R. J., 1968. «Two <strong>No</strong>rth Carol<strong>in</strong>e coastal pla<strong>in</strong><br />

catenas». Soil Sc. Soc. Amer. Proc ., vol. 32, pp. 577-587.<br />

Nettleton W. D., Flach K. W. <strong>and</strong> Brasher B,. R., 1969. «Argillic horizons without clay-sk<strong>in</strong>s». Soil<br />

Sc. Soc. Amer. Proc., vol. 33, pp. 121-124.<br />

Nicolis E., 1899. Tríplice estensioneglaciale ad Oriente del Lago di Garda. Atti R. 1st. Ven. Sc. Lett. Art.,<br />

vol. 58 (2), pp. 316-319.<br />

Nilsson T., 1983. The Pleistocene. Geology <strong>and</strong> Life <strong>in</strong> <strong>the</strong> Quaternary Ice Age. Riedel Publish<strong>in</strong>g<br />

company, Dordrecht, Boston, London, 651 pp.<br />

<strong>No</strong>rth Americn Commission on Stratigraphic <strong>No</strong>menclature, 1983. «<strong>No</strong>rth American Stratigraphic<br />

Code». Bull. Am. Soc. Petr. Geol., vol. 67 (5), pp. 841-875.<br />

<strong>No</strong>vak R. j.. Motto H. L. <strong>and</strong> Douglas L. A., 1971. «The effect of time <strong>and</strong> particle size on m<strong>in</strong>eral<br />

alteration <strong>in</strong> several Quaternary soils <strong>in</strong> New jersey <strong>and</strong> Pennsylvania (US-A.)». In Yaalon D.<br />

H. (ed.) Paleopedology, Israel University Press, Jerusalem, pp. 211-224.<br />

Orombelli G., 1970. «I deposit! loessici di Copreno (M i)», Boll. Soc. Geol. It., vol. 89, pp. 529-546.<br />

Orombelli G., 1971. «Concetti stratigrafici utilizzabili nello studio dei deposit! cont<strong>in</strong>ental!<br />

quaternari». Riv. It. Paleont. Strat., vol. 77 (2), pp. 265-291.


244 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

'■ -f e<br />

Orombelli G., 1979, «II Ceppo delTAdda; Revisione stratigrafica». Rif. It. Pakont. Strat., vol. 85,<br />

pp. 573-652.<br />

Orombelli G. <strong>and</strong> GnaccoHni M., 1978. «ComposÍ2Íone petrográfica e proyenienza del Ceppo di<br />

Paderno d’Adda». Gruppo di Studio delQuaternario padano, Quaderno n. 4, Tip. Mucchi, Parma,<br />

pp. 7-30.<br />

PagannelU A., 1961. «Ricerche sul Quaternario della pianura padana. 2) Anaüsi poil<strong>in</strong>iche dei<br />

sedimenti torbo-lacustri di Cá Marcozzi». Rend. 1st. Se. Camer<strong>in</strong>o, vol. 2 (1 ), pp. 83-96.<br />

Paglia E., 1861. Sulle coll<strong>in</strong>e di terreno errático <strong>in</strong>tomo all’estremitá méridionale del Lago di Garda. Atti Soc,<br />

It. Se. Nat., vol. 2, pp. 337-342.<br />

Palma di Cesnola A., 1967. «II Paleolítico della Puglia (giacimenti, periodi, problemi)». Mem. Mus.<br />

Civ. St. Nat. Verona XV, pp. 1-84.<br />

Palma di Cesnola A., 1971. «Appunti, problemi ed ipotesi <strong>in</strong>torno al Paleolítico italiano», iirrVA';»<br />

onore di A. Calder<strong>in</strong>i. Como 1971, pp. 629-661.<br />

Panizza M. <strong>and</strong> Papani G., 1979. «The Neotectonics of <strong>the</strong> Reggio Emilia Apenn<strong>in</strong>es». In: Panizza<br />

M. <strong>and</strong> Carton A. (eds.), Proc. 15th Meet<strong>in</strong>g «Geomorphological Survey <strong>and</strong> Mapp<strong>in</strong>g», Coop,<br />

Librarla, Modena, pp. 129-138.<br />

Parfenoff A., <strong>Po</strong>merol C. <strong>and</strong> Tourend J., 1970. Les m<strong>in</strong>éraux en gra<strong>in</strong>s. Masson et eie, Paris, 550 pp.<br />

Pas<strong>in</strong>i G., 1968. «Contributo alla conoscenza del tardo würmiano e del postwürmiano nei d<strong>in</strong>torni<br />

di Bologna». Giom. di GeoL, vol. 36 (2), pp. 687-696.<br />

Payton R. W., 1980. Pedogenetic compactation: <strong>the</strong> character <strong>and</strong> formation c f compact soil horizons. Proceed<strong>in</strong>gs<br />

of <strong>the</strong> <strong>No</strong>rth Engl<strong>and</strong> Soils discussion group, vol. 16, pp. 103-126.<br />

Pecsi M., 1968. In: Fairbridge R. W. (ed.). The encyclopedia of Geomorphology, Re<strong>in</strong>hold Book. Co.,<br />

New York, pp. 647-679.<br />

Pedro G., 1968. «Distribution des pr<strong>in</strong>cipaux types d’altération chimique en la surface du globe».<br />

Rev. Geogr. Ph. Geol. D<strong>in</strong>am., vol. 10 (5), pp. 457-570.<br />

Pellegr<strong>in</strong>i M., 1969. «La pianura del Secchia e del Panaro». A tti Soc. Nat. e Mat. di Modena, vol.<br />

100, pp. 102-152.<br />

Pelosio G., 1960. « Affioramenti fossiliferi del Calabriano nel Preappenn<strong>in</strong>o Parmense. Il giacimento<br />

di Rio Ferraio (<strong>No</strong>ceeto)». Giorn. Geol., vol. 28, pp. 123-174.<br />

Pelosio G. <strong>and</strong> Raffi S., 1973. «Considerazioni sul limite Plio-Pleistocene nella serie del T. Crostolo<br />

(Preappenn<strong>in</strong>o Reggiano)». Parmense. Acta, nat., vol. 9, pp. 39-64.<br />

Penck A. <strong>and</strong> Brückner E., 1909. Die Alpen im Eiszeitalter, vol. 2, Die Eiszeiten <strong>in</strong> den Südalpen und im<br />

Bereich der Ostabdachung der Alpen, Leipzig, pp. 717-1197.<br />

Perconig E., 1956. «II Quaternario nella Pianura padana». Act. IV congr. I.N.Q.U.A. (Roma-Pisa,<br />

1953). Roma, vol. 2, pp. 481-524.<br />

Peretto C., 1980. «II paleolítico <strong>in</strong>feriore e medio nel territorio Veronese». In AA.VV. II territorio<br />

Veronese dalle or<strong>in</strong>i all’Eta romana. Fior<strong>in</strong>i, Verona, pp. 19-27.<br />

Peretto C., 1984. «II Paleolítico Medio», ln Aspes, (ed). II Veneto nelPantichitä. Preistoria e Protostoria.<br />

Vol. 1 Verona, pp. 215-233.<br />

Peretto C. <strong>and</strong> Piperno M., 1985.« L’orig<strong>in</strong>e del popolamento umano <strong>in</strong> Italia». In Homo:<br />

Testimonianze e reperti per 4 milioni di anni, viaggio alle orig<strong>in</strong>i della Storia. Cataloghi MarsiUo,<br />

Venezia, pp. 82-89.<br />

Pétrucci F., 1968. «Studio geomorfologico dei terrazzi pleistocenici tra il F. Taro ed il T. Baganza<br />

(Parma)». Parmense, Acta Nat., vol. 5 (2) pp, 93-114.<br />

Fieri M. <strong>and</strong> Groppi G., 1981. «Subsurface geological structure of <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong>, Italy». CLIR., Prog.<br />

F<strong>in</strong>. Geod<strong>in</strong>am., pubbl. n. 414, Milano, pp. 23.<br />

Piggot S., 1965. Ancient Europe. University Press. Ed<strong>in</strong>burgh, 210 pp.<br />

Piperno M., 1982. «Considerazioni e problemi a proposito del Paleolítico <strong>in</strong>feriore italiano». Atti<br />

XXII Riunione Scientifica I.I.P.P., Firenze, pp. 39-49.<br />

<strong>Po</strong>rter S. C., 1971. «Fluctuations of Pleistocene Alp<strong>in</strong>e glaciers <strong>in</strong> Western <strong>No</strong>rth America». In


eferen c es 245<br />

Turekian K. K., (ed.) Tie Late Cenozoic Age, Yale University Press, New Haven, London, pp.<br />

307-330.<br />

Radmilli A. M., 1974. «<strong>Po</strong>poU e civilta dell’Italia antica». Biblioteca di Storia Patria-, 1, pp. 13-536.<br />

Roma.<br />

Radmilli A. M., 1982. «II Paleolítico Inferiore <strong>in</strong> Abruzzo». Atti XXII Riun. Scient. 1st. It. Preist.<br />

Prot. Firenze, pp. 165-175.<br />

Read<strong>in</strong>g H. G. (ed.), 1982. Sedimentary environments <strong>and</strong> fades. Blackwell Oxford, London, 569 pp.<br />

Regione Emilia Romagna, Comitato Comprensoriale, 1981. I suoli della pianura del Comprensorio<br />

bolognese e le loro capadtà d’uso. Regione Emilia-Romagna, Bologna, pp. 90.<br />

Remmlelzwaal A., 1978. Soil genesis <strong>and</strong> Quaternary l<strong>and</strong>scape development <strong>in</strong> <strong>the</strong> Tyrerhenian coastal area<br />

of South-Central Italy. Thesis Univ. Amsterdam, 309 pp.<br />

Remmezwaal A., 1979. «Translocation <strong>and</strong> transformation of clay <strong>in</strong> Early, Middle <strong>and</strong> Late<br />

Pleistocene coastal s<strong>and</strong>s of Sou<strong>the</strong>rn Italy». Catena, vol. 6, pp. 379-398.<br />

Ricci Lucchi F., Colalongo M. L., Cremononi G., Gasperi G., laccar<strong>in</strong>o S., Papani G., Raffi S. <strong>and</strong><br />

Rio D., 1982. «Evoluzione sedimentaria e paleogeografica del marg<strong>in</strong>e appenn<strong>in</strong>ico». In<br />

Cremon<strong>in</strong>i G. <strong>and</strong> Ricci Lucchi F., (eds.). Guida alla Geología del Marg<strong>in</strong>e Appenn<strong>in</strong>ico padano.<br />

Guide regional! S.G.I., Mucchi, Bologna, pp. 17-46.<br />

Richmond G. M., 1959. «Report of <strong>the</strong> Pleistocene Commitee, Americam Commission on stratigraphic<br />

nomenclature». Hot. Ass. Pet. Geol. B«//.,volq. 43, pp. 633-675.<br />

Richmond G. M., 1962. «Quaternary stratigraphy of <strong>the</strong> La Sal Mounta<strong>in</strong>s, Utah, U. S. Geol.<br />

Surv»; Prof, paper, pp. 324.<br />

Rio D., 1983. «The fossil distribution of <strong>the</strong> Coccolithophore genus Gephyrocapsa Kamptner <strong>and</strong><br />

related PUo-Pleistocene chronology». In Prell, W. Gardner J. M. (Eds.), Init. Rep. D.S.D.P.<br />

vol. 68, pp. 453-467.<br />

Riva A., 1957. «Gli Anfiteatri morenici e le pianure diluviali tra Adda ed Olona». A tti 1st. Geol.<br />

Univ. Pavia., vol. 7, Pavia, pp. 93.<br />

Rizz<strong>in</strong>i A. <strong>and</strong> Dondi L., 1978. «Erosional surfaces of Mess<strong>in</strong>ian age <strong>in</strong> <strong>the</strong> subsurface of <strong>the</strong><br />

Lombardian pla<strong>in</strong> (Italy)». Mar<strong>in</strong>e Geology, n. 27, pp. 303-325.<br />

Romans J. C. C., \11(>. Indurated layers. Proceed<strong>in</strong>gs of <strong>the</strong> <strong>No</strong>rth Engl<strong>and</strong> Soils Discussion Group-, col. 11,<br />

pp. 20-30.<br />

Rossetti G., Tagliav<strong>in</strong>i S. <strong>and</strong> Toni P., 1974. «Osservazioni su alcune caratteristiche cUmatiche della<br />

prov<strong>in</strong>cia di Reggio Emilia». Il Filugello, vol. 1, pp. 7-86.<br />

Ruellan A., 1968. «Les horizons d’<strong>in</strong>dividualisation et d’accumulation du calcaire dans les sols du<br />

Maroc». Trans. 9th Congr. Soil Sei. Adelaide, vol. 4, pp. 501-510.<br />

Ruellan A., 1970. «Contribution à la connaisance des sols des régions méditerranéennes, les sols a<br />

profil calcaire différencié des pla<strong>in</strong>es de la basse Moulouya». Thèse Fac. Sc. Strasbourgh-, pp. 482.<br />

Ruellan A., 1971. «L’histoire des sols, quelques problèmes de déf<strong>in</strong>ition et d’<strong>in</strong>terpretation». Cah.<br />

O.R.S.T.O.M., ser. Pe'd., vol. 9 (3), pp. 335-344.<br />

Ruellan A., 1973. «Morphology <strong>and</strong> distribution or calcareous soils <strong>in</strong> <strong>the</strong> Mediterranean <strong>and</strong><br />

Desert Region». Calcareous Soils. Bullet<strong>in</strong> 211, F.A.O., Rome, pp. 7-16.<br />

Ruggeri G., Rio D. <strong>and</strong> Sprovieri R., 1984. «On <strong>the</strong> chronostratigraphic classification of <strong>the</strong> Lower<br />

Pleistocene». Boll. Soc. Geol. (<strong>in</strong> press).<br />

Sacco F., 1894. L ’apparato morenico del lago di Garda. Tip. Bertolero, Tor<strong>in</strong>o, 33 pp.<br />

Sacco F., 1894. «L’apparato morenico del lago d’Iseo». Ann. R. Acc. Agricoltura, vol. 37, pp.<br />

367-423.<br />

Sacco F., 1896. «L’anfiteatro morenico del Lago di Garda, Studio Geológico». Annali Regia<br />

Accademia Agricola-, Tor<strong>in</strong>o, vol. 38, pp. 54.<br />

Sala B., 1986. «Resti di Mammuthus primigenius (Blumenb.) <strong>in</strong> prov<strong>in</strong>cia di Cremona». Natura<br />

Bresciana, vol. 22, pp. 134-187.<br />

Salloway J. C., 1983. The structure of <strong>the</strong> geomagnetic field dur<strong>in</strong>g polarity transitions <strong>and</strong> excurtions. Thesis<br />

Univ. Ed<strong>in</strong>burgh, pp. 377.


246 PALEOSOLS AND VETUSOLS IN THE CENTRAL<br />

m<br />

Sanesi G. (ed.), 1977. Guida alla desermone delsuolo. C.N.R. 'Progetto F<strong>in</strong>aliziato Conservazione delSuolo,<br />

pubbl. 14, Firenze, pp. 157.<br />

Scharpenseel H. W., 1971. «Radiocarbon dat<strong>in</strong>g of Soils, problems, troubles, hopes». In Yaalon,<br />

DH. (ed.), Paleopedology, orig<strong>in</strong>, nature <strong>and</strong> dat<strong>in</strong>g of<strong>Paleosols</strong>, Israel University press, Jerusalem,<br />

pp. 77-88.<br />

Scheffer F., Schachtschabel P., 1976. Fehrhuch der Bodenkunde. Enke, F. Verlag. Stuggart, 394 pp.<br />

Schwertmann U., Fischer W. R., Taylor R. M., 1974. «New aspects of iron oxide formation <strong>in</strong><br />

soils». Trans. 10th Int. Congr. Soil Sä. Moscow, vol. 6, pp. 237-249.<br />

Schwertmann U., Murad E., Schulze D. G., 1982. «Is <strong>the</strong>re Holocene redden<strong>in</strong>g (hematite<br />

formation) <strong>in</strong> solis of axeric temperate areas?» Geoderma, vol. 27, pp. 209-223.<br />

Segre A. G., Biddittu, <strong>and</strong> Piperno M., 1982. II Paleolítico Inferiore nel Lazio, nella Basilicata ed <strong>in</strong><br />

Sicilia. Atti XXIII Riun. Scient. 1st. Preist. Prot. Firenze, pp. 177-206.<br />

Sev<strong>in</strong>k J., 1974. L<strong>and</strong>scape evolution <strong>and</strong> soils of <strong>the</strong> Southwestern Velay (France). Thesis Univ.<br />

Amsterdam, 183 pp.<br />

Sev<strong>in</strong>k J., <strong>and</strong> V<strong>in</strong>k A. P. A., 1969. «Some b<strong>and</strong>ed soils of <strong>the</strong> Sou<strong>the</strong>rn Veluve (The<br />

Ne<strong>the</strong>rl<strong>and</strong>s)». Geoi/frzva, vol. 3, pp. 157-173.<br />

Sev<strong>in</strong>k J., Remmelzwaal A., <strong>and</strong> Spaargaren O. C., 1984. The soils of Sou<strong>the</strong>rn Lazio <strong>and</strong> adjacent<br />

Campania. Publ. N. 38, Fys. Geogr. Bodemk. Lab., Univ. Amsterdam, pp. 140.<br />

Shackleton N. J., <strong>and</strong> Opdyke N. D., 1973. «Oxygéné isotope <strong>and</strong> paleomagnetic stratigraphy of<br />

equatorial pacific core V28-238; oxygen isotope temperatures <strong>and</strong> ice volumes on a 10^ year<br />

<strong>and</strong> 10*" year sciL n. Quaternary 'Research, vol. 3, pp. 39-55.<br />

Shackleton N. J., <strong>and</strong> Hall M. A., 1984. «Stable Isotope Record of Hole 504 Sediments: high<br />

resolution record of <strong>the</strong> Pleistocene». Init. Kep. D.S.D.P., vol. 32 (6), pp. 431-441.<br />

Smalley I. J., <strong>and</strong> Dav<strong>in</strong> J. E., 1982. «Fragipan horizons <strong>in</strong> soils, a bibliographic study <strong>and</strong> review<br />

of some of <strong>the</strong> hard layers <strong>in</strong> loess <strong>and</strong> o<strong>the</strong>r materials». New Zeal<strong>and</strong> Bibliographic Report n. 30,<br />

Department of Scientific <strong>and</strong> Industrial Research, Well<strong>in</strong>gton, pp. 122.<br />

Societa Italiana della Scienza del Suolo, 1981. Metodi <strong>No</strong>rmalizmtti di Analisi del Suolo. Tipografía<br />

Capponi. Firenze, pp. 97.<br />

Soil Survey Staff., 1975. Soil Taxonomy. A basic system of Soil classification fo r mak<strong>in</strong>g <strong>and</strong> <strong>in</strong>terpret<strong>in</strong>g soil<br />

surveys. Agricultural h<strong>and</strong>book, n. 336. Soil Conservation Service, U SD A ., Wash<strong>in</strong>gton, pp.<br />

499.<br />

Spaargaren O. C., 1979. Wea<strong>the</strong>r<strong>in</strong>g <strong>and</strong> soil formation <strong>in</strong> a limestone area near Pastena (Fr. Italy). Thesis<br />

Univ. Amsterdam, pp. 191.<br />

Ste<strong>in</strong>hardt G. C., <strong>and</strong> Franzmeier D. P., 1979. «Chemical <strong>and</strong> m<strong>in</strong>eralogical properties of <strong>the</strong><br />

fragipans of <strong>the</strong> C<strong>in</strong>c<strong>in</strong>nati catena». Soil Sei. Soc. Amer, jour, vol. 43, pp. 1008-1013.<br />

Stoops G., 1983. «Micromorphology of <strong>the</strong> oxic horizon». In Bullock P., <strong>and</strong> Murphy C. P. (eds).<br />

Soil micromorphology, vol. 2, Soil genesis, AB Academic Publishers, Dordrecht, pp. 419-440.<br />

Sue j. P., 1984. «Orig<strong>in</strong> <strong>and</strong> evolution of <strong>the</strong> mediterranean vegetation <strong>and</strong> climate <strong>in</strong> Europe».<br />

Nature, vol. 307, pp. 429-432.<br />

Sue j. P., <strong>and</strong> Zagwijn W. H., 1983. «Plio-Pleistocene correlations between <strong>the</strong> northwestern<br />

Mediterranean region <strong>and</strong> northwestern Europe accord<strong>in</strong>g to biostratigraphic <strong>and</strong> paleoclimatic<br />

data». Boreas, vol. 12, pp. 153-166.<br />

Taramelh T., 1876. «Alcune osservazioni sul Ferretto della Brianza». A tti Soc. It. Sc. Nat., vol. 19,<br />

pp. 334-371.<br />

Targulian V. O., Bir<strong>in</strong>a A. G., Kulikov A. K., Sokolova T. A., <strong>and</strong> Tselishcheva L. H., 1974.<br />

«Arrangement, composition <strong>and</strong> genesis of sod-pale podsolic soil derived from mantle loams».<br />

10th Int. Congr. Soil. Sei. Moscow, Special Issue, pp. 564-589.<br />

Thomas R. F., Blakemore L. C., <strong>and</strong> K<strong>in</strong>loch D, I., 1973. «Flow diagram keys for Soil Taxonomy.<br />

A diagnostic horizons <strong>and</strong> proprieties: M<strong>in</strong>eral soils. Neo Zeal<strong>and</strong> Soil Bureau». Report 39 A.<br />

Thornwaite C., <strong>and</strong> W. Ma<strong>the</strong>r J. R., 1955. «The water balance». Publications <strong>in</strong> Climatology, vol. 8<br />

(1), 104 pp.


REFERENCES 247<br />

Torrent J., Schwertman U., <strong>and</strong> Schulze D. G., 1980. «Iron oxide m<strong>in</strong>eralogy of soils of two river<br />

terraces sequences <strong>in</strong> Spa<strong>in</strong>». Geoderma, vol. 23, pp. 191-208.<br />

Tucholka P., <strong>in</strong> press. «Paleomagnetic stratigraphy of Pleistocene deposits <strong>in</strong> <strong>the</strong> Garda lake<br />

system». In ENJET. (ed.). Studigeologiciper la realizzaz/one delle Centrali termonuclearipadane.<br />

Tuffreau A., 1976. Acheuléen et <strong>in</strong>dustries apparentées dans le <strong>No</strong>rd de la France et le Bass<strong>in</strong> de la Somme.<br />

UISSPP. Congres. International Nice Coll. X. L’évolution de l’Acheuléen en Europe. Nice. pp.<br />

53-109.<br />

Ugol<strong>in</strong>i F., <strong>and</strong> Orombelli G., 1968. «<strong>No</strong>tizie prelim<strong>in</strong>ari suUe caratteristiche pedologiche dei<br />

deposit! glacial! e fluvioglaciali Ira l’Adda e l’Olona <strong>in</strong> Lombardia». Kend. 1st. Lomb. Acc. Sci.<br />

Lett., Classe di Sctenze, vol. 102, pp. 767-799.<br />

UNESCO/FAü, 1963. «Bioclimatic map of <strong>the</strong> mediterranean zone. Explanatory notes». Arid zone<br />

research, n. 21, Paris, pp. 58.<br />

Valent<strong>in</strong>e K. W. G., <strong>and</strong> Dalrymple J. B., 1976. «Quaternary buried paleosols; a critical review».<br />

Quaternary Kesearch, vol. 6, pp. 209-222.<br />

Valoch K., 1971. Fe Pak'olitique <strong>in</strong>férieur ét moyen en Europe Orientale. Actes 8° Congr. UISSPP<br />

Béograd. pp. 314-318.<br />

Van der Hammen T., 1979. «Changes <strong>in</strong> life conditions on earth dur<strong>in</strong>g <strong>the</strong> past one million years».<br />

A. ]. C. Memorial Eecture. Det Kongelige Danske Videnskabemes Seleskah Biologiske Skrifter, vol. 22<br />

(6), pp. 3-31.<br />

Van der Hammen T., Wijmstra T. A., <strong>and</strong> Zagwijn W. H., 1971. «The floral records <strong>in</strong> <strong>the</strong> Late<br />

Cenozoic <strong>in</strong> Europe». Turekian K. K. (ed.), The Fate Cenozoic glacial ages', Yale University<br />

Press, New Haven <strong>and</strong> London; pp. 391-424.<br />

Van der Meer J. J. M., 1982. «The Fribourgh Area, Switzerl<strong>and</strong>. A Study <strong>in</strong> Quaternary Geology<br />

<strong>and</strong> Soil Development». Publ. lys. Geogr. Bodemk. Fab. Unit. Amsterdam, n. 32, pp. 203.<br />

Van Schuylenborgh J., 1973. «Report on topic 1:1; Sesquioxide formation <strong>and</strong> transformation». In<br />

Schlicht<strong>in</strong>g E., Schwertman U., (eds), Pseudogley <strong>and</strong>gley. Trans Comm. V <strong>and</strong> VI ISS., Verlag<br />

Chemic, We<strong>in</strong>heim, pp. 93-102.<br />

Van Vliet B., <strong>and</strong> Langhor R., 1981. «Correlation between fragipans <strong>and</strong> permafrost with special<br />

reference to silty Weichselian deposits <strong>in</strong> Belgium et <strong>No</strong>r<strong>the</strong>rn France». Catena, vol. 8, pp.<br />

137-155.<br />

Vecchia O., 1954. «I terreni glacial! pleistocenici dei d<strong>in</strong>torni del lago d’Iseo». Atti Soc. It. Sc.<br />

Naturali, vol. 93, pp. 235-362.<br />

Venzo S., 1950. «R<strong>in</strong>venimento di Anancus avernensis nel villafranchiano dell’Adda di Paderno,<br />

di Archidiskon meridionalis e Germs <strong>in</strong> quello di Leffe. Stratigrafia e clima del Villafranchiano<br />

bergamasco». A tti Soc. It. Sc. Nat., vol. 189, pp. 43-122.<br />

Venzo S., 1955. «Le attuali conoscenze sul Pleistocene lombardo, con particolare riguardo al<br />

Bergamasco». A tti Soc. It. Sc. Nat., vol. 94, pp. 155-200.<br />

Venzo S., 1957. «Rilevamento geológico dell’anfiteatro morenico frontale del Garda, parte I, tratto<br />

occidentale Gardone-Desenzano». Mem. Soc. It. Sci. Nat., vol. 2 (2), pp. 73-140.<br />

Venzo S., 1948. «Rilevamento geológico dell’apparato morenico dell’Adda di Lecco». Atti Soc. It.<br />

Sci. Nat., vol. 187, pp. 79-140.<br />

Venzo S., 1961. «Rilevamento geológico dell’anfiteatro morenico del Garda. Parte II, tratto<br />

orientale Garda-Adige ed anfiteatro ates<strong>in</strong>o, di Rivoli Veronese». Mem. Soc. It. Sci. Nat., vol.<br />

13 (1), pp. 64.<br />

Venzo S., 1965. «Rilevamento geológico dell’anfiteatro morenico frontale del Garda, dal Chiese<br />

all’Adige». Mem. Soc.; It. Sci. Nat. e Mus. Civ. St. Nat., vol. 14 (1 ), pp. 81.<br />

Venzo S. (ed.), 1965. Carta geolog ica <strong>in</strong> scala 1 AOO.OOO di Parma e zjone limitrofe. LA.C., Firenze.<br />

V<strong>in</strong>k A.PA., <strong>and</strong> Sev<strong>in</strong>k J., 1971. «Soils <strong>and</strong> paleosols <strong>in</strong> <strong>the</strong> Lutterz<strong>and</strong>». In Hammen, T. Van der<br />

<strong>and</strong> Wijmstra T. A. (eds.), <strong>the</strong> Upper Quaternary of <strong>the</strong> D<strong>in</strong>kel valley. Kijks. Geol. Dienst. Med., n.<br />

22, pp. 165-185.


PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Vreeken W. J., 1975. «Pr<strong>in</strong>cipal k<strong>in</strong>ds of chronosequences <strong>and</strong> <strong>the</strong>ir signiflcance <strong>in</strong> soil history»./<br />

Soil Sei., vol. 26 (4). pp. 378-394.<br />

Wang C., <strong>No</strong>wl<strong>and</strong> J. L., <strong>and</strong> Kodama H., 1974. «Propereties of two fragipan soils <strong>in</strong> <strong>No</strong>va Scotia<br />

<strong>in</strong>clud<strong>in</strong>g scann<strong>in</strong>g electron micrographs». Can. Soil Sei., vol. 54, pp. 159-170.<br />

Washburn A. L., 1979. Geoetyology; a survey of periglaeialproeesses <strong>and</strong> environments. Edwards Arnold,<br />

London, pp. 406.<br />

Wilke B. M., 1975. hodenehronosequenzen aus lieb er Sedimenten der Geehtterassen Z. Jfalauzenem Bodenk.<br />

vol. 138. pp. 153-171.<br />

Work<strong>in</strong>g group on <strong>the</strong> Orig<strong>in</strong> <strong>and</strong> Nature of <strong>Paleosols</strong>, 1971. «Criteria for <strong>the</strong> recognition <strong>and</strong><br />

classification of <strong>Paleosols</strong>». In Yaalon D. H. (ed.), Paleopedology, orig<strong>in</strong>, nature, <strong>and</strong> dat<strong>in</strong>g of<br />

paleosols, Israel University Press, Jerusalem, pp. 153-158.<br />

Yaalon D. H., 1971. «Soil-form<strong>in</strong>g processes <strong>in</strong> time <strong>and</strong> space». In Yaalon D. pj (^ed)<br />

Paleopedology, orig<strong>in</strong>, nature, <strong>and</strong> dat<strong>in</strong>g of paleosols, Israel University Press, Jerusalem; pp 29-39<br />

Zanferrari A. (ed.); 1982. «Evoluzione neotettonica dell’Italia <strong>No</strong>rd-Orientale». AifW. Se. Qa/<br />

Padova, vol. 35. pp. 355-376.


APPENDIX 1; Descriptions of <strong>in</strong>dividual profiles.<br />

For each profile, <strong>the</strong> location with reference to IGM 1:100.000 sheets (long. N, <strong>and</strong> lat. W of<br />

Monte Mario), altitude, <strong>and</strong> geomorphological sett<strong>in</strong>g is <strong>in</strong>dicated; numbers of <strong>the</strong> profiles refer to<br />

<strong>the</strong> map <strong>in</strong> Appendix 6.<br />

All colours have been determ<strong>in</strong>ed when moist; <strong>the</strong> horizons are free of carbonates, unless<br />

stated o<strong>the</strong>rwise.<br />

Alp<strong>in</strong>e fr<strong>in</strong>ge<br />

Garda area<br />

Gavardo profiles - F 47 Brescia, 45°34’24”, 2°01’23”; 150 m a.s.l.; on <strong>the</strong> western wall of a<br />

large clay pit of <strong>the</strong> Ferreti Fornace, 250 m <strong>No</strong>rth-West from Casc<strong>in</strong>a Fienile, small locality close<br />

to Gavardo; <strong>the</strong> quarry wall cuts <strong>the</strong> marg<strong>in</strong> of a shallow terrace scarp, <strong>the</strong> Gavardo profile has<br />

been described at its base, <strong>the</strong> Gavardo 2 profile at its top.<br />

loc. 1. Gavardo 1<br />

Ap -I- B 1 (Gav 7) 0 - 130 cm : brown (10 YR 5/3) silt loam; few small quartz <strong>and</strong> chert stones;<br />

weak medium prismatic, many f<strong>in</strong>e <strong>and</strong> medium pores, moderately firm, common allochtonous<br />

Fe-Mn nodules; at <strong>the</strong> lower boundary a stone l<strong>in</strong>e, composed of gravels <strong>and</strong> Roman age<br />

bricks; clear <strong>and</strong> l<strong>in</strong>ear boudary to:<br />

II B2 t (Gav 6) 130-330 cm : strong brown (7.5 YR 5/6), brown mottles (10 YR 4/4), silty clay<br />

to silty clay loam <strong>in</strong> <strong>the</strong> lower part; well developed medium prismatic, common f<strong>in</strong>e pores,<br />

firm, common Fe-Mn nodules, common th<strong>in</strong> clay cutans, common th<strong>in</strong> vertical bleached<br />

tongues; clear <strong>and</strong> l<strong>in</strong>ear boundary to:<br />

III C (Gav 5) 330-510 cm : greenish grey (5 G 6/1) lacustr<strong>in</strong>e silty clay; massive; firm; few pores,<br />

common angular cherry <strong>and</strong> crystall<strong>in</strong>e stones; clear <strong>and</strong> l<strong>in</strong>ear boundary to:<br />

IV B31t (GAV 4) 410-570 cm : yellowish red (5 YR 5/6) silty clay, few quartz, cherty <strong>and</strong><br />

wea<strong>the</strong>red crystall<strong>in</strong>e stones, <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number <strong>and</strong> size at <strong>the</strong> base of <strong>the</strong> horizon, well<br />

developed medium angular blocky, firm, common pores, many red clay cutans; common<br />

ferri-mangans, gradual boundary to:<br />

IV B32t (Gav 4) 570-680 cm : yellowish red (5YR 4/6) clay loam, many stones, weak f<strong>in</strong>e angular<br />

blocky, moderately firm, many small pores, very common clay cutans common<br />

ferri-mangans <strong>and</strong> nodules; boundary not exposed.<br />

Gavardo 2: <strong>the</strong> profile has been described 50 m N from <strong>the</strong> Gavardo 1 profile, at <strong>the</strong> top of <strong>the</strong><br />

terrace scarp; <strong>the</strong> upper part, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> (AprfBl) <strong>and</strong> possibly <strong>the</strong> II B2 t horizons of<br />

<strong>the</strong> Gavardo 1 profile have been removed by quarry works.<br />

V B22t (Gav 3) 0-200 cm : dark red (2.5 YR 3/6) silty clay; common red f<strong>in</strong>e fa<strong>in</strong>t mottles, few<br />

very small angular chert stones; well developed; compound coarse prismatic <strong>and</strong> medium<br />

angular blocky; firm; common discont<strong>in</strong>uous Fe-Mn cutans, <strong>and</strong> red (2,5 YR 4/6) ferriargillans;<br />

clear boundary to:<br />

V B31t (Gav 3) 200-315 cm : reddish brown (2.5 YR 4/4) to dark red (2,5 YR 3/6) silty clay;<br />

many rounded large to small very wea<strong>the</strong>red crystall<strong>in</strong>e <strong>and</strong> metamorphic stones; well<br />

developed medium angular blocky; firm; few small pores; common black irridescent Fe-Mn<br />

cutans; many red cont<strong>in</strong>uous ferri-argillans; clear boundary to:<br />

V B32t (Gav 3) 315-350 cm : yellowish red (5 YR 4/6) clay loam; very many rounded large


250 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

stones, weakly developed medium blocky, common pores, moderately firm, few discont<strong>in</strong>uous<br />

ferri-mangans, common clay cutans; gently wavy abrupt boundary to:<br />

VI B/C (Gav 2) 350-450 cm ; strong brown (7.5 YR 4/6), mottled (5 YR 4/6) silty clay loam,<br />

strongly developed platy (lam<strong>in</strong>ae about 5 mm thick, show<strong>in</strong>g wedge shaped <strong>and</strong> undulated;<br />

pattern), few pores, firm; black irridescent branch<strong>in</strong>g Fe-Mn cutans on lam<strong>in</strong>ae surfaces,^<br />

few yellowish red (5 YR 4/6) clay cutans; at <strong>the</strong> top, cont<strong>in</strong>uous iron oxides pan about 1<br />

cm thick; wavy sharp boundary to:<br />

VII B21t (Gav 1) 450-630 cm : dark red (2.5 YR 3/6) silty clay, well developed coarse prismatic,<br />

very firm; few small pores, many cont<strong>in</strong>uous iridescent ferri-mangans on peds surfaces; few<br />

red (2.5 YR 4/6) clay cutans; gradual boundary to:<br />

VII B22t (Gav 1) 630-850 cm : red (2.5 YR 4/8) silty clay, very rare small angular chert<br />

fragments, well developed compound coarse prismatic <strong>and</strong> blocky; very firm, few small<br />

pores, many cont<strong>in</strong>uous ferri-mangans, many clay cutans; gradual boundary to:<br />

VII B23t (Gav 1) 850-100 cm dark red (2.5 YR 3/6) silty clay, mottled, rare small angular chert<br />

fragments, well developed coarse prismatic due to large slickensides, few small pores,<br />

common ferri-mangans, few large clay cutans <strong>in</strong> <strong>in</strong>terpedal fissures; boundary not exposed.<br />

loc. 2 San Biagio profile; F48 Peschiera del Garda, 44°35’30”; 1°59’05”; 350 m a.s.l.;<br />

S. Biagio, 200 m E from <strong>the</strong> S. Biagio cemetery, along a road cut; on <strong>the</strong> S - SE slope of a<br />

moderately eroded mora<strong>in</strong>e ridge, belong<strong>in</strong>g to <strong>the</strong> Monte Faita Glacial stage.<br />

A1 0-50 cm : yellowish brown (10 YR 4/4), strong brown (7.5 YR 4/4) loam; common small<br />

quartz, chert, metamorphic <strong>and</strong> hmestone stones, weak granular to f<strong>in</strong>e blocky friable,<br />

common pores, weakly calcareous; clear l<strong>in</strong>ear boundary to:<br />

II B22t 50-200 cm : dark red (2.5 YR 3/6) clay, few small chert <strong>and</strong> quartz fragments <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> number <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> horizon; well developed medium angular blocky, veiy'<br />

firm, few pores, common small slicken sides, many cont<strong>in</strong>uous clay cutans; gradual<br />

boundary to:<br />

II B31t 200-360 cm : dark red (2.5 YR 3/6 - 5 YR 3/6) s<strong>and</strong>y clay, common very wea<strong>the</strong>red<br />

stones (ma<strong>in</strong>ly chert), medium angular blocky; moderately firm, common pores, common<br />

dark red clay cutans (2.5 YR 3/4); few ferri-mangans; clear boundary to:<br />

II B32t 360-410 cm : dark reddish brown (5 YR 3/4) clay, many wea<strong>the</strong>red stones (chert,<br />

metamorphic, volcanic <strong>and</strong> crystall<strong>in</strong>e rocks) <strong>the</strong> largest decalcified marly limestones still<br />

have a calcareous core; massive to friable, common pores, common clay cutans; clear to<br />

sharp, wavy boundary to:<br />

II Cca; 410-450 cm : p<strong>in</strong>k (5 YR 7/3) s<strong>and</strong>y loam, many fresh stones (limestone, chert <strong>and</strong> marly<br />

limestone, metamorphic, crystall<strong>in</strong>e <strong>and</strong> volcanic rocks), massive, very firm, many pores,<br />

calcareous many soft carbonatic concretions, slightly cement<strong>in</strong>g <strong>the</strong> stones; boundary not<br />

exposed.<br />

loc. 3 Mocas<strong>in</strong>a profile; F 47 Brescia 45°31’46”; 2°01’55”; 213 m a.s.l.; Mocas<strong>in</strong>a, <strong>in</strong> a construction<br />

pit, a few hundred metres E of <strong>the</strong> village, very eroded mora<strong>in</strong>e ridge belong<strong>in</strong>g to Carpenedolo<br />

glacial stage, gently rolhng l<strong>and</strong>scape.<br />

Ap 0-50 cm dark yellowish brown (10 YR 4/6) silt loam; common ma<strong>in</strong>ly cherty stones, weak<br />

medium blocky, sUghtly firm, common small pores; gradual boundary to:<br />

B1 50-80 cm brown to strong brown (7.5 YR 5/6, 5/4) silt loam few small cherty angular<br />

fragments, moderately developed medium angular blocky, firm, small pores, few<br />

discont<strong>in</strong>uous clay cutans; gradual boundary to:<br />

II B21t 80-140 cm brown (7.5 YR 5/4) silt loam; well developed medium <strong>and</strong> coarse prismatic,<br />

firm to very firm; small pores; common <strong>and</strong> cont<strong>in</strong>uous argillans, common vertical th<strong>in</strong><br />

bleached tongues; clear to sharp boundary to:<br />

III B22t 140-190 cm brown (7.5 YR 5/4) silty clay, many medium <strong>and</strong> small chert fragments,<br />

medium blocky, firm to very firm; few small pores, many brown red clay cutans (5 YR<br />

4/6); clear l<strong>in</strong>ear boundary to:<br />

IV B31t 190-270, dark reddish brown (5 YR 3/3) clay loam, common chert, quartz <strong>and</strong> very<br />

wea<strong>the</strong>red metamorphic stones, strong medium <strong>and</strong> coarse blocky; very firm, very few


a p p e n d ix 1<br />

251<br />

pores, common slicken-sides, common ferri-mangans, common clay cutans; dear wavy<br />

boundary to:<br />

IV Cca 270-320 cm ; brown (10 YR 5/3) s<strong>and</strong>y loam, many fresh limestone, cherty limestone,<br />

marly limestone, metamorphic volcanic <strong>and</strong> crystall<strong>in</strong>e stones; massive; firm, common<br />

pores; weakly cemented; calcareous; boundary not exposed.<br />

loc. 4 Torre dt Mocas<strong>in</strong>a profile’, F47 Brescia; 44°31’52”; 2°02’3”; 180 m a.s.l.<br />

Torre di Mocas<strong>in</strong>a, <strong>in</strong> <strong>the</strong> steep gully erosion W of <strong>the</strong> village; <strong>the</strong> buried paleosol is developed <strong>in</strong><br />

<strong>the</strong> top of till (stratigraphic unit, CH 5) <strong>and</strong> covered by fluviatile gravels (CM 4).<br />

B 31t 0-70 cm : red, brown red (2.5 YR 4/4, 4/6) clay, common stones (ma<strong>in</strong>ly, cherty <strong>and</strong><br />

quartz fragments, <strong>and</strong> very wea<strong>the</strong>red metamorphic, crystall<strong>in</strong>e <strong>and</strong> volcanic rocks), well<br />

developed medium blocky; few pores, common slikensides, firm, common clay cutans,<br />

common CaCO, nodules, slightly calcareous; upper boundary clear <strong>and</strong> l<strong>in</strong>ear, lower<br />

boundary gradual to:<br />

B 32t 70-140 cm : reddish brown (5 YR 4/4) many stones (chert, metamorphic <strong>and</strong> volcanic<br />

rocks) s<strong>and</strong>y clay, weakley developed f<strong>in</strong>e blocky; slightly firm, common pores, few<br />

argillans; clear to sharp wavy boundary to:<br />

Cca; 140-180 cm : fresh gravel, hardly cemented by CaC03, calcareous, hard, common pores,<br />

boundary not exposed.<br />

loc. 5 Terzago profile; F48 Peschiera del Garda, 45°32’27”; 20°0’00”, 240 m a.s.k;<br />

Terzago, <strong>in</strong> a construction pit; strong eroded mora<strong>in</strong>e ridge belong<strong>in</strong>g to Carpenedolo glacial stage;<br />

gently roll<strong>in</strong>g l<strong>and</strong>scape.<br />

Ap 0-30 cm : dark yellowish brown (10 YR 4/6) silt loam, few chert <strong>and</strong> brick fragments; very<br />

weak subangular f<strong>in</strong>e <strong>and</strong> medium blocky, common pores, slightly firm; clear boundary to:<br />

B21t 30-150 cm : brown (7.5 YR 4/4) mottled silt loam, very weak f<strong>in</strong>e medium angular blocky,<br />

firm, common pores, few Fe-Mn nodules <strong>and</strong> clay cutans; gradual boundary to:<br />

II B22t 150-170 cm : brown (7.5 YR 4/4) silt loam, many chert <strong>and</strong> quartz fragments, firm,<br />

common pores, massive, many clay cutans; l<strong>in</strong>ear sharp boundary to:<br />

III B22t 170-200 cm : red (2,5 YR 4/6) clay loam, few small chert <strong>and</strong> quartz fragments, well<br />

developed medium <strong>and</strong> coarse prismatic to blocky; firm to very firm, few pores; common<br />

clay cutans, few slicken-sides, few th<strong>in</strong> vertical bleached tongues; gradual boundary to:<br />

III B31t 200-300 cm : yellowish red (5 YR 4/6) s<strong>and</strong>y clay, few to common (<strong>in</strong>creas<strong>in</strong>g with <strong>the</strong><br />

depth) very wea<strong>the</strong>red chert, quartz, metamorphic <strong>and</strong> volcanic stones; very weak medium<br />

prismatic; firm; common pores; common clay cutans; boundary not exposed.<br />

loc. 6 V'al Sorda profile; F48; Peschiera del Garda 45 32’55”, 1 42’14 ; 210 m a.s.l.;<br />

Val Sorda, deep fluvial <strong>in</strong>cision 500 m W from Incaffi; <strong>the</strong> buried paleosols are <strong>in</strong>cluded <strong>in</strong> a<br />

complex stratigraphic sequence, observed on <strong>the</strong> right side of <strong>the</strong> valley (see section 4.6); <strong>the</strong>y are<br />

covered by a thick till of Upper Wiirmian age (Solfer<strong>in</strong>o stage).<br />

Al/C 0-375 cm : dark grey (upper part) to dark brown, to brown (lower part) (10 YR 4/1, 10<br />

YR 3/3, 10 YR 4/3) silt loam, well developed very coarse prismatic f<strong>in</strong>e blocky, firm to<br />

very firm, common small pores, calcitans <strong>in</strong> pores, non calcareous to slightly calcareous<br />

ma<strong>in</strong>ly at <strong>the</strong> top; upper boundary sharp <strong>and</strong> gently undulat<strong>in</strong>g; lower boundary gradual to:<br />

II Cl 375-500 cm : reddish brown (5 YR 4/3) silt loam, common small chert fragments, well<br />

developed, f<strong>in</strong>e angular blocky, common calcitans on ped faces, firm, few pores, slighly<br />

calcareous; clear boundary to:<br />

III C2 500-580 cm : brown (7.5 YR 4/4) s<strong>and</strong>y silt loam, common small ma<strong>in</strong>ly cherty angular<br />

stones, weak f<strong>in</strong>e blocky firm, common pores, slightly calcareous; l<strong>in</strong>ear clear boundary to:<br />

IV B31t 580-633 cm : dark reddish brown (5 YR 3/3) clay; common stones (slightly wea<strong>the</strong>red<br />

metamorphic <strong>and</strong> volcanic rocks <strong>and</strong> chert); well developed medium blocky; firm, few<br />

pores, common ferri-mangans <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> horizon, common slickensides ma<strong>in</strong>ly<br />

<strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> horizon, common to many clay cutans; slighty calcareous at <strong>the</strong> top;<br />

clear wavy boundary to:<br />

IV Cca 633-669 cm : very many fresh stones (limestone, cherty limestone, metamorphic <strong>and</strong>


252 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

volcanic rocks); strong brown (7.5 YR 5/6) loamy s<strong>and</strong>; massive; many pores; slightly firm;<br />

common to many calcareous nodules; calcareous; boundary not exposed.<br />

■ Y i - . i ; ^<br />

loc. 7 Ciliverghe profile; F47, Brescia, 45°28’51”; 2°06’32”, 160 m a.s.l.; <strong>the</strong> profile has been<br />

described along <strong>the</strong> motor-way Bresica-Lonato, where it cuts <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> Ciliverghe<br />

terrace, about 2000 m S from Ciliverghe village; Middle <strong>and</strong> Early Pleistocene deposits (Appendix<br />

6) outcropp<strong>in</strong>g from <strong>the</strong> Late Pleistocene alluvial pla<strong>in</strong>. The surface, orig<strong>in</strong>ally gently undulat<strong>in</strong>g is<br />

now strongly modified by quarry works.<br />

Ap 0-30 cm dark brown (7.5 YR 4/4) silt loam; well developed f<strong>in</strong>e blocky many pores, friable;<br />

gradual boundary to:<br />

B1 30-100 cm : dark yellowish brown (10 YR 4/4) silty clay loam weakly mottled, well developed<br />

medium blocky, common small pores, firm, few th<strong>in</strong> <strong>and</strong> discont<strong>in</strong>uous clay cutans, few<br />

Fe-Mn nodules; gradual boundary to:<br />

II B21tx 100-194 cm : dark yellowish brown (10 YR 4/4) silty clay loam, strongly developed<br />

medium prismatic to blocky; common small pores; very firm; common, one centimeter<br />

wide, vertical tongues (yellowish brown 10 YR 6/6, <strong>the</strong> marg<strong>in</strong>, light yellowish brown 10<br />

YR 6/4, <strong>the</strong> <strong>in</strong>side part), cross<strong>in</strong>g <strong>the</strong> horizon <strong>and</strong> branch<strong>in</strong>g out <strong>in</strong> its lower part; common<br />

thick <strong>and</strong> cont<strong>in</strong>uous clay cutans clear l<strong>in</strong>ear boundary to:<br />

II B22 cn 184-195 cm : very many Fe-Mn nodules, moderately firm, sharp boundary to:<br />

II B23g 195-305 cm : light yellowish brown (2.5 Y 6/4; 10 YR 4/4) light brownish gray <strong>and</strong><br />

reddish brown (7.5 YR 6/6 mottles), silty clay loam, weakly developed coarse blocky; firm,<br />

few pores, common clay cutans, common soft Fe-Mn nodules; clear lower boundary;<br />

laterally <strong>the</strong> horizon becomes shallower <strong>and</strong> is replaced by:<br />

II B 24 245-305 cm : strong brown (7,5 YR 5/8) silt loam; very weackly developed blocky; slightly<br />

firm; common pores; many clay cutans on <strong>the</strong> structural surfaces; clear boundary to:<br />

III B1 305-350 cm : brown 7,5 YR 4/4 silt clay loam, very weakly developed f<strong>in</strong>e blocky, firm to<br />

very firm, common to many ferri-mangans, few discont<strong>in</strong>uous clay cutans, clear boundary<br />

to:<br />

III B21 tx 350-500 cm : strong brown (7,5 YR 5/6), common brown mottles (7,5 YR 5/4), silty<br />

clay loam; few chert fragments, coarse <strong>and</strong> medium angular well developed blocky, very<br />

firm to firm, few pores at <strong>the</strong> top common <strong>in</strong> <strong>the</strong> lower part, common vertical tongues large<br />

at <strong>the</strong> top 2-3 cm; branch<strong>in</strong>g out at <strong>the</strong> bottom, <strong>in</strong> an horizontal surface; <strong>the</strong>y show<br />

recticular pattern (brown marg<strong>in</strong> 7,5 YR 5/4; grey <strong>in</strong>ternal part 10 YR 7/2); common to<br />

many argillans ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> tongues; gradual boundary to:<br />

IV B21 t 0-150 cm : yellowish red (5 YR 4/6) silty clay loam to silty clay, well developed coarse<br />

<strong>and</strong> medium angular blocky; firm; common small pores, common ferri-mangans; common<br />

to many clay cutans; common th<strong>in</strong> vertical tongues, gradual boundary to:<br />

V B22 t 150-270 cm : yellowish - dark red (5 YR 4/6 - 2.5 YR 3/6) clay, few chert fragments,<br />

very well developed, f<strong>in</strong>e <strong>and</strong> medium angular blocky, very firm, few pores, many<br />

ferri-mangans <strong>and</strong> argillans, clear boundary to:<br />

V B31t 270-400 cm; dark reddish brown (2,5 YR 3/4) clay, common to many wea<strong>the</strong>red stones<br />

(decalcified s<strong>and</strong>stones, chert fragment, metamorphic <strong>and</strong> volcanic rocks) friable, firm,<br />

common few pores; common small slicken-sides, common to many argillans; very wavy<br />

sharp boundary to:<br />

V Cca 400-470 cm; unaltered gravel (cherty limestone, calcareous s<strong>and</strong>stones, volcanic <strong>and</strong><br />

metamorphic rocks) stronghly cemented; boundary not exposed.<br />

loc. 8 Castenedolo prefile; F47 Brescia, 44°27’41”, 2°10T8”, 120 m a.s.L; <strong>in</strong> a large clay pit NW from<br />

<strong>the</strong> Castenedolo cemetry; gently undulat<strong>in</strong>g upper surface of <strong>the</strong> Pleistocene terrace, part of <strong>the</strong> B<br />

horizons <strong>and</strong> <strong>the</strong> overly<strong>in</strong>g loess cover have been removed by quarry works.<br />

B31t (CAST 4) 0-30 cm : yellowish red (5 YR 4/6) clay loam, few to common chert fragments;<br />

medium angular blocky, firm, common few pores; common to many ferri-mangans <strong>and</strong> clay<br />

cutans, few small tongues; clear boundary to:<br />

B32t (CAST 4) 30-110 cm : reddish brown s<strong>and</strong>y clay loam, common very wea<strong>the</strong>red stones


a p p e n d ix 1 253<br />

(cherty, volcanic, crystall<strong>in</strong>e <strong>and</strong> metamorphic rocks) medium well developed angular<br />

blocky, few pores, common to many argillans; sharp l<strong>in</strong>ear boundary to;<br />

II C (CAST 3) 110-210 cm : strong brown (7,5 YR 5/6) mottled s<strong>and</strong>y loam, few small stones <strong>in</strong><br />

<strong>the</strong> lower part of <strong>the</strong> horizon, massive to weak platy, few pores, slightly firm, red (2,5 YR<br />

5/6) argillans, common ferri-mangans; at <strong>the</strong> bottom one centimeter thick iron pan; wavy<br />

boundary to:<br />

III B21 (CAST 2) 210-310 cm : loamy clay, yellowish red (5 YR 4/6), very few small chert stones,<br />

strongly developed coarse primatic <strong>and</strong> f<strong>in</strong>e angular blocky; very firm, common pores; many<br />

iridescent cont<strong>in</strong>uous ferri-mangans, few red (2,5 YR 5/6) argillans, common Fe-Mn<br />

nodules, gradual boundary to:<br />

III B22 (CAST 2) 310-400 cm; red, dark red (2,5 YR 3/6, 4/6) clay, chert fragments from few to<br />

common (at <strong>the</strong> bottom), well developed coarse blocky <strong>and</strong> f<strong>in</strong>e angular blocky, firm, few<br />

pores, common discont<strong>in</strong>uous ferri-mangans, common slickensides; boundary not exposed.<br />

loc. 9 Solfer<strong>in</strong>o profile; F 48 Peschiera del Garda, 45°22’04”, 1°54T8”; 121 m a.s.l.; on <strong>the</strong> right side<br />

along <strong>the</strong> road Solfer<strong>in</strong>o - Castiglione delle Stiviere, <strong>in</strong> localita Fornace, <strong>in</strong> a construction pit, <strong>in</strong> a<br />

small valley, cut <strong>in</strong>to <strong>the</strong> mora<strong>in</strong>e ridge. Part of <strong>the</strong> A horizons has been removed by quarry works.<br />

A 11 0-42 cm : brown (7,5 YR 4/4) s<strong>and</strong> silt loam, common small to medium <strong>and</strong> common<br />

rounded stones, more frequent <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> horizon; weak f<strong>in</strong>e angular blocky;<br />

few pores; moderately firm; calcareous; gradual boundary to:<br />

II A12 42-103 cm ; dark reddish brown (5 YR 3/2) clay loam; common small <strong>and</strong> very small,<br />

slightly wea<strong>the</strong>red broken stones; moderately developed f<strong>in</strong>e granular, common pores,<br />

slightly firm calcareous; gradual boundary to:<br />

II B31 103-155 cm : dark reddish brown (5 YR 3/3) clay loam, common small <strong>and</strong> slightly<br />

wea<strong>the</strong>red stones, strongly developed f<strong>in</strong>e subangular blocky; common pores; firm; very<br />

slightly calcareous; gradual boundary to:<br />

II B32 155-223 cm : reddish brown (5 YR 4/4) clay loam, common small <strong>and</strong> medium slightly<br />

wea<strong>the</strong>red broken stones; strongly developed f<strong>in</strong>e angular blocky; common f<strong>in</strong>e <strong>and</strong> medium<br />

pores; firm; small common Fe-Mn nodules, few small patchy black Fe-Mn cutans; few<br />

discont<strong>in</strong>uous clay cutans on surfaces of stones <strong>and</strong> <strong>in</strong>to pores; slighty calcareous; clear<br />

l<strong>in</strong>ear boundary to:<br />

II Cca 223-238 cm : light yellowish brown (10 YR 6/4) s<strong>and</strong>y silt loam, many small <strong>and</strong> medium,<br />

fresh, rounded, stones; weakly cemented; weakly developed th<strong>in</strong> platy; few small pores; very<br />

firm, very calcareous; boundary not exposed.<br />

loc. 10 Fontamlle profile; F48 Peschiera del Garda, 45°33’41”; 1°57’09”, 295 m a.s.L; 1200 m N of<br />

Fontanelle di <strong>Po</strong>lpenazze; steep slope of mora<strong>in</strong>e ridge.<br />

A] 0-60 cm ; dark brown s<strong>and</strong>y (7.5 YR 4/4) silt loam, common stones, (cherty limestone<br />

metamorphic, volcanic <strong>and</strong> crystall<strong>in</strong>e rocks), f<strong>in</strong>e weak subangular blocky, soft, common<br />

pores, calcareous; clear wavy boundary to:<br />

II B31 t 60-125 cm reddish brown (5 YR 4/4) clay loam, common to many stones (decalcified<br />

marly limestone, chert, metamorphic, volcanic <strong>and</strong> metamorphic rocks slightly wea<strong>the</strong>red),<br />

well developed medium angular blocky, common small pores, firm, common clay cutans;<br />

clear boundary to:<br />

II Cca 125-160 cm : very pale brown (10 YR 7/4) clay loam, many unwea<strong>the</strong>red stones, massive,<br />

few pores, slightly cemented, CaC03 nodules, calcareous, boundary not exposed.<br />

loc. 11 Konchi di Pastrengo profile; F48 Peschiera del Garda, 44’30’41”, T40’32” 140 m a.s.l.; Strada<br />

Cerea, 300 m N from Ronchi di Pastengo; slope of a mora<strong>in</strong>e ridge.<br />

A1 0-80 cm : brown (7.5 YR 4/4) s<strong>and</strong>y loam, few to common slightly wea<strong>the</strong>red stones<br />

(limestone, cherty limestone, volcanic, metamorphic, crystall<strong>in</strong>e rocks <strong>and</strong> fragments of<br />

bricks); weak f<strong>in</strong>e subangular blocky, common pores; friable; at <strong>the</strong> bottom a stone-l<strong>in</strong>e of<br />

large pebbles; clear to abrupt boundary to:<br />

II B31 t 80-120 cm : yellowish brown (7.5 YR 5/4) clay loam, common pores; slightly firm; few<br />

clay cutans; gradual boundary to:


254 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

II B32 120-190 cm : reddish brown (5 YR 4/4) clay loam, few to common chert <strong>and</strong> wea<strong>the</strong>red<br />

metamorphic stones; medium <strong>and</strong> f<strong>in</strong>e blocky, common pores, firm, few clay cutans; few<br />

ferri-mangans <strong>and</strong> Fe-Mn nodules; clear <strong>and</strong> wavy boundary to;<br />

II Cca 190-210 cm : hght yellowish brown (10 YR 6/4) s<strong>and</strong>y loam; many unwea<strong>the</strong>red stones<br />

(cherty limestone, volcanic, metamorphic <strong>and</strong> crystall<strong>in</strong>e rocks); massive to weak platy, firm<br />

to very firm; slightly cemented; common pores; common small CaC03 nodules, calcareous,<br />

boundary not exposed.<br />

loc. 12 Ca Barcacda profile; F48, Peschiera del Garda, 45°20’58”; 1°55’34’; 85 m a.s.l.; 200 m W<br />

from Colie Medolano; proximal outwash pla<strong>in</strong> of <strong>the</strong> Late Pleistocene mora<strong>in</strong>e system of <strong>the</strong> Garda<br />

lake (Solfer<strong>in</strong>o stage).<br />

Ap 0-50 cm : s<strong>and</strong>y loam dark brown (7.5 YR 4/4) common stones, common to many pores,<br />

friable; f<strong>in</strong>e subangular blocky; slightly calcareous; clear <strong>and</strong> l<strong>in</strong>ear boundary to:<br />

B2 50-80 cm : s<strong>and</strong>y clay loam strong brown (5 YR 5/6), common wea<strong>the</strong>red stones (chert,<br />

decalcified marly limestone, volcanic <strong>and</strong> metamorphic rocks) medium angular blocky well<br />

developed; firm, common pores, rare clay cutans ma<strong>in</strong>ly on surfaces of stones; gradual<br />

boundary to:<br />

Cca 80-100 cm : yellowish brown s<strong>and</strong>y loam, many unwea<strong>the</strong>red stones (limestone, cherty <strong>and</strong><br />

marly limestone) massive, friable, common pores, common CaC03 nodules on stones,<br />

calcareous; boundary not exposed.<br />

loc. 13 Ca Pegoroni profile-, F61 Cremona 45°05’00”, 2°00’18”; m 25 a.s.l.; along Canale <strong>No</strong>varolo,<br />

200 m SSW from Ca Pegoroni (Rivarolo Mantovano); on <strong>the</strong> flat surface of <strong>the</strong> Ma<strong>in</strong> Level of <strong>the</strong><br />

pla<strong>in</strong>.<br />

Ap 1-20 cm : brown (7,5 YR 4/4) silt loam, few small stones <strong>and</strong> brick fragments; weakly<br />

developed medium subangular blocky; common pores; firm; slightly calcareous; clear<br />

boundary to:<br />

B 2 20-55 cm : brown (7.5 YR 5/4; 10 YR 4/1) silt loam; very few small broken stones; weak<br />

subangular blocky; moist; few pores; firm; few small soft calcareous nodules; slightly calcareous;<br />

clear boundary to:<br />

II B 2 t 55-83 cm : reddish brown (5 YR 3/4) silty clay loam; few medium fragments of neolithic<br />

pottery; well developed medium angular blocky, <strong>and</strong> weak medium prismatic; common<br />

small pores; firm; common clay cutans on peds <strong>and</strong> pores; small few slickensides; clear<br />

l<strong>in</strong>ear boundary to:<br />

II Cca 83-95 cm : yellowish brown (10 YR 5/4) silt loam; weakly developed f<strong>in</strong>e angular blocky;<br />

common pores; moderately firm; common CaC03 nodules ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong><br />

horizon; very calcareous, boundary not exposed.<br />

loc. 14 Casatico di Marcaría profiles-, F62 Mantova, 45”08’10”, 1°53’46”; m 26 a.s.l.; 600 m SJE. from<br />

<strong>the</strong> village, <strong>in</strong> a construction pit, <strong>in</strong> <strong>the</strong> area of a large Neolithic settlement; distal part of <strong>the</strong><br />

outwash pla<strong>in</strong> connected with <strong>the</strong> Late Pleistocene mora<strong>in</strong>es of <strong>the</strong> Garda system; gently<br />

undulat<strong>in</strong>g l<strong>and</strong>scape.<br />

loc. 14a Profile at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> settlement<br />

Ap 0-35 cm : brown (10 YR 4/4) silty clay loam; few stones, common bricks <strong>and</strong> prehistoric<br />

pottery fragments; coarse angular blocky, common pores, calcareous, l<strong>in</strong>ear clear boundary<br />

to:<br />

C 35-100 cm : oHve brown (2.5 YR 6/4) silt loam; brown (10 YR 4/4) mottles; massive, few<br />

pores, few Ca C03 nodules, calcareous, boundary not exposed.<br />

loc. 14 b Roman ditch profile<br />

Ap 0-40 cm : same characteristics of <strong>the</strong> Ap described above.<br />

B 40-85 cm : silty clay loam, brown (10 YR 4/3), weakly developed medium to f<strong>in</strong>e subangular<br />

blocky, few pores, slightly firm, common CaC03 nodules, calcareous; clear boundary to:<br />

- i t -


APPENDIX 1 2 5 5<br />

Cca 85-130 cm : light gray (10 YR 7/1) silt; massive, slightly firm, few pores; common CaC03<br />

nodules; boundary not exposed.<br />

loc. 14c pit TV profile<br />

Ap 0-35 cm : dark brown (7.5 YR 3/2) clayelly silty loam; common fragments of prehistoric<br />

pottery, bones, stones artifacts; weakley developed medium granular to medium subangular<br />

blocky; many pores; friable; common organic cutans, calcareous; clear l<strong>in</strong>ear boundary to:<br />

A12 35-40 cm : brown (10 YR 4/3) s<strong>and</strong>y loam, medium subangular blocky, many pores, slightly<br />

firm; common CaC03 nodules, calcareous; clear boundary to:<br />

Cca 40-50 cm light yellowish brown (10 YR 6/4) silt loam; massive, few pores, common CaC03<br />

nodules, calcareous; not exposed lower boundary.<br />

loc. 14d Neolithic pit profile<br />

Ap 0-30 cm : same characteristics of <strong>the</strong> Ap described above.<br />

B 21 30-64 cm : brown (7.5 YR 5/4) silty clay, common pottery fragments, medium blocky well<br />

developed, firm, common pores, few Fe-Mn nodules, common clay cutans; clear concave<br />

boundary to:<br />

B 22 t 64-87 cm : black (10 YR 2/1) silty clay; common pottery fragments stone artifacts <strong>and</strong><br />

charcoals; very well developed medium blocky, few pores, slightly firm, common to few<br />

clay cutans, clear concave boundary to:<br />

Cca 87-100 cm : brown to pale brown (10 YR 5/3 - 6/3) silt loam, massive, few pores, slightly<br />

firm, common to many CaC03 nodules, calcareous; boundary not exposed.<br />

Adda area<br />

loc. 15 Vivaldi profile; F32 Como, 44°42’10”, 3°05’50”, 250 m a.s.l.; road cut at <strong>the</strong> cross between<br />

<strong>the</strong> road Cernusco - Missaglia <strong>and</strong> Via Vivaldi, 700 m East from Lomaniga; highly eroded mora<strong>in</strong>e<br />

ridge, gently undulat<strong>in</strong>g lanscape.<br />

Ap 0-30 cm : dark brown (10 YR 3/3) silty clay loam, few fragments of bricks <strong>and</strong> broken stones;<br />

weak f<strong>in</strong>e subangular blocky; common pores, friable; clear boundary to:<br />

B 21 t 30-70 cm : dark yellowish brown (10 YR 4/6) silty clay loam; well developed medium<br />

angular blocky; few pores; firm; common Fe-Mn nodules; few clay cutans; common light<br />

gray (10 YR 7/1) yellow fr<strong>in</strong>ged vertical tongues; gradual to diffuse boundary to:<br />

II B22 tx 70-140 cm : brown (7.5 YR 4/4) silty clay loam; reddish brown (5 YR 4/6) mottles;<br />

rare to few (ma<strong>in</strong>ly at <strong>the</strong> bottom) chert fragments, well developed medium angular blocky,<br />

common pores, firm; common Fe-Mn nodules, common cont<strong>in</strong>uous clay cutans; clear <strong>and</strong><br />

wavy boundary to:<br />

III B21 t 140-196 cm : reddish brown (2.5 YR 4/4) clay loam, common very wea<strong>the</strong>red large<br />

stones (chert, volcanic, metamorphic <strong>and</strong> cry.stall<strong>in</strong>e rocks), well developed medium blocky;<br />

firm; few pores; common to many clay cutans, gradual boundary to:<br />

IV B22 t 196-380 cm : red (2.5 YR 4/6) clay, rare chert <strong>and</strong> quartz fragments, strongly developed<br />

coarse prismatic <strong>and</strong> medium angular blocky, very firm, few pores, common to many clay<br />

cutans <strong>and</strong> ferri-mangans, few Fe-Mn nodules; boundary not exposed.<br />

loc. 16 Camparada profile; F45 Milano 45“39’34”, 3°08’9”; 245 m a.s.h; <strong>in</strong> a road cut, 3000 m W<br />

of <strong>the</strong> Village of Camparada; top of <strong>the</strong> eroded Camparada mora<strong>in</strong>e ridge.<br />

Ap/B21/1IB22 0-104 cm : same characteristics as <strong>the</strong> correspond<strong>in</strong>g horizons of <strong>the</strong> Vivaldi profile.<br />

Ill B 22 t 104-204 cm : red (2.5 YR 4/6) clay, common mottles, few to common cherty quartz<br />

fragments; well developed medium <strong>and</strong> f<strong>in</strong>e angular blocky; few pores; firm to very firm;<br />

common to many ferri-mangans, few Fe-Mn nodules; many red (2.5 YR 3/6) clay cutans,<br />

common vertical tongues, several cm wide at <strong>the</strong> top, filled by light yellowish (10 YR 6/4)<br />

silt loam; lower boundary not exposed.<br />

The second part of <strong>the</strong> profile has been described 50 m W of <strong>the</strong> first, <strong>in</strong> a construction pit; <strong>the</strong><br />

III B31 horizon has been partly removed.<br />

Ill B31 t 0-120 cm : reddish brown, dark reddish brown (5 YR 4/4, 2.5 YR 3/4) clay, common


256 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O PLAIN<br />

very wea<strong>the</strong>red stones (chert fragment, volcanic <strong>and</strong> metamorphic rocks), well developed<br />

medium <strong>and</strong> f<strong>in</strong>e angular blocky, very firm, few pores; many reddish clay cutans; common<br />

iridescent ferri-mangans, gradual boundary to:<br />

III B32 t 120-360 cm: strong brown (7.5 YR 5/8) clay loam, many very wea<strong>the</strong>red stones<br />

(brocken gravel of decalcified marl, cherty limestone, metamorphic <strong>and</strong> crystall<strong>in</strong>e rocks);<br />

well developed coarse blocky; firm, common pores, few wide slicken-sides; many<br />

cont<strong>in</strong>uous red (2.5 YR 3/6, 4/8); clay cutans, occasionaly 1 cm thick; boundary not<br />

exposed.<br />

loc. 17 Cemusco profile\ F32, Como, 45°4r48”, 3°03’28”, 275 m a.s.l., <strong>in</strong> a road cut along <strong>the</strong> road<br />

Cernusco - MissagUa, 600 m W from <strong>the</strong> Cernusco church;<br />

Ap 0-32 cm; dark yellowish brown (10 YR 4/4) silt loam; few small fragments of bricks; weak f<strong>in</strong>e<br />

subangular blocky; common pores; soft; gradual boundary to:<br />

B 2 32-124 cm; strong brown (7.5 YR 5/4) silty clay loam; medium subangular blocky, medium<br />

developed; moderately firm; few pores; few th<strong>in</strong> clay cutans; gradual boundary to:<br />

II B 21 tx 124-206 cm; reddish brown to yellowish red (5 YR 4/6) silty clay loam; well developed<br />

medium angular blocky few small pores; very firm; few small Fe Mn nodules; common<br />

discontlnuos ferri-mangans <strong>and</strong> clay cutans on peds <strong>and</strong> <strong>in</strong>to pores; common 5 to 1 cm<br />

wide, brownish yellow (10 YR 6/6) tongues, with strong brown (7.5 YR 5/6)borders,<br />

show<strong>in</strong>g a reticular pattern; gradual boundary to:<br />

II B22 tx: 206-278 cm; reddish brown (5 YR 4/3) silty clay loam; few medium very wea<strong>the</strong>red<br />

stones; well developed coarse angular blocky, common small <strong>and</strong> medium pores; very firm;<br />

many ferri-mangans <strong>and</strong> common clay cutans on peds; tongues as above; abmpt l<strong>in</strong>ear<br />

boundary to:<br />

III B31 t: 278-528 cm; dark red (2.5 YR 3/6) silty clay loam; common (<strong>in</strong> <strong>the</strong> lower part) very<br />

wea<strong>the</strong>red stones; medium to coarse angular blocky; few small pores; firm few to common<br />

small Fe Mn nodules; many cont<strong>in</strong>uous Fe Mn <strong>and</strong> clay cutans; not calcareous; boundary<br />

not exposed.<br />

The lowest part of <strong>the</strong> profile has been observed near Pagano <strong>in</strong> <strong>the</strong> river Molgora cut: below <strong>the</strong><br />

III B31 horizon, with a diffuse boundary, <strong>the</strong> follow<strong>in</strong>g is exposed:<br />

III B32 t about 7 m thick; yellowish brown (10 YR 5/8) s<strong>and</strong>y loam, very many slightly wea<strong>the</strong>red<br />

stones (gravel of decalcified marly limestones, volcanic <strong>and</strong> metamorphic stones); massive,<br />

soft to slightly firm, common pores; abrupt, very undulat<strong>in</strong>g boundary to:<br />

III Cca «Ceppo»: Strongly cemented gravels (limestone, marly limestone, calcareous s<strong>and</strong>stones);<br />

boundary not exposed.<br />

loc. 18 Bivio MissagUa profile; F32 Como, 45°42’37”, 3°06’41”; 325 m a.s.l.; <strong>in</strong> a construction pit,<br />

200 m ast from <strong>the</strong> cross<strong>in</strong>g between <strong>the</strong> Cernusco-Missaglia <strong>and</strong> Lecco-Milano roads.<br />

Gently slop<strong>in</strong>g top of a «Old Diluvium» terrace.<br />

Ap 0-27 cm : yellowish brown (10 YR 3/4) silt loam, few small fragments of bricks, chert <strong>and</strong><br />

quartz stones, weak subangular blocky common pores, friable; abrupt <strong>and</strong> wavy boundary<br />

to:<br />

B 1 27-55 cm : strong brown (7.5 YR 5/6), mottles (7.5 YR 5/8); clay loam, weakly developed<br />

f<strong>in</strong>e angular blocky; common pores; slightly firm; few clay cutans; common ferri-mangans,<br />

gradual boundary to:<br />

II B21 tx 55-160 cm : yellowish brown (10 YR 5/6) silt loam, well developed coarse prismatic;<br />

very firm, common pores <strong>and</strong> vescicular voids 1 cm <strong>in</strong> diameter; common to many (at <strong>the</strong><br />

bottom of <strong>the</strong> horizon) dark yellowish brown (10 YR 4/6) <strong>and</strong> light grey (10 YR 6/1)<br />

Fe-Mn concretions <strong>and</strong> nodules, common clay cutans, common vertical tongues; abrupt <strong>and</strong><br />

wavy boundary to:<br />

II B22 t 160-180 cm : brown (7.5 YR 4/4) <strong>and</strong> light brownish gray (10 YR 6/2) silt loam, well<br />

developed platy few pores, common iridescent ferri-mangans, common Fe-Mn nodules,<br />

ma<strong>in</strong>ly at <strong>the</strong> top of <strong>the</strong> horizon; common to many clay cutans; abmpt <strong>and</strong> wavy boundary<br />

to:<br />

III B23 t 180-270 cm : yellowish brown (7,5 YR 5/6) s<strong>and</strong>y loam; few small wea<strong>the</strong>red stones.


I a p p e n d ix 1 2 5 7<br />

well developed; coarse angular blocky, very firm; common pores, common to many ferrimangans<br />

<strong>and</strong> clay cutans; common oblique, bleached tongues, show<strong>in</strong>g a reticular pattern;<br />

clear boundary to:<br />

IV B24 t 240-300 cm : yellowish brown (7.5 YR 5/4) s<strong>and</strong>y clay; light yellowish brown (7.5 YR<br />

6/4) mottles; many wea<strong>the</strong>red stones (gravel of decalcified marly limestone, chert, metamorphic<br />

<strong>and</strong> volcanic rocks), well developed medium platy; firm, few pores; common<br />

ferri-mangans <strong>and</strong> clay cutans, few Fe-Mn nodules; gradual boundary to:<br />

rV B/C 300-390 cm : yellowish brown (7.5 YR 5/6) s<strong>and</strong>y loam; yellowish brown (10 YR 5/6)<br />

mottles; many slighty wea<strong>the</strong>red stones (as above); weakly developed medium blocky, few<br />

pores; firm, common ferri-mangans <strong>and</strong> clay cutans; wavy, abrupt, erosive boundary to:<br />

V B31 t 390-500 cm : red (2.5 YR 4/6) s<strong>and</strong>y clay; few to common (at <strong>the</strong> base) very wea<strong>the</strong>red<br />

stones (ma<strong>in</strong>ly quartz, chert pebbles <strong>and</strong> metamorphic <strong>and</strong> volcanic rock fragments); coarse<br />

prismatic <strong>and</strong> well developed angular blocky; common pores, firm to very firm; common<br />

ferri-mangans <strong>and</strong> clay cutans; boundary not exposed.<br />

loc. 19 <strong>Po</strong>rto d'Adda profile; F 46 Treviglio, 45°39’44”, 2°58’38”; m 249 a.s.l.; <strong>in</strong> a road cut close to<br />

<strong>the</strong> village <strong>Po</strong>rto d’Adda, gently undulat<strong>in</strong>g l<strong>and</strong>scape, at <strong>the</strong> top of a «Old Diluvium terrace».<br />

Ap/Bl 0-80 cm yellowish brown, slightly mottled, silt loam, weakly developed blocky; common<br />

pores; friable, clear boundary to:<br />

II B21 tx 80-240 cm; brown (7.5 YR 4/4) silt loam; well developed medium prismatic; very firm;<br />

few pores; common clay cutans, few very th<strong>in</strong> vertical grey tongues; clear boundary to:<br />

II B22 t 240-300 cm : brown (7.5 YR 4/4); grey (10 YR 6/2) mottles; silt loam; weakly developed<br />

blocky; few clay cutans few ferri-mangans; abrupt wavy boundary to;<br />

III B31 t 300-350 cm reddish brown (5 YR 4/4) silt loam, common wea<strong>the</strong>red stones; well<br />

developed medium angular blocky; few pores; firm; common clay cutans <strong>and</strong> ferri-mangans;<br />

boundary not exposed.<br />

loc. 20 Konco Briant<strong>in</strong>o profile; F45, Milano, 45°40’00”, 3°02’59”; 248 m a.s.l. <strong>in</strong> an artificial section<br />

<strong>in</strong> <strong>the</strong> back of a stable, 350 m N of <strong>the</strong> center of <strong>the</strong> village; on <strong>the</strong> smooth slope of a «Middle<br />

Diluvium » terrace.<br />

Ap/Bl 0-60 cm; dark yellowish brown (10 YR 4/4) silty clay loam; few small stones <strong>and</strong> brick<br />

fragments, common to many at <strong>the</strong> base of <strong>the</strong> horizon; weakly developed f<strong>in</strong>e blocky<br />

common pores; moderately firm; clear l<strong>in</strong>ear boundary to:<br />

II B22 t; 60-170 cm: reddish brown (5 YR 4/4) clay loam; few wea<strong>the</strong>red stones (ma<strong>in</strong>ly quartz<br />

<strong>and</strong> chert); strongly developed medium angular blocky; few pores; very firm; common<br />

ferri-mangans <strong>and</strong> clay cutans; diffuse boundary to:<br />

II B31 t: 170-250 cm: reddish brown (5 YR 4/4) clay loam; common brown mottles along peds;<br />

common wea<strong>the</strong>red stones (chert, decalcified s<strong>and</strong>stones, metamorphic, volcanic <strong>and</strong><br />

crystall<strong>in</strong>e rocks); weakly developed angular blocky common pores; moderately firm,<br />

common clay cutans; diffuse boundary to:<br />

II B32 t; 250-390 cm: dark brown (7,5 YR 4/2) clay loam; common to many, wea<strong>the</strong>red to slightly<br />

wea<strong>the</strong>red stones; stmctureless, common pores; moderately firm; common clay cutans<br />

common discont<strong>in</strong>uous ferri-mangans; boundary not exposed.<br />

In a fluviatile <strong>in</strong>cision near <strong>No</strong>vedrate <strong>the</strong> II B32 horizon is about 7 m thick; it has a very wavy<br />

abrupt boundary with:<br />

II Cca; exposed over a thickness of 1,5 m; non wea<strong>the</strong>red gravels strongly cemented by CaC03<br />

(gravel composed of limestone, cherty limestone, calcareous s<strong>and</strong>stone metamorphic,<br />

volcanic <strong>and</strong> crystall<strong>in</strong>e rocks).<br />

loc. 21 Copreno profile; F32 Como 45°40’27”, 3°21’27”, 250 m a.s.l.; right scarp of Seveso river 200<br />

m East of <strong>the</strong> village, 50 m East of <strong>the</strong> profile already described by Orombelli (1968); marg<strong>in</strong> of<br />

<strong>the</strong> «Diluvium medio» terrace.<br />

A1 0-115 cm : dark yellowish brown (10 YR 4/4) s<strong>and</strong>y silt loam; few small stones <strong>and</strong> fragments<br />

of bricks <strong>and</strong> Iron age (?) pottery; weakly developed f<strong>in</strong>e angular blocky; common medium<br />

<strong>and</strong> coarse pores; friable; irregular boundary to:


258 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O PLAIN '<br />

C1 115-145 cm : yellowish brown (10 YR 5/6) s<strong>and</strong>y loam; structureless few pores; very friable;<br />

common small dist<strong>in</strong>ct olive yellow (2,5 YR 7/4, 6/6) mottles; gradual boundary to:<br />

C2 145-200 cm : brownish yellow (10 YR 6/6) s<strong>and</strong>y loam, weakly developed platy, common<br />

horizontal ferri-mangans, few horizontal clay cutans, few pores, friable, abrupt f.rosional<br />

boundary to:<br />

II B21 t 200-260 cm : brown silt loam (7.5 YR 4/4) common small fa<strong>in</strong>t brown (10 YR 5/4)<br />

mottles, few small quartz stones, common at <strong>the</strong> topo of <strong>the</strong> horizon; medium strongly<br />

developed prismatic, common small pores; firm; few small discont<strong>in</strong>uous black<br />

ferri-mangans, few th<strong>in</strong> clay cutans <strong>in</strong> pores, common clay cutons on <strong>the</strong> surfaces of stones;<br />

few th<strong>in</strong> tubular (10 YR 7/4) vertical tongues, gradual boundary to:<br />

III B31 t 260-300 cm : brown (7.5 YR 4/4) silt loam, common medium fa<strong>in</strong>t strong brown (7,5<br />

YR 5/6) mottles, common medium wea<strong>the</strong>red stones, gradualy <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number an size<br />

with <strong>the</strong> depth; medium developed f<strong>in</strong>e angular blocky; few large pores; common medium<br />

f<strong>in</strong>e pores; firm; diffuse boundary to:<br />

III B32 300-380 cm : from brown (7.5 YR 5/4) to yellowish brown (10 YR 5/6) s<strong>and</strong>y loam,<br />

many to very abundant rounded weakly wea<strong>the</strong>red medium <strong>and</strong> large stones; very weak<br />

subangular blocky few pores; moderately firm; common th<strong>in</strong> clay cutans on stone faces;<br />

boundary not exposed.<br />

loc. 22 Kobbiate profile; F32, Como, 45°41’13”, 3°00’58”, 270 m a.s.k; <strong>in</strong> <strong>the</strong> center of <strong>the</strong> small<br />

village, <strong>in</strong> a construction pit; flat l<strong>and</strong>scape, on <strong>the</strong> top of <strong>the</strong> outwash pla<strong>in</strong> connected with <strong>the</strong><br />

Late Pleistocene (Würm) Adda mora<strong>in</strong>e system.<br />

Ap 0-30 cm : brown (10 YR 4/3) s<strong>and</strong>y loam; few small stones; poorly developed f<strong>in</strong>e subangular<br />

blocky; few pores; slightly firm; clear l<strong>in</strong>ear boundary to:<br />

B31 t 30-84 cm : brown (6.5 YR 4/4) s<strong>and</strong>y loam; common slightly wea<strong>the</strong>red stones (chert,<br />

decarbonated marly limestone, metamorphic <strong>and</strong> volcanic rocks); medium blocky; common<br />

pores; firm; few clay cutans, ma<strong>in</strong>ly on surfaces of stones; gradual boundary to:<br />

B32 t 84-140 cm : dark brown (7.5 YR 3/2); loamy s<strong>and</strong>; common to many slightly wea<strong>the</strong>red<br />

stones; weakly developed medium blocky to massive; very common pores; friable; few clay<br />

cutans gradual boundary to:<br />

Cca 140-210 cm : dark brown (10 YR 3/4) s<strong>and</strong>, many fresh stones (limestone; cherty limestone,<br />

metamorphic volcanic und crystall<strong>in</strong>e rock); structureless, friable many pores; few CaC03<br />

nodules on stones; calcareous; boundary not exposed.<br />

loc. 23 Bagaggera profiles; F32, Como, 45°42’54”; 3°4’18”, 260 m a.sJ.<br />

Profile 1; 300 m <strong>No</strong>rth from Casc<strong>in</strong>a Barbabella, at <strong>the</strong> gently slop<strong>in</strong>g nor<strong>the</strong>rn limit of <strong>the</strong> bas<strong>in</strong>.<br />

Ap -I- B1 0-30 cm : yellowish brown (10 YR 5/4) s<strong>and</strong>y silt loam; f<strong>in</strong>e weakly developed<br />

subangular blocky; few pores; slightly firm; not calcareous; clear boundary to:<br />

II B21 t 30-55 cm : reddish brown (5 YR 4/4) silty clay loam; strongly developed medium angular<br />

blocky; few pores, very firm; many small Fe Mn nodules; many discont<strong>in</strong>uous clay cutans<br />

on peds; common bght gray bordered vertical tongues; clear boundary to:<br />

II B22 t 55-70 cm reddish (2.5 YR 4/6) silty clay, brown (7.5 YR 4/4); yellowish brown (10 YR<br />

5/8), light brownish-gray (10 YR 6/2) mottled; very many medium dist<strong>in</strong>ct mottles <strong>in</strong> ped<br />

exteriors; moist; strongly developed platy; few small pores; very firm; many thick red<br />

ma<strong>in</strong>ly horizontal clay cutans on ped surfaces; abrupt wavy boundary to:<br />

III B21t 70-110 strong brown (7.5 YR 5/6) silty clay; moist; strongly developed medium<br />

prismatic; few small pores; firm; few small Fe Mn nodules; many reddish brown (5 YR<br />

4/4) clay cutans on peds; common, light gray (10 YR 7/1) brown bordered tongues, clear<br />

boundary to:<br />

III B22 t 110-130 cm : red (2,5 YR 4/6) brown (7.5 YR 4/4) yellowish brown (10 YR 5/8) light<br />

brownish gray (10 YR 5/2) mottled silty clay; very many medium dist<strong>in</strong>ct mottles ped<br />

exteriors; strong by developed medium platy; few small pores; very firm; many thick red<br />

clay cutans on ped surfaces; abrupt <strong>and</strong> wavy boundary to:<br />

IV B21 t 130-210 cm : yellowish red (5 YR 5/6) clay loam common f<strong>in</strong>e red (2.5 YR 4/ü)<br />

mottles; rare to common small wea<strong>the</strong>red stones; strongly developed coarse prismatic;


a p p e n d ix 1 259<br />

common small pores; firm; many cont<strong>in</strong>uous clay cutans on peds; common light grey,<br />

brown bordered vertical tongues; at <strong>the</strong> top of <strong>the</strong> horÍ2on <strong>the</strong>y are up to 5 cm wide; <strong>in</strong> <strong>the</strong><br />

lower part of <strong>the</strong> horizon <strong>the</strong> tongues become th<strong>in</strong>ner <strong>and</strong> branch out; non calcareous;<br />

gradual boundary to:<br />

IV B22 t 210-300 cm : red (2.5 YR 4/6) clay loam; few medium gray mottles, abundant on stone<br />

surfaces; angular fragments of wea<strong>the</strong>red flysch, not <strong>in</strong> contact; <strong>the</strong> fragments have a th<strong>in</strong><br />

yellow cortex; <strong>the</strong>y are dark red (2.5 YR 3/6) <strong>and</strong> have few small yellowish red mottles;<br />

moist; weakly developed coarse angular blocky; strong; few cont<strong>in</strong>uous clay cutans on ped<br />

faces; clear boundary to:<br />

V B3 300-600 cm : reddish brown (2.5 YR 5/4) s<strong>and</strong>y silty wea<strong>the</strong>red Cretaceous flysch; diffuse<br />

boundary to:<br />

V C 300-1850 cm : light olive brown (2.5 Y 5/4) wea<strong>the</strong>red s<strong>and</strong>y Cretaceous flysch; rare, dark<br />

red clay cutans along bedd<strong>in</strong>g surfaces; clear boundary to core stones of fresh <strong>and</strong> calcareous<br />

flysch, <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> horizon.<br />

Profile 2, close to a pipel<strong>in</strong>e box, along <strong>the</strong> road from Bagaggera to Fornace Barbabella on a flat<br />

terrace, not far from <strong>the</strong> terrace scarp.<br />

Ap 0-6 cm : dark brown (10 YR 4/3, 3/3) silty clay; few small fragments of bricks; moist; f<strong>in</strong>e<br />

weakly developed subangular blocky; few f<strong>in</strong>e pores, moderately firm; clear wavy boundary<br />

to:<br />

B 1 6-40 cm : dark brown to brown (10 YR 4/3) silty clay loam; moist; f<strong>in</strong>e weakly developed<br />

subangular blocky, moderately firm; few pores; common small Fe-Mn nodules; gradual irregular<br />

boundary; Upper Palaeolithic artifacts <strong>and</strong> few charcoals are present <strong>in</strong> <strong>the</strong> lower part of<br />

<strong>the</strong> horizon.<br />

II B21 tx 40-115 cm : dark yellowish brown (10 YR 4/6) silty clay loam; few f<strong>in</strong>e fa<strong>in</strong>t mottles;<br />

moist; strongly developed; medium angular blocky; moderately porous; very firm; common<br />

Fe-Mn nodules; few discont<strong>in</strong>uous clay <strong>and</strong> Fe-Mn cutans on peds <strong>and</strong> <strong>in</strong> pores; common<br />

light grey (10 YR 7/1) yellow fr<strong>in</strong>ged, vertical tongues cross<strong>in</strong>g <strong>the</strong> horizon; common small<br />

Fe-Mn nodules; gradual boundary to:<br />

II B22 t 115-120 cm : yellowish brown (10 YR 5/6) silty clay loam; moist; strongly developed<br />

medium platy; slightly porous; very firm; common cont<strong>in</strong>uous horizontal pale brown (10<br />

YR 7/2) clay cutans, some millimetres thick; abrupt boundary to:<br />

III B21 t 120-181 cm : brown, dark brown (7,5 YR 4/1) silty clay loam; most; strongly developed<br />

medium prismatic; moderatly porous; firm; common thick dark reddish brown (5 YR 2/4)<br />

clay cutans <strong>and</strong> common Fe-Mn cutans on peds <strong>and</strong> <strong>in</strong> pores; common light grey tongues;<br />

<strong>in</strong> <strong>the</strong> lower part <strong>the</strong>y become th<strong>in</strong>ner <strong>and</strong> branch out; gradual boundary to:<br />

III B22 t 181-240 cm : yellowish brown (10 YR 5/8) clay; common medium fa<strong>in</strong>t dark yellowish<br />

brown (10 YR 4/6) mottles; few small chert stones; moderately developed angular coarse<br />

blocky; slightly porous; firm; common dark reddish brown dark red (5 YR 3/4, 2,5 YR<br />

3/4) clay cutans, thick <strong>and</strong> cont<strong>in</strong>uous, on peds; gradual irregular boundary to:<br />

III Cl 240-400 cm : yellowish brown (10 YR 5/6) silty clay loam <strong>and</strong> s<strong>and</strong>y clay loam; moist; very<br />

weakly developed coarse blocky; firm; many dist<strong>in</strong>ct medium sized mottles with wide light<br />

gray reticular pattern (10 YR 7/2); few discont<strong>in</strong>uous reddish brown clay cutans only <strong>in</strong><br />

<strong>the</strong> upper part of <strong>the</strong> horizon; common small soft Fe-Mn concentrations; boundary not<br />

exposed. Unit BAG 6 <strong>and</strong> <strong>the</strong> units of <strong>the</strong> fluviolacustr<strong>in</strong>e sequence are presented below.<br />

The carbonates occur aga<strong>in</strong> only <strong>in</strong> unit BAG 1 at a depth of about 15 meter below <strong>the</strong> present<br />

ground surface.<br />

Profile 3; 100 m N from Casc<strong>in</strong>a Barbarella, on <strong>the</strong> quarry floor cut <strong>in</strong>to <strong>the</strong> same terrace as <strong>the</strong><br />

pipel<strong>in</strong>e profile.<br />

The upper part of <strong>the</strong> profile is completely similar to <strong>the</strong> n. 2 profile down to a depth of 2.50 meters,<br />

<strong>the</strong> description starts aga<strong>in</strong> from a pebbly horizon correspond<strong>in</strong>g to <strong>the</strong> proceed<strong>in</strong>g III B22 t.<br />

IV B23 t 250-295 cm : dark brown (7.5 YR 4/4) s<strong>and</strong>y silt loam; common medium <strong>and</strong> small<br />

rounded-subrounded slightly wea<strong>the</strong>red stones; weakly developed medium <strong>and</strong> coarse<br />

blocky; moderately porous; firm; common horizontal grey mottles; common brown clay<br />

cutans; abrupt boundary to:


260 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O P L A I N '<br />

,Vi^<br />

-»ii!<br />

V B 1 295-318 cm : strong brown (7,5 YR 5/8) silty clay loam; moist; strongly developed medium<br />

prismatic; slightly porous; very firm; common small soft Fe-Mn concentration; many black<br />

cont<strong>in</strong>uous Fe-Mn cutans on <strong>the</strong> surface of <strong>the</strong> peds, <strong>in</strong>side <strong>the</strong> peds <strong>the</strong>y show dendroid<br />

pattern; clear wavy boundary to:<br />

VI B21 t 318-458 cm : yellowish red (5 YR 4/6) silty clay loam; dark brown (7.5 YR 4/4);<br />

common fa<strong>in</strong>t medium mottles; few very small quartz angular stones; strongly developed<br />

medium-coarse prismatic, firm common small Fe-Mn nodules at <strong>the</strong> horizon boundary;<br />

many black Fe-Mn cutans, cont<strong>in</strong>uous on peds; thick, cont<strong>in</strong>uous brown clay cutans on<br />

peds <strong>and</strong> <strong>in</strong> pores. At <strong>the</strong> lower boundary of <strong>the</strong> horizon, p<strong>in</strong>kish gray streaks (7.5 YR 7/2)<br />

show<strong>in</strong>g a wide reticular pattern; l<strong>in</strong>ear clear boundary to:<br />

VI B22 t 458-577 cm : yellowish red (5 YR 5/8) silty clay loam; many medium dist<strong>in</strong>ct mottles<br />

10 YR 7/3; very pale brown; few medium wea<strong>the</strong>red stones; moist; weakly developed platy;<br />

very slighty porous; firm; many black discont<strong>in</strong>uous Fe-Mn cutans on peds; many thick clay<br />

cutans on peds, clear l<strong>in</strong>ear boundary to:<br />

VII B21 t 577-702 cm : strong brown (7.5 YR 5/6) silt loam; few stones to common stones (<strong>in</strong><br />

<strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> outcrop), ma<strong>in</strong>ly chert quartz <strong>and</strong> reddish wea<strong>the</strong>red s<strong>and</strong>stone;<br />

strongly developed coarse to medium angular blocky; firm; moderately porous; common<br />

Fe-Mn nodules <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> horizon; many red coloured clay cutans on peds <strong>and</strong><br />

<strong>in</strong> pores (5 YR 4/3); common small vertical tongues (10 YR 7/6); clear l<strong>in</strong>ear boundary.<br />

VII B22 cn 702-727 cm : dark brown (7.5 YR 4/2) silt loam; few small stones; weakly developed<br />

medium angular blocky; moderately firm; many black Fe-Mn nodules; porous; common clay<br />

cutans on peds; clear l<strong>in</strong>ear boundary to:<br />

VIII B2 t 727-800 cm : brown (7.5 YR 5/4) clay; common small yellowish-brown mottles (10 YR<br />

6/4); lenses of wea<strong>the</strong>red pebbles; common stones; f<strong>in</strong>e angular blocky weakly developed;<br />

moderately firm; moderately porous; common black Fe-Mn cutans <strong>and</strong> red clay cutans (5<br />

YR 5/4) <strong>in</strong> pores, on peds <strong>and</strong> on pebble surfaces; not exposed boundary.<br />

The unwea<strong>the</strong>red lacustr<strong>in</strong>e deposits of unit 4 are present below <strong>the</strong> above sequence <strong>and</strong> overlie<br />

<strong>the</strong> Flysch of <strong>the</strong> bedrock. The contact is erosional. The bedrock shows <strong>the</strong> follow<strong>in</strong>g characteristics:<br />

Bg 0-170 cm : olive (2.5 YR 6/4) white (10 YR 8/1) <strong>and</strong> red (5 YR 4/2) mottled coarse quartz<br />

s<strong>and</strong>; massive; firm; bedd<strong>in</strong>g is still well preserved; common pores; diffuse boundary to:<br />

Bx 170-350 cm : pale brown (10 YR 5/8) coarse quartz s<strong>and</strong>; massive; few pores; firm to very<br />

firm; discont<strong>in</strong>uosly cemented by silica; boundary not exposed.<br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge<br />

loc. 24 Tiepido profile; F86, Modena, 44°31’24”, 1°33’09”, 155 m a^J.; <strong>in</strong> <strong>the</strong> bed of <strong>the</strong> Tiepido<br />

river, on <strong>the</strong> eastern bank, 1 Km southward from <strong>Po</strong>zza; <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Tiepido fluviatile<br />

stratigraphic sequence, covered by silty <strong>and</strong> clayey overbank deposits <strong>and</strong> braided stream gravel.<br />

A lb 0-50 cm : very dark graysh brown (10 YR 5/2) clay; yellowish brown mottles (10 YR 5/4);<br />

<strong>in</strong>clud<strong>in</strong>g a fossil bone fragment; well developed f<strong>in</strong>e angular blocky; firm; no pores; few<br />

CaC03 nodules, calcareous, gradual boundary to:<br />

II B21t 50-100 cm : dark brown (7,5 YR 4/6) clay loam; f<strong>in</strong>e brown mottles (7,5 YR 5/2); well<br />

developed f<strong>in</strong>e prismatic; very few small pores; very firm; common Fe-Mn nodules; many<br />

wide slickensides; gradual boundary to:<br />

II B22t 100-250 cm : dark reddish brown (2,5 YR 3/4), reddish brown (2,5 YR 5/4) f<strong>in</strong>e mottles;<br />

clay loam; very small angular chert fragments; well developed f<strong>in</strong>e angular blocky; few<br />

pores; firm; common clay cutans <strong>and</strong> Fe-Mn nodules; th<strong>in</strong> pale brown (10 YR 6/3) vertical<br />

tongues; gradual boundary to:<br />

II B31t 250-370 cm : yellowish red to reddish brown (5 YR 4/4; 4/6) clay loam; common to many<br />

very wea<strong>the</strong>red stones, gradually <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number with depth; weak angular blocky;<br />

common pores; firm; common ferri-mangans; common clay cutans; sharp l<strong>in</strong>ear boundary<br />

to:<br />

III C 370-400 cm : unwea<strong>the</strong>red loose gravel (calcareous s<strong>and</strong>stone; marly limestone; volcanic rock;<br />

chert), <strong>and</strong> s<strong>and</strong>y silt loam, structureless, very friable, calcareous; boundary not exposed.


APPENDIX 1 261<br />

loc. 25 Ghiardo profile; F74 Reggio Emilia, 44°39’17”, r5 7 ’03” 139 m a^J., <strong>in</strong> a construction pit,<br />

along <strong>the</strong> road Cavriago-Bibbiano (Reggio Emilia) 250 m N of Case del Ghiardo.<br />

Top of <strong>the</strong> Ghiardo Terrace, flat to gently undulat<strong>in</strong>g lanscape.<br />

Ap 0-14 cm ; light yellowish brown (10 YR 6/4) silty clay loam; weakly developed f<strong>in</strong>e subangular<br />

blocky; friable; medium <strong>and</strong> coarse common pores; clear boundary to;<br />

A 2 14-35 cm : very pale (10 YR 7/4) brown silty clay loam; very weak f<strong>in</strong>e angular blocky;<br />

common small pores; friable, very few Fe-Mn nodules <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number with depth;<br />

gradual boundary to:<br />

B 21 35-60 cm : pale brown (10 YR 6/3) silty clay loam; common small brown (10 YR 7/4)<br />

mottles; weak f<strong>in</strong>e angular blocky; common small pores, slightly firm; few Fe-Mn concretions,<br />

few patchy clay cutans; gradual boundary to:<br />

B 22 cn 60-85 cm : light yellowish brown (10 YR 6/4) silty loam; very weakly developed f<strong>in</strong>e<br />

angular blocky; firm; common small <strong>and</strong> medium pores; many Fe-Mn concretions; many<br />

clay cutans, gradual boundary to:<br />

II B 21t 85-130 cm : yellowish brown (10 YR 5/6) silty loamy clay; common medium light grey<br />

(10 YR 7/1) mottles; strongly developed coarse prismatic; small few pores; firm; common,<br />

2-4 cm wide (10 YR 7/2) light grey (10 YR 5/4) yellowish bordered tongues show<strong>in</strong>g<br />

reticular patterns; common small slickensides, common cont<strong>in</strong>uous clay cutans on peds <strong>and</strong><br />

In pores; clear boundary to:<br />

II B22 cn 130-140 cm : dark brown (7,5 YR 3/2) silty clay; weakly developed medium blocky, few<br />

small pores, very firm; few clay cutans <strong>in</strong> pores; very many Fe-Mn concretions <strong>and</strong> nodules;<br />

clear boundary to:<br />

III B21 t 140-160 cm : yellowish red (5 YR 5/6) silty clay loam; few small chert stones; well<br />

developed coarse prismatic; moist; firm; few pores; many black ferri-mangans on ped<br />

surfaces, common clay cutans on peds; gradual boundary to:<br />

IV B 22t 160-280 cm : red (2.5 YR 5/8) silty clay loam; common brown (7.5 YR 6/6) mottles;<br />

few small very wea<strong>the</strong>red stone size chert <strong>and</strong> s<strong>and</strong>stone fragments <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number<br />

with depth; well developed coarse blocky; very small pores; very firm; many patchy black<br />

ferri-mangans on peds surfaces; common clay cutans on ped surfaces <strong>and</strong> <strong>in</strong> pores; few Ca<br />

C03 nodules ma<strong>in</strong>ly <strong>in</strong> pores; slightly calcareous; gradual boundary to:<br />

IV B31t 280-500 cm : from yellowish red (5 YR 5/6) to strong brown (7.5 YR 5/6) clay; weakly<br />

developed blocky; many large; very wea<strong>the</strong>red stones; firm; many black Fe-Mn cutans on<br />

stone surfaces; few patchy clay cutans on peds; boundary not exposed.<br />

loc. 26 Ghiardo }/igneto profile; F74 Reggio Emilia, 44“40T7”, 1°55’27”; 120 m a.sJ., 2 Km N-E<br />

from <strong>the</strong> former profile, along an artificial cliff cut <strong>in</strong>to <strong>the</strong> eastern scarp of <strong>the</strong> Ghiardo terrace.<br />

Ap/Bl 0-30 cm : brown (10 YR 3/3) silt loam; common fragments of stones, bricks <strong>and</strong><br />

alloctonous Fe-Mn concretions; weakly developed medium <strong>and</strong> f<strong>in</strong>e subangular blocky;<br />

common to many pores; friable; few clay cutans; clear boundary to:<br />

B2 t cn 50-52 cm : dark brown (10 YR 3/5) silt loam; many Fe-Mn nodules <strong>and</strong> concretions; weak<br />

angular blocky; common pores, firm to very firm; few th<strong>in</strong> light yellowish brown vertical<br />

tongues; common clay cutans; abrupt boundary to:<br />

II B21 t 52-92 cm : yellowish red (5 YR 5/8) silty clay; common brown (7.5 YR 5/4) <strong>and</strong> light<br />

yellowish brown (10 YR 6/2) mottles; strongly developed medium prismatic few pores;<br />

very firm; common clay cutans; common iridescent ferri-mangans; common Fe-Mn nodules;<br />

clear l<strong>in</strong>ear boundary to:<br />

III B22 t 92-181 cm : red to yellowish red (2.5 YR 5/5 - 5 YR 4/6) silty clay; very few chert <strong>and</strong><br />

quartz fragments; well developed medium prismatic to medium blocky, few pores; very firm<br />

to firm; common clay cutans; common to many iridescent ferri-mangans, common Fe-Mn<br />

nodules; gradual boundary to:<br />

III B31t 181-250 cm : yellowish red (5 YR 4/6) to strong brown (7.5 YR 5/6) clay loam;<br />

common fragments of s<strong>and</strong>stones <strong>and</strong> chert; medium <strong>and</strong> f<strong>in</strong>e blocky; firm; few pores;<br />

common to many clay cutans; few to common ferri-mangans; gradual boundary to:<br />

III B 32 t 250-450 cm : brown (7.5 YR 5/4) clayey s<strong>and</strong>; common to many stones (fragments of<br />

decarbonated s<strong>and</strong>stone; marly limestones, diasper, volcanic rocks <strong>and</strong> chert); weak medium


262 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O P L A IN<br />

blocky; common to many pores; slightly firm to friable; common to many clay cutans, few<br />

ferri-mangans; abrupt wavy boundary to:<br />

IV C ca 450-500 cm : dark yellowish brown (10 YR 4/4) to olive brown (2.5 Y 4/4), loamy clay,<br />

massive; no pores; firm; common hard Ca C03 nodules; calcareous; boundary not exposed.<br />

i ^ H<br />

loc. 27 Romo Profile; F72, Fiorenzuola 44“54’20”, 1°50’46”; 230 m asJ. 200 m <strong>No</strong>rth of Villa<br />

Ronco (Rivergaro, PC) along a roadcut, near <strong>the</strong> scarp of <strong>the</strong> highest Pleistocene terrace.<br />

A p 0-2 cm ; very dark grayish brown (10 YR 3/2) silty clay loam, common small wea<strong>the</strong>red<br />

stones, <strong>and</strong> allochtonous CaC03 nodules; weakly developed f<strong>in</strong>e granular; moderately firm;<br />

common pores; slightly calcarous; gradual boundary to:<br />

II B 2 t 20-45 cm : yellowish brown (10 YR 5/6) clay loam, common medium light grey (10 YR<br />

7/1) <strong>and</strong> brown (7.5 YR 5/6) mottles; strongly developed medium to coarse angular<br />

blocky; very slightly porous; strong common large slickensides; many th<strong>in</strong> argillans; common<br />

1-3 cm large carbonate nodules; calcareous; abrupt boundary to:<br />

III B21 t 45-125 cm : dark red (2.5 YR 3/6) silty clay loam; very few small cherty stones; .strongly<br />

developed coarse angular blocky <strong>and</strong> f<strong>in</strong>e angular blocky, few small pores; very firm, some<br />

centimetres wide light reddish brown (10 YR 6/3) tongues with reticular pattern; common<br />

large calcareous nodules <strong>in</strong> tongues; thick light grey clay cutans <strong>in</strong> tongues; common reddish<br />

brown (2.5 YR 4/4) clay cutans on ped faces <strong>and</strong> <strong>in</strong> pores; very slightly calcareous: gradual<br />

boundary to:<br />

IV B22 t 125-190 cm : red (2.5 YR 4/6) silty clay loam; common small <strong>and</strong> medium very<br />

wea<strong>the</strong>red stones <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number <strong>and</strong> <strong>in</strong> size with <strong>the</strong> depth; well developed f<strong>in</strong>e<br />

medium angular blocky; few small pores; very firm; common small dendroid p<strong>in</strong>k<strong>in</strong>sh grey<br />

(2.5 YR 7/2) channels; common small irregular calcareous nodules <strong>in</strong> bleached pores; many<br />

black ferri-mangans on peds <strong>and</strong> <strong>in</strong> pores; many dark red (2.5 YR 3/6) cont<strong>in</strong>uous clay<br />

cutans on peds <strong>and</strong> <strong>in</strong> pores; very slightly calcareous; gradual boundary to:<br />

IV B31 t; 190-320 cm dark red (2.5 YR 4/6) clay loam; many, small to large, very wea<strong>the</strong>red<br />

stones; f<strong>in</strong>e angular blocky; very f<strong>in</strong>e pores; very firm; many black Fe-Mn cutans on <strong>the</strong><br />

faces of <strong>the</strong> stones; many red cont<strong>in</strong>uous clay cutans on peds <strong>and</strong> stone surfaces <strong>and</strong> <strong>in</strong><br />

pores; common th<strong>in</strong> p<strong>in</strong>kish white clay cutans <strong>in</strong> small channels; very slighty calcareous;<br />

diffuse boundary to:<br />

IV B32 t 320-450 cm : reddish brown (5 YR 4/4) clay; common medium large brown (7.5 YR<br />

5/4) mottles; very abundant small to large stones, common small pores; firm, very weakly<br />

developed f<strong>in</strong>e angular blocky; many Fe-Mn cutans on peds <strong>and</strong> stone surfaces <strong>and</strong> fissures;<br />

common discont<strong>in</strong>uous red clay cutans; lower boundary not exposed.<br />

2,50 m below, <strong>the</strong> IV C ca crops out over a few meters. It is composed of unwea<strong>the</strong>red strongly<br />

cemented gravel (calcareous s<strong>and</strong>stone, marly limestone, volcanic rocks, chert).<br />

loc. 28 Rex profile; F86 Modena 44°32’34”, r3 6 ’14”, m 110; <strong>in</strong> a construction pit <strong>in</strong> <strong>the</strong> back of<br />

<strong>the</strong> park<strong>in</strong>g area of <strong>the</strong> brickl<strong>in</strong> Rex (Maranello; Formig<strong>in</strong>e; Modena); gently undulat<strong>in</strong>g Pleistocene<br />

terrace; <strong>the</strong> highest part of <strong>the</strong> loess cover, form<strong>in</strong>g <strong>the</strong> top of <strong>the</strong> profile, has been artificially<br />

removed.<br />

B21 t 0-40 cm brown (10 YR 4/3) clay loam, well developed f<strong>in</strong>e angular to medium blocky; few<br />

pores; firm to very firm common th<strong>in</strong> clay cutans; common Fe-Mn nodules; clear l<strong>in</strong>ear<br />

boundary to:<br />

B22 cn 40-50 cm same characteristics; <strong>the</strong> horizon is ma<strong>in</strong>ly composed (80-90X) of Fe-Mn concretions<br />

<strong>and</strong> nodules from a few millimetres to one centimetre thick, common pores, very firm<br />

to slightly cemented; abrupt l<strong>in</strong>ear boundary to:<br />

II B23 ca 50-150 cm : yellowish brown (10 YR 5/4) clay; common gray brown (2.5 Y 5/2)<br />

mottles; rare small chert <strong>and</strong> s<strong>and</strong>stone pebbles; weak medium prismatic; few pores, common<br />

ferri-mangans; common to many Ca C03 nodules, ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong><br />

horizon, calcareous; gradual to l<strong>in</strong>ear clear boundary to:<br />

III B21 t 150-220 cm : brown to reddish brown (7.5 YR 4/4) silty clay loam; common yellowish<br />

brown mottles (10 YR 5/4); well developed medium <strong>and</strong> f<strong>in</strong>e angular blocky; firm; few<br />

pores, few to common clay cutans; common th<strong>in</strong> vertical tongues; common ferri-mangans,<br />

common tubular Ca C03 concretion <strong>in</strong> tongues, clear to gradual boundary to:


APPENDIX 1 263<br />

IV B31 t 220-270 cm : reddish brown (5 YR 4/4) silty clay, common very wea<strong>the</strong>red small stones<br />

(decarbonated s<strong>and</strong>stone <strong>and</strong> marly limestone, chert <strong>and</strong> volcanic rocks); well developed,<br />

f<strong>in</strong>e <strong>and</strong> medium angular blocky common to many clay cutans, common ferri-mangans,<br />

common pores, slightly firm, gradual boundary to:<br />

IV B32 t 270-390 cm : brown (7.5 YR 4/4) to dark yellowish brown (10 YR 3/4) clay loam; weak<br />

f<strong>in</strong>e angular blocky, common to many wea<strong>the</strong>red stones as above; slightly firm to friable,<br />

common to very common pores, many clay cutans, common to very common ferrimangans,<br />

clear wavy boundary to:<br />

IV C ca 390-450 cm : dark brown (10 YR 3/3) clay loam; many unwea<strong>the</strong>red stones (calc,<br />

sanstones, marly limestone <strong>and</strong> volcanic rocks); structureless; friable, many pores; i common<br />

to many CO C03 nodules, ma<strong>in</strong>ly on stones, calcareous; boundary not exposed.<br />

loc. 29a Ghiardo Cave profile; F86 Modena, 44°39’17”, 1°57’3”, 135 m asJ. <strong>in</strong> a clay pit, near <strong>the</strong><br />

eastern wall of <strong>the</strong> farm, 2 Km S from case del Ghiardo, 140 m a^J.; flat surface of <strong>the</strong> Pleistocene<br />

terrace.<br />

Ap 0-30 cm : light yellowish brown (10 YR 6/4) silt loam; few small fragments of bricks, weak<br />

f<strong>in</strong>e subangular platy; medium <strong>and</strong> f<strong>in</strong>e common pores; friable; few small Fe-Mn nodules;<br />

gradual boundary.<br />

A 2 30-89 cm: very pale brownish yellow (10 YR 7/4, 6/6); silt loam; very weakly developed f<strong>in</strong>e<br />

subangular blocky; common pores; slightly firm; few small Fe-Mn cutans <strong>in</strong> pores; at <strong>the</strong> base of<br />

<strong>the</strong> horizon discont<strong>in</strong>uous concentrations of Fe-Mn concretions; abmpt, l<strong>in</strong>ear boundary to:<br />

II B21t 89-137 cm : brown (10 YR 4/3) yellowish brown (10 YR 5/4) silty clay loam; common<br />

medium mottles; strongly developed medium prismatic; few small pores; moderately firm;<br />

few small Fe-Mn nodules; few clay cutans on peds; gradual boundary to:<br />

II B22 t 137-210 cm : brown (10 YR 4/3) clay; common small brownish yellow <strong>and</strong> yellowish<br />

brown mottles (10 YR 6/6; 5/4); strongly developed medium prismatic; very few pores;<br />

very firm; th<strong>in</strong> greyish brown (10 YR 5/2) vertical tongues along vertical peds; common small<br />

Fe-Mn nodules; few medium slickensides; common day cutans; abmpt wavy boundary to:<br />

II B23 cn 210-230 cm : dark brown (7.5 YR 3/2); very many (90?) 0,5 cm large Fe-Mn<br />

concretions, massive, few small pores; firm; clear wavy boundary to:<br />

III B24 230-280 cm : yellowish brown (10 YR 5/4) clay; common f<strong>in</strong>e to large light olive brown<br />

(2.5 Y 5/6) mottles; very strongly developed very coarse blocky; very firm; many large<br />

slickensides; many Fe-Mn nodules, many Fe-Mn cutans; few large rounded Ca C03 nodules;<br />

boundary not exposed.<br />

loc. 29b Ghiardo Cave II profile; <strong>in</strong> a loess quarry; 400 m east from <strong>the</strong> previous profile; gently<br />

slop<strong>in</strong>g eastern marg<strong>in</strong> of <strong>the</strong> Ghiardo Pleistocene terrace, 129 m as!.;<br />

Ap 0-30 cm : yellowish brown (10 YR 6/4) silt loam; few small fragments of stones <strong>and</strong> bricks<br />

<strong>and</strong> allochtonous Fe-Mn nodules; f<strong>in</strong>e blocky; common to many pores, friable; abrupt l<strong>in</strong>ear<br />

boundary to:<br />

A2 30-40 cm : clear veUowish brown (10 YR 6/4) silt loam, few mottles; very weakly developed<br />

subangular blocky; common pores; friable; wavy boundary to:<br />

II B21 t 40-110 cm : yellowish brown (10 YR 6/6) silt loam; well developed medium angular<br />

blocky to prismatic, common pores; firm; common vertical, bleached tongues; common clay<br />

cutans; common to many Fe-Mn nodules <strong>and</strong> concretions, <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> number <strong>and</strong> size<br />

with depth; clear boundary to:<br />

II B22 cn 110-125 cm : same characteristics as <strong>the</strong> former horizon but many (78-90?) Fe-Mn<br />

nodules <strong>and</strong> concretions, clear boundary to:<br />

III B21 t 125-150 cm : reddish brown (5 YR 4/4) clay; common yellowish brown mottles <strong>in</strong> <strong>the</strong><br />

upper part; few chert, quartz <strong>and</strong> s<strong>and</strong>stone fragments of stone size; coarse to medium<br />

angular blocky; very firm; few pores; common clay cutans; common iridescent ferrimangans,<br />

boundary not exposed.<br />

loc. 30 Boscone di <strong>No</strong>eeio profile; F73, Parma, 44“41’18”, 2°18’25”; 101 m a.sJ.; <strong>in</strong> a cut, along <strong>the</strong><br />

road <strong>No</strong>ceto - Costamezzana along <strong>the</strong> eastern scarp of a Pleistocene terrace; 300 m S from <strong>No</strong>ceto<br />

(Parma); gently undulat<strong>in</strong>g surface.


264 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O P L A IN<br />

Ap 0-18 cm : dark yellowish brown (10 YR 4/3) silt loam; few small fragments of brick;<br />

moderately developed f<strong>in</strong>e subangular blocky; friable; common to many pores; gradual<br />

boundary to:<br />

A2 18-25 cm : dark yellowish brown (10 YR 4/4) silty clay loam; dark yellowish brown (10 YR<br />

4/6) mottles; weakly developed f<strong>in</strong>e subangular blocky; common to many pores; friable; few<br />

small Fe-Mn concretions; clear boundary to;<br />

B21 t 25-75 cm : brown (10 YR 5/3) to yellowish brown (10 YR 5/4) silty clay loam; brown (10<br />

YR 4/6) mottles; weakly developed f<strong>in</strong>e to medium prismatic; common pores; moderately<br />

firm; few vertical bleached tongues; common clay cutans; common Fe-Mn nodules <strong>and</strong><br />

concretions; clear boundary to:<br />

B22 cn 75-80 cm : same characteristics as <strong>the</strong> former horizon, but very many Fe-Mn nodules <strong>and</strong><br />

concretions; clear boundary to:<br />

II B21 t 80-140 cm : yellowish brown (10 YR 5/6) silty clay; few mottles; medium prismatic to<br />

angular blocky; few pores; firm; common slickensides; common clay cutans; few small Ca<br />

C03 nodules; slightly calcareous; gradual boundary to:<br />

II B22 g 140-170 cm ; clear greyish brown (2.5 Y 6/2) silty clay; medium angular blocky; firm to<br />

very firm; few pores; common slickensides; few Ca C03 nodules; slightly calcareous, abrupt<br />

very undulat<strong>in</strong>g boundary to:<br />

II B23 cn 170-222 cm : Fe-Mn nodules, discont<strong>in</strong>uously cemented, <strong>in</strong>clud<strong>in</strong>g hard Ca C03 nodules;<br />

abrupt boundary to:<br />

III B3 g 222-227 cm : clear greyish brown (2.5 Y 6/2) clay; massive; few pores; firm to very firm;<br />

common slickensides <strong>and</strong> Ca C03 nodules; boundary not exposed.<br />

y ' ^ ' i<br />

. • -t ^<br />

^y y<br />

loc. 31 Niviano Costello profile; ¥12 Fiorenzuola, 44°56’13”, 2°48’58” 130 m a il. <strong>in</strong> a construction<br />

pit 250 m E - SE, from Niviano Castello, close to <strong>the</strong> Piacenza-Rivergaro road; flat top of <strong>the</strong><br />

Pleistocene terrace of Niviano.<br />

Ap 0-30 cm : dark brown (10 YR 3/3) silt loam, few small brick fragments <strong>and</strong> allohctonous<br />

Fe-Mn nodules; weakly developed f<strong>in</strong>e subangular blocky; many pores, friable; clear boundary<br />

to:<br />

B ll 30-50 cm : brown (10 YR 4/3) silt loam; weakly developed f<strong>in</strong>e subangular blocky; many<br />

pores; friable; few discont<strong>in</strong>uous clay cutans; clear boundary to:<br />

B12 cn 50-55 cm : same characteristics as <strong>the</strong> former horizon, but common Fe-Mn nodules; clear<br />

to abrupt l<strong>in</strong>ear boundary to:<br />

II B21 t 55-76 cm : dark yellowish brown (10 YR 4/4); silt loam mottles (10 YR 4/6); well<br />

developed medium angular blocky to prismatic; common pores; moderately firm; common<br />

clay cutans; common ferri-mangans <strong>and</strong> Fe-Mn nodules; gradual boundary to:<br />

II B 22 t 76-150 cm: yellowish brown (10 YR 5/4) clay loam; common mottles; well developed<br />

medium prismatic; at <strong>the</strong> top, weakly developed lam<strong>in</strong>ar; very few pores; very firm; common<br />

clay cutans; few Fe-Mn nodules, clear boundary to:<br />

II B23 cn; 150-175 cm; many Fe-Mn nodules; non cemented; l<strong>in</strong>ear abrupt boundary to:<br />

III B21 t; 175-190 cm; yellowish brown (10 YR 5/6) clay; well developed medium angular blocky,<br />

firm, few pores, common clay cutans, common Fe-Mn nodules, boundary not exposed.<br />

loc. 32 Merl<strong>in</strong>e projile; ¥12, Fiorenzuola; 44°57’10”, 2°53’58”, 135 m a.s.1.; <strong>in</strong> a road cut along <strong>the</strong><br />

Tidone - Piacenza road, 500 m Est from Merl<strong>in</strong>e village; marg<strong>in</strong> of <strong>the</strong> Gazzola Pleistocene terrace,<br />

gently undulat<strong>in</strong>g l<strong>and</strong>scape.<br />

Ap 0-30 cm: dark brown (10 YR 4/3) silt loam; few small brick <strong>and</strong> stone fragments; weakly<br />

developed f<strong>in</strong>e subangular blocky many pores; friable; clear boundary to:<br />

B21 30-70 cm: yellowish brown (10 YR 5/4) silt loam, well developed f<strong>in</strong>e to medium angular<br />

blocky; slightly firm; common pores; some th<strong>in</strong> clay cutans; few Fe-Mn nodules; clear<br />

boundary to:<br />

B22 X<br />

70-90 cm: dark yellowish brown (10 YR 4/4) silt loam; medium blocky; very firm; few<br />

pores; common th<strong>in</strong> clay cutans; common small Fe-Mn nodules; clear boundary to:<br />

B23 t 90-145 cm: dark yellowish brown (10 YR 4/4); fa<strong>in</strong>t mottles; silt loam, well developed<br />

medium angular blocky; common pores; firm; common to many clay cutans; common<br />

Fe-Mn nodules; th<strong>in</strong> vertical bleached tongues; clear boundary to:


APPENDIX 1 265<br />

B24 cn 145-165 cm: same characteristics but many Fe-Mn nodules <strong>and</strong> concretions; clear boundary<br />

to:<br />

II B21 t 165-215 cm: dark yellowish brown (10 YR 4/6) clay loam; common mottles; well<br />

developed medium angular blocky; firm; few pores; common clay cutans <strong>and</strong> Fe-Mn nodules;<br />

clear boundary to:<br />

II B22 cn 215-250 cm: same characteristics but many slightly cemented Fe-Mn nodules <strong>and</strong><br />

concretions; abrupt boundary to;<br />

III B21 t 240-270 cm: reddish brown (5 YR 4/4) mottled clay; well developed medium to coarse<br />

blocky; few pores; firm to very firm; common red clay cutans; common iri4escent ferrimangans;<br />

common small Fe-Mn nodules; not boundary exposed.<br />

loc. 33 SpUamberto profile; F87 Bologna; 44°33’08”, 1°25’43”, 40 m asJ., on an eroded surface, on<br />

<strong>the</strong> right bank of <strong>the</strong> river Panaro, 2000 m W of <strong>the</strong> bridge of Spilamberto (Modena); at <strong>the</strong> top<br />

of <strong>the</strong> Spilamberto Upper Pleistocene alluvial fan; buried by Holocene alluvial sediments.<br />

Cl 0-120 cm : yellowish brown (10 YR 5/4) loamy clay; structureless; no pores; firm; at its top<br />

<strong>the</strong> layer supports a Neolithic settlement, abrupt undulat<strong>in</strong>g boundary to:<br />

II B2 t 120-152 cm : reddish brown (5 YR 4/4) silt loam, few decalcified <strong>and</strong> slightly wea<strong>the</strong>red<br />

stones; well developed f<strong>in</strong>e angular blocky to prismatic; common pores; firm; few clay<br />

cutans; common discont<strong>in</strong>uous ferri-mangans, calcitans <strong>in</strong> larger pores; slighty calcareous;<br />

clear boundary to:<br />

III B2 t 152-195 cm ; reddish brown (5 YR 4/4) clay loam; common to many decalcified stones<br />

(decalcified marly limestone; s<strong>and</strong>stone, chert, volcanic rocks); well developed f<strong>in</strong>e angular<br />

blocky; firm; few pores; common clay cutans on peds <strong>and</strong> stone surfaces; few small slickensides;<br />

very slightly calcareous at <strong>the</strong> base of <strong>the</strong> horizon; abrupt gently undulat<strong>in</strong>g boundary<br />

to:<br />

III C ca 195-235 cm : greyish brown (10 YR 5/2) s<strong>and</strong>y loam; many unwea<strong>the</strong>red stones (marly<br />

limestone, s<strong>and</strong>stones); structureless; common pores; common Ca C03 nodules on lower<br />

faces of stones; boundary not exposed.<br />

loc. 34 Cavriago profile; F74, Reggio Emilia, 44°44’25”, 1°55’07”, 50 m a.s.l.; 3 Km N of Cavriago<br />

(Reggio Emilia) <strong>in</strong> a gravel quarry closed to <strong>the</strong> acqua duct tower; top of <strong>the</strong> Cavriago Late<br />

Pleistocene alluvial fan, gently slop<strong>in</strong>g l<strong>and</strong>scape.<br />

Ap 0-40 cm : dark yellowish brown (10 YR 4/4) silty clay loam, weakly developed f<strong>in</strong>e subangular<br />

blocky; few pores, moderately firm; very calcarous; clear l<strong>in</strong>ear boundary to:<br />

B1 40-60 cm : dark yellowish brown (10 YR 4/4) silty clay loam, few small brick fragments; very<br />

weakly developed f<strong>in</strong>e blocky, few small pores, firm; few pores with black organic cutans;<br />

calcareous; gradual boundary to:<br />

II B2 t 60-92 cm : reddish brown (5 YR 4/4), silty clay loam; few small wea<strong>the</strong>red stones; well<br />

developed f<strong>in</strong>e angular blocky; few pores, very firm; few small slickensides; few small clay<br />

cutans on peds <strong>and</strong> <strong>in</strong> pores; slightly calcareous, gradual boundary to:<br />

III B3 t 92-134 cm : reddish brown (5 YR 4/4); clay loam; common to many slightly wea<strong>the</strong>red<br />

stones; well developed medium angular blocky; very few pores; firm; common discont<strong>in</strong>uous<br />

black Fe-Mn cutans on surfaces of stones <strong>and</strong> along fissures; many clay cutans ma<strong>in</strong>ly<br />

on stone surfaces; very slightly calcareous gradual boundary to:<br />

III C ca 134-200 cm very dark grayish brown (10 YR 3/2); loamy s<strong>and</strong>; very abundant medium<br />

large non wea<strong>the</strong>red stones; massive; common medium pores; friable, common small carbonate<br />

nodules on stones; calcareous; boundary not exposed.<br />

loc. 35 Settima profile; F72 Fiorenzuola, 44°59’59”, 2°47’16”, 90 m asJ. <strong>in</strong> a road cut, along <strong>the</strong><br />

road Piacenza - Rivergaro, 1300 m N from Settima; on <strong>the</strong> gently slop<strong>in</strong>g surface of <strong>the</strong> Piacenza<br />

Late Pleistocene alluvial fan.<br />

Ap 0-50 cm : dark brown clay loam (10 YR 3/3); few stones <strong>and</strong> brick fragments, but at <strong>the</strong> lower<br />

boundary, stone l<strong>in</strong>e composed of large fragments of Roman Age bricks <strong>and</strong> tiles; weakly<br />

developed medium subangular blocky; common to many pores; slightly firm, calcareous;<br />

clear boundary to:


266 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

II B2 t 50-90 cm : reddish brown (5 YR 4/4) silty clay loam; well developed f<strong>in</strong>e angular blocky;<br />

common pores; firm; few clay cutans; few ferri-mangans; l<strong>in</strong>ear clear boundary to:<br />

III B3 t 90-160 cm : dark reddish brown (5 YR 3/3) silty clay loam; common to many decalcified<br />

<strong>and</strong> slightly wea<strong>the</strong>red stones (dec. marly limestone <strong>and</strong> s<strong>and</strong>stone, volcanic rocks, chert);<br />

well developed f<strong>in</strong>e angular blocky; f<strong>in</strong>e few pores; common clay cutans; clear wavy boundary<br />

to;<br />

III C ca 160-200 cm: dark brown (10 YR 3/3) loamy s<strong>and</strong>, many unwea<strong>the</strong>red stones (marly<br />

limestone, sanstone, volcanic rockes); structureless; common pores; friable; few Ca C03<br />

concretions on stones, calcareous; boundary not exposed.<br />

loc. 36 Savignanoprofile; F87 Bologna, 44°28’34”, r2 5 ’17”, 105 m a.sJ.; <strong>in</strong> a construction pit 25 m<br />

W from <strong>the</strong> town - hall bull<strong>in</strong>g of Savignano; on <strong>the</strong> gently slop<strong>in</strong>g surface of <strong>the</strong> Holocene alluvial<br />

fan of Savignano.<br />

Ap 0-35 cm : brown (10 YR 5/3) s<strong>and</strong>y clay; coarse angular blocky; few brick fragments; common<br />

pores; firm; calcareous; gradual boundary to:<br />

A1 35-60 cm : dark brown (10 YR 3/3) clay; well developed medium prismatic; few pores; at <strong>the</strong><br />

lower boundary common medium to large stones; calcareous; clear boundary to:<br />

II B3 60-68 cm : dark brown (10 YR 3/2); mottled (2.5 Y 4/4) olive brown, s<strong>and</strong>y clay, common<br />

slightly wea<strong>the</strong>red stones (decalcified marly limestone <strong>and</strong> s<strong>and</strong>stone); weakly developed<br />

medium to f<strong>in</strong>e angular blocky; common pores; slighthly firm; common Fe-Mn ferrimangans;<br />

very few discont<strong>in</strong>uous clay cutans; clear boundary to;<br />

II C ca 88-120 cm ; olive brown (2.5 Y 4/4) loamy s<strong>and</strong>; many unwea<strong>the</strong>red stones (marly<br />

limestone <strong>and</strong> sanstone); structureless; porous; friable; <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong> horizon few<br />

Ca C03 nodules; calcareous; boundary not exposed.<br />

Isolated terraces<br />

loc. 37 Melotta prefile; F46 Treviglio, 45”23’24”; 2°37’56”; 85 m a iJ.; <strong>in</strong> a clay pit, <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity<br />

of Melotta (Sonc<strong>in</strong>o, MI); on <strong>the</strong> isolated terrace of Romanengo.<br />

Ap 0-30 cm: brown (10 YR 7/3) silty loam; some brown fragments; well developed medium<br />

blocky, few pores; firm; abrupt boundary to:<br />

A2 30-50 cm: very pale brown (10 YR 7/3) silt loam; very weakly developed f<strong>in</strong>e angular blocky,<br />

friable; common pores; common Fe-Mn nodules; clear wavy boundary to:<br />

B21 tx 50-83 cm: brown (10 YR 5/3) silt loam; many dark brown (7.5 YR 4/4) mottles; coarse<br />

to medium prismatic; common pores; firm to very firm; common vertical tongues; common<br />

clay cutans, gradual boundary to:<br />

B22 t 83-134 cm: yellowish brown silt loam (10 YR 5/6); medium angular blocky to prismatic;<br />

common f<strong>in</strong>e pores; firm; many clay cutans <strong>and</strong> common ferri-mangans; abrupt l<strong>in</strong>ear<br />

bondary to:<br />

B23 cm 134-147 cm: very many dark brown (7.5 YR 3/2) Fe-Mn concretions <strong>and</strong> nodules; hardly<br />

cemented, undulat<strong>in</strong>g boundary to:<br />

II Cgca 147-200 cm: dark greyish brown (2.5 Y 4/2) clay, large brownish yellow mottles (10 YR<br />

6/6); coarse prismatic; very few pores; firm, common hard Ca C03 concretions; very<br />

calcareous; abrupt boundary to unwea<strong>the</strong>red s<strong>and</strong> layer.<br />

loc. 38 Zorlesco profile; F60 Piacenza 45°11’51”, 2°51’00”, 67 m a.sJ.; <strong>in</strong> a clay pit 500 m West of<br />

Zorlesco, on <strong>the</strong> flat top of <strong>the</strong> isolated terrace of Zorlesco.<br />

20-30 cm; reworked material.<br />

B21 30-90 cm: dark yellowish brown (10 YR 4/4) silt loam, common f<strong>in</strong>e brown (10 YR 4/3)<br />

mottles; well developed medium angular blocky; many pores; firm; common small Fe-Mn<br />

nodules; few clay cutans gradual boundary to:<br />

11 B22 t 90-235 cm: dark yellowish brown (10 YR 4/4) silty clay loam; common to many <strong>and</strong><br />

medium strong brown (7.5 YR 5/6) light yellowish brown (2.5 Y 6/4) mottles; well<br />

developed coarse prismatic; few pores; firm; common wide vescicular voids, few Fe-Mn<br />

nodules, common clay cutans ma<strong>in</strong>ly <strong>in</strong> vescicular voids; common vertical, some centimetres<br />

wide, pale brown (10 YR 6/3) tongues; gradual boundary to:


A P P E N D I X 1 267<br />

II B23 cn 235-250 cm: dark yellowish brown (10 YR 4/4) silty clay loam; moist; well developed<br />

medium angular blocky; few small pores; very firm; many hard Fe-Mn concretions <strong>and</strong><br />

nodules; few th<strong>in</strong> clay cutans on peds; clear gently wavy boundary to:<br />

III B321 t 250-315 cm: strong brown (7.5 YR 5/6) clay loam, dry; well developed coarse angular<br />

blocky; few small pores; common small vescicular voids; very firm; brown (7.5 YR 4/2)<br />

common cont<strong>in</strong>uous clay cutans on peds <strong>and</strong> thick clay cutans <strong>in</strong> small vescicular voids; few<br />

light yellowish brown (10 YR 6/4) th<strong>in</strong> tongues; clear boundary to:<br />

III B3 g 315-405 cm: light gray (2.5 YR 7/2) clay loam-clay; common f<strong>in</strong>e <strong>and</strong> medium brownish<br />

yellow mottles; well developed coarse prismatic; very few small pores; very firm; common<br />

black Fe-Mn cutans on peds; many black dendroid ferrimangans <strong>in</strong> peds; few patchy clay<br />

cutans on peds; abrupt (erosional) gently wavy boundary to:<br />

IV C 405-650: yellowish brown calcareous s<strong>and</strong>s (10 YR 5/8), with oxizided brown to strata light<br />

olive brown: massive; well sorted; cross lam<strong>in</strong>ated (30-35° dipp<strong>in</strong>g).<br />

A PPE N D IX la : Brief descriptions of <strong>in</strong>dividual profiles.<br />

In this part of Appendix 1 those exposures <strong>and</strong> profiles are listed, which were not described<br />

<strong>in</strong> detail, but are never<strong>the</strong>less discussed <strong>in</strong> <strong>the</strong> text <strong>and</strong>/or recorded <strong>in</strong> <strong>the</strong> map <strong>and</strong> figures. The<br />

geographic coord<strong>in</strong>ates, <strong>the</strong> altitude, <strong>the</strong> geomorphological sett<strong>in</strong>g <strong>and</strong> <strong>the</strong> ma<strong>in</strong> pedological characteristics<br />

are given.<br />

Alp<strong>in</strong>e fr<strong>in</strong>ge<br />

loc. 39 M onte R otondo; F47; Brescia; 45°22T0”, 2°01T9”, 105 m a.sJ.. On <strong>the</strong> western slope of a<br />

strongly eroded mora<strong>in</strong>e ridge of <strong>the</strong> Garda system, belong<strong>in</strong>g to <strong>the</strong> Carpenedolo stage, a<br />

120 cm thick loess sheet (brown 7,5 YR 4/4, silt loam) covers a paleosol developed <strong>in</strong><br />

mora<strong>in</strong>e gravels (reddish 2.5 YR 4/4, clay) (see Mocas<strong>in</strong>a profile); <strong>the</strong> boundary to <strong>the</strong><br />

unwea<strong>the</strong>red <strong>and</strong> slightly cemented till is not exposed. Late Lower Palaeolithic artifacts were<br />

found between <strong>the</strong> eroded paleosol <strong>and</strong> <strong>the</strong> loess cover; <strong>the</strong> site is described <strong>in</strong> detail by<br />

Coltorti <strong>and</strong> <strong>Cremaschi</strong> (1978).<br />

Loc. 40 Medole\ F62; Mantova; 45°19’52”, 2°58’02”; 64 m a.s.l. On <strong>the</strong> gently undulat<strong>in</strong>g top of<br />

<strong>the</strong> proximal part of <strong>the</strong> outwash pla<strong>in</strong> of <strong>the</strong> Garda system, a construction pit exposed a<br />

Ap/B2 profile developed <strong>in</strong> limestone gravel; <strong>the</strong> B2 is leached of carbonates, s<strong>and</strong>y clay<br />

loam <strong>in</strong> texture <strong>and</strong> brown <strong>in</strong> colour (7.5 YR 4/4).<br />

Loc. 41 Pedergnano-, F47; Brescia; 45°36’42”, 2°26’52”; 130 m a.s.l. On <strong>the</strong> Sou<strong>the</strong>rn slope of a<br />

eroded mora<strong>in</strong>e ridge of <strong>the</strong> Iseo lake system, correlated with <strong>the</strong> Sedana stage, a road cut<br />

exposed: 0-150 cm; colluvium (brown dark 10 YR 3/4, s<strong>and</strong>y clay loam) <strong>in</strong>clud<strong>in</strong>g Roman<br />

age bricks <strong>and</strong> pottery; 150-200 cm, discont<strong>in</strong>uous B2 horizon, developed <strong>in</strong> till (reddish<br />

brown - 7.5 YR 4/6, decarbonated clay loam).<br />

Apenn<strong>in</strong>e fr<strong>in</strong>ge<br />

Loc. 42 B orzano; F86 Modena, 44°36’23”, 1°48’46”, 150 m a.s.1. At <strong>the</strong> surface of <strong>the</strong> gently<br />

shop<strong>in</strong>g Middle Pleistocene terrace, a construction pit exposed <strong>the</strong> follow<strong>in</strong>g profile: Ap<br />

0-40 cm; reworked loess (dark 10 YR 3/3 - brown silty clay loam); II B l, II B21t, II B22<br />

cn 40-90 cm; slightly wea<strong>the</strong>red loess (yellow 10 YR 7/6 silt loam silty clay loam); 111 B22,<br />

III B23 ca, 90-190 cm, fluviatile loam (yellowish brown 10 YR 6/8 - clay loam) II B2t,<br />

190-220 cm; top of <strong>the</strong> «Collecchio vetusol» (yellowish red - 5 YR 6/6 - clay loam). The<br />

profile is described <strong>in</strong> detail by <strong>Cremaschi</strong> (1978).<br />

Loc. 43 Borzano la C ittadella: <strong>the</strong> same geographic data as <strong>the</strong> former profile. The profile has been<br />

observed 350 m N of <strong>the</strong> former; along a road cut: Ap 0-20 cm; dark brown (10 YR 3/3)<br />

silty clay loam; II B21; 20-60 cm; wea<strong>the</strong>red loess (yellowish brown (10 YR 8/4) cloay<br />

loam; 11 B22 cn; 60-80 cm; Fe-Mn nodules; HI B3 ca 80-140 cm; fluviatile clay (yellowish<br />

brown 10 YR 5/8 - clay); 140-350 -I- cm unwea<strong>the</strong>red gravel.


268 P A L E O S O L S A N D V E T U S O L S IN T H E C E N T R A L P O P L A IN<br />

Loc. 4 4 Collecchio'. on <strong>the</strong> gently slop<strong>in</strong>g surface of a Middle Pleistocene terrace Ferrari <strong>and</strong> Magaldi<br />

(1968) described <strong>and</strong> studied <strong>the</strong> profile <strong>in</strong> detail: F73 Parma, 44°44’32”. 2”14’38”, 135 m<br />

a.s.L; A2 + B21t B22 cn, 0-75 cm: slightly wea<strong>the</strong>red loess (from very pale brown (10 YR<br />

7/4) silt loam to (10 YR 6/4) light yellowish brown silty clay loam); 11 B21t + II B22t;<br />

75-165 cm: wea<strong>the</strong>red loess, with lam<strong>in</strong>ar structure <strong>in</strong> <strong>the</strong> II B22t (10 YR 6/6 brownish<br />

yellow to 5 YR 5/6 yellowish red clay); 111 B21 -I- III B22, 165-325 cm, strongly wea<strong>the</strong>red<br />

gravel yellowish red clay to silty clay, (5 YR 5/6).<br />

Loc. 4 5 Fiorano'. F86 Modena, 44°32’18”, 1°38’10”; 115 m a.s.l. In a clay pit <strong>the</strong> follow<strong>in</strong>g sequence<br />

was exposed: 0-80 cm, Ap, loamy clay; 80-150 cm, A lb, clayey textured, <strong>in</strong>clud<strong>in</strong>g iron<br />

Age pottery; 150-150 cm, massive s<strong>and</strong>y loam; 150-170 cm. Alb, loamy clay, <strong>in</strong>clud<strong>in</strong>g<br />

archaeological evidences of Neolithic age; 170-600 cm, loamy s<strong>and</strong> with discont<strong>in</strong>uous<br />

planar bedd<strong>in</strong>g <strong>and</strong> scattered lenses of small pebbles; 600-640 cm. Alb dark grey (10 YR<br />

3/1) clay, prismatic well developed, Ca C03 nodules on <strong>the</strong> ped surfaces. The humic acid<br />

extracted from <strong>the</strong> horizon have been dated (C14 method) to 11845 ± 105 BP (Alessio et<br />

alii, 1980); 680-800 cm massive s<strong>and</strong>y loam; 800-1000 cm (boundary not exposed) coarse,<br />

clast supported, gravel; at <strong>the</strong> top a B3 horizon, s<strong>and</strong>y clayey, brownish (7.5 YR 4/4) very<br />

eroded at <strong>the</strong> top.<br />

Loc. 4 6 Caseína Camm<strong>in</strong>ata\ F72 Fiorenzuola D’Arda, 44°57’26”, 2°52’57”; 140 m a.s.L, on <strong>the</strong> flat<br />

Pleistocene terrace on <strong>the</strong> left (western) bank of <strong>the</strong> Trebbia river, along <strong>the</strong> trench of <strong>the</strong><br />

road which connects Casc<strong>in</strong>a Camm<strong>in</strong>ata to <strong>the</strong> Trebbia bed, <strong>the</strong> follow<strong>in</strong>g profile was<br />

observed; Ap -I- B21 -I- B22 cn, 0-110 cm, slightly wea<strong>the</strong>red loess (yellowish brown 10 YR<br />

4/4 - silt loam to silty clay loam); 11 B21 + II B22 t g, mottled, 110-240 cm, wea<strong>the</strong>red<br />

loess (brown 7.5 YR 4/4, silty clay loam); II B21 240-280 cm; «Collecchio paleosol» (red<br />

2.5 YR 3/6 clay); IV B22 -I- -I- B31 + B32, 280-600 cm; gravelly horizons of <strong>the</strong> Collecchio<br />

paleosols (red to reddish brown 2.5 YR 4/4, 5 YR 5/6 clay <strong>and</strong> clay loam); <strong>the</strong> lower<br />

boundary is not exposed; at <strong>the</strong> depth of seven meters strongly cemented gravel crops out.<br />

Garda outwash pla<strong>in</strong><br />

Loc. 4 7 S. Mart<strong>in</strong>o dell’arg<strong>in</strong>e\ F62, Mantova 45°05’26”, r56T90”; 30 m a.s.l. On <strong>the</strong> flat <strong>and</strong> gently<br />

undulat<strong>in</strong>g top of <strong>the</strong> Ma<strong>in</strong> Level of <strong>the</strong> pla<strong>in</strong>, a construct<strong>in</strong> pit exposed: Ap -I- B1 0-56 cm,<br />

colluvial dark brown to brown (10 YR 3/3 7.5 YR 5/4) silt loam; II B2t, 56-80 cm:<br />

reddish bown (5 YR 3/4) silty clay loam; II C ca 80-95 cm; brown (10 YR 5/4) silt loam.<br />

Middle Neolithic pits are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> II B2t horizon (see Ca Pegoroni profile).<br />

Loc. 4 8 Sp<strong>in</strong>eda\ F62, Mantova, 45°03’22”, r56T6”; 23 m a.s.l. At <strong>the</strong> upper marg<strong>in</strong> of <strong>the</strong> scarp<br />

surround<strong>in</strong>g <strong>the</strong> «Ma<strong>in</strong> Level of <strong>the</strong> Pla<strong>in</strong> », an archaeological excavation exposed: Ap -I-<br />

All: 0-90 cm; very dark grey (10 YR 3/1) silty clay loam, <strong>in</strong>clud<strong>in</strong>g a large number of<br />

bones, charcoals <strong>and</strong> Bronze age pottery fragments (fill of a large pit); II B2t 90-110 cm<br />

reddish brown (5 YR 3/4) silty clay loam; II C ca: brown (10 YR 5/4) silt loam.<br />

Loc. 4 9 Fontanella mantovana-, F61, Cremona, 45°1 T2400, 2°06’38”, 42 m a.s.l. At <strong>the</strong> upper part of<br />

<strong>the</strong> scarp surrond<strong>in</strong>g <strong>the</strong> «Ma<strong>in</strong> level of <strong>the</strong> pla<strong>in</strong>», a large s<strong>and</strong> quarry exposed: Ap ■‘r B1<br />

0-70 cm; dark brown (10 YR 3/3) silt loam; II B2t 70-130 cm; reddish brown (5 YR 3/4)<br />

s<strong>and</strong>y silt clay; 11 C ca: 130-160 cm; pale brown (10 YR 6/3) s<strong>and</strong>y loam; f<strong>in</strong>e s<strong>and</strong> four<br />

meters thick with planar discont<strong>in</strong>uous stratification <strong>and</strong> th<strong>in</strong> silty clay <strong>in</strong>terlayers, are<br />

exposed below.<br />

Isolated terraces<br />

Loc. 50 Costa ¥agioli\ F60, Piacenza, 45°9’35”, 2°38’40”, 67 m a.s.l.; at <strong>the</strong> flat top of <strong>the</strong> isolated<br />

terrace near Castelpusterlengo, <strong>in</strong> a ditch <strong>the</strong> follow<strong>in</strong>g horizons were exposed: Ap 0-40 cm;<br />

reworked loess (brown 10 YR 5/3 - silty loam); B 2 40-110 cm; slightly wea<strong>the</strong>red loess<br />

(brown 7.5 YR 5/6 silt loam).


A P P E N D I X 1<br />

2 6 9<br />

Loe. 51 Monte Netto-, F47 Brescia 44"27’32”, 2”17’54”, 121 m a.s.l. Monte Netto is a large terrace<br />

<strong>in</strong> <strong>the</strong> Lombardian pla<strong>in</strong>. On its gently undulat<strong>in</strong>g top <strong>in</strong> a clay pit near Casc<strong>in</strong>a S. Bernardo<br />

<strong>the</strong> follow<strong>in</strong>g profile is exposed; A2 + B21 + B22 cn, 0-110 cm slightly wea<strong>the</strong>red loess<br />

(brown 10 YR 5/3 - 7.5 10 YR 5/4 silt loam) II B21 + II B22t mottled, 110-200 cm;<br />

wea<strong>the</strong>red loess (dark yellowish brown 10 YR 4/4) silty clay loam); III B2 200-250 cm,<br />

paleosol developed <strong>in</strong> fluviatile s<strong>and</strong> (reddish brown 5 YR 4/4 s<strong>and</strong>y clay).


APPENDIX 2: Textural <strong>and</strong> chemical analysis o f f<strong>in</strong>e-earth (less than 2 mm) <strong>and</strong> gravel.<br />

Textural analysis. Gra<strong>in</strong> size of <strong>the</strong> coarse fraction has been determ<strong>in</strong>ed by wet siev<strong>in</strong>g,<br />

petrographic determ<strong>in</strong>ation has been carried out on stones larger than 2 cm <strong>and</strong> smaller than 5 cm<br />

<strong>in</strong> mean diameter.<br />

The sample for <strong>the</strong> f<strong>in</strong>e earth analysis has been pretreated with H202 <strong>in</strong> order to destroy<br />

organic matter; peptisation was carried out by Sodium hexametaphosphate; particle size fractions<br />

have been determ<strong>in</strong>ed by siev<strong>in</strong>g <strong>and</strong> aerometer (AFNOR method); <strong>the</strong> limit of gra<strong>in</strong> size classes<br />

are: s<strong>and</strong>: 2 mm - 0,062 mm ( - 1/4 phi); silt: 0,062 mm - 0,002 mm (4/9 phi); clay: less than<br />

0,002 mm (9 phi).<br />

Observations <strong>in</strong> th<strong>in</strong> sections strongly <strong>in</strong>dicate that <strong>the</strong> method followed lead to underestimation<br />

of clay content <strong>in</strong> those samples which have a pseudos<strong>and</strong> structure <strong>and</strong> are relatively high <strong>in</strong><br />

free iron content.<br />

pH. Has been determ<strong>in</strong>ed us<strong>in</strong>g <strong>and</strong> electric pH meter with glass electrode <strong>in</strong> a suspension of<br />

25 ml H20 <strong>and</strong> <strong>in</strong> 25 ml 0,01 M Ca Cl^ with 10 gr f<strong>in</strong>e earth, after shak<strong>in</strong>g for 2 hours.<br />

Organic carbon. Or. C. was estimated by oxidation of organic matter with decromic acid <strong>and</strong><br />

titration of <strong>the</strong> excess dicromic acid with a ferrous sulfate solution (Walkey-Black method).<br />

Ca CO . Carbonate content has been determ<strong>in</strong>ated us<strong>in</strong>g <strong>the</strong> Dietrich Frill<strong>in</strong>g calcimeter; <strong>the</strong><br />

pr<strong>in</strong>ciple of <strong>the</strong> method is <strong>the</strong> destruction of carbonates by hydrochloric acid <strong>in</strong> a weighed<br />

apparatus open to air.<br />

Free iron. The free iron has been extracted by a dithionite solution, determ<strong>in</strong>ed by <strong>the</strong> OAophenantroHne<br />

colorimetric method <strong>and</strong> is expressed <strong>in</strong> I Fe 203 on oven dry base.<br />

Cation exchange capacity; base saturation. The cation exhange capacity (C.E.C.) has been determ<strong>in</strong>ed<br />

by saturation of <strong>the</strong> absorption complex by means of a solution of Ba Cl , buffered to pH 8;<br />

<strong>the</strong> Ba"*^ cations, <strong>in</strong> <strong>the</strong> Ba'*^ saturated soil, are displaced by Mg^ by means of a st<strong>and</strong>ard solution<br />

of Mg SO,j; <strong>in</strong> <strong>the</strong> solution, subsequently, <strong>the</strong> residual Mg^ was determ<strong>in</strong>ed by complexometric<br />

titration; <strong>and</strong> consequently <strong>the</strong> ammount of <strong>the</strong> Mg"*^ which displaced <strong>the</strong> Ba“*^, <strong>and</strong> <strong>the</strong> C.E.C. was<br />

calculated.<br />

The sum of <strong>the</strong> exchangable cations (Ca, Mg, Na, K) has been determ<strong>in</strong>ed <strong>in</strong> an ammonium<br />

acetate solution, result<strong>in</strong>g from leach<strong>in</strong>g of <strong>the</strong> soil sample, by means of complexometric titration<br />

<strong>and</strong> flame spectrophotometer; CEC <strong>and</strong> TEC are expressed <strong>in</strong> m.e.q. on 100 gr of dry soil;<br />

moreover Xbase saturation has been calculated. For fur<strong>the</strong>r details see: Societa Italiana della Scienza<br />

del Suolo, 1977.


J<br />

Appendix 2, table la - Textual <strong>and</strong> chemical analysis of f<strong>in</strong>e-earth (less than 2 mm).<br />

Table 1/a<br />

G o v a r d o S a n d S i lt C la y p H p H O r g .C C a C 0 3 F e 2 0 3 C l l i v e r g h e S a n d S i lt C la y p H p H O r g .C C a C 0 3 F e 2 0 3<br />

F > ro file ( I ) % % % H 2 0 C a C I2 % % % p r o f i l e (7 ) % % % H 2 0 C a C I2 % % %<br />

II B 2 t ( t ) 4 .2 4 9 .7 4 6.1 6 .7 5 .7 0 .1 3 _ 4 .2 B l 6 .2 6 7 .5 2 6 .3 5 .5 4 .7 0 .2 1 _ 4 .6<br />

li B 2 t(b ) 4 .3 6 2 .5 3 3 .2 6 .4 5 .5 0 .1 2 - 4 .2 II B 2 l t x 9.1 6 7 .2 2 3 .7 5 .6 4 .6 0 .1 2 - 4 .6<br />

I V B 3 l t 1 3.6 4 8 .3 38.1 6 .5 5 .6 - - 5 .1 IIB 2 2 g 4.1 6 4 .4 3 1 .5 6 .2 5 .0 0 .1 2 - 4 .6<br />

V B 2 2 t 4 .9 5 2 .4 4 2 .7 6 .7 5 .4 - - 5 .2 I1B 2 4 1 0 .6 7 1 .9 1 7.5 6.1 5.1 0 .1 5 - 7 .8<br />

V B 3 l t 1 2.5 54.1 3 3 .4 6 .5 5 .6 - - 6 .3 Ml B l 1 1.5 6 6 .3 2 2 .2 5 .6 4 .8 0 .2 0 - 4 .9<br />

V B 3 2 t 4 3 .4 4 0 .0 1 6.6 6.1 5 .7 _ _ 3 .8 111 B 2 l t x 1 5 .6 6 1 .0 2 3 .4 6.1 5.1 t r _ 4 .1<br />

V I B / C 2 .5 6 3 .9 3 3 .6 6.1 5 .6 _ _ 2 .3 III B 2 2 t 1 0 .0 6 1 .0 2 9 .0 6 .2 5 .0 _ _ 4 .4<br />

V II B 2 I ( t ) 5 .0 5 3 .2 4 1 .8 6 .2 5 .7 _ _ 18.1 IV B 2 l t ( t ) I 1.2 5 7 .3 3 1 .5 5 .7 4 .9 t r - 5 .8<br />

V II B 21 (b ) 4 .2 53.1 4 2 .7 6.1 5 .6 _ _ 5 .3 IV B 2 l t ( b ) 1 2 .0 5 1 .0 3 7 .0 5 .7 4 .9 - - 6 .7<br />

V II B 2 2 3 .4 4 9 .5 4 7.1 6 .3 5 .7 _ _ 5 .3 V B 2 2 t 1 5.5 4 3 .1 4 1 .4 5 .9 5 .0 - - 7 .5<br />

V II B 2 3 2 .5 4 7 .5 5 0 .0 6 .4 5 .8 _ - 2 .6 V B 3 l t ( t ) 1 5 .7 2 4 .6 5 9 .7 6.1 5.1 - - 9 .2<br />

V B 3 l K b ) 1 9 .4 3 7 .5 4 3.1 6.1 5.1 - - 7 .6<br />

S . B io g io<br />

p r o f i l e (2 )<br />

S o lie r <strong>in</strong> o<br />

II B 2 2 t 2 0 .2 2 0 .4 5 9 .4 7 .6 7 .0 _ - 8 .9 p r o f i l e (9 )<br />

II B 3 l t 3 1 .3 2 2 .6 4 6.1 7 .5 6 .9 - - 5.1<br />

A l 1 4 7 .1 3 9 ,9<br />

><br />

1 3.0 8 .3 7 .7 0 .6 1 1 6 .2 1.8<br />

1“<br />

M o c a s <strong>in</strong> o 11 A I 2 3 5 .2 4 3 .9 2 0 .9 8 .0 7 .3 0 .8 1 - 1.6 m<br />

p r o f i l e (3 ) li B 3 I 3 1 .7 4 4 .5 2 3 .8 8 .0 7 .3 t r - O<br />

1.7<br />

C/5<br />

II B 3 2<br />

3 4 .6 4 2 .3 2 3.1 7 .6 7 .2 -<br />

1.9<br />

I V B 3 I t 1 9.2 35.1 4 5 .7 7 .2 6 .4 - - 7 .9<br />

o<br />

II C C a<br />

4 6 .5 3 9 .9 1 3.6 8 .4 7 .7<br />

5 2.1 0 .4<br />

n<br />

CP<br />

T o r r e d i<br />

M o c a s <strong>in</strong> a<br />

><br />

C a ' P e g o r o n i<br />

z<br />

p r o f i l e (4 ) p r o f i l e (1 3 ) o<br />

<<br />

B 3 l t 16.8 24.1 59.1 7 ,8 7 .0 - - 6 .0 A p 2 5 .2 5 5 .5 I 9 . I 7 .8 n d 0 .8 3 1.0<br />

m<br />

B 2 1 7.2<br />

T e r z a g o<br />

6 6 .7 16.1 7 .5 n d 0 .8 0 H<br />

2 .0<br />

c<br />

II B 2 t<br />

p r o f i l e (5 )<br />

10.5 5 2 .5 3 7 .0 7 .5 n d t r _ 4 .5 CP<br />

II C C a 2 5 .0 6 9 .6 5 .4 8 .2 n d<br />

_<br />

4 3 .9 0 .5 o<br />

III B 31 t 2 1 .2 4 4 .9 3 3 .9 7 .2 6 ,4<br />

_ _<br />

6 .7<br />

1“<br />

C a s a t ic o ,<br />

CP<br />

V a l S o r d a N e o l i t h i c z<br />

p r o f i l e ( • ) (6 ) p i t F ^ o f i l e (1 4 ) H<br />

A / C { l ) 1 1.0 7 3 .6 1 5.4 7 .8 n d 1 .4 2 2 .4 n d B 2 l t ( t ) 5 .9 5 6 .2 3 7 .9 6 .6 n d 0 .4 8 0 .7<br />

z<br />

m<br />

(2 ) 1 1.9 7 7 .8 1 0.3 8 .0 n d 0 .8 6 1.0 n d B 2 l t ( b ) 4 .6 6 0 .2 3 5 .2 6 .5 n d 0 .7 5 0 .8 o<br />

(3 ) 1 0.9 7 7 .6 1 1.5 7 .9 n d 0 .7 8 1.7 n d B 2 2 t<br />

m<br />

8 .6 5 4 .8 3 6 .6 6 .9 n d 0 .8 1 l.( 2 .6<br />

2<br />

(4 ) 1 6 .0 7 8 .7 5 .3 7 .9 n d 0 .7 5 4 .6 n d C C a 1 0.5 7 2.1 1 7 .4 8 .0 n d 4 4 .2 0 .2 H<br />

(5 ) 1 8 .4 7 6 .7 4 .9 7 .8 n d 0 .6 7 2 .5 n d<br />

J3<br />

(6 ) 17.3 7 7 .9 4 .8 7 .4 n d 0 .3 8 t r n d<br />

IV P i t<br />

><br />

r ~<br />

M C I (7 ) 2 1 .8 7 3 .2 5 .0 7 .7 n d 0 .4 5 t r n d<br />

p r o f i l e (1 4 )<br />

•V<br />

IIIC 2 ( 8 ) 1 9.0 5 9.1 2 1 .9 8 .0 7 .5 0 .2 7 3 .0 n d A I 2 6 .6 5 8 .8 3 4 .6 7 .8 n d 2 .3 7 Í 9 . 9 0 .6 7<br />

O<br />

IV B 3 l t 2 5 .5 3 1 .0 4 3 .5 7 .0 6 .5 - - 7 .7 C C a 1 0.5 7 2.1 1 7.4 8 .0 n d - 4 4 .2 0 .2<br />

“D<br />

r~<br />

it)= to p ; (b ) = b o t t o m . (•) d a t a o f A / C • II C l a r e d e d u c e d f r o m F ra e n z J e (1 9 6 5 ) . Z<br />

T able 1/b<br />

R o m a n d i t c h S a n d S i l t C la y p H p H O r g . C C a C 0 3 F e 2 0 3<br />

p r o f i l e (1 4 ) % % % H 2 0 C a C 1 2 % % %<br />

B 1 2 .2 6 7 .1 2 0 .7 8 .0 n d 0 .8 5 3 2 .9 0 .6<br />

V i v a l d i<br />

p r o f i l e ( 1 5 )<br />

IV B 2 l t<br />

IV B 2 2 t<br />

V B 3<br />

19 .4<br />

2 7 . i<br />

2 7 .1<br />

2 8 .9<br />

p e d o r e l i c t s 3 5 .2<br />

V C 6 3 .4<br />

4 5 .5<br />

5 I . 2<br />

4 1 .5<br />

4 0 .9<br />

3 4 .2<br />

2 5 .2<br />

3 5 . 1<br />

2 7 .7<br />

3 I . 4<br />

3 0 .2<br />

3 0 .6<br />

I 1.1<br />

4 .9<br />

5 .0<br />

5 .2<br />

5 .2<br />

5 .3<br />

5 .4<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

4 .6<br />

3 .5<br />

3 .9<br />

3 .8<br />

3 .6<br />

2 .9<br />

><br />

Tl<br />

-0<br />

m<br />

g<br />

X<br />

11 B 2 l t 1 8 .2 5 2 .0 2 9 .8 6 .2 5 .7 0 .2 1 3 .5<br />

11 B 2 2 tx 6 .9 5 1.1 2 9.1 5 .7 5 .4 - - 6 .0<br />

IV B 2 2 t 1 9 .7 3 8 .3 4 2 .0 5.1 4 .2 - - 8 .5<br />

C o m p a r a d a<br />

p r o f i l e (1 6 )<br />

B 2 l t 8 .7 6 7 .7 2 .3 6 4 .5 4 .0 0 .3 0 6 .8<br />

III B 2 2 t 5 .8 6 2 .1 2 3.1 5.1 4 .2 - - 8 .3<br />

M i B 3 l t 2 3 .2 3 7 .3 3 9 .5 4 .5 4 .0 - - 1 0 .5<br />

III B 3 2 t 3 6 .7 3 0 .2 3 3.1 4 .7 4.1 - - 8 .5<br />

C e r n u s c o<br />

p r o f i l e (1 7 )<br />

B o g o g g e r a<br />

A p<br />

B l<br />

II B 2 l t x ( t )<br />

II B 2 2 t<br />

III B 2 l t<br />

III C l<br />

III C 2<br />

III C 3<br />

8 .4<br />

19 .4<br />

10.6<br />

12.1<br />

9 .2<br />

17.1<br />

19 .4<br />

5 1 .4<br />

2 5 .3<br />

6 7 .5<br />

5 8 . 1<br />

5 9 .5<br />

6 9 .4<br />

6 0 .3<br />

4 9 . 1<br />

5 6 .9<br />

3 7 .2<br />

2 5 .2<br />

5 0 .3<br />

13 .2<br />

3 3 .5<br />

2 1 .3<br />

20.0<br />

2 7 .6<br />

3 9 .7<br />

2 6 .0<br />

4 3 .4<br />

2 3 .4<br />

2 4 .4<br />

19 .3<br />

5 . 1<br />

5 .8<br />

6.0<br />

5 .4<br />

5 .2<br />

5 .3<br />

5 .3<br />

5 .3<br />

5 .3<br />

5 .4<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

1.4 8<br />

0 .5 6<br />

0 .3 3<br />

0.22<br />

0 .2 6<br />

3 .0<br />

3 .7<br />

3 .9<br />

4 .3<br />

8 .3<br />

5 .3<br />

4 .5<br />

4 .3<br />

5 .3<br />

6.6<br />

11 B 2 l t x 7 .4 6 0 .5 3 2 .1 6 .0 5 .7 0 .5 1 3 .0<br />

II B 2 2 t x 8 .6 5 9 .9 3 1 .5 6 .3 5 .8 - - 3 .7<br />

111 B 2 2 t 1 3 .9 6 2 .1 2 4 .0 5 .7 5 .4 - - 4.1<br />

III B 3 l t ( t ) 1 5 .2 5 5 .2 2 9 .6 5 .7 5 .4 - - 4 .5<br />

Ml B 3 l t (b ) 1 9 .5 5 4 .8 2 5 .7 5 .8 5.5 - - 4 .5<br />

P o r t o c T A d d a<br />

p r o f i l e (1 9 )<br />

A p / B I 1 l . l 7 4 .7 1 4 .2 6 .6 n d 0 .8 nd<br />

II B 2 l t x 9 .2 7 5 .5 1 5 .3 7 .0 nd 0 .7 - nd<br />

11 B 2 2 t. 1 1 .5 6 8 .0 2 0 .5 6 .6 n d 0 .5 - n d<br />

I ll B 3 2 t 1 7 .2 6 6 .3 16.5 5 .8 n d - - n d<br />

C o p r e n o<br />

p r o f i l e (2 1 )<br />

II B 2 l t 1 1.7 7 4 .2 14.1 5 .2 4 .4 0 .2 1 5 .0<br />

B a g o g g e r a<br />

!V B 2 3 t<br />

V B l<br />

V I B 2 2 t ( t )<br />

V I B 2 2 t (b )<br />

V II B 2 l t<br />

R o n c o B r i o n t i n o<br />

pw^ofile (20)<br />

A p / B I<br />

II B 2 2 t<br />

III B 3 l t<br />

III B 3 2 t ( t )<br />

4 2 . 1<br />

9 .2<br />

4 . 1<br />

15 .5<br />

1 0 .7<br />

3 5 .6<br />

2 0 .5<br />

3 3 .0<br />

2 5 .4<br />

3 4 .5<br />

3 4 .0<br />

3 8 . 1<br />

5 9 .8<br />

6 5 .3<br />

5 5 .7<br />

6 0 .4<br />

19 .4<br />

6 0 .0<br />

4 8 .3<br />

4 3 .6<br />

3 8 .4<br />

3 6 .0<br />

19 .8<br />

31.0<br />

3 0 .6<br />

2 8 .8<br />

2 8 .9<br />

4 5 .0<br />

19 .5<br />

I 8 .7<br />

31.0<br />

2 7 . 1<br />

3 0 .0<br />

5 .3<br />

5 .4<br />

5 .3<br />

5 .3<br />

6.1<br />

6 .4<br />

5 .3<br />

4 .8<br />

5 .2<br />

5 .6<br />

5 .5<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

n d<br />

4 .7<br />

4 .3<br />

4 .6<br />

4 .9<br />

5 .0<br />

2 .0 3<br />

O.l I<br />

t r<br />

4 .3<br />

4 .8<br />

4 .9<br />

5 .2<br />

6.2<br />

8.2<br />

2.6<br />

3 .8<br />

3 .7<br />

3 .8<br />

3 .0<br />

B a g o g g e r a<br />

p r o f i l e I (2 3 )<br />

A p + 8 1<br />

II B 2 l t<br />

I! B 2 2 t<br />

III B 2 l t<br />

2 2 .1 5 8 .8 1 9 .9 5 .4 n d 1 .5 4 - 2 .6<br />

1 7 .4 5 3 .7 2 8 .9 5 .3 n d 0 .3 1 - 4 .8<br />

1 8 .6 4 6 .3 3 5 .1 5 .1 n d t r - 4 .6<br />

2 4 .5 5 4.1 2 1 .4 4 .9 n d - - 3 .5<br />

R o b b i o t e<br />

p r o f i l e ( 2 2 )<br />

A p 7 3 .0 1 6 .8 1 0 .2 6 .7 6 .2 1 .2 4 1 .7<br />

B 3 1 t 2 1 .9 3 6 .6 4 2 .0 2 1 .4 6 .5 6 .0 0 0 .4 6 -<br />

B 3 2 t 5 5 .8 2 4 .7 1 9 .5 7.1 6 .4 0 .2 5 2 .0<br />

C C a 4 8 .5 4 3 .4 8.1 8.1 7 .5 t r 0 .9<br />

( t ) = t o p ( b ) = b o t to m


APPENDIX 2 275<br />

Appendix 2, tahk 2 - Cation exchange capacity; base saturation <strong>in</strong> X.<br />

C.E.C. T.E.C. sat.<br />

m.e.q. 100 gr %<br />

Gavardo profile (1) V B3I t 19.3 lO.I 52<br />

V B22 t 24.1 10.3 43<br />

VII B22 22.5 12.1 54<br />

San Biogio profile (2) II B3I t 27.1 20.1 74<br />

1 Val Sorda profile (6) IV B3I t 31.3 24.3 77<br />

Ciliverghe profile (7) Bl 19.4 10.5 54<br />

B2I t 16.1 8.2 51<br />

1 1IB24 t 19.6 9.6 49<br />

IV B2I f 18.8 10.9 58<br />

i<br />

V B3I f 31.8 19.7 62<br />

1 Calvagese pedoreüct. 24.0 lO.I 42<br />

■j Solfer<strong>in</strong>o profile (9) II B31 14.7 12.1 82<br />

i Vivaldi profile {15) IV B22 t 16.1 4.4 27<br />

t Comparada prof Me (1 6) III B3I t 18.3 3.3 18<br />

® Cernusco profile (17) III B3I t 14.7 6.6 45<br />

! Ronco Briant<strong>in</strong>o profile (20) III B3I t 11.3 5.6 49<br />

Robbiate profile (22) B31 t 13.4 7.6 57<br />

Bagaggera profile (23) II B2I t 13.2 4.5 34<br />

IV B2I t 10.6 4.1 38<br />

V B3 17.1 2.9 17<br />

Bagaggera 2 & 3 profiles (23) Bl 9.8 1.7 17<br />

\ III B22 t 18.5 6.8 37<br />

VII B2I t 20.7 11.9 57<br />

Tiepido profile (24) II B22 t 26.9 20.2 75<br />

' Ghiardo profile (25) A2 22.3 10.3 46<br />

*<br />

B l 1 20.0 7.9 39<br />

11 B2I t 24.9 18.8 68<br />

t III B2I 28.3 17.5 62<br />

IV B22 t 27.6 17.1 62<br />

IV B3I t 34.2 15.8 46<br />

Ronco profile (27) III B2I t 18.7 14.9 80<br />

Rex profile (28) III B2I t 27.4 21.6 79<br />

IV B3I t 34.1 26.2 77<br />

Ghiardo Cave profile (29) Ap 1 ’<br />

A2 15.5 12.2 79<br />

II B2I t 29.9 24.7 82<br />

II B22 t 28.2 25.3 90<br />

II B23 cn 23.8 21.7 91<br />

III B24 34.1 34.7 soft<br />

Boscone profile (30) Ap 27.3 13.3 49<br />

A2 23.9 16.3 68<br />

B2I t 30.5 19.6 64<br />

B22 cn 32.9 21.6 65<br />

II B2I f 35.4 26.1 74<br />

II B22 g 41.8 30.2 72<br />

III B2 cn 41.0 29.2 71<br />

III B3 g 48.9 40.9 83<br />

Settima profile (35) III B3 t 30.5 21.3 70


2 7 6 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Appendix 2, table 5 - Stones <strong>and</strong> f<strong>in</strong>e earth contents; gra<strong>in</strong> size distribution of<br />

<strong>the</strong> fraction coarser than 2 mm.<br />

P ro file s<br />

S tones<br />

%<br />

F <strong>in</strong> e<br />

E a rth<br />

%<br />

m m<br />

4 0 -2 6<br />

m m<br />

26-1 1<br />

m m<br />

1 1-2<br />

M o c a s <strong>in</strong> a (3) II B2 t 67 33 30 26 44<br />

III B 3 I t 16 84 42 22 36<br />

V a l S ord a (é) IV B 3 I t 21 79 _<br />

29 71<br />

IV C C a 60 40 23 23 54<br />

C iliv e r g h e (7) V B 2 2 t 0.2 98 .8 — — t r<br />

V B 3 I t ( t) 6 94 — 1 1 89 j<br />

V B 3 I t (b) 40 60 66 20 14 1<br />

C o m p a ra d a (16) III B 22 t 15 85 — 15 85 t<br />

III B 3 I t 8 92 18 17 65<br />

it<br />

C e rn u s c o (1 7) III B 22 t 2 98 _ _<br />

t r 1<br />

III B 3 I t 20 80 12 27 61 j<br />

R o n c o B . (20) A p /B I 1 99 _ _<br />

i<br />

II B 2 2 t 12 88 — 41 59 \<br />

III B 3 I t 17 83 — 53 47 ¡<br />

III B 3 I t (t) 30 70 — 40 60 1<br />

III B 32 t (b) 45 55 — 48 52 3<br />

C o p re n o (2 1) III B 32 65 35 42 14 34 j<br />

R o b b ia te (22) A p 28 72 19 55 26<br />

B 31 t 27 73 33 20 47 J<br />

B 32 t 39 61 17 35 48 :<br />

C C a 70 30 13 46 41<br />

T ie p id o (24) II B 2 2 t 1 99 — — t r í<br />

II B 3 I t 17 83 — 49 51<br />

III C 85 15 58 30 12<br />

G h ia rd o V . (26) III B 22 t 2 98 — — —<br />

III B 3 I t 30 70 15 43 42<br />

R o n c o (27) IV B 22 t 2 98 — 65 35<br />

IV B 3 I t 49 51 54 27 19<br />

IV B 32 t 70 30 38 40 22<br />

R e x (28) IV B 3 I t 19 81 24 14 62<br />

IV B 32 t 24 76 36 18 46<br />

IV C C a 75 25 56 22 22<br />

C a v ria g o (34) III B 3 t 44 66 60 22 18<br />

III C C a 90 10 76 15 9<br />

S e ttim a (35) III B3 t 32 68 10 30 60<br />

III C C a 85 15 62 18 20<br />

(t)= to p (b )= b o tto m


APPENDIX 3: X-ray analyses<br />

The X-ray diffraction analyses (film method) of disoriented clay samples were carried out with<br />

a quadruple Gu<strong>in</strong>ier - de Wolif camera, on clay fraction (less than 2 microns). The clay fraction<br />

was separated by sedimentation, after pretreatment identical to that for gra<strong>in</strong> size analysis.<br />

Clay separates were satured with X-ray exposures were made of samples mixed with<br />

glycerol <strong>and</strong> of samples heated to 550° C.<br />

The films were <strong>in</strong>terpreted visually (semi-quantitatively); <strong>the</strong> relative <strong>in</strong>tensity of <strong>the</strong> reflections<br />

is <strong>in</strong>dicated by <strong>the</strong> symbol -1-, <strong>and</strong> for non clay m<strong>in</strong>erals by x.<br />

-l-l-f = very strong reflection<br />

= strong reflection<br />

-I- = weak but dist<strong>in</strong>ct reflection<br />

tr = trace<br />

? = <strong>in</strong>dist<strong>in</strong>ct reflection<br />

Quartz is expressed <strong>in</strong> estimated weight pergentage; 11 A st<strong>and</strong>s for partially 2:1 m<strong>in</strong>eral, 7 A<br />

(k<strong>and</strong>ite m<strong>in</strong>erals) <strong>in</strong>cludes kaol<strong>in</strong>lte <strong>and</strong> meta-halloysite.


278 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Table }/a<br />

G ovar do profile (I)<br />

II B2 t (t)<br />

II B2 t (b)<br />

V B22 t<br />

V B3I t<br />

V B32 t<br />

VI B/C<br />

VII B2I<br />

VII B22<br />

S. Biagio profile (2)<br />

II B22 t<br />

II B3I t<br />

Mocas<strong>in</strong>a profile (3)<br />

IV B3I t<br />

Torre di Mocas<strong>in</strong>a<br />

profi le (4)<br />

B 31 t<br />

Val Sorda profile (6)<br />

Smectite Verm iculite C hlorite lllite IIÄ 7Ä Quartz Hematite<br />

IV B3I t<br />

(+) - + + 2-4 tr<br />

Ciliverghe profile (7)<br />

II B24<br />

III Bl<br />

III B2I tx<br />

IV B2I t<br />

V B22 t<br />

V B3I t<br />

Solfer<strong>in</strong>o profile (9)<br />

A l I<br />

II A I2<br />

II B3I<br />

II B32<br />

Comparada profile (16)<br />

B2I tx<br />

II B22 tx<br />

III B3I t<br />

III B32 t<br />

Cernusco profile (17)<br />

II B2I tx<br />

II B22 tx<br />

III B22 t<br />

III B3I t (t)<br />

III B3I t (b)<br />

— +(+)<br />

Ronco Briont<strong>in</strong>o profile (20)<br />

II B22 t<br />

III B3I t<br />

III B32 t<br />

Copreno profile (21)<br />

II B2I t<br />

+(+)<br />

(+)<br />

+(+)<br />

+(+)<br />

+(+)<br />

+(+)<br />

+(+)<br />

+(+)<br />

+(+)<br />

t ( + )<br />

+(+)<br />

++<br />

r(+ )<br />

++<br />

+(+) +<br />

++<br />

4-6<br />

4-6<br />

4-6<br />

4-6<br />

4-6<br />

4-6<br />

4-6<br />

4-6<br />

(+) +(+)<br />

___<br />

{+)<br />

— + 4-6 tr<br />

(r) + — (+) — (+) 4-6 tr<br />

- + -- + - + 4-6 tr<br />

- tr -- + -- - 3-5 tr<br />

(+) + + + 3-5 tr<br />

___ ___<br />

(+)<br />

+ 4-6 tr<br />

__<br />

___ —<br />

(+) +(+) + 5-8 tr<br />

__<br />

tr __ (+)<br />

— + 4-6 tr<br />

__<br />

tr<br />

___ +<br />

__ + 4-6 tr<br />

- tr + (+) + 1-3 tr<br />

tr ++ + +(+) 5-8 tr<br />

tr ++ + +(+)<br />

— 5-8 tr<br />

tr ++ (+)<br />

— + 5-8 tr<br />

7 ++ tr +(+) — + 5-8 tr<br />

+(+) tr (+) -- + 3-5 tr<br />

9 9<br />

+(+)<br />

(+) — +(+) 2-4 tr<br />

tr _ +(+) — +(+) 2-4 tr<br />

- tr +(+) — +(+) 2-4 tr<br />

++ +(+) (+) 4-6 tr<br />

__ ++ + A*) _ r(+ ) 4-6 tr<br />

_ +(+) (+) +(+) r{+) 4-6 tr<br />

__<br />

+(+) tr +(+) — *U) 4-6 tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

9 4-6 tr<br />

tr + --<br />

(+)<br />

— +(+) 5-8 (x)<br />

tr + — (+)<br />

— ++ 5-8 (x)<br />

tr + — + — ++(+) 5-8 (x)<br />

tr ++(+) +(+) (+) _ (+) 4-6 tr<br />

(t)= to p (b )= b o tto m


APPENDIX<br />

3<br />

279<br />

Table 3/h<br />

Robbiate profile (22)<br />

B3I t<br />

C Ca<br />

Bogoggera profile I (23)<br />

II B22 t<br />

III B22 t<br />

IV B22 t<br />

pedorelicts<br />

VB 3 (t)<br />

VB 3 (b)<br />

Bogoggera profile 3 (23)<br />

IV B23 t<br />

V Bl t<br />

VI B22 t<br />

VIII B2 t<br />

Tiepido profile (24)<br />

II B2I t<br />

II B22 t<br />

II B3I t<br />

III C<br />

Ghiordo V. profile (26)<br />

III B22 t<br />

III B3I t<br />

III B32 t<br />

Ronco profile (27)<br />

III B2I t<br />

IV B22 t<br />

IV B3I t<br />

IV B32 t<br />

Rex profile (28)<br />

III B2I t<br />

IV B3I t<br />

IV C Co<br />

Ghiordo Cove profile (29)<br />

Ap<br />

A2<br />

II B2I t<br />

II B22 t<br />

III B24<br />

Settima profile (35)<br />

Ap<br />

II B2 t<br />

III B3 t<br />

Melotto profile (37)<br />

A2<br />

B21 tx<br />

B22 t<br />

II Cg Ca<br />

c tite V erm iculite C h lorite Illite 1lA 7A<br />

tr ++ + (+)<br />

(+) -- +(+) ++ — tr<br />

tr + + (+)<br />

.. +(+)<br />

tr (+) tr (+) — ++<br />

tr (+) tr + — +(+)<br />

tr (+) tr (+) — +<br />

tr {+) — (+) — +<br />

— tr + + — +<br />

9 + ++ +(+)<br />

_ + _ + — +(+)<br />

_ +(+) _ + — +<br />

- (+) - ++ " +(+)<br />

(+) + ++ _ +<br />

tr + — ++ -- +<br />

tr + _ + — +<br />

+ +(+) — +(+) — +<br />

9<br />

(+) +(+)<br />

( +)<br />

(+) + __ (+) ( +) +(+)<br />

(+) + " (+) ( +) +(+)<br />

(+) tr +<br />

_<br />

(+) tr _ (+) -- +<br />

(+) tr _ (+) — (+)<br />

(+) (+) — (+) — (+)<br />

+ + + (+) (+)<br />

+ + _ + + (+)<br />

+ — r(+) ( +) (+)<br />

tr ++ tr tr tr<br />

tr ++ (+) tr — tr<br />

+ tr — tr<br />

+ _ tr -- tr<br />

(+) - tr “ tr<br />

+<br />

(+) +(+)<br />

—<br />

+ tr + — +<br />

(+) +(+) tr + — +<br />

tr tr +(+)<br />

_ +<br />

tr tr +(+) — +<br />

tr +(+)<br />

_ +(+) — +<br />

tr + — +(+) — +<br />

Quartz<br />

5- 8tr<br />

tr<br />

6- 10<br />

3-5 tr<br />

2- 4tr<br />

3- 5 (x)<br />

3-5 XX<br />

1-3 x(x)<br />

5-8 XX<br />

4- 6tr<br />

5- 8tr<br />

4- 6 tr<br />

5- 8tr<br />

8-12<br />

8-12<br />

8-12<br />

6-10<br />

2- 4 (x)<br />

3- 5 (x)<br />

3-5 tr<br />

6-10<br />

6-10<br />

5-8<br />

5-8<br />

5-8<br />

4-6<br />

4-6<br />

5-8<br />

5-8<br />

5-8<br />

5-8<br />

2-4<br />

6-10<br />

6-10<br />

6-10<br />

5-8<br />

4- 6<br />

5- 8<br />

3-5<br />

Hematite<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

tr<br />

!<br />

.ij<br />

(t)= to p (b )= b o tto m


280 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

1<br />

Appendix 2, table 4 - Petrographic composition of <strong>the</strong> gravel.<br />

1 2 3 4 5 6 7 8<br />

j S. B la glo (2) II B22 t — 2 — — — 20 — 78<br />

II B 3 I t — 29 — — — 14 3 54<br />

i<br />

II C Ca 75 — — — — 1 6 12<br />

1 M ocas<strong>in</strong>a (3) B 2 I t 8 11 _ _ 6 15 22 58<br />

1 IV B 3 I t — 49 _ _ 7 2 1 45<br />

IV C Ca 78 — — — 1 5 7 9<br />

i Terzago (5) III B 3 I t - — — 8 — 7 1 84<br />

j Val Sorda (é) IV B 3 I t ~ 2 _ — — 60 9 18<br />

: 1 IV C Ca 85 — — — — 4 1 3<br />

1 C iliv e rg h e (7) V B22 t ~ t r — — — — tr<br />

V B 3 I t (t)<br />

V B31 t (b)<br />

V C Ca<br />

S o lfe r<strong>in</strong> o (9) II B 3I — — — — — — — —<br />

II C Ca 46 _ — _ _ 37 15 2<br />

C om parada (1 6) III B22 t — 20 — 5 — 60 7 8<br />

III B 3 I t — 59 — 7 — 27 3 4<br />

C ernusco (17) III B22 t __ tr — t r — tr — tr<br />

III B 3I t — 10 — 53 — 32 — 5<br />

R onco B. (20) A p /B I — _ _ _ — t r — —<br />

II B22 t — 10 — — — 73 — 17<br />

III B 3I t — 10 - - — — 70 2 18<br />

III B32 t (t) — 7 — — — 69 4 20<br />

III B32 t (b) - 23 - 5 — 62 1 19<br />

C opreno (21) III B 3 I t - 39 - — - 61 — -<br />

R o b b la te (22) A p — 1 — 12 — 86 — 1<br />

B 3 I t — 10 - - 8 — 43 32 7<br />

B32 t — 8 — 4 — 64 19 5<br />

C Ca 32 - 12 — — 52 3 1<br />

G hiardo V. (26) III B 3I t 70 — 3 24 1 — 2<br />

R onco (27) IV B22 t _ _ _ 68 7 — — 25<br />

IV B 3I t — 8 — 70 9 — — 13<br />

IV B32 t — 11 - - 77 6 — I 5<br />

IV C Ca 54 - 18 — 3 - 21 4<br />

R ex (28) IV B 3 I t _ 21 _ 51 26 _ 2 _<br />

IV B32 t — 55 - - 24 13 — 7 1<br />

IV C Ca 80 — 13 — 3 - 4 —<br />

C a vria g o (34) III B3 t — 41 — 28 18 — — 13<br />

III C Ca 72 — 11 — 4 2 1 10<br />

S e ttim a (35) III B3 t _ 15 _ 62 _ _ 1 22<br />

III C Ca 37 — 42 — 3 — 17 1<br />

12<br />

I<br />

49<br />

3<br />

U M a rly L im e s to n e %; 2 = D e c a lc ifie d M a rly L im e s to n e ; 3 = C a rb o n a tic S<strong>and</strong>stone %;<br />

4 = D e c a lc ifie d C a rb o n a tic S<strong>and</strong>stone %■ 5=S<strong>and</strong>stone %; 6= C ry s ta ll<strong>in</strong> e <strong>and</strong> m e ta m o rp h ic<br />

ro c k s %; 7= V o lc a n ic rocks% ; 8 = C h e rt % (t)= to p (b )= b o tto m


APPENDIX 4: Heavy m<strong>in</strong>eral analyses<br />

S<strong>and</strong> fractions (250-63 microns) were treated with HCl 25« <strong>and</strong> boiled with oxalic acid, <strong>in</strong><br />

order to remove all iron-manganese coat<strong>in</strong>gs; subsequently <strong>the</strong> heavy m<strong>in</strong>erals were separated by<br />

us<strong>in</strong>g bromoform (s.g. 2.88-289). The heavy m<strong>in</strong>erals were mounted on a glass - slide by means<br />

of Canada Balsam. L<strong>in</strong>e count traverses with regular spaced l<strong>in</strong>es were followed across <strong>the</strong> m<strong>in</strong>eral<br />

mounts.<br />

In each mount <strong>the</strong> percentages of opaques, transparent m<strong>in</strong>erals <strong>and</strong> micas were determ<strong>in</strong>ed,<br />

<strong>and</strong> three hundred transparent m<strong>in</strong>erals were counted.<br />

The heavy m<strong>in</strong>erals were generally easily identified by means of current petrographic techniques<br />

(Milner, 1962; Parfenoff et alii, 1970).<br />

The wea<strong>the</strong>r<strong>in</strong>g <strong>in</strong>dex (W.I.) was calculated on <strong>the</strong> basis of a large number of m<strong>in</strong>eral species<br />

<strong>in</strong> order to reduce as far as possible <strong>the</strong> effects of <strong>the</strong> differences <strong>in</strong> composition of parent materials.<br />

The degree of stability of each m<strong>in</strong>eral species was deduced from Brewer (1976):<br />

W J. = ZZirc. + Tour. -VTi oxides + Staur. -I- Garn./2 And + Amph. -I- Pyr. + Sill. + Epid.<br />

List of abbreviations;<br />

Op. = opaques<br />

Tr. = transparent m<strong>in</strong>erals<br />

Mic. = micas<br />

Zirc. = zircon<br />

Tour. = tourmal<strong>in</strong>e<br />

Anat.-fBrook. = anastase <strong>and</strong> brookite<br />

Rut. = rutile<br />

Tit. = titanite<br />

Ep.+Zois. = epidotes <strong>and</strong> zoisite<br />

Staur. = staurolite<br />

Garn. = garnet<br />

Kyan. = kyanite<br />

And. = <strong>and</strong>alusite<br />

Chlor. = chloritoid<br />

Sill. = sillimanite<br />

Amph. = amphiboles<br />

Glauc. = glaucophane<br />

Pyr. = pyroxenes<br />

Sp<strong>in</strong>. = sp<strong>in</strong>el


Table 4/a<br />

G o v a r d o<br />

p r o f i l e ( I )<br />

II B 2 I t<br />

IV B 3 I t<br />

V B 2 2 t<br />

V B 3 I t<br />

V I B / C<br />

V II B 2 I<br />

V II B 2 2<br />

V II B 2 3<br />

S . B i o g i o<br />

p r o f i l e (2 )<br />

II B 2 2 t<br />

o<br />

u<br />

S<br />

10 36 54<br />

44 40 16<br />

50 26 24<br />

69 21 10<br />

57 29 14<br />

57 41 2<br />

42 20 38<br />

40 35 25<br />

32 64 4<br />

D | 8<br />

H


Tah/e 4/c<br />

B o g o g g e r o<br />

p r o f i l e 1 (2 3 )<br />

A p + B I<br />

II B 2 l t<br />

II B 2 2 t<br />

III B 2 I t<br />

IV B 2 I t ( t )<br />

I V B 2 I t ( b )<br />

IV B 2 2 t ( t )<br />

IV B 2 2 t (b )<br />

V B 3<br />

V C<br />

B a g o g g e r a<br />

p r o f i l e 2 (2 3 )<br />

A p<br />

B l<br />

II B 2 I t x<br />

II B 2 2 t<br />

III B 2 I t<br />

III B 2 2 t<br />

III C l<br />

U N I T<br />

U n i t<br />

U n i t 3<br />

U n i t I<br />

7 b<br />

7 a<br />

B a g o g g e r a<br />

p r o f i l e 3 (2 3 )<br />

IV B 2 3 t<br />

V B l<br />

V I B 2 2 t ( t )<br />

V I B 2 2 t (b )<br />

V II B 2 I t<br />

V II I B 2 t<br />

C e p p o<br />

P a d e r n o<br />

C e p p o<br />

T r e z z o<br />

C e p p o<br />

" p o l ig e n i c o ”<br />

B ^ 'g o m o F ly s c h<br />

o<br />

N u<br />

u u D<br />

+ DD c c<br />

o ■d<br />

_o<br />

Cl D<br />

? ? D<br />

o<br />

c JZ<br />

E<br />

_o<br />

>v<br />

o is N 1- <br />

T)<br />

1“<br />

m<br />

O<br />

CP<br />

O<br />

r"<br />

CP<br />

><br />

<<br />

m<br />

H<br />

C<br />

CP<br />

O<br />

H<br />

I<br />

m<br />

o<br />

m<br />

><br />

“D<br />

O<br />

Table 4/d<br />

T i e p i d o<br />

p r o f i l e ( 2 4 )<br />

Q,<br />

O<br />

K<br />

u<br />

is<br />

d<br />

N<br />

D<br />

o<br />

t- < CD<br />

D<br />

(T H<br />

'5<br />

N +d.<br />

iU<br />

D<br />

O<br />

cn<br />

c<br />

o<br />

O<br />

c<br />

oX ■d c<<br />

_o<br />

JZ<br />

U<br />

II B2I t 58 19 23 13 11 8 2 2 16 3 20 1 _ 1 1 9 5 _ 7 2.22<br />

II B22 t (t) 89 7 4 10 6 11 3 5 14 1 14 + _ 2 1 5 2 _ 37 3.54<br />

II B22 t (b) 75 22 3 10 28 6 3 2 11 3 21 1 _ 2 _ 6 1 _ 4 4.29<br />

II B3I t 79 14 7 5 10 12 2 2 17 3 24 _ 3 1 11 2 1 7 2.12<br />

III c 80 14 6 4 3 2 2 + 19 3 19 - -- 2 1 28 1 1 1 1.00<br />

C O<br />

JZ<br />

<<br />

y<br />

0<br />

o<br />

¿<br />

CL<br />

c<br />

‘a<br />

C O<br />

i<br />

><br />

-D ■D<br />

m<br />

z<br />

5<br />

X<br />

cn<br />

C h io r d o<br />

p r o f i l e (2 5 )<br />

,<br />

A2 35 19 46 4<br />

1 4 40 2 3 3 3 1 30 7 1 0.26<br />

Bl 1 25 9 66 3 3 + 2 — 28 1 4 1 2 1 3 45 6 1 0.20<br />

B 12 cn 18 6 76 15 2 3 32 1 3 __ — 1 6 30 5 2 0.33<br />

II B2I t 27 10 63 3 3 — 2 29 3 1 __ 1 3 48 5 2 _ 0.15<br />

III B2I t 14 33 S3 19 10 1 10 — 15 5 3 3 __ __ _ 22 10 2 1.12<br />

IV B22 t 4 46 50 15 6 3 9 __ 14 3 10 2 __ 4 1 26 6 _ 1 0.96<br />

IV B3I t 27 65 48 19 4 3 3 — 28 3 29 6 4 - 2 1.12<br />

G h i a r d o V .<br />

p r o f i l e ( 2 6 )<br />

II B2I t (t) 14 24 62 2 8 5 1 1 20 4 1 2 3 2 35 6 10 0.74<br />

II B2I t (b) 36 20 44 3 16 6 + 2 24 _ + 25 12 9 0.80<br />

III B22 t 33 14 52 19 9 2 10 __ 13 5 3 4 _ __ 22 11 2 1.17<br />

III B3I t 64 28 8 18 4 1 3 — 28 3 30 6 4 — 3 1.63<br />

R o n c o<br />

p r o f i l e ( 2 7 )<br />

III B 2 I t ( t ) 6 2 16 2 2 7 IS 2 1 2 0 I 3 12 2 3 7 1 .2 7<br />

III B 2 I f (b ) 7 4 2 0 6 4 4 6 — 1 16 1 4 1 __ __ 1 5 __ 5 7 3 .5 4<br />

IV B 2 2 t 9 0 5 5 3 2 5 + + 3 2 __ __ 8 5 n d<br />

IV B 3 I t 5 0 4 5 5 7 2 51 — 4 0 0 .6 6<br />

R e x<br />

p r o f i l e (2 8 )<br />

III B 2 t t 12 3 0 5 8 3 6 7 2 2 8 2 10 + 6 2 0 4 1 1 0 .8 8<br />

IV B 3 2 t 2 4 2 7 4 9 4 5 9 — 1 2 4 1 18 — — 6 1 15 3 __ 2 3 1 .3 2<br />

IV C a 12 5 0 8 3 2 5 3 — 2 2 2 12 — — 3 1 2 7 3 + 17 0 .8 8


APPENDIX 5: Brief micromorphological descriptions<br />

Th<strong>in</strong> sections have been studied <strong>and</strong> described accord<strong>in</strong>g to Brewer (1976) ma<strong>in</strong> characteristics<br />

have been listed below; <strong>the</strong>y <strong>in</strong>clude;<br />

—skeleton gra<strong>in</strong>s; lithorelicts, <strong>in</strong>clud<strong>in</strong>g charcoal; pedorelicts; voids; basic fabric; colour <strong>and</strong> ma<strong>in</strong><br />

characteristics of plasma; plasmic fabric <strong>and</strong> pedological features (cutans, glabulae <strong>and</strong> pedotubules).<br />

The follow<strong>in</strong>g types of cutans have been dist<strong>in</strong>guished:<br />

cutans A: A l, ferri-argillans; A2, argillans; A3, siltans; A4, matrans; A5, complex cutans (A1 +<br />

A3 + A4); A6, gra<strong>in</strong>y cutans; A7, sesquans; A8, stress cutans.<br />

cutans B: B l, neoargillans; B2, neosesquans.<br />

cutans C: C l, calcitans; C2, neocalcitans; C3, quasicalcitans.<br />

dist. <strong>in</strong>dicates disturbed cutans.<br />

A semiquantitative estimate of voids, lithorelicts, pedorelicts <strong>and</strong> pedological features is given<br />

as follow:<br />

(FF) very few, (F) few, (C) common, (CC) very common, (M) many, (MM) very many.<br />

Pseudogley<strong>in</strong>g <strong>in</strong> plasma is <strong>in</strong>dicate with ox ./red. (ox. = oxidated area; red. = reduced area).<br />

Ma<strong>in</strong> lithotypes <strong>in</strong> skeleton gra<strong>in</strong>s <strong>and</strong> pedorelicts are <strong>in</strong>dicated as follw: Q = quartz, F = feldspar,<br />

CH = chert, SA = s<strong>and</strong>stone, O = ophiolites, M = micas; Met = metamorphic rocks.


Skeleton<br />

gra<strong>in</strong>s<br />

Gavardo profile (1)<br />

Il B2 t (t) moderately<br />

sorted<br />

Q + M +F,<br />

silt <strong>and</strong> s<strong>and</strong><br />

Q(FF)<br />

II B2 t (b) —do- Q(F),<br />

charcoal<br />

(F)<br />

IV B31 t<br />

V B22t<br />

pxDorly<br />

sorted<br />

Q -1- F s<strong>and</strong><br />

poorly<br />

sorted<br />

Lithorelicts Pedorelicts Voids Basic fabric Plasma Plasmic fabric Cutans A Cutan s B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

Q + F<br />

angular<br />

(C)<br />

Q + CH<br />

angular<br />

Q s<strong>and</strong> (FF)<br />

V B31 t -do- —do— rounded<br />

fragments<br />

from VII<br />

B22 (M)<br />

V B32t<br />

VI B/C<br />

VII B21 (t)<br />

-dobut<br />

(C) F<br />

moderately<br />

sorted<br />

Q-t-F-l-M<br />

s<strong>and</strong> silt<br />

Q f<strong>in</strong>e<br />

s<strong>and</strong><br />

polylithologic<br />

(M)<br />

VII B21 (b) —do- CH angular<br />

fragments<br />

(F)<br />

-dobut<br />

(C)<br />

channels (F)<br />

chambers (F)<br />

—dobut<br />

(C)<br />

chambers (C)<br />

vughs(C)<br />

channels (C)<br />

vugbs(C)<br />

planes (F)<br />

channels (F)<br />

channels (C)<br />

chambers (C)<br />

channel<br />

(CC)<br />

planes (F)<br />

vughs (FF)<br />

mammilated<br />

vughs(C)<br />

planes +<br />

channels (C)<br />

porphyroskelic<br />

light brown<br />

ox. —red.<br />

silasepic<br />

<strong>in</strong>sepic<br />

—do— -do- vosepic<br />

mosepic<br />

-do-<br />

—do-<br />

—do-<br />

yellowbrown<br />

ox. —red.<br />

brown<br />

red<br />

red<br />

brown<br />

silasepic<br />

vo-mosepic<br />

argillasepic<br />

<strong>in</strong>-skelsepic<br />

skel-bimasepic<br />

-do-<br />

dark red<br />

dark brown<br />

isotic<br />

undulic<br />

vughs(C) —do— -do- undulic<br />

silasepic<br />

VII B22 —do- -do- — vughs(C)<br />

channels (C)<br />

-do- red brown silasepic<br />

(undulic)<br />

VII B23 -do- -do-<br />

—<br />

—do- —do— —do— argillasepic<br />

(<strong>in</strong>sepic)<br />

A1 (M)<br />

A6 (F)<br />

A7 (F)<br />

A5(M)<br />

A6 (F)<br />

A1 (M)<br />

A2 (C)<br />

A2 (C)<br />

A5(C)<br />

A1 (M)<br />

AS (C)<br />

AI (M)<br />

AI (FF)<br />

AS (FF)<br />

AI (FF)<br />

B2(F)<br />

-do-<br />

-do-<br />

—do-<br />

B2 (C)<br />

B2(C)<br />

Fe-Mn nodules<br />

<strong>and</strong><br />

concretions<br />

(C)<br />

Fe-Mn nodules<br />

(C)<br />

papules<br />

(C)<br />

Fe Mn nodules<br />

(C)<br />

Fe-Mn nodules<br />

(C)<br />

—do-<br />

Al (F)<br />

A7(C)<br />

B2(C)<br />

-do-<br />

Al (F-C) -do- Fe-Mn nodules<br />

(C)<br />

papules (F)<br />

areas of<br />

washed<br />

silt<br />

fluidal<br />

pattern<br />

of M gra<strong>in</strong>s<br />

-do- brown argillasepic,<br />

<strong>in</strong>sepic<br />

—do— pale silasepic<br />

brown<br />

red. —ox.<br />

-do-<br />

pedotubules<br />

(F)<br />

granular<br />

micropedality<br />

S. Biagio profile (2)<br />

II B22 t<br />

poorly<br />

sorted<br />

angular Q s<strong>and</strong><br />

CH + Q<br />

angular<br />

(C)<br />

III B31 t -do- poly lithologic<br />

(M)<br />

skew-craze<br />

planes (C)<br />

craze<br />

planes<br />

(M)<br />

III B32 t —do- —do- planes (M)<br />

channels (F^<br />

CHS<br />

pedorelict<br />

^ o - CH + Q +<br />

+ Met<br />

A = (C)<br />

B = (F)<br />

A = planes<br />

(F)<br />

channels (F)<br />

B = vughs (FF)<br />

porphyroskelic<br />

red brown<br />

argillasepic<br />

(<strong>in</strong>sepic)<br />

A1 (M)<br />

A8(C)<br />

AS (C)<br />

-do- —do- -do- A1 (MM)<br />

-do- -do— argillasepic,<br />

bimasepic<br />

-do-<br />

A = dark<br />

red<br />

B = dark<br />

brown<br />

A = argillasepic<br />

(unistrial)<br />

B = isoticundulic<br />

A1 (M)<br />

A8 (C)<br />

A1<br />

Fe-Mn nodules<br />

(C)<br />

Fe-Mn nodules<br />

(C)<br />

papules (C)<br />

Fe-Mn nodules<br />

(C)<br />

papules (C)<br />

A = papules B = micrope-<br />

(C) dality<br />

B —Fe-Mn<br />

nodules (C)<br />

CaC03 nodules<br />

(Q<br />

Mocas<strong>in</strong>a profile (3)<br />

II B21 t moderately<br />

sorted<br />

Q-t-F-l-M<br />

silt <strong>and</strong><br />

s<strong>and</strong><br />

angular<br />

CH (F)<br />

III B22 t -do- angular<br />

CH (MM)<br />

t(t)<br />

poorly<br />

sorted<br />

0 s<strong>and</strong><br />

polylithologic<br />

(C)<br />

rounded<br />

fragment<br />

from<br />

IV B31<br />

vughs(C)<br />

chamber (C)<br />

channels (C)<br />

-do-<br />

planes<br />

(M)<br />

t(b) -do- —do- planes (M)<br />

chambers (F)<br />

channels (F)<br />

porphyroskelic<br />

agglomeroplasmic<br />

(chitonic)<br />

porphyroskelic<br />

clear<br />

brown<br />

clear<br />

brown<br />

dark red<br />

brown<br />

<strong>in</strong>sepic<br />

<strong>in</strong>sepic<br />

masepic<br />

vo-masepic<br />

-do- -do- bimasepic<br />

vo-masepic<br />

A1(C)<br />

A4 (F)<br />

A1 (M)<br />

AS (MM)<br />

A6 (F)<br />

A1 (M)<br />

A8(C)<br />

A1 (M)<br />

A7 (F)<br />

B1 (FF)<br />

papules<br />

(FF)<br />

Fe Mn nodules<br />

(F)<br />

-do-<br />

Fe Mn nodules<br />

(C)<br />

-do-


Skeleton<br />

gra<strong>in</strong>s<br />

Val Sorda profile (6)<br />

A/C<br />

III C2<br />

well<br />

sorted<br />

Q-t-M + F<br />

s<strong>and</strong> <strong>and</strong> silt<br />

poorly<br />

sorted<br />

Q s<strong>and</strong><br />

Lithorelicts Pedorelicts Voids Basic fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

—<br />

— vescicular<br />

vughs(C)<br />

channels (C)<br />

Q + Me +<br />

+ C(C)<br />

IV B31 t -do- polylithologic<br />

(M)<br />

<strong>in</strong>tertextic brown asepic to<br />

argillasepic<br />

—<br />

“<br />

acicular<br />

Cl<br />

<strong>in</strong> voids<br />

isotubules<br />

(C)<br />

Ciliverghe profile (7)<br />

B1<br />

moderately<br />

sorted<br />

Q + M + F,<br />

f<strong>in</strong>e s<strong>and</strong><br />

CH <strong>and</strong><br />

Q(FF)<br />

vughs(C)<br />

channels (C)<br />

from channels (C) porphyroskelic<br />

brown (<strong>in</strong>sepic) cutans (F)<br />

C2(C) M<br />

yellow argillasepic stress<br />

Cl (C) papules<br />

rV B31 t (C) planes (F)<br />

CaC03<br />

nodules (C)<br />

planes (M) -do- red brown mosepic A1(C) papules (F)<br />

porphyroskelic<br />

clear brown<br />

<strong>in</strong>sepic<br />

silasepic<br />

<strong>in</strong>to<br />

tongues<br />

A1(C)<br />

A5(F)<br />

—do<strong>and</strong><br />

silt<br />

11 B21 tx -do- -do- vughs(F) —do- —do— silasepic A1(F)<br />

A2 (C) <strong>in</strong><br />

tongues<br />

A5(M)<br />

II B22 g -do- CH + Q (F)<br />

charcoal<br />

(F)<br />

II B24<br />

poorly<br />

sorted<br />

s<strong>and</strong><br />

<strong>and</strong> silt<br />

planes (C)<br />

vughs(F)<br />

channels (F)<br />

-do—<br />

clear<br />

brown<br />

red. > ox.<br />

CH + Q (C) -do- -do- clear<br />

brown<br />

ox. > red.<br />

masepic<br />

—do-<br />

A1(C)<br />

A2(C)<br />

A5 (F)<br />

A1(C)<br />

A5(F)<br />

A6(C)<br />

A7 (M)<br />

B1(F)<br />

B2 (C)<br />

Fe-Mn nodules,<br />

papules<br />

(F)<br />

Fe-Mn nodules<br />

papules (C)<br />

isotubules<br />

(F)<br />

B1(C) -do- Iluidal<br />

patterns<br />

of mica<br />

flakes<br />

B2 (C)<br />

papules<br />

(C)<br />

"D<br />

> r~m<br />

O<br />

03<br />

o<br />

I“<br />

03<br />

><br />

Z<br />

D<br />

<<br />

m<br />

C<br />

H<br />

03<br />

O<br />

X<br />

m<br />

o m<br />

X >I““0O■D<br />

r*<br />

><br />

z<br />

III B1<br />

III B21 tx (t)<br />

III B21 tx(b)<br />

moderately<br />

sorted<br />

Q + M + F<br />

s<strong>and</strong> <strong>and</strong> silt<br />

-do-<br />

-do-<br />

(F)<br />

charcoal<br />

(F )<br />

CH (FF)<br />

but large<br />

fragments<br />

-do—<br />

V B31 t<br />

IV B21 t (t) moderately Q + F (FF)<br />

sorted<br />

Q + F + M<br />

s<strong>and</strong> <strong>and</strong> silt<br />

IV B21 t (b) —do— —do—<br />

but<br />

(C)<br />

V B221 poorly polylithosorted<br />

logic (CC)<br />

s<strong>and</strong><br />

—do-<br />

-do-<br />

vughs(F)<br />

from vughs(M)<br />

IV B21 t (C) channels (C)<br />

channels (C)<br />

planes (C)<br />

planes (F)<br />

channels (C)<br />

chambers (C)<br />

-do-<br />

— planes (C)<br />

but (M)<br />

agglomero- clear brown silasepic A1 A2 (FF) — — Fe-Mn nodu- —<br />

plasmic A7(F) les (C)<br />

— papules F<br />

porphy- clear brown —do— A1(C) B2 (C) _ —do- —<br />

roskelic yellow A2 (FF) but more<br />

red ./ox. A5 (M) papules<br />

A6(C)<br />

—do- —do- -do~ A1(F) —do- — papules (C) —<br />

A6(C)<br />

A4 (F)<br />

porphy- clear brown <strong>in</strong>sepic A1 (M)<br />

roskelic red ./ox. A5(C)<br />

— — papules (C) —<br />

<strong>in</strong> th<strong>in</strong><br />

A7(C)<br />

tongues<br />

—do— —do­ —do- —do— — — papules (F) —<br />

but more<br />

A5<br />

—do— ted brown vo-skelsepic A1 (M) — — papules —<br />

AS (CC)<br />

(FF)<br />

A7(C)<br />

A6(C)<br />

—do— brown red argillasepic A1 (MM)<br />

><br />

ID<br />

m<br />

■D<br />

z<br />

D<br />

X<br />

Castenedolo profile (8)<br />

B31 t<br />

III B21<br />

III B22<br />

poorly<br />

sorted<br />

Q + F s<strong>and</strong><br />

Q s<strong>and</strong><br />

-do-<br />

CH (C)<br />

CH (FF)<br />

-do-<br />

vughs <strong>and</strong><br />

planes (C)<br />

ortovughs<br />

(F)<br />

vughs (C)<br />

planes (F)<br />

channels (F)<br />

poFphy- reddish argillasepic A1 (CC) Fe Mn nodu- —<br />

roskelic brown (<strong>in</strong>sepic) AS (5) les (C)<br />

-do- dark brown undulic<br />

A7 (F)<br />

papules (F)<br />

A1 (FF) B1(C) — Fe Mn no- isotubules (C)<br />

-do- red undulic<br />

A7 (CC) dules (C) micropedality<br />

A1 (F) — — papules (F) —<br />

(argillasepic) disturbed


Solfer<strong>in</strong>o profile (9)<br />

Skeleton Lithorelicts Pedorelicts Voids Basic fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

A ll poorly sorted polylitho- — metavughs porphy- dark brown mullicol — — C2(F) — fecal<br />

s<strong>and</strong> <strong>and</strong> silt logic (C) (M) roskelic (silasepic) pellets (F)<br />

channels (M)<br />

II A12 —do- —do— — vughs(M) —do— dark brown silasepic — — — Fe-Mn no- —<br />

dulcs (F)<br />

II B31 —do- -do- — vughs(C) —do- clear brown silasepic A1(F) - — —do—<br />

—<br />

channels (C) <strong>in</strong>sepic stress<br />

cutans (F)<br />

II Cca —do- -do- — elongated <strong>in</strong>tertextic grey cry Stic — — Cl (M) — —<br />

but (M) vughs(C) b<strong>and</strong>ed fabric T3 ><br />

r~<br />

m<br />

O O)<br />

Ca* Pegoroni profile (13)<br />

O 1“<br />

B2 poorly charcoal (C) — chambers (F) porphy- brown <strong>in</strong>sepic A8 (FF) — — Fe-Mn no- — > z<br />

sorted silt channels (C) roskelic dules (F) a<br />

CaC03 <<br />

nodules (F)<br />

H C<br />

—<br />

II B2t -do- — — channels (CC) —do- reddish schel-vo- A l (C) - — — ÜD<br />

-masepic A2(C) 1”<br />

CO<br />

z<br />

Casa tico Neolithic pit profile (14)<br />

B22t -do- CH + pottery — metadiambers 1 -do- brown masepic Al (C) - — Fe-MN no-<br />

. _<br />

fragments (CC) A2(C) dules (F) X<br />

(F) channels (CC) A8(F) r"<br />

“0<br />

o<br />

Tl<br />

1“<br />

><br />

H<br />

X<br />

m<br />

o<br />

m<br />

z<br />

IV Pit profile (14)<br />

A12<br />

-do-<br />

charcoal<br />

Met -1- Q<br />

(C)<br />

chambers<br />

(CC)<br />

—do— dark/brown silasepic papules (FF)<br />

Fe-Mn nodules<br />

(F)<br />

CaC03<br />

nodules (C)<br />

isotubules<br />

(Q<br />

><br />

T3<br />

g<br />

X<br />

1profile (14)<br />

-do-<br />

vughs(C)<br />

channels (C)<br />

chambers (C)<br />

—do- brown silasepic Cl (C)<br />

C2 (C)<br />

-do-<br />

B21 t<br />

II B22 tx<br />

III B21 t<br />

le (15)<br />

moderately<br />

sorted<br />

Q + C-l-M<br />

s<strong>and</strong> <strong>and</strong><br />

silt<br />

-do-<br />

very<br />

poorly<br />

sorted<br />

Q s<strong>and</strong><br />

Q + CH<br />

(F)<br />

porphyroskelic<br />

-docharcoal<br />

(F)<br />

CH + Met +<br />

+ Q (MM)<br />

from IV<br />

B22 t (C)<br />

metavughs<br />

(C)<br />

channels<br />

chambers<br />

(FF)<br />

clear brown <strong>in</strong>sepic A1 (M) —<br />

A5 (M)<br />

papules<br />

(C)<br />

— vughs (CC) -do- -do- -do- -do- — — Fe-Mn nodules<br />

(F)<br />

channels (C) -do- red brown schel-vo- A1 dist. (M) B2 (F)<br />

Fe-Mn nodules<br />

chambers (C)<br />

-masepic A5 (C)<br />

(C)<br />

planes (F)<br />

papules (CC)<br />

—<br />

Camparada profile (16)<br />

B21<br />

moderately<br />

sorted<br />

Q + F + M<br />

s<strong>and</strong> <strong>and</strong><br />

silt<br />

Q(F) channels (C) porphyro- clear brown<br />

metavughs skelic ox. > red.<br />

(F)<br />

<strong>in</strong>sepic<br />

A1(C)<br />

A5(F)<br />

— papules (C) areas of<br />

washed silt;<br />

fluidal<br />

patterns<br />

of mica gra<strong>in</strong>s


Skeleton<br />

gra<strong>in</strong>s<br />

II B22 -do- Q(FF) from<br />

III B22 (C)<br />

III B22 t<br />

poorly<br />

sorted<br />

Q s<strong>and</strong><br />

Lithorelicts Pedorelicts Voids Basic fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

polylithologic<br />

(C)<br />

IV B22 t (t) -do— Q + CH<br />

(C)<br />

IVB22t(b) -do-<br />

metavughs<br />

(CC)<br />

channels (F)<br />

chan\bers<br />

(CC)<br />

channels (CC)<br />

chambers<br />

(CC)<br />

-do- clear brown vomasepic A5 (C)<br />

A1(C)<br />

-do- red brown argillasepic<br />

(<strong>in</strong>sepic)<br />

A5,(MM<br />

A1(C)<br />

A7(F)<br />

— -do- -do- -do- argillasepic A1 A6 (C)<br />

A5 (C-F)<br />

-do- -do- -do- —do— argillasepic A1 dist. (M)<br />

(undulic) A2(C)<br />

papules (F)<br />

Fe Mn nodules<br />

(C)<br />

Fe-Mn nodules<br />

(C)<br />

—do-<br />

CD<br />

JS.<br />

Cemusco profile (17)<br />

“ D<br />

II B22 t<br />

poorly<br />

sorted<br />

Q + F s<strong>and</strong><br />

CH(C)<br />

■<br />

channels (C)<br />

chambers (C)<br />

planes (C/F)<br />

-do- -do- argillasepic<br />

(<strong>in</strong>sepic)<br />

A1 (C) dist.<br />

A5(M)<br />

A7 (F)<br />

B1(C)<br />

■<br />

Fe-Mn nodules<br />

(F)<br />

papules (C)<br />

■<br />

1“<br />

m<br />

O<br />

CO<br />

O<br />

III B3I t(t) -do- poly lithologic<br />

(M)<br />

III B3I t(b) -do- CH + Q<br />

(CC)<br />

III B32 t —do- poly lithologic<br />

(M)<br />

Bivio MissagUa profile (18)<br />

II B21 tx<br />

moderately<br />

sorted<br />

Q + F + M<br />

s<strong>and</strong> <strong>and</strong> silt<br />

channels <strong>and</strong><br />

chambers (C)<br />

— -do- -do— -do- skel-vo-<br />

-masepic<br />

channels (M) <strong>in</strong>tertextic reddish skelsepic<br />

brown<br />

metavughs<br />

(F )<br />

porphiroskelic<br />

A1(C)<br />

AS (C)<br />

clear brown mosepic A1(C)<br />

A5 (M)<br />

A6 (C)<br />

A7 (F)<br />

—do- brown vo-mosepic A1 (M)<br />

A5 (M)<br />

A7(F)<br />

A6 (F)<br />

—do-<br />

A1 (CC) B2(C) — Fe-Mn nodules<br />

papules (F)<br />

—<br />

— Fc-Mn nodu- fluidal<br />

les (C) pattern<br />

papules (C) of micas<br />

a<br />

CO<br />

z<br />

m<br />

b m<br />

X I<br />

><br />

“Ö<br />

O<br />

"D<br />

I“<br />

><br />

III B23 t<br />

IV B24 t<br />

VB31 t<br />

—do- — — metavughs<br />

(F)<br />

-dobut<br />

lees<br />

sorted<br />

very poorly<br />

sorted<br />

Q + F s<strong>and</strong><br />

Q + CH<br />

(Q<br />

polylithologic<br />

(M)<br />

— metavughs<br />

channels (F)<br />

planes (F)<br />

rounded<br />

frag, isotic<br />

plasma (F)<br />

-do- -do- -do- A2/A1 (M)<br />

A5 (M)<br />

A7(F)<br />

-do- —do- (bi) masepic A2 (F)<br />

A5 (CC)<br />

-do- -do- reddish<br />

brown<br />

A7(C)<br />

A1 (CC)<br />

A5 (CC)<br />

><br />

"D<br />

"D<br />

m<br />

z<br />

o<br />

—do- —do- X<br />

Ü1<br />

— — -do— -dowashed<br />

silt<br />

vo-mo-skelsepic<br />

-doprofile<br />

(19)<br />

II B21 tx<br />

II B22t<br />

moderately<br />

sorted<br />

Q + F<br />

s<strong>and</strong> + silt<br />

—do—<br />

Q(F),<br />

charcoal<br />

(H)<br />

charcoal<br />

(F)<br />

— metavughs<br />

(F)<br />

— metavughs<br />

(Q<br />

channels (C)<br />

planes (C/F)<br />

porphyroskelic<br />

clear brown <strong>in</strong>sepic A1 (F/C)<br />

A5(C)<br />

A6 (F)<br />

Fe-Mn nodules<br />

(C)<br />

papules (C)<br />

-do- -do- -do- -do- -do—<br />

fluidal<br />

pattern<br />

of micas<br />

Ronco Br. profile (20)<br />

m<br />

111 B31 t —do- Q + CH<br />

(C)<br />

III B32 t -do- poly lithologic<br />

(CC)<br />

— channels (C)<br />

chambers (C)<br />

—<br />

—do-<br />

reddishbrown<br />

vo-mosepic<br />

vughs(C)<br />

—do- -do- brown <strong>in</strong>sepic<br />

(argillasepic)<br />

A1 (M)<br />

A5(M)<br />

AI(C)<br />

A5(C)<br />

— -do—<br />

B2 (F) — Fe-Mn nodules<br />

(F)<br />

Copreno profile (21)<br />

C2<br />

moderately<br />

sorted<br />

Q + M + F<br />

s<strong>and</strong><br />

— — vughs(FF) granular<br />

(<strong>in</strong>terxtic)<br />

red clear argillasepic<br />

yellow<br />

ox; brown<br />

b<strong>and</strong>ed fabric<br />

AI(F)<br />

A6 (F)<br />

B2 (F) — —


II B21 t<br />

Skeleton<br />

gra<strong>in</strong>s<br />

poorly<br />

sorted<br />

Q + M s<strong>and</strong><br />

Lithorelicts Pedorelicts Voids Bacis fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

vughs(C)<br />

porphyroskelic<br />

reddish<br />

brown<br />

<strong>in</strong>sepic AI(C) papules (C)<br />

CO<br />

O)<br />

Robbiate profile (22)<br />

B31t<br />

-do-<br />

chambers<br />

(CC)<br />

channels (C)<br />

-do— clear brown silasepic A1 (F/C)<br />

A4 (F)<br />

AS (FF)<br />

papules (F)<br />

Bagaggera profile 1 (23)<br />

II B21 t<br />

poorly<br />

sorted<br />

Q s<strong>and</strong><br />

III B21 t -do— angular<br />

Q(C)<br />

rounded<br />

fragments<br />

from III B21<br />

<strong>and</strong> IV B22<br />

(M)<br />

metavughs<br />

(C)<br />

planes (C)<br />

channels (F)<br />

metavughs<br />

(F)<br />

porphyroskelic<br />

-do—<br />

clear brown<br />

ox: brown<br />

red: pale<br />

yellow<br />

silasepic<br />

(<strong>in</strong>sepic)<br />

ox: argillasepic<br />

red: vo-mosepic<br />

bi-masepic<br />

-do— -do- ox: <strong>in</strong>sepic<br />

red masepic<br />

A1(C)<br />

AS (CC)<br />

A1 (M)<br />

A2 (F)<br />

AS (C)<br />

A1(C)<br />

AS (M)<br />

IV B21 t -do- — — —do— -do— -do- -do— A1(C)<br />

AS(C)<br />

IV B22 t —do— angular Q<br />

<strong>and</strong> CH<br />

V B3<br />

VCg<br />

well sorted<br />

Q coarse<br />

s<strong>and</strong><br />

Q + F wea<strong>the</strong>red<br />

coarse s<strong>and</strong><br />

rounded channels (C)<br />

fragments wide metafrom<br />

VB3 (M) vughs(C)<br />

metavughs<br />

(C)<br />

papules (M)<br />

Fe-Mn nodules<br />

(F)<br />

areas of<br />

washed<br />

silt<br />

TJ<br />

><br />

1“<br />

m<br />

O<br />

CO<br />

papules (M) 1”<br />

CO<br />

><br />

z<br />

o<br />

<<br />

— — papules (C) areas of<br />

washed silt<br />

CO<br />

z<br />

—do-<br />

H<br />

—do— —do— -do- -do- I<br />

m<br />

o<br />

m<br />

red-brown undulic AI (FF) B2 (C) H JJ>1“<br />

III B22 t -do- -do- -doplanar<br />

distributions<br />

agglomeroplasmic<br />

—do- -do- mycrocristall<strong>in</strong>e<br />

cry Stic<br />

silans (F),<br />

A7 (F)<br />

B2 (F)<br />

m<br />

H<br />

C<br />

CO<br />

o<br />

O<br />

Tl<br />

r~<br />

><br />

Z<br />

Bagaggera profile 2 (23)<br />

B1<br />

II B21 tx<br />

II B22 t<br />

III B21 t<br />

III B22 t<br />

moderately —<br />

sorted<br />

Q <strong>and</strong> M silt<br />

-do- charcoal (C)<br />

poorly<br />

sorted<br />

0 s<strong>and</strong><br />

angular<br />

Q<br />

(C)<br />

metavughs agglome- clear brown silasepic<br />

(C) roplasmic<br />

-dochannels<br />

(FF)<br />

metavughs<br />

(C)<br />

vughs(C)<br />

planes (C)<br />

— vughs(M)<br />

planes (C)<br />

channels (C)<br />

-do- -do- vughs(C)<br />

channels (C)<br />

porphyroskelic<br />

—do-<br />

ox: brown<br />

red: yellow<br />

ox: <strong>in</strong>sepic<br />

red: skelsepic<br />

masepic<br />

—do-<br />

-do- -do- a little<br />

redder<br />

A1(C)<br />

A6 (M)<br />

A1(C)<br />

A6 (M)<br />

bi-masepic<br />

-do- brown masepic A2 (M)<br />

AS (F)<br />

A7(F)<br />

B1(C)<br />

A5(M)<br />

sesquans<br />

(F)<br />

—do-<br />

neosesquans<br />

(Q<br />

Fe-Mn nodules<br />

(F)<br />

papules (C) fluí dal<br />

nodules Fe patterns<br />

Fe Mn (F) of naica gra<strong>in</strong>s<br />

papules —<br />

Fe Mn nodules<br />

(C)<br />

papules (C)<br />

Fe-Mn nodules<br />

(C)<br />

area of<br />

washed<br />

silt<br />

><br />

“D<br />

■0<br />

m<br />

z<br />

o<br />

X<br />

C7I<br />

profile 3 (23)<br />

IV B23 t<br />

V B1<br />

VI B21 t<br />

VII B21 t<br />

VIII B2 t<br />

poorly<br />

sorted<br />

Q -t- F s<strong>and</strong><br />

moderately<br />

sorted<br />

Q-t-M + F<br />

s<strong>and</strong> <strong>and</strong> silt<br />

-do-<br />

CH + Q +<br />

+ Met (M)<br />

— metavughs<br />

(C)<br />

— — vughs(FF)<br />

channels (F)<br />

-do- Q + CH (F) rounded<br />

fragments<br />

VIII B2 (F)<br />

metavughs<br />

(Q<br />

channels (F)<br />

vughs(C)<br />

-do- Q + CH (M) planes (C)<br />

channels (C)<br />

vughs (C)<br />

porphyroskelic<br />

ox ./red.<br />

brown<br />

yellow<br />

vo-mascpic<br />

A1 (M)<br />

A2 (M)<br />

—do- pale brown silasepic A1 (FF)<br />

A2 (FF)<br />

-do- ox ./red.<br />

brown<br />

yellow<br />

<strong>in</strong>sepic<br />

—do- strong brown masepic<br />

(unistrial)<br />

A1(C)<br />

A7(C)<br />

A1(C)<br />

A5(C)<br />

A7(C)<br />

—do- -do— masepic A1 (M)<br />

AS (M)<br />

— —<br />

Fe-Mn nodules<br />

(FF)<br />

Fe-Mn noduies<br />

(C)<br />

_<br />

_<br />

Fe-Mn no- —<br />

duies (C)<br />

papules (C) —


Tiepido profile (24)<br />

Skeleton Lithorelicts Pedorelicts Voids Bads fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

gra<strong>in</strong>s<br />

features<br />

II B21 t poorly CH(FF) — channels (F) porphy- dark brown masepic A5 (F) — — Fe-Mn no- —<br />

sotted vughs(F) roskelic A8 (F) dules (CC)<br />

Q s<strong>and</strong> (C)<br />

11 B22 t —do— CH + Q (F) — channels (C) —do- —do- —do— A1(F) B1 (F) — -do- micropechambers<br />

(C) A4(F) dality<br />

II B31 t -do— Q + CH + — -do- -do- —do- argillasepic Al (M) B2(F) — —do-<br />

—<br />

+ SA + 0 but (M)<br />

(M)<br />

Ghiardo Vigneto profile (26)<br />

II B2I t poorly Q(FF) — channels (C) porphy- brown ox. = argüía- Al (M) — — Fe-Mn no- —<br />

sorted chambers (C) roskelic red. > ox. sepi A2(C) dules (F)<br />

Q s<strong>and</strong> planes (C) red. = vo- A5(C) papules (C)<br />

masepic A8(C)<br />

III B22 t -do- Q(F) — -do- —do- brown -do— -do- — — -do-<br />

—<br />

yellow<br />

red. = ox.<br />

III B31 t -do- Q + CH (C) — -do- -do- brown ox. = argüía- A1(C) — — -do- —<br />

yellow sepic <strong>in</strong>se- A2(M)<br />

red. > ox. pie, red.= A5(M)<br />

bimasepic A8 (C)<br />

m B32 t —do- polylitho-<br />

—<br />

channels (CC) —do- —do— -do- A l (MM)<br />

—<br />

— papules —<br />

logic (M) chambers (CC) deformed<br />

><br />

1“<br />

m<br />

a><br />

O<br />

O 1“<br />

Ü3 >ZO<br />

■0<br />

Ronco profile (27)<br />

III B21 t poorly rounded — vughs(C) porphy- dark red ox: argüía- Al (CF) — C1 <strong>in</strong> papules (F) —<br />

sorted chert channels + roskelic ox. > red. sepic, red: A2 (CC) pores (C)<br />

Q s<strong>and</strong> (C) (FF) chambers (C) bi-masepic A5(C)<br />

o<br />

-D<br />

> ■D<br />

-ü<br />

g<br />

X<br />

Rex profile (28)<br />

III B22 t —do- skew <strong>and</strong> -do- -do- masepic A2 (F) -do— Fe-Mn noducra2e<br />

les (C-M)<br />

planes (C)<br />

papules (F)<br />

— —<br />

IV B22 t -do- Q + CH (F) (FF) vughs (C) reddish —do— A1(C) — —<br />

ox. < red.<br />

A2(C)<br />

—<br />

IV B31 t -do- polylitho- — channels + — red <strong>and</strong> -do- Al (MM) — — papules<br />

logic (M) chambers (C) yellow<br />

A5 (M)<br />

(C-M)<br />

ox. = red.<br />

IV Cea -do- -do- — vughs(F) — spartitic crystic<br />

III B21 t poorly Q + CH — channels + porphy- clear brown (bi)masepic A2(C) B2 (F) — Fe-Mn nodu- —<br />

sorted (FF) chambers + roskelic ox. > red. A8 (CC) les (C)<br />

IV B31 t<br />

Q s<strong>and</strong><br />

vughs (CC)<br />

-do- polyli- — —do— -do- clear ox. = <strong>in</strong>sepic Al (M)<br />

thologic (C) brown red. = (bi) A5 (CC)<br />

— — -do- —<br />

ox. = red. masepic<br />

—<br />

IV B32 t -do- -do- — wide —do- brown argillasepic -do- — — —dochannels<br />

(<strong>in</strong>sepic) A7 (C7)<br />

chambers<br />

vughs (CC)<br />

IV Cea -do- —do- — wide -do- micro- crystic — — C1 +C2 -do— —<br />

but (M)<br />

channels<br />

granular<br />

many<br />

chambers<br />

vughs (C)<br />

Ghiardo Cave profile (29)<br />

A2 moderatly<br />

___ __ metavughs porphy- light brown silasepic A1(F) — — papules (C) isotubules<br />

sorted (C) roskelic <strong>in</strong>sepic A2(F) Fe-Mn no-<br />

Q + F + M<br />

vesicles (C)<br />

dules (C)<br />

s<strong>and</strong> <strong>and</strong> silt<br />

—<br />

II B21 t -do- — — metavughs -do- brown/ycUow' vo-masepic A2(C) neostrians Fe-Mn nodu-<br />

(C) b<strong>and</strong>ed les (C)<br />

planes (C)<br />

fabric


Skeleton<br />

gra<strong>in</strong>s<br />

Lithorelicts Pedorelicts Voids Bads fabric Plasma Plasmic fabric Cutans A Cutans B Cutans C Glabulae O<strong>the</strong>r<br />

features<br />

Il B23 en —do— angular — skew -do- light (bi)masepic A2 (F) — — Fe-Mn nodu-<br />

—<br />

Q(F) planes <strong>and</strong> yellow A1(F) les <strong>and</strong><br />

metavughs brown A6 (F) concentra-<br />

-do- (C) A8 (C) tions (MM)<br />

III B24 but poorly — — skew pla- -do— yellow/ -do- — B1(F) — Fe-Mn nodu- —<br />

sorted nes (C) brown les (M)<br />

ox. = red.<br />

Settimo profile (35)<br />

Ap poorly CH + SA — channels (C) porphy- clear silasepic — — — Fe-Mn nodu- isotubusorted<br />

(Q planes (C) roskelic brown (mullicol) les allochto- les (C)<br />

Q + F s<strong>and</strong> vughs(C) nous (F)<br />

II B2 —do- -do- — vughs (F) -do- —do— <strong>in</strong>-skel- A1 (FF) — — Fe-Mn no- —<br />

channels (C) vosepic dules (C)<br />

III B3 t -do- polyli- — planes (C) -do- brown argillasepic Al (M)<br />

—<br />

— Fe-Mn nodu- —<br />

thologic channels (C) (vo-masepic) A4 (F) les (C)<br />

Melotta profile (37)<br />

A2 moderately — — metavughs <strong>in</strong>tertextic ox. —<strong>in</strong>sepic ox. = <strong>in</strong>sepic Al (FF) — — papules (F) isotusorted<br />

(CC) red. —pale red. = siia- A5(C) Fe-Mn nodu- bules (F)<br />

silt yellow sepic A6 (CC) les (F)<br />

red. > ox.<br />

B21 X -do- — — ortovughs <strong>in</strong>tertextic —do- <strong>in</strong>sepic A2 (F) B1 (F) — -do- isotu-<br />

(C) porphy- A6 (C) bules (F)<br />

roskelic<br />

A5(F)<br />

B 22 t —do- — — chambers porphy- ox. = red. bi-masepic Al (FF) B1 (C) — Fe-Mn nodu- —<br />

channels roskelic A8 (CC) les (F)<br />

(CC)<br />

vughs (F)<br />

“O<br />

><br />

o<br />

CO<br />

o<br />

CO<br />

I”<br />

><br />

Z<br />

D<br />

<<br />

m<br />

H<br />

C<br />

CO<br />

o<br />

X<br />

m<br />

o<br />

m<br />

X<br />

><br />

I“<br />

TJ<br />

O<br />

"D<br />

I“<br />

><br />

><br />

"D<br />

-D<br />

g<br />

X<br />

B23 en -do— channels (C)<br />

vughs (CC)<br />

II Cgca<br />

well<br />

sorted<br />

Q-t-F silt<br />

—do-<br />

—do—<br />

but<br />

ox. > red.<br />

Q(F) planes (F) —do— yellowish<br />

brown<br />

argillasepic<br />

(<strong>in</strong>sepic)<br />

bi-masepic<br />

(om<strong>in</strong>isepic)<br />

A2 (C) B2 (C) Fe-Mn,nodu<strong>and</strong><br />

concentrations<br />

(MM)<br />

Fe-Mn nodu- -<br />

les (FF)<br />

Collecchio profile (44)<br />

A2<br />

moderately<br />

sorted<br />

Q 4- F f<strong>in</strong>e<br />

s<strong>and</strong> <strong>and</strong><br />

coarse silt<br />

vughs (C)<br />

channels (C)<br />

B ll —do— —do—<br />

but more<br />

vughs<br />

B12 en -do- Q fragment<br />

(FF)<br />

II B21 t poorly charcoal<br />

sorted (F)<br />

Q + F s<strong>and</strong><br />

II B22 t<br />

<strong>in</strong>tertextic<br />

porphyroskelic<br />

clear<br />

brown<br />

silasepic<br />

— -do- -do- dark brown masepic A1 (C)<br />

A5(F)<br />

channels (C) —do— brown ox. = argillasepic,<br />

A1 (M)<br />

chambers<br />

ox. —red.<br />

red.= broken<br />

(CC)<br />

—bimasepic<br />

planes (C)<br />

channels (C)<br />

chambers (C)<br />

-do—<br />

Fe-Mn nodules<br />

(C)<br />

ox/red.<br />

alternat<strong>in</strong>g<br />

lam<strong>in</strong>ar<br />

pattem<br />

—do-<br />

ox. = A1 (C)<br />

broken A1 (M)<br />

red, = A8 (C)<br />

A6 (C)<br />

-do- <strong>in</strong>sepic A1 (F) Fe-Mn nodules<br />

(C)<br />

papules (C)<br />

B2 (C)<br />

Fe-Mn nodules<br />

(M)<br />

papules (M)


APPENDIX 7: Prehistoric cultures <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy from Early Palaeolithic to Neolithic.<br />

In <strong>the</strong> present <strong>in</strong>vestigations <strong>the</strong> abundant archaeological materials found <strong>in</strong> <strong>the</strong> area studied,<br />

have been used to date <strong>the</strong> stratigraphic sequences <strong>in</strong> which <strong>the</strong>y occur. In order to justify <strong>the</strong><br />

chronostratigraphic significance attributed to <strong>the</strong>se materials, a general outl<strong>in</strong>e will be presented of<br />

<strong>the</strong> successive prehistoric cultures from <strong>the</strong> Middle Pleistocene onward. This outl<strong>in</strong>e is based on<br />

recent literature to which is referred for detailed <strong>in</strong>formation. The palaeoethnological <strong>and</strong> palaeoanthropological<br />

implications of <strong>the</strong> archaeological materials will not be discussed as such topics<br />

are beyond <strong>the</strong> scope of this <strong>the</strong>sis.<br />

Early Palaeolithic. The strong wea<strong>the</strong>r<strong>in</strong>g to which <strong>the</strong> sites of this age were subjected caused<br />

<strong>the</strong> disappearance of all but <strong>the</strong> lithic artifacts. These, although sometimes not <strong>in</strong> situ, represent <strong>the</strong><br />

only traces of <strong>the</strong> Early Palaeolithic cultures. Only <strong>in</strong>cidentally (<strong>Cremaschi</strong> <strong>and</strong> Christopher, 1984)<br />

it has been possible to recognize some structures <strong>and</strong> hearths associated with <strong>the</strong> artifacts. At<br />

present, on <strong>the</strong> basis of <strong>the</strong>ir different geological position <strong>and</strong> different typology, two groups can<br />

be recognized <strong>in</strong> <strong>the</strong> assemblages of lithic artifacts from <strong>the</strong> Early Palaeolithic (<strong>Cremaschi</strong> <strong>and</strong><br />

Peretto, 1977; Coltorti et alii, 1982):<br />

1) Assemblage of flakes of Clactonian <strong>and</strong> Protolevalloisian technique associated with h<strong>and</strong>axes. Some artifacts<br />

come mostly from <strong>the</strong> Middle Pleistocene alluvial fans of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> from <strong>the</strong> Late<br />

Tertiary plateau of <strong>the</strong> Less<strong>in</strong>i Mounta<strong>in</strong>s (Monte Gazzo <strong>and</strong> Ca Palui); <strong>the</strong>y are embedded <strong>in</strong> a<br />

polygenetic soil of <strong>the</strong> «Terra Rossa» type (Magaldi <strong>and</strong> Sauro, 1982).<br />

The assemblage consists of large Clactonian flakes with smooth <strong>and</strong> flat or corticate platform<br />

as well as of o<strong>the</strong>r artifacts, among which blades made with <strong>the</strong> Protolevalloisian technique. Massive<br />

h<strong>and</strong>axes with wav<strong>in</strong>g edges have been collected <strong>in</strong> association with this assemblage.<br />

In Italy numerous examples exists of similar <strong>in</strong>dustries, like <strong>the</strong> Gargano assemblages (Palma<br />

di Cesnola, 1967, 1971) <strong>and</strong> those of Valle Giument<strong>in</strong>a <strong>and</strong> Madonna del Freddo (Abruzzo)<br />

(Ramilli, 1982, 1974). Never<strong>the</strong>less <strong>the</strong>re are no good dat<strong>in</strong>gs for this group of assemblages: <strong>the</strong><br />

stratigraphic position <strong>in</strong>dicates a Middle Pleistocene age. Similar artifacts have been found <strong>in</strong> <strong>the</strong><br />

Pleistocene sequence of Fontana Ranuccio (Lazio); tuff layers associated with <strong>the</strong>se artifacts have<br />

been dated to 458.000 Y.BP by K/Ar analyses (Peretto <strong>and</strong> Piperno, 1985; Segre et alii, 1982).<br />

2) Industry of Eevallois technique on flakes associated with h<strong>and</strong>axes. This assemblage has been found <strong>in</strong><br />

hundreds of sites at <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge <strong>and</strong> has also been recorded <strong>in</strong> <strong>the</strong> Less<strong>in</strong>i Mounta<strong>in</strong>s, <strong>in</strong><br />

<strong>the</strong> Qu<strong>in</strong>zano quarries <strong>and</strong> at Gazzo Veronese (<strong>Cremaschi</strong> <strong>and</strong> Peretto, 1977; Peretto, 1984). It is<br />

systematically associated with late Middle Pleistocene loesses or with o<strong>the</strong>r <strong>in</strong>dications of a steppe<br />

environment (<strong>Cremaschi</strong>, 1979; <strong>Cremaschi</strong> <strong>and</strong> Christopher, 1984).<br />

Typologically <strong>the</strong> assemblage is characterized by <strong>the</strong> «debitage Levallois». It consists of artifacts<br />

on flakes, of discoidal cores <strong>and</strong> of h<strong>and</strong>axes. The tools are ma<strong>in</strong>ly made from non-Levallois<br />

flakes <strong>and</strong> consist of side-scrapers, lateral <strong>and</strong> latero-transversal scrapers. Rarer are <strong>the</strong> nockfed<br />

flakes, <strong>the</strong> Tajac <strong>and</strong> Qu<strong>in</strong>son po<strong>in</strong>ts <strong>and</strong> a small group of leptolithic artifacts (end-scrapers <strong>and</strong><br />

multiple detachment bur<strong>in</strong>s). The discoidal cores occur <strong>in</strong> large numbers. The h<strong>and</strong>axes are always<br />

very rare but, <strong>in</strong> comparison with <strong>the</strong> above mentioned assemblage, <strong>the</strong>y are th<strong>in</strong>ner <strong>and</strong> have<br />

rectil<strong>in</strong>ear edges.<br />

Similar lithic assemblages are well known <strong>in</strong> Central <strong>and</strong> Sou<strong>the</strong>rn Italy (Radmilli, 1974; Palma<br />

di Cesnola, 1967), <strong>and</strong> can be compared with those of Sou<strong>the</strong>rn France (Les Salons, Fontaseche)<br />

(De Lumley, 1971), of <strong>the</strong> Massif Central (Orgnac) (Combier, 1976) <strong>and</strong> of <strong>No</strong>r<strong>the</strong>rn France


304 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

(Vallée de la Senne) (Tuffreau, 1976). Although geochronometric dat<strong>in</strong>gs are lack<strong>in</strong>g, <strong>the</strong>se assemblages<br />

are generally dated as late Middle Pleistocene (Late Riss) on <strong>the</strong> basis of <strong>the</strong> geological<br />

context.<br />

r «feel's^<br />

Middle Palaeolithic. The beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> Middle Palaeolithic, accord<strong>in</strong>g to several authors<br />

(Valoch, 1971; Chal<strong>in</strong>e, 1972; Broglio, 1984) is placed <strong>in</strong>side <strong>the</strong> Riss-Würm <strong>in</strong>terglacial («Eemian»).<br />

Several sites belong<strong>in</strong>g to <strong>the</strong> Mousterian culture are known <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy. They are<br />

very rare <strong>in</strong> <strong>the</strong> Lombard Alp<strong>in</strong>e <strong>and</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ges, <strong>and</strong> are clearly concentrated <strong>in</strong> <strong>the</strong> Less<strong>in</strong>i<br />

plateau <strong>and</strong> <strong>in</strong> <strong>the</strong> Berici hills (Veneto region), <strong>in</strong> open-air as well <strong>in</strong> rock shelters (Peretto, 1984).<br />

These sites provided thick <strong>and</strong> complex stratigraphic sequences <strong>in</strong> which fl<strong>in</strong>t artifacts are associated<br />

with faunal remnants <strong>and</strong> archaeological structures (liv<strong>in</strong>g floor, chipp<strong>in</strong>g areas, hearth...).<br />

Among <strong>the</strong> most important sites, explored from <strong>the</strong> n<strong>in</strong>eteen sixties onward <strong>and</strong> still under<br />

<strong>in</strong>vestigation, are <strong>the</strong> shelters of <strong>Po</strong>nte di Veia, Mexzena, Tagliente, Zampieri <strong>and</strong> <strong>the</strong> Broion <strong>and</strong> S.<br />

Bernard<strong>in</strong>o caves (Broglio, 1984b; Bartolomei <strong>and</strong> Broglio, 1964; Leonard! <strong>and</strong> Broglio, 1965;<br />

Broglio, 1964; Peretto, 1984). Sedimentological, paleopedological, paleontological <strong>and</strong> palynological<br />

<strong>in</strong>vestigations on <strong>the</strong> archaeological strata fill<strong>in</strong>g <strong>the</strong> shelters, <strong>in</strong>dicate that Middle Palaeolithic<br />

cultures were confronted with a major environmental change, which took place dur<strong>in</strong>g <strong>the</strong> first<br />

part of <strong>the</strong> Late Pleistocene, i.e. from a temperate forest to a cold <strong>and</strong> dry steppe with loess<br />

sedimentation (Bartolomei et alii, 1982; Cattani, 1976; Cattani <strong>and</strong> Miskowky, 1984).<br />

The Middle Palaeolithic period is characterized by <strong>the</strong> spread<strong>in</strong>g of <strong>the</strong> Mousterian cultures.<br />

Its lithic technique differs from <strong>the</strong> older ones by <strong>the</strong> absence (or very rare occurrence) of<br />

h<strong>and</strong>axes, by a more limited occurrence of <strong>the</strong> levallois technique, by a generally smaller size of <strong>the</strong><br />

artifacts <strong>and</strong> by more frequent occurrence of retouched artifacts, made by simple or (more rarely)<br />

by «écaillé» retouche.<br />

The tools consist of po<strong>in</strong>ts <strong>and</strong> scrapers (lateral, rectil<strong>in</strong>ear, transversal <strong>and</strong> déjeté), car<strong>in</strong>eted<br />

tools (limaces), nocked artifacts <strong>and</strong> to a lesser extent leptolithic tools (bur<strong>in</strong>s <strong>and</strong> end-scraprer).<br />

The analyses of <strong>the</strong> Veneto pluristratigraphic sequences has shown that an evolutionary trend exists<br />

<strong>in</strong> <strong>the</strong> Mousterian lithic assemblages <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy (Broglio, 1948a; Peretto, 1984). The oldest<br />

assemblages show a still ra<strong>the</strong>r high «debitage Levallois» which progressively decreases <strong>and</strong> almost<br />

disappears <strong>in</strong> <strong>the</strong> more recent levels. The percentage of nocked artifacts, on <strong>the</strong> contrary, <strong>in</strong>creases<br />

<strong>in</strong> time <strong>and</strong> <strong>the</strong>ir <strong>in</strong>creased presence characterizes <strong>the</strong> more recent phases. While Leonard! <strong>and</strong><br />

Broglio (1965) correlated <strong>the</strong> Mousterian cultures with <strong>the</strong> French ones by recogniz<strong>in</strong>g a «Charentien<br />

oriental» <strong>and</strong> a «La Qu<strong>in</strong>a Mousterien», <strong>in</strong> more recent studies <strong>the</strong> same authors as well as<br />

o<strong>the</strong>rs (Peretto, 1984), prefer to stress <strong>the</strong> <strong>in</strong>dividuality of <strong>the</strong> <strong>No</strong>r<strong>the</strong>rn Italian Mousterian culture.<br />

Only two radiocarbon dat<strong>in</strong>gs are available for <strong>the</strong> Mousterian sites of this region. They refer<br />

to charcoals of <strong>the</strong> hearths of <strong>the</strong> level I of <strong>the</strong> Broion cave <strong>and</strong> have provided ages of 46,400 ±<br />

1500 <strong>and</strong> 40,000 ± 1270 BP (Broglio, 1964b).<br />

Upper Palaeolithic. As <strong>in</strong> most of Central <strong>and</strong> Western Europe, <strong>the</strong> appearance of <strong>the</strong> Upper<br />

Palaeolithic cultures <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy concides with <strong>the</strong> Denekamp-Arcy <strong>in</strong>terstadial (Broglio,<br />

1984a). The distribution of <strong>the</strong> sites from this period roughly co<strong>in</strong>cides with that of Mousterian<br />

sites.<br />

A few assemblages of Upper Palaeolithic artifacts have been found dur<strong>in</strong>g <strong>the</strong> fieldwork for<br />

this <strong>the</strong>sis <strong>in</strong> <strong>the</strong> loesses of <strong>the</strong> western part of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

In <strong>the</strong> Riparo Tagliente, Upper Palaeolithic liv<strong>in</strong>g floors are particulary well, preserved<br />

(Guerreschi, 1983).<br />

From <strong>the</strong> palaeonvironmental po<strong>in</strong>t of view <strong>the</strong> Upper Palaeolithic hunter communities seem<br />

adapted to <strong>the</strong> steppe <strong>and</strong> prairie environments developed at <strong>the</strong> marg<strong>in</strong> of <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> dur<strong>in</strong>g <strong>the</strong><br />

last glacial stage of <strong>the</strong> Late Pleistocene. Dur<strong>in</strong>g <strong>the</strong> Late Glacial period, when glacial conditions<br />

only occurred <strong>in</strong>side <strong>the</strong> Alp<strong>in</strong>e cha<strong>in</strong>, a remarkable shift of sites to previously glaciated areas can<br />

be observed (Broglio et alii, 1983).<br />

The most dist<strong>in</strong>ctive characteristics of <strong>the</strong> lithic <strong>in</strong>dustries of <strong>the</strong> Upper Palaeolithic are <strong>the</strong><br />

prevalence of <strong>the</strong> lam<strong>in</strong>ar detachment technique, <strong>the</strong> wide occurrence of tools obta<strong>in</strong>ed with <strong>the</strong><br />

microlamellar detachment technique (bur<strong>in</strong>s, car<strong>in</strong>ated <strong>and</strong> scrapers) <strong>and</strong> <strong>the</strong> great differentiation<br />

of <strong>the</strong> tools (various types of bur<strong>in</strong>s, end-scrapers, truncations, bees, backed po<strong>in</strong>ts <strong>and</strong> bladed,<br />

backed geometries <strong>and</strong> foliated implements) (Broglio, 1984a).


APPENDIX 7 305<br />

Aurignacian artifacts, <strong>the</strong> oldest evidence for Upper Palaeolithic cultures presently know <strong>in</strong><br />

<strong>No</strong>r<strong>the</strong>rn Italy, have been found <strong>in</strong> <strong>the</strong> Tagliente shelter <strong>and</strong> <strong>in</strong> <strong>the</strong> Monte Avena settlement<br />

(Broglio, 1984a); <strong>in</strong> <strong>the</strong>se sites <strong>the</strong> lithic <strong>in</strong>dustry is characterized by «Dufours lamellesit <strong>and</strong> by<br />

ahiseaux» <strong>and</strong> (igravettesii as well as by car<strong>in</strong>ated end-scrapers.<br />

In <strong>No</strong>r<strong>the</strong>rn Italy local facies of <strong>the</strong> Italic Epigravettian are present which are parallels of <strong>the</strong><br />

Solutrean <strong>and</strong> Magdalenian cultures of Central Europe (Bisi et alii, 1983).<br />

In <strong>the</strong> Grotta Pa<strong>in</strong>a (Berici hills) (Bartolomei et alii, 1985) a Middle Epigravettian <strong>in</strong>dustry<br />

has been discovered; it is characterized by aGravettesii <strong>and</strong> by foliated <strong>and</strong> «cran» po<strong>in</strong>ts. The Late<br />

Epigrattian <strong>in</strong>dustry is much better documented. It comprises three subsequent lithic assemblages<br />

(Guerreschi 1983b, 1984). In <strong>the</strong> older one end-scrapers, especially <strong>the</strong> long types, prevail over<br />

bur<strong>in</strong>s; truncations <strong>and</strong> «microgravettes» are also abundant.<br />

On <strong>the</strong> contrary <strong>in</strong> <strong>the</strong> second phase end-scrapers short types ma<strong>in</strong>ly prevail over bur<strong>in</strong>s;<br />

truncations <strong>in</strong>crease as well as backed po<strong>in</strong>ts. Very rarely geometric implements are present.<br />

The third phase, <strong>in</strong> which end-scrapers still prevail over bur<strong>in</strong>s, is characterized by a strong<br />

<strong>in</strong>crease of <strong>the</strong> geometric backed implements. Microbur<strong>in</strong>s of <strong>the</strong> ord<strong>in</strong>ary type become abundant.<br />

The artifacts progressively decrease <strong>in</strong> size, while <strong>the</strong> st<strong>and</strong>ardisation of <strong>the</strong> geometric implements<br />

progressively improves. In <strong>the</strong> Riparo Tagliente site <strong>the</strong> associated hearths, from <strong>the</strong> first <strong>and</strong> <strong>the</strong><br />

second phase, date from (T 15) 13,430 ± 180 BP <strong>and</strong> (T 10-8) 12,040 ± 170 BP respectively<br />

(Bartolometi et aHi, 1983). The third phase, ma<strong>in</strong>ly present <strong>in</strong> <strong>the</strong> Alp<strong>in</strong>e sites, dates back to late<br />

Tardiglacial younger Dryas (<strong>Cremaschi</strong> <strong>and</strong> Lanz<strong>in</strong>gher, 1984).<br />

Mesolithic. The stratigraphic sequence at <strong>the</strong> site of Isola Santa (Biagi et alii, 1980) <strong>and</strong> <strong>the</strong><br />

Romagnano (Trento) suggests that <strong>the</strong> F<strong>in</strong>al Epigravettian <strong>in</strong>dustry developed <strong>in</strong> cont<strong>in</strong>uity <strong>in</strong>to<br />

<strong>the</strong> Early Mesolithic complex of <strong>the</strong> Preboreal <strong>and</strong> Early Boreal.<br />

The distribution of <strong>the</strong> Mesolithic sites <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy is completely different from that of<br />

<strong>the</strong> Upper Palaeolithic, due to <strong>the</strong> changed environmental conditions <strong>and</strong> to different subsistence<br />

strategies.<br />

In <strong>the</strong> mounta<strong>in</strong> areas, both <strong>in</strong> <strong>the</strong> Alps <strong>and</strong> <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>es, sites are distributed along<br />

passes <strong>and</strong> natural high mounta<strong>in</strong> routes, or near small lakes. These sites can mostly be <strong>in</strong>terpreted<br />

as short-lived seasonal camps. O<strong>the</strong>r sites, <strong>in</strong> <strong>the</strong> Serchio valley (Isola Santa <strong>and</strong> Piazzana) <strong>and</strong><br />

along <strong>the</strong> Adige Valley (Cera<strong>in</strong>o, Romagnano, Pra de Stel) (Biagi et alii, 1980; Broglio, 1983) can<br />

be <strong>in</strong>terpreted as base camps.<br />

In <strong>the</strong> <strong>Po</strong> Pla<strong>in</strong> <strong>the</strong> sites lie on top of <strong>the</strong> terraces, both at <strong>the</strong> Alp<strong>in</strong>e <strong>and</strong> at <strong>the</strong> Apenn<strong>in</strong>e<br />

marg<strong>in</strong>s, <strong>and</strong> have been sporadically buried by <strong>the</strong> alluvial pla<strong>in</strong>.<br />

The lithic assemblages show a ra<strong>the</strong>r homogeneous character for <strong>the</strong> whole area; <strong>the</strong> fact that<br />

artifacts are often composed of materials com<strong>in</strong>g from sources up to a hundred kilometres from <strong>the</strong><br />

site where <strong>the</strong>y were found, <strong>in</strong>dicates a strong mobility of <strong>the</strong> groups of Mesolithic hunters<br />

(<strong>Cremaschi</strong>, 1978; Broglio <strong>and</strong> Lunz, 1983).<br />

The appearance of <strong>the</strong> Sauveterrian lithic assemblage dates back to <strong>the</strong> early VIII millenium.<br />

It is characterized by microlithic <strong>and</strong> hypermicrolithic triangles <strong>and</strong> «Sauveterre» po<strong>in</strong>ts as well as<br />

by backed po<strong>in</strong>ts.<br />

At <strong>the</strong> Boreal-Atlantic transition a new Tardenoisian tradition appears, characterized first by<br />

hypermicroliths <strong>and</strong> trapezes <strong>and</strong> later only by trapezes. At Sasso di Manerba (Biagi et alii, 1980)<br />

<strong>the</strong> trapezes have been found with pottery <strong>and</strong> represent <strong>the</strong> end of <strong>the</strong> sequence.<br />

Neolithic. The first Neolithic villages appear <strong>in</strong> <strong>No</strong>r<strong>the</strong>rn Italy at <strong>the</strong> end of <strong>the</strong> 5th millennium<br />

b.c. north of <strong>the</strong> <strong>Po</strong>; <strong>the</strong>y are öfter located on fluvial terraces or on <strong>the</strong> shores of small <strong>in</strong>termora<strong>in</strong>ic<br />

lakes. On <strong>the</strong> nor<strong>the</strong>rn edge of <strong>the</strong> Apenn<strong>in</strong>es <strong>the</strong>y are formed on wide fluvial fans (Biagi,<br />

1980). They belong to two different cultures: <strong>the</strong> Fiorano, distributed South <strong>and</strong> <strong>No</strong>rth east of <strong>the</strong><br />

<strong>Po</strong>, <strong>and</strong> that of Vho, north of <strong>the</strong> same river (Bagol<strong>in</strong>i <strong>and</strong> Biagi, 1975, 1976). The site of Vho,<br />

Campo Ceresole, which lies on a terrace once surrounded by swamps <strong>and</strong> marshy areas, as<br />

<strong>in</strong>dicated by <strong>the</strong> environmental data (Biagi et alii, 1984; Cattani, 1975). The site extended over at<br />

least 20,000 m^ (Bagol<strong>in</strong>i et alii, 1977). It has been dated to 4220 ± 110 b.c. (I 11445), while <strong>the</strong><br />

nearby settlement of Ostiano, Dugali Alti (Biagi, 1980), produced a 14C of 4140± 110 b.c. (Bln<br />

2795). The Cec<strong>in</strong>a Site, <strong>in</strong> <strong>the</strong> Staffora Valley, gave a date of 2980 ± 130 b.c. (liar 5123).


306 PALEOSOLS AND VETUSOLS IN THE CENTRAL PO PLAIN<br />

Early Neolithic people seem to have preferred to settle on <strong>the</strong> Holocene level areas of <strong>the</strong> <strong>Po</strong><br />

valley as well as on <strong>the</strong> partly dra<strong>in</strong>ed alluvial pla<strong>in</strong> soils of <strong>the</strong> Apenn<strong>in</strong>e fr<strong>in</strong>ge.<br />

The soils form same of <strong>the</strong>se sites, like Vho <strong>and</strong> Ostiano, show clear evidence of hydromorphy<br />

whereas well dra<strong>in</strong>ed soils were selected by <strong>the</strong> neoUthic settlers of <strong>the</strong> IVth millennium b.c. The<br />

dom<strong>in</strong>ant woodl<strong>and</strong> cover<strong>in</strong>g of <strong>the</strong> <strong>Po</strong> pla<strong>in</strong> at that time was composed of oak, ash, wild pear <strong>and</strong><br />

sorb with maple <strong>and</strong> lime. Pedunculate oak {Quercus robur) seems to be <strong>the</strong> commonest oak species.<br />

Some of <strong>the</strong>se sites, such as Cavra<strong>in</strong>a <strong>and</strong> Tobiera Casc<strong>in</strong>a, show evidence of Turkey Oak {Quercus<br />

cerris), while p<strong>in</strong>e <strong>and</strong> poplar appear at Cecima <strong>in</strong> <strong>the</strong> Apenn<strong>in</strong>e area.<br />

The Square Mou<strong>the</strong>d <strong>Po</strong>ttery Culture makes its appearance at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> IVth<br />

millennium b.c. It reached its apex at <strong>the</strong> middle of <strong>the</strong> millennium, to decl<strong>in</strong>e soon afterwards<br />

(Bagol<strong>in</strong>i <strong>and</strong> Biagi, 1980) with <strong>the</strong> spread of <strong>the</strong> Chassey <strong>and</strong> Lagozza Cultures from <strong>the</strong> South<br />

West. The villages of this Culture <strong>in</strong> <strong>the</strong> Central <strong>Po</strong> valley, are often located on fluvial terraces.<br />

Many of <strong>the</strong>se have been discovered <strong>in</strong> <strong>the</strong> region between <strong>the</strong> old bed of <strong>the</strong> Oglio river <strong>and</strong> <strong>the</strong><br />

lowl<strong>and</strong>s extend<strong>in</strong>g towards <strong>the</strong> <strong>Po</strong>. Settlements of this culture have also been found <strong>in</strong> <strong>the</strong> mora<strong>in</strong>e<br />

ridges of Lake Garda, both on top of <strong>the</strong> mora<strong>in</strong>es <strong>and</strong> along <strong>the</strong> shores of <strong>the</strong> small lakes. In this<br />

region <strong>the</strong> economy of <strong>the</strong> Square Mou<strong>the</strong>d <strong>Po</strong>ttery people shows radical changes from that of <strong>the</strong><br />

preced<strong>in</strong>g Early Neolithic communities as can be seen also from <strong>the</strong> different fl<strong>in</strong>t sources<br />

exploited (Biagi et alii, 1985). It was based on domesticated animals, especially cattle, at <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> IVth millennium b.c., <strong>and</strong> sheep/goats <strong>in</strong> <strong>the</strong> later phases (Biagi et alii, 1985).<br />

There seems to be a tendency towards <strong>the</strong> fragmentation of <strong>the</strong> mixed oak forest certa<strong>in</strong>ly due to<br />

<strong>the</strong> expansion of <strong>the</strong> human settlements. Between <strong>the</strong> IVth <strong>and</strong> Illrd millennium b.c. most of <strong>the</strong><br />

sites of <strong>the</strong> Central <strong>Po</strong> Valley were ab<strong>and</strong>oned.<br />

Most of <strong>the</strong> archaeological materials, described <strong>in</strong> this <strong>the</strong>sis, have already been extensively<br />

delt with <strong>in</strong> o<strong>the</strong>r papers, which are <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> text <strong>and</strong> to which reference is made for <strong>the</strong>ir<br />

typology <strong>and</strong> dat<strong>in</strong>g. The identification of not yet pubhshed materials, with regard to <strong>the</strong>ir typology<br />

<strong>and</strong> age, has been supervised by C. Peretto for <strong>the</strong> Early <strong>and</strong> Middle Palaeolithic, by A. Guerreschi<br />

for <strong>the</strong> Late Palaeolithic <strong>and</strong> by P. Biagi for <strong>the</strong> more recent periods.


STUDI E RICERCHE SUL TERRITORIO*<br />

A series edited by prof. Giacomo Corna-Pellegr<strong>in</strong>i<br />

A series of human geography traditional <strong>the</strong>mes <strong>and</strong> methods of this discipl<strong>in</strong>e, but also researches<br />

regard<strong>in</strong>g problems on <strong>the</strong> border l<strong>in</strong>e with o<strong>the</strong>r sciences that also study territory <strong>and</strong> mens’ relationship with it.<br />

Therefore geography of direct observation but also, for example, quantitative geography, historical<br />

geography, subjective geography <strong>and</strong> geography applied to plann<strong>in</strong>g.<br />

Analyses for underst<strong>and</strong><strong>in</strong>g reality <strong>and</strong>, where necessary, modify<strong>in</strong>g it, enlarg<strong>in</strong>g spaces for a more just <strong>and</strong><br />

humane life.<br />

1. E. Bianchi, F. Perussia, 7/ Centro di Milano. Percezione e realtà^ 2“, pp. 155, L. 15.000<br />

2. J. B. Rac<strong>in</strong>e, C. Raffest<strong>in</strong>, V. Ruffy, Territorialità e paradigma centro-periferia. La Svizzera e la<br />

Padania, pp. 181, L. 18.000<br />

3. M. C. Zerbi, Geogrcfia delle aree periurbane. Il Pavese, pp. 143, L. 14.000<br />

4. AA.VV., PJcerca geográfica e percezione deWambiente, pp. 300, L. 22.000<br />

5. E. Bianchi, F. Perussia, Bibliogrcfia sulla percezione dell’amhiente, pp. 34, L. 24.000<br />

6. P. Claval, Element! di geografía umana (ed. E. Bianchi), 2“, pp. 378, L. 30.000<br />

7. T. G. Jordan, Geografía culturale dell’Europa (ed. G. Scaramell<strong>in</strong>i), 2“, pp. 400, L. 32.000<br />

8. A. Turco, Insularitá e modello centro-periferia. E’isola di Creta nelle sue relazioni con l’esterno, pp. 249,<br />

L. 20.000<br />

9. C. Raffest<strong>in</strong>, Per una geografía delpotere, pp. 269, L. 22.000<br />

10. A. B ailly, Geografía del henessere (ed. M. C. Zerbi), pp. 237, L. 20.000<br />

11.7/ fondo librario Almagiá. Catalogo alfabético per autore<br />

part 1, Eibri, pp. 211, L. 20.000<br />

part 2, Miscellanea, pp. 350, L. 18.000<br />

12. AA.VV., 7/ caso Valcamonica. Kapporto uomo-territorio nella d<strong>in</strong>ámica della storia (ed. E. Anati), ill.<br />

pp. 191, L. 18.000<br />

13. AA.VV., Geografía política. Teorie p er un progetto sociale (ed. C. Raffest<strong>in</strong>), pp. 147, L. 14.000<br />

14. M . M ilanesi, Tolomeo sostituito. Studi di storia delle conoscenzf geografiche nel XK7 secóla, pp. 251, L.<br />

24.000<br />

15. AA.VV., Geografie private. 1 resoconti di viaggio come lettura del territorio (ed. E. Bianchi), pp. 324,<br />

L. 26.000<br />

16. A. Reynaud, Disuguaglianzf regionali e giustizia socio-spaziale (ed. M. C. Zerbi), pp. 250, L.<br />

22.000<br />

17. AA.VV., Geografía per il pr<strong>in</strong>cipe. Teoría e misura dello spazio geográfico. Omaggio a Elíseo Bonetti (ed.<br />

P. Pagn<strong>in</strong>i). pp. 327, L. 28.000<br />

18. AA.VV., Turismo come eperché. Modello di ricercageogrcfica epsicológica. 11 territorio vares<strong>in</strong>o (eds. G.<br />

Corna-Pellegr<strong>in</strong>i, A. Frigerio), pp. 465, L. 28.000<br />

19. Y . Gunji, Dalí’isola del Giapan. Ea prima ambasceria giapponese <strong>in</strong> Occidente, preface G. Scaramell<strong>in</strong>i,<br />

pp. 179, L. 18.000<br />

20. E. Dalmasso, P. Gabert, Geografía dell’Italia, pp. 239, L. 24.000<br />

21. G. Com a-Pellegr<strong>in</strong>i, It<strong>in</strong>erarí di geografía umana, pp. 126, L. 15.000<br />

22. E. Dardel, E’Uomo e la Terra. Natura della realtà geográfica (ed. C. Copeta), pp. 225, L. 22.000<br />

23. H. Capel, Filosofia e scienza nella geografía contemporánea (ed. A. Turco), pp. 281, L. 36.000<br />

24. R. J. Johnston, P. Claval, Ea geografía dopo la seconda guerra mondiale. Un confronto <strong>in</strong>ternazionale,<br />

essays of P. Claval, B. Cori, G. Enyedi, S. Gregory, D. J. M. Hooson, R. J. Johnston, A.<br />

Kertesz, A. Kukl<strong>in</strong>ski, E. Lichtenberg, M. W. Mikesell, C. van Paassen, K. Takeuchi, J.<br />

Vila-Valenti, tr. it. ed. B. Cori, pp. 282, L. 28.000<br />

25. K. R uddle, W. M anshard, Ambiente e sviluppo nel terzfi mondo. Il problema delle risorse naturali<br />

r<strong>in</strong>novabili (ed. P. Faggi), pp. 281, L. 28.000<br />

26. A. Turco, Geografie della complessità <strong>in</strong> Africa. Interpret<strong>and</strong>o il Senegal, pp. 406, L. 38.000<br />

27. E . Bianchi, F. Perussia, Eombardie quotidiane, pp. 311, L. 22.000.<br />

28. M. Crem aschi, <strong>Paleosols</strong> <strong>and</strong> <strong>vetusols</strong> <strong>in</strong> <strong>the</strong> Central <strong>Po</strong> pla<strong>in</strong> (<strong>No</strong>r<strong>the</strong>rn Italy). A study <strong>in</strong> Quaternary<br />

Geology <strong>and</strong> soil development, pp. 306, L. 35.000<br />

* Publications of this series can be ordered from: LI.COSA. librería commissionaria Sansoni, Via<br />

Lamarmora, 45 - 50121 Firenze (Italy) - Tel. 055/579751-2-3.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!