04.06.2016 Views

Yoshida und Hara - 1977 - Effects of air temperature and light on grain fill

Yoshida und Hara - 1977 - Effects of air temperature and light on grain fill

Yoshida und Hara - 1977 - Effects of air temperature and light on grain fill

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

This article was downloaded by: [Universitaetsbibliothek Giessen]<br />

On: 06 April 2015, At: 15:43<br />

Publisher: Taylor & Francis<br />

Informa Ltd Registered in Engl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Wales Registered Number: 1072954<br />

Registered <str<strong>on</strong>g>of</str<strong>on</strong>g>fice: Mortimer House, 37-41 Mortimer Street, L<strong>on</strong>d<strong>on</strong> W1T 3JH, UK<br />

Soil Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Plant Nutriti<strong>on</strong><br />

Publicati<strong>on</strong> details, including instructi<strong>on</strong>s for authors <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subscripti<strong>on</strong> informati<strong>on</strong>:<br />

http://www.t<str<strong>on</strong>g>and</str<strong>on</strong>g>f<strong>on</strong>line.com/loi/tssp20<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

<strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> an indica <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a jap<strong>on</strong>ica rice (Oryza sativa L.)<br />

<str<strong>on</strong>g>und</str<strong>on</strong>g>er c<strong>on</strong>trolled envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

Shouichi <str<strong>on</strong>g>Yoshida</str<strong>on</strong>g> a & Tetsuo <str<strong>on</strong>g>Hara</str<strong>on</strong>g> a b<br />

a The Internati<strong>on</strong>al Rice Research Institute , Manila ,<br />

Philippines<br />

b College <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture , Gifu University , Japan<br />

Published <strong>on</strong>line: 29 Mar 2012.<br />

To cite this article: Shouichi <str<strong>on</strong>g>Yoshida</str<strong>on</strong>g> & Tetsuo <str<strong>on</strong>g>Hara</str<strong>on</strong>g> (<str<strong>on</strong>g>1977</str<strong>on</strong>g>) <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> an indica <str<strong>on</strong>g>and</str<strong>on</strong>g> a jap<strong>on</strong>ica rice (Oryza sativa L.) <str<strong>on</strong>g>und</str<strong>on</strong>g>er<br />

c<strong>on</strong>trolled envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, Soil Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Plant Nutriti<strong>on</strong>, 23:1, 93-107, DOI:<br />

10.1080/00380768.<str<strong>on</strong>g>1977</str<strong>on</strong>g>.10433026<br />

To link to this article: http://dx.doi.org/10.1080/00380768.<str<strong>on</strong>g>1977</str<strong>on</strong>g>.10433026<br />

PLEASE SCROLL DOWN FOR ARTICLE<br />

Taylor & Francis makes every effort to ensure the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> all the informati<strong>on</strong><br />

(the “C<strong>on</strong>tent”) c<strong>on</strong>tained in the publicati<strong>on</strong>s <strong>on</strong> our platform. However, Taylor<br />

& Francis, our agents, <str<strong>on</strong>g>and</str<strong>on</strong>g> our licensors make no representati<strong>on</strong>s or warranties<br />

whatsoever as to the accuracy, completeness, or suitability for any purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

C<strong>on</strong>tent. Any opini<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> views expressed in this publicati<strong>on</strong> are the opini<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

views <str<strong>on</strong>g>of</str<strong>on</strong>g> the authors, <str<strong>on</strong>g>and</str<strong>on</strong>g> are not the views <str<strong>on</strong>g>of</str<strong>on</strong>g> or endorsed by Taylor & Francis. The<br />

accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the C<strong>on</strong>tent should not be relied up<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> should be independently<br />

verified with primary sources <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>. Taylor <str<strong>on</strong>g>and</str<strong>on</strong>g> Francis shall not be liable<br />

for any losses, acti<strong>on</strong>s, claims, proceedings, dem<str<strong>on</strong>g>and</str<strong>on</strong>g>s, costs, expenses, damages,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other liabilities whatsoever or howsoever caused arising directly or indirectly in<br />

c<strong>on</strong>necti<strong>on</strong> with, in relati<strong>on</strong> to or arising out <str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the C<strong>on</strong>tent.<br />

This article may be used for research, teaching, <str<strong>on</strong>g>and</str<strong>on</strong>g> private study purposes. Any<br />

substantial or systematic reproducti<strong>on</strong>, redistributi<strong>on</strong>, reselling, loan, sub-licensing,<br />

systematic supply, or distributi<strong>on</strong> in any form to any<strong>on</strong>e is expressly forbidden.


Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Terms & C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> access <str<strong>on</strong>g>and</str<strong>on</strong>g> use can be fo<str<strong>on</strong>g>und</str<strong>on</strong>g> at http://www.t<str<strong>on</strong>g>and</str<strong>on</strong>g>f<strong>on</strong>line.com/<br />

page/terms-<str<strong>on</strong>g>and</str<strong>on</strong>g>-c<strong>on</strong>diti<strong>on</strong>s


Soil Sci. Plant Nut,., 23 (I), 93-107, <str<strong>on</strong>g>1977</str<strong>on</strong>g><br />

EFFECTS OF AIR TEl\iPERATURE AND LIGHT ON<br />

GRAIN FILLING OF AN INDICA AND A jAPONICA<br />

RICE (Uryza sativa L.)<br />

UNDER CONTROLLED ENVIRONl\IENTAL<br />

CONDITIONS<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Shouichi YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> Tetsuo HARAl<br />

The Internati<strong>on</strong>al Rice Research Institute,<br />

Manila, Philippines<br />

Received July 19, 1976<br />

. Th~. effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> the <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> an indica (IR20) <str<strong>on</strong>g>and</str<strong>on</strong>g> ajap<strong>on</strong>ica<br />

flce (FuJlsaka 5) was studied in artificially <str<strong>on</strong>g>light</str<strong>on</strong>g>ed cabinets. Within the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 16° to 28°C, the higher the <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, the faster the <strong>grain</strong>s <strong>fill</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> matured. At<br />

28°C, the upper <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice took 13 days to reach the maximum weight, whereas those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 took 18 days. The optimum daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range to achieve maximum<br />

weight per <strong>grain</strong> was 19° to 25°C for IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> 16° to 22°C for Fujisaka 5.<br />

Apparently, IR20 rice is better adapted to higher <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s during the ripening period<br />

than is Fujisaka 5 rice. More chalky <strong>grain</strong>s occurred when the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was above or below<br />

the optimum range. Both day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s affected <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality.<br />

The daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was fo<str<strong>on</strong>g>und</str<strong>on</strong>g> to be the most meaningful expressi<strong>on</strong> for describing<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing. Low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity appeared to cause a s<str<strong>on</strong>g>light</str<strong>on</strong>g> delay<br />

in the <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole panicle <str<strong>on</strong>g>and</str<strong>on</strong>g> a reducti<strong>on</strong> in the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fill</strong>ed <strong>grain</strong>s <strong>on</strong> the<br />

lower branches. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> low <str<strong>on</strong>g>temperature</str<strong>on</strong>g> gave the best ripening<br />

grade (<strong>grain</strong> weight X percent <strong>fill</strong>ed <strong>grain</strong>s).<br />

During the ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice, the major effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> yield is<br />

largely <strong>on</strong> the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> the maximum weight per <strong>grain</strong><br />

achieved; it also affects <strong>grain</strong> quality.<br />

Studies <strong>on</strong> jap<strong>on</strong>ica varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> rice in Japan yielded evidence that the optimum<br />

<str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for the ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice is about 20° to 22°0 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s higher or<br />

lower than this optimum may imp<str<strong>on</strong>g>air</str<strong>on</strong>g> the <strong>grain</strong> yield (1-3,7-9,21). Such findings<br />

may be relevant to the tropics where <str<strong>on</strong>g>temperature</str<strong>on</strong>g> is higher than 20° to 22°0 during the<br />

ripening period <str<strong>on</strong>g>of</str<strong>on</strong>g> rice. Even in a cool regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> early planting<br />

practices has shifted the ripening period to the hottest m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> the year, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, the<br />

rice crop is exposed to day <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s as high as 33°C during ripening (13). Studies<br />

with IRS rice at Los Banos, Philippines showed no difference in the 1,000 <strong>grain</strong> weight<br />

1 Presently, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Gifu University, Japan.<br />

93


94 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

between the wet seas<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the dry seas<strong>on</strong> crop (28), although the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was<br />

higher during ripening in the dry seas<strong>on</strong> than in the wet seas<strong>on</strong> (29).<br />

The <strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>of</str<strong>on</strong>g> a field rice crop was estimated to range between about<br />

30 days at Los Banos, Philippines to 65 days at Sapporo, Japan <str<strong>on</strong>g>and</str<strong>on</strong>g> Yanco, Australia<br />

(20), based <strong>on</strong> visual observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the maturity time. Presumably, these large differences<br />

in the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period are caused by differences in the <str<strong>on</strong>g>air</str<strong>on</strong>g><br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>. However, there is a dearth <str<strong>on</strong>g>of</str<strong>on</strong>g> reports <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong><br />

the <strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>of</str<strong>on</strong>g> indica rice studied <str<strong>on</strong>g>und</str<strong>on</strong>g>er a well-defined envir<strong>on</strong>ment.<br />

Solar radiati<strong>on</strong> is the most influential climatic factor determining <strong>grain</strong> yield during<br />

ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice in the tropics (29). Most data <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> yield<br />

deals mainly with photosynthesis, i.e., supply <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilates to the rice <strong>grain</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> not<br />

with the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period, for which there is no reported experimental<br />

evidence at present.<br />

The present study examines the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> the length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period, the final <strong>grain</strong> weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e indica (IR20)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>e jap<strong>on</strong>ica (Fujisaka 5) rice.<br />

MATERIALS AND METHODS<br />

Both IR20 (indica) <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 (jap<strong>on</strong>ica) rices were used in all experiments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this study.<br />

C<strong>on</strong>trolled envir<strong>on</strong>mentalfacilities. All experiments were c<strong>on</strong>ducted in the bioclimatic<br />

laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al Rice Research Institute at Los Banos, Philippines. The<br />

plants were grown in a glasshouse room until 3 days after anthesis, after which they<br />

were transferred to artificially <str<strong>on</strong>g>light</str<strong>on</strong>g>ed cabinets, Koitotr<strong>on</strong> KG-I06 SHL-D cabinets.<br />

The relative humidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the glasshouse room was maintained above 70 percent while<br />

the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was kept at 29°C between 0900 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1700 hr <str<strong>on</strong>g>and</str<strong>on</strong>g> 21°C during the night.<br />

Daylength was according to the natural c<strong>on</strong>diti<strong>on</strong>s.<br />

In the artificially <str<strong>on</strong>g>light</str<strong>on</strong>g>ed cabinets, <str<strong>on</strong>g>light</str<strong>on</strong>g> was provided by 11 X 400 W Toshiba Yoko<br />

lamps DR 400/T <str<strong>on</strong>g>and</str<strong>on</strong>g> 12 x 40 W Mitsubishi white fluorescent lamps. The spectral<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> is similar in the visible regi<strong>on</strong> to that <str<strong>on</strong>g>of</str<strong>on</strong>g> sun<str<strong>on</strong>g>light</str<strong>on</strong>g>. However,<br />

the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthetically active radiati<strong>on</strong> is <strong>on</strong>ly 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> total short<br />

wave radiati<strong>on</strong> for the artificially <str<strong>on</strong>g>light</str<strong>on</strong>g>ed cabinet compared to about 50 percent for<br />

sun<str<strong>on</strong>g>light</str<strong>on</strong>g>. Photosynthetically active radiati<strong>on</strong> was 114 cal· cm- 2 • day-l at the flag leaf<br />

level unless specified otherwise. Daytime was from 0600 to 1800 hr. The relative<br />

humidity in the artificially <str<strong>on</strong>g>light</str<strong>on</strong>g>ed cabinets was maintained at 70 percent during daytime<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 80 percent during the night.<br />

Plant culture. To obtain a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> panicles that would flower simultaneously,<br />

20 pregerminated seeds were sown in a circular pattern in 4-liter plastic pots<br />

(19). Each pot c<strong>on</strong>tained 3 kg Maahas clay soil fertilized with 1 g N, 0.5 g P 2<br />

0 6 , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0.5 g KIO.<br />

Sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> measuring procedures. Grain samples were collected from the panicles


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 95<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the main culm at anthesis, 3 days later, <str<strong>on</strong>g>and</str<strong>on</strong>g> then every five days. To measure the<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period, nine <strong>grain</strong>s were sampled from the 3rd, 4th, <str<strong>on</strong>g>and</str<strong>on</strong>g> 5th<br />

positi<strong>on</strong>s from the top <strong>on</strong> three upper primary branches with the same flowering date.<br />

It was replicated three times. The panicles from which the nine <strong>grain</strong>s were sampled<br />

were allowed to ripen to maturity <str<strong>on</strong>g>and</str<strong>on</strong>g> were used for measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> yield comp<strong>on</strong>ents.<br />

The sampled <strong>grain</strong>s were weighed immediately after harvest to record the fresh<br />

weight, then oven dried for 3 days at 70°0, <str<strong>on</strong>g>and</str<strong>on</strong>g> finally weighed for dry weight. Total<br />

nitrogen was measured with the Kjeldahl method.<br />

At maturity, 15 selected panicles were harvested for yield comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong><br />

quality. The <strong>grain</strong>s were separated by h<str<strong>on</strong>g>and</str<strong>on</strong>g> into <strong>fill</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> un<strong>fill</strong>ed <strong>grain</strong>s, un<strong>fill</strong>ed<br />

<strong>grain</strong>s were further divided by the iodine test into unfertilized <str<strong>on</strong>g>and</str<strong>on</strong>g> partially <strong>fill</strong>ed <strong>grain</strong>s<br />

( 5). Each <str<strong>on</strong>g>of</str<strong>on</strong>g> the 200 r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly sampled <strong>grain</strong>s were de hulled <str<strong>on</strong>g>and</str<strong>on</strong>g> examined visually<br />

for chalky <strong>grain</strong>s.<br />

Experiment 1. Effect oj the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing. The daily mean<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> was varied from 16° to 28°0 with a c<strong>on</strong>stant day-night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> difference<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 8°0. Thus, at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°0, the day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was<br />

20°0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 12°0; this is expressed as 20°/12°0.<br />

Experiment 2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality. The night<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>. was varied from 14° to 32°0 with a c<strong>on</strong>stant day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 32°0;<br />

thus, the dally mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> ranged from 23° to 32°0.<br />

Experiment 3. Effect oj day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality. The day<br />

Table 1.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices.<br />

Day Night Daily mean<br />

Grain Filled<br />

Partially<br />

Grain quality<br />

tempera- tempera- tempera-<br />

Unfertilized<br />

wtl) <strong>grain</strong>s<br />

<strong>fill</strong>ed<br />

<strong>grain</strong>s Chalky'· Green<br />

ture ture ture<br />

(mg/<strong>grain</strong>)<br />

<strong>grain</strong>s<br />

(%)<br />

(%) <strong>grain</strong>s <strong>grain</strong>s<br />

(0C) (OC) (OC) (%) (%) (%)<br />

IR20<br />

20 12 16 14.3 ( 86)'· 73 19 8 83 II<br />

23 15 19 16.3 ( 98) 77 15 8 16 9<br />

26 18 22 16.6 (100) 79 15 6 11 8<br />

29 21 25 16.3 ( 98) 79 14 7 12 8<br />

32 24 28 15.5 ( 93) 77 16 7 31 9<br />

Fujisaka 5<br />

20 12 16 23.7 (100) 88 3 9 14 8<br />

23 15 19 23.6 (100) 90 1 9 9 0<br />

26 18 22 23.7 (100) 89 1 10 11 0<br />

29 21 25 22.5 ( 95) 90 9 14 0<br />

32 24 28 21.2 ( 89) 89 10 58 0<br />

11 LSD value at 5% level is 0.2 for both varieties. II Including chalky, white center, white belly <str<strong>on</strong>g>and</str<strong>on</strong>g> white<br />

back <strong>grain</strong>s. I. Figures in parenthesis indicate relative values taking the maximum as 100.


96 s. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> was varied from 16° to 34°0 with a c<strong>on</strong>stant night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°0;<br />

thus, the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> ranged between 16° <str<strong>on</strong>g>and</str<strong>on</strong>g> 25°0.<br />

Experiment 4. Effict oj <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing. Two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity<br />

(low <str<strong>on</strong>g>light</str<strong>on</strong>g>=36 cal· cm- 2 • day-I; high <str<strong>on</strong>g>light</str<strong>on</strong>g>=1l4 cal· cm- I • day-I) were<br />

combined with two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (23°/15°0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32°/24°0). The low <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

intensity was achieved by placing a mesh screen beneath the bank <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>s.<br />

RESULTS<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Effect oj the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing<br />

Grain growth curve. Five daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s (Table 1) were used, but in this<br />

coverage data will be presented for <strong>on</strong>ly three daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s (16°, 22°, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

28°0). The slope in the <strong>grain</strong> growth curve suggested that the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> <strong>fill</strong>ing was<br />

faster at the higher <str<strong>on</strong>g>temperature</str<strong>on</strong>g> in both varieties (Fig. 1). Additi<strong>on</strong>ally, the <strong>grain</strong><br />

<strong>fill</strong>ing period was shorter at the higher <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s for both varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> rice. The<br />

leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice turned yellow within 24 hours <strong>on</strong>ly after the plants were subjected<br />

to daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°0, indicating that day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20°0 is subnormal<br />

for leaf activity, i.e., photosynthesis (14) <str<strong>on</strong>g>and</str<strong>on</strong>g> others. Grain <strong>fill</strong>ing at this<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> was very slow, but the final <strong>grain</strong> weight was similar to that achieved <str<strong>on</strong>g>und</str<strong>on</strong>g>er<br />

the 22°0 <str<strong>on</strong>g>and</str<strong>on</strong>g> the 28°0 regimes. The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> <strong>fill</strong>ing period, defined as number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> days required to reach the maximum weight, was 13 days at 28°0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 33 days at<br />

16°0 for IR20 rice.<br />

..... 20<br />

c::<br />

.OJ<br />

......<br />

&.<br />

tlO 15<br />

E<br />

'-'<br />

....<br />

.s:::<br />

tlO<br />

'iii<br />

~<br />

c::<br />

.iij fUJISAKA 5<br />

...<br />

0<br />

0 10 20 30 40 o 10 20 30 40<br />

Days after flowering<br />

Days Ifter flowerini<br />

Fig. 1.<br />

25<br />

10<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka riel'S.<br />

Leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice remained green even at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°C.<br />

The <strong>grain</strong> growth curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 at 16°0 was characterized by a l<strong>on</strong>g lag-phase<br />

following a linear phase. At a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 28°C, the <strong>grain</strong> weight<br />

declined after the peak weight was reached, <str<strong>on</strong>g>and</str<strong>on</strong>g> the final <strong>grain</strong> weight was about 15


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 97<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

percent less than that at 16°C. The <strong>grain</strong> <strong>fill</strong>ing period was 18 days at a daily mean<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 28°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 43 days at 16°C. Thus, <str<strong>on</strong>g>temperature</str<strong>on</strong>g> appears to affect markedly<br />

the <strong>grain</strong> <strong>fill</strong>ing period. The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period differed between<br />

the varieties; at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 28°C, Fujisaka 5 required five additi<strong>on</strong>al<br />

days to reach the maximum <strong>grain</strong> weight over the time required by IR20 rice.<br />

Accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>nitrogen in the rice <strong>grain</strong>s. The accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen in rice graim<br />

can be assessed in two ways, i.e., changes in the percent nitrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> in the total nitrogen<br />

per <strong>grain</strong>. During the initial stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> <strong>fill</strong>ing, the percent nitrogen was relatively<br />

high, indicating that the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen relative to the starch accumulati<strong>on</strong><br />

in the <strong>grain</strong>s was faster at this stage than at later stages (Fig. 2). At maturity, within a<br />

o~--~--~~--~--~~~--~--~~~~--~~<br />

010 20 30 40010 20<br />

Doy.afftr~<br />

Fig. 2. Nitrogen uptake by IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices at successive stages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>grain</strong> growth <str<strong>on</strong>g>und</str<strong>on</strong>g>er three <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes.<br />

,<br />

FUJISAKA5<br />

~<br />

..... '"<br />

-c:<br />

'"<br />

'E<br />

0<br />

u<br />

~<br />

~<br />

~<br />

10<br />

0<br />

40<br />

30<br />

.....<br />

20<br />

_<br />

9' ......<br />

10<br />

10 20 30 40 50 0 10 20 30 40<br />

Days after flowering<br />

Days after flowering<br />

Fig. 3. Changes in the water c<strong>on</strong>tent at successive stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> two varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> rice <str<strong>on</strong>g>und</str<strong>on</strong>g>er<br />

three <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes.<br />

50


98 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 16° to 28°C, the higher was the <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, the higher<br />

was the percent <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen. Curves for the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen per <strong>grain</strong> are<br />

basically similar to those for dry weight; the higher was the <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, the faster the<br />

nitrogen accumulated in the rice <strong>grain</strong>s. The variati<strong>on</strong> in the percent nitrogen am<strong>on</strong>g<br />

the three <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes was greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the nitrogen accumulated per<br />

<strong>grain</strong>. However, because the weight per <strong>grain</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>IR20 was lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka<br />

5, IR20 rice c<strong>on</strong>tained less nitrogen per <strong>grain</strong>, but c<strong>on</strong>tained a higher percent nitrogen<br />

than did Fujisaka 5.<br />

Changes in water c<strong>on</strong>tent in the <strong>grain</strong>s. During the initial phases <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing<br />

period the water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong>s was about 58 percent <str<strong>on</strong>g>and</str<strong>on</strong>g> then declined to less<br />

than 17 percent during the later stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development (Fig. 3). The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> this decrease<br />

in water c<strong>on</strong>tent with maturity increased with the increase in the <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

regime. The water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong>s at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum <strong>grain</strong> weight, in general,<br />

ranged from 19 to 24 percent, but it was 29 percent for IR20 rice <strong>grain</strong>s when the daily<br />

mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 16°C.<br />

Grain weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality. Based <strong>on</strong> data collected from whole panicle <strong>grain</strong>s,<br />

the optimum daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for maximum weight per <strong>grain</strong> appeared to range<br />

between 19° <str<strong>on</strong>g>and</str<strong>on</strong>g> 25°C for IR20 rice <str<strong>on</strong>g>and</str<strong>on</strong>g> 16° to 22°C for Fujisaka 5 (Table 1). In IR20<br />

rice the <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> upper branches at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°C did not<br />

differ appreciably from that obtained at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 22°C (Fig. 1), but<br />

the average <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole panicle at 16°C was significantly lower than that<br />

at 22°C. This was because at 16°C the <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the upper branches matured normally<br />

but those <str<strong>on</strong>g>of</str<strong>on</strong>g> the lower branches were not mature at harvest. The lowest weight per <strong>grain</strong><br />

for IR20 rice occurred with a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°C, while that for Fujisaka<br />

5 occurred with a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 28°C. IR20 rice appeared to be sensitive<br />

to a low daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> while Fujisaka 5 appeared to be sensitive to a high<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>. Similarly, the maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s in IR20<br />

rice occurred at 16°C, while this was true for Fujisaka 5 rice at 28°C. A lower weight<br />

per <strong>grain</strong> seemed to be associated with a higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s. Green<br />

<strong>grain</strong>s were fo<str<strong>on</strong>g>und</str<strong>on</strong>g> with all three <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes with IR20 rice, but they were<br />

fo<str<strong>on</strong>g>und</str<strong>on</strong>g> <strong>on</strong>ly at 16°C with Fujisaka 5 rice. Additi<strong>on</strong>ally, the brown rice <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 became<br />

red brown in color when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> ranged between 16° <str<strong>on</strong>g>and</str<strong>on</strong>g> 22°C.<br />

Effect oj night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> quality<br />

Within a range <str<strong>on</strong>g>of</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 14° to 32°C with a c<strong>on</strong>stant day <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 32°C, the <strong>grain</strong> weight am<strong>on</strong>g the different <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes was similar,<br />

except when the night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for Fujisaka 5 rice was HOC (Table 2). The daily<br />

mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the 32°/14°C <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regime was 23°C which should have<br />

been optimum for maximum <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice (Table 1). Apparently,<br />

the large difference (l8°C) between the day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s had an adverse<br />

effect <strong>on</strong> the ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice plants. The large difference in the day <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s had little effect <strong>on</strong> the <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice.


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling<br />

99<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Table 2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> 1R20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices.<br />

Grain quality<br />

Night Daily mean Grain<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> ll <str<strong>on</strong>g>temperature</str<strong>on</strong>g> wtt) Chalky Green<br />

(0C)<br />

(0C)<br />

(mg/<strong>grain</strong>) <strong>grain</strong>s <strong>grain</strong>s<br />

(%) (%)<br />

IR20<br />

14 23 15.8 ( 98)11 42 5<br />

20 26 16.2 (100) 24 5<br />

26 29 15.9 ( 98) 33 5<br />

32 32 15.4 ( 95) 81 5<br />

Fujisaka 5<br />

14 23 19.9 ( 90) 89 0<br />

20 26 22.0 (100) 25 0<br />

26 29 21.6 ( 98) 51 0<br />

32 32 20.6 ( 94) 93 0<br />

1) Day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was kept at 32°C. I) LSD value at 5% level is 0.2 for both varieties. I) Figures<br />

in parenthesis indicate relative values taking the maximum as 100.<br />

Most chalky <strong>grain</strong>s were fo<str<strong>on</strong>g>und</str<strong>on</strong>g> at the low (14°0) <str<strong>on</strong>g>and</str<strong>on</strong>g> high night (32°0) <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s.<br />

In general, more chalky <strong>grain</strong>s occurred than was expected when compared<br />

with the previously described experiment with similar daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s. Since<br />

night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s as low as 15°C or 18°C did not seem to cause a high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalky <strong>grain</strong>s (see Table 1), it was probably the high day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> that affected the<br />

increased percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s at 32°/20 o e. For instance, 12 percent <str<strong>on</strong>g>of</str<strong>on</strong>g>th~IR20"<br />

<strong>grain</strong>s was chalky when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 25°C with a temperat~~ t<br />

regime <str<strong>on</strong>g>of</str<strong>on</strong>g> 29°/21°e. However, in this experiment, when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

was 26°C with a <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regime <str<strong>on</strong>g>of</str<strong>on</strong>g> 32° j200e, 24 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the IR20 <strong>grain</strong>s was<br />

chalky.<br />

In Fujisaka 5 rice, a high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s was fo<str<strong>on</strong>g>und</str<strong>on</strong>g> not <strong>on</strong>ly at 32° /32°C<br />

but also at 32°/14°e. At 32°/14°C, either night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> or day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> or<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> should not cause the high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s. C<strong>on</strong>sequently,<br />

it must be the large difference in <str<strong>on</strong>g>temperature</str<strong>on</strong>g> between day <str<strong>on</strong>g>and</str<strong>on</strong>g> night which<br />

is resp<strong>on</strong>sible for the high incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s.<br />

Effect oj day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong> qualiry<br />

The weight <str<strong>on</strong>g>of</str<strong>on</strong>g>IR20 rice <strong>grain</strong>s was the lowest when the day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 16°C<br />

(Table 3) , which is below the optimum for leaf photosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice. The <strong>grain</strong><br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice was the lowest when the day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 34°C. IR20<br />

rice appeared to be sensitive to a low day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rice was sensitive<br />

to a high day <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

The largest percentage (99%) <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 <strong>grain</strong>s Were chalky at the highest day<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> (34°0), while the incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice occurred at both


100 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Table 3. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>grain</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices.<br />

Grain quality<br />

Day Daily mean Grain<br />

tempera turell <str<strong>on</strong>g>temperature</str<strong>on</strong>g> wt" Chalky Green<br />

(0C) (OC) (mg/<strong>grain</strong>) <strong>grain</strong>s <strong>grain</strong>s<br />

(%) (%)<br />

IR20<br />

16 16 13.3 ( 82)11 87<br />

22 19 15.9 ( 98) 7<br />

28 22 16.2 (100) 12<br />

34 25 15.0 ( 93) 82<br />

Fujisaka 5<br />

16 16 22.4 ( 97) 10<br />

22 19 23.2 (100) 2<br />

28 22 22.8 ( 98) 14<br />

34 25 18.7 ( 81) 99<br />

1) Night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was kept at 16°C. I) LSD value at 5% level is 0.2 for both varieties.<br />

I) Figures in parenthesis indicate relative values taking the maximum as 100.<br />

Grain wI (1IlQ/~ain I<br />

20<br />

3<br />

21<br />

11<br />

2<br />

0<br />

0<br />

0<br />

0<br />

o o~--':K)---:':2O:---...I30i.--....I40 0<br />

K) 20<br />

Days oller flower""<br />

Fig. 4. Grain growth <str<strong>on</strong>g>of</str<strong>on</strong>g> upper <strong>grain</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> whole panicle in IR20 rice<br />

<str<strong>on</strong>g>und</str<strong>on</strong>g>er two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 101<br />

the lowest (16°0) <str<strong>on</strong>g>and</str<strong>on</strong>g> the highest (34°0) day <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, 87 <str<strong>on</strong>g>and</str<strong>on</strong>g> 82 percent, respectively.<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing<br />

Grain growth curve. While <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity did not affect the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing<br />

period in the upper <strong>grain</strong>s, it affected the <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice (Fig. 4) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fujisaka 5 rice (Fig. 5). The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period in the whole panicle<br />

<strong>grain</strong>s was increased by 5 days at a high <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity for IR20 rice <strong>on</strong>ly, but it was<br />

extended by 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5 days at a low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity for IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5, respectively.<br />

This suggests that low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity may delay the ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole panicle <strong>grain</strong>s,<br />

probably because <str<strong>on</strong>g>of</str<strong>on</strong>g> a limited supply <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilates to <strong>grain</strong>s <strong>on</strong> lower branches.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <strong>on</strong> <strong>grain</strong> weight was more pr<strong>on</strong>ounced <strong>on</strong> the <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the whole panicle than <strong>on</strong> the upper <strong>grain</strong>s, because all <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong>s (<strong>fill</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> un<strong>fill</strong>ed)<br />

were used to measure the average weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole <strong>grain</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity<br />

increased the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> un<strong>fill</strong>ed <strong>grain</strong>s at the lower branches (Fig. 6).<br />

To <str<strong>on</strong>g>und</str<strong>on</strong>g>erst<str<strong>on</strong>g>and</str<strong>on</strong>g> better how <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity affected <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole panicle,<br />

sample <strong>grain</strong>s were collected from primary branches at different positi<strong>on</strong>s. Similar<br />

UPPER GRAtlS<br />

2~~======::! ~=====::<br />

20<br />

I~<br />

10<br />

°O~--~~--~20~--~~--~~~ O~--~O~--20~---~~<br />

Days orlef rlcooorinQ<br />

Fig. 5. Grain growth <str<strong>on</strong>g>of</str<strong>on</strong>g> upper <strong>grain</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> whole panicle in Fujisaka 5<br />

rice <str<strong>on</strong>g>und</str<strong>on</strong>g>er two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.


102 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

results were obtained for both IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 at two <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s, hence the data<br />

are presented for <strong>on</strong>ly IR20 at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 28°C (Fig. 6). Low <str<strong>on</strong>g>light</str<strong>on</strong>g><br />

intensity c<strong>on</strong>sistently decreased <strong>grain</strong> weight to a small extent <strong>on</strong> all the branches. On<br />

the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity decreased the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fill</strong>ed <strong>grain</strong>s markedly <strong>on</strong><br />

the lower branches <str<strong>on</strong>g>of</str<strong>on</strong>g> the panicle. These effects <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <strong>on</strong> <strong>grain</strong> fIlling are in<br />

good agreement with our previous findings that low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity during ripening<br />

period affects <strong>grain</strong> yield through decreasing the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> fIlled <strong>grain</strong>s but it has<br />

little effect <strong>on</strong> <strong>grain</strong> weight (29).<br />

Grain weight <str<strong>on</strong>g>and</str<strong>on</strong>g> percentage oj <strong>fill</strong>ed <strong>grain</strong>s. Since <str<strong>on</strong>g>light</str<strong>on</strong>g> affects both <strong>grain</strong> weight (W)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> percent fllled <strong>grain</strong>s (F), the overall effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>light</str<strong>on</strong>g>-<str<strong>on</strong>g>temperature</str<strong>on</strong>g> interacti<strong>on</strong> <strong>on</strong><br />

<strong>grain</strong> yield can be best assessed by computing W X F, i.e., ripening grade. The combi.<br />

Xl 1<br />

.s::<br />

g 2<br />

as<br />

li 3<br />

~4<br />

E<br />

'~ 5<br />

'0 6<br />

Grain weight (mg) Filled <strong>grain</strong>s (%) Grain number<br />

o 13 14 15 16 17 0 50 60 7080 90100 O'{-_-i5~_.!.Ir-0_--=-15;;<br />

.... 5 7<br />

'in 8<br />

~<br />

9'---0----'<br />

1<br />

2<br />

3<br />

1 .<br />

2·<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9~~--.......... --.......... ~<br />

Fig, 6. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g>IR20 riee at 32/24·0. (Low <str<strong>on</strong>g>light</str<strong>on</strong>g>-36<br />

cal. em-" day-I; high <str<strong>on</strong>g>light</str<strong>on</strong>g>=1l4cal. cm-·. day-I PAR.) (PAR: Photosynthetically<br />

active radiati<strong>on</strong>).<br />

Table 4.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices.<br />

Grain Filled Ripening<br />

Lightll Temperatures, weight (W)I' <strong>grain</strong>s (F) grade<br />

(mg) (%) (WxF)<br />

IR20<br />

Low Low 15.5 65 1014 ( 71)11<br />

Low High 14.8 62 9)0 ( 64)<br />

High Low 16.3 87 1423 (100)<br />

High High 16.0 85 1370 ( 96)<br />

Fujisaka 5<br />

Low Low 22.0 86 1890 ( 90)<br />

Low High 2M 84 1718 ( 82)<br />

High Low 23.0 91 2102 (100)<br />

High High 21.9 92 2013 ( 96)<br />

1) Low: 36cal. em-I. day-l PAR (photosynthetically active radiati<strong>on</strong>), High: 114cal. cm-•• day-' PAR.<br />

II Low: 23/15°0, High: 32/24°0. I' LSD value at 5% level is 0.2 for both varieties. "Figures in parenthesis<br />

indicate relative values with 100 serving as the maximum.


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 103<br />

nati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity <str<strong>on</strong>g>and</str<strong>on</strong>g> a low <str<strong>on</strong>g>temperature</str<strong>on</strong>g> gave the maximum ripening grade<br />

for both rice varieties (Table 4). Taking the maximum value as 100 for each variety,<br />

the ripening grade was reduced by 36 percent in IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> 18 percent in Fujisaka 5<br />

when the <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity was low <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was high. Apparently, <strong>grain</strong><br />

<strong>fill</strong>ing, <str<strong>on</strong>g>and</str<strong>on</strong>g> hence, the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 is more likely to be reduced by adverse climatic<br />

envir<strong>on</strong>ments than are those <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice.<br />

DISCUSSION<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period markedly affects the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> rice because it<br />

affects the maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy available for <strong>grain</strong> <strong>fill</strong>ing. Additi<strong>on</strong>ally,<br />

it c<strong>on</strong>stitutes the last part <str<strong>on</strong>g>of</str<strong>on</strong>g> the rice plant's life cycle; this knowledge about the <strong>grain</strong><br />

<strong>fill</strong>ing period can c<strong>on</strong>tribute to the overall <str<strong>on</strong>g>und</str<strong>on</strong>g>erst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the total growth durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rice varieties.<br />

Existing informati<strong>on</strong> <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental factors <str<strong>on</strong>g>and</str<strong>on</strong>g> (or) plant physiological<br />

factors <strong>on</strong> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>of</str<strong>on</strong>g> rice is scarce. An.n et al. (1)<br />

reported that while the <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> a jap<strong>on</strong>ica rice was completed in about 25 days<br />

after anthesis at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25°C, it took much l<strong>on</strong>ger when the daily<br />

mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 21 °C, <str<strong>on</strong>g>and</str<strong>on</strong>g> was not complete even after 75 days from anthesis<br />

when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 17°C. Their experiment was c<strong>on</strong>ducted in<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g>-c<strong>on</strong>trolled glasshouse rooms where day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s were held<br />

c<strong>on</strong>stant. NAGATO <str<strong>on</strong>g>and</str<strong>on</strong>g> EBATA (11, 12) also measured the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> <strong>fill</strong>ing <str<strong>on</strong>g>und</str<strong>on</strong>g>er<br />

different <str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes. When YAMAKAWA (24) planted 12 rice varieties in<br />

the field in Japan at different times so that these rice crops would be exposed to different<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s during the ripening period, he showed that jap<strong>on</strong>ica rice<br />

ripened over 30 days when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was about 29°C, while ripening<br />

took 53 days when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 18°e. The time for maturity was<br />

determined by visual examinati<strong>on</strong> in this experiment.<br />

In the present study, rice <strong>grain</strong>s were fo<str<strong>on</strong>g>und</str<strong>on</strong>g> to mature faster than was expected,<br />

<strong>on</strong>ly 13 days were required for the upper <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice to reach the maximum<br />

weight when the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 28°C, <str<strong>on</strong>g>and</str<strong>on</strong>g> 18 days for Fujisaka 5 rice.<br />

When the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was lower, 16°C, the upper <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 rice<br />

achieved maximum weight in 33 days, whereas those <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice required 43 days.<br />

The critical low <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for photosynthesis has been reported as IS.5°C for<br />

jap<strong>on</strong>ica rice (23) <str<strong>on</strong>g>and</str<strong>on</strong>g> between 20° <str<strong>on</strong>g>and</str<strong>on</strong>g> 25°e for indica rice (14). In the experiment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Aimi et al., the day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s were both 17°0 which is a subnormal<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> for photosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> jap<strong>on</strong>ica rice, In our experiment, however, at a<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°0, the day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was held at 20°C, which is above<br />

the critical low <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for photosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> jap<strong>on</strong>ica rice. This difference in the<br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> regimes may explain the variati<strong>on</strong> in the results obtained in the present<br />

study <str<strong>on</strong>g>and</str<strong>on</strong>g> those <str<strong>on</strong>g>of</str<strong>on</strong>g> Aimi et aI,<br />

It is normally assumed that <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity has little or no effect <strong>on</strong> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the


104 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

<strong>grain</strong> <strong>fill</strong>ing period. The present findings indicate that low <str<strong>on</strong>g>light</str<strong>on</strong>g> intensity extends the<br />

<strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole panicle by about 5 days by affecting the<br />

<strong>fill</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong>s <strong>on</strong> the lower branches <str<strong>on</strong>g>of</str<strong>on</strong>g> the rice panicle. Light intensity did not<br />

affect the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong>s <strong>on</strong> the upper branches <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

rice panicle.<br />

For field rice crops in the tropics, where the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> varies between<br />

25° <str<strong>on</strong>g>and</str<strong>on</strong>g> 30°C, the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ripening is reported to be about 30 days after flowering<br />

(20). The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ripening is c<strong>on</strong>sidered the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing<br />

period for the first-flowering spikelet, difference in days between the first <str<strong>on</strong>g>and</str<strong>on</strong>g> last flowering<br />

spikelets <strong>on</strong> the same panicle, <str<strong>on</strong>g>and</str<strong>on</strong>g> the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> panicle emergence. In the<br />

present study, the percentage fertility was 94 to 92 percent in IR20 rice <str<strong>on</strong>g>and</str<strong>on</strong>g> 81 to 9(}<br />

percent in Fujisaka 5 rice, when the plants were allowed to remain in the glasshouse<br />

room at 25°C for 3 days after the first spikelet flowering in each panicle. This indicates.<br />

that 3 days are about enough between the time <str<strong>on</strong>g>of</str<strong>on</strong>g> anthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> the first spikelet <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the last spikelet <strong>on</strong> the same panicle.<br />

Panicle emergence takes 14 days in the field crop <str<strong>on</strong>g>of</str<strong>on</strong>g>IR20 rice at Los Banos, Philippines.<br />

Thus, the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> each term, i.e., (13+3+14), becomes 30 days for an IR20 rice<br />

crop at Los Banos. However, when flowering (or heading) or a rice crop in the field is.<br />

defined in agr<strong>on</strong>omic terms as the time when 50 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the panicles <str<strong>on</strong>g>of</str<strong>on</strong>g> a rice crop<br />

has emerged, the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>grain</strong> <strong>fill</strong>ing period for IR20 rice as a field crop at Los.<br />

Banos is 23 days.<br />

The optimum daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20° to 22°C (J, 3) reported for the ripening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> jap<strong>on</strong>ica rice agrees with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic<br />

factors <strong>on</strong> rice yield (2, 7-9). Despite the fact that different varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> rice, locati<strong>on</strong>s~<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> techniques were used, the optimum <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s reported were remarkably similar.<br />

This may be because in Japan there may not be any differences am<strong>on</strong>g jap<strong>on</strong>ica<br />

rice varieties in resp<strong>on</strong>se to <str<strong>on</strong>g>temperature</str<strong>on</strong>g> during ripening. Based <strong>on</strong> this premise, the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study can be compared with those reported in Japan.<br />

In this study, the optimum daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for <strong>grain</strong> <strong>fill</strong>ing was fo<str<strong>on</strong>g>und</str<strong>on</strong>g> torange<br />

from 19° to 25°C for IR20 rice <str<strong>on</strong>g>and</str<strong>on</strong>g> from 16° to 22°C in Fujisaka 5 rice. There<br />

appears to be no sharp optimum <str<strong>on</strong>g>temperature</str<strong>on</strong>g> for <strong>grain</strong> <strong>fill</strong>ing, <strong>on</strong>ly a <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range<br />

that is optimum for <strong>grain</strong> <strong>fill</strong>ing. In their statistical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

<strong>on</strong> rice yield, MURATA (9), HANYU et al. (2), <str<strong>on</strong>g>and</str<strong>on</strong>g> MURAKAMI (8) developed similar<br />

parabolic equati<strong>on</strong>s in which the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> solar radiati<strong>on</strong> or sunshine<br />

hours are used as climatic parameters. :Murata's equati<strong>on</strong> is:<br />

r =s [1.20-0.021 (t-21.5)2]<br />

where Y is <strong>grain</strong> yield (kg/lO a), S<str<strong>on</strong>g>and</str<strong>on</strong>g> t are solar radiati<strong>on</strong> (calc· m- 2 • day-I), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>temperature</str<strong>on</strong>g> (0C), respectively, in August <str<strong>on</strong>g>and</str<strong>on</strong>g> September. When 2BoC is substituted for<br />

t, a 74 percent reducti<strong>on</strong> in yield is obtained as compared with the maximum yield<br />

achieved with a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>21.5°C. However, our experimental results.<br />

show that the <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice was reduced by <strong>on</strong>ly about 11 percent at<br />

28°C as compared with the maximum weight achievable. Recently, MURATA (JO}


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 105<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

reported the results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e field experiment in which the <strong>grain</strong> weight varied from 24 g at<br />

a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 22°C to about 21 g at 28°C, about a 13 percent reducti<strong>on</strong>.<br />

Probably, the equati<strong>on</strong> obtained by statistical analysis may help to explain yield differ­<br />

-ences attributable to climatic comp<strong>on</strong>ents in certain ecological regi<strong>on</strong>s, but apparently,<br />

the equati<strong>on</strong> is not appropriate for the general relati<strong>on</strong>ship between parameters used<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> yield. Some unexpressed or unrecognized factors associated with <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

~hanges might be involved in the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> term <str<strong>on</strong>g>of</str<strong>on</strong>g> the equati<strong>on</strong>.<br />

One complicating factor in <str<strong>on</strong>g>temperature</str<strong>on</strong>g> studies is the possibility that the day or<br />

the night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> has a specific physiological role (22), in which case the daily<br />

mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> may not be meaningful. Day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> is obviously important<br />

for photosynthesis. As noted earlier, the difference in the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>grain</strong> <strong>fill</strong>ing between<br />

the present results at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 16°C <str<strong>on</strong>g>and</str<strong>on</strong>g> those <str<strong>on</strong>g>of</str<strong>on</strong>g> Aimi et al.<br />

at a daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 17°C may be better <str<strong>on</strong>g>und</str<strong>on</strong>g>erstood in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the differ­<br />

-ence in day <str<strong>on</strong>g>temperature</str<strong>on</strong>g>.<br />

High night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> has been shown to have deleterious effects <strong>on</strong> the ripening<br />

-<str<strong>on</strong>g>of</str<strong>on</strong>g> rice (4, 11,25,26), such as lowering the final <strong>grain</strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing the in­<br />

~idence <str<strong>on</strong>g>of</str<strong>on</strong>g> chalky <strong>grain</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> other poor quality <strong>grain</strong>s. While a high night <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

increases respirati<strong>on</strong>, which might account for the imp<str<strong>on</strong>g>air</str<strong>on</strong>g>ed ripening (27), Moss<br />

.et al. (6) dem<strong>on</strong>strated that a high night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> increased respirati<strong>on</strong> in the night,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> that this in turn, caused an increase in photosynthesis during the day. Hence, it<br />

is difficult to ascribe the adverse effect <str<strong>on</strong>g>of</str<strong>on</strong>g> high night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing to<br />

increased respirati<strong>on</strong>. Furthermore, high day <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s may cause results similar<br />

to those <str<strong>on</strong>g>of</str<strong>on</strong>g> high night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s.<br />

Fig. 7.<br />

24<br />

22<br />

......<br />

110<br />

:::: 20<br />

.s:;<br />

110<br />

";<br />

c: 18<br />

.~<br />

§ 16<br />

-<br />

14<br />

12<br />

0 __-11-___<br />

°_"",,-<br />

D<br />

Experimer1<br />

123<br />

IR20 .,.<br />

Fu;SOI


106 S. YOSHIDA <str<strong>on</strong>g>and</str<strong>on</strong>g> T. HARA<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

To better <str<strong>on</strong>g>und</str<strong>on</strong>g>erst<str<strong>on</strong>g>and</str<strong>on</strong>g> how <str<strong>on</strong>g>temperature</str<strong>on</strong>g> during the <strong>grain</strong> <strong>fill</strong>ing period affects <strong>grain</strong><br />

weight, the <strong>grain</strong> weight was plotted against the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s (Fig. 7). There was a smooth <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sistent pattern in<br />

the changes in <strong>grain</strong> weight as affected by the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> in both IR2(}<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices, except with Fujisaka 5 when the difference between the day <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> was 18°0. The maximum <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice was.<br />

achieved at the low <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range, while the <strong>grain</strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 remained high<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stable at the high <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range. This implies that <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, regardless.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> day or night, affects <strong>grain</strong> weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> such effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> is best related tathe<br />

daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g>. Thus, within the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> range between 14° <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

34°0, the daily mean <str<strong>on</strong>g>temperature</str<strong>on</strong>g> appears to be the most meaningful expressi<strong>on</strong> by<br />

which to describe the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> IR20 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fujisaka 5 rices.<br />

In the c<strong>on</strong>tinent type <str<strong>on</strong>g>of</str<strong>on</strong>g> climate, large differences in the day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s<br />

are comm<strong>on</strong> (15). A night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 15°0 has been reported to prevent<br />

or delay panicle initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rice even when the day <str<strong>on</strong>g>temperature</str<strong>on</strong>g> is maintained at 30°C<br />

or 33°0 (16-18). In the present experiment, however, the large difference <str<strong>on</strong>g>of</str<strong>on</strong>g> lBoe<br />

between day <str<strong>on</strong>g>and</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s appeared to have an adverse effect <strong>on</strong> the ripening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fujisaka 5 rice rather than a low night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> per se.<br />

At Los Banos, Philippines, high yields are normally achieved in experimental<br />

fields in the dry seas<strong>on</strong> when rice matures in April or May. These two m<strong>on</strong>ths are<br />

characterized by high <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> high solar radiati<strong>on</strong>. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> yield comp<strong>on</strong>ents,<br />

high yields in the dry seas<strong>on</strong> crop are clearly associated with a large <strong>grain</strong><br />

number per square meter (29). In additi<strong>on</strong>, however, high <str<strong>on</strong>g>temperature</str<strong>on</strong>g> does not<br />

appear to have any noticeable adverse effects <strong>on</strong> <strong>grain</strong> <strong>fill</strong>ing, probably because IR2()<br />

rice <str<strong>on</strong>g>and</str<strong>on</strong>g> other indica varieties are well adapted to high <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s during the <strong>grain</strong><br />

<strong>fill</strong>ing period (Fig. 7).<br />

REFERENCES<br />

1) Anu, R., SAWAMURA, H., <str<strong>on</strong>g>and</str<strong>on</strong>g> KmolNo, S., Physiological studies <strong>on</strong> the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> crop plants. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>temperature</str<strong>on</strong>g> up<strong>on</strong> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates <str<strong>on</strong>g>and</str<strong>on</strong>g> related enzymes during the ripening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rice plant, Proc. Crop Sci. Soc. Japan, 27 (4),405-407 (1959)<br />

2) llANYu,J., UCHIJIMA, T., <str<strong>on</strong>g>and</str<strong>on</strong>g> SUGAWAJlA, S., Studies <strong>on</strong> the agro-climatological method for expressing<br />

the paddy rice products (Part I). An agro-climatic index for expressing the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g>"<br />

the paddy rice, Bull. Nat. Tolwku Agr. Exp. Sta., 34, 27-36 (1966)<br />

3) MATSUSHIMA, S., MANAKA, K., <str<strong>on</strong>g>and</str<strong>on</strong>g> TSUNODA, K., Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental factors determining yield<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> yield predicti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> culture improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice. XXXIX. On mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> ripening<br />

(5). XL. On the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> ripening (6), Proc. Crop Sci. Soc. Japan, 25, 203-206 (1957)<br />

4) MATSl.JSHIMA, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> TSUNODA, K., Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental fact<strong>on</strong> determining yield <str<strong>on</strong>g>and</str<strong>on</strong>g> its applicati<strong>on</strong><br />

to yield predicti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> culture improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice. XLV. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> its daily range in different growth stages up<strong>on</strong> the growth, <strong>grain</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>stituti<strong>on</strong>al factors.<br />

Proc. Crop Sci. Soc. Japan, 26, 243-244 (1958)<br />

5) MATSUSHIMA, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> TANAKA, T., Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental factors determining yields <str<strong>on</strong>g>and</str<strong>on</strong>g> its appli-


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Light <strong>on</strong> Rice Grain Filling 107<br />

Downloaded by [Universitaetsbibliothek Giessen] at 15:43 06 April 2015<br />

cati<strong>on</strong> to yield predicti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> culture improvement <str<strong>on</strong>g>of</str<strong>on</strong>g>lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice. LV. Early discriminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-fertilized rice <strong>grain</strong>s, Proc. Crop Sci. Soc. Japan, 28, 365-366 (1960)<br />

6) Moss, D.N., MUSGRAVE, R.B., <str<strong>on</strong>g>and</str<strong>on</strong>g> LEMON, E.R., Photosynthesis <str<strong>on</strong>g>und</str<strong>on</strong>g>er field c<strong>on</strong>diti<strong>on</strong>s. III. Some<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>light</str<strong>on</strong>g>, carb<strong>on</strong> dioxide, <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> soil moisture <strong>on</strong> photosynthesis, respirati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transpirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corn, Crop Sci., 1, 8~7 (1961)<br />

7) MUNAKATA, K., KAWASAKI, 1., <str<strong>on</strong>g>and</str<strong>on</strong>g> KARIYA, K., Quantitative studies <strong>on</strong> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the climatic<br />

fact<strong>on</strong> <strong>on</strong> the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> rice, Bull. Chugoku Agr. Exp. Sta., No. 14,59-95 (1967)<br />

8) MURAKAMI, T., Paddy rice ripening <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>, Japan Agr. &s. Q.,7 (1), 1-5 (1973)<br />

9) MURATA, Y., On the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>air</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> up<strong>on</strong> the local differences in the<br />

productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> paddy rice in Japan, Proc. Crop Sci. Soc. Japan, 35, 59-63 (1964)<br />

10) MURATA, Y., Productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> rice in different climatic regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Presented at the symposium<br />

"Climate <str<strong>on</strong>g>and</str<strong>on</strong>g> Rice" at the Internati<strong>on</strong>al Rice Research Institute, Los Banos, Laguna, Philippines,<br />

September 24-27, 1974 (Mimeo.)<br />

11) NAGATO, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> EBATA, M., <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> in the ripening period up<strong>on</strong> the development <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

qualities <str<strong>on</strong>g>of</str<strong>on</strong>g>lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice kernels, Prot. Crop Sci. Soc. Japan, 28, 275-278 (1960)<br />

12) NAGATO, K. <str<strong>on</strong>g>and</str<strong>on</strong>g> EBATA, M., <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> during the ripening period <strong>on</strong> the development<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> rice kernels, Proc. Crop Sci. Soc. Japan, 34, 59-66 (1965)<br />

13) NAKAYAMA, II., Panicle senescence in rice plant, Bull.lIokuriku Natl. Agr. Exp. Sla., No. 16, 15-57 (1974)<br />

14) OSADA, A., Studies <strong>on</strong> the photosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> indica rice, Prot. Crop Sci. Soc. Japan, 33, 69-76 (1964)<br />

15) OWEN, P.C., The climate <str<strong>on</strong>g>of</str<strong>on</strong>g> the sub-coastal plains <str<strong>on</strong>g>of</str<strong>on</strong>g> Northern Australia: A comparis<strong>on</strong> with those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

other rice-growing areas, J. Austr. Inst. Agr. Sci., 33 (4),247-253 (1967)<br />

16) OWEN, P.C., The growth <str<strong>on</strong>g>of</str<strong>on</strong>g>f our rice varieties as affected by <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> photoperiod with uniform<br />

daily periods <str<strong>on</strong>g>of</str<strong>on</strong>g> day<str<strong>on</strong>g>light</str<strong>on</strong>g>, Exp. Agr., 5, 85-90 (1969)<br />

17) OWEN, P.C., <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> night <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g>IR8 rice, Exp. Agr., 8, 213-<br />

218 (1972a)<br />

18) OWEN, P.C., <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cool periods (15°C) at night <strong>on</strong> Taichung Native 1 rice, Exp. Agr., 8,289-294<br />

(1972b)<br />

19) SATAKE, T., Circular dense-culture <str<strong>on</strong>g>of</str<strong>on</strong>g> rice plant in pots, the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining many uniform<br />

panicles <str<strong>on</strong>g>of</str<strong>on</strong>g> main sterns, Proc. Crop Sci. Soc. Japan, 41, 361-362 (1972)<br />

20) TANAKA, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> VERGARA, B.S., Growth habit <str<strong>on</strong>g>and</str<strong>on</strong>g> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice plants in relati<strong>on</strong> to the envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s in the Far East, IRC Newsl. Spec. Issue, 26-42 (1967)<br />

21) TANAKA, M., Studies <strong>on</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice caused by cool water irrigati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> delayed<br />

heading, Bull. Aomori Agr. Exp. Sta., 7, 1-107<br />

22) WENT, F.W., The Experimental C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Growth, The R<strong>on</strong>ald Press Comp., New York, 343 p.<br />

23) YAMADA, N., MURATA, Y., OSADA, A., <str<strong>on</strong>g>and</str<strong>on</strong>g> hAMA, J., Photosynthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> rice plant, Proc. Crop Sci. Soc.<br />

Japan,23 (3), 214-222 (1955)<br />

24) YAMAKAWA, Y., Studies <strong>on</strong> the ecological variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> rice plant caused by the shifting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cultivati<strong>on</strong> .eas<strong>on</strong> in warm regi<strong>on</strong> in Japan, Agr. Bull. Saga Univ., 14, 23-159 (1962)<br />

25) YAMAMOTO, K., Studies <strong>on</strong> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice (Part I), Agr. HQrt. (Tokyo), 29, 1161-1163 (1954)<br />

26) YAMAMOTO, K., Studies <strong>on</strong> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice (Part II), Agr.lIort. (Tokyo), 29, 1303-1304 (1954)<br />

27) YAMAMOTO, K., Studies <strong>on</strong> ripening <str<strong>on</strong>g>of</str<strong>on</strong>g> rice (Part III), Agr.lIort. (Tokyo), 29, 1425-1427 (1954)<br />

28) YosnIDA, S., CocK,J.lI., <str<strong>on</strong>g>and</str<strong>on</strong>g> PARAO, F.T., Physiological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> high yields, in Internati<strong>on</strong>al Rice<br />

Research Institute, Rice Breeding, Los Banos, Laguna, Philippines, 1972. pp.455-469<br />

29) YOSIIIDA, S. <str<strong>on</strong>g>and</str<strong>on</strong>g> PARAO, F.T., Climatic influence <strong>on</strong> yield <str<strong>on</strong>g>and</str<strong>on</strong>g> yield comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g>lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> rice in the<br />

tropics, Presented at the symposium "Climate <str<strong>on</strong>g>and</str<strong>on</strong>g> Rice" at the Internati<strong>on</strong>al Rice Research Institute,<br />

Los Banos, Laguna, Philippines, September 24-27, 1974 (Mimeo.)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!