04.06.2016 Views

Stroppiana et al. - 2006 - Evaluation of LAI-2000 for leaf area index monitor

Stroppiana et al. - 2006 - Evaluation of LAI-2000 for leaf area index monitor

Stroppiana et al. - 2006 - Evaluation of LAI-2000 for leaf area index monitor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Field Crops Research 99 (<strong>2006</strong>) 167–170<br />

Short communication<br />

Ev<strong>al</strong>uation <strong>of</strong> <strong>LAI</strong>-<strong>2000</strong> <strong>for</strong> <strong>leaf</strong> <strong>area</strong> <strong>index</strong> <strong>monitor</strong>ing in paddy rice<br />

Daniela <strong>Stroppiana</strong> a, *, Mirco Bosch<strong>et</strong>ti a,b , Roberto Conf<strong>al</strong>onieri c ,<br />

Stefano Bocchi b , Pi<strong>et</strong>ro Alessandro Brivio a<br />

a IREA CNR, Institute <strong>for</strong> Electromagn<strong>et</strong>ic Sensing <strong>of</strong> the Environment, Via Bassini 15, 20133 Milano, It<strong>al</strong>y<br />

b Department <strong>of</strong> Crop Science, Section <strong>of</strong> Agronomy, University <strong>of</strong> Milano, Via Celoria 2, 20133 Milano, It<strong>al</strong>y<br />

c Institute <strong>for</strong> the Protection and Security <strong>of</strong> the Citizen, Joint Research Centre <strong>of</strong> the European Commission,<br />

AGRIFISH Unit, MARS-STAT Sector, TP 268–21020 Ispra (VA), It<strong>al</strong>y<br />

Received 19 January <strong>2006</strong>; received in revised <strong>for</strong>m 27 March <strong>2006</strong>; accepted 5 April <strong>2006</strong><br />

www.elsevier.com/locate/fcr<br />

Abstract<br />

Leaf <strong>area</strong> <strong>index</strong> (<strong>LAI</strong>) is a variable <strong>of</strong> primary importance <strong>for</strong> crop <strong>monitor</strong>ing and it is usu<strong>al</strong>ly measured by labor intensive destructive field<br />

sampling. Indirect non-destructive estimates by optic<strong>al</strong> instruments are a comp<strong>et</strong>itive <strong>al</strong>ternative to direct m<strong>et</strong>hods <strong>for</strong> frequent measurements<br />

and over large <strong>area</strong>s. The work presented here ev<strong>al</strong>uated the adequacy and the range <strong>of</strong> reliability <strong>of</strong> the <strong>LAI</strong>-<strong>2000</strong> estimates <strong>for</strong> rice (Oryza<br />

sativa L.) by comparison with <strong>LAI</strong> measurements derived by destructive sampling. Field data were collected in 2004 <strong>for</strong> an Indica type vari<strong>et</strong>y<br />

grown under different levels <strong>of</strong> nitrogen fertilization. The comparison showed that <strong>LAI</strong>-<strong>2000</strong> estimates and destructive <strong>LAI</strong> measurements are<br />

well correlated (R 2 > 0.8) whereas the correlation decreases when <strong>LAI</strong> v<strong>al</strong>ues are lower than one (R 2 < 0.6). Moreover, when <strong>LAI</strong> > 1, the<br />

estimates derived by discarding the wide angle reading (fifth ring) <strong>of</strong> the optic<strong>al</strong> instrument are closer to the actu<strong>al</strong> <strong>LAI</strong> v<strong>al</strong>ues compared to the<br />

standard <strong>LAI</strong>-<strong>2000</strong> outputs. The regression line is, in fact, not statistic<strong>al</strong>ly different (P = 0.25) from the 1:1 line. In these application<br />

conditions, <strong>LAI</strong>-<strong>2000</strong> estimates are correct within 32%. There<strong>for</strong>e, if the range <strong>of</strong> applicability is restricted to <strong>LAI</strong> v<strong>al</strong>ues greater than one<br />

and the wide angle readings are discarded, <strong>LAI</strong>-<strong>2000</strong> is an appropriate instrument <strong>for</strong> in situ <strong>LAI</strong> estimation in paddy rice fields.<br />

# <strong>2006</strong> Elsevier B.V. All rights reserved.<br />

Keywords: <strong>LAI</strong>; Indirect estimation; Direct <strong>LAI</strong> measurement; Oryza sativa L<br />

1. Introduction<br />

Leaf <strong>area</strong> <strong>index</strong> (<strong>LAI</strong>) [m 2 m 2 ], defined as the tot<strong>al</strong> oneside<br />

<strong>area</strong> <strong>of</strong> photosynth<strong>et</strong>ic tissue per unit ground surface<br />

<strong>area</strong> (Watson, 1947), is one <strong>of</strong> the most important variables<br />

in climatic (Lockwood, 1999; Ewert, 2004), ecologic<strong>al</strong><br />

(Chen <strong>et</strong> <strong>al</strong>., 2002) and agronomic<strong>al</strong> research studies<br />

(Soltani and G<strong>al</strong>eshi, 2002). Leaves are the active interface<br />

<strong>for</strong> energy, carbon and water exchange b<strong>et</strong>ween plants and<br />

the atmosphere (Cutini <strong>et</strong> <strong>al</strong>., 1998) and there<strong>for</strong>e <strong>LAI</strong> is a<br />

key variable in most <strong>of</strong> the models developed <strong>for</strong> the<br />

simulation <strong>of</strong> carbon and water dynamics.<br />

M<strong>et</strong>hods <strong>for</strong> in situ <strong>LAI</strong> measurement can be grouped in<br />

two main categories (Jonckheere <strong>et</strong> <strong>al</strong>., 2004; Weiss <strong>et</strong> <strong>al</strong>.,<br />

2004): direct and indirect. Direct m<strong>et</strong>hods measure the <strong>area</strong><br />

* Corresponding author. Tel.: +39 0223699454; fax: +39 0223699300.<br />

E-mail address: stroppiana.d@irea.cnr.it (D. <strong>Stroppiana</strong>).<br />

<strong>of</strong> representative <strong>leaf</strong> samples and they are the only way to<br />

r<strong>et</strong>rieve the actu<strong>al</strong> <strong>leaf</strong> <strong>area</strong>. Besides the ef<strong>for</strong>t involved in<br />

collecting and measuring the samples, direct m<strong>et</strong>hods<br />

require an addition<strong>al</strong> ef<strong>for</strong>t to estimate field plant density and<br />

optim<strong>al</strong> sample size (Conf<strong>al</strong>onieri <strong>et</strong> <strong>al</strong>., <strong>2006</strong>). For these<br />

reasons, direct m<strong>et</strong>hods can be applied over sm<strong>al</strong>l <strong>area</strong>s and<br />

<strong>for</strong> a limited number <strong>of</strong> measurements during the crop cycle.<br />

Alternatively, indirect m<strong>et</strong>hods estimate <strong>LAI</strong> by observing<br />

other, easy to measure variables; such m<strong>et</strong>hods include<br />

optic<strong>al</strong> instruments, which are widely used to measure the<br />

radiation transmitted through the canopy (i.e. canopy gap<br />

fraction) (Welles and Cohen, 1996). Based on the Beer–<br />

Lambert law, these m<strong>et</strong>hods assume that the tot<strong>al</strong> amount <strong>of</strong><br />

radiation intercepted by a canopy depends on the incident<br />

irradiance, the structure <strong>of</strong> the canopy (i.e. <strong>LAI</strong>) and its<br />

optic<strong>al</strong> properties (Monsi and Saeki, 1953). LI-COR <strong>LAI</strong>-<br />

<strong>2000</strong> (LI-COR, Inc., Nebraska, USA) is one <strong>of</strong> the most<br />

widely used optic<strong>al</strong> instruments <strong>for</strong> in situ <strong>LAI</strong> estimation.<br />

0378-4290/$ – see front matter # <strong>2006</strong> Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.fcr.<strong>2006</strong>.04.002


168<br />

D. <strong>Stroppiana</strong> <strong>et</strong> <strong>al</strong>. / Field Crops Research 99 (<strong>2006</strong>) 167–170<br />

However, the accuracy <strong>of</strong> the estimates greatly depends on<br />

the extent to which a s<strong>et</strong> <strong>of</strong> assumptions necessary <strong>for</strong> the<br />

inversion <strong>of</strong> the Beer–Lambert law (e.g. random foliage<br />

distribution within the canopy) are satisfied. The departure<br />

from these assumptions and some limiting factors <strong>of</strong> the<br />

optic<strong>al</strong> instruments, such as the influence <strong>of</strong> non-photosynth<strong>et</strong>ic<strong>al</strong>ly<br />

active tissues and the saturation behaviour<br />

shown <strong>for</strong> high <strong>LAI</strong> v<strong>al</strong>ues (Jonckheere <strong>et</strong> <strong>al</strong>., 2004; Leblanc<br />

and Chen, 2001), can badly affect the accuracy <strong>of</strong> the<br />

estimates. However, very few works have focused on<br />

assessing the accuracy <strong>of</strong> indirect <strong>LAI</strong> estimates <strong>for</strong> crops<br />

(e.g. Wilhelm <strong>et</strong> <strong>al</strong>., <strong>2000</strong>; Sean M<strong>al</strong>one <strong>et</strong> <strong>al</strong>., 2002) and, to<br />

the Authors’ knowledge, only Dingkuhn <strong>et</strong> <strong>al</strong>. (1999)<br />

provided results <strong>for</strong> paddy rice <strong>al</strong>though limited to the 0.5–<br />

2.0 range <strong>of</strong> <strong>LAI</strong> v<strong>al</strong>ues.<br />

This work aimed to ev<strong>al</strong>uate the suitability <strong>of</strong> <strong>LAI</strong>-<strong>2000</strong><br />

<strong>for</strong> <strong>LAI</strong> estimation in paddy rice fields and to d<strong>et</strong>ermine its<br />

range <strong>of</strong> reliability through comparison with direct<br />

measurements. Since Wilhelm <strong>et</strong> <strong>al</strong>. (<strong>2000</strong>) showed that<br />

the discard <strong>of</strong> the wide viewing angle readings <strong>of</strong> the <strong>LAI</strong>-<br />

<strong>2000</strong> instrument can improve <strong>LAI</strong> estimates in corn crops,<br />

we <strong>al</strong>so an<strong>al</strong>ysed and discussed the advantages gained by<br />

reprocessing the <strong>LAI</strong>-<strong>2000</strong> data in the case <strong>of</strong> paddy rice.<br />

2. Materi<strong>al</strong>s and m<strong>et</strong>hods<br />

Direct <strong>LAI</strong> measurements and indirect <strong>LAI</strong>-<strong>2000</strong> estimates<br />

were per<strong>for</strong>med during a field experiment carried out in<br />

Northern It<strong>al</strong>y in 2004 (Conf<strong>al</strong>onieri <strong>et</strong> <strong>al</strong>., <strong>2006</strong>). This work<br />

focuses on the data collected <strong>for</strong> the cultivar Gladio that was<br />

scatter seeded (May 24) and grown under two fertilization<br />

treatments: 0 and 160 kg N ha 1 . Nitrogen fertilization was<br />

supplied in two doses <strong>of</strong> 80 kg N ha 1 at the beginning <strong>of</strong><br />

tillering (June 22) and at panicle initiation (July 20).<br />

Destructive <strong>LAI</strong> measurements were per<strong>for</strong>med in eight<br />

plots (four replicates per treatment) with a quasi-weekly time<br />

step during the crop cycle (June 16–24–30, July 7–14–26,<br />

August 12) by randomly collecting six plants within each plot<br />

(Gomez, 1972; Vaesen <strong>et</strong> <strong>al</strong>., 2001; Dingkuhn <strong>et</strong> <strong>al</strong>., 1999).<br />

Plant density was estimated after germination, by<br />

acquiring two digit<strong>al</strong> photos (Canon, PowerShot 70) within<br />

each plot and by counting the number <strong>of</strong> plants inside a<br />

quarter <strong>of</strong> a square m<strong>et</strong>er. The estimated mean v<strong>al</strong>ue was<br />

assumed as the plot’s plant density.<br />

Since only the <strong>leaf</strong> blade <strong>area</strong> contributes to <strong>LAI</strong><br />

(Yoshida, 1981), the sampled <strong>leaf</strong> blades were separated<br />

from stems (culms and sheaths) and laid on a flat surface,<br />

digit<strong>al</strong> photographs were acquired (Canon, PowerShot 70),<br />

with a pixel resolution <strong>of</strong> 0.03 cm, and the <strong>leaf</strong> <strong>area</strong> was<br />

derived by unsupervised ISO image classification (ENVI,<br />

Version 4.0, Research Systems, Inc., Boulder, CO, USA).<br />

<strong>LAI</strong> was computed as the product <strong>of</strong> the average plant’s <strong>leaf</strong><br />

<strong>area</strong> by the plot’s plant density.<br />

<strong>LAI</strong>-<strong>2000</strong> measurements, per<strong>for</strong>med at the same time as<br />

the destructive samplings, were acquired at suns<strong>et</strong> or on<br />

overcast days with a single-sensor mode and a sequence <strong>of</strong><br />

one above, four below and one above readings regularly<br />

distributed within each plot. In order to reduce the influence<br />

<strong>of</strong> the adjacent plots and <strong>of</strong> the operator, a 458 view-cap was<br />

applied on the optics. The standard <strong>LAI</strong>-<strong>2000</strong> outputs (five<br />

rings, 5R) were reprocessed, using the LI-COR C<strong>2000</strong><br />

s<strong>of</strong>tware, in order to discard the wide viewing angle reading<br />

and to estimate the four ring (4R) <strong>LAI</strong>.<br />

The comparison b<strong>et</strong>ween direct and indirect <strong>LAI</strong><br />

measurements was per<strong>for</strong>med by regression an<strong>al</strong>ysis. The<br />

significance <strong>of</strong> the difference b<strong>et</strong>ween the 5R and 4R<br />

regression lines was assessed by applying a par<strong>al</strong>lelism test<br />

(Zar, 1996). The same test was exploited in order to verify<br />

wh<strong>et</strong>her the regression lines were statistic<strong>al</strong>ly different from<br />

the 1:1 line, which represents the perfect fit b<strong>et</strong>ween<br />

measurements and estimates.<br />

The agreement b<strong>et</strong>ween direct observations and <strong>LAI</strong>-<br />

<strong>2000</strong> estimates was ev<strong>al</strong>uated using the relative root mean<br />

square error (R.R.M.S.E.) <strong>for</strong> estimating the average error <strong>of</strong><br />

estimates. The modelling efficiency (EF; Greenwood <strong>et</strong> <strong>al</strong>.,<br />

1985; 1 1; optimum = 1; if positive, indicates that the<br />

estimate is b<strong>et</strong>ter than the average <strong>of</strong> measured v<strong>al</strong>ues) was<br />

<strong>al</strong>so computed to ev<strong>al</strong>uate the correspondence b<strong>et</strong>ween<br />

measured and estimated trends.<br />

3. Results and discussion<br />

Fig. 1 shows the tempor<strong>al</strong> trend <strong>of</strong> the average <strong>LAI</strong> <strong>for</strong> the<br />

two fertilization treatments as derived by direct measurements.<br />

<strong>LAI</strong> v<strong>al</strong>ues range b<strong>et</strong>ween 0.11 and 7.23 with a<br />

statistic<strong>al</strong>lysignificantdifferenceb<strong>et</strong>weenth<strong>et</strong>w<strong>of</strong>ertilization<br />

treatments only on the two sampling dates after the second<br />

fertilization (**P < 0.01 and ***P < 0.001, respectively).<br />

<strong>LAI</strong>-<strong>2000</strong> estimates are shown in Fig. 2, where the<br />

standard 5R outputs and the reprocessed 4R ones are<br />

compared to direct measurements. Also <strong>LAI</strong>-<strong>2000</strong> estimates<br />

were statistic<strong>al</strong>ly different among treatments only on the last<br />

Fig. 1. The <strong>LAI</strong> tempor<strong>al</strong> trend, as derived from direct measurements, <strong>for</strong><br />

the two N fertilization treatments: T0 and T1. Star markers highlights the<br />

statistic<strong>al</strong>ly different <strong>LAI</strong> v<strong>al</strong>ues (**P < 0.01 and ***P < 0.001).


D. <strong>Stroppiana</strong> <strong>et</strong> <strong>al</strong>. / Field Crops Research 99 (<strong>2006</strong>) 167–170 169<br />

Table 1<br />

The number <strong>of</strong> data points (n), the mean measured and estimated <strong>LAI</strong>, the<br />

results <strong>of</strong> the regression an<strong>al</strong>ysis, the estimated R.R.M.S.E. and the fitting<br />

<strong>index</strong> EF <strong>for</strong> different ranges <strong>of</strong> <strong>LAI</strong> v<strong>al</strong>ues and <strong>for</strong> both standard (5R) and<br />

reprocessed (4R) <strong>LAI</strong>-<strong>2000</strong> estimates<br />

Full range Range (0–1) Range (>1)<br />

5R 4R 5R 4R 5R 4R<br />

n 54 24 30<br />

Mean <strong>LAI</strong> (plan.) 1.83 0.49 2.87<br />

Mean <strong>LAI</strong>-<strong>2000</strong> 1.59 1.73 0.56 0.54 2.41 2.68<br />

R 2 0.85 0.83 0.56 0.57 0.77 0.74<br />

Slope 0.78 0.92 1.29 1.35 0.78 0.95<br />

Intercept 0.17 0.04 0.07 0.11 0.15 0.10<br />

R.R.M.S.E. (%) 39.34 39.89 69.39 71.43 31.71 32.40<br />

EF 0.82 0.82 0.50 0.59 0.67 0.66<br />

Fig. 2. The <strong>LAI</strong>-<strong>2000</strong> estimates and the direct <strong>LAI</strong> measurements. The 5R<br />

(4R) regression is shown as the grey (black) continuous line.<br />

two sampling dates (*P < 0.05). In both cases <strong>of</strong> 5R and 4R<br />

estimates, the coefficient <strong>of</strong> d<strong>et</strong>ermination (R 2 0.83,<br />

***P < 0.001) is in agreement with v<strong>al</strong>ues published by<br />

Dingkuhn <strong>et</strong> <strong>al</strong>. (1999); note, however, that the <strong>LAI</strong> range<br />

covered by this study is greatly enlarged with respect to the<br />

results previously published (0.5–2 m 2 m 2 ). The par<strong>al</strong>lelism<br />

test showed that the 5R and 4R regression lines are<br />

statistic<strong>al</strong>ly different (***P < 0.001) and the 4R line,<br />

despite a slope closer to 1 (i.e. estimates closer to the<br />

actu<strong>al</strong> v<strong>al</strong>ue), was found to be statistic<strong>al</strong>ly different from the<br />

1:1 line (* P < 0.05).<br />

The graphs show that <strong>LAI</strong>-<strong>2000</strong> tends to overestimate<br />

when <strong>LAI</strong> < 1 and to increasingly underestimate as <strong>LAI</strong><br />

increases above one. The an<strong>al</strong>ysis <strong>of</strong> the <strong>LAI</strong>-<strong>2000</strong> Difn<br />

(Diffuse non-interceptance) output param<strong>et</strong>er, which can<br />

be used to compute the coefficient <strong>of</strong> diffused light<br />

extinction <strong>of</strong> the Beer–Lambert law (k =<strong>LAI</strong>-<strong>2000</strong><br />

estimates/ln(Difn)) (Dingkuhn <strong>et</strong> <strong>al</strong>., 1999), showed that<br />

when <strong>LAI</strong> is lower than one, the estimated k (1.30–4.5) lies<br />

outside the range <strong>of</strong> acceptable v<strong>al</strong>ues (0.29–0.81; Kiniry<br />

<strong>et</strong> <strong>al</strong>., 2001). It is probable that the low <strong>LAI</strong> at the early<br />

growing stages badly affects the accuracy <strong>of</strong> the below<br />

canopy instrument readings <strong>of</strong> the transmitted radiation<br />

thus compromising <strong>LAI</strong> estimation. These results were<br />

further confirmed by the regression an<strong>al</strong>ysis per<strong>for</strong>med<br />

separately <strong>for</strong> <strong>LAI</strong> < 1 (Table 1). It is indeed when<br />

<strong>LAI</strong> > 1 that the 4R regression line was found not to be<br />

statistic<strong>al</strong>ly different from the 1:1 line (P =0.25) thus<br />

highlighting a satisfying fit b<strong>et</strong>ween measurements and<br />

estimates. There<strong>for</strong>e, the reprocessing <strong>of</strong> the standard <strong>LAI</strong>-<br />

<strong>2000</strong> estimates should be <strong>al</strong>ways preferred and the use <strong>of</strong><br />

the instrument should be restricted to <strong>LAI</strong> v<strong>al</strong>ues greater<br />

than 1. When these two conditions occur, <strong>LAI</strong>-<strong>2000</strong><br />

provides estimates with R.R.M.S.E. < 33%. Fin<strong>al</strong>ly, the<br />

v<strong>al</strong>ue <strong>of</strong> the fitting <strong>index</strong> (EF = 0.66), significantly greater<br />

than zero, further confirms the good per<strong>for</strong>mance <strong>of</strong> the<br />

optic<strong>al</strong> instrument.<br />

4. Conclusions<br />

This work ev<strong>al</strong>uated the suitability and the range <strong>of</strong><br />

reliability <strong>of</strong> <strong>LAI</strong>-<strong>2000</strong> estimates <strong>for</strong> paddy rice (Oryza<br />

sativa L.) by comparison with direct field <strong>LAI</strong> measurements.<br />

The <strong>LAI</strong>-<strong>2000</strong> standard outputs were <strong>al</strong>so reprocessed<br />

in order to derive <strong>LAI</strong> estimates without the wide<br />

angle readings (fifth optic<strong>al</strong> ring). Results show that <strong>LAI</strong><br />

measurements and <strong>LAI</strong>-<strong>2000</strong> estimates are in agreement<br />

(R 2 > 0.7, R.R.M.S.E. < 33%, EF = 0.66) when <strong>LAI</strong> > 1<br />

and the data is processed to derive <strong>LAI</strong> from only four<br />

optic<strong>al</strong> d<strong>et</strong>ectors’ readings. When these conditions occur the<br />

regression line b<strong>et</strong>ween the direct measurements and the 4R<br />

<strong>LAI</strong>-<strong>2000</strong> estimates was found not to be statistic<strong>al</strong>ly<br />

different (P = 0.25) from the 1:1 line (i.e. perfect fit). It is<br />

probable that, when <strong>LAI</strong> < 1, the low density <strong>of</strong> the rice<br />

canopy badly affects <strong>LAI</strong>-<strong>2000</strong> measurements; there<strong>for</strong>e <strong>for</strong><br />

low <strong>LAI</strong> v<strong>al</strong>ues direct m<strong>et</strong>hods should be rather used. These<br />

results extend to paddy rice results provided by published<br />

work on other crops. Other authors (Gower <strong>et</strong> <strong>al</strong>., 1999) <strong>al</strong>so<br />

highlighted saturation behaviour <strong>of</strong> the optic<strong>al</strong> instrument<br />

due to canopy closure in correspondence <strong>of</strong> high <strong>LAI</strong> v<strong>al</strong>ues;<br />

the experiment<strong>al</strong> data available in this work, which covered<br />

the rice growing cycle until maximum <strong>LAI</strong>, did not show this<br />

effect.<br />

References<br />

Chen, J.M., Pavlic, G., Brown, L., Cihlar, J., Leblanc, S.G., White, H.P.,<br />

H<strong>al</strong>l, R.J., Peddle, D.R., King, D.J., Tr<strong>of</strong>ymow, J.A., Swift, E., Van der<br />

Sanden, J., Pellikka, P.K.E., 2002. Derivation and v<strong>al</strong>idation <strong>of</strong> Canadawide<br />

coarse-resolution <strong>leaf</strong> <strong>area</strong> <strong>index</strong> maps using high-resolution<br />

satellite imagery and ground measurements. Remote Sens. Environ.<br />

80, 165–184.<br />

Conf<strong>al</strong>onieri, R., <strong>Stroppiana</strong>, D., Bosch<strong>et</strong>ti, M., Gusberti, D., Bocchi, S.,<br />

Acutis, M., <strong>2006</strong>. An<strong>al</strong>ysis <strong>of</strong> rice sample size variability due to<br />

development stage, nitrogen fertilization, sowing technique and vari<strong>et</strong>y<br />

using the visu<strong>al</strong> jackknife. Field Crops Res. 97, 135–141.<br />

Cutini, A., Matteucci, G., Scarascia Mugnozza, G., 1998. Estimation <strong>of</strong> <strong>leaf</strong><br />

<strong>area</strong> <strong>index</strong> with the Li-Cor <strong>LAI</strong> <strong>2000</strong> in deciduous <strong>for</strong>ests. Forest Ecol.<br />

Manag. 105, 55–65.


170<br />

D. <strong>Stroppiana</strong> <strong>et</strong> <strong>al</strong>. / Field Crops Research 99 (<strong>2006</strong>) 167–170<br />

Dingkuhn, M., Johnson, D.E., Sow, A., Audebert, A.Y., 1999. Relationships<br />

b<strong>et</strong>ween upland rice canopy characteristics and weed comp<strong>et</strong>itiveness.<br />

Field Crop. Res. 61, 79–95.<br />

Ewert, F., 2004. Modelling plant responses to elevated CO2: how important<br />

is <strong>leaf</strong> <strong>area</strong> <strong>index</strong>? Ann. Bot. 93, 619–627.<br />

Gomez, K.A., 1972. Techniques <strong>for</strong> field experiments with rice. Internation<strong>al</strong><br />

Rice Research Institute. Los Banos, Philippines.<br />

Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect<br />

estimation <strong>of</strong> <strong>leaf</strong> <strong>area</strong> <strong>index</strong>, fAPAR, and n<strong>et</strong> primary production <strong>of</strong><br />

terrestri<strong>al</strong> ecosystems. Remote Sens. Environ. 70, 29–51.<br />

Greenwood, D.J., Ne<strong>et</strong>eson, J.J., Draycott, A., 1985. Response <strong>of</strong> potatoes<br />

to N fertilizer: dynamic model. Plant Soil 85, 185–203.<br />

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M.,<br />

Bar<strong>et</strong>, F., 2004. Review <strong>of</strong> m<strong>et</strong>hods <strong>for</strong> in-situ <strong>leaf</strong> <strong>area</strong> <strong>index</strong> d<strong>et</strong>ermination.<br />

Part I. Theories, sensors and hemispheric<strong>al</strong> photography. Agric.<br />

Forest M<strong>et</strong>eorol. 121, 19–35.<br />

Kiniry, J.R., McCauley, G., Xie, Y., Arnold, J.G., 2001. Rice param<strong>et</strong>ers<br />

describing crop per<strong>for</strong>mance <strong>of</strong> Four U.S. Cultivars. Agron. J. 93, 1354–<br />

1361.<br />

Leblanc, S.G., Chen, J.M., 2001. A practic<strong>al</strong> scheme <strong>for</strong> correcting multiple<br />

scattering effects on optic<strong>al</strong> <strong>LAI</strong> measurements. Agric. Forest M<strong>et</strong>eorol.<br />

110, 125–139.<br />

Lockwood, J.G., 1999. Is potenti<strong>al</strong> evapotranspiration and its relationship<br />

with actu<strong>al</strong> evapotranspiration sensitive to elevated atmospheric CO2<br />

levels? Clim. Change 41, 193–212.<br />

M<strong>al</strong>one, S., Herbert Jr., D.A., Holshouser, D.L., 2002. Ev<strong>al</strong>uation <strong>of</strong> the<br />

<strong>LAI</strong>-<strong>2000</strong> plant canopy an<strong>al</strong>yzer to estimate <strong>leaf</strong> <strong>area</strong> in manu<strong>al</strong>ly<br />

defoliated soybean. Agron. J. 94, 1012–1019.<br />

Monsi, M., Saeki, T., 1953. Über den Lichtfaktor in den Pfanzengesellschaften<br />

und seine Bedeutung für die St<strong>of</strong>fproduktion. Jpn. J. Bot. 14, 22–52.<br />

Soltani, A., G<strong>al</strong>eshi, S., 2002. Importance <strong>of</strong> rapid canopy closure <strong>for</strong> wheat<br />

production in a temperate sub-humid environment: experimentation and<br />

simulation. Field Crop. Res. 77, 17–30.<br />

Vaesen, K., Gilliams, S., Nackaerts, K., Coppin, P., 2001. Ground-measured<br />

spectr<strong>al</strong> signatures as indicators <strong>of</strong> ground cover and <strong>leaf</strong> <strong>area</strong> <strong>index</strong>: the<br />

case <strong>of</strong> paddy rice. Field Crop. Res. 69, 13–25.<br />

Watson, D.J., 1947. Comparative physiologic<strong>al</strong> studies in the growth <strong>of</strong> field<br />

crops. I. Variation in n<strong>et</strong> assimilation rate and <strong>leaf</strong> <strong>area</strong> b<strong>et</strong>ween species<br />

and vari<strong>et</strong>ies, and within and b<strong>et</strong>ween years. Ann. Bot. 11, 41–76.<br />

Weiss, M., Bar<strong>et</strong>, F., Smith, G.J., Jonckheere, I., Coppin, P., 2004. Review <strong>of</strong><br />

m<strong>et</strong>hods <strong>for</strong> in-situ <strong>leaf</strong> <strong>area</strong> <strong>index</strong> (<strong>LAI</strong>) d<strong>et</strong>ermination: Part II. Estimation<br />

<strong>of</strong> <strong>LAI</strong>, errors and sampling. Agric. Forest M<strong>et</strong>eorol. 121, 37–53.<br />

Welles, J.M., Cohen, S., 1996. Canopy structure measurement by gap fraction<br />

an<strong>al</strong>ysis using commerci<strong>al</strong> instrumentation. J. Exp. Bot. 47, 1335–1342.<br />

Wilhelm, W.W., Ruwe, K., Schlemmer, M.R., <strong>2000</strong>. Comparison <strong>of</strong> three<br />

<strong>leaf</strong> <strong>area</strong> <strong>index</strong> m<strong>et</strong>ers in a corn canopy. Crop Sci. 40, 1179–1183.<br />

Yoshida, S., 1981. Fundament<strong>al</strong>s <strong>of</strong> Rice Crop Science. Internation<strong>al</strong> rice<br />

Research Institute. Los Banos, Philippines.<br />

Zar, J.H., 1996. Biostatistic<strong>al</strong> an<strong>al</strong>ysis., 3rd ed. Pr<strong>et</strong>ice H<strong>al</strong>l, Hupper Sandler<br />

River, New Jersey, USA.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!