12.12.2012 Views

Handbook of Functionalized Organometallics Applications in S

Handbook of Functionalized Organometallics Applications in S

Handbook of Functionalized Organometallics Applications in S

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

120<br />

N<br />

CO 2Et<br />

4 Polyfunctional Magnesium <strong>Organometallics</strong> for Organic Synthesis<br />

I<br />

iPrMgBr<br />

THF, -20 ºC, 1 h<br />

N<br />

CO 2Et<br />

MgBr<br />

1) CuCN·2LiCl<br />

2) CO2Et Br<br />

N<br />

CO 2Et<br />

49 50 51: 81%<br />

NMe 2<br />

N<br />

I I<br />

CO 2Et<br />

iPrMgBr<br />

THF, -20 ºC, 5 m<strong>in</strong><br />

52 53<br />

NMe 2<br />

N<br />

I MgBr<br />

CO 2Et<br />

1) CuCN·2LiCl<br />

2) O<br />

Me<br />

54<br />

I<br />

THF, P(OMe) 3, rt, 3 h<br />

I<br />

N<br />

NMe 2<br />

CO 2Et<br />

55: 87%<br />

Scheme 4.15 Arylmagnesium compounds conta<strong>in</strong><strong>in</strong>g nitrogen functional groups.<br />

Me<br />

CO 2Et<br />

The more labile amid<strong>in</strong>e [52] protect<strong>in</strong>g group is also compatible with a magnesium±halogen<br />

exchange and is a convenient mean for <strong>in</strong>troduc<strong>in</strong>g primary<br />

am<strong>in</strong>es <strong>in</strong> a molecule. The diiodo-amid<strong>in</strong>e 52 is converted with<strong>in</strong> 5 m<strong>in</strong> at ±20 C<br />

<strong>in</strong>to the arylmagnesium species 53. Remarkably, only one exchange reaction takes<br />

place. After the first I/Mg-exchange the electron density <strong>of</strong> the aromatic r<strong>in</strong>g<br />

<strong>in</strong>creases and thus hampers a second exchange. Transmetallation <strong>of</strong> 53 with<br />

CuCN´2LiCl [49] provides the correspond<strong>in</strong>g arylcopper derivative, which readily<br />

undergoes an addition-elim<strong>in</strong>ation reaction with a,b-unsaturated carbonyl compound<br />

54, lead<strong>in</strong>g to product 55 <strong>in</strong> 87% yield (Scheme 4.15) [53].<br />

Likewise, an im<strong>in</strong>e is a suitable way to protect both, anil<strong>in</strong>es and aromatic aldehydes<br />

(Scheme 4.16). Thus, 2-iodophenylenediam<strong>in</strong>e 56 undergoes an iod<strong>in</strong>e±<br />

magnesium exchange with iPrMgBr (2 equiv.) at ±10 C <strong>in</strong> 3 h lead<strong>in</strong>g to Grignard<br />

reagent 57. Transmetallation to the copper derivative by treatment with CuCN´<br />

2LiCl [49] and subsequent allylation with allyl bromide gives the diim<strong>in</strong>e 58 <strong>in</strong><br />

83% yield [54].<br />

Whereas aryl iodides bear<strong>in</strong>g an aldehyde group preferentially react with the<br />

aldehyde function dur<strong>in</strong>g attempted iod<strong>in</strong>e±magnesium exchange, the correspond<strong>in</strong>g<br />

im<strong>in</strong>e (59) undergoes a smooth exchange reaction lead<strong>in</strong>g to the<br />

Grignard reagent 60. The addition <strong>of</strong> BiCl 3 followed by a silica gel column chromatographical<br />

purification, provides the result<strong>in</strong>g functionalized triarylbismuthane<br />

61 (Scheme 4.16) [55]. The tedious <strong>in</strong>troduction and removal <strong>of</strong> a protect<strong>in</strong>g<br />

group can <strong>in</strong> pr<strong>in</strong>ciple be avoided for proton-donat<strong>in</strong>g groups through additional<br />

equivalents <strong>of</strong> base. Although halogen±metal exchange reactions on aryl<br />

halides bear<strong>in</strong>g acidic protons have been successfully conducted with alkyllithium<br />

reagents, the low temperatures (±78 C) and the considerable amounts <strong>of</strong> sideproducts<br />

make this methodology less attractive. The formation <strong>of</strong> unprotected<br />

O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!