13.12.2012 Views

GaN devices

GaN devices

GaN devices

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Unipolar Devices III:<br />

<strong>GaN</strong> Electronic Devices<br />

Tutorial in the frame of the TARGET network<br />

Joachim Würfl<br />

Ferdinand-Braun-Institut für<br />

Höchstfrequenztechnik<br />

Gustav-Kirchhoff-Straße 4<br />

12489 Berlin<br />

Participating institutions:<br />

� Fraunhofer Institut für angewandte<br />

Festkörperphysik, Freiburg, Germany<br />

� Technical University Vienna, Austria<br />

� AMS, Rome, Italy<br />

...Translating ideas into innovation<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Outline<br />

<strong>GaN</strong> electronic <strong>devices</strong> –<br />

An introduction<br />

Device fabrication<br />

Understanding device<br />

operation<br />

Design of high power<br />

microwave <strong>GaN</strong> <strong>devices</strong><br />

Future <strong>GaN</strong> <strong>devices</strong><br />

Conclusions<br />

� Comparison to other device families<br />

� Applications<br />

� Principles of operation<br />

� Epitaxy<br />

� Processing<br />

� Performance limitations and how to get rid of it<br />

� Reliability<br />

� Field plate <strong>devices</strong><br />

� Power bar designs<br />

� State of the art results<br />

� Novel epitaxial approaches<br />

� <strong>GaN</strong> HBTs


<strong>GaN</strong> electronic <strong>devices</strong><br />

– An introduction


Semiconductor microwave power <strong>devices</strong><br />

maximale maximale Leistung Leistung (Watt) (Watt)<br />

Maximum power (W)<br />

1000<br />

100<br />

10<br />

1<br />

SiC <strong>GaN</strong> HFET<br />

SiC <strong>GaN</strong> HFET<br />

Si LDMOS GaAs HBT, HEMT<br />

Si LDMOS GaAs HBT, HEMT<br />

0,1<br />

0,1 1 10 100 1000<br />

Frequency Frequenz (GHz) (GHz)<br />

InP HBT, HEMT<br />

InP HBT, HEMT<br />

Device classes and frequency vs. maximum possible<br />

microwave power


Comparison of semiconductor materials<br />

Band Gap (eV)<br />

Electron mobility<br />

(cm²/Vs)<br />

Electric breakdown field<br />

(10 6 V/cm)<br />

Saturation velocity<br />

(10 7 cm/s)<br />

Thermal conductivity<br />

(W/Kcm)<br />

Johnsons Figure of Merit<br />

(~V Br ² x v sat ²)<br />

Maximum estimated operation<br />

temperature (°C)<br />

Si<br />

1.1<br />

ind.<br />

1500<br />

0.3<br />

1.0<br />

1.5<br />

1<br />

200<br />

GaAs<br />

1.43<br />

dir.<br />

8500<br />

0.4<br />

2.0<br />

0.46<br />

7<br />

300<br />

4H-SiC<br />

3.26<br />

ind.<br />

1000<br />

2.0<br />

2.0<br />

4.9<br />

180<br />

500<br />

6H SiC<br />

3.0<br />

ind.<br />

500<br />

2.4<br />

2.0<br />

4.9<br />

260<br />

500<br />

<strong>GaN</strong>/<br />

Al<strong>GaN</strong><br />

3.42<br />

dir.<br />

1250*<br />

3.3<br />

2.7<br />

1.3<br />

760<br />

500<br />

* 2DEG mobility up to 2000 cm²/Vs


Applications<br />

Oscillator<br />

1/f noise<br />

Distortion<br />

RF noise<br />

High power amplifier<br />

Low noise amplifier<br />

Breakdown<br />

Voltage<br />

High speed communication Gate array<br />

f max<br />

Power<br />

Handling<br />

f T<br />

P diss<br />

ADC ASIC Air cooled LSI<br />

g m<br />

σVT<br />

GaAs - HEMT<br />

GaAs - HBT<br />

Si - BJT<br />

<strong>GaN</strong> - HEMT


<strong>GaN</strong> high power <strong>devices</strong>: Applications<br />

Demands from system<br />

applications<br />

More demanding<br />

requirements regarding:<br />

� Linearity<br />

� Output power<br />

� Efficiency<br />

� Heat sinking<br />

� Total system noise factor<br />

To be expected in future:<br />

Realization in <strong>GaN</strong> technology<br />

<strong>GaN</strong> <strong>devices</strong> for<br />

„Enabling microwave components“<br />

� High power microwave amplifier (HPA)<br />

� Highly linear amplifiers<br />

� Robust low noise amplifiers (LNA)<br />

� Power switches<br />

Civil applications<br />

� Base stations for mobile communications<br />

� Satellite communication<br />

Military applications<br />

� Phased array radar systems


Advantages of <strong>GaN</strong>-HFETs in power amplifiers<br />

conventional technology <strong>GaN</strong> technology<br />

T T<br />

T<br />

T<br />

T T<br />

T T<br />

input T T<br />

output input output<br />

T<br />

T T<br />

T<br />

Higher operation voltage leads to:<br />

� Higher power densities<br />

� Higher impedance level<br />

� Higher linearity<br />

� Less complex transformation and power combining networks<br />

Less complex circuit design<br />

� Small chip areas<br />

� Higher reliability


III-Nitride hetero structures for<br />

microwave power transistors<br />

R.J.. Trew, MTT-S 2004<br />

Bandgap-Engineering<br />

� Realization of HEMTs<br />

Spontaneous and<br />

piezoelectric polarization<br />

Advantages:<br />

� Reduced Coulomb-<br />

Scattering in 2DEG<br />

� Higher mobility<br />

� Higher carrier<br />

concentration in 2DEG


High Electron Mobility Transistors (HEMT):<br />

How does it work?<br />

Source<br />

AlGaAs<br />

Gate<br />

Drain<br />

GaAs 2-DEG<br />

spacer<br />

AlGaAs GaAs<br />

Distribution<br />

of 2DEG carriers<br />

Additional<br />

features<br />

Example: GaAs/AlGaAs HEMTs<br />

� Electrons from AlGaAs drift to<br />

AlGaAs/GaAs interface<br />

� There: Formation of 2DEG<br />

� Extremely high electron mobility<br />

along interface<br />

� 2DEG concentration controllable by<br />

Gate electrode<br />

Speciality: <strong>GaN</strong>/Al<strong>GaN</strong> HEMT<br />

� Parameters controlling 2DEG<br />

concentration:<br />

-Doping of Al<strong>GaN</strong> barrier<br />

-Spontaneous polarization<br />

-Piezoelectric polarization


Spontaneous and piezoelectric polarization<br />

Relaxed<br />

Substrate<br />

Compressive<br />

strain<br />

Substrate


Mechanism of spontaneous polarization<br />

Charge distribution of<br />

valence electrons (e/ų)<br />

Ionic character of<br />

Ga-N compound<br />

+<br />

Deviation from ideal<br />

c/a ratio<br />

Resulting<br />

polarization<br />

Spontaneous<br />

polarization


c/a ratio<br />

c/a-ratio and spontaneous polarization<br />

Spont. polarization (C/m²)<br />

� c/a ratio always smaller as in ideal case<br />

� Spontaneous polarization increases in the order <strong>GaN</strong>, InN, Al<strong>GaN</strong><br />

� Relevant for high power <strong>GaN</strong> microwave transistors:<br />

Difference between <strong>GaN</strong> and Al<strong>GaN</strong>


Principles of 2DEG formation in Al<strong>GaN</strong>/<strong>GaN</strong> structures<br />

E F<br />

Al x Ga 1-x N<br />

P piezo<br />

∆P 0<br />

2DEG<br />

<strong>GaN</strong><br />

∇<br />

∆P 0 = P 0 (<strong>GaN</strong>)- P 0 (Al<strong>GaN</strong>)<br />

differential spontaneous polarization at the<br />

junction<br />

P piezo<br />

Gauss theorem: -ρ total = . (P piezo + P 0 )<br />

positive polarization-induced charge ρtotal to compensate ρtotal tensile strain in the<br />

Al<strong>GaN</strong> lattice-matched to <strong>GaN</strong><br />

2DEG accumulation<br />

polarization doping no intentional doping necessary !


2DEG formation in Al<strong>GaN</strong>/<strong>GaN</strong> HFET-structures<br />

<strong>GaN</strong><br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

Saphir<br />

P SP<br />

P SP<br />

P SP<br />

P PE<br />

-<br />

+<br />

ρ+<br />

N<br />

Ga<br />

O<br />

Al<br />

E F<br />

[0001]<br />

E C<br />

2DEG<br />

[0001]<br />

Ga-face polarity N-face polarity<br />

P SP<br />

P SP<br />

P SP<br />

P PE<br />

+<br />

-<br />

ρ+<br />

Ga<br />

N<br />

O<br />

Al<br />

E F<br />

E C<br />

2DEG


Device fabrication


Epitaxy on non-lattice matched substrates (1)<br />

Possible substrate solutions for <strong>GaN</strong> FETs:<br />

Lattice mismatch (%)<br />

Availability / Price (2“, $)<br />

Thermal Conductivity<br />

(W/cmK)<br />

Sapphire<br />

13<br />

100<br />

0.3<br />

n-type<br />

SiC<br />

3.1<br />

500<br />

4<br />

s.i.<br />

SiC<br />

3.1<br />

3000<br />

4<br />

<strong>GaN</strong> bulk<br />

0<br />

not<br />

available<br />

1.3<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik<br />

Si<br />

17<br />

100<br />

1.48


Epitaxy on non-lattice matched substrates (2)<br />

Analysis of dislocations and epitaxial quality<br />

dislocations � TEM image<br />

Non-lattice matched substrate (sapphire)<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik<br />

� PEC: photo enhanced etching<br />

� Dislocations are etched slower than<br />

defect free areas<br />

� Dislocation rich area up to a thickness<br />

of 500 nm


Epitaxy on non-lattice matched substrates (3)<br />

Metal Organic Chemical<br />

Vapour Deposition (MOCVD)<br />

Both types deliver similar epitaxial quality<br />

MOCVD:<br />

� Faster growth<br />

� Mass production<br />

Molecular Beam Epitaxy<br />

(MBE)<br />

MBE:<br />

� More options for polarity of<br />

interfaces<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Impact of epitaxy on polar hetero<strong>devices</strong><br />

� Material composition x:<br />

Increasing n s while<br />

preserving mobility µ<br />

� No/little doping required<br />

Source<br />

Al x Ga 1-x N<br />

Al x Ga 1-x N<br />

Gate<br />

Drain<br />

Si-doping<br />

<strong>GaN</strong> 2-DEG<br />

Mobility (cm 2 / Vs)<br />

Sheet Carrier Concentration (1E13 cm -2 )<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

25 30<br />

Al content (%)<br />

35<br />

HEMT on Sapphire<br />

Al=25%<br />

Al=30%<br />

Al=35%<br />

0.4 0.6 0.8 1.0 1.2 1.4 1.6<br />

Sheet Carrier Concentration (1E13 cm -2 )<br />

IAF<br />

Fraunhofer Institut<br />

Angewandte<br />

Festkörperphysik


Technology of Al<strong>GaN</strong>/<strong>GaN</strong> HFETs (1)<br />

S D<br />

S D<br />

Ti-reflector layer on transparent wafer<br />

� Structuring of reflector layer<br />

� Definition of alignment marks<br />

Deposition of Source-/Drain contacts<br />

(Ti/Al/Ti/Au/WSiN)<br />

� Removal of reflector layer<br />

� Annealing at 850°C in N 2<br />

On chip isolation:<br />

� Dry etching of active layers<br />

� RIE-process, BCl 3 :Cl 2 :Ar


Technology of Al<strong>GaN</strong>/<strong>GaN</strong> HFETs (2)<br />

Dielectric<br />

passivation<br />

S G D<br />

S G D<br />

MIM-capacitor<br />

Resistor<br />

Gate-Technology (Pt-Au):<br />

� Electron beam lithography:<br />

Gate length 0.3 µm<br />

Passivation and dry etching of contact<br />

windows<br />

1 st interconnect (Ti-Pt-Au, 500nm)<br />

Passive components:<br />

� MIM-capacitor<br />

� NiCr-resistor<br />

� Electroplated Au air bridge<br />

(6 µm)


Technology of Power Cells<br />

WSiN x -Diffusionbarrier<br />

encapsulats ohmic contact<br />

Power cell with common Source Design<br />

(connected by airbridge)


Backend Processing<br />

Wafer thinning<br />

Via etching and<br />

metalization<br />

Chip dicing


Backend Processing (1)<br />

Thinning of SiC-Substrate to 100 µm<br />

� Lapping with different diamond<br />

pastes<br />

� Polishing<br />

Via technology<br />

� Dry chemical via process<br />

� Laser micro-machining<br />

Via metallization<br />

� Plating base: Ti/Au 30/1000 nm<br />

Electroplating


Backend Processing (2)<br />

Definition of dicing streets<br />

� Lithography and etching<br />

� Laser micro-machining<br />

Wafer dicing<br />

� Sawing and cleaving<br />

Chip delivery:<br />

� Diced chips on dicing frame


L-Band Powerbars based on laser-vias<br />

� Full wafer thickness<br />

(Wafer not thinned)<br />

� Via-diameter 90 µm<br />

� Technological specialty<br />

Through-Vias


Chip Dicing<br />

Laser scribe lines<br />

Laser induced removal of Au in<br />

dicing streets<br />

(focus on backside)<br />

Dicing street<br />

Dicing street after wafer sawing<br />

and cleaning<br />

(focus on front side)


<strong>GaN</strong>-HFETs:<br />

Power <strong>devices</strong> on transparent wafers


16x250 µm power cells<br />

Device data at 2 GHz:<br />

� P max = 12.3 W<br />

� PAE = 59%<br />

� Linear gain: 19 dB<br />

� Gain at P max : 16 dB<br />

dB MSG<br />

Po(dBm); G(dB); PAE<br />

(%)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0,1 1 10 100<br />

Pout<br />

G<br />

PAE<br />

ID<br />

f (GHz)<br />

Pmax=12.3W<br />

-10 0 10 20 30<br />

Pin (dBm)<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

ID (A)


Understanding device operation


I D (A)<br />

DC-characteristics<br />

Device:<br />

<strong>GaN</strong>-HFET 2x50 µm,<br />

L g = 0.3 µm<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

I D (A)<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0 5 10 15 20 25 30<br />

V DS (V)<br />

0<br />

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2<br />

V GS (V)<br />

Typical <strong>GaN</strong>-HFET I/Vcharacteristics:<br />

� I DSS_max = 1.1 A/mm<br />

� g m = 220 mS/mm<br />

� Slight hysteresis in output<br />

characteristics


I (mA) ds<br />

Compression of drain current: Gate lag conditions<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V)<br />

ds V = 0.0 V, V = 0.0 V<br />

gs ds<br />

V = -3.0 V, V = 0.0 V<br />

gs ds<br />

I (mA)<br />

ds 140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V) ds<br />

V = 0.0 V, V = 0.0 V<br />

gs ds<br />

V = -3.0 V, V = 0.0 V<br />

gs ds<br />

Biasing point for pulse measurements: V GS = -3 V, (pinch off); V DS = 0 V<br />

Before passivation:<br />

� Drain current reduction<br />

After passivation<br />

� Slight recovery of drain current


Reduction of power dispersion (3)<br />

5. Field plate structures<br />

� Suppressing surface/interface traps<br />

� Field plate flattens electric field distribution<br />

G<br />

� High electric field<br />

� Trapped electrons<br />

form virtual gate<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Without field plate<br />

D<br />

� Electric field<br />

maximum reduced<br />

� Modulation of<br />

carriers due to F.P<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

With field plate<br />

D


I (mA)<br />

ds Compression of drain current: Drain lag conditions<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15 20 25 30<br />

V (V) ds<br />

V gs = -3.0 V, V ds = 0.0 V<br />

V gs = -3.0 V, V ds = 26.0 V<br />

I (mA) ds<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

V gs = -3.0 V, V ds = 0.0 V<br />

V gs = -3.0 V, V ds = 26.0 V<br />

0<br />

0 5 10 15 20 25 30<br />

V (V)<br />

ds Biasing point for pulse measurements: V GS = -3 V, (pinch off); V DS = 26 V<br />

Before passivation:<br />

� Very pronounced drain lag<br />

After passivation:<br />

� Strong recovery of drain lag


Maximum obtainable output power<br />

I DS<br />

V P<br />

g m<br />

I max<br />

V GS<br />

V K<br />

R opt = (V DSmax –V K ) / I max<br />

V GS =0<br />

V GS =V P<br />

P max = 1/2 · (V DSmax –V K ) · I max<br />

V DD<br />

V DSmax<br />

V DS<br />

Ohmic Saturation Breakdown<br />

∆I<br />

Optimum output impedance for<br />

max. output amplitude given by:<br />

� Voltage knee V K<br />

� Breakdown onset<br />

� Saturation current


If current compression:<br />

Strong reduction of maximum obtainable output power<br />

I DS<br />

V P<br />

g m<br />

Therefore:<br />

I max<br />

V GS<br />

V K<br />

Current compression has to<br />

reduced by any means<br />

V DSmax<br />

V DS<br />

Ohmic Saturation Breakdown<br />

Not accessible<br />

∆I<br />

Maximum power swing reduced by:<br />

� Surface traps<br />

� Buffer layer traps


I ds (mA)<br />

Dependency of output power density<br />

on current compression<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

0<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20 25 30<br />

0 5 10 15 20 25 30<br />

V ds (V)<br />

Static<br />

Dynamic<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

V ds (V)<br />

Static<br />

Dynamic<br />

P out = 5.2 W/mm P out = 3.9 W/mm P out = 1.8 W/mm<br />

� Transistor geometry: 2x50 µm<br />

� Frequency: 2 GHz<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

V ds (V)<br />

RF-power performance<br />

Static<br />

Dynamic


Physical background of current compression<br />

Main cause of current compression<br />

� Electron/hole traps due to<br />

surface/interface states & material<br />

defects<br />

Location of traps<br />

� Al<strong>GaN</strong> surface / interface (I)<br />

� Al<strong>GaN</strong> layer (II)<br />

� <strong>GaN</strong> buffer (III)<br />

� Interface substrate / buffer (IV)<br />

Causes of trap formation<br />

� Impurity addition during growth<br />

� Threading dislocation due to lattice<br />

mismatch & defects<br />

� Excess of carrier gasses & uncontrolled<br />

growth parameters<br />

� Increasing Al mole fraction and Al<strong>GaN</strong><br />

relaxation<br />

� Surface exposure & damage during<br />

device processing<br />

S<br />

G<br />

D<br />

(I) (I)<br />

Al<strong>GaN</strong> (II)<br />

<strong>GaN</strong> (III)<br />

IV<br />

Substrate


Current compression:<br />

An analogue from every days world<br />

� A parallelism could be made for a choked tap, that<br />

cannot modulate the flowing liquid (the Drain current)<br />

because of a throttling (the virtual Gate due to the<br />

charged traps) in the tube (the channel) before<br />

and/or after it.


Gate lag<br />

I ds (mA)<br />

Experimental observation Explanation<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20<br />

V ds (V)<br />

Bias points: V ds = 0.0 V; V gs = 0.0 V<br />

V ds = 0.0 V; V gs = -7.0 V<br />

Open channel: V ds = 0.0 V ; V gs = 0.0 V<br />

S D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Depleted channel: V ds = 0.0 V ; V gs = -7.0 V<br />

� Pulsing the gate: ē are trapped in surface<br />

states, negative charging.<br />

S G<br />

D<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Traps


I ds (mA)<br />

Drain lag<br />

Experimental observation Explanation<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20<br />

V ds (V)<br />

Bias points: V ds = 0.0 V; V gs = -7.0 V<br />

V ds = 20.0 V; V gs = -7.0 V<br />

Depleted channel: V ds = 0.0 V ; V gs = -7.0 V<br />

S D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

More Depleted channel:<br />

V ds = 20.0 V ; V gs = -7.0 V<br />

Traps<br />

Pulsing the drain: ē are also trapped in<br />

buffer traps due to high V ds.<br />

S G<br />

D<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +<br />

Traps


Reduction of power dispersion (1)<br />

1. Surface passivation<br />

2. n- type <strong>GaN</strong> cap<br />

Mechanism:<br />

� Neutralizing surface / interface traps by n + -donors (n-doped <strong>GaN</strong><br />

cap) & shallow donors (SiN x )<br />

� Therefore: No virtual gate formation<br />

G<br />

Al<strong>GaN</strong><br />

Trapped electrons<br />

form virtual gate<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D<br />

G<br />

Al<strong>GaN</strong><br />

Removal of virtual<br />

gate due to SiN x<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D<br />

Al<strong>GaN</strong><br />

G<br />

Removal of virtual gate<br />

due to n-doped cap<br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

D


Reduction of power dispersion (2)<br />

3. Recessed gate process<br />

4. Light stimulation<br />

� Suppression of surface/interface traps<br />

� No effective charging of surface states and therefore removal of virtual gate<br />

� De-trapping of carriers<br />

G<br />

<strong>GaN</strong><br />

Trapped electrons<br />

form virtual gate<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

D<br />

No trapping of<br />

electrons leaking<br />

from the gate<br />

D<br />

G<br />

Al<strong>GaN</strong><br />

+ + + + + + + + + + + + + + + + + + +<br />

<strong>GaN</strong><br />

Ec<br />

Ev<br />

Traps<br />

Electron<br />

hole<br />


Design and realization of<br />

high power microwave <strong>GaN</strong> <strong>devices</strong>


Field plates: Output power increase<br />

Psat [W/mm]<br />

8,0<br />

7,5<br />

7,0<br />

6,5<br />

6,0<br />

5,5<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

A2: G-D=2µm<br />

A6: G-D=6µm<br />

A6L: G-D=6µm, FP=1µm<br />

A6M: G-D=6µm, FP=2µm<br />

A6N: G-D=6µm, FP=3µm<br />

24 26 30 36 42 48 54 60<br />

Vds [V]<br />

<strong>GaN</strong> 707-4 (Wg=2*125µm)<br />

Power density vs. bias voltage<br />

� Systematically higher output power level<br />

� Power density can be increased by 100%<br />

S<br />

G<br />

D<br />

FP<br />

Field plate<br />

Field plate connected to<br />

gate at gate pad


Field plates: Trade-offs<br />

MSG [dB]<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

24 26 30 36 42<br />

Vds [V]<br />

A2: G-D=2µm<br />

A6: G-D=6µm<br />

A6L: G-D=6µm, FP=1µm<br />

A6M: G-D=6µm, FP=2µm<br />

A6N: G-D=6µm, FP=3µm<br />

<strong>GaN</strong> 707-4 (Wg=2*125µm)<br />

Maximum stable gain (MSG) vs. bias voltage<br />

� Reduced gain (MSG) due<br />

to field plate. Increase of<br />

- Base/collector<br />

capacitance<br />

- Effective gate length<br />

� Trade-off between<br />

maximum achievable<br />

power level and speed


High power transistors: Power bar structures<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

S<br />

G<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S<br />

S<br />

D<br />

S S<br />

� Bonding areas according to device current<br />

and mounting requirements<br />

� Sub-cells separated on chip<br />

- Avoid odd mode oscillations<br />

- On chip measurability<br />

� Inter sub-cell connection by power bar<br />

bonding


Thermal management<br />

Flip chip technology:<br />

� Flip chip bonding of <strong>GaN</strong> HEMT discrete <strong>devices</strong> on AlN substrates could<br />

be used to improve <strong>devices</strong> thermal management. It can be be also used<br />

as an alternative solution to via holes for MMIC ground connection.<br />

AlN Carrier Substrate <strong>GaN</strong> Chip<br />

Au/Sn<br />

bumps


Breakdown in <strong>GaN</strong> HEMTs<br />

+<br />

S<br />

EF<br />

G<br />

+<br />

breakdowns<br />

Reduction of break down:<br />

D<br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

� Highly resistive buffer<br />

� Dislocation-free surface<br />

� field plate (eliminates impact<br />

ionisation in the channel)<br />

S-D breakdown<br />

� Complex avalanche-injection process<br />

- Highly resistive buffer layer needed !<br />

G-D breakdown<br />

� Through the surface<br />

� Impact ionisation in the channel<br />

� Schottky barrier breakdown<br />

Literature<br />

� Vaschenko et.al.; Microelectron. Reliab. 37<br />

(1997), 1137-1141<br />

� Kuzmik et.al.; Appl. Phys. Letters 83 (2003),<br />

4655-4657)<br />

� Nakano et.al; phys. stat. sol. (c) 0 (2003)<br />

2335<br />

� Dayakonova et.al; Appl. Phys. Lett. 72 (1998)<br />

2562


Pout (dBm)<br />

<strong>GaN</strong>-Amplifier Module<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

22.4 W<br />

Pout<br />

PAE<br />

Gain<br />

28V D , 1A , 1.87GHz<br />

N0713-1 5x8X250 _16R10_4S3<br />

0 5 10 15 20 25 30 35 0<br />

Pin (dBm)<br />

Single stage amplifier<br />

� In- and output matching<br />

� 10 mm Gate width<br />

� 43,5dBm (22.4 W) @ 1.87GHz<br />

50<br />

40<br />

30<br />

20<br />

10<br />

PAE (%), Gain (dB)


Power bar <strong>devices</strong>: Performance<br />

Gain (dB) /Output Power (dBm)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Gain<br />

Output Power<br />

PAE<br />

10<br />

0<br />

0 5 10 15 20 25 30 35<br />

Input Power (dBm)<br />

Device in test fixture<br />

� P max = 32 W<br />

� PAE = 42%<br />

� Linear gain: 17 dB<br />

� Gain at P max : 15 dB<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

PAE (%)<br />

2 GHz test fixture


Bench marking of <strong>GaN</strong> power <strong>devices</strong><br />

P (W) bzw. P/WG (W/mm)<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

NEC<br />

�<br />

�<br />

�<br />

�<br />

FBH �<br />

�<br />

�<br />

Fujitsu<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Europe World wide<br />

Cree<br />

��<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

1 10 100<br />

DC<br />

FBH IAF<br />

TRW<br />

Frequenz (GHz)<br />

�<br />

Cree<br />

IAF<br />

Triquint<br />


Future <strong>GaN</strong> <strong>devices</strong>


New structures for high-power performance<br />

Energy gap at 300 K (eV)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

AlN<br />

Al<strong>GaN</strong><br />

<strong>GaN</strong><br />

In 0.17 Al 0.83 N<br />

InAlN<br />

In<strong>GaN</strong><br />

InN<br />

3,1 3,2 3,3 3,4 3,5 3,6<br />

Lattice constant, at 300 K (Angstrom)<br />

Therefore:<br />

Goals:<br />

� Better carrier confinement in 2DEG<br />

� Increase 2 DEG concentration<br />

Conventional approach: Increase of<br />

Al mole-fraction in Al<strong>GaN</strong><br />

� Increase of strain in Al<strong>GaN</strong><br />

� Increase of spontaneous polarization<br />

� Increase of 2DEG density<br />

Problem:<br />

InAlN/(In)<strong>GaN</strong> QW new approach<br />

� Relaxation of the Al<strong>GaN</strong> layer


New structures for high-power performance<br />

In x Al 1-x N<br />

(lattice<br />

matched,<br />

x= 0.17, or<br />

tensile<br />

strain)<br />

Al0.2Ga0.8N/<strong>GaN</strong><br />

(conventional)<br />

E F<br />

P piezo<br />

DP 0<br />

2DEG<br />

PpiezoDP0 <strong>GaN</strong><br />

In y Ga 1-y N<br />

(lattice matched<br />

(y= 0) or<br />

compressive<br />

strain)<br />

∆ P0 (Ccm -2 ) Ppiezo (Ccm -2 ) ntotal (cm -2 ) ∆EC (eV)<br />

-1.04 x 10 -6<br />

In0.17Al0.83N/<strong>GaN</strong> -4.37 x 10 -6<br />

In0.17Al0.83N/ In0.10Ga0.90N -4.34 x 10 -6<br />

-6.9 x 10 -7<br />

1.08 x 10 13<br />

0 2.73 x 10 13<br />

1.6 x 10 -6<br />

3.71 x 10 13<br />

0.3 (0.75∆Eg)<br />

0.68<br />

>0.68


New structures for high-power performance<br />

Advantages<br />

� Very high 2 DEG density expected (� high power HEMTs), controlled<br />

strain<br />

Disadvantages<br />

� InAlN growth is difficult<br />

Literature<br />

� J. Kuzmik; IEEE El.Dev.Letters 22, 510-512 (2001)<br />

� M. Higashiwaki; Jap. J. Applied Physics 43, L768-770 (2004)


MOS <strong>GaN</strong> HEMT<br />

Advantages of MOS/MIS-Structures:<br />

� Low gate leakage<br />

� reduced current collapse<br />

� lower noise<br />

� positive sweep on gate (higher power, normally off device possible)<br />

Requirements on dielectric layers:<br />

� High electrical strength, no bulk traps<br />

� Good insulation,<br />

� Low interface state density<br />

Literature:<br />

� Khan et.al.; IEEE Trans. On Microw. Th. and Tech.51 (2003) 624-633.<br />

� Khan et.al.; phys. stat. sol. (a) 200 (2003) 155.<br />

� Adivarahan et.al.; IEEE Electron Dev. Lett. 24 (2003) 541


<strong>GaN</strong>-HBT: Main advantages<br />

Property<br />

Eg (eV)<br />

v sat (cm/s)<br />

E crit (MV/cm)<br />

χ (W/cmK)<br />

<strong>GaN</strong><br />

3.4<br />

3x10 7<br />

3.3<br />

1.3<br />

4H-SiC<br />

3.3<br />

2x10 7<br />

2.0<br />

4.9<br />

GaAs<br />

1.4<br />

2x10 7<br />

<strong>GaN</strong> wide-band-gap-material (Eg) as collector layer:<br />

� High RF-power<br />

� High operating voltage<br />

� Operation at high temperatures (300 - 500°C)<br />

Advantages of <strong>GaN</strong>:<br />

� Highest saturation velocity v sat gives lowest transit time<br />

0.4<br />

0.5<br />

� Highest breakdown field E crit allows highest bias voltage<br />

� Good thermal conductivity (SiC better!)<br />

Si<br />

1.1<br />

0.6x10 7<br />

0.3<br />

1.5<br />

<strong>GaN</strong> HBTs:<br />

Extremely high power<br />

at high frequency


<strong>GaN</strong>-HBT: Comparison with GaAs-HBT [2,3]<br />

Structure:<br />

<strong>GaN</strong>-HBT<br />

50 nm base<br />

100 nm collector<br />

<strong>GaN</strong>-HBT<br />

200 nm base<br />

7000 nm collector<br />

GaAs-HBT<br />

100 nm base<br />

3000 nm collector<br />

Breakdown<br />

voltage (V)<br />

15<br />

1000<br />

70<br />

Current gain<br />

cut-off<br />

frequency f T<br />

200<br />

6<br />

20<br />

Power gain<br />

cut-off<br />

frequency f max<br />

200<br />

300<br />

~100<br />

Superior RF-power performance expected for <strong>GaN</strong>-HBTs!


<strong>GaN</strong>-HBT: Main world-wide activities<br />

Research<br />

group:<br />

J. Pankove<br />

Astralux Inc.,<br />

USA [4,5]<br />

U.K. Mishra,<br />

et.al., UCSB<br />

USA [2,6,7,8]<br />

T. Makimoto,<br />

et.al., NTT<br />

Japan [9,10]<br />

S. Estrada,<br />

et.al., UCSB<br />

USA [11]<br />

Structure:<br />

emtter/base/<br />

collector<br />

n-<strong>GaN</strong>/p-SiC/<br />

n-SiC<br />

n-Al<strong>GaN</strong>/p-<strong>GaN</strong>/<br />

n-<strong>GaN</strong><br />

n-<strong>GaN</strong>/p-In<strong>GaN</strong>/<br />

n-<strong>GaN</strong><br />

n-AlGaAs/<br />

p-GaAs/n-<strong>GaN</strong><br />

Current gain at<br />

room or higher<br />

temperature<br />

β~10000000 (RT)<br />

β~100 (535°C)<br />

β ~ 3 - 35 (RT)<br />

β~ 20 - 2000 (RT)<br />

β~ 0.2 - 0.5 (RT)<br />

Remarks,<br />

drawbacks<br />

Differential current gain<br />

due to high leakage<br />

SiC-purity issue<br />

first <strong>GaN</strong>-HBT in 1998<br />

base doping issue<br />

processing issues<br />

double hetorojunction<br />

base regrowth optimized<br />

4 W DC-power obtained<br />

GaAs-<strong>GaN</strong>-hetero-<br />

interface by wafer fusion<br />

(1 h at 750°C and 2 Mpa)


<strong>GaN</strong>-HBT: Technological challenges (a few…)<br />

Highly p-doped and high quality p-<strong>GaN</strong> base not yet available:<br />

� shallowest acceptor Mg is a deep acceptor (E A -E V ~110-200 meV)<br />

� low activation at RT: N A ~5x10 19 cm -3 gives p~8x10 17 cm -3 (2 % activation!)<br />

� high base sheet resistance: 100 kΩ/ for 100 nm base (200 Ω/ for GaAs)<br />

� Mg-dopant memory effect during growth and out-diffusion of Mg into emitter<br />

� high density of point defects in the base leads to low minority lifetime<br />

and thus low current gain<br />

Lack of <strong>GaN</strong>-substrates: heteroepitaxy on sapphire or SiC<br />

� large lattice mismatch leads to high dislocation density in grown layers<br />

� threading dislocations identified as source of collector-emitter leakage current<br />

� <strong>GaN</strong> templates or LEO/ELO growth as possible improvements<br />

<strong>GaN</strong>-emitter definition:<br />

� Cl 2 RIE is primarily physical etching causing damage to extrinsic base<br />

� high contact resistance on RIE etched base leads to high offset voltage (~10 V)<br />

� selective extrinsic base regrowth as possible solution<br />

or selective area emitter growth using AlN or SiN mask


Al<strong>GaN</strong>/<strong>GaN</strong>-HBT: Towards an RF device…<br />

Development of the UCSB Al<strong>GaN</strong>/<strong>GaN</strong>-HBT device:<br />

� Offset voltage reduced from >10 V to 1-5 V by using regrown extrinsic base<br />

� Current gain increased from 3 to 10 due to improvement in dislocation density<br />

(LEO substrate)<br />

� Main issues: current leakage due to threading dislocations and low minority<br />

carrier lifetime in the base<br />

� Current gain cut-off frequency of 2 GHz reported


<strong>GaN</strong>/In<strong>GaN</strong>-DHBT: Better epi gives a better device…<br />

Improvements of the NTT <strong>GaN</strong>/In<strong>GaN</strong>-HBT device:<br />

� p-In<strong>GaN</strong>: 10% base dopant activation (N A ~2x10 19 cm -3 gives p~2x10 18 cm -3 )<br />

� Offset voltage reduced from 5 V to 1 V due to improved base contacts (optimized<br />

regrown extrinsic base): high current gain > 2000 obtained<br />

� Output characteristics indicates electron blocking "spike" at base-collector junction<br />

� Current limitation due to Kirk-effect at 7 kA/cm 2 (70 kA/cm 2 for GaAs-HBT [13])<br />

� 50x30 µm 2 DHBT operating up to 50 V gives 4 W of DC-power corresponding to<br />

DC power density of 270 kW/cm 2 (375 kW/cm 2 for GaAs-HBT [13])


<strong>GaN</strong>/SiC-HBT: Pankove´s approach<br />

Cross section of the <strong>GaN</strong>/SiC transistor Common-base I-V-characteristics<br />

Pankove´s (Astralux, Univ. of Colorado, USA) <strong>GaN</strong>/SiC-HBT device:<br />

� LPE grown SiC base and MBE grown <strong>GaN</strong> emitter<br />

� 100,000 of differential current gain obtained from common base characteristics<br />

� Poor RIE etch selectivity <strong>GaN</strong>-to-SiC causing high leakage current at V CB > 10V<br />

� Improvement with selectively grown <strong>GaN</strong> emitter:<br />

current gain of 1,000,000 at RT and 100 at 535°C reported<br />

� Not reproduced due to parasitic deep level defects in p-type 6H-SiC<br />

� Work in progress using purer 4H-SiC (β~15@ RT) but lack of production quantities


AlGaAs/GaAs/<strong>GaN</strong>-HBT: Fused-wafer approach<br />

Development of the UCSB fused-HBT device:<br />

� Joining the best of two worlds: high quality and highly doped p-GaAs base with<br />

high breakdown voltage of n-<strong>GaN</strong> collector<br />

� AlGaAs/GaAs fused with <strong>GaN</strong>: 1 h at 750°C in N 2 under 2 MPa pressure giving<br />

mechanically stable junction with good structural quality (


<strong>GaN</strong>-HBT: Perspectives<br />

Show-stoppers: a number of outstanding material and processing issues<br />

� Base layer: large acceptor ionization energies and low hole mobilities<br />

� Growth of <strong>GaN</strong> layers: still a high defect density<br />

� Base ohmic contacts: high resistance causes high offset voltage<br />

� Emitter definition: etching damage or base regrowth to be further optimized<br />

Possible solutions:<br />

� Improved substrates for <strong>GaN</strong> growth like HVPE-grown <strong>GaN</strong> templates<br />

� Further optimization of base layer regrowth<br />

� Direct wafer bonding (wafer-fusion): structural improvement<br />

References <strong>GaN</strong>-HBTs<br />

[1] S.J. Pearton et.al., Mater. Sci. Eng. 250 (2000) 1-158<br />

[2] L.S. McCarthy et.al., Trans. Electron Dev. 48 (2001) 543-551<br />

[3] P. Kurpas et.al., Technical Digest IEDM 2002 (2002) 682-684<br />

[4] http://www.mdatechnology.net/ (Tech Search, Spinoff Technology: #321)<br />

[5] L.S. McCarthy et.al., Electron Dev. Lett. 20 (1999) 277-279<br />

[6] H. Xing et.al., J. Phys.: Condens. Matter. 13 (2001) 7139-7157<br />

[7] T. Makimoto et.al., Proc. Int. Workshop on Nitride Semic. 2000 (2000) 969-972<br />

[8] http://www2.electrochem.org/cgi-bin/ abs?mtg=206&abs=1255&type=pdf<br />

[9] S. Estrada et.al., Appl. Phys. Lett. 82 (2003) 820-822


Conclusions


Conclusions (1)<br />

Material and<br />

manufacturing<br />

Device results<br />

Material continuously improves<br />

� High mobility structures<br />

� Reduced power compression<br />

� High voltage capability<br />

� <strong>GaN</strong> on Si substrates<br />

Established device processes available<br />

� Special process modules for suppression of power<br />

dispersion<br />

� Via and backside technology<br />

� Developments towards higher bias voltages<br />

Transition to larger wafers 2“ � 3“, 4“<br />

Promising results from S- to Q-Band<br />

� Power cells and power bars up to 250 W (L-Band)<br />

� <strong>GaN</strong> MMICs<br />

� Low noise applications


Conclusions (2)<br />

Present Challenges<br />

Future perspectives<br />

Still a problem: Power dispersion<br />

� Adapted technological solutions<br />

High voltage operation<br />

Reliability issues unsolved<br />

� Required: >10 6 h at 125 °C and 48 V<br />

Further optimization of conventional approaches<br />

New technologies on the horizon:<br />

� <strong>GaN</strong>-MOS <strong>devices</strong><br />

� <strong>GaN</strong> HBTs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!