17.12.2012 Views

Brines and Other Workover Fluids - George E King Engineering

Brines and Other Workover Fluids - George E King Engineering

Brines and Other Workover Fluids - George E King Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Brines</strong> <strong>and</strong> <strong>Other</strong> <strong>Workover</strong> <strong>Fluids</strong><br />

• Purposes<br />

• Selection<br />

• Filtration needs<br />

• Placement<br />

• Fluid Loss Control<br />

• Cleanup <strong>and</strong> Displacement of Muds<br />

• Limitations<br />

• Alternatives<br />

3/14/2009 1<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Purposes of <strong>Brines</strong><br />

1. Mud displacement prior to cementing,<br />

2. Debris removal,<br />

3. Controlling formation pressures during completion<br />

<strong>and</strong> intervention operations,<br />

4. Enabling repair operations as a circulating or kill<br />

fluid medium,<br />

5. As packer fluids,<br />

3/14/2009 2<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Purposes of <strong>Brines</strong> (cont.)<br />

6. In some stimulations as base fluids;<br />

7. Enable cleanup of the zone prior to running screens;<br />

8. Reduce friction while running screens & equipment;<br />

9. Avoid damaging the well after completion,<br />

stimulation, or repair;<br />

10. Allow other well operations to be conducted.<br />

3/14/2009 3<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Will Circulating a Well Really Clean It Out?<br />

• Not necessarily.<br />

• Clean-out efficiency depends on:<br />

– Ability to remove the solids from returning fluids,<br />

– Fluid hydraulics - the flow rates in every section,<br />

– Ability to disperse, then lift solids out of the well,<br />

– Ability to effectively remove the dope, mud cake,<br />

residues, etc., from the pipe walls.<br />

3/14/2009 4<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Returns from a cleanout scraper run – dope, wireline grease,<br />

rust, mud, etc., are common components.<br />

3/14/2009 5<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Selection of the Brine<br />

• Must Satisfy:<br />

1. Well control at every phase of the operation.<br />

2. Must be able to filter the brine to 5 to 10 microns with<br />

beta of 1000.<br />

3. Compatibility with the formation, well equipment <strong>and</strong> all<br />

operations <strong>and</strong> fluids.<br />

4. Corrosion <strong>and</strong> scale dropout must be controllable.<br />

5. Cleanup requirements from the formation<br />

6. Cleanup <strong>and</strong> disposal requirements at the surface<br />

7. Cost <strong>and</strong> availability to fit the well.<br />

3/14/2009 6<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Brine Types <strong>and</strong> Respective Density Ranges<br />

Brine Type Brine Formula Density Range (ppg)<br />

Chloride Salt NaCl 8.4 - 10.0<br />

Chloride Salt KCl 8.4 - 9.7<br />

Chloride Salt NH4Cl 8.4 - 8.9<br />

Bromide Salt NaBr 8.4 - 12.7<br />

Mix NaCl/NaBr 8.4 - 12.5<br />

Formate Salt NaHCO2 8.4 - 11.1<br />

Formate Salt KHCO2 8.4 - 13.3<br />

Formate Salt CsHCO2 13.0 - 20.0<br />

Formate Salt KHCO2/CsHCO2 13.0 - 20.0<br />

Formate Salt NaHCO2/KHCO2 8.4 - 13.1<br />

Chloride Salt CaCl2 8.4 - 11.3<br />

Bromide Salt CaBr2 8.4 - 15.3<br />

Mix CaCl2/CaBr2 8.4 - 15.1<br />

Bromide Salt ZnBr2 12.0 - 21.0<br />

Mix<br />

Mix<br />

ZnBr2/CaBr2 <strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

ZnBr2/CaBr2/CaCl2 GEK<strong>Engineering</strong>.com<br />

12.0 - 19.2<br />

12.0 - 19.1<br />

World Oil, Modern S<strong>and</strong><br />

Face Completion, 2003<br />

3/14/2009 7


Lower Density <strong>Fluids</strong><br />

Nitrogen gas 0.1 to 2.6 lb/gal<br />

water foam 3.5 to 8.3 lb/gal<br />

kerosene <strong>and</strong> diesel 6.7 to 7.1 lb/gal<br />

20 o crude 7.8 lb/gal<br />

30 o crude 7.3 lb/gal<br />

Most low density fluids are not be usable because of<br />

migration, flash point, or stability issues.<br />

3/14/2009 8<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Displacement <strong>and</strong> Pill Design<br />

• The displacement must be designed to obtain<br />

effective mud removal (dispersement <strong>and</strong> lift)<br />

& water wetting of casing.<br />

• Keys:<br />

– disperse <strong>and</strong> thin the drilling fluid<br />

– compatibility with the following fluids (brine, acid, cement,<br />

etc.<br />

– lift out debris <strong>and</strong> junk<br />

– water wet pipe<br />

– remove pipe dope effectively<br />

– displace the mud<br />

Source: Wellcert<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 9<br />

GEK<strong>Engineering</strong>.com


<strong>Brines</strong> for Displacement<br />

1. A thinning base fluid flush.<br />

2. An effective brine transition system must further thin <strong>and</strong> strip the mud<br />

<strong>and</strong> create wellbore displacement.<br />

3. A carrier spacer must sweep out the solids <strong>and</strong> clean any coating from the<br />

pipe or rock that could cause damage problems.<br />

4. A separation spacer must do the final cleaning <strong>and</strong> separate the residual<br />

mud from the brine.<br />

5. The brine must sweep the spacer out. At this point the well should be<br />

clean.<br />

3/14/2009 10<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Cleaning <strong>and</strong> Transition Spacers<br />

Spacer Type Function Minimum<br />

Annulus<br />

Coverage<br />

Base Fluid<br />

Thin & mud<br />

condition – start<br />

dispersement<br />

Transition Mud to spacer,<br />

cuttings removal<br />

WBM OBM<br />

250 to 500 ft Water, <strong>and</strong><br />

some brines<br />

Base oil<br />

(composition<br />

varies)<br />

500 to 1000’ Viscous pill Viscous Pill<br />

Wash Clean pipe 500 to 1500’ Water+ WBM<br />

surfactant<br />

Separation Separate wash<br />

from completion<br />

brine<br />

Completion<br />

Fluid<br />

Oil + OBM<br />

surfactant<br />

500 to 1000’ Viscous pill Surfactant gel?<br />

Some water<br />

gels if compat.<br />

Completion fluid Fill Completion<br />

Fluid<br />

Completion<br />

Fluid<br />

3/14/2009 11<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Pump Rate,<br />

bpm<br />

Brine Flush Contact Times<br />

9-5/8” casing in 12-1/4” hole, annular area = 0.3 ft 2<br />

Annular<br />

Velocity,<br />

ft/min<br />

Barrels<br />

Pumped<br />

Column<br />

Length, ft<br />

Contact<br />

Time,<br />

minutes on<br />

one foot.<br />

8 150 200 3743 25<br />

10 187 400 7486 40<br />

12 225 400 7486 33<br />

3/14/2009 12<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Flow profile in a well with decentralized pipe. Note That most<br />

of the flow comes along the top of the pipe. This affects<br />

cleanup <strong>and</strong> residence time of the fluid on the wellbore. The<br />

lower section of the wellbore may remain buried in cuttings<br />

<strong>and</strong> never have contact with any of the circulated fluids.<br />

Major flow area<br />

3/14/2009 13<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Displacement of the annulus to displace fluids <strong>and</strong> mud cake depends partly on velocity.<br />

The annulus changes as casing replaces the drill string. As the annular space decreases –<br />

velocity for any rate increases in the smaller area <strong>and</strong> the back pressure on the bottom hole may<br />

also increase.<br />

Circulating down the casing <strong>and</strong> up the small annulus<br />

can produce very high friction pressure <strong>and</strong> raised<br />

BHP.<br />

3/14/2009 14<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Displacement Considerations<br />

• Well control is key consideration in selection of<br />

the pill sequence.<br />

• In many cases, it is only possible to get thin, light<br />

fluids into turbulence<br />

• Pumping fluids to displace oil based fluids<br />

without suitable surfactant/solvent packages to<br />

disperse the mud can result in sludges that are<br />

insoluble except in aggressive solvents<br />

• For deepwater wells, low temperatures can<br />

impact surfactant effectiveness<br />

3/14/2009 15<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Carrying Capacity<br />

• Pills in turbulence lose carrying capacity if<br />

the annular velocity drops below that<br />

required for turbulence (e.g. entering<br />

larger diameter pipe such as a riser)<br />

• In high mud weight, the risk of inducing<br />

barite sag needs to be considered if mud<br />

is thinned (displacement pills thin the mud<br />

to the point it can no longer support barite)<br />

3/14/2009 16<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


LEARNING<br />

• As depth <strong>and</strong> hole angle increase, the minimum pill<br />

volume (based on largest annular hole length)<br />

should increase to allow for contamination, e.g.:<br />

– If MD < twice TVD, annular fill length > 80 m (260 ft),<br />

– If MD > twice TVD, annular fill length > 125 m (410 ft),<br />

• Contact time (the time that critical points in the well<br />

are exposed to the pill) depends on reaction of<br />

surfactant/solvent to mud. For surfactant pills, plan<br />

for contact times of greater than 4 minutes for best<br />

results.<br />

3/14/2009 17<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


BEST PRACTICES AND<br />

DESIGN CRITERIA<br />

• Good mud thinning fluid is continuous phase of the mud:<br />

– for water based mud pumping 50 bbl (8m 3 ) of water<br />

as the first displacement pill will effectively thin mud,<br />

– 50 bbl (8m 3 ) of the mud base fluid can be pumped in<br />

the case of oil based muds. (check oil compatibility)<br />

• Before any displacement, the compatibly of the spacers<br />

with the mud <strong>and</strong> the ability to water wet steel surfaces<br />

should be checked at ambient <strong>and</strong> bottom hole temp to<br />

confirm compatibility.<br />

• In deep water, tests at lower temperature will be needed<br />

3/14/2009 18<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


BEST PRACTICES AND DESIGN<br />

CRITERIA<br />

• All tests should be done on field mud samples to<br />

ensure mud is effectively sheared <strong>and</strong> has<br />

representative particles/cuttings<br />

• Water wetting surfactants are generally effective<br />

>3% vol/vol concentration, little additional benefit<br />

is obtained above 10%.<br />

• Solvents <strong>and</strong> mechanical or hydraulic agitation<br />

are required to remove sludges <strong>and</strong> pipe dope<br />

3/14/2009 19<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Displacement<br />

• Displacement of mud from an annulus is<br />

complex. The main driving forces:<br />

– time of contact<br />

– flow rate <strong>and</strong> frictional forces<br />

– density<br />

– mechanical agitation<br />

– pipe centralization<br />

3/14/2009 20<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


RISKS AND ISSUES<br />

• Fluid Interface area increases w/ hole angle<br />

• In deviated wells the eccentricity of the<br />

displacement string may reduce displacement.<br />

Pipe rotation <strong>and</strong>/or reciprocation is needed.<br />

• At low temperature (


RISKS AND ISSUES<br />

• High circulation rates may be better (even in laminar<br />

flow), they reduce the boundary layer thickness on the<br />

casing wall. (Watch wash-out potential of soft s<strong>and</strong>s)<br />

• Turbulence is best, flow rate must be calculated allowing<br />

for pipe eccentricity. A complete wellbore hydraulics<br />

check is necessary.<br />

• High rates (300 ft/min?) may reduce the fluff (80% of the<br />

outer layer of the filter cake that does not contribute to<br />

fluid loss control); sharply reducing the amount of solids<br />

in the well without reducing fluid loss control.<br />

3/14/2009 22<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


BEST PRACTICES AND DESIGN<br />

CRITERIA<br />

• High flow rates will always be better even if turbulence<br />

cannot be achieved<br />

• Pipe movement will improve displacement efficiency.<br />

• Multi-function circulating subs should be used, currently<br />

the best tools open by setting weight down, incorporating<br />

a clutch mechanism to allow rotation.<br />

• Do not stop displacement once pills enter the annulus<br />

• Circulate to warm mud <strong>and</strong> fine up shakers (increase<br />

screen mesh number) to reduce particles in the fluid<br />

when possible, condition mud (reduce rheology).<br />

• Use reverse circulation if possible when displacing with<br />

lighter fluids.<br />

3/14/2009 23<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Muds, Cakes, Breakers <strong>and</strong> Particles<br />

• Drilling mud is the best known particulate based fluid<br />

loss control system.<br />

• Particles are sized to bridge on the face of the<br />

formation. Carbonate <strong>and</strong> salt are most common.<br />

• Breakers are acid, oxidizers <strong>and</strong> enzymes.<br />

• Filter cakes very effective in preventing losses as long<br />

as over-balance pressure is maintained.<br />

• Cakes are very sensitive to swabbing, but are never<br />

completely removed..<br />

• Tool systems sensitive to plugging by particulates.<br />

3/14/2009 24<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Particles – Damage?<br />

• “Dirty” particles, unsized particles, debris <strong>and</strong> pipe<br />

dope are severe formation damage problems.<br />

• Protecting the perforations with the right particles<br />

during a workover improves chances of well<br />

improvement afterwards.<br />

• The type of carrier fluid <strong>and</strong> the gels are v. important<br />

Clear (no particles) brines are not always best solution<br />

3/14/2009 25<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Particulate Pill Displacement<br />

• A spacer or displacement pill for displacing a<br />

polymer system carring sized particulates<br />

should be 0.2 to 0.25 ppg heavier <strong>and</strong> about<br />

three times the low shear rate viscosity (at<br />

0.06 sec -1) of the fluid being displaced.<br />

3/14/2009 26<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Data from a set of Alaska wells where the perforations were<br />

not protected during a workover. No protection shows<br />

significant long term damage.<br />

% Change in PI<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

1<br />

3<br />

PI Change, Perfs Not Protected<br />

5<br />

PI of Wells<br />

0.3 0.5 1.1 2.1 3.1 6 18.9<br />

7<br />

9<br />

11<br />

13<br />

15<br />

Short Term PI Change<br />

Long Term PI Change<br />

SPE 26042<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 27<br />

GEK<strong>Engineering</strong>.com


When perfs were protected, that was little risk of long term damage.<br />

% Change in PI<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

PI Change After <strong>Workover</strong> - Perfs Protected<br />

PI of wells<br />

0.3 1.2 3.1 4.6 8.4<br />

1 2 3 4 5 6 7 8 9 10 11<br />

Short Term PI Change<br />

Long Term PI Change<br />

SPE 26042<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 28<br />

GEK<strong>Engineering</strong>.com


Sized particulates, particularly those that can be removed, are much less damaging than most<br />

polymers.<br />

% Change in PI<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

Kill Pills: Summary of Overall Effectiveness in<br />

Non Fractured Wells<br />

Sized Borate Salts<br />

(4)<br />

Cellulose<br />

Fibers (3)<br />

Sized Sodium<br />

Chloride (12)<br />

1 2 3 4 5 6 7<br />

SPE 26042<br />

No Near Perf Milling<br />

(6)<br />

HEC Pills No Pills<br />

Near Perf Milling or<br />

Scraping (3)<br />

No Near Perf<br />

Milling (8)<br />

Near Perf Milling<br />

or Scraping (10)<br />

3/14/2009 29<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


• Gels<br />

Formation Damage by Gels<br />

– Linear gels not recommended for high<br />

overbalance or high permeability formations – too<br />

much depth of damage.<br />

– HEC is not always clean breaking.<br />

– Breaker selection is critical to removing the<br />

damage from a linear gel.<br />

3/14/2009 30<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Pill Vol. Required, bbl per ft of zone<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Linear HEC Pill needed per ft of zone, 80 lb/1000<br />

gal or 3.36 ppb<br />

1000 750 500 250<br />

Overbalance Pressure, psi<br />

1 Darcy<br />

500 md<br />

250 md<br />

100 md<br />

World Oil, Modern<br />

S<strong>and</strong>face Completion<br />

Practices, 2003<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 31<br />

GEK<strong>Engineering</strong>.com


Loss Rate, bbl / hr / ft of zone height<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Fluid Loss Rate vs. Pressure Differential for<br />

Various Permeabilities<br />

0 100 200 300 400 500<br />

Overbalance Pressure, psi<br />

1 cp fluid,<br />

s = +5<br />

500 md<br />

250 md<br />

100 md<br />

50md<br />

Modified from World<br />

Oil, Modern S<strong>and</strong>face<br />

Completion Practices,<br />

2003<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 32<br />

GEK<strong>Engineering</strong>.com


Breaker<br />

• Breaker must stay with the part of the gel that<br />

causes the damage<br />

– penetrate to the distance that gel penetrates, or<br />

– stop at the wall – with the gel wall cake.<br />

• Breakers:<br />

– Acid, internal breaker, or enzyme<br />

– Many breakers adsorb or spend in the formation,<br />

before they work.<br />

3/14/2009 33<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Brine Stability<br />

• The stability of the brines at high salt loadings can be<br />

very “touchy” with temperature drops causing salt<br />

precipitation.<br />

• Increases in temperature decreases brine density<br />

<strong>and</strong> may leave the brine under-saturated to salt.<br />

• Additions of gas, alcohol, some surfactants, shear<br />

<strong>and</strong> reduction in temperature can lead to salt<br />

precipitation.<br />

• Salt may affect the way polymers hydrate or disperse.<br />

3/14/2009 34<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Brine Density (lb/gal)<br />

17<br />

16.8<br />

16.6<br />

16.4<br />

16.2<br />

16<br />

15.8<br />

15.6<br />

15.4<br />

15.2<br />

15<br />

NaCl Brine Density Variance with<br />

Temperature<br />

100 o C<br />

20 o C The reduction of brine density<br />

as it comes to equilibrium in<br />

the well may explain why a well<br />

can go from a no-flow<br />

condition to flow within a few<br />

hours after being killed.<br />

60 110 160 210 260 310 360<br />

Temperature (F)<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 35<br />

GEK<strong>Engineering</strong>.com<br />

SPE 12490


Water Depth, ft<br />

0<br />

2000<br />

4000<br />

6000<br />

8000<br />

10000<br />

12000<br />

14000<br />

Temperature Changes<br />

GOM Seafloor Temperature<br />

Sea Floor Temperature, F<br />

35 40 45 50 55 60<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 36<br />

GEK<strong>Engineering</strong>.comComposite<br />

data from DTC


0<br />

2000<br />

4000<br />

6000<br />

8000<br />

10000<br />

12000<br />

14000<br />

16000<br />

18000<br />

Temperatures in the Well?<br />

Circulating or High Rate Injection?<br />

30 40 50 60 70 80 90 100 110 120 130<br />

BHCT= 98*F<br />

Circulation pump rate = 8-BPM<br />

Tubing<br />

Tbg Fluid<br />

Casing 1<br />

Undisturbed<br />

BHST= 122*F<br />

0<br />

2000<br />

4000<br />

6000<br />

8000<br />

10000<br />

12000<br />

14000<br />

16000<br />

18000<br />

30 40 50 60 70 80 90 100 110 120 130<br />

BHTT= 86*F<br />

Frac job pump rate = 35-BPM<br />

Undisturbed<br />

Tbg Fluid<br />

Tubing<br />

Casing 1<br />

BHST= 125*F<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 37<br />

GEK<strong>Engineering</strong>.com


Salt-Out or “Freezing” Temperature of a Brine<br />

Crystallization Temp<br />

Salt Content<br />

Adding salt lowers<br />

freezing point of water<br />

until the point at which<br />

additional salt precipitates<br />

Eutectic Point<br />

3/14/2009 38<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Composition Determines TCT (true<br />

crystallization temperature)<br />

Density CaCl 2 CaBr 2 TCT<br />

(ppg)* (wt %) (wt %) ( O F / O C)<br />

12.5 34.40 10.80 60/ 15.5<br />

12.5 32.20 13.13 44/ 6.7<br />

12.5 22.84 20.55 15/ - 2.8<br />

12.5 00.00 41.55 - 33/ - 36<br />

*1.50 SG<br />

3/14/2009 39<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Density Change with Temp Change<br />

D DH = D S (1 + 0.000252 (T S - T DH))<br />

What is downhole density (D DH) of a 16.4 lb/gal<br />

surface density (D s) brine (60 o F) when downhole<br />

temperature increases to 230 o F?<br />

D DH = (16.4) (1 + 0.000252 (60-230)<br />

D DH = 15.7 lb/gal<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 Formula from OSCA 40<br />

GEK<strong>Engineering</strong>.com


There is a slight increase in density with applied pressure, usually about 0.1 ppg.<br />

Brine Density (g/cc)<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

Brine Density Change with Pressure<br />

0 1000 2000 3000<br />

Pressure, psi<br />

ZnBr2/CaBr2 (19%<br />

/wt)<br />

ZnBr2/CaBr2/CaCl2<br />

(37% /wt)<br />

CaBr2 (45% /wt)<br />

NaBr (54% /wt)<br />

CaCl2 (65% /wt)<br />

NaCl (70% /wt)<br />

Typical change was 0.0015 g/cc<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009<br />

SPE 12490<br />

41<br />

GEK<strong>Engineering</strong>.com


Temperature <strong>and</strong> Pressure Effects on Completion <strong>Fluids</strong><br />

Temp Expansion of <strong>Fluids</strong> Pressure Effect on <strong>Fluids</strong><br />

Expansion Coef. Compression Coef.<br />

Fluid System Density, ppg vol/vol/ o Fx10 4<br />

lb/gal/100 o F vol/vol/ o Fx10 6<br />

lb/gal/1000 psi<br />

Diesel 7 3.8<br />

NaCl 9.49 2.54 0.24 1.98 0.019<br />

CaCl2 11.45 2.39 0.27 1.5 0.017<br />

NaBr 12.48 2.67 0.33 1.67 0.021<br />

CaBr2 14.3 2.33 0.33 1.53 0.022<br />

ZnBr2/CaBr2/CaCl2 16.01 2.27 0.36 1.39 0.022<br />

ZnBr2/CaBr2 19.27 2.54 0.48 1.64 0.031<br />

At 12,000 psi from 76F to 345F At 198F from 2,000 to 12,000 psi<br />

World Oil, Modern<br />

S<strong>and</strong> Face Completion,<br />

2003<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 42<br />

GEK<strong>Engineering</strong>.com


Brine Selection – Circulating<br />

Density<br />

• Match density needs on both static (ESD) needs,<br />

<strong>and</strong> circulating density (ECD) needs. Consider<br />

friction effects on BH press while circulating.<br />

• Remember – brine must exert pressures in a<br />

window between controlling pore pressure or shale<br />

heaving <strong>and</strong> fracturing the formation.<br />

• Brine density changes with temperature (can drop<br />

by >1 lb/gal) <strong>and</strong> a small increase with pressure<br />

(0.1 lb/gal).<br />

• Carried solids add density to the brine – easily by<br />

0.5 to 2+ lb/gal.<br />

3/14/2009 43<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


<strong>Brines</strong> have small density changes due to temperature, pressure, <strong>and</strong> contamination; <strong>and</strong> larger<br />

density changes due to suspended solids.<br />

Note: Fluid<br />

Density is<br />

Greater at the<br />

Mud line than<br />

at the Surface<br />

Courtesy of MI-LLC<br />

CaCl 2 Brine in a 14,000 ft<br />

Wellbore in 8,000 ft Water<br />

True Vertical Depth - (ft)<br />

0<br />

2000<br />

4000<br />

6000<br />

8000<br />

10000<br />

12000<br />

14000<br />

16000<br />

ESD - (lb/gal)<br />

11.35 11.40 11.45 11.50<br />

ESD<br />

Hydrostatic Pressure at TVD<br />

True Vertical Depth - (ft)<br />

0<br />

2000<br />

4000<br />

6000<br />

8000<br />

10000<br />

12000<br />

14000<br />

16000<br />

BH Pressure - (psi)<br />

0 5000 10000<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009 44<br />

GEK<strong>Engineering</strong>.com<br />

Pressure


Adding solids to any fluid, either at the surface or<br />

downhole increases it density. 0.5 to 2+ lb of solids<br />

are common in cleanout with circulated fluids.<br />

3/14/2009 45<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Completion Fluid - Checklist<br />

• Is the formation liquid sensitive to liquid relative permeability effects?<br />

• Compatibility with formation? (clay <strong>and</strong> minerals)<br />

• Compatibility with formation fluid? (emulsion, sludge, foam, froth)<br />

• Tanks <strong>and</strong> surface equipment clean?(pumps, lines, hoses, blenders)<br />

• Are polymers breakable? How is breaker added?<br />

• Polymers, hydrated, sheared <strong>and</strong> filtered? Filter level? Beta rating?<br />

• Minimize the pipe dope?<br />

• Corrosion reactions understood?<br />

• Erosion potential understood?<br />

3/14/2009 46<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Special Case - Horizontal Wells<br />

• Hole circulated to a large volume of fluid to stop<br />

losses.<br />

• Minimum amount of solids can be used where<br />

internal tool sticking is a possibility<br />

• Suspension of solids beyond 60 o deviation is difficult.<br />

• Penetration to furthest reaches of the well is<br />

required – buckling considerations?<br />

• Very sensitive to swabbing.<br />

3/14/2009 47<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Filtration <strong>and</strong> Cleaning<br />

• Brine <strong>and</strong> ? (tanks, lines, pumps, etc.)<br />

• Pickle the tubulars?<br />

• NTU or particle count as a measure? How clean is<br />

clean? = Avg pore throat x 0.2?<br />

• Beta rating <strong>and</strong> micron rating important<br />

• Tank arrangement when filtering (from dirty tank to<br />

clean, not in a loop)<br />

• Filter type<br />

– DE or Cartridge (no resin coated cartridges)<br />

3/14/2009 48<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


3/14/2009 49<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Filtration Ratings<br />

• NTU - a turbidity indicator - can be mislead by natural color of<br />

water. An NTU of 20 to 30 is generally clean.<br />

• Nominal filter rating - estimate of the size of particle removed<br />

- don’t trust it. Filtration efficiency improves with bed build-up<br />

• Absolute filter rating - size of the holes in the filter. Filtration<br />

efficiency improves with bed build-up<br />

• Beta rating - a ratio of particles before filtration to after. A<br />

good measure of filter efficiency.<br />

• Suggestion – use a 5 to 10 micron rating with a beta rating of<br />

1000 for most clear brine applications.<br />

3/14/2009 50<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Beta Rating<br />

• Beta = number of filter rating <strong>and</strong> larger size<br />

particles in dirty fluid divided by number of<br />

those particles in clean fluid.<br />

• Beta = 1000/1 = 1000 or 99.99% clean<br />

3/14/2009 51<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Filtration Considerations<br />

• Very clean fluids have high leakoff rates<br />

• <strong>Fluids</strong> with properly blended fluid loss control<br />

materials added after filtration have a better<br />

chance of cleanup than with the initial<br />

particles in the fluid. Particles must be sized<br />

to stop at the face of the formation.<br />

• All gelled fluids should be sheared <strong>and</strong> filtered<br />

– even the liquid polymer fluids.<br />

3/14/2009 52<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


3/14/2009 53<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Solid Microgels polymer or “fisheyes” lumps or “Fisheyes” after straining <strong>and</strong> a microgels liquid HEC filtered dispersion from through liquid HEC a 200 polymer. mesh screen in a<br />

shear <strong>and</strong> filter operation for gravel pack fluid preparation.<br />

3/14/2009 54<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Scrapers <strong>and</strong> Brushes – Physically<br />

• Available tools<br />

• Damage potential<br />

Cleaning the Well<br />

3/14/2009 55<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


One very detrimental action was running a scraper prior to packer setting. The<br />

scraping <strong>and</strong> surging drives debris into unprotected perfs.<br />

% Change in PI<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

-60<br />

Effect of Scraping or Milling Adjacent to Open<br />

Perforations<br />

Perfs not protected by<br />

LCM prior to scraping<br />

1 Perfs protected 2 by<br />

LCM<br />

Short Term PI Change<br />

Long Term PI Change<br />

SPE 26042<br />

3/14/2009 56<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Casing Scraper – Designed to knock off<br />

perforation burrs, lips in tubing pins,<br />

cement <strong>and</strong> mud sheaths, scale, etc.<br />

It cleans the pipe before setting a<br />

packer or plug.<br />

The debris it turns loose from the pipe<br />

may damage the formation unless the<br />

pay is protected by a LCM or plug.<br />

3/14/2009 57<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


3/14/2009 58<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Placement Methods<br />

• Circulating – preferred – watch effective circulation density<br />

(friction pressures)<br />

• Spotting – watch density induced drift – 0.05 lb/gal difference<br />

can start density migration.<br />

• Bullheading - next to last resort.<br />

• Lubricating - last resort.<br />

• Consider coiled tubing for most accurate spotting<br />

<strong>and</strong> ability to circulate fluids into place with<br />

minimum contamination.<br />

• Remember that fluid density differences of even 0.05<br />

lb/gal will start density segregation.<br />

3/14/2009 59<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Fluid Loss Control<br />

• Methods: viscosity, particulates, mechanical<br />

• Best method? – depends on application <strong>and</strong> options<br />

afterward.<br />

– Viscosity based methods often leave polymer debris<br />

– Particulates must be sized with small, medium <strong>and</strong> large<br />

particles to build a tight cake at the surface. Don’t use<br />

them in cased <strong>and</strong> perforated completions???<br />

– Mechanical methods preferred, but not always practical.<br />

3/14/2009 60<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Fluid Loss Control Systems<br />

fluid (pumped) mechanical<br />

gels (linear <strong>and</strong> x-link)<br />

bridging particulates<br />

micron particles<br />

resin particles<br />

larger mixed particles<br />

downhole valves<br />

plugs<br />

flappers (watch the throat<br />

size)<br />

ball checks<br />

Removal methods? Removal methods?<br />

3/14/2009 61<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


In the Formation / At the<br />

Formation Face (Not in Perf)<br />

• Gels – high vis. limits the<br />

fluid loss by pressure<br />

drop.<br />

– May not work in high perm<br />

(>0.5 darcy).<br />

– Temperature greatly affects<br />

performance.<br />

– Cleanup is a problem.<br />

• Particulates bridge at the<br />

formation face.<br />

Particulates are very effective in controlling fluid loss, but are also very sensitive to<br />

swabbing, dissolving in carrier fluids <strong>George</strong> <strong>and</strong> E. <strong>King</strong> must <strong>Engineering</strong><br />

3/14/2009 be sized for the formation pores 62 <strong>and</strong><br />

GEK<strong>Engineering</strong>.com<br />

natural fractures.


Particulate Systems<br />

• Sized carbonates <strong>and</strong> salts are most common.<br />

Penetration depth = 0.125” (3mm)<br />

• Do not use in most perforated completions unless<br />

the perforations have been packed with gravel.<br />

• Gravel pack tools <strong>and</strong> tools with close clearances<br />

should not be exposed to particulate laden fluids.<br />

• Gel carriers for particulates still require breakers.<br />

3/14/2009 63<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Considerations for Fluid loss<br />

Control Selection<br />

BHT Formation sensitivity<br />

to treatment fluids<br />

BHP Treatment/completion<br />

fluid types<br />

Overbalance or<br />

underbalance<br />

Vertical <strong>and</strong> horizontal<br />

permeability variations<br />

Formation s<strong>and</strong> size<br />

<strong>and</strong> pore throat size<br />

Frequency <strong>and</strong> amount<br />

of surge/swab loads<br />

Formation s<strong>and</strong><br />

strength<br />

S<strong>and</strong> production <strong>and</strong><br />

presence of cavity<br />

Onshore / Offshore /<br />

Deepwater<br />

Rig cost per day<br />

Rig equip available -<br />

pumps, tanks, lines,<br />

All tubular sizes in the<br />

flow path<br />

Mobilization time<br />

available<br />

Production rate Producer or injector Regulations on use <strong>and</strong><br />

disposal<br />

Produced fluid types Wellbore deviation<br />

through the pay<br />

Natural or hydraulic<br />

fractures present<br />

3/14/2009<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com<br />

64<br />

SPE 54323


Areas for Fluid Loss Control<br />

• In formation matrix<br />

• At the formation face<br />

• Inside the perf tunnel<br />

• On the fracture pack<br />

• Inside the casing (on<br />

the perforation)<br />

• On a s<strong>and</strong>-back plug<br />

• In the gravel<br />

• Inside the screen<br />

• Above the screen or in<br />

the BHA<br />

• Inside the tubing<br />

• At the surface<br />

Each location requires different plug<br />

construction methods <strong>and</strong> removal<br />

considerations.<br />

3/14/2009 65<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Cleanup<br />

• Gel break <strong>and</strong> damage issues<br />

• Fluid imbibition effects<br />

• <strong>Other</strong> fluid unloading issues<br />

3/14/2009 66<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Cleanup<br />

• How to remove from the reservoir (through the<br />

fractures or the matrix). Is a surface/interfacial<br />

reduction surfactant needed? Is gas needed? Is the<br />

formation initially undersaturated to water (yes, it<br />

can <strong>and</strong> does happen).<br />

• From the wellbore – effective unloading is plagued<br />

by well deviation <strong>and</strong> low flow rates from small<br />

coiled tubing <strong>and</strong> other non rotating strings.<br />

3/14/2009 67<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Problems - unwanted foams during<br />

backflow<br />

• Foam is an emulsion where gas is the internal phase<br />

(mist is an emulsion with gas as external phase).<br />

Foams are used to unload brines – BUT the forms<br />

may cause a problem at the surface.<br />

• Foaming conditions<br />

– some oils (ppm conc. of C6-C9organic acids <strong>and</strong> alcohols)<br />

– diesel - (particularly bad <strong>and</strong> varies from lot to lot)<br />

– some acid additives (emulsifiers, salts, inhibitors)<br />

– XCD polymers (<strong>and</strong> others)<br />

• Look for <strong>and</strong> destroy the stabilizer to break the foam.<br />

3/14/2009 68<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Brine Tankage Required<br />

1. Volume of prod. Casing – annulus & below packer?<br />

2. Displacement volume of work string<br />

3. Displacement volume of producing string including packers<br />

4. Volume of manifolds, lines, hoses <strong>and</strong> pumps<br />

5. Volume of transport tankage (usable)<br />

6. Volume of filtering system (all tanks, lines <strong>and</strong> pods)<br />

7. Volume of pill tank<br />

8. Pickle flush volume<br />

9. Spare volume for safe operation<br />

3/14/2009 69<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Special Topics<br />

• Alternatives to a clear brine<br />

• Gravel pack brines<br />

• Brine h<strong>and</strong>ling <strong>and</strong> preparation<br />

• Solids free gels<br />

• Corrosion<br />

• Hydrates<br />

• Best Practice Learnings<br />

• Toxicity<br />

3/14/2009 70<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Alternatives to a Clear Brine<br />

• Emulsions, Foams, Muds<br />

– Will it be stable?<br />

– What will stop fluid loss?<br />

– What will clean up or degrade?<br />

– What will damage least?<br />

– Can an oil be ever be used in a gas zone??<br />

3/14/2009 71<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Is mud a viable kill fluid for high<br />

temp <strong>and</strong> high pressure wells?<br />

• How much perm damage does it cause?<br />

– Against the formation?<br />

– In the perforations?<br />

– In a naturally fractured formation?<br />

– Against a gravel pack or screen?<br />

• Is the damage reversible?<br />

– If you have high wellbore pressures, some of the<br />

mud damage is reversible - SOME!<br />

3/14/2009 72<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


<strong>Fluids</strong> for Gravel/Frac Pack<br />

• Water - low viscosity brines, low molecular<br />

weight salts<br />

• HEC - high molecular weight, water soluble<br />

polymer, straight chain<br />

• Xanvis - high molecular wt bio polymer, water<br />

soluble. Branched chain, lower damage than<br />

HEC?<br />

3/14/2009 73<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Water<br />

• Advantages - no mixing, no breakers, high<br />

leakoff, easier to get turbulence<br />

• Disadvantages - low gravel carrying capacity<br />

(+/- 2 ppg), more fluid lost, compatibility<br />

problems?<br />

3/14/2009 74<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


HEC<br />

• Advantages: mixes easily??? (still must shear<br />

<strong>and</strong> filter), easy to break??? (we’ve had<br />

problems here), commonly available<br />

• Disadvantages: lower leakoff rates, lower s<strong>and</strong><br />

carrying capacity than bio-polymers<br />

3/14/2009 75<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


XC<br />

• Advantages: shear thinning, higher leakoff,<br />

good carrying capacity<br />

• Disadvantages: said to wet some formations<br />

(anionic), x-links with calcium <strong>and</strong> iron (water<br />

composition more critical), harder to mix,<br />

breaks rapidly above 125 o F ?<br />

3/14/2009 76<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Brine H<strong>and</strong>ling <strong>and</strong> Preparation<br />

<strong>Brines</strong> HEC XC<br />

Min Filter Req 5 to 10 mu 10 mu 10mu<br />

Beta rating B=1000 B=10-100 B=10-100<br />

Shear Req? N/A 2 bpm/1200 psi 2 bpm/600<br />

Gravel Conc. 1-5 ppg 1-15 ppg 1-15 ppg<br />

Breaker N/A acid, enz, ox oxidizers<br />

Brine Compat? N/A


• Surfactant gel<br />

Solids Free Gels<br />

• Requires clay control (early problems)<br />

• Breaks with oil<br />

• Not perfect, but generally better than gels.<br />

3/14/2009 78<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Breakers for HEC-Gelled <strong>Brines</strong><br />

Breaker BHT<br />

HCl 130 to 200F<br />

Ammonium hypochlorite 130 to 200F<br />

Enzymes below 130 F<br />

No Breaker Required? Above 200 F?<br />

3/14/2009 79<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Corrosivity<br />

• In oxygen free environment, CaCl 2/CaBr brines<br />

exhibit very low corrosion rates if the pH is kept<br />

between 7 <strong>and</strong> 10.<br />

• Lime <strong>and</strong> magnesium oxide are used to increase the<br />

pH of the brines.<br />

• Use of sulfite oxygen scavengers in large<br />

concentrations can potentially cause CaSO 4 precip.<br />

Use other methods.<br />

• Biocide may not be needed in more concentrated<br />

brines.<br />

3/14/2009 80<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Corrosion From <strong>Brines</strong> –example from Materials,<br />

Corrosion <strong>and</strong> Inspection: http://upstream.bpweb.bp.com/mci/default.asp<br />

Material General<br />

Corrosion<br />

Pitting/Crevice<br />

Corrosion<br />

SSC CL SCC Relative<br />

Failure Risk<br />

Low Alloy Steel Y Y Low<br />

13 Chrome Y Y Y Low/Med<br />

Super Cr 13, etc. Y Y Y Y High<br />

Alloy 450 Y Y Y Med<br />

17-4PH Y Y Y High<br />

Duplex Stainless Y Y Y High<br />

Austenitic Y Y High<br />

Super Austenitic Y Y Low<br />

Ni Alloys Y Y Low<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

3/14/2009<br />

HPHT Production Operations, March 16, 2005, EPTG, BP<br />

81<br />

GEK<strong>Engineering</strong>.com<br />

11


Hydrates <strong>and</strong> “Freezing”<br />

• Sea floor temperatures<br />

• Gas expansion cooling<br />

• Is the brine naturally hydrate formation<br />

resistant?<br />

• Is it tolerant of antifreeze?<br />

3/14/2009 82<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Hydrate Formation Temp °F<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

-20.0<br />

-40.0<br />

Dense <strong>Brines</strong> Inhibit Hydrates<br />

Solvent Needed<br />

Hydrate inhibition by CaCl2 Brine<br />

Maybe<br />

0.0<br />

8.3 8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9 10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5 11.7<br />

<strong>George</strong> Brine Density E. <strong>King</strong> <strong>Engineering</strong><br />

lb/gal<br />

Hydrate equilibrium<br />

pressure for pure water<br />

calculated using<br />

CSMHYD, VK 917 gas<br />

Safe<br />

3/14/2009 83<br />

GEK<strong>Engineering</strong>.com<br />

15 kpsi<br />

10 kpsi<br />

5 kpsi<br />

2.5 kpsi


LEARNINGS<br />

• Proper disposal required for all chemicals.<br />

• Mixed displacement pills <strong>and</strong> mud have to be<br />

separated from the mud <strong>and</strong> packer fluid for disposal<br />

(zero discharge issues)<br />

• Brine/Water/Acid pumped without<br />

surfactants/solvents to displace oil muds (e.g. for an<br />

inflow test) prior to clean up can form sludges, these<br />

will not be broken down by subsequent clean up<br />

pills<br />

• Clean up pills containing surfactants can foam<br />

during mixing (particularly when put through a<br />

hopper) <strong>and</strong> during flowback.<br />

3/14/2009 84<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Viscosifier Learnings<br />

• XCD/ biozan are preferred for mixing viscous pills<br />

but do not work in calcium brines,<br />

• HEC will not support solids.<br />

• Polymers should be checked for suitability at the<br />

anticipated temperature (thermal thinning an issue<br />

particularly >135oC/275oF). 3/14/2009 85<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


LEARNING<br />

• The use of a circulating sub to allow high flow rates is<br />

recommended.<br />

• As steel surfaces water wet, pipe rotation may not be<br />

possible due to friction <strong>and</strong> displacement of solids<br />

becomes much more difficult.<br />

• Displacement must exceed solids settling rate <strong>and</strong> (e.g.<br />

0.18 ft/sec for 40/60 mesh s<strong>and</strong> in water) not stop once<br />

pills are in the annulus.<br />

• Displacement optimized for smallest production casing<br />

ID can leave bypassed mud in larger OD’s for tapered<br />

casing strings.<br />

• Reverse circulation is most effective if packer fluid is<br />

lighter than mud (watch bridging potential)<br />

3/14/2009 86<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Many <strong>Brines</strong> are Sensitive to<br />

Temperature When Viscosified<br />

• Brine type sensitive – NaCl to ZnCl<br />

• Temperature sensitivity is also affected by<br />

concentration<br />

• Liquid vs. dry polymer makes a difference.<br />

3/14/2009 87<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com


Temperature, F<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

Stability of Dry HEC in Socium Chloride<br />

Transition Zone<br />

HEC Active <strong>and</strong> Soluble<br />

Precipitation, Separation or Lost Viscosity<br />

8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2<br />

Sodium Chloride Density, ppg<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

SPE 58728<br />

3/14/2009 88<br />

GEK<strong>Engineering</strong>.com


Temperature, F<br />

260<br />

240<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Liquid HEC in Zinc Based <strong>Brines</strong><br />

HEC Active <strong>and</strong> Soluble<br />

15 16 17 18 19 20<br />

Zinc <strong>George</strong> Brine E. <strong>King</strong> <strong>Engineering</strong> Density, ppg<br />

Transition Zone<br />

3/14/2009 SPE 58728 89<br />

GEK<strong>Engineering</strong>.com


Brief toxicity data for st<strong>and</strong>ard test organisms. SPE 27143<br />

Species Acute Toxic Threshold Concentration (mg/l)<br />

Zinc Cesium Potassium Sodium<br />

bromide formate formate formate<br />

Algae 0.32 1600 3700 2000<br />

Invertibrates 1.6 340 300 3900<br />

Fish ? 260 1700 6100<br />

3/14/2009 90<br />

<strong>George</strong> E. <strong>King</strong> <strong>Engineering</strong><br />

GEK<strong>Engineering</strong>.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!