17.12.2012 Views

108139-1 Study Title Data Requirements Author Study ... - IR-4 Project

108139-1 Study Title Data Requirements Author Study ... - IR-4 Project

108139-1 Study Title Data Requirements Author Study ... - IR-4 Project

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

<strong>Study</strong> <strong>Title</strong><br />

A Modified Analytical Method for the Determination of Cyfluthrin Residues in Various Plant<br />

Matrices by Chemical Ionization – GC/MS<br />

<strong>Data</strong> <strong>Requirements</strong><br />

EPA Ref.: OPPTS 860.1340, Residue Analytical Method – Plants<br />

<strong>Author</strong><br />

S. M. Moore, C. V. Lam and Chris Nuessle<br />

<strong>Study</strong> Completion Date<br />

March 27, 2002<br />

Performing Laboratory<br />

Bayer Corporation<br />

Agricultural Division<br />

Environmental Research Section<br />

Bayer Research Park<br />

17745 South Metcalf Avenue<br />

Stilwell, KS 66085<br />

1 of 242


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table Of Contents<br />

6<br />

Page No.<br />

<strong>Study</strong> title ................................................................................................................................... 1<br />

<strong>Data</strong> requirements...................................................................................................................... 1<br />

<strong>Author</strong> ........................................................................................................................................ 1<br />

<strong>Study</strong> completion date................................................................................................................ 1<br />

Performing laboratory................................................................................................................. 1<br />

Statement of data confidentiality ................................................................................................ 2<br />

Certification of good laboratory practice ..................................................................................... 3<br />

Certification of availability of raw data ........................................................................................ 4<br />

Certification of authenticity ......................................................................................................... 5<br />

Inquires ...................................................................................................................................... 5<br />

Table of contents........................................................................................................................ 6<br />

1.0 Summary........................................................................................................... 22<br />

2.0 Introduction ....................................................................................................... 25<br />

3.0 Experimental ..................................................................................................... 25<br />

3.1 Location............................................................................................................ 25<br />

3.2 Materials ........................................................................................................... 25<br />

3.2.1 Apparatus.......................................................................................................... 25<br />

3.2.2 Reagents/supplies............................................................................................. 27<br />

3.3 Reference standards......................................................................................... 28<br />

3.3.1 Cyfluthrin standard solutions ............................................................................. 28<br />

3.3.1.1 Primary standard............................................................................................... 28<br />

3.3.2 Secondary standards in toluene ........................................................................ 28<br />

3.3.3 [ 2 H6]Cyfluthrin standard solution........................................................................ 29<br />

3.3.3.1 Primary deuterated standard............................................................................. 29<br />

3.3.3.2 Deuterated secondary standards in toluene ...................................................... 29<br />

3.3.4 Linearity standard solutions............................................................................... 30<br />

3.3.4.1 Linearity standards............................................................................................ 30<br />

3.3.5 Quantification standard ..................................................................................... 31


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

3.4 Analytical method.............................................................................................. 31<br />

3.4.1 Matrix preparation ............................................................................................. 31<br />

3.4.2 Procedure (apples and pears only) ................................................................... 31<br />

3.4.2.1 Extraction.......................................................................................................... 31<br />

3.4.2.2 Florisil clean-up................................................................................................. 32<br />

3.4.2.3 Final extract preparation for analysis................................................................. 32<br />

3.4.3 Procedure (all matrices except nutmeat, apple, and pears)............................... 33<br />

3.4.3.1 Extraction.......................................................................................................... 33<br />

3.4.3.2 Extraction (nutmeat).......................................................................................... 34<br />

3.4.3.3 ACN / hexane partition ...................................................................................... 35<br />

3.4.3.4 Florisil clean-up................................................................................................. 35<br />

3.4.3.5 Final extract preparation for analysis................................................................. 36<br />

3.4.4 Analysis by gas chromatography / mass spectroscopy (GC/MS)....................... 36<br />

3.4.5 Disposal of solutions ......................................................................................... 39<br />

3.5 Method Validation ............................................................................................. 40<br />

3.5.1 <strong>Requirements</strong>.................................................................................................... 40<br />

3.5.2 Recovery procedure.......................................................................................... 40<br />

4.0 Results and discussion...................................................................................... 40<br />

4.1 Sample extraction (Except nutmeat, apple, and pear), liquid / liquid<br />

partition, and florisil clean-up............................................................................. 41<br />

4.1.1 Sample extraction (apple and pear only), and florisil clean-up........................... 41<br />

4.1.2 Sample extraction (nutmeat only), ACN / hexane partition,<br />

and florisil clean-up ........................................................................................... 41<br />

4.2 Addition of internal standard solution................................................................. 42<br />

4.3 GC/MS of cyfluthrin ........................................................................................... 42<br />

4.4 Recovery of cyfluthrin........................................................................................ 42<br />

4.5 Limits of quantitation and detection (except apple and pears) ........................... 42<br />

4.6 Linearity of detector response ........................................................................... 43<br />

4.7 Time interval of the analytical method ............................................................... 43<br />

4.8 Conclusions ...................................................................................................... 43<br />

5.0 Bibliography ...................................................................................................... 44<br />

Tables<br />

1. Recovery of cyfluthrin from cherry fresh fruit measured as part<br />

of the field residue program............................................................................... 46<br />

2. Recovery of cyfluthrin from peach fresh fruit measured as part<br />

of the field residue program............................................................................... 47<br />

3. Recovery of cyfluthrin from plum fresh fruit measured as part<br />

of the field residue program............................................................................... 48<br />

7


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

4. Recovery of cyfluthrin from potato fresh fruit measured as part<br />

of the field residue program .................................................................................. 49<br />

5. Recovery of cyfluthrin from orange fresh fruit measured as part<br />

of the field residue program .................................................................................. 50<br />

6. Recovery of cyfluthrin from lemon fresh fruit measured as part<br />

of the field residue program .................................................................................. 51<br />

7. Recovery of cyfluthrin from grapefruit fresh fruit measured as part<br />

of the field residue program .................................................................................. 52<br />

8. Recovery of cyfluthrin from tomato fresh fruit measured as part<br />

of the field residue program .................................................................................. 53<br />

9. Recovery of cyfluthrin from pepper fresh fruit measured as part<br />

of the field residue program .................................................................................. 54<br />

10. Recovery of cyfluthrin from squash fresh fruit measured as part<br />

of the field residue program .................................................................................. 55<br />

11. Recovery of cyfluthrin from cucumber fresh fruit measured as part<br />

of the field residue program .................................................................................. 56<br />

12. Recovery of cyfluthrin from cantaloupe fresh fruit measured as part<br />

of the field residue program .................................................................................. 57<br />

13. Recovery of cyfluthrin from carrot roots measured as part<br />

of the field residue program................................................................................... 58<br />

14. Recovery of cyfluthrin from radish roots and tops measured as part<br />

of the field residue program .................................................................................. 59<br />

15. Recovery of cyfluthrin from head lettuce heads with wrapper leaves and heads<br />

without wrapper leaves measured as part of the field residue program ................. 60<br />

16. Recovery of cyfluthrin from leaf lettuce fresh leaves measured as part<br />

of the field residue program .................................................................................. 61<br />

17. Recovery of cyfluthrin from grape fresh fruit measured as part<br />

of the field residue program................................................................................... 62<br />

18. Recovery of cyfluthrin from dried pea dry pea measured as part<br />

of the field residue program................................................................................... 63<br />

8


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

19. Recovery of cyfluthrin from dried bean dry seed measured as part<br />

of the field residue program................................................................................... 64<br />

20. Recovery of cyfluthrin from mustard green leaves measured as part<br />

of the field residue program............................................................................... 65<br />

21. Recovery of cyfluthrin from broccoli flowering heads and stems<br />

measured as part of the field residue program .................................................. 66<br />

22. Recovery of cyfluthrin from cabbage heads with wrapper leaves and heads<br />

without wrapper leaves measured as part of the field residue program ............. 67<br />

23. Recovery of cyfluthrin from celery trimmed leaf stalks and untrimmed<br />

leaf stalks measured as part of the field residue program.................................. 68<br />

24. Recovery of cyfluthrin from spinach leaves measured as part<br />

of the field residue program............................................................................... 69<br />

25. Recovery of cyfluthrin from tobacco whole green leaves and flue cured<br />

leaves measured as part of the field residue program ....................................... 70<br />

26. Recovery of cyfluthrin from peanut nutmeat and hay measured as part<br />

of the field residue program............................................................................... 71<br />

27. Recovery of cyfluthrin from apple fresh fruit measured as part<br />

of the field residue program............................................................................... 72<br />

28. Recovery of cyfluthrin from pear fresh fruit measured as part<br />

of the field residue program............................................................................... 73<br />

29. LODs of cyfluthrin from crop matrices ............................................................... 74<br />

30. Cyfluthrin recovery ranges ................................................................................ 75<br />

Figures<br />

1. Chemical name, acronymns, storage conditions, and structures<br />

for cyfluthrin and [ 2 H6]cyfluthrin ......................................................................... 76<br />

2. Flow diagram of the residue analytical method for apple and pear matrices...... 77<br />

3. Flow diagram of the residue analytical method for cyfluthrin in all matrices<br />

except apple, pear, and nutmeat ....................................................................... 78<br />

4. Flow diagram of the residue analytical method for cyfluthrin in nutmeat ............ 79<br />

9


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

5. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 80<br />

6. GC/MS chromatogram of a typical cherry fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 81<br />

7. GC/MS chromatogram of a typical cherry fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 82<br />

8. GC/MS chromatogram of a typical cherry fresh fruit 0.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 83<br />

9. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 84<br />

10. GC/MS chromatogram of a typical peach fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 85<br />

11. GC/MS chromatogram of a typical peach fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 86<br />

12. GC/MS chromatogram of a typical peach fresh fruit 0.4 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 87<br />

13. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 88<br />

14. GC/MS chromatogram of a typical plum fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 89<br />

15. GC/MS chromatogram of a typical plum fresh fruit 0.01 ppm recovery<br />

/ 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................................... 90<br />

16. GC/MS chromatogram of a typical plum fresh fruit 0.1 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 91<br />

17. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 92<br />

18. GC/MS chromatogram of a typical potato fresh tuber control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 93<br />

19. GC/MS chromatogram of a typical potato fresh tuber 0.01 ppm<br />

cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ......................... 94<br />

10


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

20. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 95<br />

21. GC/MS chromatogram of a typical orange fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 96<br />

22. GC/MS chromatogram of a typical orange fresh fruit 0.01 ppm<br />

cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ......................... 97<br />

23. GC/MS chromatogram of a typical orange fresh fruit 0.1 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ........................................ 98<br />

24. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution......................................................... 99<br />

25. GC/MS chromatogram of a typical lemon fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 100<br />

26. GC/MS chromatogram of a typical lemon fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 101<br />

27. GC/MS chromatogram of a typical lemon fresh fruit 0.1 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution...................................... 102<br />

28. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 103<br />

29. GC/MS chromatogram of a typical grapefruit fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 104<br />

30. GC/MS chromatogram of a typical grapefruit fresh fruit<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 105<br />

31. GC/MS chromatogram of a typical grapefruit fresh fruit<br />

0.1 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 106<br />

32. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 107<br />

33. GC/MS chromatogram of a typical tomato whole fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 108<br />

34. GC/MS chromatogram of a typical tomato whole fruit<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 109<br />

11


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

35. GC/MS chromatogram of a typical tomato whole fruit 0.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 110<br />

36. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 111<br />

37. GC/MS chromatogram of a typical pepper whole fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 112<br />

38. GC/MS chromatogram of a typical pepper whole fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 113<br />

39. GC/MS chromatogram of a typical pepper whole fruit 0.4 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 114<br />

40. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution...................................................... 115<br />

41. GC/MS chromatogram of a typical squash whole fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 116<br />

42. GC/MS chromatogram of a typical squash whole fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 117<br />

43. GC/MS chromatogram of a typical squash whole fruit 0.08 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 118<br />

44. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 119<br />

45. GC/MS chromatogram of a typical cucumber whole fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution...................................................... 120<br />

46. GC/MS chromatogram of a typical cucumber whole fruit<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 121<br />

47. GC/MS chromatogram of a typical cucumber whole fruit 0.07 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 122<br />

48. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 123<br />

49. GC/MS chromatogram of a typical cantaloupe whole fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 124<br />

12


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

50. GC/MS chromatogram of a typical cantaloupe whole fruit<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 125<br />

51. GC/MS chromatogram of a typical cantaloupe whole fruit<br />

0.05 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 126<br />

52. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 127<br />

53. GC/MS chromatogram of a typical carrot root control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 128<br />

54. GC/MS chromatogram of a typical carrot root 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 129<br />

55. GC/MS chromatogram of a typical carrot root 0.05 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 130<br />

56. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 131<br />

57. GC/MS chromatogram of a typical radish root control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 132<br />

58. GC/MS chromatogram of a typical radish root 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 133<br />

59. GC/MS chromatogram of a typical radish root 0.025 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 134<br />

60. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 135<br />

61. GC/MS chromatogram of a typical radish tops control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 136<br />

62. GC/MS chromatogram of a typical radish tops 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 137<br />

63. GC/MS chromatogram of a typical radish tops 5.0 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 138<br />

64. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 139<br />

13


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

65. GC/MS chromatogram of a typical head lettuce heads with wrapper leaves<br />

control / 0.05 ppm [ 2 H6]cyfluthrin standard solution ......................................... 140<br />

66. GC/MS chromatogram of a typical head lettuce heads with wrapper leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 141<br />

67. GC/MS chromatogram of a typical head lettuce heads with wrapper leaves<br />

2.0 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 142<br />

68. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 143<br />

69. GC/MS chromatogram of a typical head lettuce heads without<br />

wrapper leaves / 0.05 ppm [ 2 H6]cyfluthrin standard solution ............................ 144<br />

70. GC/MS chromatogram of a typical head lettuce heads without wrapper leaves<br />

0.01 ppm cyfluthrin standard / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 145<br />

71. GC/MS chromatogram of a typical head lettuce heads without wrapper leaves<br />

0.05 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 146<br />

72. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 147<br />

73. GC/MS chromatogram of a typical leaf lettuce fresh leaves control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution...................................................... 148<br />

74. GC/MS chromatogram of a typical leaf lettuce fresh leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 149<br />

75. GC/MS chromatogram of a typical leaf lettuce fresh leaves 2.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 150<br />

76. GC/MS chromatogram of a typical leaf lettuce fresh leaves 3.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 151<br />

77. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 152<br />

78. GC/MS chromatogram of a typical grape fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 153<br />

79. GC/MS chromatogram of a typical grape fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution...................................... 154<br />

14


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

80. GC/MS chromatogram of a typical grape fresh fruit 0.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 155<br />

81. GC/MS chromatogram of a typical grape fresh fruit 1.0 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 156<br />

82. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 157<br />

83. GC/MS chromatogram of a typical dried pea dry pea control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 158<br />

84. GC/MS chromatogram of a typical dried pea dry pea 0.01 ppm<br />

cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ....................... 159<br />

85. GC/MS chromatogram of a typical dried pea dry pea 0.15 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 160<br />

86. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 161<br />

87. GC/MS chromatogram of a typical dried bean dry seed control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 162<br />

88. GC/MS chromatogram of a typical dried bean dry seed 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 163<br />

89. GC/MS chromatogram of a typical dried bean dry seed 0.15 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 164<br />

90. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 165<br />

91. GC/MS chromatogram of a typical mustard green leaves control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution...................................................... 166<br />

92. GC/MS chromatogram of a typical mustard green leaves 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 167<br />

93. GC/MS chromatogram of a typical mustard green leaves 4.0 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 168<br />

94. GC/MS chromatogram of a typical mustard green leaves 5.5 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 169<br />

15


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

95. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 170<br />

96. GC/MS chromatogram of a typical broccoli flowering heads and<br />

stems control / 0.05 ppm [ 2 H6]cyfluthrin standard solution ............................... 171<br />

97. GC/MS chromatogram of a typical broccoli flowering heads and stems<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 172<br />

98. GC/MS chromatogram of a typical broccoli flowering heads and stems<br />

0.75 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 173<br />

99. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 174<br />

100. GC/MS chromatogram of a typical cabbage heads with wrapper leaves<br />

control / 0.05 ppm [ 2 H6]cyfluthrin standard solution ......................................... 175<br />

101. GC/MS chromatogram of a typical cabbage heads with wrapper leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution....... 176<br />

102. GC/MS chromatogram of a typical cabbage heads with wrapper leavers<br />

3.5 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 177<br />

103. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 178<br />

104. GC/MS chromatogram of a typical cabbage heads without wrapper<br />

leaves control / 0.05 ppm [ 2 H6]cyfluthrin standard solution .............................. 179<br />

105. GC/MS chromatogram of a typical cabbage heads without wrapper leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 180<br />

106. GC/MS chromatogram of a typical cabbage heads without wrapper leaves<br />

0.02 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 181<br />

107. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 182<br />

108. GC/MS chromatogram of a typical celery untrimmed leaf stalks control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 183<br />

109. GC/MS chromatogram of a typical celery untrimmed leaf stalks<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 184<br />

16


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

110. GC/MS chromatogram of a typical celery untrimmed leaf stalks<br />

3.5 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 185<br />

111. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 186<br />

112. GC/MS chromatogram of a typical celery trimmed leaf stalks control<br />

/ 0.05 ppm [ 2 H6]cyfluthrin standard solution .................................................... 187<br />

113. GC/MS chromatogram of a typical celery trimmed leaf stalks<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 188<br />

114. GC/MS chromatogram of a typical celery trimmed leaf stalks<br />

0.1 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 189<br />

115. GC/MS chromatogram of a typical celery trimmed leaf stalks<br />

0.70 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 190<br />

116. GC/MS chromatogram of a typical celery trimmed leaf stalks<br />

1.0 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 191<br />

117. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 192<br />

118. GC/MS chromatogram of a typical spinach leaves control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 193<br />

119. GC/MS chromatogram of a typical spinach leaves 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 194<br />

120. GC/MS chromatogram of a typical spinach leaves 6.0 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 195<br />

121. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 196<br />

122. GC/MS chromatogram of a typical tobacco whole green leaves control<br />

/ 0.05 ppm [ 2 H6]cyfluthrin standard solution .................................................... 197<br />

123. GC/MS chromatogram of a typical tobacco whole green leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 198<br />

124. GC/MS chromatogram of a typical tobacco whole green leaves<br />

1.5 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 199<br />

17


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

125. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 200<br />

126. GC/MS chromatogram of a typical tobacco flue cured leaves control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 201<br />

127. GC/MS chromatogram of a typical tobacco flue cured leaves<br />

0.01 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution........ 202<br />

128. GC/MS chromatogram of a typical tobacco flue cured leaves<br />

7.5 ppm cyfluthrin recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution.......... 203<br />

129. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 204<br />

130. GC/MS chromatogram of a typical peanut nutmeat control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 205<br />

131. GC/MS chromatogram of a typical peanut nutmeat 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 206<br />

132. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 207<br />

133. GC/MS chromatogram of a typical peanut hay control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 208<br />

134. GC/MS chromatogram of a typical peanut hay 0.01 ppm cyfluthrin recovery /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 209<br />

135. GC/MS chromatogram of a typical peanut hay 6.0 ppm cyfluthrin recovery /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 210<br />

136. GC/MS chromatogram of a typical peanut hay 6.5 ppm cyfluthrin recovery /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 211<br />

137. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 212<br />

138. GC/MS chromatogram of a typical apple fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 213<br />

139. GC/MS chromatogram of a typical apple fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 214<br />

18


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

140. GC/MS chromatogram of a typical apple fresh fruit 0.05 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 215<br />

141. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 216<br />

142. GC/MS chromatogram of a typical pear fresh fruit control /<br />

0.05 ppm [ 2 H6]cyfluthrin standard solution....................................................... 217<br />

143. GC/MS chromatogram of a typical pear fresh fruit 0.01 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 218<br />

144. GC/MS chromatogram of a typical pear fresh fruit 0.05 ppm cyfluthrin<br />

recovery / 0.05 ppm [ 2 H6]cyfluthrin standard solution ...................................... 219<br />

145. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus cherry fresh fruit<br />

(top) and in the presence of solvent plus peach fresh fruit (bottom)................. 220<br />

146. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus plum fresh fruit (top)<br />

and in the presence of solvent plus potato fresh tuber (bottom) ...................... 221<br />

147. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus orange fresh fruit<br />

(top) and in the presence of solvent plus lemon fresh fruit (bottom)................. 222<br />

148. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus grapfruit fresh fruit<br />

(top) and in the presence of solvent plus tomato whole fruit (bottom).............. 223<br />

149. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus pepper whole fruit<br />

(top) and in the presence of solvent plus squash whole fruit (bottom) ............. 224<br />

150. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus cucumber whole<br />

fruit (top) and in the presence of solvent plus cantaloupe whole fruit (bottom). 225<br />

151. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus carrot roots(top)<br />

and in the presence of solvent plus radish roots (bottom)................................ 226<br />

19


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

152. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in<br />

the presence of solvent only and in the presence of solvent plus radish<br />

tops (top) and in the presence of solvent plus head lettuce heads with<br />

wrapper leaves (bottom).................................................................................. 227<br />

153. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus head lettuce<br />

heads without wrapper leaves (top) and in the presence of solvent plus leaf<br />

lettuce fresh leaves (bottom) ........................................................................... 228<br />

154. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus grape fresh fruit<br />

(top) and in the presence of solvent plus dried pea dry pea (bottom) .............. 229<br />

155. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus dried bean dry seed<br />

(top) and in the presence of solvent plus mustard green leaves (bottom)........ 230<br />

156. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus boccoli flowering<br />

heads and stems (top) and in the presence of solvent plus cabbage heads with<br />

wrapper leaves (bottom).................................................................................. 231<br />

157. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus cabbage heads<br />

without wrapper leaves (top) and in the presence of solvent plus celery trimmed<br />

leaf stalks (bottom).......................................................................................... 232<br />

158. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus celery untrimmed<br />

leaf stalks (top) and in the presence of solvent plus spinach leaves leaves<br />

(bottom) .......................................................................................................... 233<br />

159. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus tobacco whole<br />

green leaves (top) and in the presence of solvent plus tobacco flue cured leaves<br />

(bottom) .......................................................................................................... 234<br />

160. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus peanut nutmeat<br />

(top) and in the presence of solvent plus peanut hay (bottom) ........................ 235<br />

161. Linearity curve for the cyfluthrin / [ 2 H6]cyfluthrin standard solutions in the<br />

presence of solvent only and in the presence of solvent plus apple fresh fruit<br />

(top) and in the presence of solvent plus pear fresh fruit (bottom) ................... 236<br />

20


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Appendix<br />

1. Archive listing of project personnel and notebook numbers............................. 237<br />

2. Sample calculations ........................................................................................ 238<br />

3. Sample calculation of the LOD from cherry fresh fruit ..................................... 240<br />

4. Proposed fragmentation of cyfluthrin to m/z ion 207........................................ 242<br />

21


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

A Modified Analytical Method for the Determination of Cyfluthrin Residues in Various Plant<br />

Matrices by Chemical Ionization – GC/MS<br />

1.0 Summary<br />

An existing analytical method 1 for the measurement of the total toxic residues (TTR) of cyfluthrin<br />

in various crop using gas chromatography/mass spectroscopy (GC/MS) with electron impact<br />

ionization(EI) was updated to GC/MS using chemical ionization (CI).<br />

The new method was developed for apple and pear matrices but was later modified to include<br />

all other matrices due to complications with some of the tougher crop matrices. This method<br />

works for all matrices analyzed except peanut nutmeat which required a modification due to its<br />

oily nature. The initial method used for apple and pear matrices consisted of homogenizing a<br />

5.0 g sample in 45 mL of MeOH/aqueous 1.2 N HCl (4:1, v/v) for 2 min. After filtration into a<br />

100-mL graduated mixing cylinder, the filter cake was returned to the extraction vessel and<br />

homogenized with 45 mL of MeOH for an additional 2 min followed by filtration and combination<br />

with the first extract. The sample was diluted to 100 mL with MeOH/aqueous 1.2 N HCl (4:1).<br />

A 50-mL aliquot of the sample was rotary evaporated to dryness. The dry residue was<br />

reconstituted in 25 mL of hexane in a boiling flask using sonication to dissolve as much of the<br />

solids as possible. A florisil column was prepared by adding 100 mL of hexane and a glass<br />

wool plug into a 250-mL glass bell column. Seven gram of florisil was added to the column<br />

followed by 6 g of sodium sulfate. The hexane was allowed to drain from the column until the<br />

level of hexane reached the top of the column packing. The 25-mL sample extract was added<br />

to the column and allowed to drain dropwise until the solvent level reached the top of the<br />

column packing. The boiling flask that contained the sample extract was washed with 40-mL of<br />

clean hexane. The wash was then added to the florisil column and allowed to drain until the<br />

solvent just reached the top of the column packing. A 125-mL boiling flask was placed under<br />

the florisil column, and the cyfluthrin was eluted from the column with 60-mL of hexane/acetone<br />

(9:1, v/v). The hexane/acetone mixture was rotary evaporated to dryness and reconstituted in<br />

2.5 mL of toluene. The sample extracts were stored at < 10 ºC. The samples were analyzed<br />

using GC/MS equipped with a chemical ionization (CI) source and quantified using a known<br />

amount of deuterated internal standard. The internal standard was added to the samples after<br />

the extraction.<br />

The method used for the analysis of all other crop matrices except peanut nutmeat consisted of<br />

homogenizing a 5.0 g sample in 45 mL of MeOH/aqueous 1.2 N HCl (4:1) for 2 min. After<br />

filtration into a 100-mL graduated mixing cylinder, the filter cake was returned to the extraction<br />

vessel and homogenized with 45 mL of MeOH for an additional 2 min followed by filtration and<br />

combination with the first extract. The sample was diluted to 100 mL with MeOH. A 50-mL<br />

aliquot of the sample was added to a 60-mL vial and evaporated to approximately 4 to 5 mL<br />

using a Turbo Vap LV. Ten milliliters of water was added to the vial and mixed thoroughly. The<br />

sample extract was transferred to a 125-mL separatory funnel. The 60-mL vial was washed<br />

with two 15-mL aliquots of acetone/methylene chloride (1:2) with both aliquots being added to<br />

22


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

the 125-mL separatory funnel. The separatory funnel was shaken for 30 s. The lower organic<br />

phase was drained through a funnel containing a glass wool plug, and 15 g of anhydrous<br />

sodium sulfate into a 60-mL vial. The sodium sulfate was washed with 10 mL of methylene<br />

chloride and collected in the same 60-mL vial. The sample was concentrated to dryness on a<br />

Turbo Vap LV and reconstituted in 25-mL of hexane. A florisil column was prepared by adding<br />

50 mL of hexane and a glass wool plug into a 200-mL glass bell column. Seven gram of florisil<br />

was added to the column followed by 3 g of sodium sulfate. The hexane was allowed to drain<br />

from the column until the level of hexane just reached the top of the column packing. The<br />

25 mL sample extract was added to the column and allowed to drain dropwise until the solvent<br />

level reached the top of the column packing. The 60-mL vial that contained the sample extract<br />

was washed with 40-mL of clean hexane. The wash was then added to the florisil column and<br />

allowed to drain until the solvent just reached the top of the column packing. A 60-mL vial was<br />

placed under the florisil column, and the cyfluthrin was eluted from the column with 40 mL of<br />

hexane/acetone (9:1, v/v). The hexane/acetone mixture was concentrated to dryness on a<br />

Turbo Vap LV and reconstituted in 2.5 mL of toluene. The sample extracts were stored at<br />

< 10 ºC. The samples were analyzed using GC/MS equipped with a CI source and quantified<br />

using a known amount of deuterated internal standard. The internal standard was added to the<br />

samples after the extraction.<br />

The peanut nutmeat samples required a significant change to the extraction scheme and<br />

clean-up due to the oily nature of the nutmeat matrix. In the normal extraction scheme, MeOH<br />

and water would not remove the cyfluthrin from the nutmeat once it was absorbed into the oil.<br />

The nutmeat method consisted of extracting a 5 g sample using 50 mL of hexane on a Soxtec<br />

extractor. The sample was boiled in 50 mL of hexane for 120 min and then rinsed for additional<br />

30 min. The extract was transferred to a 50-mL graduated mixing cylinder. The Soxtec cup that<br />

contained the extract was washed with 5 mL of clean hexane and transferred to the 50-mL<br />

graduated cylinder. The sample was diluted to 50 mL with hexane and mixed thoroughly. A<br />

25-mL aliquot of the sample was added to a 125-mL separatory funnel followed by 25 mL of<br />

ACN presaturated with hexane. The separatory funnel was shaken for 30 s. The lower ACN<br />

phase was transferred to another 125-mL separatory which contained 10 mL of hexane<br />

presaturated with ACN and shaken for 30 s. The lower ACN phase was collected in a 60-mL<br />

vial. Another 25 mL of ACN presaturated with hexane was added to the first separatory funnel<br />

and shaken for 30 s. The lower ACN phase was added to the second separatory funnel<br />

containing 10 mL of hexane presaturated with ACN and shaken for 30 s. The lower ACN phase<br />

was collected in the 60-mL vial with the first ACN phase. The extract was concentrated to<br />

dryness using a Turbo Vap LV. A florisil column was prepared by adding 50 mL of hexane and<br />

a glass wool plug into a 200-mL glass bell column. Seven grams of florisil was added to the<br />

column followed by 3 g of sodium sulfate. The hexane was allowed to drain from the column<br />

until the level of hexane just reached the top of the column packing. The 25-mL sample extract<br />

was added to the column and allowed to drain dropwise until the solvent level reached the top of<br />

the column packing. The 60-mL vial that contained the sample extract was washed with 40 mL<br />

of clean hexane. The wash was added to the florisil column and allowed to drain until the<br />

solvent reached the top of the column packing. A 60-mL vial was placed under the florisil<br />

column and the cyfluthrin was eluted from the column with 40 mL of hexane/acetone (9:1, v/v).<br />

The hexane/acetone (9:1, v/v) mixture was concentrated to dryness on a Turbo Vap LV and<br />

reconstituted in 2.5 mL of toluene. The sample extracts were stored at < 10 ºC. The samples<br />

23


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

were analyzed using GC/MS equipped with a CI source and quantified using a known amount of<br />

deuterated internal standard. The internal standard was added to the samples after the<br />

extraction.<br />

All recovery data and LODs (limits of detection) were measured as part of the cyfluthrin field<br />

residue program. 3-17<br />

Recoveries ranges of cyfluthrin were as follows:<br />

Crop / Matrix<br />

Fortification Range<br />

Low High<br />

Recovery<br />

Low High<br />

Cherry / fresh fruit 0.01 0.5 91 103<br />

Peach / fresh fruit 0.01 0.4 88 101<br />

Plum / fresh fruit 0.01 0.1 86 109<br />

Potato / fresh tuber 0.01 NA 90 100<br />

Orange / fresh fruit 0.01 0.1 94 102<br />

Lemon / fresh fruit 0.01 0.15 88 101<br />

Grapefruit / fresh fruit 0.01 0.1 90 99<br />

Tomato / whole fruit 0.01 0.5 91 95<br />

Pepper / whole fruit 0.01 0.4 86 104<br />

Squash / whole fruit 0.01 0.08 96 99<br />

Cucumber / whole fruit 0.01 0.07 91 100<br />

Cantaloupe / whole fruit 0.01 0.05 90 98<br />

Carrots / roots 0.01 0.05 92 102<br />

Radish / tops 0.01 5.0 80 90<br />

Radish / roots 0.01 0.025 91 108<br />

Head lettuce / heads with wrapper leaves 0.01 2.0 95 105<br />

Head lettuce / heads without wrapper 0.01 0.05 93 98<br />

Leaf lettuce / fresh leaves 0.01 3.5 94 99<br />

Grape / fresh fruit 0.01 1.0 93 101<br />

Dried pea / dry pea 0.01 0.15 78 92<br />

Dried beans / dry seed 0.01 0.15 74 98<br />

Mustard green / leaves 0.01 5.5 83 100<br />

Broccoli / flowering heads and stems 0.01 0.75 92 101<br />

Cabbage / heads with wrapper leaves 0.01 3.5 93 105<br />

Cabbage / heads without wrapper leaves 0.01 0.02 99 107<br />

Celery / trimmed leaf stalks 0.01 1.0 93 103<br />

Celery / untrimmed leaf stalks 0.01 3.5 80 103<br />

Spinach / leaves 0.01 6.0 91 102<br />

Tobacco / whole green leaves 0.01 1.5 95 100<br />

Tobacco / flue cured leaves 0.01 7.5 73 91<br />

Peanut / nutmeat 0.01 NA 76 97<br />

Peanut / hay 0.01 6.5 68 87<br />

Apple / fresh fruit 0.01 0.05 88 121<br />

Pear / fresh fruit 0.01 0.05 78 96<br />

24


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

The LOQ (limit of quantitation) was 0.01 ppm in all the matrices. The LODs (limits of detection)<br />

ranged from 0.00031 ppm to 0.0058 ppm.<br />

2.0 Introduction<br />

Cyfluthrin(cyano-(4-fluoro-3-phonoxyphenyl)methyl-3-(2,2-dichloroethyenyl)-2,2dimethylcyclopropanecarboxylate),<br />

CAS # 68359-37-5 was originally analyzed using a gas<br />

chromatograph equipped with a electron capture detector (ECD). 2 The ECD method was<br />

extremely sensitive, but only gave moderate selectivity and suffered from the problems<br />

associated with using a ECD detector such as baseline noise due to contamination of oxygen or<br />

electronegative molecules. The ECD method was adapted to GC/MS using an EI source in<br />

positive mode. Single reaction monitoring (SIM) was used to yield three different ions (m/z 226,<br />

m/z 206, m/z 163) where the m/z 226 ion was used for quantitation and the other two ions were<br />

used for confirmation. Even though greater selectivity was accomplished with the use of<br />

GC/MS, sensitivity was greatly diminished. In addition, points on the matrix curve were often<br />

greater than a 20% the corresponding points on the solvent curve. GC/MS using chemical<br />

ionization (CI) in negative mode and methane as the CI gas was investigated as a possible<br />

replacement for the GC/MS method using the EI source. CI in negative mode was found to be<br />

more sensitive and more selective than EI in positive mode. SIM lead to a fragment of m/z 207,<br />

which was used as the quantitation ion. To further simplify the method, deuterated internal<br />

cyfluthrin standard was added to the initial sample extract to account for any loss during the<br />

method and instrumental variances between injections.<br />

3.0 Experimental<br />

3.1 Location<br />

The method development and validation was conducted at Bayer Research Park located near<br />

Stilwell, KS from October 2000 through December 2001. <strong>Project</strong> personnel are listed in<br />

Appendix 1.<br />

3.2 Materials<br />

3.2.1 Apparatus<br />

Assorted Laboratory glassware (including, but not limited to)<br />

— Beakers (assorted sized)<br />

— Boiling flask, 125-mL<br />

— Bottle beaker (4 oz Qorpak)<br />

— Buchner funnels, 5.6 cm<br />

— Graduated pouring cylinder, 50 mL, 100-mL<br />

— Graduated mixing cylinders with ground glass joints, 100-mL<br />

25


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

— Pipets<br />

— Pasteur transfer, 5.75-in<br />

— Separatory funnels, 125-mL<br />

— Spatulas, stainless steel<br />

— Volumetric flask, class A, 50-mL<br />

Balances<br />

— Top-loader electronic, accurate to 0.00001 g (AT 20, Mettler Toledo, Columbus, OH) or<br />

equivalent<br />

— Top-loader electronic, accurate to 0.001 g (FX-200, A&D Engineering, INC., Milpitas,<br />

CA) or equivalent<br />

— Top-loader electronic, accurate to 0.01 g (Precisa 1000C-3000D, Precisa, Dietikon,<br />

Switzerland) or equivalent<br />

Chromatography columns, low-medium pressure with reservoir, 200-mL, 250-mL,<br />

(Kimble/Kontes, Vineland, New Jersey, P/N K420280-0213 and P/N K420280-0222) or<br />

equivalent<br />

Evaporators<br />

— Rotary evaporator, Büchi Rotovapor, Model RE 120 with Büchi 461(Brinkman<br />

Instruments Inc., Wesbury, NY) or equivalent.<br />

— Turbo Vap LV with 60-mL ASE vial conversion kit (Zymark, Hopkinton, MA) or equivalent<br />

GC Column<br />

— HP- P /HQJWK PP , ' P ILOP WKLFNQHVV $JLOHQW 7HFKQRORJLHV 3DOR<br />

Alto, CA) or equivalent<br />

— DB- 06 P /HQJWK PP , ' P ILOP WKLFNQHVV $JLOHQW 7HFKQRORJLHV 3DOR<br />

Alto, CA) or equivalent<br />

Mass spectrometer, 5973 mass selective detector with EI/CI source, (Agilent Technologies,<br />

Palo Alto, CA) or equivalent containing the following components<br />

— Auto sampler, 7683 series injector, (Agilent Technologies, Palo Alto, CA)<br />

— Gas chromatograph, 6890, (Agilent Technologies, Palo Alto, CA)<br />

— Software, chemstation G1701BA version B.01.00, (Agilent Technologies, Palo Alto, CA)<br />

Pipetter, Fisherbrand Finnpipettes 0.20 mL to 10 mL range (Fisher, Pittsburgh, PA) or<br />

equivalent<br />

Soxtec system HT 1043, (Foss North America, Praire, MN) or equivalent<br />

Tissumizer, model T-25 Basic with SDT-182EN probe (Tekmar, Cincinnati, OH) or equivalent<br />

Tumbler, Model A-R2, (Tru-Square Metal Products, Auburn, WA) or equivalent<br />

26


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Vials<br />

— 60 mL, (I-CHEM, New Castle, DE, P/N S236-0060) or equivalent<br />

— Auto sampler, clear glass with inserts and Viton® lined septum caps, 1.8 mL)<br />

— Sample storage, clear glass with Teflon lined caps, 4-mL<br />

3.2.2 Reagents/Supplies<br />

Celite® 545 filter aid, (Fisher Chemicals, Pittsburgh, PA) or equivalent<br />

Compressed gases, helium and methane, purity •<br />

Filters<br />

— GF/A, 5.5-cm (Whatman Inc., Clifton, NJ) or equivalent<br />

— GHP Acrodisc, 13-PP P 3DOO *HOPDQ /DERUDWRULHV $QQ $UERU 0, 3 1 RU<br />

equivalent<br />

Florisil, 60-100 mesh, 2.5% deactivated. Prepared by adding 25 mL of water to 975 g of florisil<br />

that has been dried overnight at 110° C. Florisil was tumbled overnight to equilibrate moisture.<br />

(Fisher, Pittsburg, PA) or equivalent<br />

Sodium sulfate , anhydrous, (Fisher Chemicals, Pittsburgh, PA) or equivalent<br />

Solvents: Methanol (MeOH), acetone, acetonitrile (ACN), methylene chloride (DCM), hexane,<br />

and toluene (Fisher Chemical, Pittsburgh, PA, Optima Grade) or equivalent<br />

Solvent solutions (all solutions are volume to volume)<br />

— aqueous 1.2 N HCl. Prepared by adding 100 mL of concentrated HCl to a 1000-mL<br />

graduated cylinder and diluting to 1000 mL with water.<br />

— MeOH/aqueous 1.2 N HCL (4:1). Prepared by mixing 3200 mL of MeOH with 800 mL of<br />

aqueous 1.2 N HCl in a 4 L glass bottle.<br />

— acetone/DCM (1:2). Prepared by mixing 1300 mL of acetone with 2600 mL of DCM in a<br />

4 L glass bottle.<br />

— acetone/hexane (1:9). Prepared by mixing 400 mL of acetone with 3600 mL of hexane<br />

in a 4 L glass bottle.<br />

— ACN presaturated with hexane. Prepared by shaking equal amounts of ACN and<br />

hexane.<br />

— Hexane presaturated with ACN. Prepared by shaking equal amounts of hexane and<br />

ACN.<br />

Syringes<br />

— Luer lok single use, 3-mL (Becton Dickinson and Co., Franklin Lakes, NJ) or equivalent<br />

— Hamilton 1700 series gas tight, 0.10 mL, 0.25 mL, 0.50 mL, (Hamilton Company, Reno,<br />

NV) or equivalent<br />

27


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Water (water obtained from a Millipore Q purification system (Millipore corporation, Bedford,<br />

MA)) or equivalent<br />

3.3 Reference Standards<br />

Analytical standards (Figure 1) of cyfluthrin (50.2%, w/w solution in cyclohexanone) and<br />

[ 2 H6]cyfluthrin (15.6%, w/w in ACN) may be obtained from Bayer. The purity of the standard<br />

must be known so solutions of exact concentration can be prepared. The internal standard<br />

must be injected separately to confirm that there is no interference/crossover to the nondeuterated<br />

standard. If interference/crossover is greater than 20% of the LOQ (limit of<br />

quantitation), then the deuterated standard cannot be used. Both neat standards are stored in a<br />

freezer (< -15 °C) and all dilutions are stored in a refrigerator (< 10 °C).<br />

3.3.1 Cyfluthrin Standard Solutions<br />

3.3.1.1 Primary Standard<br />

Using a balance accurate to at least 0.1 mg, weigh the appropriate amount of cyfluthrin neat<br />

standard into a 50-mL volumetric to yield a standard solution containing 2 J P/ 'LOXWH WKH<br />

neat material to volume with toluene. Sonicate if necessary to completely dissolve the neat<br />

material. The exact amount of neat material to weigh may be calculated using the equation<br />

below.<br />

Mass (mg) =<br />

&RQF J P/ [ )LQDO 9RO P/ [<br />

3XULW\ [ J PJ<br />

For example, a 50.2% pure cyfluthrin standard will require a transfer of<br />

PJ WR \LHOG D VROXWLRQ FRQFHQWUDWLRQ RI J P/ LQ D P/ ILQDO YROXPH<br />

3.3.1.2 Secondary Standards in Toluene<br />

Prepare the following secondary standards in toluene from the primary standard in toluene.<br />

6HFRQGDU\ 6WDQGDUG J P/<br />

Add 5.0 mL of the primary standard in toluene to a 50-mL volumetric flask. Dilute<br />

the solution to volume with toluene. Mix the solution thoroughly.<br />

6HFRQGDU\ 6WDQGDUG J P/<br />

Add 1.0 mL of the primary standard in toluene to a 50-mL volumetric flask. Dilute<br />

the solution to volume with toluene. Mix the solution thoroughly.<br />

28


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

6HFRQGDU\ 6WDQGDUG J P/<br />

$GG P/ RI WKH J/mL secondary standard to a 50-mL volumetric flask.<br />

Dilute the solution to volume with toluene. Mix the solution thoroughly.<br />

6HFRQGDU\ 6WDQGDUG J P/<br />

$GG P/ RI WKH J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask.<br />

Dilute the solution to volume with toluene. Mix the solution thoroughly.<br />

3.3.2 [ 2 H6]Cyfluthrin Standard Solutions<br />

3.3.2.1 Primary Deuterated Standard<br />

Note: Due to the [ 2 H6]cyfluthrin neat standard concentration of 15.6%, w/w in ACN, the ACN will<br />

evaporate quickly when weighing out a small aliquot of standard. The weight measurement<br />

should be taken quickly. The exact concentration of the primary deuterated standard was not<br />

critical as long as standards containing internal standard from one primary standard were not<br />

compared to standards made from a new primary standard.<br />

Using a balance accurate to at least 0.1 mg, weigh the appropriate amount of [ 2 H6]cyfluthrin<br />

neat standard into a 50-P/ YROXPHWULF WR \LHOG D VWDQGDUG VROXWLRQ FRQWDLQLQJ WR J P/<br />

in parent equivalence. Dilute the neat material to volume with toluene. Sonicate if necessary to<br />

completely dissolve the neat material. The exact amount of neat material to weigh may be<br />

calculated using the equation below and adding a correction for deuterated standards to convert<br />

to cyfluthrin parent molar equivalents.<br />

Mass (mg) =<br />

&RQF J P/ [ )LQDO 9RO P/ [ [ PRO ZW > 2 H2]Standard<br />

3XULW\ [ J PJ [ PRO ZW 3DUHQW 6WDQGDUG<br />

3.3.2.2 Deuterated Secondary Standards in Toluene<br />

Prepare the following deuterated secondary standards in toluene from the primary deuterated<br />

standard in toluene.<br />

'HXWHUDWHG 6HFRQGDU\ 6WDQGDUG J P/ RI > 2 H6]cyfluthrin:<br />

$GG EHWZHHQ WR P/ RI D WR J P/ SULPDU\ GHXWHUDWHG VWDQGDUG<br />

to a 50-mL volumetric flask. Dilute the solution to volume with toluene. Mix the<br />

solution thoroughly.<br />

'HXWHUDWHG 6HFRQGDU\ 6WDQGDUG 6ROXWLRQ J PO<br />

$GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG WR D -mL<br />

volumetric flask. Dilute the solution to volume with toluene. Mix the solution<br />

thoroughly.<br />

29


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

3.3.3 Linearity Standard Solutions<br />

Linearity standards consist of a mixture of the cyfluthrin and [ 2 H6]cyfluthrin. The [ 2 H6]cyfluthrin<br />

concentration was held constant in each linearity standard (same level used in the sample<br />

analysis) while the cyfluthrin concentration was varied from the lowest designated point to the<br />

highest designated point.<br />

3.3.3.1 Linearity Standards<br />

0 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG WR D -mL<br />

volumetric flask. Dilute the solution to volume with toluene. Mix the solution<br />

thoroughly.<br />

0.002 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.004 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR a 50-mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.010 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.020 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.050 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.10 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

0.20 ppm Add 1.0 mL of the 2.5 J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution to<br />

volume with toluene. Mix the solution thoroughly.<br />

1.0 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG and 10.0 mL of the<br />

J P/ VHFRQGDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution to<br />

volume with toluene. Mix the solution thoroughly.<br />

30


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

5.0 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ VHFRQGary standard to a 50-mL volumetric flask. Dilute the solution<br />

to volume with toluene. Mix the solution thoroughly.<br />

10.0 ppm $GG P/ RI WKH J P/ GHXWHUDWHG VHFRQGDU\ VWDQGDUG DQG P/ RI WKH<br />

J P/ SULPDU\ VWDQGDUG WR D -mL volumetric flask. Dilute the solution to<br />

volume with toluene. Mix the solution thoroughly.<br />

3.3.4 Quantification Standard<br />

4XDQWLILFDWLRQ 6WDQGDUG J P/<br />

$GG P/ RI WKH J P/ VHFRQGDU\ VWDQGDUG DQG P/ RI WKH J P/<br />

deuterated secondary standard solution to a 50-mL volumetric flask. Dilute the<br />

solution to volume with toluene. Mix the solution thoroughly.<br />

3.4 Analytical Method<br />

3.4.1 Matrix Preparation<br />

1. Add approximately 2.5 lbs of the raw agricultural commodity (RAC) to the vertical<br />

batch processor. Add about an equal portion of palletized dry ice to the sample<br />

in the processor. Macerate the combined dry ice and RAC until a homogenous<br />

mixture is obtained.<br />

2. Pour the homogenized mixture into a plastic Tupperware container and store<br />

open at –20 ± 5 °C until the last traces of dry ice have sublimed. Store the<br />

homogenized RAC in a freezer at –20 ± 5 °C.<br />

3.4.2 Procedure (Apples and Pears only)<br />

3.4.2.1 Extraction<br />

1. Weigh 5.0 g of sample into a 120-mL glass bottle. Note: begin recovery samples<br />

at this point by fortifying the control matrix sample with a standard.<br />

2. Add 45 mL of the solvent mixture MeOH/aqueous 1.2 N HCl (4:1, v/v) into the<br />

bottle. Homogenize for 2 min using a tissumizer.<br />

3. Vacuum filter the sample solution using a Buchner funnel into a stoppered<br />

100-mL graduated cylinder.<br />

4. Return the solids including the paper filter back to the glass bottle, and add<br />

31


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

45 mL of MeOH into the bottle. Homogenize for 2 min, then filter a second time<br />

into the same stoppered 100-mL graduated cylinder.<br />

5. 8VLQJ D +DPLOWRQ V\ULQJH WUDQVIHU / RI WKH J P/ LQWHUQDO VWDQGDUG<br />

solution to the filtrate. Adjust the volume to the 100-mL mark with the solvent<br />

mixture and mix.<br />

6. Split the 100-mL filtrate into two 50-mL portions and discard the filter.<br />

7. Rotovap one of the 50-mL sample portions to remove all the solvents as possible<br />

(some matrices may contain oily residues that can not be evaporated). Add<br />

25 mL of hexane to the flask, sonicate in a water bath for 60 s.<br />

8. Proceed to the florisil clean-up step.<br />

3.4.2.2 Florisil Clean-up<br />

1. Place glass wool at the bottom of a Kontes column (15 mm ID x 250 mm length,<br />

250 mL reservoir), add 100 mL of hexane to the column.<br />

2. Add 7 g of 2.5% deactivated florisil into the column and tap the column to remove<br />

the air bubbles.<br />

3. Add 6 g of anhydrous sodium sulfate to the column and drain the excess hexane<br />

into a waste container. Leave enough hexane in the column just to cover the bed<br />

of sodium sulfate.<br />

4. Pour the 25-mL hexane sample extract from step 7 of the extraction into the<br />

column. Let the extract run through the column dropwise into a waste container.<br />

5. Add 40 mL of hexane to the boiling flask, mix and pour into the column. Let the<br />

extract run through the column dropwise into a waste container.<br />

6. Elute the analyte with 60 mL of hexane/acetone (90/10%) dropwise into a<br />

125-mL boiling flask.<br />

7. Rotovap to dryness.<br />

3.4.2.3 Final Extract Preparation for Analysis<br />

1. Pipet 2.5 mL of toluene into the flask and rotate to dissolve all the residue.<br />

2. Filter approximately 1 mL of the sample solution into a sample vial using a<br />

P -mm, acrodisc filter for GC/MS analysis.<br />

32


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

3.4.3 Procedure (All Matrices Except Nutmeat, Apples, and Pears)<br />

3.4.3.1 Extraction<br />

1. Weigh 5.00 g (± 0.02 g) of the sample into a 4 oz Qorpak bottle beaker (Fisher<br />

P/N. 03-320-10C) or equivalent. NOTE: Begin recovery samples at this point by<br />

fortifying the control tissue matrix samples with a standard.<br />

2. Add 45 mL of methanol (MeOH)/aqueous 1.2 N HCl (4:1, v/v).<br />

3. Blend the sample using an ultra-turrax blender or equivalent equipped with<br />

tissumizer probe 18N or equivalent for approximately 2 min.<br />

4. Add approximately 2 g of Celite®.<br />

5. Vacuum filter the contents of the beaker through a Whatman GF/A filter in a<br />

5.6-cm Buchner funnel into a 100-mL graduated mixing cylinder.<br />

6. Return the filter cake to the 4 oz beaker and add 45 mL of MeOH and blend the<br />

sample an additional 2 min.<br />

7. Vacuum filter the contents through the same Buchner funnel containing a new<br />

GF/A filter into the 100-mL graduated mixing cylinder.<br />

8. Add the 2 [H6]cyfluthrin internal standard (0.05 ppm) to the 100-mL graduated<br />

mixing cylinder.<br />

9. Bring the volume in the 100-mL graduated mixing cylinder to 100 mL with MeOH.<br />

Mix thoroughly.<br />

10. Transfer 50 mL of the sample to a 60-mL I-Chem vial.<br />

11. Evaporate to approximately 4 to 5 mL using a Turbo Vap LV<br />

(water bath 55 ± 5 °C).<br />

12. Add 10 mL of water to the I-Chem vial and mix.<br />

13. Transfer the aqueous sample to a 125-mL separatory funnel.<br />

14. Wash the I-Chem vial with 15 mL of acetone/methylene chloride (1:2) and<br />

transfer to the 125-mL separatory funnel.<br />

15. Repeat Step 14.<br />

33


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

16. Shake the separatory funnel for 30 s.<br />

17. Drain the lower organic phase into a 60-mL I-Chem vial through a funnel<br />

containing a glass wool plug and approximately 15 g of anhydrous sodium<br />

sulfate.<br />

18. Wash the sodium sulfate with approximately 10 mL of methylene chloride.<br />

19. Evaporate to dryness on a Turbo Vap LV (water bath 40 ± 5° C).<br />

20. Reconstitute the residue in 25 mL of hexane.<br />

21. Proceed to the Florisil clean-up (Sec 3.4.3.4, Step 1)<br />

3.4.3.2 Extraction (Nutmeat)<br />

1. Weigh 5.00 g (± 0.02 g) of the sample into a paper thimble for the soxtec. Begin<br />

recovery samples at this point by fortifying the control tissue matrix samples with<br />

a standard.<br />

2. Add 50 mL of hexane to the soxtec stainless steel beaker.<br />

3. Place the cup on the soxtec and extract ~ two hours at 140 °C in the boil<br />

position.<br />

4. Turn the soxtec to the rinse position and rinse for 1 h.<br />

5. Allow the cups to cool to room temperature.<br />

6. Add the d6-cyfluthrin internal standard (0.05 ppm) to the soxtec cup.<br />

7. Transfer the sample to a 50-mL graduated cylinder.<br />

8. Wash the soxtec cup with 5 mL of clean hexane and transfer to the graduated<br />

cylinder.<br />

9. Bring the volume in the graduated cylinder to 50 mL with hexane.<br />

10. Proceed to the ACN / hexane partition (Sec 3.4.3.3, Step 1)<br />

34


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

3.4.3.3 ACN/Hexane Partition<br />

1. Transfer 25 mL of the sample from the 50-mL graduated cylinder to a 125-mL<br />

separatory funnel.<br />

2. Add 25 mL of ACN presaturated with hexane to the separatory funnel and shake<br />

for approximately 30 s.<br />

3. Transfer the lower ACN layer to another 125-mL separatory funnel already<br />

containing 10 mL of hexane presaturated with ACN and shake for approximately<br />

30 s.<br />

4. Collect the lower ACN layer into a 60-mL I-Chem vial.<br />

5. Repeat Steps 2 through 4. Note: Both ACN fractions in Step 13 are collected in<br />

the same 60 mL vial.<br />

6. Concentrate the sample in the 60-mL vial to dryness on a Turbo-vap LV (water<br />

bath 45 ± 5 °C) and reconstitute in 25 mL of hexane followed by sonication.<br />

7. Proceed to the Florisil Clean-up (Sec 3.4.3.4, Step 1)<br />

3.4.3.4 Florisil Clean-up<br />

1. Place a plug of glass wool at the bottom of a Kontes column (11 mm ID x 250<br />

length, 200 mL reservoir), and add 50 mL of hexane to the column.<br />

2. Slowly add approximately 7 g of 2.5% deactivated florisil into the column while<br />

tapping the column to remove air bubbles.<br />

3. Add approximately 3 g of anhydrous sodium sulfate to the column.<br />

4. Drain the hexane until it is just above the sodium sulfate layer. Discard the<br />

hexane.<br />

5. Pour the 25-mL sample extract from Step 20 (extraction for all matrices except<br />

apple, pear, and nutmeat) or Step 6 (ACN / hexane partition nutmeat) into the<br />

column. Let the extract run through the column dropwise. Discard the hexane.<br />

6. Wash the I-Chem vial with 40 mL of hexane and transfer to the column. Allow<br />

the hexane to drip until it just reaches the top of the sodium sulfate. Discard the<br />

hexane.<br />

7. Elute the analyte with 40 mL of hexane/acetone (9:1) dropwise into a 60-mL<br />

I-Chem until no more drops are apparent.<br />

35


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

8. Concentrate the sample to dryness using a turbo-vap (water bath 40 ± 5 °C).<br />

9. Add 2.5 mL of toluene to the 60-mL I-Chem vial and mix thoroughly.<br />

10. Proceed to the final extract preparation for analysis<br />

3.4.3.5 Final Extract Preparation for Analysis<br />

1. To complete the preparation for instrumental analysis, the extract is to be added<br />

to a GC vial.<br />

3.4.4 Analysis By Gas Chromatography/Mass Spectrometry (GC/MS)<br />

A. GC conditions:<br />

Column: DB-5MS capillary column, 5% phenyl methyl, 12 m length, 0.2 mm<br />

ID, 0.33- P ILOP WKLFNQHVV DOO PDWULFHV H[FHSW DSSOH DQG SHDU<br />

Column: HP-5 capillary column, 5% phenyl methyl, 12 m length, 0.2 mm<br />

ID, 0.33- P ILOP WKLFNQHVV DSSOH DQG SHDU<br />

Injector port temp: 280 °C (all matrices except apple and pear)<br />

250 °C (apple and pear)<br />

Flow: 1 mL/min<br />

Mode: Splitless then split at 1.0 min<br />

Gas type: Helium<br />

Initial oven temp: 150 °C<br />

Initial time: 4 min<br />

Ramps: 30 °C to a final temp of 300 °C and hold for 11 min<br />

Total run time: 20.0 min<br />

Approx. Retention Time: 9.4 min<br />

B. Mass spectrometer conditions:<br />

Ionization mode: negative chemical ionization (NCI)<br />

Ionization gas: methane<br />

Acquisition mode: Single interaction monitoring (SIM)<br />

Solvent delay: 4 min<br />

Ion masses: cyfluthrin m/z 207<br />

[ 2 H6]cyfluthrin m/z 213<br />

MS quad temp: 106 °C<br />

MS source temp: 150 °C<br />

MSD transfer line temp: 300 °C<br />

36


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

C. Procedure:<br />

1. Use the chemstation software to run the automated autotune for NCI.<br />

2. Add an aliquot of the final extract or an aliquot of the 0.050 ppm quantification<br />

standard (0.050 ppm cyfluthrin and 0.050 ppm [ 2 H6]cyfluthrin) solution in toluene<br />

into a GC auto sampler vial.<br />

3. Inject 1 / IURP WKH ILUVW TXDQWLILFDWLRQ VWDQGDUG<br />

4. ,QMHFW / IURP -10 samples (1-10 in a sample set).<br />

5. ,QMHFW / IURP WKH VHFRQG TXDQWLILFDWLRQ VWDQGDUG<br />

6. Compare the ratio (response factor) of the cyfluthrin / [ 2 H6]cyfluthrin peak area of<br />

each sample extract solution to the average ratio of the respective peak area of<br />

the quantitation standards on either side.<br />

7. Compare the ratio of the cyfluthrin / [ 2 H6]cyfluthrin peak area of the quantitation<br />

standard injected before and after each group of sample extract solution<br />

injections. If the ratios vary by > 20% of the ratio of the first quantitation<br />

standard, prepare new aliquots of the quantitation standard and sample extract<br />

solutions and repeat steps 1 through 6. If there is < 20% variation, proceed to<br />

part C.<br />

C. Calculations<br />

1. Compare the GC retention time of cyfluthrin / [ 2 H6]cyfluthrin in each of the<br />

injections made. The retention time of the cyfluthrin should be within ± 0.03 min<br />

of the [ 2 H6]cyfluthrin. Also, the retention time of the cyfluthrin in the sample<br />

injections should be with 0.10 min of the average of the retention times for the<br />

cyfluthrin in the sample extract’s respective quantitation standard injections. If<br />

these criteria are met, then proceed to Step 2. If not, then samples should be reanalyzed.<br />

2. Calculate the concentration of cyfluthrin in each sample by comparing the<br />

detector response factor (peak area of cyfluthrin/[ 2 H6]cyfluthrin for the sample to<br />

the average response factor for the quantitation standards injected before and<br />

after the sample.<br />

response factor sample target sample weight<br />

ppm = X X standard conc. X dilution factor<br />

Avg standard response factor actual sample weight<br />

37


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

The standard concentration is equal to the ppm relative to matrix weight in an<br />

undiluted sample taking into account the initial sample size, aliquoting of the<br />

original sample, and the final extract volume. The following equation may be<br />

used to calculate the ppm equivalence of the standard solution concentration.<br />

S x F x T<br />

Standard conc. (ppm equivalence) =<br />

W x A<br />

where 6 $QDO\WLFDO VWDQGDUG FRQFHQWUDWLRQ J P/<br />

F = Final extract volume (mL),<br />

T = Total initial extract volume (mL),<br />

W = Initial target sample weight (g),<br />

A = Aliquot taken<br />

An example sample residue calculation showing the use of the above formulae is presented in<br />

Appendix 2.<br />

D. Detector Linearity Curves<br />

1. To demonstrate linearity of the response factor of cyfluthrin versus the<br />

corresponding [ 2 H6]cyfluthrin internal standard in either solvent or matrix extract,<br />

a series of 7 different concentrations were used. More points were sometimes<br />

needed depending on the amount of residue measured.<br />

Transfer 150 / IURP D FRQWURO H[WUDFW FRQWDLQLQJ QR > 2 H6]cyfluthrin standard into<br />

7 different auto sampler vials. Evaporate the solutions to dryness. Then transfer<br />

/ RI WKH DSSURSULDWH VWDQGDUG WKDW FRQWDLQV F\IOXWKULQ DQG > 2 H6]cyfluthrin into<br />

each of the 7 auto sampler vials to yield the solvent + matrix containing curve.<br />

7UDQVIHU / RI WKH DSSURSULDWH VWDQGDUG LQWR HDFK RI DQRWKHU DXWR VDPSOHU<br />

vials to yield the solvent only curve. The contents of the vials are shown below:<br />

Vial 1 Blank 0.00000 J P/ F\IOXWKULQ J P/ > 2 H6]cyfluthrin<br />

Vial 2 0.002 ppm 0.0020 J P/ F\IOXWUKLQ J P/ > 2 H6]cyfluthrin<br />

Vial 3 0.004 ppm 0.0040 J P/ F\IOXWUKLQ J P/ > 2 H6]cyfluthrin<br />

Vial 4 0.010 ppm 0.010 J P/ F\IOXWUKLQ J P/ > 2 H6]cyfluthrin<br />

Vial 5 0.020 ppm 0.020 J P/ F\IOXWKULQ J P/ > 2 H6]cyfluthrin<br />

Vial 6 0.050 ppm 0.050 J P/ F\IOXWKULQ J P/ > 2 H6]cyfluthrin<br />

Vial 7 0.100 ppm 0.10 J P/ F\IOXWKULQ J P/ > 2 H6]cyfluthrin<br />

38


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

2. Sequentially analyze the solutions in each of the auto sampler vials and calculate<br />

a response factor for cyfluthrin standards versus [ 2 H6]cyfluthrin standards in each<br />

solution.<br />

3. On a graph comparing response factor versus concentration of cyfluthrin in each<br />

solution (ppm relative to matrix), plot the curves for the fortified solvent and the<br />

fortified matrix samples.<br />

Using the equation: y = mx + b<br />

where m = the coefficient (slope) of x,<br />

x = the concentration (ppm),<br />

b = the constant or y intercept,<br />

Calculate the linear regression using Lotus 123 or equivalent spreadsheet<br />

program of the data points for each set of solvent and matrix samples and<br />

determine the correlation coefficient for the regression analysis of the data.<br />

Plot the curve for the values of the regressed data points for solvent and matrix<br />

data. Compare the slopes of the regressed curves. The regressed matrix curve<br />

should be parallel to the regressed curve, and the response factors at each<br />

concentration should indicate values differing by less than 20% between the<br />

solvent curve and the matrix curve to show that any matrix effect was within<br />

acceptable limits.<br />

E. Confirmatory Procedure<br />

Note: For cyfluthrin, use the peak area from the m/z 207.<br />

1. For all standard solutions and samples, individually integrate all the ionchromatograms.<br />

2. Examine each sample chromatogram. Inspect the analyte ion-chromatogram for<br />

a peak eluting at the same retention time as the sample internal standard<br />

(± 0.03 min). Any peak falling within this window was considered to be the<br />

sample analyte. If a sample analyte peak was found, continue with the<br />

confirmatory data analysis.<br />

3. Further confirmation could be obtained by analyzing the questionable sample by<br />

Bayer method <strong>108139</strong>. 1<br />

3.4.5 Disposal of Solutions<br />

All solvent wastes should be disposed of in approved hazardous waste containers.<br />

39


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

3.5 Method Validation<br />

3.5.1 <strong>Requirements</strong><br />

1. Analyze three unfortified control samples and three fortified control samples at<br />

the LOQ, using three different control samples when possible.<br />

2. Recovery values must fall between 70% and 120%.<br />

3. The control ppm value must be less than 20% of the fortification ppm level.<br />

4. (DFK *& 06 PHDVXUHPHQW RI D UHFRYHU\ ZDV FRPSDUHG WR D J P/<br />

(0.050 ppm) quantitation standard containing cyfluthrin and [ 2 H6]cyfluthrin. All<br />

recovery samples must fall within the linearity curve.<br />

5. The correlation coefficient from the linear regression of the response factors of<br />

the linearity curve points, as described in 3.4.4 D, must be greater than 0.99.<br />

6. Calculate recoveries by the following equation:<br />

3.5.2 Recovery Procedures<br />

ppm found – control ppm<br />

Recovery = X 100%<br />

ppm fortification level<br />

1. Fortify aliquots of control matrix (in the 4 oz glass bottle beaker that was used for<br />

the 5 gram sample extraction) with the appropriate secondary standard using a<br />

/ JDV WLJKW V\ULQJH WR DSSO\ WKH DSSURSULDWH VWDQGDUG VROXWLRQ <strong>IR</strong>U WKH<br />

recovery level desired. An example is given below.<br />

SSP / RI WKH J P/ VHFRQGDU\ VWDQGDUG VROXWLRQ<br />

2. Proceed to sample extraction (Sec 3.4.2.1, Step 2, Sec 3.4.3.1 Step 2, or<br />

Sec 3.4.3.2 Step 2).<br />

4.0 Results and Discussion<br />

A flow diagram of the residue analytical method is presented in Figures 2 thru 4.<br />

40


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

4.1 Sample Extraction (Except Nutmeat), Liquid/Liquid Partition,<br />

and Florisil Clean-up<br />

The extraction described in the original method 1 was retained except for a reduction in sample<br />

weight with corresponding decrease in solvent volumes and the addition of HCl. HCl was used<br />

in corn fodder in the original method due to the basic nature of the matrix. The extraction using<br />

MeOH / aqueous 1.2 N HCl (4:1, v/v) followed by MeOH was considered adequate for the<br />

release of cyfluthrin residues.<br />

The method continued with a liquid/liquid partition. The aqueous phase containing the sample<br />

was partitioned versus acetone / DCM (1:2, v/v). The cyfluthrin was transferred to the organic<br />

phase. Many polar compounds extracted using the polar extraction solvents were left behind in<br />

the aqueous phase. The method ends using normal phase absorption chromatography<br />

(2.5% deactivated florisil) where the cyfluthrin was loaded onto the florisil in hexane, washed<br />

with hexane and selectively removed with hexane/acetone (9:1, v/v). Any compounds that have<br />

a stronger retention than cyfluthrin was left behind on the florisil packing.<br />

4.1.1 Sample Extraction (Apple and Pear Only), and Florisil Clean-up<br />

The extraction described in the original method 1 was retained except for a reduction in sample<br />

weight with corresponding decrease in solvent volumes and the addition of HCl. HCl was used<br />

in corn fodder in the original method due to the basic nature of the matrix. The extraction using<br />

MeOH/aqueous 1.2 N HCl (4:1, v/v) followed by MeOH was considered adequate for the<br />

release of cyfluthrin residues.<br />

The method continued using normal phase absorption chromatography (2.5% deactivated<br />

florisil) where the cyfluthrin was loaded onto the florisil in hexane, washed with hexane and<br />

selectively removed with hexane/acetone (9:1, v/v). Any compounds that have a stronger<br />

retention than cyfluthrin were left behind on the florisil packing.<br />

4.1.2 Sample Extraction (Nutmeat Only), ACN / hexane Partition, and<br />

Florisil Clean-up<br />

Due to the oily nature of the nutmeat, the original extraction procedure was not yielding<br />

acceptable recoveries. The nutmeat sample was placed on a Soxtec and boiled for 2 h in<br />

50 mL of hexane followed by a 1 h rinse. The method continued with a ACN / hexane partition<br />

where the cyfluthrin was transferred to the ACN phase. The oily compounds were left behind in<br />

the hexane phase. The ACN phase was partitioned once more with clean hexane and<br />

concentrated to dryness. The sample continued through the florisil clean-up as described in<br />

Section 4.1.<br />

41


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

4.2 Addition of Internal Standard Solution<br />

A standard containing the deuterated standard was added immediately after the extraction to<br />

account for any loss during sample clean-up. The addition was made using the same accurate<br />

pipette for each addition. The accuracy of the pipette was important since the response factors<br />

calculated in the sample extracts were compared to the response factor of the quantification<br />

standard, which was made using an accurate pipette.<br />

4.3 GC/MS of Cyfluthrin<br />

In the current method, the gas chromatography procedure in combination with the mass<br />

spectrometer using negative chemical ionization was selected to replace the gas<br />

chromatographic/mass spectrometry procedure using positive electron impact ionization. This<br />

modification was performed to increase sensitivity and selectivity thus reducing the amount of<br />

clean-up. In addition, the use of an internal standard compensated for loss during sample<br />

clean-up. Due to the increase in sensitivity, less sample was required to maintain an LOQ of<br />

0.01 ppm.<br />

Figures 5 through 144 show typical negative chemical ionization selected ion monitoring (SIM)<br />

ion-chromatograms of cyfluthrin, and [ 2 H6]cyfluthrin standard solutions and matrix extract<br />

solutions. Cyfluthrin is represented by ion m/z 207. [ 2 H6]Cyfluthrin is represented by ion<br />

m/z 213. Proposed fragmentation of Cyfluthrin is shown in Appendix 4.<br />

The presence of eight diastereomers (four pairs) in cyfluthrin creates three peaks that are not<br />

base line resolved. All three peaks are integrated as one peak area and used to quantitate<br />

cyfluthrin.<br />

4.4 Recovery of Cyfluthrin<br />

Tables 1 through 28 list data for recoveries, control values, standard deviations, and average<br />

recoveries for cyfluthrin from various plant matrices. Figures 5 through 144 show typical<br />

chromatograms of standards and control samples, and recovery samples for various plant<br />

matrices. All recoveries cyfluthrin at all fortification levels fell within the 70% to 120% range<br />

except for the 6.5 ppm fortifications in peanut hay which were just below 70%.<br />

4.5 Limits of Quantitation and Detection (Except Apple and Pears)<br />

The limits of quantitation (LOQ) based on the lowest ppm levels fortified of were 0.01 ppm for all<br />

the plant matrices analyzed.<br />

The limit of detection (LOD) is defined as the lowest concentration that can be determined to be<br />

statistically different from a blank or negative control. The LOD was calculated by taking the<br />

standard deviation of the residue values from the analysis of the recovery samples at the LOQ<br />

and using the equation shown below:<br />

42


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

LOD = Standard deviation X t 0.99<br />

Where t 0.99 = the one tailed t-statistic at the 99%<br />

Confidence level for n-1 replicates<br />

Values for t and an example LOD calculation based on the recovery samples measured as part<br />

of the apple field study is shown in Appendix 3. Table 29 shows the LODs for the different crop<br />

matrices.<br />

4.6 Linearity of Detector Response<br />

Detector response factor curves for cyfluthrin are shown for standards in solvent solutions and<br />

in the presence of crop matrix extracts (Figures 145 thru 161). The correlation coefficient for the<br />

detector response factor curves were all > 0.99, indicating that the detector response factor was<br />

linear over the range of concentrations tested.<br />

4.7 Time Interval of the Analytical Method<br />

If a set of 12 samples were started in the morning, and an analytical instrument was utilized<br />

which had been previously set-up for the analysis of cyfluthrin, the GC/MS data was usually<br />

available by the morning of the next day.<br />

4.8 Conclusions<br />

A modified method for measuring the residue of cyfluthrin in a wide variety of plant matrices<br />

has been revised and validated. Limits of detection (LODs) are shown in Table 29. Recovery<br />

ranges in each crop matrix are shown in Table 30.<br />

43


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

5.0 Bibliography<br />

1. F.E. Sandie and R.R. Gronberg. 1998. An Analytical Method for the Determination of<br />

&\IOXWKULQ DQG -Cyflutrhin Residues in Various Crops. Bayer Ag Div Report No.<br />

<strong>108139</strong>.<br />

2. A.M. Harbin, R. G. Minor, P.L. Freeseman, and L.K. Pfankuche. 1983. A gas<br />

chromatographic method for BAYTHROID TM residues in crops. Bayer Ag Div Report No.<br />

85823. MRID 40301501.<br />

3. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Broccoli and Cabbage (Crop Subgroup 5A - Head and Stem Brassica). Bayer Ag Div<br />

Report No. 110339.<br />

4. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Cantaloupe, Cucumber, and Summer Squash (Crop Subgroup 9 - Cucurbit<br />

Vegetables). Bayer Ag Div Report No. 110894.<br />

5. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Mustard Greens (Crop Subgroup 5B – Leafy Brassica Greens). Bayer Ag Div Report<br />

No. 110895.<br />

6. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Potatoes. Bayer Ag Div Report No. 110988.<br />

7. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Tobacco. Bayer Ag Div Report No. 110340.<br />

8. D. R. Fischer. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

on Grapes. Bayer Ag Div Report No. 110989.<br />

9. E. C. Beedle. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

in Dried Peas and Dried Beans (Crop Subgroup 6C – Dried, Shelled Pea an Bean –<br />

Except Soybean). Bayer Ag Div Report 110479.<br />

10. E. C. Beedle. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

in Celery and Spinach Crop Group 4 . Bayer Ag Div. Report 110338.<br />

11. E C. Beedle. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

in Carrots and Radishes (Bridging Trials). Bayer Ag Div Report 110958<br />

12. E. C. Beedle. BAYTHROID 20 WP and BAYTHROID 2 EC - Magnitude of the Residue<br />

in Leaf Lettuce and Head Lettuce (Bridging Trials). Bayer Ag Div Report 110628<br />

44


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

13. A. M. Harbin. BAYTHROID 20 WP and BAYTHROID 2 - Magnitude of the Residue in<br />

Apples and Pears (Crop Group 11 - Pome Fruit). Bayer Ag Div Report No. 110031.<br />

14. Lemke, V. J. 2002. BAYTHROID 2 EC and BAYTHROID 20 WP – Magnitude of the<br />

Residue on Peppers and Tomatoes (Bridging Trials). Bayer Ag Div Report No. 110981.<br />

15. Duah, F. K. 2002. BAYTHROID 2 EC and BAYTHROID 20 WP – Magnitude of the<br />

Residue on Sweet and Tart Cherries, Peaches, and Plums (Crop Group 12 – Stone<br />

Fruits). Bayer Ag Div Report No. 110314.<br />

16. Duah, F. K. and V. J. Lemke. 2002. BAYTHROID 2 EC and BAYTHROID 20 WP –<br />

Magnitude of the Residue on Grapefruits, Lemons, and Oranges (Crop Group 10 –<br />

Citrus Fruits, Bridging Trials). Bayer Ag Div Report No. 111025.<br />

17. Duah, F. K. 2002. BAYTHROID 2 EC and BAYTHROID 20 WP – Magnitude of the<br />

Residue in/on Peanuts. Bayer Ag Div Report No. 111036.<br />

45


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 1. Recovery of cyfluthrin from cherry fresh fruit measured as part of the field residue<br />

Program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD175-00D-019-3 0.00089 BD175-00D-019-4 0.0100 91 98 3.5<br />

0.01 BD173-00HA-013-1 0.00040 BD173-00HA-013-2 0.00985 94<br />

BD174-00H-013-3 0.00017 BD174-00H-013-4 0.00977 96<br />

BD177-00H-013-1 0.00022 BD177-00H-013-2 0.00987 96<br />

BD173-00HA-013-3 0.00005 BD173-00HA-013-4 0.00979 97<br />

BD174-00H-013-1 0.00020 BD174-00H-013-2 0.00994 97<br />

BD172-00H-013-3 0.00033 BD172-00H-013-4 0.0101 98<br />

BD174-00H-013-5 0.00032 BD174-00H-013-6 0.0101 98<br />

BD172-00H-013-1 0.00012 BD172-00H-013-2 0.0102 100<br />

BD176-00H-013-3 0.00034 BD176-00H-013-4 0.0104 101<br />

BD175-00D-019-1 0.00043 BD175-00D-019-2 0.0105 101<br />

BD176-00H-013-1 0.00024 BD176-00H-013-2 0.0105 103<br />

0.50 BD177-00H-013-4 0.00061 BD177-00H-013-5 0.475 95 96 1.2<br />

BD177-00H-013-6 0.477 95<br />

BD177-00H-013-7 0.486 97<br />

1 Bayer Ag Div Report No. 110314. Percent recovery values were corrected for control<br />

interferences.<br />

46


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 2. Recovery of cyfluthrin from peach fresh fruit measured as part of the field residue<br />

Program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD158-00H-013-1 0.00010 BD158-00H-013-2 0.00887 88 95 3.2<br />

0.01 BD159-00H-013-1 0.00000 BD159-00H-013-2 0.00898 90<br />

BD163-00D-019-5 0.00056 BD163-00D-019-6 0.00969 91<br />

BD157-00H-013-1 0.00000 BD157-00H-013-2 0.00923 92<br />

BD157-00H-013-3 0.00006 BD157-00H-013-4 0.00937 93<br />

BD163-00D-019-1 0.00000 BD163-00D-019-2 0.00953 95<br />

BD162-00H-013-1 0.00018 BD162-00H-013-2 0.00964 95<br />

BD165-00HA-013-1 0.00050 BD165-00HA-013-2 0.00997 95<br />

BD163-00D-019-3 0.00000 BD163-00D-019-4 0.00964 96<br />

BD158-00H-013-3 0.00022 BD158-00H-013-4 0.00977 96<br />

BD158-00H-013-5 0.00024 BD158-00H-013-6 0.00988 96<br />

BD165-00HA-013-3 0.00025 BD165-00HA-013-4 0.00988 96<br />

BD159-00H-013-3 0.00000 BD159-00H-013-4 0.00966 97<br />

BD161-00H-013-1 0.00000 BD161-00H-013-2 0.00966 97<br />

BD160-00H-013-1 0.00000 BD160-00H-013-2 0.00974 97<br />

BD160-00H-013-3 0.00000 BD160-00H-013-4 0.00974 97<br />

BD159-00H-013-5 0.00006 BD159-00H-013-6 0.00992 99<br />

BD164-00HA-013-1 0.00010 BD164-00HA-013-2 0.0102 101<br />

0.40 BD165-00HA-013-6 0.00037 BD165-00HA-013-8 0.389 97 98 1.0<br />

BD165-00HA-013-9 0.391 98<br />

BD165-00HA-013-7 0.396 99<br />

1 Bayer Ag Div Report No. 110314. Percent recovery values were corrected for control<br />

interferences.<br />

47


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 3. Recovery of cyfluthrin from plum fresh fruit measured as part of the field residue<br />

Program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD170-00H-013-1 0.00000 BD170-00H-013-2 0.00863 86 97 6.1<br />

0.01 BD169-00H-013-5 0.00013 BD169-00H-013-6 0.00899 89<br />

BD-168-00D-019-3 0.00014 BD-168-00D-019-4 0.00940 93<br />

BD170-00H-013-3 0.00000 BD170-00H-013-4 0.00935 94<br />

BD168-00D-019-1 0.00000 BD168-00D-019-2 0.00949 95<br />

BD167-00H-013-5 0.00000 BD167-00H-013-6 0.00964 96<br />

BD166-00H-013-3 0.00014 BD166-00H-013-4 0.00977 96<br />

BD167-00H-013-3 0.00014 BD167-00H-013-4 0.00977 96<br />

BD169-00H-013-3 0.00012 BD169-00H-013-4 0.00978 97<br />

BD166-00H-013-1 0.00029 BD166-00H-013-2 0.0102 99<br />

BD171-00H-013-1 0.00010 BD171-00H-013-2 0.0102 101<br />

BD167-00H-013-1 0.00013 BD167-00H-013-2 0.0106 105<br />

BD169-00H-013-1 0.00000 BD169-00H-013-2 0.0109 109<br />

0.10 BD168-00D-019-6 0.00000 BD168-00D-019-9 0.0955 96 97 0.58<br />

BD168-00D-019-7 0.0966 97<br />

BD168-00D-019-8 0.0966 97<br />

1 Bayer Ag Div Report No. 110314. Percent recovery values were corrected for control<br />

interferences.<br />

48


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 4. Recovery of cyfluthrin from potato fresh tubers measured as part of the field<br />

residue Program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Tubers BD107-00D-017-3 0.00010 BD107-00D-017-4 0.00908 90 95 3.4<br />

0.01 BD105-00H-005-3 0.00016 BD105-00H-005-4 0.00957 94<br />

BD107-00D-017-5 0.00060 BD107-00D-017-6 0.00996 94<br />

BD107-00D-017-8 0.00000 BD107-00D-017-9 0.00968 97<br />

BD106-00D-017-3 0.00002 BD106-00D-017-4 0.00971 97<br />

BD106-00D-017-7 0.00004 BD106-00D-017-8 0.0100 100<br />

1 Bayer Ag Div Report No. 110988. Percent recovery values were corrected for control<br />

interferences.<br />

49


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 5. Recovery of cyfluthrin from orange fresh fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD132-00D-015-1 0.00006 BD132-00D-015-2 0.00944 94 99 2.7<br />

0.01 BD134-00H-005-1 0.00000 BD134-00H-005-2 0.00980 98<br />

BD132-00D-015-7 0.00035 BD132-00D-015-8 0.0101 98<br />

BD133-00H-005-3 0.00000 BD133-00H-005-4 0.00988 99<br />

BD132-00D-015-5 0.00031 BD132-00D-015-6 0.0102 99<br />

BD132-00D-015-3 0.00000 BD132-00D-015-4 0.0102 102<br />

BD133-00H-005-1 0.00025 BD133-00H-005-2 0.0105 102<br />

0.10 BD134-00H-005-3 0.00022 BD134-00H-005-6 0.0970 97 97 0.58<br />

BD134-00H-005-5 0.0972 97<br />

BD134-00H-005-7 0.0980 98<br />

1 Bayer Ag Div Report No. 111025. Percent recovery values were corrected for control<br />

interferences.<br />

50


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 6. Recovery of cyfluthrin from lemon fresh fruit measured as part of the field<br />

residue program (1)<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD152-00H-001-3 0.00050 BD152-00H-001-4 0.00934 88 94 5.4<br />

0.01 BD153-00D-015-3 0.00018 BD153-00D-015-4 0.00915 90<br />

BD153-00D-015-5 0.00023 BD153-00D-015-6 0.00944 92<br />

BD153-00D-015-9 0.00036 BD153-00D-015-10 0.0102 99<br />

BD154-00H-001-3 0.00000 BD154-00H-001-4 0.0100 100<br />

0.10 BD154-00H-001-6 0.00189 BD154-00H-001-9 0.0939 92 96 3.8<br />

BD154-00H-001-8 0.0996 98<br />

BD154-00H-001-7 0.101 99<br />

0.15 BD154-00H-001-12 0.00070 BD154-00H-001-14 0.141 94 98 3.5<br />

BD154-00H-001-13 0.148 98<br />

BD154-00H-001-15 0.153 101<br />

1 Bayer Ag Div Report No. 111025. Percent recovery values were corrected for control<br />

interferences.<br />

51


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 7. Recovery of cyfluthrin from grapefruit fresh fruit measured as part of the field<br />

residue program (1)<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD148-00H-001-12 0.00040 BD148-00H-001-13 0.00943 90 94 3.7<br />

0.01 BD146-00D-017-3 0.00052 BD146-00D-017-4 0.00955 90<br />

BD148-00H-001-1 0.00087 BD148-00H-001-2 0.0103 94<br />

BD147-00H-001-1 0.00080 BD147-00H-001-2 0.0104 96<br />

BD147-00H-001-3 0.00039 BD147-00H-001-4 0.0101 97<br />

BD146-00D-017-1 0.00050 BD146-00D-017-2 0.0104 99<br />

0.10 BD148-00H-001-4 0.00035 BD148-00H-001-6 0.0981 98 98 0.0<br />

BD148-00H-001-7 0.0983 98<br />

BD148-00H-001-5 0.0985 98<br />

1 Bayer Ag Div Report No. 111025. Percent recovery values were corrected for control<br />

interferences.<br />

52


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 8. Recovery of cyfluthrin from tomato whole fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole Fruit BD001-00D-013-3 0.00052 BD001-00D-013-4 0.00962 91 93 1.6<br />

0.01 BD002-00H-001-1 0.00043 BD002-00H-001-2 0.00962 92<br />

BD003-00H-001-1 0.00020 BD003-00H-001-2 0.00954 93<br />

BD002-00H-001-3 0.00021 BD002-00H-001-4 0.00963 94<br />

BD001-00D-013-1 0.00028 BD001-00D-013-2 0.00976 95<br />

0.50 BD002-00H-001-5 0.00014 BD002-00H-001-8 0.466 93 94 0.58<br />

BD002-00H-001-9 0.468 94<br />

BD002-00H-001-7 0.471 94<br />

1 Bayer Ag Div Report No. 110981. Percent recovery values were corrected for control<br />

interferences.<br />

53


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 9. Recovery of cyfluthrin from pepper whole fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole Fruit BD015-00D-013-1 0.00130 BD015-00D-013-2 0.00987 86 91 2.9<br />

0.01 BD015-00D-013-3 0.00059 BD015-00D-013-4 0.00939 88<br />

BD012-00H-001-1(2) 0.00071 BD012-00H-001-2(2) 0.00967 90<br />

BD012-00H-001-1(2) 0.00067 BD012-00H-001-2(2) 0.00975 91<br />

BD013-00H-001-1 0.00000 BD013-00H-001-2 0.00924 92<br />

BD015-00D-013-5 0.00037 BD015-00D-013-6 0.00954 92<br />

BD014-00H-001-1 0.00009 BD014-00H-001-2 0.00955 95<br />

0.40 BD016-00H-001-2 0.00000 BD016-00H-001-4 0.405 101 103 1.7<br />

BD016-00H-001-3 0.415 104<br />

BD016-00H-001-5 0.415 104<br />

1 Bayer Ag Div Report No. 110981. Percent recovery values were corrected for control<br />

interferences.<br />

2 Duplicate injections made to verify instrument performance<br />

54


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 10. Recovery of cyfluthrin from squash whole fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole Fruit BD040-00H-001-1 0.00007 BD040-00H-001-2 0.00964 96 98 1.3<br />

0.01 BD038-00H-001-1 0.00000 BD038-00H-001-2 0.00969 97<br />

BD037-00D-013-1 0.00000 BD037-00D-013-2 0.00975 97<br />

BD036-00H-001-1 0.00012 BD036-00H-001-2 0.0100 99<br />

BD039-00H-001-1 0.00023 BD039-00H-001-2 0.0101 99<br />

0.080 BD037-00D-013-4 0.00045 BD037-00D-013-5 0.0775 96 98 1.5<br />

BD037-00D-013-7 0.0785 98<br />

BD037-00D-013-6 0.0794 99<br />

1 Bayer Ag Div Report No. 110894. Percent recovery values were corrected for control<br />

interferences.<br />

55


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 11. Recovery of cyfluthrin from cucumber whole fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole Fruit BD026-00HB-001-1 0.00089 BD026-00HB-001-2 0.00997 91 96 3.2<br />

0.01 BD028-00H-001-1 0.00051 BD028-00H-001-2 0.00989 94<br />

BD024-00H-001-1 0.00052 BD024-00H-001-2 0.0101 96<br />

BD027-00H-001-1 0.00040 BD027-00H-001-2 0.0101 97<br />

BD029-00H-001-1 0.00031 BD029-00H-001-2 0.0101 98<br />

BD025-00D-013-1 0.00030 BD025-00D-013-2 0.0103 100<br />

0.070 BD025-00D-013-4 0.00030 BD025-00D-013-5 0.0690 98 99 1.2<br />

BD025-00D-013-7 0.0700 100<br />

BD025-00D-013-6 0.0704 100<br />

1 Bayer Ag Div Report No. 110894. Percent recovery values were corrected for control<br />

interferences.<br />

56


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 12. Recovery of cyfluthrin from cantaloupe whole fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole Fruit BD034-00H-001-1 0.00038 BD034-00H-001-2 0.00936 90 95 2.7<br />

0.01 BD032-00H-001-1 0.00041 BD032-00H-001-2 0.00974 93<br />

BD030-00H-001-1 0.00046 BD030-00H-001-2 0.00983 94<br />

BD033-00D-013-3 0.00045 BD033-00D-013-4 0.00988 94<br />

BD031-00H-001-3 0.00039 BD031-00H-001-4 0.0100 96<br />

BD033-00D-013-1 0.00022 BD033-00D-013-2 0.00993 97<br />

BD031-00H-001-1 0.00026 BD031-00H-001-2 0.0100 98<br />

0.050 BD034-00H-001-4 0.00024 BD034-00H-001-7 0.0481 96 97 1.0<br />

BD034-00H-001-5 0.0487 97<br />

BD034-00H-001-6 0.0491 98<br />

1 Bayer Ag Div Report No. 110894. Percent recovery values were corrected for control<br />

interferences.<br />

57


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 13. Recovery of cyfluthrin from carrots roots measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Roots BD121-00H-001-1 0.00072 BD121-00H-001-2 0.00994 92 96 3.8<br />

0.01 BD122-00D-013-10 0.00015 BD122-00D-013-11 0.00960 94<br />

BD122-00D-013-3 0.00006 BD122-00D-013-4 0.00968 96<br />

BD122-00D-013-1 0.00016 BD122-00D-013-2 0.00984 97<br />

BD123-00H-001-1 0.00000 BD123-00H-001-2 0.0102 102<br />

0.050 BD122-00D-013-6 0.00004 BD122-00D-013-7 0.0471 94 95 1.5<br />

BD122-00D-013-8 0.0476 95<br />

BD122-00D-013-9 0.0485 97<br />

1 Bayer Ag Div Report No. 110958. Percent recovery values were corrected for control<br />

interferences.<br />

58


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 14. Recovery of cyfluthrin from radish roots and tops measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Roots BD129-00H-001-1 0.00090 BD129-00H-001-2 0.0100 91 97 6.0<br />

0.010 BD127-00DA-013-1 0.00057 BD127-00DA-013-2 0.00983 93<br />

BD127-00DA-013-7 0.00078 BD127-00DA-013-8 0.0103 95<br />

BD128-00H-001-1 0.00000 BD128-00H-001-2 0.00972 97<br />

BD127-00DA-013-5 0.00024 BD127-00DA-013-6 0.0100 98<br />

BD127-00DA-013-3 0.00085 BD127-00DA-013-4 0.0116 108<br />

0.025 BD128-00H-001-4 0.00019 BD128-00H-001-5 0.0242 96 98 1.5<br />

BD128-00H-001-6 0.0247 98<br />

BD128-00H-001-7 0.0250 99<br />

Tops BD127-00DA-030-3 0.00288 BD127-00DA-030-4 0.0109 80 85 4.4<br />

0.010 BD129-00H-006-1 0.00333 BD129-00H-006-2 0.0117 83<br />

BD127-00DA-030-1 0.00418 BD127-00DA-030-2 0.0129 87<br />

BD128-00H-006-1 0.00230 BD128-00H-006-2 0.0113 90<br />

5.0 BD128-00H-006-4 0.00021 BD128-00H-006-6 4.22 84 85 0.58<br />

BD128-00H-006-5 4.23 85<br />

BD128-00H-006-7 4.23 85<br />

1 Bayer Ag Div Report No. 110958. Percent recovery values were corrected for control<br />

interferences.<br />

59


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 15. Recovery of cyfluthrin from head lettuce heads with wrapper leaves and heads<br />

without wrapper leaves measured as part of the field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Heads with BD064-00H-001-1 0.00079 BD064-00H-001-2 0.0103 95 99 4.0<br />

wrapper leaves BD065-00D-013-1 0.00036 BD065-00D-013-2 0.0101 97<br />

0.010 BD065-00D-013-3 0.00061 BD065-00D-013-4 0.0103 97<br />

BD066-00H-001-1 0.00038 BD066-00H-001-2 0.0105 101<br />

BD064-00H-001-3 0.00038 BD064-00H-001-4 0.0109 105<br />

2.0 BD065-00D-013-6 0.00007 BD065-00D-013-8 1.95 98 98 0.0<br />

BD065-00D-013-9 1.96 98<br />

BD065-00D-013-7 1.97 98<br />

Heads without BD064-00H-006-1 0.00062 BD064-00H-006-3 0.00971 93 96 2.4<br />

wrapper leaves BD064-00H-006-2 0.00025 BD064-00H-006-4 0.00985 94<br />

0.010 BD066-00H-006-1 0.00012 BD066-00H-006-2 0.00980 97<br />

BD064-00H-006-5 0.00020 BD064-00H-006-6 0.00997 98<br />

0.050 BD066-00H-006-4 0.00000 BD066-00H-006-7 0.0490 98 98 0.0<br />

BD066-00H-006-6 0.0491 98<br />

BD066-00H-006-5 0.0492 98<br />

1 Bayer Ag Div Report No. 110628. Percent recovery values were corrected for control<br />

interferences.<br />

60


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 16. Recovery of cyfluthrin from leaf lettuce fresh leaves measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh leaves BD060-00H-001-3 0.00032 BD060-00H-001-4 0.00970 94 95 1.5<br />

0.010 BD060-00H-001-1 0.00046 BD060-00H-001-2 0.00982 94<br />

BD058-00H-001-1 0.00136 BD058-00H-001-2 0.0108 94<br />

BD059-00D-013-1 0.00057 BD059-00D-013-2 0.0103 97<br />

2.5 BD059-00D-013-4 0.00079 BD059-00D-013-7 2.44 98 98 0.0<br />

BD059-00D-013-6 2.45 98<br />

BD059-00D-013-5 2.46 98<br />

3.5 BD059-00D-013-8 0.00203 BD059-00D-013-10 3.41 98 98 0.58<br />

BD059-00D-013-9 3.44 98<br />

BD059-00D-013-11 3.46 99<br />

1 Bayer Ag Div Report No. 110628. Percent recovery values were corrected for control<br />

interferences.<br />

61


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 17. Recovery of cyfluthrin from grape fresh fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD010-01D-021-3 0.00052 BD010-01D-021-4 0.00983 93 97 2.0<br />

0.01 BD010-01D-021-1 0.00021 BD010-01D-021-2 0.00965 94<br />

BD002-01H-001-3 0.00016 BD002-01H-001-4 0.00975 96<br />

BD004-01HA-001-1 0.00013 BD004-01HA-001-2 0.00976 96<br />

BD006-01H-001-1 0.00028 BD006-01H-001-2 0.00990 96<br />

BD003-01H-001-1 0.00008 BD003-01H-001-2 0.00978 97<br />

BD011-01H001-11 0.00021 BD011-01H-001-12 0.00987 97<br />

BD001-01H-001-1 0.00000 BD001-01H-001-2 0.00977 98<br />

BD009-01H-001-1 0.00008 BD009-01H-001-2 0.00998 99<br />

BD002-01H-001-1 0.00010 BD002-01H-001-2 0.0100 99<br />

0.50 BD011-01H-001-3 0.00012 BD011-01H-001-4 0.487 97 98 1.0<br />

BD011-01H-001-6 0.488 98<br />

BD011-01H-001-5 0.496 99<br />

1.0 BD011-01H-001-7 0.00013 BD011-01H-001-9 0.982 98 100 1.5<br />

BD011-01H-001-8 0.995 100<br />

BD011-01H-001-10 1.01 101<br />

1 Bayer Ag Div Report No. 110989. Percent recovery values were corrected for control<br />

interferences.<br />

62


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 18. Recovery of cyfluthrin from dried pea dry pea measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Dry pea BD085-00D-013-3(2) 0.00080 BD085-00D-013-4(2) 0.00865 78 85 5.3<br />

BD085-00D-013-3(2) 0.00093 BD085-00D-013-4(2) 0.00875 78<br />

0.01 BD087-00H-001-4 0.00047 BD087-00H-001-5 0.00919 87<br />

BD088-00H-001-1(2) 0.00075 BD088-00H-001-2(2) 0.00950 88<br />

BD085-00D-013-1(2) 0.00100 BD085-00D-013-2(2) 0.00969 87<br />

BD085-00D-013-1(2) 0.00081 BD085-00D-013-2 0.00959 88<br />

BD087-00H-001-1 0.00052 BD087-00H-001-2 0.00968 92<br />

0.15 BD088-00H-001-3 0.00044 BD088-00H-001-4 0.132 88 89 0.58<br />

BD088-00H-001-5 0.134 89<br />

BD088-00H-001-6 0.134 89<br />

1 Bayer Ag Div Report No. 110479. Percent recovery values were corrected for control<br />

interferences.<br />

2 Duplicate injections made to verify instrument performance<br />

63


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 19. Recovery of cyfluthrin from dried bean dry seed measured as part of the<br />

field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Dry seed BD018-00H-005-5 0.00187 BD018-00H-005-6 0.00923 74 84 5.9<br />

0.01 BD019-00H-001-7 0.00129 BD019-00H-001-8 0.00952 82<br />

BD020-00H-001-1 0.00138 BD020-00H-001-2 0.00959 82<br />

BD019-00H-001-5 0.00113 BD019-00H-001-6 0.00945 83<br />

BD019-00H-001-13 0.00079 BD019-00H-001-14 0.00972 89<br />

BD019-00H-001-9 0.00086 BD019-00H-001-10 0.00976 89<br />

BD019-00H-001-11 0.00058 BD019-00H-001-12 0.00968 91<br />

0.15 BD019-00H-001-16 0.00062 BD019-00H-001-17 0.140 93 95 2.5<br />

BD019-00H-001-19 0.143 95<br />

BD019-00H-001-18 0.148 98<br />

1 Bayer Ag Div Report No. 110479. Percent recovery values were corrected for control<br />

interferences.<br />

64


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 20. Recovery of cyfluthrin from mustard green leaves measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Leaves BD055-00D-017-3 0.00156 BD055-00D-017-4 0.00981 82 93 6.4<br />

0.01 BD054-00H-005-1 0.00066 BD054-00H-005-2 0.00979 91<br />

BD201-00H-001-1 0.00056 BD201-00H-001-2 0.00995 94<br />

BD053-00H-005-5 0.00082 BD053-00H-005-6 0.0110 98<br />

BD055-00D-017-1 0.00052 BD055-00D-017-2 0.0104 99<br />

4.0 BD055-00D-017-6 0.00116 BD055-00D-017-9 3.95 99 99 0.58<br />

BD055-00D-017-7 3.97 99<br />

BD055-00D-017-8 3.99 100<br />

5.5 BD201-00H-001-4 0.00040 BD201-00H-001-7 5.27 96 96 0.0<br />

BD201-00H-001-5 5.29 96<br />

BD201-00H-001-6 5.30 96<br />

1 Bayer Ag Div Report No. 110895. Percent recovery values were corrected for control<br />

interferences.<br />

65


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 21. Recovery of cyfluthrin from broccoli flowering heads and stems measured as part<br />

of the field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Flowering heads BD043-00H-001-1 0.00071 BD043-00H-001-2 0.00986 92 95 3.4<br />

and stems BD042-00D-013-1 0.00016 BD042-00D-013-2 0.00945 93<br />

0.010 BD041-00H-001-2 BD041-00H-001-5 0.00992 94<br />

BD041-00H-001-3 0.00029(2) BD041-00H-001-4 0.0103 98<br />

BD043-00H-001-3 0.00000 BD043-00H-001-4 0.00997 100<br />

0.75 BD042-00D-013-3 0.00015 BD042-00D-013-5 0.748 100 100 0.58<br />

BD042-00D-013-4 0.750 100<br />

BD042-00D-013-6 0.754 101<br />

1 Bayer Ag Div Report No. 110339. Percent recovery values were corrected for control<br />

interferences.<br />

2 Average residue of two different extractions of control sample BD041-00H-001.<br />

66


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 22. Recovery of cyfluthrin from cabbage heads with wrapper leaves and heads<br />

without wrapper leaves measured as part of the field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Heads with BD047-00H-001-1 0.00079 BD047-00H-001-2 0.0101 93 99 4.7<br />

wrapper leaves BD048-00D-013-1 0.00073 BD048-00D-013-2 0.0104 97<br />

0.010 BD048-00D-013-3 0.00112 BD048-00D-013-4 0.0108 97<br />

BD048-00D-013-5 0.00022 BD048-00D-013-6 0.0104 102<br />

BD049-00H-001-1 0.00046 BD049-00H-001-2 0.0110 105<br />

3.5 BD049-00H-001-4 0.00069 BD049-00H-001-6 3.53 101 101 0.58<br />

BD049-00H-001-7 3.55 101<br />

BD049-00H-001-5 3.56 102<br />

Heads without BD047-00H-006-2 0.00089(2) BD047-00H-006-4 0.0107 99 99 0.58<br />

Wrapper leaves BD047-00H-006-1 BD047-00H-006-3 0.0108 99<br />

0.010 BD049-00H-006-1 0.00085 BD049-00H-006-2 0.0108 100<br />

0.020 BD049-00H-006-4 0.00016 BD049-00H-006-7 0.0207 102 104 2.6<br />

BD049-00H-006-6 0.0208 103<br />

BD049-00H-006-5 0.215 107<br />

1 Bayer Ag Div Report No. 110339. Percent recovery values were corrected for control<br />

interferences.<br />

67


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 23. Recovery of cyfluthrin from celery trimmed leaf stalks and untrimmed leaf stalks<br />

measured as part of the field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Trimmed leaf BD070-00H-001-1 0.00149 BD070-00H-001-2 0.0108 93 98 3.1<br />

stalks BD073-00H-001-1 0.00000 BD073-00H-001-2 0.00983 98<br />

0.010 BD074-00H-001-1 0.00032 BD074-00H-001-2 0.0102 99<br />

BD071-00H-001-1 0.00000 BD071-00H-001-2 0.0100 100<br />

0.10 BD075-00H-001-7 0.00014 BD075-00H-001-10 0.0995 99 100 0.58<br />

BD075-00H-001-8 0.0996 100<br />

BD075-00H-001-9 0.0997 100<br />

0.70 BD075-00H-001-2 0.00061 BD075-00H-001-4 0.711 101 102 1.0<br />

BD075-00H-001-5 0.717 102<br />

BD075-00H-001-3 0.724 103<br />

1.0 BD075-00H-001-11 0.00000 BD075-00H-001-12 1.01 101 101 0.0<br />

BD075-00H-001-13 1.01 101<br />

BD075-00H-001-14 1.01 101<br />

Untrimmed BD073-00H-006-1 0.00000 BD073-00H-006-2 0.00805 80 97 8.2<br />

leaf stalks BD071-00H-006-1 0.00063 BD071-00H-006-2 0.00985 92<br />

0.010 BD070-00H-006-1 0.00061 BD070-00H-006-2 0.0104 98<br />

BD074-00H-006-1 0.00000 BD074-00H-006-2 0.0100 100<br />

BD075-00H-006-1 0.00023 BD075-00H-006-2 0.0103 101<br />

BD072-00D-013-1 0.00013 BD072-00D-013-2 0.0103 102<br />

BD074-00H-006-3 0.00000 BD074-00H-006-4 0.0103 103<br />

3.5 BD072-00D-013-6 0.00065 BD072-00D-013-8 3.51 100 101 0.58<br />

BD072-00D-013-9 3.52 101<br />

BD072-00D-013-7 3.54 101<br />

1 Bayer Ag Div Report No. 110338. Percent recovery values were corrected for control<br />

interferences.<br />

68


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 24. Recovery of cyfluthrin from spinach leaves measured as part of the field residue<br />

Program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Leaves BD080-00D-013-1 0.00165 BD080-00D-013-2 0.0109 93 98 3.6<br />

0.01 BD079-00H-001-1 0.00038 BD079-00H-001-2 0.00984 95<br />

BD080-00D-013-4 0.00221 BD080-00D-013-5 0.0117 95<br />

BD077-00H-001-1 0.00075 BD077-00H-001-2 0.0105 98<br />

BD076-00H-001-1 0.00000 BD076-00H-001-2 0.0101 101<br />

BD081-00H-001-1 0.00150 BD081-00H-001-2 0.0116 101<br />

BD078-00H-001-1 0.00053 BD078-00H-001-2 0.0107 102<br />

6.0 BD079-00H-001-3 0.00048 BD079-00H-001-6 5.45 91 91 0.58<br />

BD079-00H-001-4 5.47 91<br />

BD079-00H-001-5 5.50 92<br />

1 Bayer Ag Div Report No. 110338. Percent recovery values were corrected for control<br />

interferences.<br />

69


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 25. Recovery of cyfluthrin from tobacco whole green leaves and flue cured leaves<br />

measured as part of the field residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Whole green BD196-00H-004-1 0.00055 BD196-00H-004-2 0.0101 96 98 2.1<br />

leaves BD198-00H-004-1 0.00015 BD198-00H-004-2 0.0100 99<br />

0.010 BD197-00H-004-1 0.00033 BD197-00H-004-2 0.0103 100<br />

1.5 BD196-00H-004-4 0.00044 BD196-00H-004-5 1.43 95 96 0.58<br />

BD196-00H-004-6 1.44 96<br />

BD196-00H-004-7 1.44 96<br />

Flue cured BD198-00H-001-1 0.00056 BD198-00H-001-2 0.00867 81 86 5.0<br />

leaves BD196-00H-001-1 0.00037 BD196-00H-001-2 0.00885 85<br />

0.010 BD197-00H-001-1 0.00020 BD197-00H-001-2 0.00926 91<br />

7.5 BD196-00H-001-4 0.00017 BD196-00H-001-5 5.45 73 74 0.58<br />

BD196-00H-001-6 5.53 74<br />

BD196-00H-001-7 5.55 74<br />

1 Bayer Ag Div Report No. 110340. Percent recovery values were corrected for control<br />

interferences.<br />

70


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 26. Recovery of cyfluthrin from peanut nutmeat and hay measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Nutmeat BD091-00D-016-5 0.00022 BD091-00D-016-6 0.00777 76 89 8.4<br />

0.010 BD092-00H-004-5 0.00073 BD092-00H-004-6 0.00837 76<br />

BD092-00H-004-9 0.00055 BD092-00H-004-10 0.00954 90<br />

BD099-00H-004-1 0.00024 BD099-00H-004-2 0.00940 92<br />

BD093-00H-004-5 0.00027 BD093-00H-004-6 0.00954 93<br />

BD102-00D-016-2 0.00000 BD102-00D-016-3 0.00942 94<br />

BD092-00H-004-7 0.00061 BD092-00H-004-8 0.0101 95<br />

BD096-00H-004-1 0.00010 BD096-00H-004-2 0.00978 97<br />

Hay BD099-00H-001-1 0.00072 BD099-00H-001-2 0.00787 72 79 6.4<br />

0.010 BD092-00H-001-5 0.00084 BD092-00H-001-6 0.00806 72<br />

BD091-00D-007-3 0.00225 BD091-00D-007-4 0.0101 78<br />

BD093-00H-001-3 0.00071 BD093-00H-001-4 0.00893 82<br />

BD092-00H-001-3 0.00063 BD092-00H-001-4 0.00911 85<br />

BD096-00H-001-3 0.00132 BD096-00H-001-4 0.00998 87<br />

6.0 BD102-00D-007-7 0.00373 BD102-00D-007-8 4.32 72 73 0.58<br />

BD102-00D-007-9 4.37 73<br />

BD102-00D-007-10 4.37 73<br />

6.5 BD102-00D-007-12 0.00314 BD102-00D-007-14 4.45 68 69 0.58<br />

BD102-00D-007-13 4.46 69<br />

BD102-00D-007-15 4.46 69<br />

1 Bayer Ag Div Report No. 111036. Percent recovery values were corrected for control<br />

interferences.<br />

71


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 27. Recovery of cyfluthrin from apple fresh fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery Measured<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD048-99H-001-002 0.00304 BD048-99H-001-003 0.0128 97 100 3.0<br />

0.010 BD050-99H-001-001 0.00261 BD050-99H-001-002 0.0126 100<br />

BD049-99H-001-001 0.00251 BD049-99H-001-002 0.0128 103<br />

0.050 BD050-99H-001-003 0.00139 BD050-99H-001-004 0.0454 88 106 13.9<br />

BD043-99D-001-003 0.00111 BD043-99D-001-004 0.0460 90<br />

BD043-99D-001-001 0.00072 BD043-99D-001-002 0.0461 91<br />

BD049-99H-001-003 0.00083 BD049-99H-001-004 0.0497 98<br />

BD048-99H-001-007 0.00358 BD048-99H-001-008 0.0602 113<br />

BD047-99H-001-001 0.00367 BD047-99H-001-002 0.0617 116<br />

BD051-99D-001-003 0.00429 BD051-99D-001-004(2) 0.0633 118<br />

BD051-99D-001-003 0.00429 BD051-99D-001-004(2) 0.0647 121<br />

BD046-99H-001-001 0.00312 BD046-99H-001-002 0.0624 119<br />

1 Bayer Ag Div Report No. 110031. Percent recovery values were corrected for control<br />

interferences.<br />

2 Duplicate injection to verify instrument performance.<br />

72


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 28. Recovery of cyfluthrin from pear fresh fruit measured as part of the field<br />

residue program (1).<br />

Control Recovery<br />

Measure<br />

d<br />

Fortification Sample Control Sample Recov Net % Avg % Std Dev<br />

(ppm) Number (ppm) Number (ppm) Recov Recov % Recov<br />

Fresh Fruit BD037-99D-001-001 0.00132(2) BD037-99D-001-004 0.00909 78 84 7.3<br />

0.010 BD037-99D-001-002 BD037-99D-001-005 0.00948 82<br />

BD037-99D-001-003 BD037-99D-001-006 0.00990 86<br />

BD038-99H-001-001 0.00083 BD038-99H-001-002 0.00878 79<br />

BD040-99H-001-001 0.00000 BD040-99H-001-002 0.00957 96<br />

0.050 BD040-99H-001-003 0.00000 BD040-99H-001-004 0.0430 86 90 3.0<br />

BD037-99D-001-011 0.00095 BD037-99D-001-012 0.0448 88<br />

BD039-99H-001-001 0.00144 BD039-99H-001-002 0.0453 88<br />

BD037-99D-001-009 0.00213 BD037-99D-001-010 0.0468 89<br />

BD041-99H-001-001 0.00250 BD041-99H-001-002 0.0469 89<br />

BD038-99H-001-003 0.00000 BD038-99H-001-004 0.0453 91<br />

BD038-99H-001-003 0.00000 BD038-99H-001-006 0.0458 92<br />

BD037-99D-001-011 0.00095 BD037-99D-001-013 0.0480 94<br />

BD037-99D-001-011 0.00095 BD037-99D-001-014 0.0483 95<br />

1 Bayer Ag Div Report No. 110031. Percent recovery values were corrected for control<br />

interferences.<br />

2 Average residue of three different extractions of control sample BD037-99D-001.<br />

73


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 29. LODs of Cyfluthrin from crop matrices.<br />

Crop / Matrix LOD (ppm)<br />

Cherry / fresh fruit 0.00070<br />

Peach / fresh fruit 0.00081<br />

Plum / fresh fruit 0.0017<br />

Potato / fresh tuber 0.0011<br />

Oranges / fresh fruit 0.00095<br />

Lemon / fresh fruit 0.0017<br />

Grapefruit / fresh fruit 0.0016<br />

Tomato / whole fruit 0.00037<br />

Pepper / whole fuit 0.00075<br />

Squash / whole fruit 0.00051<br />

Cucumber / whole fruit 0.00056<br />

Cantaloupe / whole fruit 0.00058<br />

Carrots / roots 0.00099<br />

Radish / tops 0.0040<br />

Radish / roots 0.0020<br />

head lettuce / heads with wrapper leaves 0.0011<br />

head lettuce / heads without wrapper leaves 0.00049<br />

leaf lettuce / fresh leaves 0.0023<br />

Grape / fresh fruit 0.00031<br />

dried pea / dry pea 0.0016<br />

dried beans / dry seed 0.00058<br />

mustard green / leaves 0.0017<br />

Broccoli / flowering heads and stems 0.0011<br />

Cabbage / heads with wrapper leaves 0.0013<br />

Cabbage / heads without wrapper leaves 0.00040<br />

Celery / trimmed leaf stalks 0.0019<br />

Celery / untrimmed leaf stalks 0.0026<br />

Spinach / leaves 0.0022<br />

Tobacco / whole green leaves 0.0011<br />

Tobacco / flue cured leaves 0.0021<br />

Peanut / nutmeat 0.0023<br />

Peanut / hay 0.0031<br />

Apple / fresh fruit 0.00080<br />

Pear / fresh fruit 0.0016<br />

74


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Table 30. Cyfluthrin recovery ranges.<br />

Fortification Recovery<br />

Crop / Matrix<br />

Range(ppm) Range(%)<br />

Low High Lo High<br />

Cherry / fresh fruit 0.01 0.5 91 103<br />

Peach / fresh fruit 0.01 0.4 88 101<br />

Plum / fresh fruit 0.01 0.1 86 109<br />

Potato / fresh tuber 0.01 NA 90 100<br />

Orange / fresh fruit 0.01 0.1 94 102<br />

Lemon / fresh fruit 0.01 0.15 88 101<br />

Grapefruit / fresh fruit 0.01 0.1 90 99<br />

Tomato / whole fruit 0.01 0.5 91 95<br />

Pepper / whole fuit 0.01 0.4 86 104<br />

Squash / whole fruit 0.01 0.08 96 99<br />

Cucumber / whole fruit 0.01 0.07 91 100<br />

Cantaloupe / whole fruit 0.01 0.05 90 98<br />

Carrots / roots 0.01 0.05 92 102<br />

Radish / tops 0.01 5.0 80 90<br />

Radish / roots 0.01 0.025 91 108<br />

head lettuce / heads with wrapper leaves 0.01 2.0 95 105<br />

head lettuce / heads without wrapper 0.01 0.05 93 98<br />

leaf lettuce / fresh leaves 0.01 3.5 94 99<br />

Grape / fresh fruit 0.01 1.0 93 101<br />

dried pea / dry pea 0.01 0.15 78 92<br />

dried beans / dry seed 0.01 0.15 74 98<br />

mustard green / leaves 0.01 5.5 83 100<br />

Broccoli / flowering heads and stems 0.01 0.75 92 101<br />

Cabbage / heads with wrapper leaves 0.01 3.5 93 105<br />

Cabbage / heads without wrapper leaves 0.01 0.02 99 107<br />

Celery / trimmed leaf stalks 0.01 1.0 93 103<br />

Celery / untrimmed leaf stalks 0.01 3.5 80 103<br />

Spinach / leaves 0.01 6.0 91 102<br />

Tobacco / whole green leaves 0.01 1.5 95 100<br />

Tobacco / flue cured leaves 0.01 7.5 73 91<br />

Peanut / nutmeat 0.01 NA 76 97<br />

Peanut / hay 0.01 6.5 68 87<br />

Apple / fresh fruit 0.01 0.05 88 121<br />

Pear / fresh fruit 0.01 0.05 78 96<br />

75


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Cl<br />

Cl<br />

H<br />

H<br />

H<br />

H C<br />

O<br />

3 CH3<br />

Figure 1. Chemical name, acronymns, storage conditions, and structures for cyfluthrin and<br />

[<br />

76<br />

2 H6]Cyfluthrin.<br />

O<br />

Cyfluthrin<br />

Cyano-(4-fluoro-3-phonoxyphenyl)methyl-3-(2,2-dichloroethenyl)-2,2dimethylcyclopropanecarboxylate<br />

Molecular Weight 434.30<br />

Storage condition:frozen<br />

Cl<br />

Cl<br />

H<br />

H<br />

H<br />

CD<br />

O<br />

3 CD3<br />

O<br />

H<br />

H<br />

N<br />

N<br />

[ 2 H6]Cyfluthrin<br />

Molecular Weight 440.33<br />

Storage condition:frozen<br />

F<br />

O<br />

F<br />

O


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

- place 5.0 g sample material in a 120-mL glass bottle<br />

- add 45 mL of MeOH/aqueous 1.2 N HCl (4:1)<br />

Figure 2. Flow diagram of the residue analytical method for cyfluthrin in apple and pear<br />

matrices<br />

77<br />

- homogenize with Tekmar Tissumizer<br />

for approx 2 min<br />

- vaccum filter through a 5.5-cm GF/A filter contained in a 5.6-cm Buchner funnel<br />

- return the solid extract including the filter back into the glass bottle and<br />

add 45 mL of MeOH followed by another 2 min of homogenization<br />

- Vacuum filter through another GF/A filter<br />

- add internal standard<br />

- Dilute to 100-mL with MeOH/aqueous 1.2 N HCl (4:1)<br />

- rotary evaporate 50 mL of the extract<br />

to dryness<br />

- reconstitute the residue in 25 mL<br />

hexane followed by sonication<br />

- prepare a florisil column by adding glass wool to the bottom of the column, 100 mL of<br />

hexane, 7 g of 2.5% deactivated florisil and 6 g of anhydrous sodium sulfate<br />

- drain excess hexane, leaving just enough hexane to cover the bed of sodium sulfate<br />

- add the 25-mL sample in hexane to the column and allow to drip through the column into<br />

a waste container<br />

- wash the flask that contained the 25-mL hexane sample with 40 mL of hexane, add the<br />

40 mL of hexane to the column and allow the 40 mL to drip through the column into a<br />

waste container<br />

- Elute the cyfluthrin with 60 mL of hexane/acetone (9:1) into a 125-mL boiling flask<br />

- rotary evaporate to dryness<br />

- reconstitute the sample in 2.5 mL of toluene<br />

- ILOWHU DSSUR[ P/ RI WKH VDPSOH XVLQJ D P PP $FURGLVF ILOWHU<br />

- analyze using GC/MS


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

- place 5.0 g sample material in a 4 oz bottle beaker<br />

- add 45 mL of MeOH/aqueous 1.2 N HCl (4:1)<br />

Figure 3. Flow diagram of the residue analytical method for cyfluthrin in all matrices except<br />

apple, pear, and nutmeat.<br />

78<br />

- homogenize with Tekmar Tissumizer<br />

for approx 2 min<br />

- vaccum filter through a 5.5-cm GF/A filter contained in a 5.6-cm Buchner funnel<br />

- return the solid extract including the filter back into the bottle beaker and<br />

add 45 mL of MeOH followed by another 2 min of homogenization<br />

- Vacuum filter through another GF/A filter<br />

- add internal standard<br />

- Dilute to 100-mL with MeOH<br />

- concentrate to approx 4 to 5 mL<br />

using a Turbo Vap LV<br />

- dilute to 10 mL with water<br />

- transfer the aqueous sample to a 125-mL separatory funnel<br />

- wash the vial that contained the aqueous sample twice with 15 mL aliquots of<br />

acetone/DCM (1:2) and add to the 125-mL separatory funnel.<br />

- shake funnel for appprox 30 s and drain the lower phase through a funnel containing a<br />

glasswool plug and approx 15 g of anhydrous sodium sulfate into a 60-mL vial<br />

- wash the sodium sulfate with 10 mL of DCM and collect in the same 60-mL vial<br />

- evaporate to dryness using a Turbo Vap LV and reconstitute the residue in 25-ml<br />

of hexane<br />

- prepare a florisil column by adding glass wool to the bottom of the column, 100 mL of<br />

hexane, 7 g of 2.5% deactivated florisil and 3 g of anhydrous sodium sulfate<br />

- drain excess hexane, leaving just enough hexane to cover the bed of sodium sulfate<br />

- add the 25-mL sample in hexane to the column and allow to drip through the column into<br />

a waste container<br />

- wash the flask that contained the 25-mL hexane sample with 40 mL of hexane, add the<br />

40 mL of hexane to the column and allow the 40 mL to drip through the column into a<br />

waste container<br />

- Elute the cyfluthrin with 40 mL of hexane/acetone (9:1) into a 125-mL boiling flask<br />

- rotary evaporate to dryness<br />

- reconstitute the residue in 2.5 mL of toluene and analyze on GC/MS


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

- place 5.0 g sample material into a paper thimble for the soxtec<br />

- add 50 mL of hexane to a soxtec stainless steel beaker<br />

- place the soxtec beaker on the soxtec and extract for 2 h at 140 ° C in the boil position<br />

- move the soxtec to the rinse position for 1 h<br />

- turn off the temp to the soxtec and allow the cups to cool<br />

- add the internal standard to the cup<br />

- transfer the sample to a 50-mL graduated cylinder<br />

- wash the cup with 5 mL of hexane and add to the 50-mL cylinder<br />

- dilute the sample to 50-mL with hexane<br />

- transfer 25-mL of the sample from the 50-mL graduated cylinder into a 125-mL sep funnel<br />

- add 25 mL of ACN presaturated with hexane to the sep funnel and shake for 30 seconds<br />

- Drain the lower ACN phase into another 125-mL sep funnel already containing 10 mL of<br />

hexane presaturated with ACN and shake for 30 s<br />

- collect the lower ACN phase in a 60-mL vial<br />

- repeat the the above procedure by adding another 25 mL of ACN presaturated with hexane<br />

to the 1 st separatory funnel<br />

- Concentrate the ACN phases contained in the 60-mL vial to dryness on a Turbo Vap LV<br />

- prepare a florisil column by adding glass wool to the bottom of the column, 100 mL of<br />

hexane, 7 g of 2.5% deactivated florisil and 3 g of anhydrous sodium sulfate<br />

- drain excess hexane, leaving just enough hexane to cover the bed of sodium sulfate<br />

- add the 25-mL sample in hexane to the column and allow to drip through the column into<br />

a waste container<br />

- wash the flask that contained the 25-mL hexane sample with 40 mL of hexane, add the<br />

40 mL of hexane to the column and allow the 40 mL to drip through the column into a<br />

waste container<br />

- Elute the cyfluthrin with 40 mL of hexane/acetone (9:1) into a 125-mL boiling flask<br />

- rotary evaporate to dryness<br />

- reconstitute the residue in 2.5 mL of toluene and analyze on GC/MS<br />

Figure 4. Flow diagram of the residue analytical method for cyfluthrin in nutmeat<br />

79


Bayer Corporation <strong>108139</strong>-1<br />

Agriculture Division<br />

Standard Solution of cyfluthrin and [ 2 H6]Cyfluthrin from cherry fresh fruit<br />

[ 2 H6]Cyfluthrin<br />

(m/z 213)<br />

Cyfluthrin<br />

(m/z 207)<br />

Figure 5. GC/MS chromatogram of a typical 0.05 ppm cyfluthrin standard / 0.05 ppm<br />

[ 2 H6]cyfluthrin standard solution.<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!