08.01.2020 Views

atw - International Journal for Nuclear Power | 01.2020

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. www.nucmag.com

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

nucmag.com<br />

2020<br />

1<br />

ISSN · 1431-5254<br />

24.– €<br />

Energy Supply<br />

Without <strong>Nuclear</strong>:<br />

Winter 2022/23<br />

is Coming<br />

Dual-Use Act in Trialog<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants:<br />

2019 <strong>atw</strong> Compact Statistics<br />

Programme Overview Inside!


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

RA Dr. Christian Raetzke 18.02.2020 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

11.11.2020 Berlin<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 10.03.2020 Berlin<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chanchen und Regularien<br />

3 Kommunikation und Politik<br />

RA Kay Höft M.A. (BWL) 17.06.2020 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

Das neue Strahlenschutzgesetz –<br />

Folgen für Recht und Praxis<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

28.01. - 29.<strong>01.2020</strong><br />

16.06. - 17.06.2020<br />

23.09. - 24.09.2020<br />

Berlin<br />

17.03. - 18.03.2020 Berlin<br />

3 <strong>Nuclear</strong> English<br />

English <strong>for</strong> <strong>Nuclear</strong> Business Angela Lloyd 01.04. - 02.04.2020 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Veränderungsprozesse gestalten – Heraus <strong>for</strong>derungen<br />

meistern, Beteiligte gewinnen<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

21.01. - 22.<strong>01.2020</strong> Berlin<br />

24.03. - 25.03.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

USA: 80 Years Actually<br />

3<br />

When nuclear energy was at its beginning in the 1950s and 1960s and the first nuclear power plants <strong>for</strong> energy supply<br />

were built commercially, the question of a suitable regulatory framework also arose. Among other things, it was<br />

necessary to establish licensing and supervisory procedures that would guarantee safety and thus also responsibility<br />

and acceptance at an optimum level from the first to the last day of operation and beyond. On the other hand, the<br />

potential and future operators also had to be able to plan with a sufficiently safe operating period in order to decide on<br />

the technical and financial investment.<br />

In the USA, then President Dwight D. Eisenhower set an<br />

important political signal <strong>for</strong> the national and international<br />

expansion of nuclear energy with his “Atoms <strong>for</strong> Peace”<br />

speech on 8 December 1953. The U.S. Atomic Energy Act of<br />

1956 opened up a reliable, long-term perspective <strong>for</strong><br />

nuclear in the U.S. Since then, a staggered licensing concept<br />

based on this and other regulations has ensured the reliable<br />

operation of nuclear power plants in the United States from<br />

a regulatory and technical/safety point of view. The regulatory<br />

basis stipulates that the first operating licence is issued<br />

<strong>for</strong> a period of 40 years. In addition, the regulations provide<br />

<strong>for</strong> the possibility of a license extension <strong>for</strong> a further<br />

20 years. There is no restriction on the number of such<br />

subsequent licenses. These extensions are based on<br />

corresponding evidence of plant safety, which has to be<br />

demonstrated and guaranteed <strong>for</strong> the entire intended<br />

licensing period.<br />

Some of the other countries that use nuclear energy<br />

have similar regulations, others deviate, <strong>for</strong> example, with<br />

regard to licensing periods – e.g. follow-up licenses are<br />

granted <strong>for</strong> 10 years – and others have no time limit at all.<br />

It must be clearly pointed out at this point that the individual<br />

safety of nuclear power plants must be guaranteed<br />

at all times, irrespective of operating time regulations.<br />

Safety depends on the situation.<br />

In the USA, the <strong>Nuclear</strong> Regulatory Commission (NRC)<br />

started in the early 1980s to systematically record and<br />

investigate ageing processes and thus important aspects of<br />

long-term nuclear safety. At the beginning of the 1990s,<br />

the result was that the previously announced plant<br />

extensions – the Atomic Energy Act dates from 1956, see<br />

above – could also be technically implemented. From a<br />

timing point of view, this statement was appropriate.<br />

Early-to-mid-1990s, nuclear energy in the USA was at a<br />

crossroads between the continued operation of existing<br />

plants and short-term final shut-down. Only moderate<br />

availability of nuclear power plants of average 55 to 70 %<br />

(period: 1970 to 1990) and correspondingly significant<br />

high generation costs stood in contrast to increasingly<br />

favour able generation costs, especially <strong>for</strong> coal and<br />

gas-fired power plants. The U.S. nuclear power plant<br />

operators made the right decision both retrospectively and<br />

with a view to the future: Measures to improve operational<br />

reliability and availability were developed and implemented<br />

in a coordinated and joint manner in the USA, all<br />

with a view to extending operating lifetime. One result is<br />

164 individual measures in U.S. nuclear power plants with<br />

power increases in the plants totalling 7,921 MWe (net) –<br />

roughly equivalent to the addition of 7 powerful nuclear<br />

power plants. A further visible result is the increase in<br />

availability to 92.3 % today (2018) and thus the top result<br />

worldwide <strong>for</strong> a country's nuclear power plant park. In<br />

other words, nuclear power plants in the USA today produce<br />

50 to 80 % more electricity than 30 years ago.<br />

As far as the long-term prospects <strong>for</strong> the operation of<br />

nuclear power plants are concerned, the year 2000 set a<br />

first mark: After two years of evaluation, five nuclear<br />

power plant units were the first plants in the USA to receive<br />

an initial renewal license in the spring of the year to<br />

operate <strong>for</strong> a period of 20 additional years to a total<br />

operating life of 60 years. To date, a further 94 permits<br />

have been issued. Four further applications <strong>for</strong> lifetime<br />

extensions have been announced to NRC until 2022. This<br />

means that all nuclear power plants in the USA <strong>for</strong> which<br />

longer operating times are planned by the operator now<br />

have the required 20-year initial renewal licence or the<br />

process has been initiated.<br />

But that is not all: As mentioned above, the number of<br />

further lifetime extensions is not limited to the first<br />

approval according to U.S. regulations. One result of the<br />

early evaluation of the long-term safety of the U.S. nuclear<br />

power plants by NRC was also that beyond the operating<br />

time of 60 years, essential components of the nuclear<br />

power plants which determine the long-term safety can<br />

easily be extended beyond that. In July 2017, the NRC<br />

there<strong>for</strong>e published a guideline <strong>for</strong> the evaluation of<br />

“ subsequent license renewal applications”: the guideline<br />

includes, among other things, details of the 45-day policy<br />

review <strong>for</strong> the application documents as well as the<br />

subsequent review of the safety-related aspects and the<br />

environmental impact assessment.<br />

In January 2018, the operator Florida <strong>Power</strong> & Light of<br />

the Turkey Point nuclear power plant – two pressurised<br />

water reactors with a gross capacity of about 885 MWe<br />

each are operated at the site located about 30 km south<br />

of Miami in the U.S. state of Florida – submitted the<br />

application <strong>for</strong> the second, subsequent 20-year lifetime<br />

extension. On 5 December 2019, NRC announced that it<br />

had approved the application <strong>for</strong> the extension of the<br />

operating licence <strong>for</strong> both nuclear power plant units. For<br />

the first time, this is an 80 year licence <strong>for</strong> a nuclear power<br />

plant in the USA. The Turkey Point 3 unit can thus supply<br />

the customers with electricity until 19 July 2052 and the<br />

Turkey Point 4 unit until 10 April 2053. Two further<br />

applications <strong>for</strong> the reactors Peach Bottom 2 & 3 and Surry<br />

1 & 2 are in the approval process. Decisions on these are<br />

expected in 2020.<br />

Both the NRC's decision and the transparent approval<br />

process – interested parties can expect around 5,000 pages<br />

of publicly accessible technical in<strong>for</strong>mation on the NRC<br />

website alone – have one thing in common: it impressively<br />

demonstrates, that it is not age but proven safety that is<br />

decisive <strong>for</strong> nuclear energy.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

EDITORIAL<br />

Editorial<br />

USA: 80 Years Actually


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

EDITORIAL 4<br />

USA: Tatsächlich 80 Jahre<br />

Als die Kernenergie in den 1950er- und 1960er-Jahren aus den Kinderschuhen entwuchs und erste Kernkraftwerke für<br />

die Energieversorgung kommerziell errichtet wurden, stellte sich auch die Frage nach einem geeigneten Regelwerk. Unter<br />

anderem galt es, Genehmigungs- und Aufsichtsverfahren zu etablieren, die in Bezug auf die Sicherheit und damit auch<br />

Verantwortung und Akzeptanz vom ersten bis zum letzten Betriebstag und darüber hinaus diese stetig auf optimalem<br />

Niveau gewährleisten. Andererseits mussten die potenziellen und späteren Betreiber auch mit einer ausreichend sicheren<br />

Perspektive planen können, um sich für die technische und finanzielle Investition zu entscheiden.<br />

In den USA hatte der damalige Präsident Dwight D. Eisenhower<br />

mit seiner „Atoms <strong>for</strong> Peace“-Rede am 8. Dezember<br />

1953 ein wichtiges politisches Signal für den nationalen und<br />

internationalen Ausbau der Kernenergie gesetzt. Die verlässliche,<br />

langfristige Perspektive in den USA eröffnete dann<br />

das U.S.-Atomgesetz von 1956. Ein darauf und weiteren<br />

Regularien basierendes zeitlich gestaffeltes Geneh mi gungskonzept<br />

gewährleistet seitdem regulatorisch und sicherheitstechnisch<br />

verlässlich den Betrieb der Kernkraftwerke. Die<br />

regulatorische Grundlage sieht vor, dass die erste Betriebsgenehmigung<br />

auf eine Laufzeit von 40 Jahren festgelegt ist.<br />

Zudem sehen die Regelungen die Möglichkeit einer<br />

Genehmi gungsverlängerung für weitere 20 Jahre vor. Eine<br />

Einschränkung für die Zahl solcher Verlängerungen besteht<br />

nicht. Eine Vorraussetzung für diese Betriebszeitverlängerungen<br />

sind entsprechende Nachweise für die Anlagensicherheit,<br />

die für den gesamten angestrebten Genehmigungszeitraum<br />

nachzuweisen und zu gewährleisten ist.<br />

In den weiteren Kernenergie nutzenden Staaten<br />

existieren teils ähnliche Regularien, teils weichen diese<br />

zum Beispiel hinsichtlich der Genehmigungszeiträume ab<br />

– Folgegenehmigungen werden z. B. für 10 Jahre ausgesprochen<br />

oder aber sind auch gänzlich unbefristet.<br />

Deutlich muss an dieser Stelle darauf hingewiesen<br />

werden, dass die individuelle Sicherheit der Kernkraftwerke<br />

unabhängig von Laufzeitregularien jederzeit zu<br />

gewährleisten ist. Sicherheit ist abhängig von der Sachlage.<br />

In den USA hatte die Aufsichtsbehörde <strong>Nuclear</strong> Regulatory<br />

Commission (NRC) in den frühen 1980er-Jahren<br />

begonnen, Alterungsprozesse und damit wichtige Aspekte<br />

der Langzeitsicherheit systematisch zu erfassen und zu<br />

untersuchen. Anfang der 1990er-Jahre war das Ergebnis,<br />

dass sich die zuvor avisierten Betriebsverlängerungen – der<br />

Atomic Energy Act stammt aus dem Jahr 1956, s. o. – auch<br />

technisch realisieren lassen. Vom Zeitpunkt her passte diese<br />

Feststellung. Anfang, Mitte der 1990er Jahre stand die<br />

Kernenergie in den USA auf dem Scheideweg zwischen<br />

Weiterbetrieb der bestehenden Anlagen und kurzfristiger<br />

endgültiger Stilllegung. Nur mäßigen Arbeitsverfügbarkeiten<br />

der Kernkraftwerke von im Mittel 55 bis 70 % (Zeitraum:<br />

1970 bis 1990) und entsprechend signifikant hohen<br />

Erzeugungskosten standen günstiger werdende Erzeugungs<br />

kosten vor allem von Kohle- und Gaskraftwerken<br />

gegenüber. Die U.S.-Kernkraftwerksbetreiber entschieden<br />

sich sowohl rück- als auch in die Zukunft blickend damals<br />

richtig: Koordiniert und gemeinsam wurden in den USA<br />

Maßnahmen entwickelt und umgesetzt, um die betriebliche<br />

Zuverlässigkeit sowie die Verfügbarkeit zu verbessern, alles<br />

auch mit Blick auf Verlängerungen der Laufzeiten. Ein<br />

Ergebnis sind 164 Einzelmaßnahmen in U.S.-Kernkraftwerken<br />

mit Leistungserhöhungen in den Anlagen von in<br />

Summe 7.921 MWe (netto) – dies entspricht in etwa dem<br />

Zubau von sieben leistungsstarken Kernkraftwerken. Ein<br />

weiteres sichtbares Ergebnis ist die Steigerung der Verfügbarkeiten<br />

auf heute (2018) 92,3 % und damit das weltweite<br />

Spitzen ergebnis für den Kernkraftwerkspark eines Landes.<br />

Anders ausgedrückt, produzieren Kernkraftwerke in den<br />

USA heute 50 bis 80 % mehr Strom als vor 30 Jahren.<br />

Was die Langfristperspektiven des Kernkraftwerksbetriebs<br />

betrifft, setzte das Jahr 2000 eine erste Marke:<br />

Nach zwei Jahren Prüfung erhielten im Frühjahr des<br />

Jahres gleich fünf Kernkraftwerksblöcke als erste Anlagen<br />

in den USA überhaupt die Genehmigung für einen um<br />

20 Jahre längeren Betrieb auf dann 60 Jahre Gesamtbetriebszeit.<br />

Bis heute wurden weitere 94 Genehmigungen<br />

erteilt. Vier weitere Anträge auf Laufzeitverlängerung sind<br />

bis zum Jahr 2022 bei der NRC avisiert. Damit besitzen alle<br />

Kernkraftwerke in den USA, für die längere Betriebszeiten<br />

vom Betreiber geplant sind, die er<strong>for</strong>derliche Genehmigung<br />

bzw. der Verfahrensprozess ist initiiert.<br />

Damit nicht genug: Wie eingangs erwähnt, ist die<br />

Anzahl von weiteren Laufzeitverlängerungen auf die Erstgemnehmigungen<br />

gemäß U.S.-Regularien nicht begrenzt.<br />

Ein Ergebnis der frühen Evaluierung der langfristigen<br />

Sicherheit der U.S.-Kernkraftwerke durch die NRC war<br />

auch, dass jenseits der Betriebszeit von 60 Jahren wesentliche,<br />

die Langzeitsicherheit bestimmende Komponenten<br />

der Kernkraftwerke ohne Weiteres auch darüber hinaus<br />

gehende Laufzeiten gestatten. Im Juli 2017 veröffentlichte<br />

die NRC daher einen Leitfaden für die Evaluierung von<br />

„Folgeanträgen auf Laufzeitverlängerung“: der Leitfaden<br />

umfasst unter anderem Details zum 45 Tage dauernden<br />

Grundsatzreview für die Antragsunterlagen sowie die<br />

folgende Prüfung der sicherheitstechnischen Aspekte und<br />

der Umweltverträglichkeitsprüfung.<br />

Im Januar 2018 übermittelte der Betreiber Florida<br />

<strong>Power</strong> & Light des Kernkraftwerks Turkey Point – zwei<br />

Druckwasserreaktoren mit jeweils rund 885 MWe Bruttoleistung<br />

werden am rund 30 km südlich von Miami im<br />

U.S.-Bundesstaat Florida gelegenen Standort betrieben –<br />

den Antrag auf die zweite 20-Jahres-Laufzeit verlängerung.<br />

Am 5. Dezember 2019 teilte die NRC mit, dass sie den<br />

Antrag auf Verlängerung der Betriebsgenehmigung für<br />

beide Kernkraftwerksblöcke genehmigt habe. Dies ist<br />

erstmalig eine Genehmigung für 80 Jahre Laufzeit für ein<br />

Kernkraftwerk in den USA. Der Block Turkey Point 3 kann<br />

damit bis zum 19. Juli 2052 Strom produzieren, die Anlage<br />

Turkey Point 4 bis zum 10. April 2053. Zwei weitere<br />

Anträge für die Reaktoren Peach Bottom 2 & 3 sowie<br />

Surry 1 & 2 befinden sich im Genehmigungsprozess.<br />

Ent scheidungen zu diesen werden in 2020 erwartet.<br />

Eines haben sowohl die Entscheidung der NRC als auch<br />

der transparente Genehmigungsprozess – den Interessierten<br />

erwarten allein rund 5.000 Seiten öffentlich<br />

zugäng licher technischer In<strong>for</strong>mationen auf den Webseiten<br />

der NRC – gemeinsam: eindrucksvoll wird für die<br />

Kernenergie demonstriert, dass nicht das Alter, sondern<br />

die nach ge wiesene Sicherheit entscheidend ist.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

USA: 80 Years Actually


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Forward-looking Balance of the Supply and Demand Equilibrium<br />

<strong>for</strong> Electricity in France by RTE<br />

2019 Edition<br />

The French transmisson system operator RTE (Réseau de transport<br />

d'électricité) presented the annual Forward-looking balance<br />

of the supply and demand equilibrium <strong>for</strong> electricity in France<br />

(Bilan prévisionnel de l’équilibre offer-demande d’électricité en<br />

France) in November. The 2019 edition includes a modeling of<br />

the electrical systems of other European countries next to the<br />

analysis of the French situation. The latter one is characterized <strong>for</strong><br />

the upcoming years by the phase-out of the remaining coal fired<br />

power plants till 2022 (-3 GW) and the shut-down of the two<br />

units of the NPP Fessenheim in February and June 2020<br />

(-1,8 GW). This takes place in the context of an increased number<br />

of NPP 10-year refurbishments in France, the postponed start of<br />

operation of unit 3 of the NPP Flamanville only in 2023/24<br />

(+1,6 GW) and of major coal and nuclear phase-out policies of<br />

neighboring countries of France. Altogether these factors will<br />

lead to a period of high alertness concerning the security of<br />

electricity supply in France from the end of 2022 to 2025. In this<br />

period the national criterion (the duration in which the balance<br />

between supply and demand of electricity cannot be guaranteed<br />

by the electricity market has to be inferior to three hours in all<br />

analyzed scenarios) cannot be guaranteed. In this time a cold<br />

spell such as in 2012 will lead to the necessity of load shedding in<br />

most scenarios and the electrical system will be vulnerable to<br />

weather situations in which low wind prevails in many parts of<br />

Europe and will make the import of electricity to France difficult or<br />

impossible. Below you find an overview of major planned or<br />

announced reductions to disposable generation in countries<br />

neighboring France.<br />

5Did you know...?<br />

DID YOU EDITORIAL KNOW...? 5<br />

Main objectives <strong>for</strong> the phase-out of thermal power plants in Europe<br />

Gradual phase-out<br />

of coal power till 2025<br />

-4 GW<br />

Shut-down of the<br />

last reactor in 2025<br />

-6 GW<br />

Gradual phase-out<br />

of coal power till 2030<br />

-9 GW<br />

Shut-down of the<br />

last reactor in 2022<br />

-9.5 GW<br />

Gradual phase-out<br />

of coal power till 2038<br />

-15 GW till 2030<br />

Source: RTE, Bilan prévisionnel de l’équilibre offre- demande d’électricité en France, Édition 2019<br />

Gradual phase-out<br />

of coal power till 2025<br />

-6 GW<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.de<br />

Did you know...?


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

6<br />

Issue 1 | 2020<br />

January<br />

CONTENTS<br />

Contents<br />

Editorial<br />

USA: 80 Years Actually E/G . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Inside <strong>Nuclear</strong> with NucNet<br />

<strong>Nuclear</strong> Fusion / Revived € 20 Billion Iter Project<br />

‘Entering a Critical Phase’ . . . . . . . . . . . . . . . . . . . . . . . . . . .8<br />

Feature | Energy Policy, Economy and Law<br />

Energy Supply Without <strong>Nuclear</strong>:<br />

Winter 2022/23 is Coming . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Dual-Use-Verordnung im Trilog G . . . . . . . . . . . . . . . . . . . . . 11<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Environment and Safety<br />

Analysis of Ultimate Response Guidelines<br />

<strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant in Taiwan to Cope<br />

with Postulated Compound Accident . . . . . . . . . . . . . . . . . . . 13<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the<br />

Rossendorf Research Reactor RFR | Part 2 G . . . . . . . . . . . . . . 17<br />

Research and Innovation<br />

Thermal-Hydraulic Analysis <strong>for</strong> Total Loss<br />

of Feedwater Event in PWR using SPACE Code . . . . . . . . . . . . . 25<br />

CFD Simulation of Flow Characteristics and<br />

Thermal Per<strong>for</strong>mance in Circular Plate and Shell Oil Coolers . . . . 29<br />

Research on Neutron Diffusion and Thermal Hydraulics<br />

Coupling Calculation based on FLUENT and<br />

its Application Analysis on Fast Reactors . . . . . . . . . . . . . . . . . 35<br />

Kerntechnik 2020<br />

Programme Overview E/G . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics . . . . . . . . . . 48<br />

Obituary<br />

Prof. Dr. Dr. Adolf Birkhofer G . . . . . . . . . . . . . . . . . . . . . . . 53<br />

Cover:<br />

Requirements and challenges<br />

<strong>for</strong> a secure electricity supply.<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

<strong>Nuclear</strong> Today<br />

New Year Brings a Fresh Political Challenge<br />

<strong>for</strong> a Champion of Climate Change . . . . . . . . . . . . . . . . . . . . 58<br />

Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

7<br />

Feature<br />

Energy Policy, Economy and Law<br />

9 Energy Supply Without <strong>Nuclear</strong>:<br />

Winter 2022/23 is Coming<br />

CONTENTS<br />

Roman Martinek<br />

Spotlight on <strong>Nuclear</strong> Law<br />

11 Dual-Use Act in Trialog<br />

Dual-Use-Verordnung im Trilog<br />

Ulrike Feldmann<br />

Decommissioning and Waste Management<br />

17 Decommissioning & Dismantling of the<br />

Rossendorf Research Reactor RFR | Part 2<br />

Stilllegung und Rückbau<br />

des Rossendorfer Forschungsreaktors RFR | Teil 2<br />

Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz<br />

Research and Innovation<br />

25 Thermal-Hydraulic Analysis <strong>for</strong> Total Loss of Feedwater Event in PWR<br />

using SPACE Code<br />

MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee<br />

29 CFD Simulation of Flow Characteristics and Thermal Per<strong>for</strong>mance<br />

in Circular Plate and Shell Oil Coolers<br />

Shen Ya-jie, Gao Yong-heng and Zhan Yong-jie<br />

Statistics<br />

48 <strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics<br />

Editorial<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

8<br />

<strong>Nuclear</strong> Fusion / Revived € 20 Billion Iter<br />

Project ‘Entering a Critical Phase’<br />

INSIDE NUCLEAR WITH NUCNET<br />

Success will represent a breakthrough<br />

that could secure clean, safe energy <strong>for</strong> millions of years<br />

The <strong>International</strong> Thermonuclear Experimental Reactor (Iter) under construction at Cadarache in southern France is<br />

more than 65 % complete and entering a critical phase as it aims to meet a first plasma deadline of 2025, project head<br />

Bernard Bigot told NucNet.<br />

First plasma means that the reactor is able to successfully<br />

generate a molten mass, 840 m 3 to be exact, of electricallycharged<br />

gas, or plasma, inside its core.<br />

For the next three years the focus is getting all main<br />

components <strong>for</strong> the fusion reactor in place, Mr Bigot said,<br />

adding that “there is a lot of pressure”. Some components<br />

weigh up to 500 tonnes and making sure they are delivered<br />

on time and fit as they should is a huge challenge.<br />

Mr Bigot, who earlier this year was appointed to a<br />

second five-year term as director-general of the Iter Organisation,<br />

extending his tenure to March 2025, confirmed<br />

that the budget <strong>for</strong> the project, at 2016 prices, is € 20 bn.<br />

“It is my deep belief this project is needed and will<br />

work,” he said. “The world needs it. Fossil fuels will be<br />

depleted over the coming century and we need to find a<br />

replacement.”<br />

“As a scientist I have been looking <strong>for</strong> this technology<br />

<strong>for</strong> several decades. If we succeed it will be a real breakthrough<br />

<strong>for</strong> the world’s energy, not only in this century but<br />

<strong>for</strong> millions of years.”<br />

Fusion is the fundamental energy of the universe,<br />

perpetually powering the sun and stars. The desire to<br />

recreate and control this atomic energy on earth is the<br />

driving <strong>for</strong>ce behind Iter.<br />

Iter – meaning “the way” in Latin – will be the world’s<br />

largest fusion experiment. The steel and concrete superstructures<br />

nestled in the hills of southern France will house<br />

a 23,000-tonne machine, known as a tokamak, capable of<br />

creating what is essentially an earthbound star. The<br />

tokomak building, into which the tokomak itself will be<br />

placed, will be available from March 2020, Mr Bigot said.<br />

Scientists will heat a ring-shaped vacuum chamber to<br />

150 million (10 6 ) °C, 10 times hotter than the sun’s core.<br />

Inside this chamber two types of hydrogen atoms will collide<br />

with enough <strong>for</strong>ce to fuse in a superheated plasma at<br />

the highest temperatures in the universe.<br />

This “atomic soup” will be kept suspended away from the<br />

reactor walls using the <strong>for</strong>ce field of a magnet cage created<br />

by a coil of the world’s most powerful magnets. To withstand<br />

the heat these will be supercooled to the temperature<br />

of deep space, near absolute zero or minus 273 °C.<br />

Building a structure to contain mankind’s most<br />

advanced scientific experiment requires the combined<br />

ef<strong>for</strong>ts of more than 30 countries and many thousands of<br />

scientists from Iter’s core members: the European Union,<br />

China, India, Japan, South Korea, Russia and the US.<br />

Mr Bigot took to the helm of Iter four years ago, tasked<br />

with rescuing the project as it became beset by delays and<br />

spiralling costs.<br />

“We have seen a lot of change,” Mr Bigot said. “ Everyone<br />

is now complying with new best standards <strong>for</strong> project management.<br />

The atmosphere of the project has completely<br />

changed too. People believe that fusion is on track. Be<strong>for</strong>e<br />

it was almost a dream.”<br />

By 2025 they expect to start the first milestone<br />

experiments to prove that fusion technology can produce<br />

10 times more energy than it uses. The challenge ahead<br />

lies in keeping the contributions of 35 countries, and<br />

500 companies, carefully aligned to its schedule. This must<br />

be followed by painstaking assembly of the component<br />

parts on site in France.<br />

What is Fusion?<br />

Fusion is the same process involved in powering the sun<br />

and other stars in our universe. Energy is produced by<br />

fusing together light atoms, such as hydrogen, at the<br />

extremely high pressures and temperatures. These<br />

particular conditions are present in the sun’s core, delivering<br />

temperatures of up to 15 million °C.<br />

The extremely high temperatures can transfer a gas into<br />

a state of plasma, which is essentially an electricallycharged<br />

gas. Although plasma is rarely found on Earth, it is<br />

thought that more than 99 % of the universe exists as<br />

plasma.<br />

To replicate this process on Earth, gases need to be heated<br />

to extremely high temperatures of about 150 million °C<br />

at which point atoms become completely ionised.<br />

The easiest method <strong>for</strong> this type of fusion reaction is<br />

with two hydrogen isotopes: deuterium, extracted from<br />

water, and tritium, produced during the fusion reaction<br />

through contact with lithium.<br />

When deuterium and tritium nuclei fuse, they <strong>for</strong>m a<br />

helium nucleus, a neutron and a lot of energy.<br />

The Tokamak<br />

The Iter Tokamak will weigh 23,000 tonnes and be 60 m in<br />

height. In a Tokamak the plasma is held in the looping<br />

structure. Using coils, a magnetic field is created that<br />

causes the plasma particles to oribit in spirals, without<br />

making contact with the chamber walls.<br />

The neutron has no electrical charge and is unaffected<br />

by the magnetic fields, allowing them to move away from<br />

the bond of the plasma.<br />

The neutrons are then absorbed by the surrounding<br />

walls transferring their energy into heat and generating<br />

steam from pools of water.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency<br />

Editor responsible <strong>for</strong> this story: Kamen Kraev<br />

Secretary General, NucNet<br />

Avenue des Arts 56 2/C<br />

1000 Bruxelles<br />

www.nucnet.org<br />

Inside <strong>Nuclear</strong> with NucNet<br />

<strong>Nuclear</strong> Fusion / Revived € 20 Billion Iter Project ‘Entering a Critical Phase’


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Feature | Energy Policy, Economy and Law<br />

Energy Supply Without <strong>Nuclear</strong>:<br />

Winter 2022/23 is Coming<br />

Roman Martinek<br />

Only three and a few years are left in Germany be<strong>for</strong>e the scheduled shutdown of the country’s last nuclear power<br />

plants: by December 31, 2022, Isar, Neckarwestheim and Emsland NPPs (one reactor at each) will be disconnected from<br />

the grid.<br />

Of course, it cannot actually be argued that this event will<br />

mark the end of the atomic age in Germany – as research<br />

reactors and supporting industry enterprises (<strong>for</strong> example,<br />

uranium enrichment plants) continue to run smoothly and<br />

the issue of final disposal of nuclear waste still remains to<br />

be solved. And yet, giving up nuclear energy <strong>for</strong> electricity<br />

generation in Europe’s leading economy will be a milestone<br />

in itself.<br />

As this date draws closer, it is curious to observe the<br />

melting confidence that the decision taken in the spring of<br />

2011 to accelerate the nuclear phase-out was strategically<br />

reasonable. Without a doubt, considered per se, this step is<br />

quite feasible from a technical point of view – there could<br />

hardly arise any problem with shutting down several<br />

nuclear reactors (many reactors are routinely dis connected<br />

from the grid from time to time <strong>for</strong> scheduled maintenance).<br />

How calibrated this decision is with regard to the future<br />

energy supply in the country, is a different and increasingly<br />

resonating question asked by politicians who can no longer<br />

be branded as solely right-radical adepts of the Alternative<br />

<strong>for</strong> Germany.<br />

For example, this summer, the so-called “Union of<br />

Values” within the Christian Democratic Union (CDU)<br />

called <strong>for</strong> an extension of the service life of existing NPPs,<br />

while at the same time blaming the party’s leadership <strong>for</strong><br />

an insufficiently determined climate policy. Politicians<br />

argued their position with the threat that is seemingly<br />

becoming ever more real threat that Germany will not<br />

achieve its climate targets under the Paris Agreement, as<br />

well as with rising electricity prices. By postponing the<br />

nuclear phase-out, the German government could give up<br />

coal in a more visible time, representatives of the Union<br />

said.<br />

Further, in September, Peter Hauk, Minister of Agriculture<br />

of the Federal State of Baden-Württemberg, took<br />

the floor. He expressed a similar idea: in his opinion, a<br />

discussion is needed on how feasible it could be to quit coal<br />

ten years ahead of schedule. A measure that could ensure<br />

the implementation of this idea into reality, according to<br />

Hauk, could be extending the service life of the reactors at<br />

Neckarwestheim and Philippsburg <strong>for</strong> the same ten years.<br />

Meanwhile, the politician did not fail to point out the lack<br />

of political will, noting that while nuclear energy is<br />

generally off the agenda, some compromise was still<br />

reached at the political level regarding coal. “This is a<br />

mistake, because the climate goals of the federal and state<br />

government will not be achieved,” Hauk lamented.<br />

Alarmed signals are also emanating from the industry:<br />

back in early 2019, Alfred Gaffal, President of the<br />

Association of the Bavarian Economy (VBW) drew<br />

attention to the threatening deficit of the region’s own<br />

electricity capacities that would hit the Bavarian economy,<br />

and said that “if there are no other options left, the issue of<br />

service life extension of nuclear reactors in Bavaria cannot<br />

be taken off the table”.<br />

In this light, recent reports indicating that Bavaria’s<br />

own electricity generation will certainly not be sufficient to<br />

meet the region’s needs imply that Bavaria will be <strong>for</strong>ced to<br />

import electricity after 2022. The question is where this<br />

electricity will be supplied from – the pace of electricity<br />

grid expansion, which, as planned, should ensure the<br />

uninterrupted transmission of excess electricity from the<br />

north to the south of the country, is noticeably stalled. The<br />

threat seems quite real that Bavaria will be greeting the<br />

winter season of 2022/23 without an answer needed this<br />

badly.<br />

Meanwhile, in 2011, the state’s Prime Minister Horst<br />

Seehofer promised that even after the shutdown of<br />

Bavarian NPPs the region would still be capable of<br />

providing itself with electricity on its own. Now it seems<br />

that Bavaria is very, very far from this goal. In addition to<br />

the hampered development of power grid infrastructure,<br />

there are noticeable protests against windmills construction.<br />

Besides, gas power plants that regional<br />

politicians doubled down on a little more than eight years<br />

ago have proved to be overly expensive under the current<br />

market conditions. The “Energiewende” (i.e. German<br />

energy transition) seems to be close to a dead end – at least<br />

in Bavaria.<br />

FEATURE | ENERGY POLICY, ECONOMY AND LAW 9<br />

Feature<br />

Energy Supply Without <strong>Nuclear</strong>: Winter 2022/23 is Coming ı Roman Martinek


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

FEATURE | ENERGY POLICY, ECONOMY AND LAW 10<br />

Peter Hauk is certainly not the only high-profile<br />

politician who has questioned the advisability of nuclear<br />

phase-out until 2022. The European Commissioner <strong>for</strong><br />

Budget, CDU member Gunter Oettinger believes that after<br />

2022, Germany will have to import electricity from <strong>for</strong>eign<br />

NPPs <strong>for</strong> rather a long time: “Thus, an automobile in<br />

Karlsruhe will drive eco-friendly on nuclear electricity<br />

from France”. In this connection, a logical question arises:<br />

does it make sense at all to shut down NPPs <strong>for</strong> some<br />

( apparently ideologically-motivated) dislike of nuclear<br />

energy, if this step <strong>for</strong>ces imports of electricity from NPPs<br />

that are different only in that they are not in Germany?<br />

Finally, in late November, Prime Minister of North<br />

Rhine-Westphalia Armin Laschet said: “If we assume that<br />

CO 2 emissions and climate change present the most serious<br />

issues we should take care of, the order of phasing out<br />

nuclear and coal energy was chosen incorrectly“. According<br />

to Laschet, Germany should have first quit coal, instead<br />

of giving up nuclear.<br />

As is evident from the above positions, the question of<br />

which energy sources will be used in Germany <strong>for</strong> future<br />

national electricity supply is closely intertwined with the<br />

issue of compliance with the Paris Agreement goals and<br />

achievement of targets that the German government<br />

committed itself to. On the one hand, it is quite obvious<br />

that the current state and volumes of renewable energy<br />

generation will not allow to replace the outgoing nuclear<br />

power capacities with solar and wind energy immediately<br />

after 2022. In other words, it is highly probable that one<br />

should expect an increase in the use of coal – the source of<br />

energy that could be used until 2038, which is almost<br />

20 years from now.<br />

On the other hand, most environmental organizations<br />

and their activists, who invariably point this out, are still<br />

not ready to admit that nuclear power could be very helpful<br />

in combating climate change. In fact this would mean<br />

giving up one of the central postulates of the modern green<br />

ideology. It is thus unsurprising that the sensational March<br />

statement of Greta Thunberg, the “icon” of the Fridays <strong>for</strong><br />

Future movement, that nuclear power could become an<br />

element in the greater CO 2 -free energy balance of the<br />

future, is today presented almost as a slip of the tongue.<br />

In the meantime, the solution to climate problems can<br />

be found in modern technologies, including nuclear<br />

energy – which is indicated by many experts, including<br />

Tristan Horx from the Institute <strong>for</strong> the Future (Zukunftsinstitut),<br />

a non-profit analytical center.<br />

“Although I support the Fridays <strong>for</strong> Future activities and<br />

watch the current environmental agenda with interest,<br />

I do not really welcome the statements that technological<br />

development is harmful to the environment and that our<br />

planet is doomed if we do not return to living in wooden<br />

huts and riding exclusively a bicycle”, the expert argues.<br />

“I believe in the innovative potential of humanity and the<br />

ability to find a solution to existing problems”.<br />

As a transition technology that is able to offer a solution<br />

to energy sector issues, including the coal use issue,<br />

nuclear power is an excellent option, says Horx. “It<br />

contributes to the reduction of total CO 2 emissions, and<br />

this is what many experts confirm. However, it is impossible<br />

to want the world to remain green and at the same time<br />

frankly demonize a perfectly functioning energy source – it<br />

does not work like this. Coal energy, in my opinion, carries<br />

a lot more problems in comparison with nuclear. However,<br />

if you talk about it with the Greens, most of them will be<br />

telling you that nuclear power is the worst thing we have at<br />

all. But this is simply not true today”.<br />

Instead of the traditional “green” ecology concept,<br />

which calls <strong>for</strong> abstinence, reduction and in every possible<br />

way positions human as the planet’s parasite, Horx favors<br />

a bit different approach: “An approach which does not<br />

imply that we have to sacrifice technological development<br />

– along with innovative technologies, we will be using the<br />

technologies that we already have – including, <strong>for</strong> example,<br />

nuclear energy”.<br />

Authors<br />

Roman Martinek<br />

Expert <strong>for</strong> Communication<br />

Czech Republic<br />

Feature<br />

Energy Supply Without <strong>Nuclear</strong>: Winter 2022/23 is Coming ı Roman Martinek


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Dual-Use-Verordnung im Trilog<br />

Ulrike Feldmann<br />

Vor zwei Jahren wurde an dieser Stelle über die unendlich erscheinende Geschichte der Revision der Verordnung (EG)<br />

Nr. 428/2009 über die Kontrolle der Ausfuhr, der Verbringung, der Vermittlung und der Durchfuhr von Gütern mit<br />

doppeltem Verwendungszweck (im folgenden: Dual-Use-Verordnung) berichtet (<strong>atw</strong> 1 (2018) S. 19). Nunmehr ist das<br />

Revisionsverfahren in ein neues Stadium, das „Trilog“-Verfahren, eingetreten.<br />

Hintergrund<br />

Hintergrund für die erneute Revision der Verordnung ist<br />

ein verändertes technologisches und sicherheitspolitisches<br />

Umfeld (Moderne Überwachungs- und Hacking-Technologien,<br />

die zu Menschenrechtsverletzungen eingesetzt<br />

werden können, sowie gesteigerte Terrorgefahr), dem die<br />

EU-Kommission mit ihrem Vorschlag Rechnung tragen<br />

will. Gleichzeitig soll für die europäische Industrie ein<br />

handelspolitisches Umfeld geschaffen werden, in dem die<br />

EU-Industrie unter Wettbewerbsbedingungen antreten<br />

kann, die mit in Drittstaaten geltenden Wettbewerbsbedingungen<br />

vergleichbar sind („level playing field“).<br />

Lange Zeit dümpelten die Beratungen im Rat der EU dahin.<br />

Eine Einigung der Mitgliedstaaten auf eine gemeinsame<br />

Position zu dem Vorschlag der EU-Kommission schien<br />

nicht in Sicht.<br />

Am 05.06.2019 fand der Rat aber dann schließlich doch<br />

zu einer gemeinsamen Position und konnte sein Mandat für<br />

die Verhandlung mit der EU-Kommission und dem Europäischen<br />

Parlament (EP) annehmen. Der Text der Position<br />

des Rates ist mit dem Verhandlungsmandat auf der<br />

Homepage des Rates, https://www.consilium.europa.eu,<br />

veröffentlicht.<br />

Zum Vergleich: Die strittigsten Regelungen im<br />

Kommissionsentwurf und in der Position des EP<br />

Wie erinnerlich betreffen die strittigsten Regelungen im<br />

Vorschlag der EU-Kommission Cyber-Überwachungstechnologien<br />

und den Schutz von Menschenrechten. Die<br />

EU-Kommission möchte den Export von Technologien<br />

stärker kontrollieren, wenn das Risiko besteht, dass diese<br />

Technologien zur Überwachung von Menschen genutzt<br />

werden können (Stichwort: Arabischer Frühling). Die<br />

Cyber-Überwachungstechnologien sollen nach dem<br />

Vorschlag der EU-Kommission als eigener, neuer Typus<br />

eines Dual-Use-Gutes in die revidierte Fassung der Dual-<br />

Use-Verordnung aufgenommen werden. Eine „Catch-All“<br />

Klausel zum Schutz der Menschenrechte soll für alle nicht<br />

bereits gelisteten Güter eingeführt werden, die möglicherweise<br />

einen negativen Einfluss auf Versammlungs- und<br />

Vereinigungsfreiheit, Recht auf freie Meinungsäußerung<br />

sowie das Recht auf Privatsphäre haben können.<br />

Diese Vorschläge wurden und werden vom EP prinzipiell<br />

unterstützt. Allerdings lehnte das EP im Plenum<br />

in seinen zahlreichen Änderungsvorschlägen eine Erweiterung<br />

der Exportkontrolle auf Terrorabwehr ab und<br />

machte Vorschläge zur Präzisierung der Vorschriften<br />

zum Menschenrechtsschutz. Der EP-Ausschuss für internationalen<br />

Handel (INTA) unter ihrem Berichterstatter<br />

Prof. Dr. Klaus Buchner wollte dagegen sogar die Exportkontrollen<br />

noch stärker als im Kommissionsvorschlag<br />

ausweiten und die Menschenrechte zum zentralen<br />

Anliegen der Exportkontrolle machen. Die Argumente,<br />

die gegen eine solche Ausweitung der Exportkontrolle<br />

bestehen, sind im SoNL-Beitrag in Heft 1 der <strong>atw</strong> 2018<br />

nachzulesen (u. a. Über<strong>for</strong>derung der Unternehmen, den<br />

Stand von Menschenrechtsstandards in den verschiedenen<br />

Ländern nachzuprüfen und zu validieren).<br />

Die Position des Rates<br />

Diesen Bestrebungen hat nun im Sommer der Rat mit<br />

seinem Verhandlungsmandat eine Absage erteilt. Eine<br />

„Catch-all“-Klausel geht den EU-Mitgliedstaaten zu weit.<br />

Der Rat lehnt es ab, den Menschenrechtsschutz und die<br />

Terrorabwehr auf die Unternehmen zu verlagern, sondern<br />

sieht weiterhin darin eine originäre Staatsaufgabe.<br />

Nach dem einstimmig beschlossenen Ratsmandat sollen<br />

jedoch die Mitgliedstaaten ähnlich wie im Kom missionsvorschlag<br />

die Möglichkeit erhalten, auf nationaler Ebene<br />

eine Selbstkontrolle der Unternehmen einzuführen. Haben<br />

die Unternehmen berechtigte Gründe für die Annahme<br />

(Verdachtsmomente), dass das Exportgut militärisch genutzt<br />

werden könnte, sollen sie verpflichtet werden können,<br />

eine Genehmigung zu beantragen.<br />

Darüber hinaus sollen Unternehmen auf EU-Ebene<br />

verpflichtet werden, gegenüber der Behörde eine Endverbleibserklärung<br />

abzugeben, wobei allerdings den<br />

Mitgliedstaaten zugestanden wird, Aus nahmen von dieser<br />

Pflicht zu machen. (Der Kommissionsentwurf lehnt diese<br />

und andere nationalen Öffnungs klauseln im Sinne einer<br />

europäischen Harmonisierung ab).<br />

Zu der vielfach diskutierten Einführung interner Kontroll<br />

programme („Internal Compliance Programmes“/<br />

ICPs), die Kommission und EP befürwortet hatten, hat sich<br />

der Rat in seinem Mandat so positioniert, dass er eine entsprechende<br />

Regelung auf EU-Ebene ablehnt, es jedoch den<br />

Mitgliedstaaten überlässt, derartige ICPs vorzuschreiben.<br />

Ferner befürwortet der Rat die Einführung neuer EU-<br />

Allgemeingenehmigungen, wobei es auch im Rat keine<br />

Mehrheit gab, eine EU-Allgemeingenehmigung für nicht<br />

sensitive Nukleargüter einzuführen, was die Nuklearbranche<br />

nachdrücklich angeregt hatte.<br />

Das Trilog-Verfahren<br />

Mit dem Vorliegen der gemeinsamen Ratsposition konnte<br />

inzwischen das Trilog-Verfahren eröffnet werden, in dem Rat,<br />

EP und EU-Kommission versuchen müssen, sich auf einen<br />

endgültigen Revisionsentwurf zu einigen. Als ziemlich sicher<br />

gilt bereits, dass mit für die Nuklearbranche positiven Änderungen<br />

des Annex IV zur Dual-Use-Verordnung nicht mehr zu<br />

rechnen ist. Als positiv bei den Trilog- Verhandlungen darf<br />

gewertet werden, dass sie auf der Grundlage der Rats position<br />

geführt werden und nicht etwa auf der Grundlage der EP-<br />

Position. Die amtierende finnische Präsidentschaft hatte den<br />

Willen bekundet, bis Ende des Jahres das Revisions verfahren<br />

abgeschlossen zu haben, was angesichts der teilwei se doch<br />

sehr weit auseinandergehenden Positionen von Rat, Kommission<br />

und EP und dem zeitlich eher aufwendigen Trilog-Verfahren<br />

von vorneherein recht ambitioniert erschien. Nach der<br />

jüngsten Trilog-Sitzung am 28.11.2019 zeichnet sich nunmehr<br />

deutlich ab, dass das Thema mindestens noch unter der<br />

kroatischen Ratspräsidentschaft wird <strong>for</strong>tgeführt werden<br />

müssen. Zu der Frage neuer EU-Allgemeingenehmigungen<br />

gibt es beispielsweise bislang noch keinen Konsens. An der<br />

„unendlichen“ Geschichte der Revision der EG Dual-Use-<br />

Verordnung 428/2009 wird also noch weiter geschrieben.<br />

11<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Spotlight on <strong>Nuclear</strong> Law<br />

Dual-Use Act in Trialog ı Ulrike Feldmann


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Calendar<br />

12<br />

2020<br />

CALENDAR<br />

10.02. – 14.02.2020<br />

37 th Short Courses on Multiphase Flow. Zurich,<br />

Switzerland, Swiss Federal Institute of Technology<br />

ETH, www.lke.mavt.ethz.ch<br />

10.02. – 14.02.2020<br />

ICONS2020: <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Security. Vienna, Austria, The <strong>International</strong> Atomic<br />

Energy Agency (IAEA), www.iaea.org<br />

12.02. – 13.02.2020<br />

7 th <strong>Nuclear</strong> Decommissioning & Waste<br />

Management Summit 2020. London, UK, ACI,<br />

www.wplgroup.com<br />

18.02. – 20.02.2020<br />

GEN IV <strong>International</strong> Forum. Boulogne-Billancourt,<br />

France, www.snetp.eu<br />

02.03. – 03.03.2020<br />

Forum Kerntechnik. Berlin, Germany, VdTÜV & GRS,<br />

www.tuev-nord.de<br />

02.03. – 06.03.2020<br />

<strong>International</strong> Workshop on Developing a<br />

National Framework <strong>for</strong> Managing the Response<br />

to <strong>Nuclear</strong> Security Events. Madrid, Spain, IAEA,<br />

www.iaea.org<br />

08.03. – 12.03.2020<br />

WM Symposia – WM2019. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

08.03. – 13.03.2020<br />

IYNC2020 – The <strong>International</strong> Youth <strong>Nuclear</strong><br />

Congress. Sydney, Australia, IYNC, www.iync2020.org<br />

15.03. – 19.03.2020<br />

ICAPP2020 – <strong>International</strong> Congress on Advances<br />

in <strong>Nuclear</strong> <strong>Power</strong> Plants. Abu-Dhabi, UAE, Khalifa<br />

University, www.icapp2020.org<br />

18.03. – 20.03.2020<br />

12. Expertentreffen Strahlenschutz. Bayreuth,<br />

Germany, TÜV SÜD, www.tuev-sued.de<br />

22.03. – 26.03.2020<br />

RRFM – European Research Reactor Conference.<br />

Helsinki, Finland, European <strong>Nuclear</strong> Society,<br />

www.euronuclear.org<br />

25.03. – 27.03.2020<br />

H2020 McSAFE Training Course. Eggenstein-<br />

Leopoldshafen, Germany, Karlsruhe Institute of<br />

Technology (KIT), www.mcsafe-h2020.eu<br />

29.03. – 02.04.2020<br />

PHYSOR2020 — <strong>International</strong> Conference on<br />

Physics of Reactors 2020. Cambridge, United<br />

Kingdom, <strong>Nuclear</strong> Energy Group,<br />

www.physor2020.com<br />

31.03. – 02.04.2020<br />

4 th CORDEL Regional Workshop on<br />

Harmonization to support the Operation and<br />

New Build fo NPPs including SMRs. Lyon, France,<br />

NUGENIA, www.nugenia.org<br />

30.03. – 01.04.2020<br />

INDEX <strong>International</strong> <strong>Nuclear</strong> Digital Experience.<br />

Paris, France, SFEN Société Française d’Energie<br />

Nucléaire, www.sfen-index2020.org<br />

31.03. – 03.04.2020<br />

ATH'2020 – <strong>International</strong> Topical Meeting on<br />

Advances in Thermal Hydraulics. Paris, France,<br />

Société Francaise d’Energie Nucléaire (SFEN),<br />

www.sfen-ath2020.org<br />

19.04. – 24.04.2020<br />

<strong>International</strong> Conference on Individual<br />

Monitoring. Budapest, Hungary, EUROSAFE,<br />

www.eurosafe-<strong>for</strong>um.org<br />

20.04. – 22.04.2020<br />

World <strong>Nuclear</strong> Fuel Cycle 2020. Stockholm,<br />

Sweden, WNA World <strong>Nuclear</strong> Association,<br />

www.world-nuclear.org<br />

05.05. – 06.05.2020<br />

KERNTECHNIK 2020.<br />

Berlin, Germany, KernD and KTG,<br />

www.kerntechnik.com<br />

10.05. – 15.05.2020<br />

ICG-EAC Annual Meeting 2020. Helsinki, Finland,<br />

ICG-EAC, www.icg-eac.org<br />

11.05. – 15.05.2020<br />

<strong>International</strong> Conference on Operational Safety<br />

of <strong>Nuclear</strong> <strong>Power</strong> Plants. Beijing, China, IAEA,<br />

www.iaea.org<br />

12.05. – 13.05.2020<br />

INSC — <strong>International</strong> <strong>Nuclear</strong> Supply Chain<br />

Symposium. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de<br />

17.05. – 22.05.2020<br />

BEPU2020– Best Estimate Plus Uncertainty <strong>International</strong><br />

Conference, Giardini Naxos. Sicily, Italy,<br />

NINE, www.nineeng.com<br />

18.05. – 22.05.2020<br />

SNA+MC2020 – Joint <strong>International</strong> Conference on<br />

Supercomputing in <strong>Nuclear</strong> Applications + Monte<br />

Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic<br />

Energy Society of Japan, www.snamc2020.jpn.org<br />

20.05. – 22.05.2020<br />

<strong>Nuclear</strong> Energy Assembly. Washington, D.C., USA,<br />

NEI, www.nei.org<br />

31.05. – 03.06.2020<br />

13 th <strong>International</strong> Conference of the Croatian<br />

<strong>Nuclear</strong> Society. Zadar, Croatia, Croatian <strong>Nuclear</strong><br />

Society, www.nuclear-option.org<br />

06.06. – 12.06.2020<br />

ATALANTE 2020. Montpellier, France, CEA,<br />

www.atalante2020.org<br />

07.06. – 12.06.2020<br />

Plutonium Futures. Montpellier, France, CEA,<br />

www.pufutures2020.org<br />

08.06. – 12.06.2020<br />

20 th WCNDT – World Conference on<br />

Non-Destructive Testing. Seoul, Korea, EPRI,<br />

www.wcndt2020.com<br />

15.06. – 19.06.2020<br />

<strong>International</strong> Conference on <strong>Nuclear</strong> Knowledge<br />

Management and Human Resources Development:<br />

Challenges and Opportunities. Moscow,<br />

Russian Federation, IAEA, www.iaea.org<br />

15.06. – 20.07.2020<br />

WNU Summer Institute 2020. Japan, World <strong>Nuclear</strong><br />

University, www.world-nuclear-university.org<br />

02.08. – 06.08.2020<br />

ICONE 28 – 28 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering. Disneyland Hotel, Anaheim,<br />

CA, ASME, www.event.asme.org<br />

01.09. – 04.09.2020<br />

IGORR – Standard Cooperation Event in the <strong>International</strong><br />

Group on Research Reactors Conference.<br />

Kazan, Russian Federation, IAEA, www.iaea.org<br />

09.09. – 10.09.2020<br />

VGB Congress 2020 – 100 Years VGB. Essen,<br />

Germany, VGB <strong>Power</strong>Tech e.V., www.vgb.org<br />

09.09. – 11.09.2020<br />

World <strong>Nuclear</strong> Association Symposium 2020.<br />

London, United Kingdom, WNA World <strong>Nuclear</strong><br />

Association, www.world-nuclear.org<br />

16.09. – 18.09.2020<br />

3 rd <strong>International</strong> Conference on Concrete<br />

Sustainability. Prague, Czech Republic, fib,<br />

www.fibiccs.org<br />

16.09. – 18.09.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, USA, EPRI, www.snetp.eu<br />

28.09. – 01.10.2020<br />

NPC 2020 <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Plant Chemistry. Antibes, France, SFEN Société<br />

Française d’Energie Nucléaire,<br />

www.sfen-npc2020.org<br />

28.09. – 02.10.2020<br />

Jahrestagung 2020 – Fachverband Strahlenschutz<br />

und Entsorgung. Aachen, Germany, Fachverband<br />

für Strahlenschutz, www.fs-ev.org<br />

12.10. – 17.10.2020<br />

FEC 2020 – 28 th IAEA Fusion Energy Conference.<br />

Nice, France, IAEA, www.iaea.org<br />

26.10. – 30.10.2020<br />

NuMat 2020 – 6 th <strong>Nuclear</strong> Materials Conference.<br />

Gent, Belgium, IAEA, www.iaea.org<br />

09.11. – 13.11.2020<br />

<strong>International</strong> Conference on Radiation Safety:<br />

Improving Radiation Protection in Practice.<br />

Vienna, Austria, IAEA, www.iaea.org<br />

24.11. – 26.11.2020<br />

ICOND 2020 – 9 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Decommissioning. Aachen, Germany,<br />

AiNT, www.icond.de<br />

07.12. – 10.12.2020<br />

SAMMI 2020 – Specialist Workshop on Advanced<br />

Measurement Method and Instrumentation<br />

<strong>for</strong> enhancing Severe Accident Management in<br />

an NPP addressing Emergency, Stabilization and<br />

Long-term Recovery Phases. Fukushima, Japan,<br />

NEA, www.sammi-2020.org<br />

17.12. – 18.12.2020<br />

ICNESPP 2020 – 14. <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering Systems and <strong>Power</strong> Plants.<br />

Kuala Lumpur, Malaysia, WASET, www.waset.org<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Analysis of Ultimate Response Guidelines<br />

<strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant<br />

in Taiwan to Cope with Postulated<br />

Compound Accident<br />

Jieqing Zheng<br />

Taiwan <strong>Power</strong> Company (TPC) together with its engineering consultation, research company and institute have<br />

been working on the development of guidelines <strong>for</strong> the compound accident which was caused by the nature disaster of<br />

a combination of seismic and tsunami events occurred in Fukushima, Japan. As a result, Ultimate Response Guidelines<br />

(URGs) <strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant (NPP) in northern Taiwan have been developed. This paper provides highlight<br />

of the features <strong>for</strong> URGs developed by TPC and successfully demonstrated that at least 127 gpm cooling water is needed<br />

using MAAP5 if the peak cladding temperature (PCT) is maintained below 1088.6 K (1500 °F). On the other hand, when<br />

the injecting timing is delayed, the fuel rods in the core will overheat and generate substantial amount of hydrogen, and<br />

the plant has a high risk that rising levels of hydrogen inside the containment could cause a blast.<br />

1 Introduction<br />

After the Fukushima nuclear accident<br />

in Japan, concerns have been raised<br />

to examine the previously existed<br />

emergency operating procedures<br />

(EOPs) and severe accident management<br />

guidelines (SAMGs). It’s found<br />

that they may not be adequate to deal<br />

with the compound accident [1-3].<br />

The MAAP5 code has been used as<br />

a tool to evaluate the execution of<br />

URGs in compound accident [4]. The<br />

development of URGs <strong>for</strong> compound<br />

accident beyond that of design basis is<br />

necessary to ensure the health and<br />

safety of people at and surround<br />

the plant site [5-8]. The Chinshan<br />

NPP, which possesses a boiling water<br />

reactor (BWR) the same as Fukushima<br />

NPP and includes many safety features<br />

in its design, was chosen in this<br />

study. The objective of this paper is<br />

to simulate the station blackout<br />

accident caused by compound accident<br />

( CASBO) and investigate how<br />

the execution of URGs could mitigate<br />

the accident process.<br />

2 Chinshan ultimate<br />

response guidelines<br />

Chinshan URGs was first developed by<br />

TPC in 2011 to supplement EOPs and<br />

SAMGs <strong>for</strong> plant under compound<br />

accident conditions [8]. It has high<br />

possibility that all the emergency core<br />

cooling system (ECCS) will be out<br />

of work when compound accident<br />

happens, so plant-specific bases shall<br />

be used <strong>for</strong> initiation of URGs and<br />

<strong>for</strong> taking subsequent actions. TPC<br />

especially puts emphases on possessing<br />

manoeuvrability and shortenning<br />

the response time to cope with all<br />

possible situations.<br />

Timing <strong>for</strong> initiation of URGs was<br />

estalished according to one of the<br />

following three conditions. The first<br />

condition is loss of makeup water to<br />

the reactor vessel to maintain the<br />

covering of the fuel rods by water. The<br />

second condition is that on-site and<br />

off-site AC powers have already lost.<br />

The third condition is scram of reactor<br />

due to severe seismic event con current<br />

with the announcement of oncoming<br />

tsunami by the Central Weather<br />

Bureau. As shown in Figure 1, the<br />

URGs will be site-specificly used <strong>for</strong><br />

Chinshan NPP.<br />

When entrying the Chinshan URGs,<br />

there are 3 stages to be gradually<br />

initiated, as shown in Table 1. Under<br />

normal circumstances, the plant status<br />

will recover in time throughout these<br />

strategies. The strategy should be<br />

per<strong>for</strong>med synchronously in the same<br />

phase and must be done as soon as<br />

possible. If phase1 has been successfully<br />

executed, then the operators<br />

per<strong>for</strong>m phase2 and phase3. As a<br />

result, long-term cooling will be<br />

established to prevent reactor core<br />

from being damaged. Once the worst<br />

situation that has the same complexity<br />

as Fukushima event happens, the<br />

target of phase1 strategy can not be<br />

reached. When RCIC turbine pump is<br />

tripped off and the electrical power<br />

cannot be recovered, any water available<br />

should be injected into the<br />

Chinshan RPV as soon as possible.<br />

To strengthen memorization of the<br />

actions <strong>for</strong> the plant operators to be<br />

taken to implement URGs, DIVING,<br />

such as the term used in submarine<br />

under attack, was adopted as an<br />

abbreviation. DIV means depressurization,<br />

water injection, vent, respectively,<br />

and ING means acting simultaneously.<br />

The decision-making mechanism<br />

of the plant to decide the timing to<br />

inject raw water or sea water into the<br />

core or spent fuel pool is the most<br />

important part of the URGs. Once the<br />

relatively non-purified water is used<br />

<strong>for</strong> coolant injection to prevent overheating<br />

of fuel rods to ensure the<br />

safety and health of people, it’s unlikely<br />

to use the CSNPP again <strong>for</strong><br />

| Fig. 1.<br />

URGs flowchart.<br />

13<br />

ENVIRONMENT AND SAFETY<br />

Environment and Safety<br />

Analysis of Ultimate Response Guidelines <strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant in Taiwan to Cope with Postulated Compound Accident ı Jieqing Zheng


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

ENVIRONMENT AND SAFETY 14<br />

Phase Target Timing Strategy<br />

Phase1<br />

Phase2<br />

Phase3<br />

mitagate and<br />

control the event<br />

recover<br />

the power<br />

establish<br />

long-term cooling<br />

| Tab. 1.<br />

CSNPP action strategies.<br />

within<br />

1 hour<br />

within<br />

8 hours<br />

within<br />

36 hours<br />

subsequent power generation without<br />

tedious clean-up work. The levels of<br />

authorization should be done as the<br />

following. The plant manager in<strong>for</strong>ms<br />

the chairperson of the Emergency<br />

Plan Execution Committee and<br />

executes the plan after obtaining<br />

consent from the chairperson. If<br />

communication to the chairperson is<br />

not available, then the plant manager<br />

is authorized to implement the<br />

URGs. If communication to the plant<br />

manager is not available, then the<br />

supervisor on duty is authorized to<br />

implement the URGs.<br />

Except <strong>for</strong> scheduled (twice per<br />

year) drills of the operators on duty,<br />

the minimum water injection rate will<br />

be calculated by MAAP5 code .<br />

3 Assumptions used<br />

<strong>for</strong> the analysis<br />

To per<strong>for</strong>m the analysis of the effectiveness<br />

of URGs, there are some<br />

initial assumptions adopted in this<br />

study:<br />

(1) At time zero, a strong seismic<br />

event takes place and the reactor is<br />

scrammed.<br />

(2) The Chinshan NPP loses all the<br />

on-site and off-site AC power.<br />

(3) RCIC comes on when the reactor<br />

water level reaches L2.<br />

(4) RCIC becomes unavailable at 20<br />

minutes from the start due to the<br />

fact that the tsunami hits the plant<br />

then.<br />

(5) URGs are initiated due to the fact<br />

that the plant loses all injection<br />

water to the core.<br />

(6) Raw water or firewater becomes<br />

available to inject water into the<br />

core in one hour after the initiation<br />

of the compound accident.<br />

1. inject raw-water or fire-water or water from the nearby<br />

creek/sea into the reactor vessel<br />

2. depressurize the reactor vessel (SBO)<br />

3. vent the containment (SBO)<br />

4. connect pipes to fire engine to inject water<br />

(raw water; fire water; creek water)<br />

5. activate RCIC manually<br />

6. power supply to the two reactors<br />

by the fifth diesel generator<br />

7. power supply to the two reactors<br />

8. by turbine-driven diesel generators<br />

1. movable air compressor/nitrogen bottles<br />

to provide gas to SRV/ADS<br />

2. connect to 480 V manoeuvrable diesel-generator<br />

3. connect to 4.16 kV power cart<br />

4. extend the duration of DC power supply<br />

5. add water to the spent fuel pool<br />

6. draining operation of the submerged pump<br />

7. inject water into CST by manoeuvrable water source<br />

1. remove trash at the emergency water inlet<br />

2. replace emergency service water (ESW) motor<br />

3. provide alternate long-term cooling<br />

Whenever the on-site and off-site<br />

power is unavailable, emergency<br />

depressurization has to be gradually<br />

per<strong>for</strong>med by operating safety/relief<br />

valves. In the same time, raw water<br />

injection line also has been prepared.<br />

These measures are all completed<br />

within one hour after the initiation of<br />

the event. If the plant status cannot<br />

recover in time, any water available<br />

will be injected into the reactor vessel.<br />

For the sensitivity studies on the water<br />

injection rates, 125 gpm, 150 gpm,<br />

and 250 gpm are used.<br />

4 Results and discussion<br />

4.1 Simulation without URGs<br />

being implemented<br />

The accident is initiated by a strong<br />

seismic event followed by loss of all AC<br />

power, including the onsite and offsite<br />

power. As a result, the high-pressure<br />

injection system (HPFL) and the low<br />

pressure flooder (LPFL) fail, and RCIC<br />

is the only system which is available to<br />

mitigate the consequences of compound<br />

accidents. The assumption has<br />

been adopted with some extremes.<br />

Taking Fukushima as an example,<br />

the emergency generator had been<br />

working <strong>for</strong> an hour when the off-site<br />

power failed and RHR had per<strong>for</strong>med<br />

to cool the suppression pool. Comparing<br />

to the Fukushima accident, the<br />

result simulated in this study with<br />

MAAP5 is conservative.<br />

The details of simulation sequences<br />

are illustrated in Table 2. Initially,<br />

AC power is lost, followed by MSIV<br />

closure, CRD and feedwater being not<br />

available. After the reactor scrammed<br />

at 4.2 s, the power of the RPV rapidly<br />

drops to decay power which is 2.9<br />

percent of the rated power, as shown<br />

in Figure 2. When the core water level<br />

reaches L2 that is a signal to initiate<br />

the RCIC, the turbine and pump of<br />

RCIC activate to suct cooling water<br />

from the condensate storage tank<br />

(CST). The water level has been<br />

maintained between L2 to L8 . All of<br />

ECCS system fails when RCIC cannot<br />

inject water into the RPV 20 minutes<br />

later, and the level of water decreases<br />

rapidly because of boiling off, as<br />

shown in Figure 3. With MSIV closing,<br />

the pressure in the RPV quickly rises<br />

up to SRVs setpoint so that the initial<br />

trend of PPS (that is, the pressure<br />

in the primary system) is cycling<br />

(Figure 4). Because the loss of all<br />

ECCS, cladding of the fuel rods begins<br />

to heat up. Its temperature reaches<br />

1088.6 K at 5500 s, which is an<br />

im portant temperature to decide<br />

whether the reactor is safe or not. If<br />

Number Time(s) Events Remark<br />

1 0<br />

Loss of all AC power<br />

HPCS locked off<br />

LPCI loop locked off<br />

2 4.2 Reactor scramed L3<br />

3 50 RCIC on L2<br />

4 1,200 RCIC turbine pump tripped <strong>Power</strong> unavailable<br />

5 4,500 Core uncovered<br />

6 5,406 Hydrogen generated<br />

7 5,500 Tcl max reached a critical point 1088.6 K<br />

8 6,606 Core melted down<br />

| Tab. 2.<br />

Time sequences <strong>for</strong> the simulation case without using URGs.<br />

Water level at 8.89 m<br />

above the bottom of<br />

the vessel<br />

9 12,611 Core relocated Core support plate fail<br />

10 21,416 RPV failed<br />

11 132,621 COPS activated<br />

12 172,800 Simulation ended<br />

Environment and Safety<br />

Analysis of Ultimate Response Guidelines <strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant in Taiwan to Cope with Postulated Compound Accident ı Jieqing Zheng


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

| Fig. 2.<br />

Core power response.<br />

| Fig. 3.<br />

Core water level response.<br />

| Fig. 4.<br />

RPV pressure response.<br />

ENVIRONMENT AND SAFETY 15<br />

| Fig. 5.<br />

Debris mass response.<br />

| Fig. 6.<br />

Wetwell pressure response.<br />

| Fig. 7.<br />

Core water level response.<br />

the cladding temperature is above<br />

1088.6 K, the zirconium-water reaction<br />

will become very intense and<br />

emit a lot of heat and hydrogen to<br />

increase the potential of explosion <strong>for</strong><br />

the secondary containment. The core<br />

support plate fails at 12,611 s, and,<br />

subsequently, molten corium relocates<br />

to the lower plenum region of<br />

the reactor pressure vessel (RPV).<br />

As shown in Figure 5, the mass of<br />

the molten fuel bundles and channel<br />

boxes totally has a weight of<br />

155,475 kg; in fact, these two<br />

materials actually have 107,000 kg.<br />

The main reason is that the melt<br />

contains the other reactor components<br />

falling into the lower plenum,<br />

such as the fuel rods support plates<br />

and the core shroud. After the bottom<br />

of the vessel fails at 21,416 s, debris<br />

drops to the lower cavity, which means<br />

that the boundary of RPV has been<br />

breached. The falling debris contacts<br />

with the bottom of the container and<br />

causes further chemical reaction,<br />

releasing large amount of energy,<br />

steam, and non-condensable gas,<br />

which gradually increases the temperature<br />

and pressure of the drywell.<br />

Because that the RHR (residual heat<br />

removal) systems are not available,<br />

COPS (containment overpressure<br />

protection system) finally activates at<br />

132,621 s due to the fact that the wet<br />

well is over-pressurized, as shown in<br />

Figure 6. Radioactive material CsI and<br />

CsOH will begin to increase to be<br />

released to the environment after<br />

COPS activates, and then decreases.<br />

The radioactive material is generally<br />

on the magnitude of 10-5 because of<br />

the scrubbing effect of the suppression<br />

pool. By the end of the simulation,<br />

a total of 50 kg of hydrogen is<br />

produced.<br />

4.2 Simulation with URGs<br />

addition<br />

Three different water injection rates<br />

are assumed in this simulation, but<br />

the behaviors of the progression of<br />

events are similar: (1) After the<br />

reactor scrams at 4.2 s, the power of<br />

the RPV rapidly drops to decay power<br />

which is 2.9 percent of the rated<br />

power. (2) The water level is maintained<br />

between L2 and L8 (that is,<br />

12.065 m to 14.622 m above the top of<br />

the fuel rods) within 20 minutes. (3)<br />

The water injection rates of high<br />

pressure core injection and low<br />

pressure core injection remain<br />

unavail able from time zero.<br />

According to the exercises of TPC,<br />

the fastest time between in<strong>for</strong>ming<br />

operators <strong>for</strong> taking the ultimate actions<br />

and implementing pipe hookups<br />

<strong>for</strong> injecting water into the reactor is 1<br />

hour. After all pre parations are done,<br />

the emergency depressurization is<br />

per<strong>for</strong>med to make raw water/firewater<br />

operable by opening 5 SRVs. Response<br />

of the reactor core water level<br />

is illustrated in Figure 7. Three different<br />

injection rates used in this study<br />

can all result in the core water level to<br />

be at safe position, which fluctuates<br />

between L2 and L8. It is obvious that<br />

the higher the firewater injection rate,<br />

the faster the core water level will get<br />

to the safe position. Comparing the<br />

time it takes to reach that safe state,<br />

the time <strong>for</strong> the case with water injection<br />

rate of 125 gpm is calculated to be<br />

26,414 s later than that <strong>for</strong> the case<br />

with 250 gpm. There<strong>for</strong>e greater<br />

amount of raw water or firewater will<br />

be required to restore the core water<br />

evel.<br />

As shown in Figure 8, the peak<br />

cladding temperature <strong>for</strong> the case<br />

with water injection rate of 125 gpm<br />

Environment and Safety<br />

Analysis of Ultimate Response Guidelines <strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant in Taiwan to Cope with Postulated Compound Accident ı Jieqing Zheng


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

ENVIRONMENT AND SAFETY 16<br />

| Fig. 8.<br />

Peak cladding temperature response.<br />

has already reached 1213.7 K which is<br />

considered to have the zirconiumwater<br />

reaction becoming drastic. As a<br />

result, it is a case which is deemed to<br />

be not acceptable <strong>for</strong> implementing<br />

the URGs. From numerous sensitivity<br />

studies on the injection flow rates, the<br />

critical point to maintain the peak<br />

temperature below 1088 K is around<br />

127 gpm.<br />

Timing <strong>for</strong> injecting water is also<br />

an important factor in the compound<br />

accident. Considering the complexity<br />

of the accident, sometimes injection of<br />

the water may not be made available<br />

right at 1 hour. It’s very important to<br />

investigate the latest timing <strong>for</strong><br />

injection. Taking the injection rate of<br />

200 gpm as an example, the peak<br />

cladding temperature will be below<br />

1088 K. As shown in Figure 9, if water<br />

is made available at 75 minutes after<br />

the initiation of the event, the peak<br />

cladding temperature will reach<br />

1080 K which is nearly the same as the<br />

critical temperature of 1088 K. The<br />

total amount of time that includes<br />

personnel getting ready and pipes <strong>for</strong><br />

water injection gotten hooked up<br />

should be less than 75 minutes <strong>for</strong> the<br />

case with the water injection rate of<br />

200 gpm. The cumulative hydrogen<br />

generation in core <strong>for</strong> this case is only<br />

0.85 kg which is considered to be<br />

minimal. While the amount of total<br />

hydrogen generated will go up to<br />

118 kg if the injection is further<br />

delayed (from 75 minutes after initiation<br />

of the event to 90 minutes). Thus,<br />

by further delaying the timing <strong>for</strong><br />

injection of water <strong>for</strong> 15 minutes,<br />

the amount of hydrogen generated<br />

increases by more than 100 times. The<br />

response of the amount of hydrogen<br />

generated is shown in Figure 10.<br />

5 Conclusions<br />

This paper illustrates the idea of<br />

Ultimate Response Guidelines <strong>for</strong> NPP<br />

| Fig. 9.<br />

Peak cladding temperature response.<br />

together with the simulations of the<br />

compound accident cases with and<br />

without URGs using the MAAP5<br />

evaluation methodology. Based on the<br />

results obtained from these simulations,<br />

the following conclusions can<br />

be summarized <strong>for</strong> the Chinshan NPP.<br />

1) For the compound accident, if<br />

there is no water available after<br />

RCIC pump trips off, the accident<br />

will result in melting of the core<br />

and breaching of the reactor vessel.<br />

2) The timing to enter the URGs must<br />

con<strong>for</strong>m to one initial condition.<br />

The sooner the operator injects<br />

water into the core, the less danger<br />

the plant becomes. According to<br />

the calculated results obtained<br />

from the MAAP5 code, the flow<br />

rate of 127 gpm is the minimum<br />

necessary to maintain the PCT<br />

below 1088.6 K.<br />

3) Implementation of URGs can effectively<br />

mitigate the consequences of<br />

a postulated compound accident.<br />

In this study, with the water<br />

injection rate of 127 gpm being<br />

injected to the reactor at 1 hr from<br />

the initiation of the event, the<br />

Chinshan NPP has demonstrated to<br />

enter a safe state where its reactor<br />

core overheating is prevented.<br />

Acknowledgements<br />

The authors’ heartfelt gratitude to the<br />

supports of Taiwan <strong>Power</strong> Company,<br />

Institute of <strong>Nuclear</strong> Energy Research,<br />

Chung Yuan Christian University, and<br />

Science&Technology Department of<br />

Fujian Province, P.R.C (JK2016023)<br />

<strong>for</strong> this project.<br />

References<br />

[1] Kim YH, Kim MK, Kim WJ. Effect of the Fukushima nuclear<br />

disaster on global public acceptance of nuclear energy:<br />

Energy Policy 2013; 61:822–828.<br />

[2] Funabashi H. Why the Fukushima <strong>Nuclear</strong> Disaster is a<br />

Man-made Calamity: <strong>International</strong> <strong>Journal</strong> of Japanese<br />

Sociology 2012; 21:65-75.<br />

| Fig. 10.<br />

Hydrogen generation response.<br />

[3] Ozdemir OE, George TL, Marshall MD. Fukushima Daiichi Unit<br />

1 power plant containment analysis using GOTHIC: Annals of<br />

<strong>Nuclear</strong> Energy 2015; 85:621–632.<br />

[4] MAAP5-Modular Accident Analysis Program User’s Manual,<br />

Fauke & Associates Inc., 2008.<br />

[5] Huh CW, Suh ND, Park GC. Optimum RCS depressurization<br />

strategy <strong>for</strong> effective severe accident management of station<br />

blackout accident: Nucl Eng Des 2009; 239:2521–2529.<br />

[6] Liu KH, Hwang SL. Human per<strong>for</strong>mance evaluation: the<br />

procedures of ultimate response guideline <strong>for</strong> nuclear power<br />

plants: Nucl Eng Des 2012; 253: 259–268.<br />

[7] Vo TH, Song JH, Kim TW, Kim DH. An analysis on the severe<br />

accident progression with operator recovery actions: Nucl Eng<br />

Des 2014; 280: 429–439.<br />

[8] Wang TC, Wang JR, Lin HT, et al. The ultimate response<br />

guideline simulation and analysis using TRACE, MAAP5, and<br />

FRAPTRAN <strong>for</strong> the Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant: Annals of<br />

<strong>Nuclear</strong> Energy 2017; 103:402–411.<br />

Authors<br />

Jieqing Zheng<br />

Cleaning Combustion and Energy<br />

Utilization Research Center<br />

of Fujian Province<br />

Jimei University<br />

9 Shigu Road, Xiamen, China<br />

Environment and Safety<br />

Analysis of Ultimate Response Guidelines <strong>for</strong> Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant in Taiwan to Cope with Postulated Compound Accident ı Jieqing Zheng


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Stilllegung und Rückbau des<br />

Rossendorfer Forschungsreaktors RFR<br />

Teil 2: Ausgewählte Aspekte der Durchführung von Stilllegung und Rückbau<br />

Reinhard Knappik, Klaus Geyer, Sven Jansen und Cornelia Graetz<br />

Im Teil 1 der Veröffentlichung (<strong>atw</strong> 11/12 2019) erfolgten nach einer Einführung die Objekt beschreibung, die Darstellung<br />

der Ausgangssituation (radiologisch, konventionell), die Erläuterung der Genehmigungsverfahren, das realisierte<br />

Planungskonzept sowie die Aufzählung von Meilensteinen der Stilllegung und des Rückbaus. Im zweiten Teil wird von<br />

ausgewählten Aspekten der Stilllegung- und Rückbaudurchführung berichtet.<br />

7 Technische/<br />

technologische Aspekte<br />

Basierend auf den erteilten Genehmigungen<br />

erfolgten die Stilllegung<br />

und der Rückbau in den in Tabelle 1<br />

dargestellten Zeiträumen, aus denen<br />

in diesem Kapitel einige wichtige<br />

Aspekte aus technisch/technologischer<br />

Sicht dargestellt werden.<br />

7.1 Betriebsführung der<br />

abgeschalteten Anlage<br />

gemäß Aufsichtlicher<br />

Anordnungen<br />

Die Betriebsführung der abgeschalteten<br />

Anlage erfolgte bis zum Erhalt<br />

der Ersten Stilllegungsgenehmigung<br />

am 30. Januar 1998 u. a. auf der<br />

Grundlage der Aufsichtlichen Anordnung<br />

VKTA 40-42 des SMU vom<br />

30. Dezember 1991 [13]. Im Zeitraum<br />

bis Oktober 1998 wurden technische,<br />

sicherheitstechnische und strahlenschutztechnische<br />

Maßnahmen zur<br />

Anpassung an den bundesdeutschen<br />

Standard durchgeführt, Genehmigungsanträge<br />

erarbeitet, das Betriebsund<br />

Prüfhandbuch sowie der Sicherheitsbericht<br />

RFR erstellt, gutachterlich<br />

und behördlich geprüft, Stilllegungsarbeiten<br />

und insbesondere die<br />

Umlagerung der Brennelemente technisch<br />

und genehmigungsmäßig vorbereitet.<br />

Von besonderer Bedeutung<br />

war dabei die Umstellung der Entsorgungskonzeption<br />

von CASTOR-THTR<br />

auf CASTOR® MTR 2-Behälter. Mit<br />

einer eigens entwickelten Mobilen<br />

Umladestation sollte die Möglichkeit<br />

geschaffen werden, dass auch andere<br />

deutsche Forschungsreaktoren Brennelemente<br />

auf diese Art entsorgen können.<br />

Die Entwicklung, der Bau und<br />

die Kalterprobung der Mobilen Umladestation<br />

erfolgten in sehr guter<br />

Zusammenarbeit mit verschiedenen<br />

Partnern von 1993 bis 1999. Der<br />

atomrechtliche Genehmigungsantrag<br />

für die Überführung der Brennelemente<br />

in die Transport- und Lagerbehälter<br />

CASTOR® MTR 2 wurde im<br />

Zeitraum Tätigkeiten Genehmigung<br />

06/1991 - 02/1998 sichere Betriebsführung der abgeschalteten Anlage gemäß<br />

Aufsichtlicher Anordnungen<br />

02/1998 - 07/2019 Innehaben, Betriebsführung gemäß<br />

Erster RFR-Stilllegungsgenehmigung<br />

11/1998 - 04/1999 Abbau 2. Kühlkreislauf 2.<br />

04/2001 - 04/2005 Rückbau von Systemen und Komponenten des RFR 3.<br />

04/2005 - 12/2007 Vorbereitende Maßnahmen zum Rückbau Reaktorbaukörper 4.<br />

07/2007 - 04/2014 Abbau des Reaktorbaukörpers und Gebäude-Entkernung 4.<br />

08/2013 - 11/2018 Abbruch der Objekte und Herstellen „Grüne Wiese“ 4.<br />

| Tab. 1.<br />

Zeiträume von Stilllegung und Rückbau sowie deren Genehmigungsbezug.<br />

Januar 1994 gestellt und im Dezember<br />

1998 die Genehmigung [5] erteilt.<br />

Zu den Vorarbeiten gehörten die<br />

Umlagerung von bestrahlten Brennelementen<br />

(ca. 400 Stück) vom<br />

Brennelemente-Lagerbecken AB 1<br />

in das Brennelemente-Lagerbecken<br />

AB 2, welches im Jahr 1997 durch Einsatz<br />

diversitärer Messtechnik, erhöhtem<br />

Leckageschutz und Verbesserung<br />

der Wasseraufbereitung ertüchtigt<br />

wurde. Ab diesem Zeitpunkt befanden<br />

sich 889 Brennelemente im Lagenbecken<br />

AB 2 und 62 im Reaktorkern.<br />

Im September 1997 wurde das Wasser<br />

des Lagerbeckens AB 1 abgegeben<br />

und danach das Becken für die Nutzung<br />

als Reststofflagerbecken saniert.<br />

Im Jahr 1994 erfolgte die Über gabe<br />

eines mobilen Betriebssystems sowie<br />

von unbestrahlten Brenn elementen<br />

zur Nachnutzung an einem ungarischen<br />

Forschungsreaktor und 1995 die<br />

Ausfuhr eines weiteren Betriebssystems<br />

an ein Forschungszentrum in der<br />

Tschechischen Republik.<br />

7.2 Betriebsführung gemäß<br />

1. AtG-Genehmigung,<br />

Teilabbau 2. Kühlkreislauf,<br />

CASTOR-Beladung<br />

Nach Erhalt der Ersten Stilllegungs-<br />

Genehmigung [3] erfolgten ab<br />

Februar 1998 die Betriebsführung<br />

sowie der Ablauf der Stilllegungsarbeiten<br />

auf der Grundlage dieser<br />

| Abb. 7.<br />

Entladung der Brennelemente aus dem Reaktorkern.<br />

Genehmigung. Im April 1998 wurden<br />

die im Reaktorkern befindlichen<br />

Brennelemente in das Lagerbecken<br />

AB 2 umgelagert (Abbildung 7) und<br />

mit dem Ausbau der kernbrennstoffhaltigen<br />

Neutronendetektoren (Spaltkammer)<br />

die Kernmaterialfreiheit des<br />

Reaktorbehälters hergestellt.<br />

Nach Erhalt der Genehmigung [5]<br />

konnte mit der Überführung der 951<br />

bestrahlten Brennelemente mit einer<br />

Gesamtaktivität von 8,91E+15 Bq<br />

und einer U-235-Masse von rund<br />

54,6 kg in CASTOR® MTR 2-Behälter<br />

begonnen werden. Dies erfolgte in<br />

zwei Etappen, da Teile der Mobilen<br />

Umladestation von April bis Juli 1999<br />

für den Einsatz am Reaktor der Medizinischen<br />

Hochschule Hannover genutzt<br />

wurden. Die Abbildung 8 zeigt<br />

Aufsichtliche<br />

Anordnungen<br />

1. ; [5 , 6, 7]<br />

17<br />

DECOMMISSIONING AND WASTE MANAGEMENT<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

DECOMMISSIONING AND WASTE MANAGEMENT 18<br />

| Abb. 8.<br />

Beladung eines CASTOR-Behälters.<br />

das Aufsetzen des mit bestrahlten<br />

Brennelementen gefüllten Umlagebehälters<br />

Cäsar auf den CASTOR-<br />

Behälter. Mit dem Transport der restlichen<br />

CASTORen in die Transportbereitstellungshalle<br />

des VKTA bis<br />

November 2000 wurde das Vorhaben<br />

gemäß einer § 9 AtG-Genehmigung<br />

[6] abgeschlossen. Die kollektive<br />

Strahlenexposition bei den CASTOR-<br />

Beladearbeiten betrug 1,8 mSv<br />

und die maximale Individualdosis<br />

0,24 mSv und war damit wesentlich<br />

niedriger als im Geneh migungsantrag<br />

ausgewiesen. Die CASTORen verblieben<br />

bis zum Abtransport in das<br />

Zwischenlager Ahaus im Mai/Juni<br />

2005 in der Transport bereit stellungshalle<br />

am Forschungsstandort Rossendorf.<br />

Die weiteren kernbrennstoffhaltigen<br />

Abfälle wurden nach Erteilung<br />

einer Genehmigung nach § 9<br />

AtG [7] im Februar 2001 verpackt und<br />

der radioaktive Abfall ins Zwischenlager<br />

Rossendorf überführt, so dass<br />

nach Herstellung der Kernmaterialfreiheit<br />

der RFR- Anlage am 26. Februar<br />

2001 die Aufhebung der Sicherungsbereiche<br />

der Anlage erfolgen konnte.<br />

Nach Erhalt der Zweiten Still legungs-<br />

Genehmigung am 30. Oktober<br />

1998 [4] wurden alle Systeme und<br />

| Abb. 9.<br />

Ziehen des Reaktorbehälters.<br />

Komponenten des 2. Kühlkreislaufes<br />

(KKL) außer Betrieb genommen und<br />

von den Medienversorgungen getrennt.<br />

Vor Abgabe von rund 130 m 3<br />

deionisiertem Wasser aus dem 2. KKL<br />

an die entsprechende Fachabteilung<br />

des VKTA wurde auf der Basis von<br />

Probennahmen und Analysen die Freigabe<br />

zur Ableitung erteilt. Im Verlauf<br />

des Jahres 1999 erfolgten der Rückbau<br />

der Komponenten sowie im<br />

August 1999 die Entlassung des<br />

Systems und der Gebäude (Pumpenund<br />

Armaturenhaus, Trockenkühltürme)<br />

des 2. KKL aus dem Geltungsbereich<br />

des AtG. Nach Erhalt der baurechtlichen<br />

Genehmigungen wurden<br />

die Ent kernung und der Abbruch dieser<br />

Gebäude sowie die Rekultivierung<br />

des Geländes vorgenommen.<br />

7.3 Rückbau von Systemen<br />

und Komponenten des RFR<br />

Von April 2001 an erfolgte in einem<br />

Zeitraum von vier Jahren neben der<br />

Entsorgung der Betriebsmedien, die<br />

Außerbetriebnahme und der Rückbau<br />

aller nicht mehr benötigten Systeme<br />

und Komponenten des RFR in 14 Teilschritten.<br />

Ein Teilschritt, der Abbau<br />

des Deaerators, konnte aus technologischen<br />

Gründen erst im Rahmen des<br />

Vierten Stilllegungsschrittes erfolgen.<br />

Die Leistungen wurden bis auf einen<br />

Teilschritt durch das ehemalige Reaktorpersonal<br />

bewältigt. Wichtige Teilschritte<br />

waren die Demontage der<br />

Einbauten und der Ausbau des Reaktorbehälters<br />

(Abbildung 9), das Freiräumen,<br />

die Dekontamination und<br />

Demontage der in Rossendorf als<br />

Heiße Kammern (HK, Abbildung 10)<br />

bezeichneten Heißen Zellen, der<br />

Abbau der Thermischen Säule (Abbildung<br />

11), die Außerbetriebnahme<br />

und der teilweise Rückbau der Lagerbecken<br />

AB 1 und AB 2 sowie der Rückbau<br />

des 1. Kühlkreislaufes. So wurden<br />

beispielsweise beim Abbau des 1. KKL<br />

im Pumpenraum 95 % der kontaminierten<br />

Edelstahlteile (rund 40 Mg)<br />

nach Zerlegung zur Behandlung in<br />

die VKTA-Einrichtung transportiert,<br />

während rund 30 Mg anderer Stahl,<br />

das Abschirmmaterial aus Beton und<br />

Blei und der restliche Edelstahl<br />

uneingeschränkt freigegeben werden<br />

konnten.<br />

Der Reaktorbehälter aus Aluminium<br />

wurde nach dem Ziehen gesäubert,<br />

beschichtet, verpackt und zur<br />

Konditionierung zu einem Dienstleister<br />

überführt. Letztendlich erhielt<br />

der VKTA 14 Abfallgebinde mit einer<br />

Nettomasse von rund 2,9 Mg zur Einstellung<br />

in das Zwischenlager Rossendorf<br />

zurück.<br />

Die vier Heißen Kammern waren<br />

mit Stahlblech ausgekleidet, mit einer<br />

Schwerbeton-Abschirmung ummantelt<br />

und untereinander mit einem<br />

Transportkanal verbunden. Sie verfügten<br />

über einen Fußbodenablauf.<br />

Die Bedienung jeder Heißen Kammer<br />

erfolgte über einen Manipulatorraum<br />

mit zwei Manipulatoren. Genutzt<br />

wurden die Heißen Kammern, um die<br />

mittels Rohrpostanlage vom Reaktor<br />

kommenden bestrahlten Isotopenkassetten<br />

für die Weiterverarbeitung in<br />

der Isotopenproduktion vorzu bereiten.<br />

Die Demontage, Dekontamination und<br />

Verpackung des Inventars der Heißen<br />

| Abb. 10.<br />

Blick in eine Heiße Kammer während der Demontage der Inneneinrichtung.<br />

| Abb. 11.<br />

Thermische Säule vor der Demontage.<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Kammern, der Transportwagenanlage<br />

sowie zugehöriger Antriebssysteme in<br />

den Manipulator räumen mussten aufgrund<br />

des Kon taminationszustandes<br />

z. T. mittels fremdbelüfteter Vollschutzanzüge<br />

erfolgen.<br />

Bei der Demontage der Thermischen<br />

Säule, die aus sechs aluminiumummantelten<br />

Graphit-Segmenten<br />

und einem Fahrwagen bestand, traten<br />

Dosisleistungen bis 3 mSv/h auf, zu<br />

deren Minimierung am Arbeitsort das<br />

aktivierte Vorderteil des Fahrwagens<br />

mit Bleiblechen ab geschirmt wurde.<br />

Nach einer Abklinglagerung konnten<br />

die Segmente 4 bis 6 nach Freimessung<br />

2019 freigegeben werden. Der erreichte<br />

Zustand des Reaktorbaukörpers<br />

wird in Abbildung 12 gezeigt.<br />

7.4 Vorbereitende<br />

Maßnahmen zum Rückbau<br />

der Baustrukturen<br />

Die vorbereitenden Maßnahmen, vor<br />

allem zum Rückbau der Baustrukturen<br />

sowie der bisher noch benötigten<br />

Systeme, begannen wegen fehlender<br />

finanzieller Mittel zeitlich um<br />

18 Monate versetzt Ende September<br />

2006, mit vorbereitenden Arbeiten,<br />

Umbauten an den Zugängen zum<br />

Kontrollbereich und Freischaltarbeiten,<br />

wie beispielsweise<br />

p die Anpassung der Personen- und<br />

Materialwege,<br />

p die Bereitstellung von Ausrüstungen<br />

und Transportmitteln,<br />

p der Abbau der äußeren Anbauten<br />

am Reaktorbaukörper,<br />

p die Anpassung der Medienver- und<br />

-entsorgung,<br />

p die Errichtung einer Einhausung<br />

um den Reaktorbaukörper,<br />

p umfangreiche lüftungstechnische<br />

Änderungen,<br />

p der schrittweise Aufbau einer<br />

Baustromversorgung und<br />

p statische Maßnahmen zur Erhöhung<br />

von Tragfähigkeiten.<br />

Außerdem wurden die äußeren Reaktoranbauten,<br />

wie z. B. Kabeltrassen,<br />

demontiert, um Baufreiheit für die zu<br />

errichtende Einhausung zu schaffen.<br />

Die Einhausung wurde als Stahlbau<br />

errichtet, mit schwer entflammbaren,<br />

leicht dekontaminierbaren Folienwänden<br />

verkleidet, zur Be- und Entlüftung<br />

Filteranlagen im Umluftbetrieb<br />

eingesetzt sowie mit einem<br />

5 t-Brückenkran ausgestattet.<br />

7.5 Abbau des Reaktorbaukörpers<br />

und<br />

Gebäude-Entkernung<br />

Diese Etappe begann, wiederum in<br />

Teilschritten gegliedert, im September<br />

2007 im Kellergeschoss mit<br />

Abbrucharbeiten im Bereich der<br />

Abluftkanäle. Hier wurde der beim<br />

Abbruch des Reaktorbaukörpers zum<br />

Einsatz kommende funkferngesteuerte<br />

Abbruchbagger Top Tec 1850E<br />

getestet. In einem Durchführungszeitraum<br />

von ca. sieben Jahren<br />

wurden die in der angegebenen Folge<br />

aufgeführten Arbeiten erledigt:<br />

p Abbau der Auskleidungen und<br />

Einbauten im Lagerbecken und in<br />

den Heißen Kammern<br />

(08/2007 bis 02/2011)<br />

p Abbau des RFR-Baukörpers<br />

(04/2008 bis 08/2009)<br />

p Abbau der in Beton verlegten<br />

Abluftkanäle und Rohrleitungen<br />

(01/2008 bis 12/2010)<br />

p Abbruch der Heißen Kammern<br />

p Abbau der Einhausung in der<br />

Reaktorhalle<br />

p Entkernung und Dekontamination<br />

des Kontrollbereiches<br />

(09/2011 bis 09/2012)<br />

p Entkernung des Labortraktes und<br />

der Warte (03/2014 bis 04/2014)<br />

p Demontage der lüftungstechnischen<br />

Anlagen im Ventilationsund<br />

Filtergebäude (02/2013 bis<br />

08/2013) einschließlich des<br />

Ausbaus der im Erdreich verlegten<br />

Abluftkanäle von der Reaktorhalle<br />

(06/2008 bis 08/2009)<br />

p Entkernung des Ventilationsund<br />

Filtergebäudes<br />

(02/2013 bis 08/2013)<br />

p Abbau und Entsorgung<br />

des Fortluftschornsteins<br />

(06/2013 bis 02/2014)<br />

Der Abbruch des RFR-Baukörpers<br />

wurde mit dem erwähnten Bagger,<br />

der auf eine Platt<strong>for</strong>m aufgesetzt<br />

wurde, durchgeführt. Die Abbildung<br />

13 zeigt eine schematische Darstellung<br />

des Abbruchs. Dabei erfolgte<br />

die Befestigung der Platt<strong>for</strong>m auf dem<br />

obersten innenliegenden Gusseisenring<br />

des Reaktorkörpers. Entsprechend<br />

des Abbruch<strong>for</strong>tschrittes und<br />

der Reichweite des Baggers wurden<br />

dann die Platt<strong>for</strong>m mit dem Bagger<br />

abgenommen, einige Gusseisenringe<br />

entfernt und nach erneutem Aufsetzen<br />

auf den nächsten Gusseisenring<br />

die Abbrucharbeiten weitergeführt.<br />

Reaktormittig war anstatt der<br />

Gusseisenringe zur Fixierung der<br />

Strahlrohre eine ca. 2,50 m hohe<br />

zylindrische Stahlzarge mit oberem<br />

und unterem Flansch eingebaut.<br />

Das Abbruchmaterial wurde innerhalb<br />

der Reaktor-Einhausung mittels<br />

Brecher zerkleinert und anschließend<br />

in 500-l-Boxen verpackt zum Freimesszentrum<br />

transportiert. Der<br />

Abbruch der im Kellergeschoss befindlichen<br />

vier Heißen Kammern war<br />

| Abb. 12.<br />

Reaktorbaukörper nach Abbau der Komponenten.<br />

| Abb. 13.<br />

Schematische Darstellung des Abbaus des RFR-Baukörpers.<br />

zunächst nicht geplant. Nach dem<br />

Ausbau der Einbauten und Auskleidungen<br />

der Heißen Kammern musste<br />

aber festgestellt werden, dass eine<br />

Freigabe des Betonkörpers der Heißen<br />

Kammern mit den eingebauten Fenstern<br />

und Plugs an der stehenden<br />

Struktur nicht erfolgen konnte. Somit<br />

wurden die Heißen Kammern nach<br />

Änderung der Materialwege im<br />

Gebäude ebenfalls abgebrochen.<br />

Dabei gestalteten sich die Arbeiten an<br />

der Transportwagen-Anlage mit den<br />

dazugehörigen Antriebssystemen in<br />

den Manipulatoren-Räumen aufgrund<br />

des Kontaminationszustandes<br />

ebenfalls als schwierig und musste<br />

teilweise in fremdbelüfteten Vollschutzanzügen<br />

durchgeführt werden.<br />

Des Weiteren erschwerte das unerwartete<br />

Auffinden einer komplizierten<br />

Stahlrahmenkonstruktion der<br />

Heißen Kammern die Arbeiten. Der<br />

Abbruch des Reaktorbaukörpers einschließlich<br />

der Heißen Kammern und<br />

Nebenanlagen endete im Juni 2011.<br />

Ein interessanter Meilenstein war<br />

der Abbau des Fortluftschornsteines<br />

(Abbildung 14), der im Juli 2013<br />

mittels zweier Mobilkräne (90 Mg und<br />

250 Mg) vom Dach des Ventilationsgebäudes<br />

gehoben und im Hof des<br />

RFR zur Dekontamination und Zerlegung<br />

abgelegt wurde. Nach Verschluss<br />

aller Öffnungen und Anbringen einer<br />

partiellen Einhausung erfolgten<br />

Dekontamination, Freimessung nebst<br />

uneingeschränkter Freigabe und<br />

zeitnah die Reststoffentsorgung nach<br />

entsprechender Zerlegung vor Ort.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 19<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

DECOMMISSIONING AND WASTE MANAGEMENT 20<br />

| Abb. 14.<br />

Abbau des Fortluftschornsteines<br />

vom Ventilations- und Filtergebäude.<br />

Um die zwischen dem Reaktorgebäude<br />

sowie dem Ventilations- und<br />

Filtergebäude teilweise unter dem als<br />

Pavillon bezeichnetem Nebengebäude<br />

verlaufenden Abluftkanäle und Rohrleitungen<br />

ausbauen zu können, wurde<br />

der Pavillon im Zeitraum von September<br />

bis Oktober 2013 abgebrochen.<br />

Mit den weiteren Demontage-, Entkernungs-<br />

und Grobdekontaminationsarbeiten<br />

wurden die Voraussetzungen<br />

für die schrittweise Freimessung<br />

des Labortraktes mit Reaktorwarte,<br />

Reaktorhalle und Ventilations-<br />

und Filtergebäude geschaffen.<br />

Zudem erfolgten Vorbereitungsarbeiten<br />

wie beispielsweise Umbauten<br />

am Hallenkran zum Freimessen der<br />

Hallendecke.<br />

7.6 Abbruch der Objekte und<br />

Herstellen „Grüne Wiese“<br />

Mit Erteilung der 2. Änderungsgenehmigung<br />

zum Vierten Stilllegungsschritt<br />

wurde der Überwachungsbereich<br />

erweitert. Die erteilten SMUL-<br />

Zustimmungen zum Teilabbruch des<br />

Ventilations- und Filtergebäudes<br />

( Oktober 2014) sowie zum Abriss von<br />

Gebäudestrukturen des Labortraktes<br />

inklusive Warte und Reaktorhalle<br />

( Juli 2015) bildeten eine der Voraussetzung<br />

für die letzte Rückbau-Etappe.<br />

Dabei waren aufgrund vorausgehender<br />

konventioneller Untersuchungen<br />

insbesondere teerhaltige<br />

Beschichtungen und künstliche Mineralfasern<br />

als Schadstoffe zu beachten,<br />

entsprechend zu separieren und zu<br />

entsorgen. Außerdem ist zu erwähnen,<br />

dass bedingt durch lokale Kontaminationen<br />

mit dem Alphastrahler<br />

Am-241 die Abluftanlagen im Ventilations-<br />

und Filtergebäude unter<br />

erhöhten Strahlenschutzmaßnahmen,<br />

vor allem zum Inkorporationsschutz<br />

durchgeführt werden mussten. Zu<br />

diesem Arbeitsabschnitt gehörten<br />

weiterhin:<br />

p der Ausbau von Rohrleitungen,<br />

Kabeln, Kanälen und Schächten<br />

im Hofbereich<br />

(Abschluss Dezember 2016)<br />

p das Verfüllen der zuvor freigegebenen<br />

Baugruben und Gräben<br />

nach jeweiliger Zustimmung<br />

durch das SMUL<br />

p die Abdeckung der Hofflächen<br />

p die Profilierung des Geländes bis<br />

zur Herstellung der „Grünen<br />

Wiese“ (November 2018)<br />

Die Abbildung 15 zeigt den Abbruch<br />

des Ventilations- und Filtergebäudes,<br />

der im Zeitraum von Dezember 2014<br />

bis Ende April 2015 durchgeführt<br />

wurde und die entstandene Baugrube<br />

nach deren Teilverfüllung, damit die<br />

im hinteren Geländebereich bis zum<br />

Zaun des RFR-Geländes befindlichen<br />

Rohrleitungen in einem weiteren Teilschritt<br />

ausgebaut werden konnten.<br />

Der oberirdische Abbruch des freigegebenen<br />

Labortraktes inklusive<br />

Reaktorhalle erfolgte von August bis<br />

November 2015 unter Einsatz eines<br />

50 t Baggers mit sogenannter Longfront<br />

(Abbildung 16). Anschließend<br />

wurden die unterirdischen Baustrukturen<br />

mittels Abbruchbagger bis<br />

August 2016 abgebrochen (Abbildung<br />

17), zerkleinert und bis auf die<br />

Massen aus den „Freigabeinseln“ [15]<br />

(siehe Abschnitt 8) entsorgt. An den<br />

zwei tiefsten Seiten wurde die Baugrube<br />

vor Abbruch der Kellerstrukturen<br />

zur Minimierung von Erdstoffbewegungen<br />

und zur Sicherung von<br />

Fahrwegen mit einer Spundwand gesichert,<br />

die im Zuge der Verfüllung<br />

wieder gezogen wurde. Der sukzessive<br />

Ausbau von Rohrleitungen und<br />

Schächten, beispielhaft gezeigt in<br />

Abbildung 18 vor dem Abbruch des<br />

Labortraktes, war eine logistisch und<br />

entsorgungstechnisch anspruchsvolle<br />

Aufgabe, da erhebliche Erdstoffmassen<br />

bewegt bzw. zwischengelagert<br />

werden mussten, ohne die<br />

weiteren Rückbau- bzw. Messaufgaben<br />

zu behindern. Nach dem<br />

Ausbau erfolgten die Vorbereitungen<br />

| Abb. 15.<br />

Abbruch des Ventilations- und Filtergebäudes (links) und teilverfüllte Baugrube (rechts).<br />

| Abb. 16.<br />

Abbruch des Labortraktes und der Reaktorhalle.<br />

| Abb. 18.<br />

Abbau von Abluftleitungen<br />

an der Reaktorhalle.<br />

| Abb. 17.<br />

Abriss der Kellerstrukturen.<br />

| Abb. 19.<br />

Teilansicht der Baugrube RFR mit Rastermarkierung<br />

und zusätzlich ausgehobenen<br />

Rasterflächen.<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

zur Freimessung der Bodenflächen,<br />

die Messungen u. a. mittels In-situ-<br />

Gamma spektrometrie sowie die Entnahme<br />

von Erdreich-Proben, die hinsichtlich<br />

Radionuklide und konventioneller<br />

Schadstoffe untersucht und<br />

bewertet wurden. Bei der Bewertung<br />

der Baugrube RFR stellte sich heraus,<br />

dass drei Rasterflächen (Abbildung<br />

19) noch eine PAK-Kontamination<br />

aufwiesen, so dass ein weiterer Erdaushub<br />

und erneute Analysen er<strong>for</strong>derlich<br />

wurden, um letztendlich die<br />

Schadstofffreiheit des Baufeldes RFR<br />

festzustellen.<br />

Bis Ende 2016 waren alle Objekte<br />

im RFR-Gelände ausgebaut und bis<br />

auf eine Restmenge alle Stoffe freigemessen,<br />

freigegeben und entsorgt.<br />

Die Verfüllung der Baugruben mit<br />

Kontrolle der bodenmechanischen<br />

Kennwerte und des eingebauten Erdreiches<br />

sowie die Profilierung des<br />

Geländes erfolgten bis Ende 2018. Im<br />

Juni 2018 wurde der Antrag auf Entlassung<br />

des RFR aus dem Geltungsbereich<br />

des AtG beim SMUL gestellt<br />

und mit weiteren Unterlagen bis Juli<br />

2019 ergänzt.<br />

7.7 Arbeits- und<br />

Brandschutzaspekte<br />

Wie bei allen Rückbauprojekten besaß<br />

der Arbeits- und Brandschutz eine<br />

hohe Priorität. Alle Arbeiten wurden<br />

stets unter Beachtung der gesetzlichen<br />

Bestimmungen sowie entsprechend<br />

den Vorschriften der Unfallversicherungsträger<br />

durchgeführt.<br />

In Vorbereitung eines jeden Rückbauvorhabens<br />

wurde ein Rückbauerlaubnisverfahren<br />

durchgeführt. Dabei<br />

betrachtete man mittels einer Checkliste<br />

„Voraussetzungsprüfung für<br />

Rückbauphase“ u. a. vorliegende<br />

sicherheitstechnische Anlagen des<br />

RFR wie Brandbekämpfungseinrichtungen.<br />

Vor Beginn eines jeden Loses<br />

eines Vorhabens wurden im Rahmen<br />

einer Arbeitsplatz-Gefährdungsbeurteilung<br />

die möglichen Gefährdungen,<br />

wie gesundheitsgefährdende<br />

Stäube etc., ermittelt sowie die technischen<br />

und organisatorischen Maßnahmen<br />

zur Abwendung der Gefährdungen<br />

und zur Gewährleistung der<br />

Sicherheit festgelegt. Bei den Gefährdungsbeurteilungen<br />

waren die verantwortlichen<br />

Mitarbeiter der jeweiligen<br />

Dienstleister involviert. Jeder<br />

Dienstleister erstellte dazu noch die<br />

für seine Tätigkeiten er<strong>for</strong>derlichen<br />

Unterlagen wie z. B. Abbruchanweisungen<br />

oder spezielle Gefährdungsbeurteilungen.<br />

Mit einem Arbeitserlaubnis-Schein<br />

überprüften Gesamtverantwortlicher,<br />

Einsatzleiter,<br />

Durchführender und Strahlenschutzbeauftragter<br />

die festgelegten notwendigen<br />

Arbeitssicherheits-, Brandschutz-<br />

und Strahlenschutzmaßnahmen<br />

mit dem Ziel der Freigabe des<br />

jeweiligen Arbeitsvorhabens. Diese<br />

Arbeitserlaubnis beinhaltete auch die<br />

Überprüfung der Notwendigkeit eines<br />

Erlaubnisscheins für Erdarbeiten, eines<br />

Erlaubnisscheins für Arbeiten in Behältern<br />

und engen Räumen, einer Arbeitserlaubnis<br />

für feuergefährliche Arbeiten<br />

sowie einer Freischalter laubnis. Im<br />

Vorfeld wurden den Dienst leistern notwendige<br />

Unterlagen zum Verhalten auf<br />

dem Betriebsge lände übergeben. Vor<br />

Arbeitsauf nahme fand eine Unterweisung<br />

der Dienstleister statt. Hier erhielten<br />

sie In<strong>for</strong>mationen zum Strahlenschutz,<br />

zur Gewährleistung der<br />

Ersten Hilfe (Standorte der Verbandskästen),<br />

zu Notrufen, Fluchtwegen<br />

und Sammelplätzen. In der gesamten<br />

Rückbauzeit gab es keine bedeutsamen<br />

Arbeits unfälle und keine Brände.<br />

8 Strahlenschutzaspekte<br />

Die Aufgaben des Strahlenschutzes<br />

im Rückbau gliederten sich in drei<br />

Schwerpunkte:<br />

p Emissionsüberwachung<br />

p Dosimetrische Überwachung<br />

p Betrieblicher Strahlenschutz/Anlagenüberwachung<br />

Die Emissionsüberwachung und die<br />

dosimetrische Überwachung erfolgten<br />

durch den zentralen Strahlenschutz<br />

des VKTA. Die betriebliche Strahlenschutzüberwachung<br />

/ Anlagen über wachung<br />

erfolgte durch Mitarbeiter des<br />

Rückbau-Strahlenschutzpersonals, untergeordnet<br />

durch Mitarbeiter des<br />

zentralen Strahlenschutzes.<br />

8.1 Emissions- und<br />

Immissionsüberwachung<br />

Die Überwachung erfolgte im Rückbauzeitraum<br />

in Anlehnung an die<br />

Richtlinie zur Emissions- und Immissionsüberwachung<br />

kerntechnischer<br />

Anlagen.<br />

Abwasser<br />

Im Zeitraum 1998 bis inkl. 2015 erfolgte<br />

die Überwachung kontaminationsverdächtiger<br />

Abwässer durch<br />

Probennahmen an insgesamt vier<br />

Sammelstellen. Später wurde die<br />

Sammlung in entsprechenden Kleinbehältern<br />

realisiert, wobei es sich dabei<br />

hauptsächlich um Waschwässer handelte.<br />

Von insgesamt ca. 700 m³ angefallenen<br />

Wässern konnte für ca. 430 m³<br />

ein Entscheid zur Ableitung erteilt werden.<br />

Diese erfolgte überwiegend über<br />

die Laborabwasserreinigungsanlage<br />

des Forschungsstandortes, die seit<br />

2001 in Betrieb ist. Eine Ausnahme<br />

bildete hier die Ableitung von ausschließlich<br />

H-3-haltigem Deionat aus<br />

dem Abklingbehälter 2 des RFR im<br />

März 2005. Diese Ableitung wurde<br />

nach Zustimmung der zuständigen Behörde<br />

dosiert direkt in den Vorfluter<br />

Kalter Bach vorgenommen und stellte<br />

mit 3,8E+10 Bq H-3 zugleich die bedeutendste<br />

Ableitung aus dem RFR<br />

dar. Die Ausschöpfung der festgelegten<br />

Obergrenze betrug maximal 5 %.<br />

Die restlichen Abwässer mit erhöhtem<br />

Radionuklidinventar wurden vor<br />

Ableitung dekontaminiert. Insgesamt<br />

betrug das Abwasseraufkommen aus<br />

dem RFR und den dazugehörigen<br />

Behältern 5 % der Gesamtwassermenge<br />

des Forschungsstandortes im<br />

oben genannten Zeitraum.<br />

Fortluft<br />

Die gefilterte Abluft wurde über den<br />

41,8 m hohen Fortluftschornstein des<br />

Ventilations- und Filterhauses abgeleitet.<br />

Die Überwachung der Fortluft<br />

erfolgte kontinuierlich durch Messungen<br />

am isokinetisch aus dem Fortluftschornstein<br />

entnommenen Teilvolumenstrom.<br />

Dieser wurde mittels<br />

Aerosol- und H3/C14-Sammlers hinsichtlich<br />

Alpha-, Beta,- und Gamma-<br />

Aerosolen sowie hinsichtlich gasförmigem<br />

H3 und C-14 gemessen und<br />

bilanziert. Dabei betrug im Rückbauzeitraum<br />

die maximale Ausschöpfung<br />

der Obergrenzen bei Gasen 31 % (H-3<br />

im Jahr 1994) und bei Schwebstoffen<br />

36 % (Alphastrahler im Jahr 2004),<br />

11 % (Betastrahler im Jahr 2004)<br />

sowie 0,2 % (Gammastrahler im Jahr<br />

2007).<br />

Im Zuge des <strong>for</strong>tschreitenden Rückbaus<br />

wurde mit der Inbetriebnahme<br />

mobiler Abluftanlagen sowie dem<br />

Rückbau des Fortluftschornsteins ab<br />

August 2012 die Fortluftüberwachung<br />

der Restanlage auf grund der vernachlässigbaren<br />

Emissionen eingestellt.<br />

Für eine Übergangszeit erfolgte allerdings<br />

bis 2013 noch eine Überwachung<br />

auf Aerosole mit Ableitung<br />

der Fortluft über einen eigens am<br />

Ventilations- und Filter gebäude errichteten<br />

10-m-Kamin. Die im Fortluft-<br />

Emissionsplan für den Emittenten<br />

„RFR“ festgelegten Obergrenzen<br />

wurden im gesamten Zeitraum für alle<br />

Nuklidgruppen weit unterschritten.<br />

Immissionsüberwachung<br />

Die Immissionsüberwachung des<br />

Forschungsstandorts Rossendorf umfasste<br />

neben der Überwachung der<br />

weiteren Umgebung (Beprobung<br />

Sediment, Grasproben, Lebensmittelproben)<br />

auch die Ortsdosimetrie mit<br />

DECOMMISSIONING AND WASTE MANAGEMENT 21<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

DECOMMISSIONING AND WASTE MANAGEMENT 22<br />

Festkörperdosimetern an Grenzen<br />

von Strahlenschutzbereichen, so auch<br />

am RFR. Der maximale Wert durch<br />

Direktstrahlung an Grenzen des<br />

Strahlenschutzbereichs RFR zum<br />

Betriebsgelände wurde dabei mit<br />

0,7 mSv in Jahr 1994 gemessen.<br />

8.2 Dosimetrische<br />

Überwachung<br />

Die Überwachung der Inkorporationen<br />

erfolgte durch Messungen im<br />

Ganzkörperzähler hinsichtlich gammastrahlender<br />

Nuklide sowie Ausscheidungsanalysen<br />

(Stuhl, bspw.<br />

hinsichtlich U/Pu-Nuklide oder Am-<br />

241, Urin, bspw. Sr-90+). Hierbei<br />

wurden das Eigenpersonal sowie das<br />

Fremdpersonal überwacht. Die maximale<br />

effektive Folgedosis in einem<br />

Kalenderjahr betrug 2,36 mSv.<br />

Die amtliche Überwachung der<br />

äußeren Exposition erfolgte durch<br />

Ganzkörperdosimeter. Dabei kamen<br />

Albedo- und Filmdosimeter zum Einsatz.<br />

Es wurde nur das Eigenpersonal<br />

überwacht. Das Fremdpersonal wurde<br />

durch die jeweiligen Fremdfirmen<br />

überwacht. Die maximale Körperdosis<br />

in einem Kalenderjahr betrug<br />

0,6 mSv. Die Kollektivdosis als Summe<br />

der effektiven Folgedosis aus Inkorporation<br />

und der äußeren Exposition<br />

von 1998 bis 2018 lag bei etwa<br />

18 mSv.<br />

Die zusätzliche betriebliche Überwachung<br />

erfolgte mit Hilfe von<br />

elektronischen Dosimetern sowie<br />

Festkörperdosimetern zur Teilkörperüberwachung.<br />

8.3 Anlagenüberwachung<br />

Die Anlagenüberwachung umfasste die<br />

Überwachung der Oberflächenkontamination,<br />

der Ortsdosisleistung und<br />

der Raumluftaktivität. Dies geschah in<br />

Form routinemäßig überwachter Messpunkte<br />

im festen Turnus sowie projektoder<br />

anlassbezogen. Dies bedeutete,<br />

dass jeder Rückbauschritt durch ein abgestimmtes<br />

Überwachungsprogramm<br />

abgedeckt wurde.<br />

Aus den Ergebnissen der Anlagenüberwachung<br />

wurden Rückschlüsse<br />

auf die einzusetzende Schutzkleidung<br />

gezogen, um jederzeit einen ausreichenden<br />

Schutz der Mitarbeiter zu<br />

gewährleisten, ohne überzogene<br />

Schutzmaßnahmen festzulegen. Da<br />

bei vielen Rückbauschritten das Vorhandensein<br />

von Alphastrahlern in<br />

inkorporationsrelevanten Größenordnungen<br />

nicht ausgeschlossen werden<br />

konnte, musste eine entsprechend<br />

feingliedrige Anlagenüberwachung<br />

durchgeführt werden. Die Datenhaltung<br />

und -auswertung erfolgte mit<br />

Hilfe einer im VKTA entwickelten<br />

Datenbank.<br />

Überwachung<br />

der Ortsdosisleistung<br />

Zur Überwachung der Ortsdosisleistung<br />

wurden an festgelegten<br />

Messpunkten in den Strahlenschutzbereichen<br />

und an deren Grenzen<br />

jährlich ca. 600 bis 1000 Messungen<br />

vor genommen, wobei nur an einzelnen<br />

Stellen Werte >15 µSv/h<br />

gemessen wurden. (Das in Arbeitsbereichen<br />

ermittelte Maximum lag<br />

bei 3 mSv/h.).<br />

Überwachung<br />

der Oberflächenkontamination<br />

Zur Überwachung der Oberflächenkontamination<br />

wurden an festgelegten<br />

Messpunkten jährlich neben<br />

ca. 400 bis 800 Routinemessungen<br />

projektbegleitende Messungen an<br />

bestimmten Rückbauorten mittels<br />

Wischprobennahmen und α- bzw. β/γgesamtzählenden<br />

Direktmessungen<br />

vorgenommen. Untergeordnet kamen<br />

Kratzprobennahmen zum Einsatz.<br />

Während die Ergebnisse der Routineuntersuchungen<br />

im Bereich der Nachweisgrenze<br />

bzw. innerhalb der Grenzwerte<br />

nach StrlSchV lagen, ergaben<br />

sich an Arbeitsorten z. T. Messwerte,<br />

die Größenordnungen darüber lagen.<br />

Dazu gehörten auch α-Oberflächenkontaminationen,<br />

die auf eine Am-<br />

Freisetzung zurückzuführen waren.<br />

8.4 Meldepflichtige Ereignisse<br />

Im gesamten Stilllegungs- und Rückbauzeitraum<br />

gab es zehn meldepflichtige<br />

Ereignisse, z. B. einen Defekt des<br />

Hallenhubtores oder die Beschädigung<br />

der Laufkatze des Reaktorhallenkrans.<br />

Sie besaßen alle keine<br />

radiologische Relevanz.<br />

9 Freimessung und<br />

Freigaben<br />

Um den hauptsächlichen Stoffanteil<br />

des RFR-Rückbaus einer Verwertung<br />

oder Entsorgung zuzuführen, bestand<br />

die Zielstellung, möglichst zeitnah<br />

umfassend Freimessungen vorzugsweise<br />

aller Reststoffe durchzuführen,<br />

auf deren Basis die Freigabe gemäß<br />

§ 29 StrlSchV2001 erteilt werden<br />

kann. Im VKTA wurden dazu in<br />

Abstimmung mit dem SMUL zwei<br />

Verfahrenswege genutzt:<br />

1) Zum einen konnten auf der Grundlage<br />

behördlich zur Freimessung<br />

zugelassener Messverfahren Reststoffe<br />

freigemessen und nach<br />

Bewertung der Ergebnisse durch<br />

den Freigabe-Strahlenschutzbeauftragten<br />

bzw. ab 12/2005 dem<br />

Freigabebeauftragten freigegeben<br />

werden, sofern er die Übereinstimmung<br />

mit den Festlegungen des<br />

auf dem Freigabebescheid<br />

fußenden innerbetrieblichen Regelwerkes<br />

festgestellt hatte.<br />

2) Zum anderen wurden für Gebäude/<br />

Gebäudestrukturen zur Weiterverwendung<br />

bzw. zum Abriss, Baugruben,<br />

Gräben zur Verfüllung und<br />

die Freigabe von Bodenflächen<br />

sogenannte Frei messprogramme<br />

vom VKTA erstellt, die nach behördlicher<br />

Zustimmung umgesetzt<br />

wurden. Auf der Basis erstellter<br />

Unterlagen (Ergebnisbericht, Freigabeanträge)<br />

erfolgten die betriebliche<br />

Freigabe und die Dokumentenübermittlung<br />

an das SMUL, das<br />

in der Regel einen Sachverständigen<br />

einschaltete. Mit den Ergebnissen<br />

des Sachverständigen<br />

erteilte das SMUL nach deren Prüfung<br />

die Freigabe.<br />

Die Vorbereitung und Durch führung<br />

der Freimessung erfolgte schon mit<br />

Beginn des jeweiligen Rückbauschrittes.<br />

Sie durchläuft dabei prinzipiell<br />

die Abfolge:<br />

p Historische Erkundung<br />

p Radiologische Erkundung<br />

p bei Bedarf auch Dekontamination,<br />

diese mit Ergebniskontrolle<br />

p Vormessung<br />

p Erstellung des Freimessprogrammes<br />

nebst behördlichem Bestätigungsverfahren/Begutachtung<br />

p ggf. Feindekontamination<br />

p ggf. Messungen zur Überprüfung<br />

des Dekontaminationserfolges<br />

p Entscheidungsmessung<br />

p Übergabe der Ergebnisse in Analogie<br />

zum Freimessprogramm,<br />

Auswertung an die Behörde<br />

p Kontrollmessung/Begutachtung<br />

p Prüfung durch die Behörde<br />

p Freigabe<br />

Zur radiologischen Bewertung kamen<br />

vorrangig folgende Verfahren zum<br />

Einsatz:<br />

p Gesamtzählende Direktmessungen<br />

der Ortsdosisleistung und der<br />

Oberflächenkontamination<br />

p Probenauswertung mit α-, β-, γ-gesamtzählenden<br />

Messplätzen sowie<br />

Flüssigszintillationszählern<br />

p Laborgammaspektrometrische Untersuchungen<br />

von Proben mittels<br />

HP-Ge-Detektoren in abgeschirmten<br />

Messplätzen sowie α- und β-<br />

nuklidspezifische Analysen<br />

p In-situ-gammaspektrometrische<br />

Messungen<br />

p Messungen von Gebinden im<br />

Freimesszentrum des VKTA<br />

Oftmals fanden vor Einsatz der<br />

Messverfahren Probenaufbereitungen<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

statt, teils in Form aufwändiger radiochemischer<br />

Trennverfahren. Nähere<br />

Einzelheiten zum konzeptionellen<br />

Herangehen und zur messtechnischen<br />

Umsetzung der Freimessung RFR<br />

können aus [14] entnommen werden.<br />

Freimessungen und Freigaben wurden<br />

zeitlich gestrafft und erreichten in<br />

der Rückbauphase einen großen Umfang;<br />

erfolgten aber auch schon in der<br />

Stilllegungsphase bis 2001. Beispielhaft<br />

sei erwähnt, dass man für die Entscheidungsmessungen<br />

und Freigaben<br />

der Baustrukturen Labortrakt, Reaktorwarte<br />

und Reaktorhalle rund 12<br />

Monate (Januar 2013 bis Januar<br />

2014) benötigte.<br />

Nicht so<strong>for</strong>t freigabefähige Komponenten,<br />

an denen aber nach Behandlung<br />

eine vollständige oder teilweise<br />

Freigabe erwartet werden konnte,<br />

wurden der VKTA-Einrichtung zur Behandlung<br />

schwachradioaktiver Abfälle<br />

zugeführt. Diese Bearbeitung sowie<br />

die Behandlung von Abklingabfällen<br />

aus dem Zwischenlager Rossendorf<br />

werden noch einige Zeit benötigen.<br />

Während in der ursprünglichen<br />

Planung für den Labortrakt mit Reaktorhalle<br />

sowie für das Ventilationsund<br />

Filtergebäude die komplette Freigabe<br />

an der stehenden Struktur mit<br />

anschließendem konventionellen Abriss<br />

vorgesehen war, konnte dies nicht<br />

realisiert werden. Gründe dafür lagen<br />

vor allem in statischen Er<strong>for</strong>dernissen<br />

– die Entfernung oder Dekontamination<br />

kontaminierter Komponenten<br />

bzw. die messtechnische Bewertung<br />

einzelner Objekte war nicht möglich,<br />

ohne die Statik des Gebäudes zu<br />

gefährden. Diese Stellen wurden als<br />

sogenannte „Freigabeinseln“ aus der<br />

Gesamtheit der freizugebenden<br />

Strukturen herausgenommen und vor<br />

Ort nebst entsprechendem Sicherheitspuffer<br />

gekennzeichnet. Durch<br />

diese Freigabeinseln ergaben sich Umplanungen<br />

bei der Durchführung des<br />

Abbaus und Ergänzungen in Form von<br />

weiteren Erläuterungsberichten. Nach<br />

Abriss des restlichen (weit überwiegenden)<br />

Teils des Gebäudes<br />

wurden die Freigabeinseln ausgebaut<br />

und entsprechend Verfahrensweg 1)<br />

bewertet [15].<br />

Für Stilllegung und Rückbau der<br />

RFR-Anlagen wurden seit 2008 ca.<br />

1400 Freigabevorgänge in Form von<br />

Einzel- bzw. Gruppenanträgen erfolgreich<br />

abgeschlossen, zwischen 1998<br />

und 2007 ca. 450. Insgesamt erfolgten<br />

Freigaben für eine Stoffmenge von<br />

rund 20.000 Mg. Zudem wurde bedingt<br />

durch Baugrubenböschungen<br />

und Gräben sowie einige nicht vermeidbare<br />

Mehrfachbewertungen eine<br />

Gesamtfläche von rund 12.000 m 2<br />

überwiegend nach StrlSchV 2001 Anlage<br />

III Tabelle 1 Spalte 6 entsprechend<br />

einer mit dem SMUL<br />

abgestimmten Verfahrensweise freigegeben.<br />

Folgende Freigabepfade<br />

(Bewertung nach StrlSchV 2001 Anlage<br />

III Tabelle 1) wurden im Zuge der<br />

Freimessung und Freigabe beschritten:<br />

p Spalten 4 und 5/9 (bzw. 9a, 9c) für<br />

Einzelteile<br />

p Spalten 5/9 (bzw. 9b, 9d) für<br />

brenn bare Reststoffe<br />

p Spalte 5/9 für entnommenes Erdreich<br />

bzw. entnommenen Bauschutt<br />

p Spalte 6 für tiefliegende Teile des<br />

Erdreichs nach Zustimmung der<br />

Behörde (mit anschließender Abdeckung<br />

von 80 cm – im Randbereich<br />

von 30 cm und entsprechendem<br />

Überdeckungsnachweis<br />

an die Behörde)<br />

p Spalte 7 für oberflächennahe Teile<br />

des Erdreichs, Bodenoberflächen<br />

p Spalte 8 für nicht ohne weiteres<br />

rückbaubare tiefliegende Strukturen<br />

(Ausnahmefall)<br />

p Spalte 10 für Gebäude und Gebäudeteile<br />

zum Abriss<br />

10 Freigegebene Reststoffe<br />

und radioaktive Abfälle<br />

Der erreichbare Rückbau<strong>for</strong>tschritt<br />

wird maßgeblich von der zügigen Entfernung<br />

der freigebbaren Reststoffe<br />

und radioaktiven Abfälle von der Baustelle<br />

bestimmt. Um kostenaufwendige<br />

Zwischenlagerschritte zu minimieren,<br />

wurde auf die zügige Entsorgung<br />

freigabefähiger Reststoffe<br />

großen Wert gelegt. Bereits durch die<br />

Voruntersuchungen, die sowohl radiologisch<br />

als auch schadstoffbezogen<br />

durchgeführt wurden, konnten Art<br />

und Umfang relevanter Schadstoffklassen<br />

erkannt und Vorarbeiten für<br />

die spätere Deponierung und Verbrennung<br />

(z. B. Klärung des Deklarationsumfanges,<br />

Vertragsbindung mit<br />

Entsorgungsanlagen, Entwicklung von<br />

Mess- und Bewertungsverfahren) gelegt<br />

werden. Weiterhin wurden rückbaubegleitend<br />

Überprüfungen veranlasst<br />

bzw. detaillierte Untersuchungen<br />

an den Stellen vorgenommen, die in<br />

den Voruntersuchungen nicht oder<br />

nur partiell erfasst werden konnten.<br />

Durch die sorgfältige und kleinteilige<br />

Trennung des radioaktiven Abfalls von<br />

den Reststoffen wurde der Stoffanteil<br />

zur Endlagerung minimiert.<br />

Die Betrachtung der potentiellen<br />

wie realen Schadstoffsituation aus<br />

chemotoxischer Sicht nahm in<br />

der Bearbeitung einen nicht zu<br />

unterschätzenden Anteil ein, da sowohl<br />

hinsichtlich der Entsorgung und<br />

Verwertung der Reststoffe als auch<br />

hinsichtlich der Endlagerung die stoffliche<br />

(Schadstoff-) Charakterisierung<br />

einen hohen Stellenwert besitzt.<br />

Als dominierender konventioneller<br />

Schad stoff für die Einstufung der<br />

Abfälle nach Freigabe ergaben sich die<br />

Polyzyklische Aromatischen Kohlenwasserstoffe<br />

(PAK; Vorkommen z. B.<br />

in teerhaltigen Dachpappen, Sperrschichten<br />

außerhalb und innerhalb<br />

von Gebäuden) sowie damit korrelierend<br />

der Phenolindex. Für die<br />

Bewertung in Hinblick auf die Entsorgung<br />

wurden die Zuordnungskriterien<br />

gemäß Deponieverordnung<br />

[16] und LAGA [17] zu Grunde gelegt.<br />

Bedingt durch die außenliegenden<br />

Sperrschichten im Bereich der unteririschen<br />

Baustrukturen war in gebäudenahen<br />

Bereichen das Erdreich teilweise<br />

PAK-kontaminiert. In [11] wird<br />

detaillierter auf die Reststoffentsorgung<br />

nach Freigabe gemäß<br />

§ 29 StrlSchV 2001 beim RFR-Rückbau<br />

eingegangen.<br />

Insgesamt wurde beim RFR-<br />

Rückbau eine Stoffmenge von rund<br />

41.000 Mg erhalten, die sich zunächst<br />

in radioaktiver Abfall (330 Mg), behandlungsfähiges<br />

Material (200 Mg)<br />

und freigabefähige Reststoffe<br />

(40.470 Mg) aufteilte. Der Anteil an<br />

radioaktivem RFR-Abfall konnte bedingt<br />

durch die Behandlung einer Teilmenge<br />

sowie der Abklinglagerung auf<br />

rund 150 Mg reduziert werden, wobei<br />

sich davon bereits rund 2 Mg im Endlager<br />

für radioaktive Abfälle Morsleben<br />

befinden. Die noch zu behandelnde<br />

Reststoffmasse beträgt rund<br />

40 Mg. Daraus ergeben sich derzeit<br />

folgende prozentuale Anteile: 99,5 %<br />

freigegebene Reststoffe davon rund<br />

49 % zweckgerichtet freigegeben,<br />

0,4 % radioaktiver Abfall und 0,1 %<br />

noch zu behandelndes Material. In der<br />

Abbildung 20 wird zu diesen Angaben<br />

ein Materialbezug hergestellt.<br />

| Abb. 20.<br />

Prozentuale Materialangaben zu den Rückbaumassen.<br />

DECOMMISSIONING AND WASTE MANAGEMENT 23<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

DECOMMISSIONING AND WASTE MANAGEMENT 24<br />

Die Konditionierung der radioaktiven<br />

Abfälle zur Endlagerung, z. B.<br />

durch Hochdruckverpressung, verlief<br />

z. T. parallel zum Rückbau. Vor allem<br />

aufgrund der Randbedingungen im<br />

Rahmen der Produktkontrolle sind<br />

bis zur Abgabe aller vorhandenen<br />

radioaktiven Abfälle in das Endlager<br />

Konrad noch eine ganze Reihe von<br />

Aufgaben zu bewältigen.<br />

11 Kosten<br />

Die genaue Kostenaufschlüsselung im<br />

VKTA und speziell die Betrachtungsweise<br />

der Rückbau- und Sanierungsprojekte<br />

wechselte seit 1992 mehrfach.<br />

Somit ist eine genaue Ab schätzung<br />

alleine für den RFR nicht möglich. Für<br />

den Rückbau und die Sanierung der<br />

Flächen des RFR, der Isotopenproduktion<br />

und der Ent sorgungsanlagen wurden<br />

ca. 59 Millionen € verwendet. In<br />

dieser Summe sind aber die Kosten der<br />

Neubauten (z. B. Entsorgungsanlage<br />

für Kern material, Einrichtung zur<br />

Behandlung von schwachradioaktiven<br />

Abfällen, Zwischenlager) nicht enthalten.<br />

Die Entsorgung des gesamten<br />

Kernbrennstoffinventares einschließlich<br />

der bestrahlten Brennelemente<br />

fehlt ebenfalls bei dieser Summe.<br />

12 Fazit<br />

Das aus rückbautechnischer und technologischer<br />

Sicht geplante Rückbaukonzept<br />

zur Beseitigung des Rossendorfer<br />

Forschungsreaktors mit all<br />

seinen peripheren Einrichtungen<br />

wurde erfolgreich umgesetzt, auch<br />

wenn ursprünglich erst die Ent lassung<br />

des Rossendorfer Forschungsreaktors<br />

aus dem Geltungsbereich des AtG und<br />

danach der konventionelle Abriss der<br />

Gebäude vorgesehen waren. Aufgrund<br />

sogenannter „Freigabeinseln“<br />

[15], die erst im Zuge des Abbaus der<br />

Gebäudestrukturen zur Freigabe<br />

geführt werden konnten, musste der<br />

Gebäudeabriss unter Strahlenschutzbedingungen<br />

erfolgen. Zeitlich und<br />

finanziell ergaben sich dadurch allerdings<br />

keine größeren Probleme. Die<br />

neu entstandenen Flächen wurden<br />

nach der Sanierung rekultiviert<br />

und sollen dem Helmholtz-Zentrum<br />

Dresden- Rossendorf übergeben werden,<br />

um eine zukünftige Nutzung zu<br />

ermöglichen.<br />

Beginnend mit dem Sächsischen<br />

Kabinettsbeschluss zur Stilllegung<br />

und zum Rückbau des RFR im Jahre<br />

1993 bis zum Abschluss des Vorhabens<br />

im Jahr 2019 gab es bezüglich<br />

des Strahlen-, Arbeits-, Brandschutzes<br />

keine nennenswerten Ereignisse.<br />

Es hat sich bewährt, mit dem Rückbau<br />

auch gleichzeitig die Entsorgung<br />

gezielt voranzutreiben, so dass der<br />

VKTA derzeit nur noch rund 40 Mg<br />

(entspricht rund 0,1 %) der Rückbaumasse<br />

in Bearbeitung hat, um Freigaben<br />

zu erreichen. Neben den 951im<br />

Brennelement-Zwischen lager Ahaus<br />

lagernden Brennelementen befinden<br />

sich aus dem RFR-Rückbau weiterhin<br />

noch ca. 148 Mg radioaktive Abfälle<br />

im Zwischen lager Rossendorf. Bewährt<br />

haben sich der Einsatz des RFR-<br />

Betriebspersonals insbesondere in<br />

der Zeit von 1992 bis 2007 sowie die<br />

interne Zusammenarbeit hinsichtlich<br />

des Strahlenschutzes, der radiologischen<br />

Messungen, der Analytik im<br />

akkreditierten Labor des VKTA und<br />

des Führens der atomrechtlichen<br />

Genehmigungsverfahren.<br />

Insgesamt wurden ca. 59 Millionen<br />

€ für den Rückbau und die<br />

Sanierung der Flächen des RFR, der<br />

Isotopenproduktion und der Entsorgungsanlagen<br />

verwendet.<br />

Der VKTA dankt den eingesetzten<br />

Fremdfirmen für ihre Unterstützung,<br />

den Mitarbeitern der Genehmigungsbehörde<br />

für die konstruktive Zusammenarbeit<br />

und dem Freistaat Sachsen<br />

für die Finanzierung sowie das erbrachte<br />

Vertrauen gegenüber dem<br />

VKTA hinsichtlich der Erfüllung von<br />

Stilllegung und Rückbau des Rossendorfer<br />

Forschungsreaktors bis hin zu<br />

„Grünen Wiese“.<br />

Referenzen<br />

[1] Hieronymus, W. et al.: Beiträge zur Geschichte des<br />

Rossendorfer Forschungsreaktors RFR,<br />

ISBN: 978-3-941405-04-2, überarbeitete Fassung 2009<br />

[2] Grahnert, T., Jansen, S., Boeßert, W., Kniest, S. Stilllegung und<br />

Rückbau der Rossendorfer Isotopenproduktion, <strong>atw</strong>, Vol. 61<br />

(2016) und Vol. 62 (2016)<br />

[3] Erste Genehmigung 45-4653.18 VKTA 01 gemäß § 7 Absatz<br />

3 AtG zur Stilllegung des Rossendorfer Forschungsreaktors<br />

RFR (1. Stilllegungsgenehmigung RFR – Innehaben,<br />

Betriebsführung, Überführung der Brennelemente aus der<br />

Spaltzone in des Brennelementlagerbecken AB 2) des SMU,<br />

erteilt am 30.01.1998, mit 1. Änderung vom 06. 11. 2000<br />

[4] Zweite Genehmigung 45-4653.18 VKTA 02 gemäß § 7<br />

Absatz 3 AtG zur Stilllegung des Rossendorfer Forschungsreaktors<br />

RFR (2. Stilllegungsgenehmigung RFR – Rückbau<br />

des 2. Kühlkreislaufes) des SMU, erteilt am 30.10.1998, mit<br />

1. Änderung vom 11. 02.1999<br />

[5] Genehmigung 74-4653.13 gemäß § 9 AtG zur sonstigen<br />

Verwendung von Kernbrennstoffen außerhalb<br />

genehmigungs pflichtiger Anlagen und zum Umgang mit<br />

sonstigen radioaktiven Stoffen zur Überführung der<br />

bestrahlten Brennelemente des Rossendorfer Forschungsreaktors<br />

(RFR) in Transport- und Lagerbehälter vom Typ<br />

CASTOR® MTR 2 des SMUL, erteilt am 17.12.1998<br />

[6] Genehmigung 4653.15 gemäß § 9 AtG zur sonstigen Verwendung<br />

von Kernbrennstoffen außerhalb genehmigungspflichtiger<br />

Anlagen und zum Umgang mit sonstigen radioaktiven<br />

Stoffen (Überführung von Kernbrennstoffen aus den<br />

Verwahrorten der Reaktorhalle in Abfallgebinde) des SMUL,<br />

erteilt am 06.02.2001<br />

[7] Genehmigung 74-4653.93 gemäß § 9 AtG zur sonstigen<br />

Verwendung von Kernbrennstoffen außerhalb<br />

genehmigungs pflichtiger Anlagen und zum Umgang mit<br />

sonstigen radioaktiven Stoffen (Transportbereitstellung der<br />

CASTOREN in der Transportbereitstellungshalle (TBH) sowie<br />

im Freigelände um die TBH) des SMUL, erteilt am<br />

21.12.1998<br />

[8] Dritte Genehmigung 4653.18 VKTA 03 gemäß § 7 Absatz 3<br />

AtG zur Stilllegung und zum Abbau des Rossendorfer<br />

Forschungsreaktors RFR (3. Stilllegungsgenehmigung RFR –<br />

Abbau des Reaktorsystems und seiner Komponenten) des<br />

SMUL, erteilt am 03.04.2001<br />

[9] Vierte Genehmigung 4653.18 VKTA 04 gemäß § 7 Absatz 3<br />

AtG zum Abbau der Restanlage des Rossendorfer<br />

Forschungsreaktors RFR SMUL (4. Stilllegungsgenehmigung<br />

RFR – Totalabbruch der RFR-Restanlage) des SMUL, erteilt<br />

am 01.02.2005 mit 1. Änderungsbescheid vom 09. 11.2010<br />

und mit 2. Änderung vom 09.01.2014<br />

[10] Langer, R., Steinbach, F. Michael: Entsorgung freigegebener<br />

Reststoffe nach Rückbau des RFR, KONTEC 2017<br />

[11] Steinbach, P., Johne, B., Steinhardt, M., Knappik, R.<br />

Kerntechnischer Rückbau unter Beachtung des Boden- und<br />

Grundwasserschutzes, KONTEC 2019<br />

[12] Große, H., Jähnichen, S., Michael, F., Steinbach, P.: Analytik<br />

von Polyzyklischen aromatischen Kohlenwasserstoffen bei<br />

Rückbau kerntechnischer Anlagen, KONTEC 2019<br />

[13] Aufsichtliche Anordnung VKTA 40-42 des SMU<br />

vom 30.12.1991<br />

[14] Bothe, M., Knappik, R., Kahn, A., Emmrich, U.<br />

Konzeptionelles Herangehen und messtechnische<br />

Umsetzung zur Freimessung der Gebäude des Rossendorfer<br />

Forschungsreaktor, KONTEC 2013<br />

[15] Jansen, S., Michael, F., Johne, B.<br />

Beseitigung der „Freigabeinseln“ beim Rückbau<br />

des Rossendorfer Forschungsreaktors, KONTEC 2017<br />

[16] Verordnung über Deponien und Langzeitlager (Deponieverordnung<br />

– DepV) vom 27.04.2009 (BGBl. I S. 900),<br />

die zuletzt durch Artikel 2 der Verordnung vom 27.09. 2017<br />

(BGBl. I S. 3465) geändert worden ist<br />

[17] LAGA An<strong>for</strong>derungen an die stoffliche Verwertung von<br />

mineralischen Abfällen: Teil I »Allgemeiner Teil« der LAGA M<br />

20 (Stand 6.11.2003), Teil II: Technische Regeln für die<br />

Verwertung, 1.2 Bodenmaterial (TR Boden), Stand:<br />

05.11.2004, Teil III »Probenahme und Analytik« (Stand<br />

5.11.2004), Vorläufige Hinweise zum Einsatz von Baustoffrecyclingmaterial<br />

(länderspezifische Regelung Sachsen)<br />

vom 11.01.2006, verlängert am 24.10.2014<br />

Authors<br />

Reinhard Knappik<br />

Klaus Geyer<br />

Sven Jansen<br />

Cornelia Graetz<br />

VKTA Rossendorf<br />

Bautzner Landstraße 400<br />

01328 Dresden<br />

Decommissioning and Waste Management<br />

Decommissioning & Dismantling of the Rossendorf Research Reactor RFR ı Reinhard Knappik, Klaus Geyer, Sven Jansen and Cornelia Graetz


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Thermal-Hydraulic Analysis <strong>for</strong><br />

Total Loss of Feedwater Event in PWR<br />

using SPACE Code<br />

MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee<br />

After the Fukushima nuclear accident, in Japan, comprehensive safety assessments <strong>for</strong> nuclear power plants are<br />

per<strong>for</strong>med by regulators around the world. As a part of the safety enhancement ef<strong>for</strong>t, additional failure of the safety<br />

components are considered and to maintain safety margin, review and improve emergency procedures. In Korea, a new<br />

regulatory requirement is introduced, which requires all nuclear power plants to submit Accident Management Plan<br />

(AMP) that covers design basis accidents, multiple failure accidents and severe accidents.<br />

Total Loss of Feedwater (TLOFW)<br />

event is one of the main multiple<br />

failure accident which assumes failure<br />

of both main feedwater and auxiliary<br />

feedwater system. Since there is no<br />

feedwater supply to steam generators,<br />

heat cannot be removed through<br />

steam generators. In TLOFW event,<br />

primary side feed and bleed operation<br />

is manually per<strong>for</strong>med to remove<br />

heat. Feed and bleed operation continues<br />

until reactor coolant system<br />

(RCS) is cooled and depressurized to<br />

the point where shutdown cooling<br />

system can be used to remove heat<br />

from RCS.<br />

In this paper, thermal-hydraulic<br />

analysis of TLOFW event <strong>for</strong> OPR1000<br />

plants is per<strong>for</strong>med to evaluate the<br />

validity of RCS cool down strategy<br />

using Safety and Per<strong>for</strong>mance Analysis<br />

Code <strong>for</strong> <strong>Nuclear</strong> <strong>Power</strong> Plants<br />

(SPACE). Hanul units 3&4 are selected<br />

as the reference plants and analysis<br />

results show that the RCS cool down<br />

strategy through the feed and bleed<br />

has sufficient core cooling capacity<br />

which prevents core damage.<br />

1 Introduction<br />

After Fukushima nuclear accident, in<br />

Japan, nuclear regulators of around<br />

the world launched a comprehensive<br />

check <strong>for</strong> their nuclear power plants.<br />

They concluded that nuclear power<br />

plants should consider accidents of<br />

Design Extension Condition (DEC).<br />

Considering beyond design basis<br />

accidents has become very important<br />

<strong>for</strong> developing cool down strategies<br />

<strong>for</strong> the Reactor Coolant System (RCS)<br />

and recovery actions. It is also necessary<br />

to consider additional failure of<br />

the safety components in terms of<br />

sufficient safety margin with applying<br />

of proper emergency operating procedures<br />

[1].<br />

The revision of the nuclear safety<br />

act in June, 2015 required all nuclear<br />

power plants in Korea to submit<br />

Accident Management Plan (AMP)<br />

that covers design basis accidents,<br />

multiple failure accidents and severe<br />

accidents.<br />

The Total Loss of Feedwater<br />

(TLOFW) event is one of the multiple<br />

failure events. TLOFW assumes that<br />

the feed water supply is completely<br />

stopped by failure of both main feedwater<br />

and auxiliary feedwater(AFW)<br />

due to pump failure, pipe break or<br />

other. Since there are two motor<br />

driven AFW pumps and two turbine<br />

driven AFW pumps, probability of<br />

TLOFW occurring is very low. There<br />

are several safety limits related to the<br />

TLOFW event. Core damage from fuel<br />

heat-up should not occur during the<br />

event. The maximum allowable fuel<br />

cladding temperature is 1,204 °C<br />

(2,200 °F ). To maintain fuel cladding<br />

temperature below the limit, it is<br />

necessary <strong>for</strong> the primary system to<br />

have sufficient core cooling capability.<br />

When heat removal through the<br />

secondary system is not available, the<br />

decay heat of the core should be<br />

removed by rapid depressurization of<br />

the primary system and operation of<br />

the Emergency Core Cooling System<br />

(ECCS). According to recent studies<br />

on the TLOFW event [2-6], the feed<br />

and bleed operations has been one of<br />

the useful strategies <strong>for</strong> removing the<br />

decay heat. The OPR1000 plants have<br />

been designed to manually operate<br />

the feed and bleed strategy during the<br />

TLOFW event by using the Safety<br />

Depressurization System (SDS). The<br />

SDS valves provides rapid depressurization,<br />

which is connected to the<br />

top of the pressurizer with two flow<br />

paths. The feed and bleed operations<br />

can be started after the pressure of<br />

the primary system reaches safety<br />

injection actuation point.<br />

In this paper, we present thermalhydraulic<br />

analysis <strong>for</strong> the TLOFW<br />

event assuming the loss of the secondary<br />

cooling function by the failure of<br />

main feedwater and auxiliary feedwater<br />

system. We use the Safety and<br />

Per<strong>for</strong>mance Analysis Code <strong>for</strong><br />

<strong>Nuclear</strong> <strong>Power</strong> Plants (SPACE) code<br />

which is an advanced thermal hydraulic<br />

analysis code with two-fluid and<br />

three-field governing equations [7].<br />

The comparative study covers three<br />

cases according to operations of the<br />

SDS and safety injection system<br />

during the TLOFW event. We also<br />

examine the effectiveness of the RCS<br />

cool down strategy through the feed<br />

and bleed operations in accordance<br />

with the emergency operating procedure<br />

(EOP). The reference plants<br />

<strong>for</strong> this study are the Hanul units 3&4.<br />

2 Analysis in<strong>for</strong>mation<br />

2.1 SPACE code<br />

The Korea Hydro & <strong>Nuclear</strong> <strong>Power</strong> Co.<br />

through collaborative works with<br />

other Korean nuclear industries and<br />

research institutes has been developing<br />

the thermal-hydraulic analysis<br />

code <strong>for</strong> the safety analysis of the<br />

Pressurized Water Reactors (PWRs),<br />

which was named the SPACE. The<br />

SPACE is the best-estimate two-fluid<br />

and three-field analysis code <strong>for</strong><br />

analyzing the safety and per<strong>for</strong>mance<br />

of the PWRs. The code has been<br />

developed to improve the prediction<br />

accuracy of the thermal hydrodynamic<br />

behavior of the nuclear reactor<br />

system in transient conditions. The<br />

semi-implicit scheme has been used<br />

<strong>for</strong> the time integration method. The<br />

SPACE code consists of the package of<br />

the input and output package, the<br />

reactor kinetics model, the hydrodynamic<br />

model, and the heat structure<br />

model.<br />

The hydrodynamic model package<br />

is composed of hydraulic solver, constitutive<br />

models, special process<br />

models, and component models. The<br />

hydraulic solver is based on two-fluid<br />

and three-field governing equations<br />

25<br />

RESEARCH AND INNOVATION<br />

Research and Innovation<br />

Thermal-Hydraulic Analysis <strong>for</strong> Total Loss of Feedwater Event in PWR using SPACE Code ı MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 26<br />

| Fig. 1.<br />

Nodalization diagram of OPR1000.<br />

which are gas, continuous liquid, and<br />

droplet fields. The SPACE code has<br />

an advantage in solving a dispersed<br />

liquid field as well as vapor and<br />

continuous liquid fields. The constitutive<br />

models involve the flow regime<br />

map to simulate the mass, momentum,<br />

and energy distributions such as<br />

surface area, surface heat transfer,<br />

surface-wall friction, droplet separation<br />

and adhesion, and wall-fluid heat<br />

transfer. The heat structure model<br />

can solve transient heat conduction<br />

problems in the rectangular or<br />

cylindrical geometry with various<br />

boundary conditions <strong>for</strong> convection<br />

and radiation problems and user<br />

defined variables such as the temperature,<br />

heat flux, and heat transfer<br />

coefficient. <strong>Nuclear</strong> fission heat from<br />

nuclear fuel rods can be calculated by<br />

using point kinetics approximation<br />

and treated as a heat source in the<br />

heat conduction equation. Reactivity<br />

feedbacks are considered in terms of<br />

the moderator density, moderator<br />

temperature, fuel temperature, boron<br />

concentration, reactor scram, and<br />

power defect. The SPACE 3.0 version<br />

is used in this investigation.<br />

2.2 Steady state<br />

Figure 1 shows the system nodalization<br />

used in the SPACE code <strong>for</strong> analyzing<br />

the TLOFW event. Be<strong>for</strong>e entering<br />

transient conditions using the restart<br />

function of the SPACE code, the<br />

steady-state calculation is per<strong>for</strong>med<br />

to confirm the initial conditions.<br />

The initial conditions of steady-state<br />

were represented in Table 1. The<br />

Parameter Design value Steady state value<br />

Core power (MWt) 2815 2815<br />

Cold-leg Temperature (°C) 295.8 298<br />

Hot-leg Temperature (°C) 327.2 329<br />

RCS flow 15,308.7 15,336<br />

PZR pressure (MPa) 15.5132 15.5<br />

PZR level (%) 52.6 52.6<br />

Steam Generator Pressure (MPa) 7.38 7.389<br />

Steam flow rate (kg/s) 802.9 801.5<br />

Feedwater flow rate (kg/s) 802.6 798<br />

| Tab. 1.<br />

Initial conditions <strong>for</strong> the TLOFW event.<br />

calculation <strong>for</strong> steady-state condition<br />

is per<strong>for</strong>med <strong>for</strong> 3,000 seconds.<br />

The Pressurizer Safety Valve (PSV)<br />

as modeled as a component C511<br />

with opening pressure setpoint of<br />

17.23 MPa. When the TLOFW event<br />

occur, the SDS valves modeled as<br />

components C551 and C552 is used<br />

<strong>for</strong> bleed operations to remove the<br />

decay heat of the core. The multiple<br />

failure accident which includes the<br />

TLOFW accident can be analyzed<br />

using best estimate methods. In order<br />

to obtain realistic steam pressure<br />

response after turbine trip, Steam<br />

Bypass Control System (SBCS) was<br />

used. The SBCS was modeled into<br />

eight separate valves, C811 ~ C818.<br />

2.3 Sequence of events<br />

Different simulation scenarios are<br />

considered <strong>for</strong> the TLOFW event<br />

based on design requirements of the<br />

SDS described in the Final Safety<br />

Analysis Report (FSAR) of Hanul<br />

Units 3&4 [8]. OPR1000 plants carry<br />

out the feed and bleed operations<br />

with two Safety Injection Pumps<br />

(SIPs) and two SDS trains, respectively.<br />

The simulation scenarios with<br />

consideration <strong>for</strong> design requirements<br />

of the SDS described in Ref. [8] are as<br />

follows.<br />

p When one SIP is available, each<br />

SDS train shall be designed to have<br />

sufficient capacity to prevent the<br />

reactor core exposure, assuming<br />

that the SDS path is opened simultaneously<br />

with the opening of the<br />

PSV in the TLOFW event. (Case 1)<br />

p When two SIPs are available, two<br />

SDS trains shall be designed to<br />

have sufficient capacity to prevent<br />

the reactor core exposure, assuming<br />

that the opening of the SDS<br />

paths is delayed by 30 minutes<br />

from with the opening of the PSV<br />

in the TLOFW event. (Case 2)<br />

Furthermore, Case 3 is considered to<br />

create the additional situation in the<br />

TLOFW event. In this case, one SIP<br />

and one SDS are available, but assuming<br />

that the opening of the SDS path is<br />

delayed by 30 minutes from with the<br />

opening of the PSV. In all cases, it is<br />

assumed that the Safety Injection<br />

Tanks (SITs) and the SBCS are fully<br />

available during the event. All cases<br />

are summarized in Table 2.<br />

The TLOFW event starts with loss<br />

of main feedwater. Water level of the<br />

Steam Generators (SGs) continues to<br />

decrease and reach the set point of the<br />

reactor trip. Turbine trip occurs with<br />

reactor trip. The decay heat from the<br />

core is removed through SGs, with<br />

steam flow controlled by SBCS. SG<br />

level continues to drop and auxiliary<br />

feedwater actuation setpoint is<br />

reached. However, auxiliary feedwater<br />

is assumed to fail. It is assumed<br />

that the Reactor Coolant Pumps<br />

(RCPs) is stopped at 10 minutes after<br />

the reactor and turbine trip. As the<br />

water inventory of SGs continues to<br />

decrease and SGs become dry, the<br />

Research and Innovation<br />

Thermal-Hydraulic Analysis <strong>for</strong> Total Loss of Feedwater Event in PWR using SPACE Code ı MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Case<br />

Case 1<br />

Case 2<br />

Case 3<br />

Remark<br />

| Tab. 2.<br />

Summary of all cases.<br />

| Tab. 3.<br />

Sequence of the events.<br />

PSV open + SDS 1 train open (0sec) + 1 out of 2 SIP available<br />

PSV open + SDS 2 train open (1800sec) + 2 out of 2 SIP available<br />

PSV open + SDS 1 train open (1800sec) + 1 out of 2 SIP available<br />

No. Event Remark<br />

1 accident occur<br />

2 Reactor trip (SG low level) 42.9 % WR<br />

3 TBN trip<br />

4 Auxiliary feedwater injection fail 23.4 % WR<br />

5 RCP trip manual<br />

6 SG dry out<br />

7 PSV open PPZR > 17.23 MPa<br />

8 SDS valve open (manual) Case 1: PSV open + 0 s<br />

Case 2: PSV open + 1800 s<br />

Case 3: PSV open + 1800 s<br />

9 Low Pressurizer Pressure (LPP) signal<br />

10 HPSI injection<br />

11 SIT injection<br />

heat removal through SGs are no<br />

longer possible. Without heat removal<br />

through SGs, the temperature and<br />

pressure of the primary system increases<br />

and reaches the set point of<br />

the PSV opening. The feed and bleed<br />

operations start with manual opening<br />

of the SDS valve in accordance with<br />

the EOP. The pressure of the primary<br />

system decrease to the set point of the<br />

High Pressure Safety Injection (HPSI).<br />

The sequence of events is summarized<br />

in the Table 3.<br />

3 Simulation result<br />

Figure 2 shows the pressures of the<br />

primary and secondary systems in<br />

Case 1. After initiating the TLOFW<br />

event, the reactor and turbine trip<br />

occur by the low SG level signal. After<br />

the turbine trip, the pressure of the<br />

secondary system increases and<br />

reaches the SBCS actuation signal. As<br />

the heat removal capacity of the SGs is<br />

diminished by the loss of the feed<br />

water supply, the pressure of the<br />

primary system increases to the set<br />

pressure of the PSV. The feed and<br />

bleed operations by manual opening<br />

of the SDS can reduce the pressure of<br />

the primary system. As shown in<br />

Figure 3, the PSV closes as soon as the<br />

SDS valve opens.<br />

The pressure of the primary system<br />

decreases as the primary inventory is<br />

discharged through the SDS. The SIP<br />

is triggered by the low pressurizer<br />

pressure signal. The RCS is sufficiently<br />

depressurized and its pressure<br />

reaches the injection pressure of SITs.<br />

Figure 4 shows the mass flow rates of<br />

the SIP and SIT.<br />

Figure 5 shows the pressures of<br />

the primary and secondary system in<br />

Case 2. The pressure of primary<br />

system increases until the PSV valves<br />

open. The PSV repeats open and close<br />

as shown in Figure 6. And then the<br />

SDS valves are manually opened<br />

30 minutes after the PSV is first<br />

opened. Both pressures of the primary<br />

and secondary systems decrease with<br />

the bleed operation with the SDS.<br />

The SIP start to operate by the low<br />

pressurizer pressure signal. When<br />

the primary pressure decreases to<br />

the actuating pressure of the SITs<br />

RESEARCH AND INNOVATION 27<br />

| Fig. 2.<br />

Pressures of the primary and secondary system (Case 1).<br />

| Fig. 3.<br />

Mass flow rates of PSV and SDS (Case 1).<br />

| Fig. 4.<br />

Mass flow rates of SIP and SIT (Case 1).<br />

| Fig. 5.<br />

Pressures of the primary and secondary system (Case 2).<br />

| Fig. 6.<br />

Mass flow rates of PSV and SDS (Case 2).<br />

| Fig. 7.<br />

Mass flow rates of SIP and SIT (Case 2).<br />

Research and Innovation<br />

Thermal-Hydraulic Analysis <strong>for</strong> Total Loss of Feedwater Event in PWR using SPACE Code ı MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 28<br />

| Fig. 8.<br />

Pressures of the primary and secondary system (Case 3).<br />

| Fig. 11.<br />

Peak cladding temperatures.<br />

pro viding the borated water to the<br />

RCS. Figure 7 shows the mass flow<br />

rates of SIP and SIT in Case 2.<br />

Case 3 is the additional scenario in<br />

this case study as described in previous<br />

section. Figure 8 shows the pressures<br />

of the primary and secondary systems<br />

in Case 3. The pressure of the primary<br />

system increases to the set point of the<br />

PSV and then oscillates. Thermal<br />

hydraulic behavior of Case 3 is similar<br />

to that of Case 2 until SDS valve opens.<br />

In Figure 9, one train of SDS opens<br />

30 minutes after the PSV is first<br />

opened. The pressures of the primary<br />

and secondary systems decrease as<br />

the primary inventory is discharged<br />

through the SDS. The SIP is operated<br />

by the low pressurizer pressure signal.<br />

The primary pressure continues to<br />

decrease and reaches the injection<br />

pressure of SITs. Figure 10 shows the<br />

mass flow rates of the SIP and SIT.<br />

Peak cladding temperatures of all<br />

cases are shown in Figure 11. Case 1<br />

is 325 °C , while both Case 2 and Case<br />

3 are 354 °C . Injection of the SIP cools<br />

the core down immediately. The fuel<br />

cladding temperatures of all cases<br />

don’t exceed the maximum allowable<br />

fuel cladding temperature, 1,204 °C<br />

(2,200 °F ). Which means the core<br />

cooling capabilities are sufficient<br />

in all cases.<br />

| Fig. 9.<br />

Mass flow rates of PSV and SDS (Case 3).<br />

4 Conclusions<br />

In this study, we present thermalhydraulic<br />

analysis <strong>for</strong> the TLOFW<br />

event in OPR1000 using the SPACE<br />

3.0 code. Three different cases<br />

according to operations of the SDS<br />

and safety injection system were<br />

analyzed to examine the effectiveness<br />

of the RCS cool down strategy through<br />

the feed and bleed operations to<br />

mitigate the TLOFW event. The feed<br />

and bleed operations start with<br />

manually opening of the SDS valve<br />

after the PSV opening in accordance<br />

with the EOP.<br />

The simulation scenarios of Case 1<br />

and Case 2 were based upon design<br />

requirements of the SDS described in<br />

the FSAR of Hanul units 3&4. Case 3<br />

was the additional scenario in this<br />

comparative study. The peak cladding<br />

temperatures of all cases did not<br />

exceed 1,204 °C (2,200 °F) which is<br />

the maximum allowable fuel cladding<br />

temperature. The RCS cool down<br />

strategy through the feed and bleed<br />

operations can guarantee the core<br />

cooling capabilities during the TLOFW<br />

event. The earlier feed and bleed<br />

operation was more effective strategy<br />

<strong>for</strong> removing the decay heat. We also<br />

confirmed that the SPACE code is very<br />

useful code <strong>for</strong> analyzing the multiple<br />

failure accidents in the PWR.<br />

Acknowledgments<br />

This work was supported by the<br />

Korea Institute of Energy Technology<br />

Evaluation and Planning (KETEP)<br />

grant funded by the Korea government<br />

(MOTIE) (No. 20161510101840,<br />

Development of Design Extension<br />

Conditions Analysis and Management<br />

Technology <strong>for</strong> Prevention of Severe<br />

Accident).<br />

References<br />

1. Korea Hydro and <strong>Nuclear</strong> <strong>Power</strong> Co. Ltd., “Development of<br />

Design Extension Conditions Analysis and Management<br />

Technology <strong>for</strong> Prevention of Severe Accident Report”,<br />

September, 2017.<br />

| Fig. 10.<br />

Mass flow rates of SIP and SIT (Case 3).<br />

2. Kwon, Y.M. et al., “Comparative simulation of feed and bleed<br />

operation during the total loss of feedwater event by<br />

RELAP5:MOD3 and CEFLASH-4AS:REM computer codes,<br />

<strong>Nuclear</strong> Technology, Vol. 112, pp. 181– 193, 1995.<br />

3. Kwon, Y.M., Song, J.H., “Feasibility of long term feed and bleed<br />

operation <strong>for</strong> total loss of feedwater event”, <strong>Journal</strong> of Korean<br />

<strong>Nuclear</strong> Society, Vol. 28 (3), pp. 257–264, 1996.<br />

4. Park, R.J. et al., “Detailed evaluation of coolant injection into<br />

the reactor vessel with RCS depressurization <strong>for</strong> high pressure<br />

sequences”, <strong>Nuclear</strong> Engineering and Design, Vol. 239,<br />

pp. 2484–2490, 2009.<br />

5. Pochard, R. et al., “Analysis of a feed and bleed procedure<br />

sensitivity study per<strong>for</strong>med with the SIPACT simulator on a<br />

French 900 MWe NPP”, <strong>Nuclear</strong> Engineering, Des. 215,<br />

pp. 1–14, 2002.<br />

6. Reventós, F. et al., “Analysis of the feed & bleed procedure<br />

<strong>for</strong> the Ascó NPP first approach study <strong>for</strong> operation support”,<br />

<strong>Nuclear</strong> Engineering, Des. 237, pp. 2006–2013, 2007.<br />

7. S. J. Ha et al., “Development of the SPACE Code <strong>for</strong> <strong>Nuclear</strong><br />

<strong>Power</strong> Plants,” <strong>Nuclear</strong> Engineering & Technology, Vol. 43,<br />

No. 1, pp. 45, 2011.<br />

8. Final Safety Analysis Report Hanul 3,4, KHNP.<br />

Authors<br />

MinJeong Kim<br />

Minhee Kim<br />

Junkyu Song<br />

Bongsik Chu<br />

Central Research Institute<br />

Korea Hydro and <strong>Nuclear</strong> <strong>Power</strong><br />

Co., Ltd.<br />

Deajeon, 34101<br />

Rep. of Korea<br />

Jae-Seung Suh<br />

Hyunjin Lee<br />

System Engineering and<br />

Technology Co., Ltd.<br />

Daejeon, 34324<br />

Rep. of Korea<br />

Research and Innovation<br />

Thermal-Hydraulic Analysis <strong>for</strong> Total Loss of Feedwater Event in PWR using SPACE Code ı MinJeong Kim, Minhee Kim, Junkyu Song, Bongsik Chu, Jae-Seung Suh and Hyunjin Lee


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

CFD Simulation of Flow Characteristics<br />

and Thermal Per<strong>for</strong>mance in Circular<br />

Plate and Shell Oil Coolers<br />

Shen Ya-jie, Gao Yong-heng and Zhan Yong-jie<br />

Circular plate and shell heat exchangers were gradually applied as oil coolers. Hence, it was necessary to investigate<br />

their per<strong>for</strong>mance at low Reynolds number with high viscous oil. This paper provided a CFD simulation of flow<br />

characteristic and thermal per<strong>for</strong>mance in circular plate and shell oil cooler with different plate parameters, such as plate<br />

angle β, ratio of plate pitch to height p/h and corrugation styles. The fiction factor f and Colburn factor j were investigated<br />

<strong>for</strong> the various plate parameters. The numerical results showed that f increased with increasing β, and both increased as<br />

p/h decreased. When β


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 30<br />

Re 5-50<br />

domain, as shown in Figure 1 (c).<br />

There are quite a lot of contact points<br />

in the channel. It can enhance bearing<br />

capacity. It is also found that the outlet<br />

of the calculation domain is extended,<br />

which can effectively eliminate backflow.<br />

Table 1 lists the operating conditions<br />

and geometrical parameters,<br />

which are typical used in industrial<br />

application. The range of Reynolds<br />

number is selected in accordance with<br />

experimental condition.<br />

Analytical conditions<br />

β 15°, 30°, 45°, 60°, 75°<br />

l/h 5.0, 3.3, 2.5, 2.0<br />

Corrugation shape<br />

Inclination corrugation,<br />

Chevron corrugation<br />

| Tab. 1.<br />

Operation condition and geometrical parameters.<br />

2.2 Governing equations<br />

In oil loop, Reynolds numbers is low<br />

(5


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

| Fig. 2.<br />

Grid sensitivity analysis.<br />

(a) XY coordinates<br />

| Fig. 3.<br />

A partial view of the final grid.<br />

3 Results and analyses<br />

| Fig. 4.<br />

Comparison of numerical results and experimental data.<br />

(b) ZX coordinates<br />

(a) f with respect to Re<br />

(13)<br />

(b) j with respect to Re<br />

The valid range of the Reynolds<br />

number <strong>for</strong> Eqs.(14) and (15) is from<br />

5 to 50.<br />

Comparison of numerical results<br />

and experimental data is shown as<br />

Figure 4(a) and (b). It is found that<br />

the RNG k-ε model is more suitable<br />

than laminar model in CPSHE. The<br />

related difference of numerical results<br />

of RNG k-ε model and experimental<br />

data is within 15%. It is verified that<br />

the results of simulation is reliable<br />

during Re range from 5 to 50.<br />

RESEARCH AND INNOVATION 31<br />

3.1 Evaluation factors<br />

The friction factor ƒ and Colburn<br />

factor j are respectively considered as<br />

evaluation factors of flow resistance<br />

and heat transfer. JF factor is used to<br />

evaluate the comprehensive per<strong>for</strong>mance<br />

[11-13]. And ƒ, j and JF factors<br />

are respectively defined as:<br />

(9)<br />

(10)<br />

(11)<br />

Where L is the length of the channel,<br />

Nu is the Nusselt number, Pr is the<br />

Prandtl number, μ o is the viscosity of<br />

oil at the average temperature of oil,<br />

μ w is the viscosity of oil at the average<br />

temperature of the wall.<br />

The valid range of the Reynolds<br />

number <strong>for</strong> Eqs.(12) and (13) is from<br />

5 to 50.<br />

Numerical results with varying<br />

inlet flow rate are collected and<br />

analyzed. The criterion equation <strong>for</strong><br />

heat transfer and characteristic<br />

equation <strong>for</strong> flow resistance in the<br />

<strong>for</strong>m of fanning friction coefficient are<br />

obtained <strong>for</strong> the circular corrugated<br />

plate, given as:<br />

(14)<br />

(15)<br />

3.3 Corrugation angle<br />

3.3.1 Bulk flow patterns<br />

Figure 5(a)-(c) display the bulk flow<br />

patterns <strong>for</strong> water with 15°≤β≤75°,<br />

u = 0.35 m/s and Re = 30. When<br />

β


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 32<br />

The zig-zag flow is that flowing fluid is<br />

still mainly in the groove, but turning<br />

points no longer appear in the left and<br />

right sides of the plate, but occur in<br />

corrugation contacts. The bulk flow<br />

pattern is continuous parallel corrugations.<br />

For β=75°, the bulk flow<br />

pattern becomes zig-zag flow. This<br />

phenomenon is in accordance with<br />

the existing literature researches.<br />

Figure 5(d)-(f) shows the bulk<br />

flow patterns <strong>for</strong> oil with 15°≤β≤75°,<br />

u=0.35 m/s and Re=1400. The bulk<br />

flow pattern always remains zig-zag<br />

flow with increasing β. It is not consistent<br />

with that of water.<br />

The bulk flow pattern mainly<br />

depends on driving <strong>for</strong>ce and friction<br />

<strong>for</strong>ce. The driving <strong>for</strong>ce F d comes from<br />

that two sets of working fluid moving<br />

along the grooves on the opposite<br />

plates, one set of working fluid is<br />

effected by the driving <strong>for</strong>ce F d from<br />

(a) β=15°<br />

the other one. The friction <strong>for</strong>ce F f<br />

depends on the viscosity of working<br />

fluid. When the working fluid is low<br />

viscous, it can be ignored.<br />

The viscosity of oil is much bigger<br />

than that of water. The friction <strong>for</strong>ce F f<br />

of oil so big that prevents oil moving<br />

along the groove. In this case, the<br />

driving <strong>for</strong>ce F d can easily drive oil to<br />

turn to the groove of the opposite<br />

plate at corrugation points. As a result,<br />

zig-zag flow comes into being and<br />

remains unchanged with increasing β.<br />

3.3.2 Flow maldistribution<br />

From Figure 6(a)-(c), flow distribution<br />

is displayed as wave shape, and<br />

wave crests appear at x=-0.065 m and<br />

x=0.065 m. Furthermore, the wave<br />

crests become flat with increasing β.<br />

This is because <strong>for</strong> β45°, the component of<br />

F d , along the flow direction, becomes<br />

contrary to the flow direction. It<br />

further hinders oil from moving<br />

along the groove of one plate, which<br />

(c) β=45°<br />

| Fig. 6.<br />

The bulk flow pattern of water and oil with different β.<br />

(d) β=60°<br />

(e) β=75°<br />

(a) ƒ and j factors with respect to β<br />

| Fig. 7.<br />

ƒ, j and JF with 15°≤β≤75° and p/h=5.0.<br />

(b) JF factor with respect to β<br />

Research and Innovation<br />

CFD Simulation of Flow Characteristics and Thermal Per<strong>for</strong>mance in Circular Plate and Shell Oil Coolers ı Shen Ya-jie, Gao Yong-heng and Zhan Yong-jie


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

makes characteristics of zig-zag flow<br />

more substantial. These make catkin<br />

shape become sparse and flow maldistribution<br />

serious.<br />

From Figure 6(a)-(e), the flow<br />

maldistribution is at a minimum with<br />

β=45°. The corrugation points reach<br />

the maximum value. In addition, the<br />

corrugation shape is not very steep,<br />

allowing partial oil moving to the side<br />

of circular corrugation plates possibly.<br />

So flow distribution is improved<br />

obviously, with β=45°.<br />

3.3.3 Flow characteristics and<br />

thermal per<strong>for</strong>mance<br />

Figure 7(a) shows ƒ and j <strong>for</strong> inclination<br />

angles with 15°≤β≤75° and<br />

p/h=5.0. The value of ƒ increases<br />

monotonically with increasing β.<br />

For β60°.<br />

(a) p/h=5.0 (b) p/h=3.3 (c) p/h=2.5 (d) p/h=2.0<br />

| Fig. 8.<br />

Bulk flow patterns <strong>for</strong> p/h=5.0, 3.3, 2.5 and 2.0.<br />

Figure 7(b) shows JF with respect<br />

to β. For Re


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 34<br />

(a) ƒ and j factors<br />

| Fig. 10.<br />

ƒ, j and JF factors with respect to inclination and chevron corrugation.<br />

inclination and chevron corrugations<br />

on the flow characteristics and<br />

thermal per<strong>for</strong>mance. It is mainly<br />

because of their bulk flow pattern –<br />

zig-zag flow. Most of working fluid<br />

turns to the groove of the opposite<br />

plate at corrugation contacts in the<br />

zig-zag flow. So the structure difference<br />

of inclination and chevron corrugations<br />

has barely influence on flow<br />

and heat transfer. There<strong>for</strong>e, ƒ, j and<br />

JF are almost constant.<br />

4 Summary<br />

Comparison between results of<br />

numerical simulations and experimental<br />

data has verified that CFD<br />

simulation is reliable <strong>for</strong> studies on<br />

the corrugation CPSHE. The RNG k-ε<br />

turbulence model has been validated<br />

more preciously than the laminar<br />

model in CPSHE at low Reynolds<br />

number from 5 to 50. The corrugation<br />

inclination angle β, ratio of pitch to<br />

height p/h and corrugation styles<br />

have been taken as major parameters<br />

of the circular corrugated plate<br />

influencing the per<strong>for</strong>mance of heat<br />

transfer. Some conclusions are obtained<br />

as follow:<br />

(1) When Reynolds number is low<br />

( 5-50) and p/h=5, the bulk flow<br />

pattern is zig-zag flow, no matter<br />

how much the corrugation angle<br />

is.<br />

(2) Flow maldistribution exists in<br />

every channel, and it is at a<br />

minimum with β=45°.<br />

(3) The flow resistance and thermal<br />

per<strong>for</strong>mance increases with increasing<br />

β. When β>60°, increasing<br />

rate of thermal per<strong>for</strong>mance is<br />

low. The comprehensive per<strong>for</strong>mance<br />

with β= 45° is the best at<br />

the Re range from 5 to 50.<br />

(4) The flow resistance and thermal<br />

per<strong>for</strong>mance decreases with<br />

reducing p/h. The comprehensive<br />

per<strong>for</strong>mance with p/h=3.3 is<br />

the best.<br />

(5) There is nearly no difference<br />

between inclination and chevron<br />

corrugations in CPSHE at low<br />

Reynolds number.<br />

Nomenclature<br />

ɑ [m 2 /s] Coefficient of thermal Diffusion<br />

B [m] Plate width<br />

De [m] Hydraulic diameter<br />

Ƒ [-] Friction factor<br />

G k [-] Generation of turbulence kinetic energy<br />

H [m] Corrugation height<br />

I [-] Turbulence intensity<br />

J [-] Colburn factor<br />

L [m] Corrugation length<br />

Nu [-] Nusselt number<br />

P, ΔP [kPa] Pressure, Pressure drop<br />

Pr [-] Prandtl number<br />

T [K] Temperature<br />

u [m/s] Fluid velocity<br />

v [m 2 /s] Kinematic viscosity<br />

Greek symbols<br />

Α [-] Turbulence Prandtl number<br />

β [°] Inclination angle<br />

Ρ [kg/m 3 ] Density<br />

Subscripts<br />

ε [-] ε equation<br />

k [-] k equation<br />

1 [-] x-component<br />

2 [-] y-component<br />

3 [-] z-component<br />

o, w [-] Lubricating-oil, wall<br />

References<br />

[1] W.W. Focke, P.G. Knibbe, Flow visualization in parallel-plate<br />

ducts with corrugated walls, J. Fluid Mech., 165 (1986):<br />

73–77.<br />

[2] G. Gaiser, V. Kottke, Flow phenomena and local heat and mass<br />

transfer in corrugated passages, Chem. Eng. Technol., 12<br />

(1989):400–405.<br />

[3] A. Muley, R.M. Manglik, Experimental study of turbulent flow<br />

heat transfer and pressure drop in a plate heat exchanger with<br />

chevron plates, <strong>Journal</strong> of Heat Transfer, 121(1999):110-117.<br />

[4] W.W. Focke, J. Zachariades, I. Olivier, The effect of the<br />

corrugation inclination angle on the thermo hydraulic<br />

per<strong>for</strong>mance of plate heat exchangers, Int. J. Heat Mass Transfer<br />

28 (1985): 1469–1479.<br />

[5] A.G. Kanaris, A.A. Mouza, S.V. Paras, Flow and heat transfer<br />

prediction in a corrugated plate heat exchanger using a CFD<br />

code, Chem. Eng. Technol., 8 (2006): 923-930.<br />

[6] J. Lee, K.S. Lee, Flow characteristic and thermal per<strong>for</strong>mance in<br />

chevron type plate heat exchangers, <strong>International</strong> <strong>Journal</strong> of<br />

Heat and Mass Transfer., 78(2014): 699-706.<br />

[7] W. Li, H.X. Li, G.Q. Li, Numerical and experimental analysis<br />

of composite fouling in corrugated plate heat exchangers.<br />

<strong>International</strong> <strong>Journal</strong> of Heat and Mass Transfer, 63 (2013):<br />

351-360.<br />

[8] S.M. Lee, K.Y. Kim, Thermal per<strong>for</strong>mance of a double-faced<br />

printed circuit heat exchanger with thin plates, <strong>Journal</strong> of<br />

Thermophysics and Heat Transfer, 28 (2014): 251-257.<br />

[9] Z.J. Luan, G.M. Zhang, Flow resistance and heat transfer characteristics<br />

of a new-type plate heat exchanger.<br />

<strong>Journal</strong> of Hydrodynamics, 20 (2008): 524-529.<br />

[10] V. Yakhot, S.A. Orczag, Renormalization group analysis of<br />

turbulence, Basic theory. Scient. Comput, 1 (1986): 3-11.<br />

[11] J.Y. Yun, K.S. Lee, Influence of design parameters on the<br />

heat transfer and flow friction characteristics of the heat<br />

exchanger with slit fins, Int. J. Heat Mass Transfer, 43 (2000):<br />

2529–2539.<br />

[12] M.S. Kim, J. Lee, Correlations and optimization of a heat<br />

exchanger with offset-strip fins, Int. J. Heat Mass Transfer,<br />

54 (2011): 2073–2079.<br />

[13] J. Lee, K.S. Lee, Correlations and shape optimization in a<br />

channel with aligned dimples and protrusions, Int. J. Heat<br />

Mass Transfer, 64 (2013): 444–451.<br />

Authors<br />

(b) JF factor<br />

Shen Ya-jie<br />

Gao Yong-heng<br />

Zhan Yong-jie<br />

CNNP <strong>Nuclear</strong> <strong>Power</strong> Operations<br />

Management Co Ltd<br />

Jiaxing, China<br />

Research and Innovation<br />

CFD Simulation of Flow Characteristics and Thermal Per<strong>for</strong>mance in Circular Plate and Shell Oil Coolers ı Shen Ya-jie, Gao Yong-heng and Zhan Yong-jie


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Research on Neutron Diffusion and<br />

Thermal Hydraulics Coupling Calculation<br />

based on FLUENT and its Application<br />

Analysis on Fast Reactors<br />

Xuebei Zhang, Chi Wang and Hongli Chen<br />

The neutron diffusion equation is defined based on the User Defined Function (UDF) and the User Defined Scalar<br />

(UDS) functions of the FLUENT. The neutron diffusion equation is solved iteratively by using the solver of the FLUENT<br />

with the Finite Volume Method (FVM). At the same time, the mass, momentum and energy equations are solved<br />

iteratively. At each iteration, the power distribution (flux distribution) obtained by the iteration of the neutron diffusion<br />

equation is transferred to the thermal-hydraulics calculation and is used as the heat source term. At the same time, the<br />

temperature distribution obtained from the thermal-hydraulics calculation is transferred to the neutron diffusion<br />

calculation and the macroscopic cross sections of the materials are corrected to realize the coupling calculation of the<br />

neutron diffusion and the thermal-hydraulics under the same solver of the FLUENT without needing to develop the<br />

interface program and the computational cost is saved. 2D-TWIGL benchmark problem is calculated by the FLUENT<br />

solver to verify the feasibility <strong>for</strong> the neutron diffusion. Through the modeling and calculation of the 5 x 5 PWR assembly<br />

model, the calculation results are compared with the results of other programs to verify the feasibility of the coupling<br />

method and the correctness of data transfer. Then this coupling method is applied to calculate the hot assembly of a<br />

modular lead-cooled fast reactor (M 2 LFR-1000) to verify that the thermal-hydraulics characteristics (the maximum<br />

fuel temperature and the maximum cladding outer surface temperature) are all within the corresponding thermalhydraulics<br />

design limits.<br />

RESEARCH AND INNOVATION 35<br />

Key words: neutron diffusion and<br />

thermal- hydraulics coupling; UDF<br />

and UDS functions; 5 x 5 PWR<br />

assembly; M 2 LFR-1000 hot assembly.<br />

Traditionally, the best estimation<br />

procedure is generally used in reactor<br />

design and reactor safety analysis.<br />

With the improvement of computer<br />

per<strong>for</strong>mance and the development of<br />

parallel computing, the high confidence<br />

simulation of reactor has been<br />

paid more attention in the research of<br />

reactor design, scheme optimization<br />

and safety analysis. Only by considering<br />

the multi-physical feedback<br />

in reactor simulation, can high confidence<br />

simulation be realized. And<br />

the neutron diffusion and thermalhydraulics<br />

coupling calculation is an<br />

important part of multi-physics<br />

coupling calculation [1-2]. The actual<br />

operation of the reactor is a process<br />

of neutrons and thermal reciprocal<br />

feedback. Temperature coefficient<br />

(fuel temperature coefficient and<br />

moderator temperature coefficient) is<br />

an important factor <strong>for</strong> reactivity<br />

control in normal operation of reactor<br />

[3]. To achieve accurate calculation of<br />

reactor operation and transient conditions,<br />

the effects of fuel temperature,<br />

moderator temperature and<br />

density on local neutron flux and<br />

system reactivity must be considered.<br />

Computational Fluid Dynamics<br />

(CFD) program FLUENT can realize<br />

the fine simulation of reactor core and<br />

fuel assembly by coupling the mass<br />

continuity equation, momentum<br />

equation and energy conservation<br />

equation. The UDS (User Defined<br />

Scalar) in the FLUENT can solve a kind<br />

of diffusion equation by using the<br />

solver in Fluent. It has been widely<br />

used in multi-phase flow coupling<br />

calculation and flow-field and electric<br />

field coupling calculation. H.G.Wang,<br />

W.Q.Yang, P.Senior [4] used the UDS<br />

to add the water diffusion equation in<br />

air and solid phase to FLUENT. And the<br />

hydrodynamic parameters of heat and<br />

mass transfer between two phases<br />

were added to the UDF of FLUENT<br />

to simulate the complex gas-solid<br />

multi phase process of batch fluidized<br />

bed drying. P. Donoso- GarcaL, L.<br />

Henrquez- Vargas [5] used the twodimensional<br />

numerical simulation<br />

method to simulate the turbulent state<br />

of the adiabatic regenerative porous<br />

medium burner coupled with thermoelectric<br />

components. The time and<br />

volume averaged transport equation<br />

and the two order turbulence model<br />

were adopted. The FLUENT was used<br />

to simulate the burner through its UDF<br />

(user-defined function) and UDS<br />

(user- defined scalar) interface to<br />

obtain additional terms involving<br />

turbulence and thermal energy. The<br />

flow field and electric field were<br />

calculated considering the effects<br />

of inlet velocity and composition,<br />

thermal conductivity of porous media<br />

and thermal insulation materials on<br />

the burner. Y. Liu, Y. P. Liu, S. M. Tao<br />

[6] established a three-dimensional<br />

(3D) unsteady mathematical model of<br />

alumina ball regenerator, and solved<br />

it by commercial computational fluid<br />

dynamics (CFD) software FLUENT<br />

based on the porous medium hypothesis.<br />

The standard K-e turbulence<br />

model was combined with standard<br />

wall function to simulate gas flow<br />

and the momentum equation was<br />

modified to consider the effect of<br />

porous media on fluid flow. The user<br />

defined function (UDF) program was<br />

programmed in C language and<br />

connected with FLUENT. The userdefined<br />

scalar (UDS) transfer equation<br />

of solid energy conservation was<br />

defined. And the heat transfer and<br />

thermo-physical properties between<br />

gas and solid phases were calculated.<br />

J. Jang, H. Arastoopour [7] used<br />

ANSYS/FLUENT computational fluid<br />

dynamics (CFD) program to simulate<br />

the gas-solid two-phase flow pattern,<br />

the mixing and drying process of drug<br />

particles in three different scales of<br />

bubbling fluidized bed dryers. The<br />

capacity of water transfer and<br />

simulation of drying process was<br />

calculated. The user-defined scalar<br />

transfer equation (UDS) was added to<br />

FLUENT to simulate the flow pattern<br />

and heat and mass transfer process<br />

of drug drying process based on bubbling<br />

fluidized bed. Based on the UDF<br />

(User Defined Function) and UDS<br />

(User Defined Scalar) functions of<br />

FLUENT, Xi’an Jiaotong University<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 36<br />

| Fig. 1.<br />

The flow chart of coupling calculation.<br />

developed the TASNAM program [8],<br />

which is mainly used <strong>for</strong> numerical<br />

calculation of neutron diffusion in<br />

molten salt reactor. Based on the<br />

user interface programming function<br />

of commercial software CFX,<br />

Naval Engineering University added<br />

three-dimensional space-time neutron<br />

dynamics model, coupled with<br />

CFD thermal-hydraulics, and simulated<br />

the local three- dimensional flow<br />

behavior and three- dimensional physical<br />

characteristics of PWR under<br />

steady state [9].<br />

Based on UDF and UDS functions<br />

of FLUENT, this paper defines the<br />

neutron diffusion equation and uses<br />

the modeling tool (GAMBIT) and<br />

solver in FLUENT to solve the neutron<br />

diffusion equation iteratively, and<br />

carries out thermal-hydraulics calculation<br />

at the same time. In each<br />

iteration, thermal power is transferred<br />

to thermal- hydraulics calculation by<br />

solving neutron diffusion equation.<br />

The temperature obtained by thermalhydraulics<br />

calculation is transferred to<br />

the neutron diffusion calculation, and<br />

the macroscopic cross sections of the<br />

materials ware modified until the<br />

convergence of the iterative calculation<br />

of neutron diffusion equation<br />

and thermal-hydraulics iteration is<br />

achieved. The iterative flow chart of<br />

coupling calculation is shown by<br />

Figure 1. In order to verify the<br />

correctness of the coupling calculation<br />

method and data transfer, the<br />

5 x 5 PWR assembly model [10] is<br />

modeled and calculated, and the<br />

results are compared with other<br />

coupling programs. Then the hot<br />

assembly of the M 2 LFR-1000 [11] is<br />

modeled and calculated. And the<br />

neutron flux, temperature distri bution<br />

and the thermal-hydraulics characteristics<br />

(the maximum fuel temperature<br />

and the maximum cladding outer<br />

surface temperature) on the steady<br />

state has good agreement with the<br />

results calculated by sub-channel<br />

program (KMC-SUB) [12]. In this<br />

paper, the calculation method and<br />

mathematical model are introduced<br />

in the section 2. Section 3 describes<br />

the calculation of 2D-TWIGL [13]<br />

benchmark problem by the FLUENT<br />

solver. And the section 4 describes the<br />

coupling calculation of 5 x 5 PWR<br />

assembly. The calculation method is<br />

applied to the hot assembly of the<br />

M 2 LFR-1000 in section 5. Section 6<br />

summarizes the general conclusion.<br />

2 Calculation method and<br />

mathematical model<br />

2.1 The UDS module<br />

of the FLUENT<br />

The UDS module of the FLUENT can<br />

define a kind of equation and solve it<br />

by the inner solver with the finite<br />

volume method. The <strong>for</strong>m is shown in<br />

<strong>for</strong>mula (1):<br />

<br />

(1)<br />

The definitions of equations in the<br />

FLUENT are shown in Table 1.<br />

The transient neutron diffusion<br />

equation is shown in equation (2):<br />

(2)<br />

The first term on the left side of the<br />

equation (2) is unsteady state term,<br />

the second term on the left side is<br />

diffusion term, and the term on the<br />

right side of the equation is the source<br />

term.<br />

For steady state calculation, the<br />

unsteady term in the equation is<br />

neglected. And the equation is shown<br />

in equation (3):<br />

(3)<br />

For the equation (3), φ g (r) represents<br />

the neutron flux, unit cm -2 s -1 , represents<br />

the neutron diffusion coefficient,<br />

unit cm, ∑ f represents the macro scopic<br />

fission cross section, the unit is cm -1 ,<br />

Name Expression Definition Corresponding functions in UDS<br />

Unsteady-state term Discrete <strong>for</strong>m of unsteady state term DEFINE_UDS_UNSTEADY<br />

Convection term Flux ( ) DEFINE_UDS_FLUX<br />

Diffusion term Diffusivity (Γ(T)) DEFINE_DIFFUSIVITY<br />

Boundary condition Value ( ) Specified Value<br />

Flux ( ) Specified Flux<br />

| Tab. 1.<br />

Definition of equation in the UDS of FLUENT.<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

∑ g'→g represents the macroscopic<br />

transfer cross section, the unit is cm -1 ,<br />

∑ r represents the macroscopic removal<br />

cross section, the unit is cm -1 , v<br />

represents the average number of<br />

neutrons emitted per fission, χ g represents<br />

the fission spectrum.<br />

The effective multiplication factor<br />

is calculated by equation (4):<br />

<br />

(4)<br />

2.2 Numerical Method [14]<br />

Finite Volume Method (FVM) is<br />

widely used in CFD methodology to<br />

discretize governing equations and is<br />

adopted by almost all the popular CFD<br />

softwares. FLUENT converts a general<br />

transport equation to an algebraic<br />

equation using a control-volumebased<br />

technique which consists of<br />

integrating the general transport<br />

equation on each discrete control<br />

volume. For a general scalar, ϕ the<br />

integral <strong>for</strong>m of a transport equation<br />

on a control volume V can be illustrated<br />

as follows [15]:<br />

(5)<br />

Where ρ is density, Γ ϕ is the effective<br />

diffusion coefficient <strong>for</strong> the scalar ϕ,<br />

S ϕ is the source term of ϕ per unit<br />

volume.<br />

Applying Equation (5) to each<br />

control volume, the discretization<br />

equation on each given cell is:<br />

(6)<br />

Where N is the number of the faces<br />

enclosing a cell; ϕ f is the value of ϕ at<br />

the cell face, A f is the surface area<br />

vector, which means that its direction<br />

is normal to the surface and | → A f | is<br />

the area of the surface, ∇ ϕ f is the<br />

gradient of ϕ at the face f and V is the<br />

cell volume. The equations given<br />

above can be applied to multidimensional,<br />

unstructured meshes composed<br />

of arbitrary polyhedral in<br />

FLUENT.<br />

For the steady state neutron<br />

diffusion equation (3), applying equation<br />

(6) to each control volume, the<br />

discretization equation on each given<br />

cell is:<br />

(7)<br />

Region Group D g (cm -1 ) ∑ a,g (cm -1 ) υ∑ f,g (cm -1 ) ∑ 1→2 (cm -1 )<br />

1 1 1.4 0.01 0.007 0.01<br />

2 0.4 0.15 0.2<br />

2 1 1.4 0.01 0.007 0.01<br />

2 0.4 0.15 0.2<br />

3 1 1.3 0.008 0.003 0.01<br />

2 0.5 0.05 0.006<br />

| Tab. 2.<br />

Section parameter3 of 2D-TWIGL.<br />

2.3 Thermal-hydraulics<br />

calculation model<br />

The energy equation of coolant region<br />

is shown in equation (8):<br />

(8)<br />

The equation of heat conduction in<br />

fuel area is shown in equation (9):<br />

(9)<br />

(10)<br />

<br />

γ is the release energy of each fission.<br />

The heat conduction equation of the<br />

cladding and gap is shown in equation<br />

(11), (12) respectively:<br />

(11)<br />

(12)<br />

2.4 Material macroscopic cross<br />

section library<br />

Under the condition of knowing<br />

nuclear density and considering the<br />

energy group emerging and the<br />

influence of temperature on material<br />

density, the nuclear database program<br />

[16] developed by the author’s<br />

research group calculates one set of<br />

group-wise neutronics parameters<br />

including the group-wise macroscopic<br />

cross sections, the diffusion coefficients<br />

(D g ), the neutron fission yields<br />

(ν g ) and the fission spectrum (χ g ) at<br />

400 K, 500 K, 600 K, 700 K, 800 K,<br />

900 K, 1000 K, 1100 K, 1200 K, 1300 K,<br />

1400 K, 1500 K and 1600 K of fuel, air<br />

gap, cladding and coolant. The continuous<br />

macroscopic cross sections<br />

at 400 K to 1600 K of materials can get<br />

through interpolation [17]. Then, the<br />

macroscopic cross-section distribution<br />

functions of temperature simply<br />

shown by equation (13) are added to<br />

FLUENT solver through UDF, and the<br />

macroscopic cross-section of each<br />

grid is updated by reading the new<br />

temperature distribution of each grid<br />

after each iteration.<br />

(13)<br />

3 Validation of the FLUENT<br />

solver <strong>for</strong> neutron<br />

diffusion<br />

In this section, calculation results <strong>for</strong><br />

2D-TWIGL benchmark problem are<br />

presented and compared with reference<br />

values to prove that the FLUENT<br />

solver is feasible to solve the neutron<br />

diffusion based on the UDS and UDF<br />

function. The meshes adopted in this<br />

paper are generated by the general<br />

mesh generation tool Gambit. The<br />

mesh independent solutions are<br />

obtained but not presented here.<br />

3.1 2D-TWIGL seed blanket<br />

problem<br />

The 2D-TWIGL benchmark problem is<br />

a simplified neutron kinetics model<br />

with two neutron energy groups and<br />

one delayed neutron precursor family.<br />

A steady state calculation and two<br />

transient calculations are included in<br />

this problem.<br />

The reactor core is a 160 cm square<br />

consisting of three regions including<br />

(1) perturbed seed region containing<br />

primary fissile materials with timedependent<br />

properties in the transient<br />

situation; (2) unperturbed seed<br />

regions containing primary fissile<br />

materials with constant properties in<br />

the transient situation; (3) a blanked<br />

region also containing fissile materials<br />

surrounding the whole core. Due to<br />

the symmetry, one quadrant of the<br />

reactor is modeled <strong>for</strong> the calculation,<br />

as displayed in Figure 2. The group<br />

constants are given in Table 2.<br />

| Fig. 2.<br />

2D-TWIGL 1/4 core model.<br />

RESEARCH AND INNOVATION 37<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 38<br />

| Fig. 3.<br />

Meshes of the 2D-TWIGL by the solver<br />

of FLUENT.<br />

Mesh size is 0.1 cm and meshes are<br />

produced by GAMBIT, a part of the<br />

meshes is shown by Figure 3.<br />

3.2 Result analysis<br />

The results obtained by the FLUENT<br />

solver are in good agreement with<br />

the reference values. The effective<br />

multiplication factor calculated under<br />

steady state is 0.913306, which is very<br />

close to the reference value 0.913214.<br />

The relative error is 10 pcm. Figure 4<br />

and Figure 5 shows the fast and<br />

thermal neutron flux distributions on<br />

the diagonal line of the calculation<br />

domain respectively. Figure 6 shows<br />

the comparison between the normalized<br />

power and reference value of<br />

the calculated assemblies. We can find<br />

that the errors mainly occur on the<br />

boundary and the interface of different<br />

materials.<br />

4 Validation of the<br />

coupling method<br />

4.1 Model introduction<br />

In this paper, the neutron diffusion<br />

and thermal-hydraulics coupling<br />

R<br />

C<br />

(%)<br />

1.258<br />

1.250<br />

-0.635<br />

1.321<br />

1.342<br />

1.5897<br />

1.293<br />

1.301<br />

0.6187<br />

1.198<br />

1.194<br />

-0.333<br />

1.259<br />

1.264<br />

0.3971<br />

1.243<br />

1.250<br />

0.5631<br />

2.187<br />

2.195<br />

0.3657<br />

2.350<br />

2.352<br />

-0.085<br />

2.380<br />

2.378<br />

-0.084<br />

2.373<br />

2.372<br />

-0.042<br />

1.870<br />

1.878<br />

0.4278<br />

2.033<br />

2.044<br />

0.5410<br />

2.123<br />

2.132<br />

0.4221<br />

2.161<br />

2.172<br />

0.5090<br />

2.176<br />

2.187<br />

0.5055<br />

calculation method based on UDF and<br />

UDS functions of the FLUENT is used<br />

to calculate the 5 x 5 PWR assembly<br />

model. The thermo-physical properties<br />

of the materials are given by Table<br />

3, the model structure and parameters<br />

are given by Figure 7 and Table 4,<br />

and the change of coolant density and<br />

specific heat with tem perature is given<br />

by equation (14) and equation (15).<br />

1.380<br />

1.3801<br />

0.0072<br />

1.614<br />

1.617<br />

0.1858<br />

1.779<br />

1.783<br />

0.2248<br />

1.883<br />

1.888<br />

0.2655<br />

1.961<br />

1.945<br />

-0.815<br />

1.967<br />

1.971<br />

0.2033<br />

0.948<br />

0.936<br />

-1.265<br />

1.148<br />

1.138<br />

-0.871<br />

1.350<br />

1.339<br />

-0.814<br />

1.500<br />

1.488<br />

-0.800<br />

1.602<br />

1.589<br />

-0.811<br />

1.663<br />

1.649<br />

-0.841<br />

1.691<br />

1.676<br />

-0.887<br />

0.260<br />

0.2593<br />

-0.269<br />

0.343<br />

0.340<br />

-0.874<br />

0.432<br />

0.427<br />

-1.157<br />

0.509<br />

0.503<br />

-1.178<br />

0.568<br />

0.561<br />

-1.232<br />

0.609<br />

0.602<br />

-1.149<br />

0.635<br />

0.628<br />

-1.102<br />

0.647<br />

0.639<br />

-1.236<br />

0.093<br />

0.092<br />

-1.075<br />

0.157<br />

0.1566<br />

-0.254<br />

0.220<br />

0.2198<br />

-0.090<br />

0.279<br />

0.278<br />

-0.358<br />

0.329<br />

0.328<br />

-0.303<br />

0.368<br />

0.367<br />

-0.271<br />

0.396<br />

0.395<br />

-0.252<br />

0.414<br />

0.412<br />

-0.483<br />

0.422<br />

0.420<br />

-0.473<br />

0.010<br />

0.0099<br />

-1.000<br />

0.030<br />

0.0302<br />

0.666<br />

0.051<br />

0.0517<br />

1.3725<br />

0.072<br />

0.0716<br />

-0.555<br />

0.091<br />

0.0906<br />

-0.439<br />

0.108<br />

0.107<br />

-0.925<br />

0.121<br />

0.120<br />

-0.826<br />

0.130<br />

0.129<br />

-0.769<br />

0.136<br />

0.134<br />

-1.470<br />

0.139<br />

0.137<br />

-1.438<br />

| Fig. 6.<br />

Normalized power diagram <strong>for</strong> 2D-TWIGL assemblies.<br />

| Fig. 4.<br />

Fast neutron flux.<br />

| Fig. 7.<br />

Radial and axial Geometric structure<br />

of the assembly.<br />

| Fig. 8.<br />

Radial mesh of the 5 x 5 assembly fuel rod.<br />

| Fig. 5.<br />

Thermal neutron flux.<br />

| Fig. 9.<br />

Radial mesh of the 5 x 5 assembly.<br />

| Fig. 10.<br />

Mesh quality check.<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Materials<br />

Density<br />

(g/cm3)<br />

| Tab. 3.<br />

Thermal properties of the assembly materials.<br />

Thermal conductivity<br />

(W/m.K)<br />

Specific heat capacity<br />

(J/kg.K)<br />

Fuel (UO2) 10.3 3.0 310<br />

Cladding (Zircaloy-2) 6.5 11.0 330<br />

Viscosity<br />

(Pa.s)<br />

Coolant (Water) 0.53 0.00009177<br />

Gap (Helium) 0.0001625 0.152 5193<br />

Fuel pin radius<br />

Cladding inner radius<br />

Cladding outer radius<br />

Pitch<br />

Fuel height<br />

Bottom reflector height<br />

Top reflector height<br />

Fuel<br />

Coolant<br />

4.1 mm<br />

4.2 mm<br />

4.8 mm<br />

12.5 mm<br />

3 m<br />

0.2 m<br />

0.2 m<br />

UOX<br />

(2 %, 4 %<br />

enrichment)<br />

Water,<br />

1000 ppm<br />

boron<br />

RESEARCH AND INNOVATION 39<br />

Gap<br />

Cladding<br />

<strong>Power</strong><br />

Helium,<br />

0.1 MPa<br />

Zircaloy-2<br />

12.5 MW<br />

| Fig. 11.<br />

Axial power density distribution the fuel rod center.<br />

Energy group 2<br />

Energy boundary<br />

0.625 eV<br />

| Tab. 4.<br />

Size and material parameters of the assembly.<br />

4.2 Modeling and<br />

mesh generation<br />

The gambit is used to model and mesh<br />

the fuel assembly model of 5 x 5 PWR.<br />

The radial mesh of fuel rod is shown<br />

in Figure 8. The radial mesh of fuel<br />

assembly is shown in Figure 9. The<br />

same meshes are used <strong>for</strong> neutron<br />

diffusion and thermal-hydraulics<br />

calculation. The axial mesh size is<br />

0.1 m and the total mesh number of<br />

the assembly model is 3.10E+06. The<br />

mesh quality checking tool in the<br />

Gambit is used to check the assembly<br />

meshes. As shown in Figure 10, there<br />

are 99.32 % of the meshes whose<br />

EquiSize Skew ranges from 0 to 0.4.<br />

| Tab. 5.<br />

Boundary conditions of the coupling calculation of the 5 x 5 assembly.<br />

4.3 Boundary conditions<br />

The coupled calculation boundary<br />

conditions are shown in Table 5.<br />

4.4 Calculation results and<br />

analysis<br />

The reference value of effective multiplication<br />

factor of the module is<br />

1.17109 [10], and the effective multiplication<br />

factor calculated in this<br />

paper is 1.17100. Figure 11 shows the<br />

axial power density distribution of<br />

fuel rod center with 2 % and 4 %<br />

enrichment when the neutron diffusion<br />

and thermal- hydraulics calculation<br />

converge. The blue and black<br />

Field Boundary Type Value<br />

Temperature (T) Inlet Constant value 540 K<br />

Outlet<br />

Zero gradient<br />

Neutron flux (f) Inlet Extrapolation boundary Gradient on boundary<br />

Outlet Extrapolation boundary Gradient on boundary<br />

Pressure (P) Inlet Zero gradient<br />

Outlet Constant value 15.5 MPa<br />

Velocity (U) Inlet Constant value (0,0,3) m/s<br />

Outlet<br />

Zero gradient<br />

(kg/m 3 ) (14)<br />

(J/kg.K) (15)<br />

points are the results of other coupling<br />

programs. The red and green lines<br />

are the results of this paper. The<br />

maximum power density of the 4 %<br />

en richment fuel rod center is about<br />

4.25E8 W/m 3 and the maximum<br />

power density of the 2 % enrichment<br />

fuel rod center is about 2.50E+08 W/<br />

m 3 in this paper. And the reference<br />

maximum power density of the 4 %<br />

enrichment fuel rod center is about<br />

4.178E+08 W/m 3 and the reference<br />

maximum power density of the 2 %<br />

enrichment fuel rod center is about<br />

2.45E+08 W/m 3 .<br />

It can be seen from Figure 11 that<br />

the calculation deviation is mainly at<br />

the inlet and outlet of the assembly<br />

model. The reference value of the<br />

power density increases slightly at the<br />

inlet and outlet of the assembly, which<br />

is mainly due to the influence of the<br />

upper and lower reflectors, which<br />

make some neutrons be reflected into<br />

the fuel area, then cause a slight<br />

increase of the power density. In this<br />

paper, the influence of the upper and<br />

lower reflectors is neglected due<br />

to considering the convenience of<br />

modeling and meshing by the Gambit.<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 40<br />

| Fig. 12.<br />

Temperature distribution of fuel rod<br />

outer diameter.<br />

| Fig. 13.<br />

Temperature distribution of fuel<br />

cladding inner diameter.<br />

Figure 12 gives the temperature<br />

distribution of the fuel pellet outer<br />

diameter, Figure 13 gives the temperature<br />

distribution of the fuel cladding<br />

inner diameter, Figure 14 gives the<br />

temperature distribution of the fuel<br />

cladding outer diameter and Figure<br />

15 gives the temperature distribution<br />

of the assembly inlet and outlet.<br />

Figure 16 shows the axial coolant<br />

temperature distribution of the adjacent<br />

fuel rod center and diagonal fuel<br />

rod center, Figure 17 shows the<br />

temperature distribution along the X<br />

axis direction (z=0.0 m, y=0.0 m,<br />

| Fig. 14.<br />

Temperature distribution of fuel<br />

cladding outer diameter.<br />

z=0.0 m is symmetry axis). And they<br />

are all compared with reference<br />

values calculated by other coupling<br />

programs and in good agreement with<br />

them. The maximum temperature of<br />

the 4 % enrichment fuel rod center is<br />

1506.97 K, and the maximum temperature<br />

of the 2 % enrichment fuel<br />

rod center is 1066.42 K. And the<br />

reference maximum temperature<br />

of the 4 % enrichment fuel rod center<br />

is 1502.22 K, and the reference<br />

maximum temperature of the 2 % enrichment<br />

fuel rod center is 1047.60 K.<br />

Through the coupling calculation of<br />

| Fig. 16.<br />

Axial coolant temperature distribution of the contiguous fuel rod center and diagonal fuel rod center.<br />

| Fig. 17.<br />

Temperature distribution in the X axis direction (z = 0.0 m, y = 0.0 m).<br />

| Fig. 15.<br />

Temperature distribution of assembly<br />

inlet and outlet.<br />

the 5 x 5 PWR assembly, it is proved<br />

that this coupling method is feasible<br />

and the data transfer is correct.<br />

5 Application of the<br />

coupling method<br />

The coupling calculation of 5 x 5 PWR<br />

assembly model proves that it is<br />

feasible to realize the coupling calculation<br />

of neutron diffusion and<br />

thermal- hydraulics by utilizing UDF<br />

and UDS functions of FLUENT. Now<br />

the M 2 LFR-1000 hot assembly model<br />

is calculated by this coupling method.<br />

5.1 Model description<br />

M 2 LFR-1000 is a modular lead-cooled<br />

fast reactor. The structure of components<br />

and fuel rods is given by<br />

Figure 18 and Figure 19 respectively.<br />

The fuel rods in the core fuel assembly<br />

are arranged in a regular triangular<br />

matrix, and the bundles are hexagonal.<br />

The bundles are wrapped in the<br />

assembly box with a thickness of<br />

4 mm. The distance between the fuel<br />

rods is 14 mm. Each fuel assembly<br />

contains 169 fuel rods. The inner<br />

margin of the fuel assembly box is<br />

185 mm, the outer margin is 193 mm,<br />

and the component center distance is<br />

198 mm. The core of the fuel pellet has<br />

a central hole with a diameter of<br />

1.9 mm, which can reduce the core<br />

temperature and improve the core<br />

safety margin under the condition of<br />

the same linear power density of the<br />

fuel rod. The outer diameter of the<br />

fuel pellets is 8.6 mm, and the MOX<br />

fuel is added with a small amount of<br />

MA or without MA.<br />

There is a gap of 0.15 mm between<br />

fuel pellet and cladding, which is filled<br />

with He of ~0.5 MPa. The gas pressure<br />

is higher than the operating<br />

pressure of the primary circulation.<br />

This can improve the gap heat conduction<br />

between fuel pellet and cladding<br />

and provide inert environment.<br />

On the other hand, it can prevent<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

| Fig. 18.<br />

Fuel assembly cross section (unit: mm).<br />

| Fig. 19.<br />

Fuel rod cross section.<br />

Nuclide<br />

Nucleon density<br />

(b - cm - )<br />

| Tab. 6.<br />

The nuclide composition of the FMS T91.<br />

Nuclide<br />

| Tab. 7.<br />

Boundary conditions of the coupling calculation of the M 2 LFR-1000 assembly.<br />

Nucleon density<br />

(b -1 cm -1 )<br />

C 3.8900E-04 N 1.6600E-04<br />

Cr 7.8690E-03 P 3.0200E-05<br />

Ni 1.5948E-04 S 7.2845E-06<br />

Mn 3.8300E-04 Cu 7.3600E-05<br />

Mo 4.6270E-04 V 1.9700E-04<br />

Si 5.8230E-04 Al 6.9300E-05<br />

Nb 4.0200E-05 Fe 7.4232E-02<br />

Field Boundary Type Value<br />

Temperature (T) Inlet Constant value 673 K<br />

Neutron flux (f) Outlet Extrapolation boundary Gradient on boundary<br />

Inlet Extrapolation boundary Gradient on boundary<br />

Pressure (P) Outlet Constant value 101 kPa<br />

Velocity (U) Inlet Constant value (0,0,1.66) m/s<br />

RESEARCH AND INNOVATION 41<br />

cladding from contacting with pellet<br />

due to external pressure and creep<br />

collapse. The cladding damage can<br />

also be tested. The fuel cladding is<br />

FMS T91 with thickness of 0.55 mm,<br />

the diameter of the whole fuel rod is<br />

10.0 mm, and the length of the active<br />

zone of the fuel rod is 1000 mm.<br />

FMS T91 with good comprehensive<br />

per<strong>for</strong>mance is selected as the core<br />

structure and cladding material.<br />

The nuclide composition of FMS T91<br />

is shown in Table 6 [18]. And the<br />

coolant is Pb.<br />

The temperature of core inlet coolant<br />

is set as 673.15 K and the temperature<br />

of core outlet coolant is set<br />

as 753.15 K. Under all operational<br />

con ditions including design basis<br />

accidents (DBAs), the maximum fuel<br />

pellet temperature should be lower<br />

than 2946.15 K [19]. Under normal<br />

con ditions, the maximum cladding<br />

temperature should be lower than<br />

823.15 K [20] with sufficient safety<br />

margin.<br />

Considering the computational<br />

cost, the 1/6 assembly is selected to<br />

be modeled and calculated. The<br />

assembly is the hot assembly and the<br />

power is 3.6 MW. The M 2 LFR-1000<br />

assembly is modeled and meshed by<br />

the Gambit. The axial mesh size is<br />

0.05 m, and the total mesh number is<br />

3.40E+06. The radial mesh of the fuel<br />

rod and the assembly are shown by<br />

Figure 20 and Figure 21 respectively.<br />

The meshes are checked by Gambit’s<br />

grid quality checking tool. There are<br />

96.67 % of meshes whose EquiSize<br />

Skew ranges from 0 to 0.4.<br />

| Fig. 20.<br />

Radial mesh of the M 2 LFR-1000 fuel rod.<br />

5.3 Boundary conditions and<br />

properties of the materials<br />

[21]<br />

The boundary conditions are showed<br />

by Table 7.<br />

5.4 Calculation results and<br />

analysis<br />

Figure 22 and Figure 23 show the<br />

unnormalized fast neutron flux distribution<br />

on the outlet and the unnormalized<br />

thermal neutron flux<br />

distribution on the outlet respectively.<br />

Because of the fission in the fuel<br />

region, the fast neutron is mainly in<br />

the fuel region and the thermal<br />

neutron is mainly in the coolant<br />

region. And great changing of the fuel<br />

temperature which makes the macroscopic<br />

cross sections of fuel region<br />

change greatly leads to apparent<br />

changing of the fast neutron flux and<br />

thermal neutron flux distribution in<br />

this region. However, <strong>for</strong> the coolant<br />

region, the operation temperature is<br />

673 K to 753 K and the macroscopic<br />

cross sections of Pb hardly change.<br />

| Fig. 21.<br />

Radial mesh of the M 2 LFR-1000 assembly.<br />

| Fig. 22.<br />

Fast neutron flux distribution on the outlet.<br />

| Fig. 23.<br />

Thermal neutron flux distribution on the outlet.<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 42<br />

So the fast neutron flux and thermal<br />

neutron flux dis tribution on the<br />

coolant change a little.<br />

Thermal conductivity of the MOX (W/m.K)<br />

(16)<br />

Density of the MOX (kg/m 3 )<br />

(17)<br />

Thermal conductivity of the T91 (W/m.K)<br />

(18)<br />

Specific heat capacity of the T91 (J/kg.K)<br />

Thermal conductivity of the Pb (W/m.K)<br />

Density of the Pb (kg/m 3 )<br />

(19)<br />

(20)<br />

(21)<br />

Specific heat capacity of the Pb (J/kg.K)<br />

(22)<br />

Viscosity of the Pb (Pa.s)<br />

(23)<br />

Figure 24, Figure 25, Figure 26 show<br />

the unnormalized fast neutron flux,<br />

unnormalized thermal flux and<br />

temperature distribution on the outer<br />

boundary respectively. Figure 27<br />

shows the fuel pellet centerline<br />

temperature distribution along Z axis<br />

direction and there is the peak<br />

temperature when Z=0.6 m. And the<br />

maximum fuel pellet centerline<br />

temperature deviation is 21 K which<br />

occurs on the outlet. Figure 28 shows<br />

the assembly temperature distribution<br />

along Y axis direction when Z=0.6 m.<br />

Figure 29 shows the coolant temperature<br />

distribution along Z axis<br />

direction. Figure 30 displays the<br />

cladding outer surface temperature<br />

dis tribution along Z axis direction. It<br />

is obvious that the central hole makes<br />

the central fuel pellet temperature<br />

distribution flat, decreases the peak<br />

temperature of fuel pellet and improve<br />

the safety margin. And there is<br />

the maximum fuel temperature in the<br />

central fuel rod of the hot assembly.<br />

The coolant outlet temperature is<br />

755.11 K. The maximum fuel temperature<br />

is 1643.41 K and the maximum<br />

cladding outer surface temperature is<br />

773.83 K calculated by coupling calculation.<br />

And the maximum fuel<br />

temperature is 1647.17 K and the<br />

maximum cladding outer surface<br />

temperature is 777.28 K calculated by<br />

sub-channel code (KMC-SUB) which<br />

are all within the corresponding<br />

thermal- hydraulics design limits.<br />

| Fig. 24.<br />

Fast neutron flux distribution<br />

on the outer boundary.<br />

| Fig. 25.<br />

Thermal neutron flux distribution<br />

on the outer boundary.<br />

| Fig. 27.<br />

The fuel pellet centerline temperature distribution along Z axis direction.<br />

| Fig. 26.<br />

Temperature distribution<br />

on the outer boundary.<br />

6 Conclusion<br />

In this study, based on the UDF and<br />

UDS function of the FLUENT, the<br />

neutron diffusion equation is defined.<br />

There is no requirement to develop<br />

the interface program of the coupling<br />

calculation. Then the assembly is fine<br />

modeled and the solver in the FLUENT<br />

is used to solve the neutron diffusion<br />

equation. The thermal-hydraulics<br />

calculation is carried out at the same<br />

time. There<strong>for</strong>e the coupling calculation<br />

between neutron diffusion<br />

and thermal-hydraulics is achieved on<br />

the same solver of the FLUENT. In<br />

order to achieve the convenient data<br />

transfer, the neutron diffusion and<br />

thermal-hydraulics calculation use<br />

the same meshes.<br />

Through calculating the 2D-TWIGL<br />

benchmark problem by the FLUENT<br />

solver based on the Finite Volume<br />

Method (FVM), and comparing the<br />

effective multiplication factor, neutron<br />

flux and power with reference<br />

values to verify that the solver can<br />

be used to calculate the neutron<br />

diffusion. The errors mainly occur on<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

| Fig. 28.<br />

Temperature distribution along the Y axis direction (Z=0.6m, X=0.0m).<br />

| Fig. 29.<br />

The coolant temperature distribution along Z axis direction.<br />

| Fig. 30.<br />

The cladding outer surface temperature distribution along Z axis direction.<br />

the boundary and the interface of<br />

different materials. So further work is<br />

needed to refine the mesh on the<br />

boundary and interface areas.<br />

Through modeling and calculating<br />

the 5x5 PWR assembly:<br />

(1) The effective multiplication factor<br />

(1.17100) which has good agreement<br />

with the reference value<br />

(1.17109), axial power density<br />

distribution of the fuel rod center,<br />

temperature distribution of the fuel<br />

pellet outer diameter, tem perature<br />

distribution of the fuel cladding<br />

inner diameter, tem perature distribution<br />

of the fuel cladding outer<br />

diameter, temperature distribution<br />

of the assembly inlet and outlet are<br />

obtained on the steady state.<br />

(2) The axial coolant temperature distribution<br />

of the adjacent fuel rod<br />

center and diagonal fuel rod center,<br />

and the temperature distribution<br />

along the X axis direction<br />

(z = 0.0 m, y = 0.0 m) and axial<br />

power density distribution of the<br />

fuel rod center are compared with<br />

reference values calculated by<br />

other coupling programs and in<br />

good agreement with them. There<strong>for</strong>e<br />

this coupling method is feasible<br />

to achieve neutron diffusion<br />

and thermal- hydraulics coupling.<br />

And the correctness of the data<br />

transfer is verified.<br />

(3) The reference value of the power<br />

density increases slightly at the<br />

inlet and outlet of the assembly,<br />

which is mainly due to the influence<br />

of the upper and lower reflectors,<br />

which make some neutrons be<br />

reflected into the fuel area, and<br />

then cause a slight increase of the<br />

power density. In this paper, the<br />

influence of the upper and lower<br />

reflectors is neglected due to considering<br />

the convenience of modeling<br />

and meshing by the Gambit.<br />

There<strong>for</strong>e the power density distribution<br />

is flat at the inlet and<br />

outlet of the assembly. Further<br />

work is needed to add the modeling<br />

of the upper and lower reflectors.<br />

Then the coupling method is applied<br />

to a modular lead-cooled fast reactor<br />

(M 2 LFR-1000). Through modeling<br />

and calculating the hot assembly of<br />

the M 2 LFR-1000:<br />

(1) The neutron flux and temperature<br />

distribution of the hot assembly are<br />

obtained on the steady state. The<br />

fast neutron is mainly in the fuel<br />

region and the thermal neutron is<br />

mainly in the coolant region. And<br />

the fast neutron flux and thermal<br />

neutron flux distribution on the<br />

coolant region change a little. But<br />

they change a lot on the fuel<br />

region.<br />

(2) It is obvious that the central hole<br />

makes the central fuel pellet<br />

temperature distribution flat,<br />

decreases the peak temperature of<br />

fuel pellet and improves the safety<br />

margin at the same power density.<br />

(3) The maximum fuel temperature<br />

and the maximum cladding outer<br />

surface temperature are obtained<br />

by the coupling calculation and are<br />

compared with the reference<br />

values calculated by sub-channel<br />

code (KMC-SUB). The error of<br />

maximum fuel temperature is<br />

1.25 K and error of maximum<br />

cladding outer surface temperature<br />

is 2.68 K. The coolant outlet<br />

temperature is 755.11 K which is<br />

very close to the design value<br />

(753.15 K). And these thermalhydraulics<br />

characteristics are all<br />

within the corresponding thermalhydraulics<br />

design limits.<br />

RESEARCH AND INNOVATION 43<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

RESEARCH AND INNOVATION 44<br />

References:<br />

[1] J.A. Kulesza, F. Franceschini, T.M. Evans, et al, Overview of<br />

the consortium <strong>for</strong> the advanced simulation of light water reactor<br />

(CASL) [R]. CASL-U-2014-0099-000, 2014.<br />

[2] D. Cacuci. European plat<strong>for</strong>m <strong>for</strong> nuclear reactor simulation<br />

(NURESIM) [R]. Integrated Project NUCTECH-2004-3. 4. 3.<br />

1-1. EURATOM Research and Training Program on <strong>Nuclear</strong><br />

Energy, 2004.<br />

[3] Z.S. Xie. Physical Analysis of <strong>Nuclear</strong> Reactor [M]. Xi’an: Xi’an<br />

Jiao Tong University press, 2004.<br />

[4] H.G. Wang, W.Q. Yang, P. Senior et al. Investigation of batch<br />

fluidized-bed drying by mathematical modeling, CFD<br />

simulation and ECT measurement [J]. Wiley journal, 2008,<br />

54:427-444<br />

doi: 10.1002/aic.11406<br />

[5] P. Donoso-GarcíaL, L. Henríquez-Vargas. Numerical study of<br />

turbulent porous media combustion coupled with thermoelectric<br />

generation in a recuperative reactor [J]. Energy, 2015,<br />

93:1189-1198.<br />

doi: 10.1016/j.energy.2015.09.123<br />

[6] Y. Liu, Y.P. Liu, S.M. Tao et al. Three-dimensional analysis of<br />

gas flow and heat transfer in a regenerator with alumina<br />

balls [J]. Applied Thermal Engineering, 2014, 69:113-122.<br />

doi: 10.1016/j.applthermaleng.2014.04.058<br />

[7] J. Jang, H. Arastoopour. CFD simulation of a pharmaceutical<br />

bubbling bed drying process at three different scales [J].<br />

Powder Technology, 2014, 263:14-25.<br />

doi: 10.1016/j.powtec.2014.04.054<br />

[8] D.L. Zhang a, b, S.Z. Qiu a, b,*, G.H. Sua, b, C.L. Liu b. Development<br />

of a steady state analysis code <strong>for</strong> a molten salt reactor<br />

[J]. Annals of <strong>Nuclear</strong> Energy, 2009.36:590-603.<br />

[9] X.W. Gui, Q. Cai, Y.Q. Chen. Study on coupling of local threedimension<br />

flow model based on CFD method and space-time<br />

neutron kinetics model. Chinese <strong>Journal</strong> of <strong>Nuclear</strong> Science<br />

and Enginee ring, 2010 (3): 216-222.<br />

[10] Klas Jareteg, Paolo Vinai, Christophe Demazière. Fine-mesh<br />

deterministic modeling of PWR fuel assemblies:Proof-ofprinciple<br />

of coupled neutronic/thermal–hydraulic calculations<br />

[J]. Annals of <strong>Nuclear</strong> Energy, 2014, 68:247-256.<br />

[11] Chen H, Zhang X, Zhao Y, et al. Preliminary design of a<br />

medium-power modular lead-cooled fast reactor with the<br />

application of optimization methods. Int J Energy Res. 2018;<br />

42:3643–3657.<br />

[12] Li S, Cao L, Khan MS, Chen H. Development of a sub-channel<br />

thermal hydraulic analysis code and its application to lead<br />

cooled fast reactor. Appl Therm Eng. 2017; 117:443-451.<br />

[13] Ahmad Pirouzmand-Abolhasan Nabavi. Simulation of<br />

nuclear reactor dynamics equations using reconfigurable<br />

computing [J]. Progress in <strong>Nuclear</strong> Energy, 2016.89:197-203.<br />

[14] Jian Ge, Dalin Zhang, Wenxi Tian, et al. Steady and transient<br />

solutions of neutronics problems based on finite volume<br />

method(FVM) with a CFD code[J]. Progress in <strong>Nuclear</strong> Energy,<br />

2015, 85: 366-374.<br />

[15] ANSYS, 2013. ANSYS FLUENT Theory Guide, Release 15.0.<br />

[16] X.B. Zhou, Y.S. Zhao, H.T Fan et al. Development and preliminary<br />

test of date library ANDL-ADS <strong>for</strong> accelerator-driven<br />

systems [J]. <strong>Nuclear</strong> Techniques, 2018, 41(03):65-70.<br />

[17] G.W. Bi. Interpolation method development <strong>for</strong> temperature<br />

based neutron cross-sections. Beijing: Tsinghua University,<br />

2008.<br />

[18] David Jaluvka. Development of a Core Management Tool <strong>for</strong><br />

the MYRRHA Irradiation<br />

Research Facility [D]. KU Leuven, 2015.<br />

[19] Carbajo JJ, Yoder GL, Popov SG, Ivanov VK. A review of the<br />

thermophysical properties of MOX and UO2 fuels. J Nucl<br />

Mater. 2001;299(3):181-198.<br />

[20] Chen Z. Thermal-hydraulics design and safety analysis of a<br />

100MWth small natural circulation lead cooled fast reactor<br />

SNCLFR-100. University of Science and Technology of China,<br />

2015.<br />

[21] Popov, S.G., Carbajo, J.J., Ivanov, V.K., Yoder, G.L., 2000.<br />

Thermophysical properties of MOX and UO2 fuels including<br />

the effects of irradiation. ORNL Report TM-2000/351.<br />

Authors<br />

Xuebei Zhang<br />

Chi Wang<br />

Hongli Chen<br />

School of Physics,<br />

University of Science & Technology<br />

of China<br />

Hefei 230027<br />

China<br />

Imprint<br />

| Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| Official <strong>Journal</strong> of Kerntechnische Gesellschaft e. V. (KTG)<br />

| Publisher<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| General Manager<br />

Dr. Thomas Behringer<br />

| CvD<br />

Marika Didonaki<br />

| Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2020<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Research and Innovation<br />

Research on Neutron Diffusion and Thermal Hydraulics Coupling Calculation based on FLUENT and its Application Analysis on Fast Reactors ı Xuebei Zhang, Chi Wang and Hongli Chen


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Programme Overview<br />

45<br />

PROGRAMME OVERVIEW<br />

Plenarsitzung | Plenary Session<br />

5. Mai 2020<br />

09:00 D/E<br />

Begrüßung und Eröffnungsansprache<br />

| Welcome and Opening Address<br />

Dr. Joachim Ohnemus<br />

Vorsitzender des Vorstands, KernD<br />

11:25 DE<br />

System-Know how – der Schlüssel für die Zukunft<br />

der nuklearen Kompetenz | System-oriented knowhow<br />

– the key to the future of nuclear competence<br />

Wolfgang Däuwel<br />

Framatome GmbH, Germany<br />

KERNTECHNIK 2020<br />

Politik | Policy<br />

09:15 D<br />

Sicherer Kernkraftwerksbetrieb: Wie kann<br />

Deutschland nach 2022 international noch Gehör<br />

finden? | Safe Operation of <strong>Nuclear</strong> <strong>Power</strong> Plants:<br />

How Can Germany Still Be Heard <strong>International</strong>ly After<br />

2022?<br />

Andreas Feicht<br />

Staatssekretär im Bundesministerium für Wirtschaft und Energie<br />

(BMWi)<br />

09:35 D<br />

Kernenergiepolitik in der Schweiz – Wie geht es<br />

weiter? | <strong>Nuclear</strong> Energy Policy in Switzerland –<br />

What's Next?<br />

Hans-Ulrich Bigler<br />

Präsident, Nuklear<strong>for</strong>um Schweiz<br />

09:55 D<br />

Wirtschaftsstandort Deutschland – Welchen Beitrag<br />

kann die kerntechnische Industrie leisten?<br />

| Business Location Germany – What Contribution Can<br />

Be Made by the <strong>Nuclear</strong> Industry?<br />

Karlheinz Busen MdB<br />

Stellvertretendes Mitglied im Ausschuss für Umwelt, Naturschutz und<br />

nukleare Sicherheit, Deutscher Bundestag<br />

Endlagerung | Waste Management<br />

11:45 E<br />

Creating Public Acceptance <strong>for</strong> a Final Repository<br />

Jussi Heinonen<br />

Director of the <strong>Nuclear</strong> Waste and Material Regulation Department,<br />

STUK – Radiation and <strong>Nuclear</strong> Safety Authority, Finland<br />

12:05 D<br />

Ansprache<br />

Karsten Möring MdB<br />

Ordentliches Mitglied im Ausschuss für Umwelt, Naturschutz und<br />

nukleare Sicherheit, Deutscher Bundestag<br />

12:25 D<br />

Aktueller Stand im Standortauswahlverfahren<br />

(Arbeitstitel)<br />

Steffen Kanitz<br />

Mitglied der Geschäftsführung, Bundesgesellschaft für Endlagerung<br />

mbH (BGE)<br />

12:45 D<br />

Verleihung der Ehrenmitgliedschaft der KTG<br />

| Award of the Honorary Membership of KTG<br />

Präsentiert von Frank Apel<br />

Vorsitzender der KTG<br />

13:00-14:00 Lunch<br />

Wirtschaft | Economy<br />

10:15 D/E<br />

Restbetrieb und Rückbau in Nord- und<br />

Süddeutschland | Dismantling and Last Years of<br />

Operation in Northern and Southern Germany<br />

Dr. Guido Knott<br />

CEO, PreussenElektra GmbH<br />

10:35 Pause<br />

Kompetenz | Competence<br />

11:05 D/E<br />

Kerntechnische Ausbildung – Ein Grund zur Sorge?<br />

| <strong>Nuclear</strong> Education – a Cause of Concern?<br />

Prof. Dr. Jörg Starflinger<br />

Geschäftsführender Direktor, Institut für Kernenergetik und<br />

Energiesysteme (IKE), Universität Stuttgart<br />

Technisch-wissenschaftliches Programm<br />

14:00<br />

j Themenblock Kompetenz & Innovation<br />

j Themenblock Sicherheit & Betrieb<br />

j Themenblock Rückbau & Abfallbehandlung<br />

j Themenblock Zwischen- und Endlagerung<br />

j Young Scientists‘ Workshop<br />

15:30 Pause<br />

16:00-ca.17:30<br />

Fortsetzung Programm<br />

18:30- 23:00<br />

KernD-Empfang und Gesellschaftsabend<br />

in der Ausstellung<br />

KERNTECHNIK 2020<br />

Programme Overview


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

KERNTECHNIK 2020<br />

46<br />

Programmstruktur nach Sessions<br />

Themenblock<br />

Kompetenz &<br />

Innovation<br />

j CFD Simulations<br />

<strong>for</strong> Reactor Safety<br />

Relevant Objectives<br />

j Know-how, New Build<br />

and Innovation<br />

j Reactor Physics,<br />

Thermo and Fluid<br />

Dynamics<br />

j Young Scientists'<br />

Workshop<br />

j CAMPUS Kerntechnik<br />

Themenblock<br />

Sicherheit &<br />

Betrieb<br />

j Radiation Protection<br />

j What is an Accident<br />

Tolerant Fuel?<br />

j Operation and<br />

Safety of <strong>Nuclear</strong><br />

Installations, Fuel<br />

Themenblock<br />

Rückbau &<br />

Abfallbehandlung<br />

j Experiences on<br />

Post-Operation and<br />

Decommissioning<br />

j Decommissioning of<br />

<strong>Nuclear</strong> Installations<br />

Themenblock<br />

Zwischen- &<br />

Endlagerung<br />

j N.N.<br />

j Radioactive Waste Management, Storage<br />

and Disposal<br />

Programmstruktur nach Tagen<br />

Montag<br />

, Gremiensitzungen KernD<br />

, Gremiensitzungen KTG<br />

, Get-together KTG<br />

Dienstag<br />

, Industrieausstellung<br />

, Plenarvorträge<br />

, Themenblock<br />

Kompetenz & Innovation<br />

, Themenblock<br />

Sicherheit & Betrieb<br />

, Themenblock<br />

Rückbau & Abfallbehandlung<br />

, Themenblock<br />

Zwischen- & Endlagerung<br />

, Young Scientists‘ Workshop<br />

, Gesellschaftsabend<br />

Mittwoch<br />

, Industrieausstellung<br />

, Themenblock<br />

Kompetenz & Innovation<br />

, Themenblock<br />

Sicherheit & Betrieb<br />

, Themenblock<br />

Rückbau & Abfallbehandlung<br />

, Themenblock<br />

Zwischen- & Endlagerung<br />

, Young Scientists‘ Workshop<br />

mit Preisverleihung<br />

, CAMPUS Kerntechnik<br />

#51KT<br />

www.kerntechnik.com<br />

KERNTECHNIK 2020<br />

Programme Overview


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Inside<br />

47<br />

Nachwuchstagung Kerntechnik 2019 in Essen-Kupferdreh<br />

Die jährliche Nachwuchstagung Kerntechnik der Jungen<br />

Generation der KTG fand in diesem Jahr beim Simulatorzentrum<br />

KSG | GfS in Essen-Kupferdreh statt. 35 Junge<br />

Nachwuchswissenschaftler, Studenten und interessierte<br />

Mitarbeiter von Unternehmen aus der Kerntechnik hatten<br />

die Möglichkeit, einen Blick „über den Tellerrand“ zu<br />

erhalten.<br />

KTG INSIDE<br />

In elf Vorträgen spannte sich das breite Themenfeld von<br />

der Kraftwerksimulation, der Reaktorsicherheit, dem<br />

Strahlenschutz bis hin zu Innovationen in der Kerntechnik,<br />

Entsorgungsthemen, dem Knowledge-Transfer am CERN<br />

und der Arbeit anderer Jungen Generationen der Kerntechnischen<br />

Gesellschaften Europas. Im Rahmen eines Impulsvortrags<br />

und anschließender Diskussion wurden die<br />

Themen Diversität und moderne Teamarbeit im Berufsalltag<br />

besprochen.<br />

Wie in jedem Jahr freuen wir uns insbesondere auf die<br />

spannenden Besichtigungen, die oft einzigartige Highlights<br />

darstellen. So wurde uns das weltweit einzigartige<br />

Reaktor-Glasmodell mitsamt unterschiedlichen Szenarien<br />

vorgeführt, Störfälle im Kraftwerks-Simulator des KKW<br />

Brokdorf geprobt und die Behälter-Fertigungsstätte der<br />

GNS besichtigt. Beim Vorabendtreffen und gemeinsamen<br />

Dinner mit Speis und Trank gab es reichlich Gelegenheiten<br />

für Austausch und Netzwerken.<br />

Unser herzlichster Dank gilt dem Simulatorzentrum<br />

KSG | GfS sowie der GNS für ihre Vorträge, Führungen<br />

und Gastfreundschaft. Ebenso danken wir allen Referenten<br />

für die spannenden Vorträge sowie den Teilnehmern für<br />

das rege Interesse und die Teilnahme bei der Nachtagung<br />

Kerntechnik 2019!<br />

Vorstand der Jungen Generation in der KTG<br />

Herzlichen Glückwunsch!<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

Februar 2020<br />

55 Jahre | 1965<br />

18. Sven Lehmann, Adenbüttel<br />

65 Jahre | 1955<br />

1. Wolfgang Filbert<br />

80 Jahre | 1940<br />

9. Dr. Gerhard Preusche, Herzogenaurach<br />

13. Dr. Hans-Ulrich Fabian, Gehrden<br />

81 Jahre | 1939<br />

8. Dr. Herbert Spierling, Dietzenbach<br />

22. Dr. Manfred Schwarz, Dresden<br />

86 Jahre | 1934<br />

9. Dr. Horst Keese, Rodenbach<br />

12. Dipl.-Ing. Horst Krause, Radebeul<br />

91 Jahre | 1929<br />

20. Dr. Helmut Hübel, Bensberg<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

75 Jahre | 1945<br />

1. Prof. Alfred Voß, Aidlingen<br />

23. Dipl.-Ing. Victor Teschendorff, München<br />

28. Dr. Günther Dietrich, Holzwickede<br />

76 Jahre | 1944<br />

26. Dr. Ivar Kalinowski, Ohrum<br />

77 Jahre |1943<br />

5. Dr. Joachim Banck, Heusenstamm<br />

20. Ing. Leonhard Irion, Rückersdorf<br />

28. Dr. Klaus Tägder, Sankt Augustin<br />

83 Jahre | 1937<br />

6. Dipl.-Ing. Heinrich Moers, Winter Park/<br />

USA<br />

11. Dr. Günter Keil, Sankt Augustin<br />

18. Dipl.-Ing. Hans Wölfel, Heidelberg<br />

84 Jahre | 1936<br />

6. Dr. Ashu-Tosh Bhattacharyya, Erkelenz<br />

17. Dr. Helfrid Lahr, Wedemark<br />

Nachträgliche<br />

Geburtstagsnennungen:<br />

Dezember 2019<br />

76 Jahre | 1943<br />

7. Dipl.-Ing. Nobert Bauer, Limburgerhof<br />

Januar 2020<br />

77 Jahre | 1942<br />

6. Dipl.-Ing. Günter Höfer, Mainhausen<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

48<br />

STATISTICS<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants:<br />

2019 <strong>atw</strong> Compact Statistics<br />

Editorial<br />

At the end of the last year 2019 (key date: 31 December 2019), nuclear power plants were operating in 31 countries<br />

worldwide (cf. Table 1). In total, 449 nuclear power plants were operating on the key date. This means that the number<br />

decreased by 2 units compared to the previous year’s number on 31 December 2018 (451, the highest number of units<br />

since the first start of an commercial nuclear power plant in 1956), due to first criticalities on the one hand and<br />

shut-downs on the other. The gross power output of these nuclear power plant units amounted to around 425 GWe*,<br />

the net power output was approximately 401 GWe. This means that the available gross capacity and the available net<br />

capacity did not significantly changed compared with the previous year's numbers. The highest capacity since the first<br />

grid connection of a commercial nuclear power plant was available in 2019 (425,959 MWe gross, 401,177 MWe net).<br />

Four (4) nuclear power plants started (nuclear) operation 1<br />

in two countries in 2018. These units reached initial<br />

criticality (C), were synchronized with the grid (G) and<br />

started commercial operation (O) <strong>for</strong> the first time in<br />

2019 (cf. Table 1): China: Taishan 2 (1750 MW, PWR),<br />

Yangjiang 6 (1086 MW, PWR); Korea, Rep.: Shin Kori 4<br />

(PWR, 1400 MW); Russia: Novovoronezh 2-2 (1200 MW,<br />

VVER-PWR).<br />

No unit resumed operation in 2019 in Japan after the<br />

long-term shut-down of all reactors and safety evaluations<br />

after the Fukushima accidents in 2011. In total 51 reactors<br />

were in operation and shut-down in 2011, 9 resumed operation<br />

until today.<br />

Six (6) nuclear power plant units were definitively<br />

per manently shut-down worldwide in five (5) countries in<br />

2019. In Germany the Philippsburg 2 (1468 MW, PWR)<br />

unit was shut-down due to the revised Atomic Act (2011)<br />

and the termination of the license <strong>for</strong> power production.<br />

In Japan the Genkai 2 (559 MW, PWR) plant ceased<br />

operation. In Russia the LWGR-type unit Bilibinsk 1<br />

(12 MW, LWGR) was shut-down. The plant supplied the<br />

local area with electricity and heat. Three further units are<br />

still in operation and will be shut-down in the coming<br />

years. The barge Akademic Lomonosov with two nuclear<br />

reactors will supply the region in the future. In Taiwan,<br />

China, the Chin Shan 2 (636 MW, BWR) plant and in the<br />

USA the Pilgrim 1 (712 MW, BWR) and Three Mile Island<br />

1(1021 MW, PWR) reactor were shut down.<br />

Five new projects (the same number as in the previous<br />

year 2018) started with an official announcement and first<br />

preparations <strong>for</strong> construction or the first concrete and<br />

further build activities. In China three additional new<br />

build projects started with Changjiang 3 (1170 MW, PWR),<br />

Changjiang 4 (1170 MW, PWR), and Zhangzhou 1 (1212<br />

MW, PWR), the Islamic Republic of Iran started the new<br />

build of the second unit at Bushehr (1127 MW, VVER-<br />

PWR) and in Russia one additional project started with the<br />

Kursk II-2 project (1255 MW, VVER-PWR). At the Kursk<br />

site four RMBK reactors are in operation which should be<br />

replaced by modern GEN III+ PWR technology units.<br />

In total 54 reactors are under construction worldwide<br />

in 18 countries. The total gross capacity of this projects is<br />

about 58 GW*, the net capacity 55 GW, in other words the<br />

number was higher (1 unit) compared to the previous year<br />

number due to the four (4) operation starts and five (5)<br />

new build projects. Compared with the millennium change<br />

1999/2000 this means that the number of projects under<br />

construction has risen, when 30 nuclear power plants were<br />

under construction worldwide.<br />

Active construction projects (numbers in brackets)<br />

listed are: Argentina (1), Bangladesh (2), Belarus (2),<br />

Brazil (1), China (12), Finland (1), France (1), India (7),<br />

Iran (1), Japan (2), Republic of Korea (4), Pakistan (2),<br />

Russia (6), Slovak Republic (2), Taiwan (2), Turkey (1),<br />

the USA (2), the United Arab Emirates (4) and the United<br />

Kingdom (1).<br />

In addition, there are about 200 nuclear power plant<br />

units in 25 countries worldwide that are in an advanced<br />

planning stage, others are in the pre-planning phase<br />

( status: 31 December 2019).<br />

Country Location/<br />

Station name<br />

Argentina<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Atucha 1 p D2O-PWR 357 341 1974<br />

Embalse p Candu 648 600 1983<br />

Atucha 2 p D2O-PWR 745 692 2014<br />

CAREM25 P PWR 29 25 (2022)<br />

Armenia<br />

Metsamor 2 p VVER-PWR 408 376 1980<br />

Belarus<br />

Belarusian 1 P VVER-PWR 1 194 1 109 (2020)<br />

Belarusian 2 P VVER-PWR 1 194 1 109 (2021)<br />

Bangladesh<br />

Rooppur 1 P VVER-PWR 1 200 1 080 (2023)<br />

Rooppur 1 P VVER-PWR 1 200 1 080 (2024)<br />

Belgium<br />

Doel 1 p PWR 454 433 1975<br />

Doel 2 p PWR 454 433 1975<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Doel 3 p PWR 1 056 1 006 1982<br />

Doel 4 p PWR 1 090 1 039 1985<br />

Tihange 1 p PWR 1 009 962 1975<br />

Tihange 2 p PWR 1 055 1 008 1983<br />

Tihange 3 p PWR 1 094 1 046 1985<br />

Brazil<br />

Angra 1 p PWR 640 609 1984<br />

Angra 2 p PWR 1 350 1 275 1999<br />

Angra 3 P PWR 1 300 1 245 (2021)<br />

Bulgaria<br />

Kozloduj 5 p VVER-PWR 1 000 953 1987<br />

Kozloduj 6 p VVER-PWR 1 000 953 1989<br />

Canada<br />

Bruce 1 p Candu 824 772 1977<br />

Bruce 2 p Candu 786 734 1977<br />

Bruce 3 p Candu 805 730 1977<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Bruce 4 p Candu 805 750 1979<br />

Bruce 5 p Candu 872 817 1985<br />

Bruce 6 p Candu 891 822 1984<br />

Bruce 7 p Candu 872 817 1986<br />

Bruce 8 p Candu 845 817 1987<br />

Darlington 1 p Candu 934 878 1993<br />

Darlington 2 p Candu 934 878 1990<br />

Darlington 3 p Candu 934 878 1993<br />

Darlington 4 p Candu 934 878 1993<br />

Pickering 1 p Candu 542 515 1971<br />

Pickering 4 p Candu 542 515 1973<br />

Pickering 5 p Candu 540 516 1983<br />

Pickering 6 p Candu 540 516 1984<br />

Pickering 7 p Candu 540 516 1985<br />

Pickering 8 p Candu 540 516 1986<br />

Point Lepreau p Candu 705 660 1983<br />

China<br />

CEFR p SNR 25 20 2011<br />

Changjiang 1 p PWR 650 610 2015<br />

Changjiang 2 p PWR 650 601 2016<br />

Fangchenggang 1 p PWR 1 080 1 000 2015<br />

Fangchenggang 2 p PWR 1 088 1 000 2016<br />

Fangjiashan 1 p PWR 1 080 1 000 2014<br />

Fangjiashan 2 p PWR 1 080 1 000 2014<br />

Fuqing 1 p PWR 1 087 1 000 2014<br />

Fuqing 2 p PWR 1 087 1 000 2015<br />

Fuqing 3 p PWR 1 089 1 000 2016<br />

Fuqing 4 p PWR 1 089 1 089 2017<br />

Guandong 1 p PWR 984 944 1993<br />

Guandong 2 p PWR 984 944 1994<br />

Haiyang 1 p PWR 1 180 1 100 2018<br />

Haiyang 2 p PWR 1 180 1 100 2018<br />

Hongyanhe 1 p PWR 1 080 1 000 2013<br />

Hongyanhe 2 p PWR 1 080 1 000 2013<br />

Hongyanhe 3 p PWR 1 080 1 000 2014<br />

Hongyanhe 4 p PWR 1 119 1 000 2016<br />

Lingao 1 p PWR 990 938 2002<br />

Lingao 2 p PWR 990 938 2002<br />

Lingao II-1 p PWR 1 087 1 000 2010<br />

Lingao II-2 p PWR 1 087 1 000 2011<br />

Ningde 1 p PWR 1 087 1 000 2012<br />

Ningde 2 p PWR 1 080 1 000 2014<br />

Ningde 3 p PWR 1 080 1 000 2015<br />

Ningde 4 p PWR 1 089 1 018 2016<br />

Qinshan 1 p PWR 310 288 1992<br />

Qinshan II-1 p PWR 650 610 2002<br />

Qinshan II-2 p PWR 650 610 2004<br />

Qinshan II-3 p PWR 642 610 2010<br />

Qinshan II-4 p PWR 642 610 2011<br />

Qinshan III-1 p Candu 728 665 2002<br />

Qinshan III-2 p Candu 728 665 2003<br />

Sanmen 1 p PWR 1 180 1 100 2018<br />

Sanmen 2 p PWR 1 180 1 100 2018<br />

Taishan 1 p PWR 1 750 1 660 2018<br />

Taishan 2 [1] p PWR 1 750 1 660 2019<br />

Tianwan 1 p VVER-PWR 1 060 990 2005<br />

Tianwan 2 p VVER-PWR 1 060 990 2007<br />

Tianwan 3 p VVER-PWR 1 126 1 060 2017<br />

Tianwan 4 p VVER-PWR 1 126 1 060 2018<br />

Yangjiang 1 p PWR 1 080 1 000 2013<br />

Yangjiang 2 p PWR 1 080 1 000 2015<br />

Yangjiang 3 p PWR 1 080 1 000 2015<br />

Yangjiang 4 p PWR 1 086 1 000 2016<br />

Yangjiang 5 p PWR 1 080 1 000 2018<br />

Yangjiang 6 [1] p PWR 1 080 1 000 2019<br />

Changjiang 3 [2] P PWR 1 170 1 090 (2024)<br />

Changjiang 4 [2] P PWR 1 170 1 090 (2025)<br />

Fangchenggang 3 P PWR 1 080 1 000 (2020)<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Fangchenggang 4 P PWR 1 080 1 000 (2022)<br />

Fuqing 5 P PWR 1 087 1 000 (2020)<br />

Fuqing 6 P PWR 1 087 1 000 (2020)<br />

Hongyanhe 5 P PWR 1 080 1 000 (2020)<br />

Hongyanhe 6 P PWR 1 080 1 000 (2021)<br />

Shidaowan 1 P HTGR 211 200 (2020)<br />

Tianwan 5 P VVER-PWR 1 118 1 000 (2020)<br />

Tianwan 6 P VVER-PWR 1 118 1 000 (2022)<br />

Zhangzhou 4 [2] P PWR 1 212 1 126 (2024)<br />

Czech Republic<br />

Dukovany 1 p VVER-PWR 500 473 1985<br />

Dukovany 2 p VVER-PWR 500 473 1986<br />

Dukovany 3 p VVER-PWR 500 473 1987<br />

Dukovany 4 p VVER-PWR 500 473 1987<br />

Temelín 1 p VVER-PWR 1 077 1 027 1999<br />

Temelín 2 p VVER-PWR 1 056 1 006 2002<br />

Finland<br />

Loviisa 1 p VVER-PWR 520 496 1977<br />

Loviisa 2 p VVER-PWR 520 496 1981<br />

Olkiluoto 1 p BWR 890 860 1979<br />

Olkiluoto 2 p BWR 890 860 1982<br />

Olkiluoto 3 P PWR 1 600 1 510 (2020)<br />

France<br />

Belleville 1 p PWR 1 363 1 310 1987<br />

Belleville 2 p PWR 1 363 1 310 1988<br />

Blayais 1 p PWR 951 910 1981<br />

Blayais 2 p PWR 951 910 1982<br />

Blayais 3 p PWR 951 910 1983<br />

Blayais 4 p PWR 951 910 1983<br />

Bugey 2 p PWR 945 910 1978<br />

Bugey 3 p PWR 945 910 1978<br />

Bugey 4 p PWR 917 880 1979<br />

Bugey 5 p PWR 917 880 1979<br />

Cattenom 1 p PWR 1 362 1 300 1986<br />

Cattenom 2 p PWR 1 362 1 300 1987<br />

Cattenom 3 p PWR 1 362 1 300 1990<br />

Cattenom 4 p PWR 1 362 1 300 1991<br />

Chinon B-1 p PWR 954 905 1982<br />

Chinon B-2 p PWR 954 905 1983<br />

Chinon B-3 p PWR 954 905 1986<br />

Chinon B-4 p PWR 954 905 1987<br />

Chooz B-1 p PWR 1 560 1 500 1996<br />

Chooz B-2 p PWR 1 560 1 500 1997<br />

Civaux 1 p PWR 1 561 1 495 1997<br />

Civaux 2 p PWR 1 561 1 495 1999<br />

Cruas Meysse 1 p PWR 956 915 1983<br />

Cruas Meysse 2 p PWR 956 915 1984<br />

Cruas Meysse 3 p PWR 956 915 1984<br />

Cruas Meysse 4 p PWR 956 915 1984<br />

Dampierre 1 p PWR 937 890 1980<br />

Dampierre 2 p PWR 937 890 1980<br />

Dampierre 3 p PWR 937 890 1981<br />

Dampierre 4 p PWR 937 890 1981<br />

Fessenheim 1 p PWR 920 880 1977<br />

Fessenheim 2 p PWR 920 880 1977<br />

Flamanville 1 p PWR 1 382 1 330 1985<br />

Flamanville 2 p PWR 1 382 1 330 1986<br />

Golfech 1 p PWR 1 363 1 310 1990<br />

Golfech 2 p PWR 1 363 1 310 1993<br />

Gravelines B-1 p PWR 951 910 1980<br />

Gravelines B-2 p PWR 951 910 1980<br />

Gravelines B-3 p PWR 951 910 1980<br />

Gravelines B-4 p PWR 951 910 1981<br />

Gravelines C-5 p PWR 951 910 1984<br />

Gravelines C-6 p PWR 951 910 1985<br />

Nogent 1 p PWR 1 363 1 310 1987<br />

Nogent 2 p PWR 1 363 1 310 1988<br />

Paluel 1 p PWR 1 382 1 330 1984<br />

49<br />

STATISTICS<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

50<br />

STATISTICS<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Paluel 2 p PWR 1 382 1 330 1984<br />

Paluel 3 p PWR 1 382 1 330 1985<br />

Paluel 4 p PWR 1 382 1 330 1986<br />

Penly 1 p PWR 1 382 1 330 1990<br />

Penly 2 p PWR 1 382 1 330 1992<br />

St. Alban 1 p PWR 1 381 1 335 1986<br />

St. Alban 2 p PWR 1 381 1 335 1987<br />

St. Laurent B-1 p PWR 956 915 1981<br />

St. Laurent B-2 p PWR 956 915 1981<br />

Tricastin 1 p PWR 955 915 1980<br />

Tricastin 2 p PWR 955 915 1980<br />

Tricastin 3 p PWR 955 915 1980<br />

Tricastin 4 p PWR 955 915 1981<br />

Flamanville 3 P PWR 1 600 1 510 (2021)<br />

Germany<br />

Brokdorf p PWR 1 480 1 410 1986<br />

Emsland p PWR 1 406 1 335 1988<br />

Grohnde p PWR 1 430 1 360 1985<br />

Gundremmingen C p BWR 1 344 1 288 1985<br />

Isar 2 p PWR 1 485 1 410 1988<br />

Neckarwestheim II p PWR 1 400 1 310 1989<br />

Philippsburg 2 [6] j PWR 1 468 1 402 1985<br />

Hungary<br />

Paks 1 p VVER-PWR 500 470 1983<br />

Paks 2 p VVER-PWR 500 473 1984<br />

Paks 3 p VVER-PWR 500 473 1986<br />

Paks 4 p VVER-PWR 500 473 1987<br />

India<br />

Kaiga 1 p Candu (IND) 220 202 2001<br />

Kaiga 2 p Candu (IND) 220 202 1999<br />

Kaiga 3 p Candu (IND) 220 202 2007<br />

Kaiga 4 p Candu (IND) 220 202 2010<br />

Kakrapar 1 p Candu (IND) 220 202 1993<br />

Kakrapar 2 p Candu (IND) 220 202 1995<br />

Kudankulam 1 p VVER-PWR 1 000 917 2013<br />

Kudankulam 2 p VVER-PWR 1 000 917 2016<br />

Madras Kalpakkam 1 p Candu (IND) 220 205 1984<br />

Madras Kalpakkam 2 p Candu (IND) 220 205 1986<br />

Narora 1 p Candu (IND) 220 202 1992<br />

Narora 2 p Candu (IND) 220 202 1991<br />

Rajasthan 1 p Candu 100 90 1973<br />

Rajasthan 2 p Candu 200 187 1981<br />

Rajasthan 3 p Candu (IND) 220 202 1999<br />

Rajasthan 4 p Candu (IND) 220 202 2000<br />

Rajasthan 5 p Candu (IND) 220 202 2009<br />

Rajasthan 6 p Candu (IND) 220 202 2010<br />

Tarapur 1 p BWR 160 150 1969<br />

Tarapur 2 p BWR 160 150 1969<br />

Tarapur 3 p Candu (IND) 540 490 2006<br />

Tarapur 4 p Candu (IND) 540 490 2005<br />

Kakrapar 3 P Candu (IND) 700 640 (2021)<br />

Kakrapar 4 P Candu (IND) 700 640 (2020)<br />

PFBR (Kalpakkam) P SNR 500 470 (2020)<br />

Kudankulam 3 P VVER-PWR 1 000 917 (2023)<br />

Kudankulam 4 P VVER-PWR 1 000 917 (2023)<br />

Rajasthan 7 P Candu (IND) 700 630 (2020)<br />

Rajasthan 8 P Candu (IND) 700 630 (2021)<br />

Iran<br />

Bushehr 1 p VVER-PWR 1 000 953 2011<br />

Bushehr 2 [2] P VVER-PWR 1 127 1 057 (2025)<br />

Japan<br />

Fukushima Daini 1 p BWR 1 100 1 067 1982<br />

Fukushima Daini 2 p BWR 1 100 1 067 1984<br />

Fukushima Daini 3 p BWR 1 100 1 067 1985<br />

Fukushima Daini 4 p BWR 1 100 1 067 1987<br />

Genkai 3 p PWR 1 180 1 127 1994<br />

Genkai 4 p PWR 1 180 1 127 1997<br />

Hamaoka 3 p BWR 1 100 1 056 1987<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Hamaoka 4 p BWR 1 137 1 092 1993<br />

Hamaoka 5 p BWR 1 267 1 216 2004<br />

Higashidori 1 p BWR 1 100 1 067 2005<br />

Ikata 3 p PWR 890 846 1994<br />

Kashiwazaki Kariwa 1 p BWR 1 100 1 067 1985<br />

Kashiwazaki Kariwa 2 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 3 p BWR 1 100 1 067 1993<br />

Kashiwazaki Kariwa 4 p BWR 1 100 1 067 1994<br />

Kashiwazaki Kariwa 5 p BWR 1 100 1 067 1990<br />

Kashiwazaki Kariwa 6 p BWR 1 356 1 315 1996<br />

Kashiwazaki Kariwa 7 p BWR 1 356 1 315 1997<br />

Mihama 3 p PWR 826 781 1976<br />

Ohi 3 p PWR 1 180 1 127 1991<br />

Ohi 4 p PWR 1 180 1 127 1993<br />

Onagawa 1 p BWR 524 496 1984<br />

Onagawa 2 p BWR 825 796 1995<br />

Onagawa 3 p BWR 825 798 2002<br />

Sendai 1 p PWR 890 846 1984<br />

Sendai 2 p PWR 890 846 1985<br />

Shika 1 p BWR 540 505 1993<br />

Shika 2 p BWR 1 358 1 304 2005<br />

Shimane 2 p BWR 820 791 1989<br />

Takahama 1 p PWR 826 780 1974<br />

Takahama 2 p PWR 826 780 1975<br />

Takahama 3 p PWR 870 830 1985<br />

Takahama 4 p PWR 870 830 1985<br />

Tokai 2 p BWR 1 100 1 067 1978<br />

Tomari 1 p PWR 579 550 1989<br />

Tomari 2 p PWR 579 550 1991<br />

Tomari 3 p PWR 912 866 2009<br />

Tsuruga 2 p PWR 1 160 1 115 1986<br />

Shimane 3 P BWR 1 375 1 325 (2022)<br />

Ohma P BWR 1 385 1 325 (2023)<br />

Genkai 2 [6] j PWR 559 529 1981<br />

Korea (Republic)<br />

Kori 2 p PWR 676 639 1983<br />

Kori 3 p PWR 1 042 1 003 1985<br />

Kori 4 p PWR 1 041 1 001 1986<br />

Shin Kori 1 p PWR 1 048 996 2010<br />

Shin Kori 2 p PWR 1 045 993 2011<br />

Shin Kori 3 p PWR 1 400 1 340 2016<br />

Shin Kori 4 [1] p PWR 1 400 1 340 2019<br />

Hanul 1 p PWR 1 003 960 1988<br />

Hanul 2 p PWR 1 008 962 1989<br />

Hanul 3 p PWR 1 050 994 1998<br />

Hanul 4 p PWR 1 053 998 1998<br />

Hanul 5 p PWR 1 051 996 2003<br />

Hanul 6 p PWR 1 051 996 2004<br />

Wolsong 1 p Candu 687 645 1983<br />

Wolsong 2 p Candu 678 653 1997<br />

Wolsong 3 p Candu 698 675 1999<br />

Wolsong 4 p Candu 703 679 1999<br />

Shin Wolsong 1 p PWR 1 043 991 2012<br />

Shin Wolsong 2 p PWR 1 000 960 2015<br />

Hanbit 1 p PWR 996 953 1986<br />

Hanbit 2 p PWR 993 945 1987<br />

Hanbit 3 p PWR 1 050 997 1995<br />

Hanbit 4 p PWR 1 049 997 1996<br />

Hanbit 5 p PWR 1 053 997 2001<br />

Hanbit 6 p PWR 1 052 995 2002<br />

Shin Kori 5 P PWR 1 400 1 340 (2022)<br />

Shin Kori 6 P PWR 1 400 1 340 (2024)<br />

Shin Hanul 1 P PWR 1 400 1 340 (2020)<br />

Shin Hanul 2 P PWR 1 400 1 340 (2022)<br />

Kori 2 j PWR 676 639 1983<br />

Mexico<br />

Laguna Verde 1 p BWR 820 765 1990<br />

Laguna Verde 2 p BWR 820 765 1995<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Country Location/<br />

Station name<br />

Netherlands<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Borssele p PWR 515 482 1973<br />

Pakistan<br />

Kanupp 1 p Candu 137 909 1972<br />

Chasnupp 1 p PWR 325 300 2000<br />

Chasnupp 2 p PWR 325 300 2011<br />

Chasnupp 3 p PWR 340 315 2016<br />

Chasnupp 4 p PWR 340 315 2017<br />

Kanupp 2 P PWR 1 100 1 014 (2021)<br />

Kanupp 3 P PWR 1 100 1 014 (2022)<br />

Romania<br />

Cernavoda 1 p Candu 706 650 1996<br />

Cernavoda 2 p Candu 706 655 2007<br />

Russia<br />

Balakovo 1 p VVER-PWR 1 000 953 1986<br />

Balakovo 2 p VVER-PWR 1 000 953 1988<br />

Balakovo 3 p VVER-PWR 1 000 953 1990<br />

Balakovo 4 p VVER-PWR 1 000 953 1993<br />

Beloyarsky 3 p FBR 600 560 1981<br />

Beloyarsky 4 p FBR 800 750 2014<br />

Bilibino 2 p LWGR 12 11 1975<br />

Bilibino 3 p LWGR 12 11 1976<br />

Bilibino 4 p LWGR 12 11 1977<br />

Kalinin 1 p VVER-PWR 1 000 953 1985<br />

Kalinin 2 p VVER-PWR 1 000 953 1987<br />

Kalinin 3 p VVER-PWR 1 000 953 2004<br />

Kalinin 4 p VVER-PWR 1 000 953 2011<br />

Kola 1 p VVER-PWR 440 411 1973<br />

Kola 2 p VVER-PWR 440 411 1975<br />

Kola 3 p VVER-PWR 440 411 1982<br />

Kola 4 p VVER-PWR 440 411 1984<br />

Kursk 1 p LWGR 1 000 925 1977<br />

Kursk 2 p LWGR 1 000 925 1979<br />

Kursk 3 p LWGR 1 000 925 1984<br />

Kursk 4 p LWGR 1 000 925 1986<br />

Leningrad 2 p LWGR 1 000 925 1976<br />

Leningrad 3 p LWGR 1 000 925 1980<br />

Leningrad 4 p LWGR 1 000 925 1981<br />

Leningrad II-1 p VVER-PWR 1 187 1 085 2018<br />

Novovoronezh 4 p VVER-PWR 417 385 1973<br />

Novovoronezh 5 p VVER-PWR 1 000 953 1981<br />

Novovoronezh II-1 p VVER-PWR 1 000 955 2016<br />

Novovoronezh II-2 [1] p VVER-PWR 1 000 955 2019<br />

Rostov 1 p VVER-PWR 1 000 953 2001<br />

Rostov 2 p VVER-PWR 1 000 953 2010<br />

Rostov 3 p VVER-PWR 1 000 950 2014<br />

Rostov 4 p VVER-PWR 1 030 980 2017<br />

Smolensk 1 p LWGR 1 000 925 1983<br />

Smolensk 2 p LWGR 1 000 925 1985<br />

Smolensk 3 p LWGR 1 000 925 1990<br />

Akademik Lomonosov I P PWR 40 35 (2020)<br />

Akademik Lomonosov I P PWR 40 35 (2020)<br />

Baltic 1 (Kaliningrad) P VVER-PWR 1 170 1 080 (2024)<br />

Kursk II-1 P VVER-PWR 1 255 1 175 (2024)<br />

Kursk II-2 [2] P VVER-PWR 1 255 1 175 (2025)<br />

Leningrad II-2 P VVER-PWR 1 170 1 085 (2021)<br />

Bilibino 1 [6] j LWGR 12 11 1974<br />

Slovakia<br />

Bohunice 3 p VVER-PWR 505 472 1985<br />

Bohunice 4 p VVER-PWR 505 472 1985<br />

Mochovce 1 p VVER-PWR 470 436 1998<br />

Mochovce 2 p VVER-PWR 470 436 1999<br />

Mochovce 3 P VVER-PWR 440 408 (2020)<br />

Mochovce 4 P VVER-PWR 440 408 (2020)<br />

Slovenia<br />

Krsko p PWR 727 696 1983<br />

South Africa<br />

Koeberg 1 p PWR 970 930 1984<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Koeberg 2 p PWR 970 930 1985<br />

Spain<br />

Almaraz 1 p PWR 1 049 1 011 1981<br />

Almaraz 2 p PWR 1 044 1 006 1983<br />

Ascó 1 p PWR 1 033 995 1984<br />

Ascó 2 p PWR 1 027 997 1985<br />

Cofrentes p BWR 1 092 1 064 1985<br />

Trillo 1 p PWR 1 066 1 002 1988<br />

Vandellos 2 p PWR 1 087 1 045 1987<br />

Sweden<br />

Forsmark 1 p BWR 1 022 984 1980<br />

Forsmark 2 p BWR 1 158 1 120 1981<br />

Forsmark 3 p BWR 1 212 1 170 1985<br />

Oskarshamn 3 p BWR 1 450 1 400 1985<br />

Ringhals 1 p BWR 910 878 1976<br />

Ringhals 2 p PWR 847 807 1975<br />

Ringhals 3 p PWR 1 117 1 064 1981<br />

Ringhals 4 p PWR 990 940 1983<br />

Switzerland<br />

Beznau 1 p PWR 380 365 1969<br />

Beznau 2 p PWR 380 365 1972<br />

Gösgen p PWR 1 060 1 010 1979<br />

Leibstadt p BWR 1 275 1 220 1984<br />

Mühleberg p BWR 390 373 1973<br />

Taiwan, China<br />

Kuosheng 1 p BWR 985 948 1981<br />

Kuosheng 2 p BWR 985 948 1983<br />

Maanshan 1 p PWR 951 890 1984<br />

Maanshan 2 p PWR 951 890 1985<br />

Lungmen 1 P BWR 1 356 1 315 (2021)<br />

Lungmen 2 P BWR 1 356 1 315 (2022)<br />

Chin Shan 2 [6] j BWR 636 604 1979<br />

Turkey<br />

Akkuyu 1 P VVER-PWR 1 200 1 114 (2023)<br />

United Arab Emirates<br />

Barakah 1 P PWR 1 400 1 340 (2020)<br />

Barakah 2 P PWR 1 400 1 340 (2021)<br />

Barakah 3 P PWR 1 400 1 340 (2022)<br />

Barakah 4 P PWR 1 400 1 340 (2023)<br />

United Kingdom<br />

Dungeness B-1 p AGR 615 520 1985<br />

Dungeness B-2 p AGR 615 520 1986<br />

Hartlepool-1 p AGR 655 595 1984<br />

Hartlepool-2 p AGR 655 585 1985<br />

Heysham I-1 p AGR 625 585 1984<br />

Heysham I-2 p AGR 625 575 1985<br />

Heysham II-1 p AGR 682 595 1988<br />

Heysham II-2 p AGR 682 595 1989<br />

Hinkley Point B-1 p AGR 655 610 1976<br />

Hinkley Point B-2 p AGR 655 610 1977<br />

Hunterston B-1 p AGR 644 460 1976<br />

Hunterston B-2 p AGR 644 430 1977<br />

Sizewell B p PWR 1 250 1 191 1995<br />

Torness Point 1 p AGR 682 595 1988<br />

Torness Point 2 p AGR 682 595 1989<br />

Hinkley Point C-1 P PWR 1 720 1 630 (2025)<br />

Ukraine<br />

Khmelnitski 1 p VVER-PWR 1 000 950 1985<br />

Khmelnitski 2 p VVER-PWR 1 000 950 2004<br />

Rovno 1 p VVER-PWR 402 363 1981<br />

Rovno 2 p VVER-PWR 416 377 1982<br />

Rovno 3 p VVER-PWR 1 000 950 1987<br />

Rovno 4 p VVER-PWR 1 000 950 2004<br />

Zaporozhe 1 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 2 p VVER-PWR 1 000 950 1985<br />

Zaporozhe 3 p VVER-PWR 1 000 950 1987<br />

Zaporozhe 4 p VVER-PWR 1 000 950 1988<br />

Zaporozhe 5 p VVER-PWR 1 000 950 1988<br />

51<br />

STATISTICS<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

52<br />

STATISTICS<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Zaporozhe 6 p VVER-PWR 1 000 950 1989<br />

South Ukraine 1 p VVER-PWR 1 000 950 1983<br />

South Ukraine 2 p VVER-PWR 1 000 950 1985<br />

South Ukraine 3 p VVER-PWR 1 000 950 1989<br />

USA<br />

Arkansas <strong>Nuclear</strong> One 1 p PWR 969 903 1974<br />

Arkansas <strong>Nuclear</strong> One 2 p PWR 1 006 943 1980<br />

Beaver Valley 1 p PWR 955 923 1976<br />

Beaver Valley 2 p PWR 957 923 1987<br />

Braidwood 1 p PWR 1 289 1 225 1988<br />

Braidwood 2 p PWR 1 289 1 225 1988<br />

Browns Ferry 1 p BWR 1 200 1 152 1974<br />

Browns Ferry 2 p BWR 1 193 1 152 1975<br />

Browns Ferry 3 p BWR 1 232 1 190 1977<br />

Brunswick 1 p BWR 1 074 1 002 1977<br />

Brunswick 2 p BWR 1 075 1 002 1975<br />

Byron 1 p PWR 1 307 1 225 1985<br />

Byron 2 p PWR 1 304 1 225 1987<br />

Callaway p PWR 1 316 1 236 1985<br />

Calvert Cliffs 1 p PWR 935 918 1975<br />

Calvert Cliffs 2 p PWR 939 911 1977<br />

Catawba 1 p PWR 1 286 1 205 1985<br />

Catawba 2 p PWR 1 286 1 205 1986<br />

Clinton 1 p BWR 1 175 1 138 1987<br />

Comanche Peak 1 p PWR 1 283 1 215 1990<br />

Comanche Peak 2 p PWR 1 283 1 215 1993<br />

Donald Cook 1 p PWR 1 266 1 152 1975<br />

Donald Cook 2 p PWR 1 210 1 133 1978<br />

Columbia (WNP 2) p BWR 1 244 1 200 1984<br />

Cooper p BWR 844 801 1974<br />

Davis Besse 1 p PWR 971 925 1978<br />

Diablo Canyon 1 p PWR 1 236 1 159 1985<br />

Diablo Canyon 2 p PWR 1 246 1 164 1985<br />

Dresden 2 p BWR 1 057 1 009 1970<br />

Dresden 3 p BWR 1 057 1 009 1971<br />

Duane Arnold p BWR 737 680 1975<br />

Farley 1 p PWR 933 888 1977<br />

Farley 2 p PWR 934 888 1981<br />

Fermi 2 p BWR 1 317 1 217 1988<br />

FitzPatrick p BWR 918 882 1975<br />

Ginna p PWR 713 614 1970<br />

Grand Gulf 1 p BWR 1 516 1 440 1985<br />

Hatch 1 p BWR 891 857 1974<br />

Hatch 2 p BWR 905 865 1979<br />

Hope Creek 1 p BWR 1 360 1 291 1986<br />

Indian Point 2 p PWR 1 348 1 299 1974<br />

Indian Point 3 p PWR 1 051 1 012 1976<br />

La Salle 1 p BWR 1 242 1 170 1984<br />

La Salle 2 p BWR 1 238 1 170 1984<br />

Limerick 1 p BWR 1 203 1 139 1986<br />

Limerick 2 p BWR 1 199 1 139 1990<br />

McGuire 1 p PWR 1 358 1 220 1981<br />

McGuire 2 p PWR 1 358 1 220 1984<br />

Millstone 2 p PWR 946 91 0 1975<br />

Millstone 3 p PWR 1 308 1 253 1986<br />

Monticello p BWR 734 685 1971<br />

Nine Mile Point 1 p BWR 671 642 1969<br />

Nine Mile Point 2 p BWR 1 302 1 259 1988<br />

North Anna 1 p PWR 1 035 980 1978<br />

North Anna 2 p PWR 1 033 980 1980<br />

Oconee 1 p PWR 955 887 1973<br />

Oconee 2 p PWR 955 887 1974<br />

Oconee 3 p PWR 961 893 1974<br />

Country Location/<br />

Station name<br />

Status Reactor<br />

type<br />

Capacity<br />

gross<br />

[MW]<br />

Capacity<br />

net<br />

[MW]<br />

1 st<br />

Criticality<br />

[Year]<br />

Palisades p PWR 870 812 1971<br />

Palo Verde 1 p PWR 1 528 1 403 1986<br />

Palo Verde 2 p PWR 1 524 1 403 1988<br />

Palo Verde 3 p PWR 1 524 1 403 1986<br />

Peach Bottom 2 p BWR 1 233 1 160 1974<br />

Peach Bottom 3 p BWR 1 233 1 160 1974<br />

Perry 1 p BWR 1 397 1 312 1987<br />

Point Beach 1 p PWR 696 643 1970<br />

Point Beach 2 p PWR 696 643 1972<br />

Prairie Island 1 p PWR 642 593 1973<br />

Prairie Island 2 p PWR 641 593 1974<br />

Quad Cities 1 p BWR 1 061 1 009 1973<br />

Quad Cities 2 p BWR 1 061 1 009 1973<br />

RiverBend 1 p BWR 1 073 1 036 1986<br />

Robinson 2 p PWR 855 769 1971<br />

Salem 1 p PWR 1 276 1 170 1977<br />

Salem 2 p PWR 1 303 1 170 1981<br />

Seabrook 1 p PWR 1 330 1 242 1990<br />

Sequoyah 1 p PWR 1 259 1 221 1981<br />

Sequoyah 2 p PWR 1 279 1 221 1982<br />

Shearon Harris 1 p PWR 983 951 1987<br />

South Texas 1 p PWR 1 410 1 354 1988<br />

South Texas 2 p PWR 1 410 1 354 1989<br />

St. Lucie 1 p PWR 1 122 1 080 1976<br />

St. Lucie 2 p PWR 1 135 1 080 1983<br />

Virgil C. Summer p PWR 1 071 1 030 1984<br />

Surry 1 p PWR 900 848 1972<br />

Surry 2 p PWR 900 848 1973<br />

Susquehanna 1 p BWR 1 374 1 298 1983<br />

Susquehanna 2 p BWR 1 374 1 298 1985<br />

Turkey Point 3 p PWR 885 835 1972<br />

Turkey Point 4 p PWR 885 835 1973<br />

Vogtle 1 p PWR 1 223 1 160 1987<br />

Vogtle 2 p PWR 1 226 1 160 1989<br />

Water<strong>for</strong>d 3 p PWR 1 250 1 200 1985<br />

Watts Bar 1 p PWR 1 370 1 270 1996<br />

Watts Bar 2 p PWR 1 240 1 180 2016<br />

Wolf Creek p PWR 1 351 1 268 1984<br />

Vogtle 3 P PWR 1 080 1 000 (2021)<br />

Vogtle 4 P PWR 1 080 1 000 (2022)<br />

Pilgrim [6] j BWR 712 670 1972<br />

Three Mile Island 1 [6] j PWR 1 021 976 1974<br />

1) Start of nuclear operation (first criticality: C, first grid connection: G, commercial<br />

operation: O): 4 units in 3 countries in 2019: China: Taishan 2 (1750 MW, PWR,<br />

CGO), Yangjiang 6 (1086 MW, PWR, CGO); Korea: Shin Kori 4 (1400 MW, PWR,<br />

CGO); Russia: Novovoronezh 2-2 (1200 MW, PWR, CGO).<br />

2) Start of construction (first concrete or official announcement and first preparations<br />

<strong>for</strong> construction), 5 units 3 countries in 2019: China: Changjiang 3 (1170 MW,<br />

PWR), Changjiang 4 (1170 MW, PWR), Zhangzhou 1 (1212 MW, PWR); Iran:<br />

Bushehr 2 (1127 MW, VVER-PWR); Russia: Kursk 2-2 (1255 MW, VVER-PWR).<br />

3) Project under construction (finally) cancelled: none.<br />

4) Resumed operation: none.<br />

5) <strong>Nuclear</strong> power plant taken in long-term shutdown: none.<br />

6) <strong>Nuclear</strong> power plants permanently shutdown: 6 units in 5 countries in 2019: Germany:<br />

Philippsburg 2 (1468 MW, PWR); Japan: Genkai 2 (559 MW, BWR); Russia:<br />

Bilibinsk 1 (12 MW, LWGR); Taiwan: China, Chin Shan 2 (636 MW, BWR); USA: Pilgrim<br />

1 (712 MW, BWR), Three Mile Island 1 (1021 MW, PWR).<br />

(All capacity data in MWe gross)<br />

AGR: Advanced Gas-cooled Reactor, BWR: Boiling water reactor, Candu: CANada<br />

Deuterium Uranium reactor (IND: Indian type), D2O-PWR: heavy water moderated,<br />

pressurised water reactor, PWR: pressurised water reactor, GGR: gas-graphite<br />

reactor, LWGR/GLWR: light water cooled graphite moderated reactor (Russian type<br />

RBMK), FBWR: advanced boiling water reactor, FBR: fast breeder reactor<br />

| Tab. 1.<br />

<strong>Nuclear</strong> power plant units worldwide on 31.12.2019 in operation (p), under construction (P), in lay-up operation/long-term shutdown (s) or permanently shut-down in 2019 (j)<br />

[Sources: Operators, IAEO]. All in<strong>for</strong>mation and data refer to the year 2019. Data have been updated with reference to the sources<br />

Statistics<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants: 2019 <strong>atw</strong> Compact Statistics


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Zum Zum Tode Tode von von<br />

Prof. Dr. Dr. Adolf Birkhofer<br />

53<br />

Am 9. November 2019 ist Prof. Dr. Dr. h. c. mult. Adolf Birkhofer im Alter von 85 Jahren in<br />

München verstorben. Mit ihm ging eine in vielfacher Weise beeindruckende und hochgeschätzte<br />

Persönlichkeit – als international anerkannter Wissenschaftler, engagierter Hochschullehrer sowie<br />

als Mitbegründer und langjähriger technisch-wissenschaftlicher Geschäftsführer der Gesellschaft<br />

für Anlagen- und Reaktorsicherheit (GRS).<br />

Geboren in München, studierte Adolf<br />

Birkhofer zunächst Elektrotechnik an<br />

der damaligen Technischen Hochschule<br />

München (THM) und später<br />

Theoretische Physik an der Universität Innsbruck. Nach<br />

beruflichen Stationen bei Siemens & Halske sowie beim<br />

Technischen Überwachungs-Verein Bayern folgten 1963<br />

seine Promotion in Innsbruck und 1967 seine Habilitation<br />

an der THM. Bereits 1963 war er zum Institut für Messund<br />

Regeltechnik der THM gewechselt. Mit dem Laboratorium<br />

für Reaktorregelung und Anlagensicherung (LRA)<br />

baute er dort eine der beiden Vorläuferorganisationen der<br />

GRS auf. Im Jahr 1971 übernahm er die Leitung des LRA<br />

und wurde zum außerordentlichen Professor für Reaktordynamik<br />

und Reaktorsicherheit berufen. Mitte der 1970er<br />

Jahre setzte er sich dafür ein, das LRA mit dem Institut für<br />

Reaktorsicherheit in Köln zur GRS zusammenzuschließen.<br />

Von 1977 bis Ende 2001 leitete er die fachliche Arbeit der<br />

GRS und sorgte dafür, dass sie sich schnell auch über die<br />

Grenzen Deutschlands hinaus höchstes Ansehen erarbeitet<br />

hat.<br />

Die große technische Expertise Adolf Birkhofers wird<br />

nicht nur an seiner Autorschaft an rund 200 wissenschaftlichen<br />

Veröffentlichungen deutlich. Noch wesentlicher<br />

ist, dass er ganz maßgeblich die Entwicklung von<br />

grundlegenden Methoden und Konzepten vorangetrieben<br />

hat, die das moderne Verständnis von Reaktorsicherheit<br />

ge<strong>for</strong>mt, bis heute Gültigkeit und eine führende Rolle<br />

Deutschlands auf dem Gebiet der Reaktorsicherheit<br />

begründet haben. Dazu zählt beispielsweise die<br />

Erarbeitung der „Deutschen Risikostudie Kernkraftwerke“<br />

(Phasen A und B) durch die GRS. Bis heute zitiert, legen<br />

diese Studien eine wesentliche Grundlage für die Entwicklung<br />

der Probabilistische Sicherheitsanalyse. Prägend<br />

bis heute für die GRS war seine Forderung, dass das<br />

Verhindern von Störfällen stets Priorität gegenüber der<br />

Begrenzung ihrer Auswirkungen haben muss.<br />

Als international hochgeschätzter Fachmann wurde<br />

Adolf Birkhofer in zahlreiche Fachgremien und Kommissionen<br />

berufen. In Deutschland gehörte er als Berater des<br />

Bundesumweltministeriums über drei Jahrzehnte der<br />

Reaktor-Sicherheitskommission (RSK) an, davon viele<br />

Jahre als deren Vorsitzender. Die Entwicklung des<br />

deutschen nuklearen Sicherheitskonzeptes hat er dabei<br />

mit Unterstützung durch die RSK ganz wesentlich<br />

gestaltet. Als Mitglied und zeitweiliger Vorsitzender der<br />

„<strong>International</strong> <strong>Nuclear</strong> Safety Group“ (INSAG) der<br />

<strong>International</strong>en Atomenergie-Organisation wirkte er an<br />

der Erarbeitung des 1996 publizierten Reports „Defence in<br />

Depth in <strong>Nuclear</strong> Safety“ (INSAG-10) mit, der bis heute als<br />

Standard für das gleichnamige Sicherheitskonzept gilt.<br />

Auf internationaler Ebene war er nicht nur in der IAEO<br />

aktiv, sondern saß beispielsweise auch über mehrere Jahre<br />

dem „Committee on the Safety of <strong>Nuclear</strong> Installations“<br />

(CSNI) der OECD vor.<br />

Eine besonders enge berufliche und persönliche<br />

Beziehung verband ihn mit Frankreich. So ist es seinem<br />

Einsatz zu verdanken, dass die GRS und ihr damaliges<br />

französisches Pendant, das Institut de Protection et de<br />

Sûreté Nucleaire (IPSN; heute IRSN) im Jahr 1989 eine<br />

Vereinbarung über eine weitreichende Zusammenarbeit<br />

schlossen. Diese bis heute andauernde Partnerschaft<br />

bildete die Grundlage für die Gründung des gemeinsamen<br />

Tochterunternehmens RISKAUDIT und nicht zuletzt<br />

der EUROSAFE Initiative, die kürzlich, 20 Jahre nach<br />

ihrer Gründung, im Europäischen Netzwerk Technischer<br />

Sicherheitsorganisationen (ETSON) aufgegangen ist.<br />

Nach dem Reaktorunfall von Tschernobyl hat er sich<br />

mit Nachdruck dafür eingesetzt, durch eine enge<br />

und partnerschaftliche Zusammenarbeit mit den damaligen<br />

Institutionen die Sicherheit von Kernkraftwerken<br />

russischer Bauart in den Staaten des Ostblocks zu erhöhen.<br />

Die daraus erwachsenen vertrauensvollen Beziehungen<br />

der GRS zu den dortigen Aufsichtsbehörden und Fachorganisationen<br />

haben auch heute noch Bestand.<br />

Für sein großes fachliches Engagement wurden Adolf<br />

Birkhofer zahlreiche Ehrungen zuteil, darunter das Große<br />

Bundesverdienstkreuz, der Bayerische Maximiliansorden<br />

für Wissenschaft und Kunst und die Auszeichnung als<br />

Ritter der französischen Ehrenlegion. Die Universität<br />

Karlsruhe und das Kurtschatow-Institut in Moskau<br />

verliehen ihm die Ehrendoktorwürde.<br />

Wie sehr ihm Forschung und Lehre am Herzen lagen,<br />

zeigte sich zuletzt auch darin, dass er nach seiner<br />

Emeritierung im Jahr 2003 das Institute <strong>for</strong> Safety and<br />

Reliability (ISaR) an der TU München gründete und dort<br />

auch als Geschäftsführer wirkte.<br />

Adolf Birkhofer hat uns Vieles hinterlassen, für das wir<br />

dankbar sein müssen – nicht nur mit seinen Verdiensten<br />

um die Erhöhung der Reaktorsicherheit und die GRS<br />

als führendes technisch-wissenschaftliches Kompetenzzentrum<br />

auf diesem Gebiet, die uns Ansporn und<br />

Verpflichtung sind, sondern auch mit den Erinnerungen<br />

an eine engagierte, freundliche, weltoffene und humorvolle<br />

Persönlichkeit. Wir werden ihm stets ein ehrendes<br />

Andenken bewahren.<br />

Autoren<br />

Uwe Stoll<br />

Technisch-wissenschaftlicher Geschäftsführer der GRS<br />

Hans Steinhauer<br />

Kaufmännisch-juristischer Geschäftsführer der GRS<br />

N A C H R U F<br />

Nachruf


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

54<br />

NEWS<br />

Top<br />

IAEA's Grossi at COP 25:<br />

More nuclear power needed<br />

<strong>for</strong> clean energy transition<br />

(iaea) IAEA Director General Rafael<br />

Mariano Grossi, speaking at the<br />

United Nations Climate Change<br />

Conference (COP 25) in Madrid,<br />

December 2019, said greater use of<br />

low-carbon nuclear power is needed<br />

to ensure the global transition to clean<br />

energy, including to back up variable<br />

renewables such as solar and wind.<br />

The world is currently well off the<br />

mark from reaching the climate goals<br />

of the Paris Agreement. With around<br />

two-thirds of the world’s electricity<br />

still generated through burning fossil<br />

fuels, and despite growing investment<br />

in renewable energy sources, global<br />

emissions of greenhouse gases<br />

reached a record high last year.<br />

Mr Grossi said greater deployment<br />

of a diverse mix of low-carbon sources<br />

such as hydro, wind and solar, as well<br />

as nuclear power and battery storage,<br />

will be needed to reverse that trend<br />

and set the world on track to meet<br />

climate goals.<br />

“We should not see nuclear energy<br />

and renewables as being in competition<br />

with one another,” he said in<br />

Madrid at a side event on Sustainable<br />

Development Goal 7 (SDG 7) – to<br />

ensure access to af<strong>for</strong>dable and reliable<br />

energy. “We need to make use of<br />

all available sources of clean energy.”<br />

<strong>Nuclear</strong> power plants produce<br />

virtually no greenhouse gas emissions<br />

or air pollutants during their operation.<br />

They are also able to operate<br />

around the clock at near full capacity,<br />

while variable renewables require back<br />

up power during their output gaps.<br />

“<strong>Nuclear</strong> power offers a steady,<br />

reliable supply of electricity,”<br />

Mr Grossi stated. “It can provide<br />

continuous, low-carbon power to back<br />

up increasing use of renewables. It can<br />

be the key that unlocks their potential<br />

by providing flexible support – day or<br />

night, rain or shine.”<br />

He also spoke of the role of nuclear<br />

applications that help countries adapt<br />

to the consequences of climate change<br />

which are already apparent. “Our<br />

scientists help countries to develop<br />

new varieties of rice and barley that<br />

are tolerant of drought, extreme temperatures<br />

and salinity,” he said. “We<br />

support the use of nuclear techniques<br />

to identify and manage limited water<br />

resources.”<br />

The UN side event, entitled “Accelerating<br />

the energy trans<strong>for</strong>mation in<br />

support of sustainable development<br />

and the Paris Agreement”, focused on<br />

initiatives that could have a significant<br />

impact toward achieving SDG 7 goals,<br />

helping to close the energy access gap<br />

in a sustainable way and promoting<br />

climate action by transitioning toward<br />

zero-carbon energy solutions.<br />

The event was opened by remarks<br />

from Liu Zhenmin, Under-Secretary-<br />

General of the United Nations Department<br />

of Economic and Social Affairs<br />

(UN DESA), Damilola Ogunbiyi, Chief<br />

Executive Officer of Sustainable<br />

Energy <strong>for</strong> All and Li Yong, Director<br />

General of the United Nations Industrial<br />

Organization (UNIDO).<br />

Mr Grossi said nuclear power needs<br />

a place at the table where the world’s<br />

energy future is decided, and that he<br />

was encouraged by his talks with other<br />

international organizations and their<br />

willingness to work with the IAEA towards<br />

a cleaner climate.<br />

He underscored the symbolism of<br />

coming to COP 25 just one week after<br />

taking office.<br />

“This reflects the importance of the<br />

issue and my firm belief that nuclear<br />

science and technology have an<br />

important role to play in helping the<br />

world to address the climate emergency,”<br />

he said. “That view is shared<br />

by many of the IAEA’s 171 Member<br />

States.”<br />

| (193471203); www.iaea.org<br />

Europe<br />

FORATOM welcomes Commission’s<br />

Green Deal ambitions<br />

(<strong>for</strong>atom) FORATOM welcomes the<br />

European Commission’s goal of<br />

becoming more ambitious in reducing<br />

its CO 2 emissions whilst at the same<br />

time ensuring that no EU citizen is left<br />

behind in the transition.<br />

If the EU is to achieve its zero- carbon<br />

target 2050, then its current 2030 CO 2<br />

reduction targets may not be enough.<br />

We there<strong>for</strong>e support the Commission’s<br />

goal of raising this target, so long as it<br />

leaves Member States free to choose<br />

their own low-carbon energy mix.<br />

Expecting them to reduce their GHG<br />

emissions, whilst at the same time<br />

preventing them from investing in specific<br />

low-carbon technologies such as<br />

nuclear, would be counter-productive.<br />

As indicated by Fatih Birol upon the<br />

publication of the 2019 edition of the<br />

IEA’s World Energy Outlook “There is<br />

no single or simple way to trans<strong>for</strong>m<br />

global energy systems. Many technologies<br />

& fuels have a part to play across<br />

all sectors of the economy.”<br />

FORATOM furthermore supports<br />

the goal of designing and implementing<br />

a strong industrial strategy. Not<br />

only is nuclear key in providing the<br />

baseload electricity which other<br />

industries depend on at a reasonable<br />

cost, it is also an important European<br />

industry in itself.<br />

“The European nuclear industry<br />

currently sustains more than 1.1 million<br />

jobs in the EU and generates more<br />

than half a trillion euros in GDP”<br />

states FORATOM Director General<br />

Yves Desbazeille. “This is important<br />

when we bear in mind the potential<br />

impact of the energy transition on<br />

citizens. For example, those currently<br />

employed in the coal industry could<br />

be retrained in order to fill the skills<br />

gap in the nuclear industry”.<br />

Both the IPCC (Global Warming<br />

of 1.5°C) and the IEA (<strong>Nuclear</strong> <strong>Power</strong><br />

in a Clean Energy System) have made<br />

it very clear that decarbonisation<br />

goals cannot be achieved without<br />

nuclear energy. The European<br />

Commission (A Clean Planet <strong>for</strong> all)<br />

has confirmed that nuclear will<br />

<strong>for</strong>m the backbone of a carbon-free<br />

European power system, together<br />

with renewables.<br />

| (193471322); www.<strong>for</strong>atom.org<br />

Myrrha: First contract<br />

signed <strong>for</strong> Belgian<br />

nuclear research facility<br />

(nccnet/sck) A € 7.6 m contract has<br />

been signed <strong>for</strong> the design of buildings<br />

and utilities <strong>for</strong> the first phase of the<br />

Myrrha nuclear research facility, the<br />

Belgian <strong>Nuclear</strong> Research Centre<br />

SCK•CEN has confirmed.<br />

SCK•CEN said the contract, the<br />

first <strong>for</strong> the project, includes water and<br />

electricity <strong>for</strong> the facility. It was signed<br />

with Belgian company Tractebel<br />

and Spanish company Empresarios<br />

Agrupados.<br />

Twelve months ago the Belgian<br />

government announced financing of<br />

€558m towards the development of<br />

the Myrrha facility.<br />

SCK•CEN said the funding would<br />

be used <strong>for</strong> construction of the first<br />

phase of the facility at SCK•CEN’s<br />

premises in Mol.<br />

The facility, scheduled to begin<br />

operation in 2026, will produce radioisotopes<br />

and promote fundamental<br />

and applied research on materials,<br />

SCK•CEN said. Myrrha will contribute<br />

to producing new radioisotopes and<br />

to developing less invasive therapies to<br />

fight against cancer.<br />

The facility will also be used to develop<br />

solutions <strong>for</strong> managing nuclear<br />

waste and <strong>for</strong> researching methods of<br />

deep geological disposal.<br />

The Myrrha project, supported by<br />

the European Union, is to design<br />

and build a multifunctional research<br />

installation.<br />

Myrrha will be the first prototype<br />

of a nuclear reactor driven by a<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

Operating Results September 2019<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 720 658 684 5 766 073 267 421 281 100.00 96.63 99.97 95.71 99.44 95.67<br />

OL2 Olkiluoto BWR FI 910 880 720 656 944 5 426 464 257 323 006 100.00 90.88 99.94 90.35 99.18 90.04<br />

KCB Borssele PWR NL 512 484 720 356 232 5 138 418 166 860 106 98.88 83.81 98.87 83.73 96.62 80.39<br />

KKB 1 Beznau 7) PWR CH 380 365 720 271 481 2 127 323 129 461 433 100.00 86.29 100.00 86.10 99.23 85.34<br />

KKB 2 Beznau 1,2,7) PWR CH 380 365 255 91 519 2 103 198 136 453 605 35.42 85.19 33.87 85.00 32.89 84.35<br />

KKG Gösgen 7) PWR CH 1060 1010 720 755 968 5 894 880 319 770 408 100.00 85.88 99.99 85.30 99.05 84.89<br />

KKM Mühleberg BWR CH 390 373 720 272 160 2 494 730 129 899 045 100.00 100.00 99.66 99.74 96.92 97.65<br />

CNT-I Trillo PWR ES 1066 1003 720 758 289 6 149 267 253 440 935 100.00 89.13 99.94 88.72 98.00 87.46<br />

Dukovany B1 1) PWR CZ 500 473 0 0 2 662 535 114 892 028 0 83.33 0 83.07 0 81.29<br />

Dukovany B2 2) PWR CZ 500 473 227 105 461 1 715 933 109 950 104 31.53 54.07 29.49 53.43 29.30 52.39<br />

Dukovany B3 PWR CZ 500 473 720 350 232 2 672 518 109 170 559 100.00 83.90 99.65 83.50 97.29 81.59<br />

Dukovany B4 PWR CZ 500 473 720 356 514 3 244 818 109 688 087 100.00 99.83 100.00 99.66 99.03 99.06<br />

Temelin B1 PWR CZ 1080 1030 720 775 772 5 496 200 119 857 242 100.00 78.48 99.96 78.21 99.58 77.54<br />

Temelin B2 PWR CZ 1080 1030 720 781 223 5 795 810 115 068 327 100.00 81.59 99.99 81.33 100.28 81.77<br />

Doel 1 2) PWR BE 454 433 720 327 462 2 250 940 137 695 402 100.00 74.44 99.96 74.15 97.58 74.08<br />

Doel 2 PWR BE 454 433 643 287 390 2 533 531 136 335 470 89.33 86.32 88.89 84.86 87.50 84.80<br />

Doel 3 PWR BE 1056 1006 720 759 431 5 598 794 260 731 278 100.00 80.96 99.52 80.29 99.49 80.43<br />

Doel 4 PWR BE 1084 1033 720 725 939 6 850 498 267 223 908 100.00 100.00 92.96 96.21 91.25 94.91<br />

Tihange 1 PWR BE 1009 962 720 707 386 6 553 065 305 383 923 100.00 100.00 99.95 99.99 97.37 99.25<br />

Tihange 2 PWR BE 1055 1008 720 738 405 2 154 428 256 806 358 100.00 32.92 99.99 32.25 98.08 31.40<br />

Tihange 3 PWR BE 1089 1038 720 763 539 6 946 670 278 173 943 100.00 99.97 99.99 99.24 97.85 97.86<br />

55<br />

NEWS<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 720 959 402 7 391 648 357 959 458 100.00 85.33 94.27 80.10 89.60 75.93<br />

KKE Emsland DWR 1406 1335 720 989 749 7 717 806 354 536 775 100.00 85.56 100.00 85.45 97.76 83.78<br />

KWG Grohnde DWR 1430 1360 720 968 134 7 676 462 385 250 676 100.00 86.70 99.95 86.40 93.42 81.41<br />

KRB C Gundremmingen SWR 1344 1288 720 960 604 7 420 665 338 362 419 100.00 85.49 100.00 84.87 98.78 83.84<br />

KKI-2 Isar DWR 1485 1410 720 1 014 325 8 834 840 362 560 653 100.00 94.58 100.00 94.22 94.41 90.44<br />

GKN-II Neckarwestheim 1,2) DWR 1400 1310 197 265 700 7 347 710 337 174 544 27.39 92.02 26.39 82.86 26.41 80.22<br />

KKP-2 Philippsburg DWR 1468 1402 720 961 047 7 837 362 373 998 517 100.00 86.20 100.00 85.95 89.44 80.24<br />

particle accelerator. The system<br />

consists of a proton accelerator that<br />

delivers a beam to a spallation target,<br />

which in turn couples to a subcritical<br />

lead-bismuth cooled fast reactor.<br />

| (193471323); www.sckcen.be,<br />

www.myrrha.be/<br />

Reactors<br />

China: Construction begins<br />

of two Hualong One reactors<br />

at Changjiang<br />

(nucnet) China has begun construction<br />

of two new reactor units at the<br />

Changjiang nuclear station in the<br />

island province of Hainan off the<br />

country’s southeast coast, state media<br />

reported on Monday following a<br />

signing ceremony.<br />

The China <strong>Nuclear</strong> Energy Association<br />

also confirmed the news, saying<br />

each unit will take around 60 months<br />

to complete.<br />

The company in charge, the<br />

Huaneng <strong>Nuclear</strong> Development<br />

Corporation, has chosen China’s indigenous<br />

Generation III HPR1000<br />

reactor technology, also known as the<br />

Hualong One, <strong>for</strong> the two units, the<br />

official China News Service reported.<br />

Other press reports said the total<br />

investment <strong>for</strong> the two new units<br />

will reach 39.45 billion yuan<br />

($5.64bn), and they are scheduled to<br />

begin commercial operation in 2025<br />

and 2026.<br />

There are already two units in commercial<br />

operation at Changjiang. The<br />

new units will be Changjiang-3 and -4.<br />

Changjiang-1 and -2 are both<br />

CNP600 units developed by China<br />

National <strong>Nuclear</strong> Corporation and<br />

have a net capacity of 601 MW. They<br />

began commercial operation in 2015<br />

and 2016.<br />

According to the <strong>International</strong><br />

Atomic Energy Agency, China has<br />

10 commercial nuclear units under<br />

construction, not including the new<br />

Changjiang units, and 48 in operation.<br />

China has ambitious nuclear plans<br />

with an official target of 58 GW of<br />

installed nuclear capacity by 2020,<br />

up from around 36 GW today.<br />

According to Shanghai-based<br />

energy consultancy Nicobar, China’s<br />

goal is to have 110 nuclear units in<br />

commercial operation by 2030, but<br />

this target is likely to be adjusted.<br />

A recent <strong>for</strong>ecast by the China<br />

Electricity Council said the country<br />

will fall short of its nuclear power<br />

generation capacity target <strong>for</strong> 2020.<br />

| (193471344); en.cnnc.com.cn/<br />

Hungary: Licence documentation<br />

<strong>for</strong> Paks 2 reactors ‘will<br />

be submitted next summer’<br />

(mvm/nucnet) Documentation <strong>for</strong> the<br />

licence application <strong>for</strong> two new<br />

reactors units at the Paks nuclear<br />

station in Hungary is on schedule to be<br />

ready in spring 2020 in time to be<br />

submitted to the regulator <strong>for</strong> approval<br />

in the summer, Rosatom chief executive<br />

officer Alexey Likhachev said.<br />

Paks 2, the company overseeing<br />

the project, told NucNet that earlier<br />

this week János Süli, the minister<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

56<br />

NEWS<br />

responsible <strong>for</strong> the planning, construction<br />

and commissioning of the<br />

Paks II project, reviewed progress<br />

with Mr Likhachev.<br />

Mr Likhachev said more than 400<br />

licences are needed <strong>for</strong> the two units<br />

and the next major milestone will<br />

be completion of all the design documentation,<br />

which will be submitted to<br />

the regulator, the Hungarian Atomic<br />

Energy Authority.<br />

Mr Süli said that without the new<br />

Paks units, Hungary would not be<br />

able to reach its climate goals. He said<br />

Paks 2 will avoid 17 million tonnes of<br />

carbon dioxide emissions a year –<br />

compared to total emissions of the<br />

transport sector of 12 million tonnes<br />

of C0 2 a year.<br />

An agreement signed in 2014 will<br />

see Russia supply two VVER-1200<br />

pressurised water reactors <strong>for</strong> Paks 2,<br />

and a loan of up to €10bn to finance<br />

80% of the €12bn project.<br />

| (193471332); www.mvm.hu<br />

Iran: Bushehr – Start of<br />

construction <strong>for</strong> second<br />

nuclear plant confirmed<br />

(nucnet) Iran has officially started<br />

construction of a second Russiasupplied<br />

nuclear power plant at<br />

the Bushehr nuclear station on the<br />

Persian Gulf coast.<br />

The Atomic Energy Organisation of<br />

Iran said on Sunday a ceremony had<br />

been held to mark the pouring if first<br />

concrete <strong>for</strong> the Bushehr-2 VVER-1000<br />

plant.<br />

Ali Akbar Salehi, head of the<br />

AEOI, and deputy chief of Russia’s<br />

state nuclear corporation Rosatom,<br />

Alexander Lokshin, launched construction<br />

at the ceremony where<br />

concrete was poured <strong>for</strong> the reactor<br />

base.<br />

The AEOI also confirmed it had<br />

“long-term” plans to build a third<br />

Russian plant at the site, about 750 km<br />

south of Teheran.<br />

Iran and Russia signed an agreement<br />

to build two new units at<br />

Bushehr in November 2014. This was<br />

followed in June 2019 by the signing<br />

of a final contract <strong>for</strong> construction.<br />

In 2014 the country’s official<br />

Islamic Republic News Agency (IRNA)<br />

said Russia and Iran had signed an<br />

agreement <strong>for</strong> the construction of up<br />

to eight new nuclear reactor units in<br />

the Middle Eastern republic.<br />

According to the <strong>International</strong><br />

Atomic Energy Agency, Bushehr-1,<br />

Iran’s first commercial nuclear plant,<br />

officially began commercial operation<br />

in September 2013. It had begun operating<br />

at full capacity in 2012 and now<br />

supplies about 2 % of the country’s<br />

electricity.<br />

A 2015 nuclear deal Iran signed<br />

with six major powers, including<br />

Russia, placed restrictions on the sort<br />

of nuclear technology Tehran could<br />

develop and its production of nuclear<br />

fuel, but it did not require Iran to halt<br />

its use of nuclear energy <strong>for</strong> power<br />

generation.<br />

“In a long-term vision until 2027-<br />

2028, when these projects are<br />

finished, we will have 3,000 megawatts<br />

of nuclear plant-generated<br />

electricity,” Mr Salehi said at the<br />

ceremony.<br />

The Islamic republic has been<br />

seeking to reduce its reliance on oil<br />

and gas through the development of<br />

nuclear power.<br />

As part of the 2015 agreement,<br />

Moscow provides Tehran with the fuel<br />

it needs <strong>for</strong> its electricity-generating<br />

nuclear reactors.<br />

Bushehr is fuelled by uranium<br />

produced in Russia and is monitored<br />

by the <strong>International</strong> Atomic Energy<br />

Agency.<br />

| (193471334)<br />

Science & Research<br />

Managing ageing research<br />

reactors to ensure safe,<br />

effective operations<br />

(iaea) As over two thirds of the world’s<br />

operating research reactors are now<br />

over 30 years old, operators and regulators<br />

are focusing on refurbishing<br />

and modernizing reactors to ensure<br />

they can continue to per<strong>for</strong>m in a safe<br />

and efficient manner. This is also one<br />

of many topics have been discussed<br />

from 25 to 29 November at the IAEA's<br />

<strong>International</strong> Conference on Research<br />

Reactors: Addressing Challenges and<br />

Opportunities to Ensure Effectiveness<br />

and Sustainability in Buenos Aires,<br />

Argentina.<br />

“The lifetime of research reactors is<br />

normally determined by the need <strong>for</strong><br />

their use and their con<strong>for</strong>mance with<br />

up-to-date safety requirements, since<br />

most of their systems and components<br />

can be replaced, refurbished or modernized<br />

without major difficulty,” said<br />

Amgad Shokr, Head of the IAEA’s<br />

Research Reactor Safety Section.<br />

“ Refurbishment and modernization<br />

should not be limited to just systems<br />

and components; operators should also<br />

review safety procedures against IAEA<br />

safety standards to prevent the interruption<br />

of research reactor ervices.”<br />

For more than 60 years, research<br />

reactors have been centres of innovation<br />

and development <strong>for</strong> nuclear<br />

science and technology programmes<br />

around the world. These small nuclear<br />

reactors primarily generate neutrons<br />

– rather than power – <strong>for</strong> research,<br />

education and training purposes, as<br />

well as <strong>for</strong> applications in areas such<br />

as industry, medicine and agriculture.<br />

There are two kinds of ageing<br />

related to research reactors: physical<br />

ageing, which is the degradation<br />

of the physical condition of the<br />

reactor’s systems and components,<br />

and obsolescence, which is when<br />

the technology used <strong>for</strong> computers,<br />

instrumentation and control systems<br />

or safety regulations becomes outdated.<br />

The ageing of facilities was one of<br />

the concerns that led to the IAEA<br />

initiating its Research Reactor Safety<br />

Enhancement Plan in 2001. This plan<br />

aims to help countries ensure a high<br />

level of research reactor safety. It<br />

includes the Code of Conduct on the<br />

Safety of Research Reactors, which<br />

provides guidance to countries on<br />

the development and harmonization<br />

of policies, laws and regulations regarding<br />

the safety of research reactors.<br />

As part of this plan, countries work<br />

with the IAEA to implement systematic<br />

ageing management programmes<br />

that, among others, use<br />

good practices to minimize the per<strong>for</strong>mance<br />

degradation of systems and<br />

components, to continuously monitor<br />

and assess reactor per<strong>for</strong>mance and to<br />

implement practical safety upgrades.<br />

These ageing programmes can also<br />

benefit from operating programmes in<br />

other areas, such as maintenance,<br />

periodic testing, inspections and<br />

periodic safety reviews.<br />

“While the number of operating<br />

research reactors is decreasing, the<br />

average age is increasing,” said Ram<br />

Sharma, a nuclear engineer on<br />

research reactor operation and maintenance<br />

at the IAEA. “So, it is of<br />

paramount importance to establish,<br />

implement and continuously improve<br />

plans <strong>for</strong> management, refurbishment<br />

and modernization to ensure costeffective<br />

operation and utilization to<br />

get the most out of existing research<br />

reactors. IAEA support, such as peer<br />

review missions, can play a key part in<br />

achieving that goal.”<br />

Comprehensive support<br />

Countries can draw on a range of IAEA<br />

support to address ageing at their<br />

research reactors. This includes<br />

assistance with developing safety<br />

standards and optimizing reactor<br />

availability, as well as adopting<br />

recommended practices based on<br />

IAEA-published collections on safety<br />

and using in<strong>for</strong>mation disseminated<br />

by the IAEA on developing and implementing<br />

modernization and refurbishment<br />

projects. This assistance<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

extends to new research reactor programmes<br />

and to assessing plans to<br />

proactively address ageing throughout<br />

all phases of the research reactor’s<br />

lifetime, from the design and selection<br />

of materials to the construction and<br />

operation of the facilities.<br />

Review missions are initiated upon<br />

the request of a country and are<br />

supported by the IAEA and teams of<br />

international experts who carry out<br />

assessments and provide recommendations<br />

<strong>for</strong> further improvements. In<br />

November 2017, the first ageing management<br />

peer review mission <strong>for</strong> a<br />

research reactor was completed at<br />

Belgian Reactor 2 (BR2), which is one<br />

of three operating research reactors at<br />

the Belgian <strong>Nuclear</strong> Research Centre<br />

(SCK•CEN). The mission was based<br />

on the methodology of Safety Aspects<br />

of Long Term Operation (SALTO) missions<br />

<strong>for</strong> nuclear power plants and<br />

adapted to suit research reactors.<br />

“The mission identified a number<br />

of items that were overlooked, such as<br />

ageing management of radioisotope<br />

production facilities and experimental<br />

devices,” said Frank Joppen, a<br />

nuclear safety engineer at SCK•CEN.<br />

“As a result, the classification systems<br />

of components are being updated, and<br />

feedback from maintenance, inspection<br />

and surveillance is being used to<br />

further improve ageing management<br />

programmes.”<br />

In operation since 1963, BR2 is one<br />

of the oldest research reactors in<br />

Western Europe. It produces around<br />

one quarter of the global supply<br />

of radioisotopes <strong>for</strong> medical and<br />

industrial purposes, including <strong>for</strong><br />

cancer therapy and medical imaging.<br />

It also produces a type of silicon<br />

that is used as a semiconductor<br />

material in electronic components.<br />

BR2 is now permitted to operate<br />

until its next periodic safety review<br />

in 2026, when a decision on extending<br />

its operation <strong>for</strong> another ten years<br />

may be taken.<br />

“The ageing management programme<br />

of BR2 will be further developed,<br />

which means taking into<br />

account the remarks made during the<br />

IAEA mission,” Joppen said. “The<br />

efficiency of the programme will be<br />

reviewed and will be the subject of the<br />

next safety review.”<br />

The next IAEA ageing managem<br />

ent missions <strong>for</strong> research reactors<br />

have been requested by the Netherlands<br />

and Uzbekistan and are planned<br />

<strong>for</strong> 2020. “The BR2 mission showed<br />

that the SALTO methodology could<br />

be effectively applied to research<br />

reactors. We will continue to improve<br />

the efficiency and effectiveness of this<br />

mission, as well as other services, to<br />

Uranium<br />

Uranium prize range: Spot market [USD*/lb(US) U<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

3O 8]<br />

) 1<br />

140.00<br />

140.00<br />

) 1<br />

120.00<br />

120.00<br />

100.00<br />

100.00<br />

80.00<br />

80.00<br />

60.00<br />

60.00<br />

40.00<br />

40.00<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

20.00<br />

20.00<br />

0.00<br />

0.00<br />

Year<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

* Actual nominal USD prices, not real prices referring to a base year. Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

| Uranium spot market prices from 1980 to 2019 and from 2008 to 2019. The price range is shown.<br />

In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

22.00<br />

) 1 20.00<br />

160.00<br />

) 1<br />

18.00<br />

140.00<br />

16.00<br />

120.00<br />

14.00<br />

100.00<br />

12.00<br />

10.00<br />

80.00<br />

8.00<br />

60.00<br />

6.00<br />

40.00<br />

4.00<br />

20.00<br />

2.00<br />

0.00<br />

0.00<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

* Actual nominal USD prices, not real prices referring to a base year. Year<br />

Sources: Energy Intelligence, Nukem; Bild/Figure: <strong>atw</strong> 2019<br />

1980<br />

Jan. 2008<br />

Jan. 2009<br />

1985<br />

Jan. 2010<br />

1990<br />

Jan. 2011<br />

Jan. 2012<br />

maximize the benefits from research<br />

reactors,” Shokr said.<br />

| (193471308); www.iaea.org<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

2017<br />

p Uranium: 19.25–26.50<br />

p Conversion: 4.50–6.75<br />

p Separative work: 39.00–50.00<br />

2018<br />

p Uranium: 21.75–29.20<br />

p Conversion: 6.00–14.50<br />

p Separative work: 34.00–42.00<br />

2019<br />

January 2019<br />

p Uranium: 28.70–29.10<br />

p Conversion: 13.50–14.50<br />

p Separative work: 41.00–44.00<br />

February 2019<br />

p Uranium: 27.50–29.25<br />

1995<br />

Jan. 2013<br />

Jan. 2014<br />

2000<br />

Jan. 2015<br />

2005<br />

Jan. 2016<br />

Jan. 2017<br />

2010<br />

Jan. 2018<br />

2015<br />

Jan. 2019<br />

2019<br />

Jan. 2020<br />

| Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

* Actual nominal USD prices, not real prices referring to a base year<br />

Sources: Energy Intelligence, Nukem; Bilder/Figures: <strong>atw</strong> 2019<br />

Jan. 2008<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2012<br />

p Conversion: 13.50–14.50<br />

p Separative work: 42.00–45.00<br />

March 2019<br />

p Uranium: 24.85–28.25<br />

p Conversion: 13.50–14.50<br />

p Separative work: 43.00–46.00<br />

April 2019<br />

p Uranium: 25.50–25.88<br />

p Conversion: 15.00–17.00<br />

p Separative work: 44.00–46.00<br />

May 2019<br />

p Uranium: 23.90–25.25<br />

p Conversion: 17.00–18.00<br />

p Separative work: 46.00–48.00<br />

June 2019<br />

p Uranium: 24.30–25.00<br />

p Conversion: 17.00–18.00<br />

p Separative work: 47.00–49.00<br />

July 2019<br />

p Uranium: 24.50–25.60<br />

p Conversion: 18.00–19.00<br />

p Separative work: 47.00–49.00<br />

August 2019<br />

p Uranium: 24.90–25.60<br />

p Conversion: 19.00–20.00<br />

p Separative work: 47.00–49.00<br />

September 2019<br />

p Uranium: 24.80–26.00<br />

p Conversion: 20.00–21.00<br />

p Separative work: 47.00–50.00<br />

October 2019<br />

p Uranium: 23.75–25.50<br />

p Conversion: 21.00–22.00<br />

p Separative work: 47.00–50.00<br />

| Source: Energy Intelligence<br />

www.energyintel.com<br />

Jan. 2013<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2019<br />

Jan. 2020<br />

Jan. 2020<br />

57<br />

NEWS<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 1 ı January<br />

58<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

freelance journalist<br />

and communications<br />

consultant.<br />

Sources:<br />

Green/EFA statement<br />

https://bit.ly/<br />

2sYvUoQ<br />

Foratom comments<br />

on taxonomy<br />

https://bit.ly/<br />

352Pf6A<br />

Dr Angela Wilkinson<br />

opinion<br />

https://bit.ly/<br />

2RvC6Pm<br />

New Year Brings a Fresh Political Challenge<br />

<strong>for</strong> a Champion of Climate Change<br />

As you read this article, the Christmas decorations will have been packed away <strong>for</strong> another 12 months and some of us<br />

will be wondering how we can keep to those new year resolutions we set <strong>for</strong> ourselves – perhaps rashly – in the dying<br />

hours of 2019.<br />

Resolutions are a great way to start the new year and even<br />

though 2020 is already well under way, it’s not too late to<br />

set goals <strong>for</strong> the year ahead. In fact, it’s imperative the<br />

nuclear energy community resolves to take action in<br />

defence of the industry in Europe in the face of a strident<br />

push from its opponents.<br />

The European Parliament elections of 2019 witnessed a<br />

surge in support <strong>for</strong> groups including the Greens and that<br />

new-found political muscle in Brussels is now being<br />

harnessed to attack nuclear under the guise of environmental<br />

concern.<br />

As I sent this article off to the publisher, the Greens/<br />

European Free Alliance grouping in the European<br />

Parliament were celebrating a compromise on a proposed<br />

framework to facilitate sustainable investment, known as<br />

‘taxonomy’.<br />

The taxonomy follows the European Commission’s<br />

setting up in 2018 of a technical expert group on sustainable<br />

finance. Tasks set <strong>for</strong> the group included helping the<br />

Commission to develop an EU classification system<br />

(dubbed the taxonomy) to identify environmentallysustainable<br />

economic activities. This is in line with the<br />

bloc’s goal of decarbonising its energy sector.<br />

The EU said the guidelines released by the expert group<br />

in June 2019 <strong>for</strong>med part of moves to ensure that the<br />

financial sector “can play a critical role in transitioning to a<br />

climate-neutral economy and in funding investments at<br />

the scale required”.<br />

According to the findings, nuclear does have the<br />

credentials to help tackle climate change, but the guidance<br />

questioned the technology’s suitability because of the<br />

storage of nuclear waste.<br />

Foratom, the voice of the European nuclear industry,<br />

indicated that, in the case of nuclear, the focus on the<br />

waste issue had been deliberately used to exclude nuclear<br />

from the taxonomy. Foratom said the waste criteria did not<br />

appear to have been applied in the same way <strong>for</strong> other<br />

technologies and hoped future talks on the taxonomy “will<br />

remain open and transparent, include real experts on the<br />

various issues and focus on a fact-based, rather than an<br />

ideological, debate”.<br />

France has, sensibly, lobbied to keep nuclear in the<br />

taxonomy. However, the Greens now say their compromise<br />

will mean “any investment in coal cannot be considered<br />

sustainable”. They say a “strengthened ‘no-harm’ test will<br />

help avoid nuclear energy from being considered an<br />

environmentally sustainable investment”.<br />

According to the EU, the taxonomy is not set to be<br />

implemented until the end of 2022, one year later than<br />

initially proposed, which means battle lines have been<br />

drawn in this latest twist in the fight <strong>for</strong> the future of<br />

European energy policy.<br />

Ironically, Germany, which had already joined fellow<br />

EU states Austria and Luxembourg in opposing a role <strong>for</strong><br />

nuclear in the taxonomy, could yet save the day if nuclear’s<br />

proponents box clever.<br />

This is because natural gas could find itself excluded<br />

from the taxonomy as being too emitting. This would hit<br />

countries such as Germany, where power utilities and<br />

others have invested in natural gas. Going <strong>for</strong>ward, this<br />

would make it harder to achieve emissions reductions. And<br />

there is speculation that Germany could now have a vested<br />

interest in seeing the taxonomy proposals scrapped <strong>for</strong><br />

that reason – using nuclear as a scapegoat.<br />

Germany takes over the presidency of the EU’s Council<br />

of Ministers <strong>for</strong> six months in July 2020, giving it a key role<br />

in driving <strong>for</strong>ward the Council’s work on EU legislation, so<br />

the year ahead promises to be an interesting one!<br />

But why is energy policy always driven by political<br />

dogma rather than common sense?<br />

According to the Paris-based <strong>International</strong> Energy<br />

Agency, a range of technologies, including nuclear power,<br />

will be needed <strong>for</strong> clean energy transitions around the<br />

world. The IEA said “the key to making energy systems<br />

clean is to turn the electricity sector from the largest<br />

producer of CO 2 emissions into a low-carbon source that<br />

reduces fossil fuel emissions in areas like transport, heating<br />

and industry”.<br />

And while the IEA said renewables are expected to<br />

continue to lead, “nuclear power can also play an important<br />

part along with fossil fuels using carbon capture, utilisation<br />

and storage”.<br />

Those who seek to remove nuclear from the array of<br />

technologies the world needs to rely on would also do well<br />

to heed the words of the newly-appointed secretary- general<br />

and chief executive of the World Energy Council,<br />

Dr Angela Wilkinson. She said recently: “Don’t let perfection<br />

( ideology) become the enemy of the faster, deeper and<br />

social af<strong>for</strong>dability decarbonisation. There is no need to<br />

reinvent the wheel – leverage technology and policy<br />

innovation by encouraging countries to learn with and<br />

from each other and increase the pace of learning by<br />

doing.”<br />

Wilkinson has also correctly pointed out that energy<br />

transition is not a single issue and there is a need to “ manage<br />

the connected challenges of energy security, energy equity<br />

and af<strong>for</strong>dability and environmental sustainability”.<br />

Europe’s leaders should look across the Atlantic, to<br />

where the heads of three provincial Canadian governments<br />

have agreed to work together “to explore new, cutting-edge<br />

technology in nuclear power generation to provide carbonfree,<br />

af<strong>for</strong>dable, reliable, and safe energy, while helping<br />

unlock economic potential across Canada”.<br />

The provinces of Ontario, New Brunswick and<br />

Saskatchewan said in December 2019 that they were<br />

committed to collaborating on the development and<br />

deployment of “innovative, versatile and scalable” small<br />

modular reactors in Canada.<br />

Meanwhile, here in Europe, there is no time to lose in<br />

preventing the Greens and their supporters in the<br />

European Parliament from what can only be described as<br />

an incredible act of self harm.<br />

<strong>Nuclear</strong> is not a sacred cow to be protected at all costs.<br />

But nuclear energy is, by any sensible measure, a key element<br />

in the shield against climate change. Policies that<br />

pander to political correctness over practical solutions to<br />

tackling climate change deserve to be stopped in their<br />

tracks.<br />

<strong>Nuclear</strong> Today<br />

New Year Brings a Fresh Political Challenge <strong>for</strong> a Champion of Climate Change ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

Rückbau kerntechnischer Anlagen<br />

In Kooperation mit<br />

TÜV SÜD Energietechnik GmbH<br />

Baden-Württemberg<br />

Seminar:<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Seminarinhalte<br />

Genehmigungen für die Stilllegung und den Rückbau<br />

ı<br />

ı<br />

Gestaltung der Übergänge zwischen der Betriebs- und der Stilllegungsgenehmigung<br />

Gestaltung der Übergänge zwischen Genehmigungs- und Aufsichtsphase<br />

Rechtliche Gestaltung des Genehmigungsverfahrens<br />

ı<br />

ı<br />

ı<br />

ı<br />

Elemente des Umweltbereiches<br />

UVP und Erörterungstermin<br />

Anfechtung von Genehmigungen<br />

Stellungnahmen der EU-Kommission<br />

Reststoffe und Abfälle<br />

ı<br />

ı<br />

ı<br />

ı<br />

Vorstellung von Reststoffkonzepten<br />

Bewertung der Reststoffkonzepte<br />

Neue Regelungen zum Übergang der Entsorgungsverantwortung<br />

Entsorgungsfragen rund um Abfälle aus dem Rückbau<br />

Zielgruppe<br />

Die 2-tägige Schulung wendet sich an Fach- und Führungskräfte, Mitarbeiterinnen und Mitarbeiter<br />

von Betreibern, Industrie und Dienstleistern, die sich mit der Thematik aktuell bereits beschäftigen<br />

oder sich künftig damit auseinander setzen werden.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referenten<br />

Dr. Stefan Kirsch<br />

Dr. Christian Raetzke<br />

Wir freuen uns auf Ihre Teilnahme!<br />

ı Abteilung Stilllegung, Entsorgung, Reaktorphysik, TÜV SÜD Energietechnik<br />

GmbH Baden-Württemberg<br />

ı Rechtsanwalt, Leipzig<br />

Bei Fragen zur Anmeldung rufen Sie uns bitte an oder senden uns eine E-Mail.<br />

Termin<br />

2 Tage<br />

24. bis 25. September 2020<br />

Tag 1: 11:00 bis 18:00 Uhr<br />

Tag 2: 09:00 bis 16:30 Uhr<br />

Veranstaltungsort<br />

Kaiserin Friedrich-Haus<br />

Robert-Koch-Platz 7<br />

10115 Berlin<br />

Teilnahmegebühr<br />

1.598,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

seminare@KernD.de


#51KT<br />

www.kerntechnik.com<br />

Medienpartner<br />

51. KERNTECHNIK<br />

2020<br />

Jetzt anmelden!<br />

www.kerntechnik.com/kerntechnik/registration/<br />

Frühbucherrabatt<br />

bei Anmeldung<br />

bis zum 31. Januar 2020!<br />

5. – 6. Mai 2020<br />

Estrel Convention Center<br />

Berlin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!