10.02.2020 Views

atw - International Journal for Nuclear Power | 02.2020

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information. www.nucmag.com

Ever since its first issue in 1956, the atw – International Journal for Nuclear Power has been a publisher of specialist articles, background reports, interviews and news about developments and trends from all important sectors of nuclear energy, nuclear technology and the energy industry. Internationally current and competent, the professional journal atw is a valuable source of information.

www.nucmag.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

nucmag.com<br />

2020<br />

2<br />

ISSN · 1431-5254<br />

24.– €<br />

Highlights of the<br />

World <strong>Nuclear</strong><br />

Per<strong>for</strong>mance Report<br />

2019<br />

An Integrated Approach<br />

to Risk In<strong>for</strong>med Decision<br />

Management<br />

New Ways of Public<br />

Participation in <strong>Nuclear</strong><br />

Licensing Procedures<br />

Register Now!


This Year The <strong>International</strong> Research Reactor<br />

Community Gets Together In Helsinki<br />

2020<br />

22. – 26.3.2020<br />

HELSINKI<br />

FINLAND<br />

REGISTER NOW!<br />

See www.rrfm2020.org <strong>for</strong> more in<strong>for</strong>mation


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

EU “Green Deal” – Just Not with <strong>Nuclear</strong> Energy?<br />

The “Bologna Process”, “Lisbon Strategy”, “Europe 2020” are three examples of initiatives and programmes of the<br />

European Union, which have been initiated significantly or even leadingly by the EU Commission in recent decades to<br />

provide impulses <strong>for</strong> the further development of the European community. The new EU Commission, which took office<br />

on 1 December 2019 <strong>for</strong> a five-year term with President Ursula von der Leyen, presented its key concept, the “European<br />

Green Deal”, a roadmap <strong>for</strong> shaping the Community's economy and society in a sustainable manner. EU President<br />

Ursula von der Leyen explained: “The European Green Deal is our new growth strategy – <strong>for</strong> growth that brings us more<br />

than it costs us...”. EU Vice-President Frans Timmermanns, who will be in charge of implementing the programme,<br />

added: “We are in a climate and environmental emergency. With the European Green Deal we can contribute to the<br />

health and well-being of our citizens by changing our economic model from the ground up...”.<br />

In terms of content, the Green Deal presented should lead<br />

to measures that promote the efficient use of resources. In<br />

addition, the economy should be trans<strong>for</strong>med into a clean<br />

and cycle-oriented system, biodiversity should be<br />

preserved and pollution reduced. The limitation of climate<br />

change is central. In addition, the Green Deal should cover<br />

all economic sectors, namely transport, energy, agriculture<br />

and buildings, as well as the steel, cement, in<strong>for</strong>mation<br />

and telecommunications sectors, and the textile and<br />

chemical industries.<br />

The “Green Deal” is explained in more detail in a<br />

24-page document presented by the EU Commission in its<br />

first presentation. The following topics can be made <strong>for</strong> the<br />

energy sector:<br />

Timeline: In March 2020, the Commission will present<br />

a draft <strong>for</strong> a European climate law, which aims to achieve<br />

climate neutrality by 2050 and is to be incorporated into<br />

the legislation of the community states.<br />

EU climate targets and emissions trading system:<br />

A revision of the EU energy tax directive is to be proposed.<br />

Environmental aspects are to be given priority and the<br />

European Parliament and the Council are to be given the<br />

possibility to adopt proposals <strong>for</strong> this framework by qualified<br />

majority under the ordinary legislative procedure.<br />

National Energy and Climate Plans: Revised energy and<br />

climate plans of the EU Member States are to be submitted<br />

by them in the short term. The EU Commission will evaluate<br />

these plans to determine whether the level of targets is<br />

sufficient. The results of the assessment will be included in<br />

the process of raising the EU climate targets <strong>for</strong> 2030. To<br />

this end, the relevant regulations are also to be reviewed<br />

and revised if necessary by mid-2021.<br />

Energy efficiency and market integration: Priority<br />

should be given to energy efficiency in all measures. While<br />

maintaining technological neutrality, the European energy<br />

market should be fully integrated, networked and digitised.<br />

Transport: In the transport sector, climate neutrality<br />

requires a 90 % reduction in relevant emissions by 2050.<br />

To this end, the Commission is to adopt a strategy <strong>for</strong><br />

s ustainable and intelligent mobility in 2020, covering all<br />

emission sources. Electric mobility, including the associated<br />

infrastructure, will be of great importance.<br />

Innovation and financing: The Commission proposes a<br />

target of 25 % of the EU budget <strong>for</strong> climate action and will<br />

present a European Sustainable Investment Plan to mobilise<br />

up to € 1,000 billion over the next 10 years. Innovations <strong>for</strong><br />

climate action under Horizon Europe will account <strong>for</strong> 35 %<br />

of the budget. In addition, up to € 2,000 billion in investment<br />

is to be mobilised from citizens and industry.<br />

The EU Commission's very clear <strong>for</strong>mulations of its<br />

objectives up to this point bear a fundamental guiding<br />

principle of the Community: to <strong>for</strong>mulate and achieve<br />

objectives openly together.<br />

Discussions are currently underway in the committees<br />

on the details of possible individual measures <strong>for</strong> achieving<br />

these goals. With regard to the importance of nuclear<br />

energy, however, familiar patterns of action of individuals<br />

are emerging, which tend to lack technological openness<br />

and the freedom and openness in the energy mix <strong>for</strong> the<br />

indivi dual member states, i.e. also the choice of the nuclear<br />

option.<br />

In order to assess the nuclear energy option, it is<br />

certainly interesting to take stock of its significance <strong>for</strong> the<br />

EU, in figures.<br />

<strong>Nuclear</strong> energy in the EU today stands <strong>for</strong>:<br />

p 26 % of total electricity production,<br />

p 50 % of low-emission production,<br />

p 1,100,000 jobs<br />

and<br />

p an annual GDP of more than 500 billion euros.<br />

With total emissions of climate-impacting gases amounting<br />

to around 12 g CO 2 -equivalent, nuclear energy, together<br />

with wind, is also the lowest emission energy source of<br />

power generation. In the energy system, nuclear energy is<br />

characterised by high availability of nuclear power plants<br />

with a large potential <strong>for</strong> flexible feed-in, which is essential<br />

<strong>for</strong> the integration of the volatile sources of renewable<br />

energy. As a further primary energy source, nuclear energy<br />

broadens the basis of an energy mix that is as broadly based<br />

as possible, the uranium is geographically widely available<br />

and the mass of nuclear fuel that has to be moved <strong>for</strong> use in<br />

nuclear power plants is low – 1 kg of nuclear fuel <strong>for</strong> reactor<br />

use corresponds to about 150,000 to 200,000 kg of hard<br />

coal units.<br />

<strong>Nuclear</strong> energy not only offers advantages <strong>for</strong> a lowcarbon<br />

energy system, but also supports sustainability by<br />

securing and creating urgently needed jobs – and this<br />

against the background of global competition, which the<br />

EU must also face up to with this new package of “Green<br />

Deal” measures.<br />

Openness and equality, even if there are different views<br />

or assessments of individual technologies, not dogma,<br />

remain fundamental <strong>for</strong> <strong>for</strong>ward-looking decisions in a<br />

common EU. These principles must also not stop at nuclear<br />

energy, which is seen in EU member states as a pillar of the<br />

future energy mix in electricity generation, in some cases<br />

even as the mainstay.<br />

<strong>Nuclear</strong> energy must there<strong>for</strong>e remain recognised as an<br />

instrument <strong>for</strong> environmental protection in the EU and<br />

must be promoted at this level of sustainability on a par<br />

with other technologies.<br />

Christopher Weßelmann<br />

– Editor in Chief –<br />

63<br />

EDITORIAL<br />

Editorial<br />

EU “Green Deal” – Just Not with <strong>Nuclear</strong> Energy?


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

EU-„Green Deal“ – nur nicht mit der Kernenergie?<br />

EDITORIAL 64<br />

„Bologna-Prozess“, „Lissabon-Strategie“, „Europa 2020“ sind drei Beispiele für Initiativen und Programme der<br />

Europäischen Union, die wesentlich oder auch führend in den vergangenen Jahrzehnten durch die EU-Kommission initiiert<br />

wurden, um Impulse für die Weiterentwicklung der europäischen Gemeinschaft zu liefern. Die am 1. Dezember 2019 neu für<br />

eine fünfjährige Amtszeit angetretene EU-Kommission mit der Präsidentin Ursula von der Leyen präsentierte schon wenige<br />

Tage später ihr Kernkonzept, den „European Green Deal“, eine Roadmap, um Wirtschaft und Gesellschaft der Gemeinschaft<br />

nachhaltig zu gestalten. EU-Präsidentin Ursula von der Leyen erläuterte dazu: „Der European Green Deal ist unsere neue<br />

Wachstumsstrategie – für ein Wachstum, das uns mehr bringt, als es uns kostet ...“. EU-Vizepräsident Frans Timmermanns, der<br />

das Programm federführend umsetzen soll, fügte hinzu: „Wir befinden uns in einem Klima- und Umweltnotstand. Mit dem<br />

European Green Deal können wir zu Gesundheit und Wohlergehen unserer Bürgerinnen und Bürger beitragen, indem wir<br />

unser Wirtschaftsmodell von Grund auf verändern ...“.<br />

Inhaltlich soll der präsentierte Green Deal zu Maßnahmen<br />

führen, die einen effizienten Umgang mit Ressourcen fördern.<br />

Die Wirtschaft soll sich zudem zu einem sauberen und<br />

kreislau<strong>for</strong>ientierten System wandeln, Biodiversität soll<br />

erhalten und Schadstoffbelastung reduziert werden. Zentral<br />

ist die Begrenzung des Klimawandels. Zudem soll der Green<br />

Deal alle Wirtschaftsbereiche erfassen, namentlich Verkehr,<br />

Energie, Landwirtschaft und Gebäude sowie den Stahl-,<br />

Zement-, In<strong>for</strong>mations- und Telekommunikationssektor wie<br />

auch die Textil- und Chemieindustrie.<br />

Etwas detaillierter erläutert ist der „Green Deal“ in einem<br />

24-seitigen Dokument, das die EU-Kommission mit ihrer<br />

ersten Präsentation vorlegte. Für den Energiesektor lassen<br />

sich dazu folgende Punkte festhalten:<br />

Terminierung: Im März 2020 wird die Kommission den Entwurf<br />

für ein Europäisches Klimagesetz vorlegen, das Klimaneutralität<br />

für das Jahr 2050 zum Ziel hat und in die Gesetzgebung<br />

der Gemeinschaftsstaaten aufgenommen werden soll.<br />

Klimaziele der EU und Emissionshandelssystem: Eine<br />

Überarbeitung der EU-Energiesteuerrichtlinie soll vorgeschlagen<br />

werden. Umweltaspekte sollen dabei im Vordergrund<br />

stehen und Europäisches Parlament sowie Rat sollen<br />

die Möglichkeit erhalten, für diesen Rahmen Vorschläge im<br />

Rahmen des ordentlichen Gesetzgebungsverfahrens mit<br />

qualifizierter Mehrheit anzunehmen.<br />

National Energy and Climate Plans: Überarbeitete Energieund<br />

Klimapläne der EU-Mitgliedstaaten sollen kurzfristig von<br />

diesen vorgelegt werden. Diese wird die EU-Kommission<br />

dahingehend bewerten, ob das Niveau der Ziele ausreichend<br />

ist. Ergebnisse der Bewertung werden in den Prozess der<br />

Erhöhung der EU-Klimaziele für 2030 einfließen. Dazu sollen<br />

bis Mitte 2021 auch die einschlägigen Vorschriften geprüft und<br />

ggf. überarbeitet werden.<br />

Energieeffizienz und Marktintegration: Vorrang bei allen<br />

Maßnahmen ist der Energieeffizienz einzuräumen. Unter<br />

Wahrung der technologischen Neutralität soll der euro päische<br />

Energiemarkt vollständig integriert, vernetzt und digitalisiert<br />

werden.<br />

Transport: Im Transportsektor ist für Klimaneutralität eine<br />

Reduktion der relevanten Emissionen bis 2050 in einem Umfang<br />

von 90 % er<strong>for</strong>derlich. In 2020 soll dazu von der Kommission<br />

eine Strategie für eine nachhaltige und intelligente Mobilität<br />

verabschiedet werden, die alle Emissionsquellen betrifft. Große<br />

Bedeutung werden Elektromobilität einschließlich der zugehörigen<br />

Infrastruktur besitzen.<br />

Innovation und Finanzierung: Die Kommission schlägt das<br />

Ziel eines Anteils von 25 % des EU-Haushaltes für Klimaschutzmaßnahmen<br />

vor und wird einen Europäischen Plan für<br />

nachhaltige Investitionen vorlegen, der in den kommenden<br />

10 Jahren bis zu 1.000 Milliarden Euro mobilisieren soll. Innovationen<br />

für Klimaschutzmaßnahmen im Rahmen von Horizon<br />

Europe sollen 35 % des Budgets umfassen. Darüber hinaus<br />

sollen bis zu 2.000 Milliarden Euro an Investitionen bei den<br />

Bürgern und der Industrie mobilisiert werden.<br />

Die bis dahin in ihren Zielen sehr eindeutigen Formulierungen<br />

der EU-Kommission tragen grundsätzlich einen<br />

Leitgedanken der Gemeinschaft: Ziele gemeinsam offen zu<br />

<strong>for</strong>mulieren und zu erreichen.<br />

Im Detail der möglichen einzelnen Maßnahmen für die<br />

Zielerreichung laufen die Diskussionen in den Gremien<br />

derzeit. Mit Blick auf die Bedeutung der Kernenergie zeichnen<br />

sich allerdings bekannte Handlungsmuster Einzelner ab, die<br />

Technologieoffenheit und die Freiheit und Offenheit bei der<br />

Ausgestaltung des Energiemixes für die einzelnen Mitgliedsstaaten,<br />

also auch die Wahl der Option Kernenergie, eher<br />

missen lassen.<br />

Für eine Beurteilung der Option Kernenergie ist sicherlich<br />

eine Bestandsaufnahme ihrer Bedeutung für die EU, in Zahlen,<br />

von Interesse.<br />

Kernenergie in der EU steht heute für:<br />

p 26 % der gesamten Stromerzeugung,<br />

p 50 % der emissionsarmen Erzeugung,<br />

p 1.100.000 Arbeitsplätze<br />

und<br />

p ein jährlich erwirtschaftetes BIP von mehr als 500 Milliarden<br />

Euro.<br />

Mit ganzheitlichen Emissionen klimawirksamer Gase in Höhe<br />

von rund 12 g CO 2 -Äquivalent ist die Kernenergie zudem<br />

gemeinsam mit Wind die emissionsärmste Form in der Stromerzeugung<br />

überhaupt. Im Energiesystem zeichnet sich die<br />

Kernenergie aus durch hohe Verfügbarkeit der Kernkraftwerke<br />

mit einem großen Potenzial für flexible Einspeisung,<br />

welches für die Integration der volatilen Quellen Erneuerbarer<br />

unabdingbar ist. Als weiterer Primär energieträger<br />

erweitert die Kernenergie die Basis eines möglichst breit<br />

aufgestellten Energiemixes, der Energierohstoff Uran ist geografisch<br />

weiträumig verfügbar und die Masse an Kernbrennstoff,<br />

die für den Einsatz in Kernkraftwerken bewegt werden<br />

muss, ist niedrig – 1 kg Kernbrennstoff für den Reaktoreinsatz<br />

entspricht etwa 150.000 bis 200.000 kg Steinkohleeinheiten.<br />

Kernenergie bietet dabei nicht nur Vorteile für ein<br />

kohlenstoffarmes Energiesystem sondern unterstützt auch<br />

die Nachhaltigkeit durch die Sicherung und Schaffung von<br />

dringend benötigten Arbeitsplätzen – und dies vor dem<br />

Hinter grund des weltweiten Wettbewerbs, dem sich die EU<br />

auch mit diesem neuen Maßnahmenpaket des „Green Deal“<br />

stellen muss.<br />

Offenheit und Gleichheit, auch bei unterschiedlichen<br />

Ansichten oder Bewertungen von einzelnen Technologien,<br />

nicht Dogmentreue sind für zukunftsweisende Entscheidungen<br />

in einer gemeinsamen EU weiterhin von grundlegender<br />

Bedeutung. Diese Prinzipien dürfen auch nicht vor<br />

der Kernenergie halt machen, die in Mitgliedsstaaten der EU<br />

als teils sogar tragende Säule des zukünftigen Energiemixes in<br />

der Stromerzeugung gesehen wird.<br />

Kernenergie muss daher als Instrument für Umweltschonung<br />

in der EU anerkannt bleiben und gleichranging mit<br />

anderen Technologien auf diesem Nachhaltigkeitsniveau<br />

gefördert werden.<br />

Christopher Weßelmann<br />

– Chefredakteur –<br />

Editorial<br />

EU “Green Deal” – Just Not with <strong>Nuclear</strong> Energy?


Kommunikation und<br />

Training für Kerntechnik<br />

Suchen Sie die passende Weiter bildungs maßnahme im Bereich Kerntechnik?<br />

Wählen Sie aus folgenden Themen: Dozent/in Termin/e Ort<br />

3 Atom-, Vertrags- und Exportrecht<br />

Atomrecht – Ihr Weg durch Genehmigungs- und<br />

Aufsichtsverfahren<br />

RA Dr. Christian Raetzke 18.<strong>02.2020</strong> Berlin<br />

Atomrecht – Das Recht der radioaktiven Abfälle RA Dr. Christian Raetzke 10.03.2020 Berlin<br />

Export kerntechnischer Produkte und Dienstleistungen –<br />

Chanchen und Regularien<br />

RA Kay Höft M.A. (BWL) 17.06.2020 Berlin<br />

Atomrecht – Was Sie wissen müssen<br />

3 Kommunikation und Politik<br />

RA Dr. Christian Raetzke<br />

Akos Frank LL. M.<br />

11.11.2020 Berlin<br />

Public Hearing Workshop –<br />

Öffentliche Anhörungen erfolgreich meistern<br />

Dr. Nikolai A. Behr 10.11. - 11.11.2020 Berlin<br />

3 Rückbau und Strahlenschutz<br />

In Kooperation mit dem TÜV SÜD Energietechnik GmbH Baden-Württemberg:<br />

3 <strong>Nuclear</strong> English<br />

Das Strahlenschutzrecht und<br />

seine praktische Umsetzung<br />

Stilllegung und Rückbau in Recht und Praxis<br />

Dr. Maria Poetsch<br />

RA Dr. Christian Raetzke<br />

Dr. Stefan Kirsch<br />

RA Dr. Christian Raetzke<br />

17.03. - 18.03.2020<br />

16.06. - 17.06.2020<br />

29.10. - 30.10.2020<br />

Berlin<br />

23.09. - 24.09.2020 Berlin<br />

English <strong>for</strong> the <strong>Nuclear</strong> Industry Angela Lloyd 01.04. - 02.04.2020 Berlin<br />

3 Wissenstransfer und Veränderungsmanagement<br />

Erfolgreicher Wissenstransfer in der Kerntechnik –<br />

Methoden und praktische Anwendung<br />

Dr. Tanja-Vera Herking<br />

Dr. Christien Zedler<br />

24.03. - 25.03.2020 Berlin<br />

Haben wir Ihr Interesse geweckt? 3 Rufen Sie uns an: +49 30 498555-30<br />

Kontakt<br />

INFORUM Verlags- und Verwaltungs gesellschaft mbH ı Robert-Koch-Platz 4 ı 10115 Berlin<br />

Petra Dinter-Tumtzak ı Fon +49 30 498555-30 ı Fax +49 30 498555-18 ı Seminare@KernD.de<br />

Die INFORUM-Seminare können je nach<br />

Inhalt ggf. als Beitrag zur Aktualisierung<br />

der Fachkunde geeignet sein.


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

66<br />

Issue 2 | 2020<br />

February<br />

CONTENTS<br />

Contents<br />

Editorial<br />

EU “Green Deal” – Just Not with <strong>Nuclear</strong> Energy? E/G 63<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Medical Radioisotopes / Why Changes are Needed<br />

to ‘Unstable’ Supply Chain 68<br />

Did you know...? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

Feature | Major Trends in Energy Policy and <strong>Nuclear</strong> <strong>Power</strong><br />

Highlights of the World <strong>Nuclear</strong> Per<strong>for</strong>mance Report 2019 71<br />

Spotlight on <strong>Nuclear</strong> Law<br />

New Ways of Public Participation<br />

in <strong>Nuclear</strong> Licensing Procedures G 74<br />

Energy Policy, Economy and Law<br />

An Integrated Approach<br />

to Risk In<strong>for</strong>med Decision Management 76<br />

Environment and Safety<br />

Design and Implementation of Embedded System<br />

<strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers 81<br />

Research and Application of <strong>Nuclear</strong> Safety Culture<br />

Improvement Management <strong>for</strong> NPPs in China 87<br />

Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety<br />

of HTR NPPs – a Review G 94<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident<br />

in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant 98<br />

Research and Innovation<br />

Experimental Study of Thermal Neutron Reflection Coefficient<br />

<strong>for</strong> two-layered Reflectors 105<br />

Report<br />

Workshop on the “Safety of Extended Dry Storage<br />

of Spent <strong>Nuclear</strong> Fuel” – SEDS 2019 109<br />

KTG Inside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112<br />

News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113<br />

Cover:<br />

Vogtle Unit 4 Containment Vessel<br />

©2019 Georgia <strong>Power</strong> Company<br />

Contents:<br />

Unit 3 Low Pressure Turbine<br />

©2019 Georgia <strong>Power</strong> Company<br />

<strong>Nuclear</strong> Today<br />

Climate of Opinion Frowns on Germany<br />

as <strong>Nuclear</strong> Exit Continues 118<br />

Imprint 92<br />

G<br />

E/G<br />

= German<br />

= English/German<br />

Insert: AiNT – Aus- und Fortbildungsprogramm 2020<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Feature<br />

Major Trends in Energy Policy<br />

and <strong>Nuclear</strong> <strong>Power</strong><br />

67<br />

CONTENTS<br />

71 Highlights of the<br />

World <strong>Nuclear</strong> Per<strong>for</strong>mance Report 2019<br />

Jonathan Cobb<br />

Spotlight on <strong>Nuclear</strong> Law<br />

74 New Ways of Public Participation in <strong>Nuclear</strong> Licensing Procedures<br />

Neue Wege der Öffentlichkeitsbeteiligung in atomrechtlichen Verfahren<br />

Tobias Leidinger<br />

Energy Policy, Economy and Law<br />

76 An Integrated Approach to Risk In<strong>for</strong>med Decision Management<br />

Howard Chapman, Maria Cormack, Caroline Pyke,<br />

John-Patrick Richardson and Reuben Holmes<br />

Environment and Safety<br />

81 Design and Implementation of Embedded System<br />

<strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers<br />

M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi<br />

87 Research and Application of <strong>Nuclear</strong> Safety Culture Improvement<br />

Management <strong>for</strong> NPPs in China<br />

Xiaozhao Xu, Jun Guo and Sujia Li<br />

94 Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety<br />

of HTR NPPs – a Review<br />

Konstruktionsprinzipien zur nuklearen und betrieblichen Sicherheit<br />

von HTR-KKW – ein Review<br />

Urban Cleve<br />

Contents


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

68<br />

INSIDE NUCLEAR WITH NUCNET<br />

Medical Radioisotopes / Why Changes<br />

are Needed to ‘Unstable’ Supply Chain<br />

Ageing production facilities and low prices of technetium-99m have contributed to a lack of<br />

production capacity, which has made supply unreliable. In a new report, the <strong>Nuclear</strong> Energy Agency<br />

(NEA) proposes policy changes that could solve the problem. David Dalton looks at the background<br />

and the challenges.<br />

What is Technetium-99m?<br />

Technetium-99m (Tc-99m) is an essential product <strong>for</strong><br />

health systems that is used in 85 % of nuclear medicine<br />

diagnostic scans per<strong>for</strong>med worldwide, or around<br />

30 million patient examinations a year, making it the most<br />

commonly used medical isotope. It is essential <strong>for</strong> accurate<br />

diagnoses of diseases such as cancer, heart disease and<br />

neurological disorders including dementia and movement<br />

disorders. It is also the most common diagnostic radioisotope,<br />

estimated to be used in approximately 85 % of all<br />

NM diagnostic scans worldwide.<br />

The production of Tc-99m is a complex process which<br />

includes irradiation of uranium targets in nuclear research<br />

reactors to produce molybdenum-99 (Mo-99), extraction<br />

of Mo-99 from targets in specialised processing facilities,<br />

production of Tc-99m generators – a device used to extract<br />

Tc-99m from a decaying sample of Mo-99 – and shipment<br />

to hospitals.<br />

But the supply chain is complicated. Neither Mo-99 or<br />

Tc-99m can be stored <strong>for</strong> very long. Mo-99 has a half-life of<br />

66 hours, that is, its radioactivity decreases by half in<br />

66 hours, and the half-life of Tc-99m is only six hours.<br />

Given this complexity, supply has often been unreliable<br />

over the past decade due to unexpected shutdowns and<br />

extended maintenance periods at some of the facilities<br />

(the research reactors) that produce Mo-99, many of<br />

which are relatively old. These shutdowns have created<br />

global shortages. In particular in 2009-10, a series of<br />

unexpected outages at reactors led to a global supply crisis<br />

and a severe shortage of Tc-99m.<br />

four research reactors (in Belgium, the Czech Republic,<br />

the Netherlands and Poland) supplies two processors<br />

(in Belgium and the Netherlands). The problem is that<br />

some reactor operators are captive to local processors and<br />

have little choice but to continue supply even at prices<br />

that are too low, while government funding sustains their<br />

operations.<br />

What is the problem<br />

with radioisotope supply?<br />

Supply of Tc-99m is a “just-in-time” activity – it has to<br />

be delivered as it is needed – requiring continuous<br />

production in a complicated and aging supply chain that<br />

combines a mix of governmental and commercial entities.<br />

Governments control the availability of enriched uranium<br />

required <strong>for</strong> medical isotope production and also largely<br />

control legislation governing how much health care<br />

providers (doctors and hospitals) charge <strong>for</strong> nuclear<br />

medicine diagnostic scans. The central steps of the supply<br />

chain, including processing and generator manufacturing,<br />

are mainly commercial. Processors and generator manufacturers<br />

wield market power, while supply continues to<br />

be supported by government funding of some processors<br />

and of nuclear research reactors that per<strong>for</strong>m irradiation.<br />

The resulting inability by reactor operators to increase<br />

prices sufficiently <strong>for</strong> full cost recovery, combined with<br />

insufficient reserve capacity (in the event of a reactor<br />

outage, <strong>for</strong> example) at various steps of the supply chain,<br />

leave security of supply vulnerable and the market<br />

economically unsustainable.<br />

How is Technetium-99m produced?<br />

To prepare doses <strong>for</strong> patient scans, specialised pharmacies,<br />

called nuclear pharmacies, elute Tc-99m daily from Mo-99<br />

containers. These containers are called Tc-99m generators<br />

and their manufacturers require regulatory approval to<br />

sell them. Pharmaceutical companies manufacture and<br />

sell Tc-99m generators commercially. They buy Mo-99 in<br />

bulk from processing entities that trans<strong>for</strong>m irradiated<br />

uranium into a Mo-99 liquid used to fill Tc-99m generators.<br />

These processors procure uranium as a raw material and<br />

contract with nuclear research reactors that per<strong>for</strong>m<br />

irradiation services.<br />

What is the role of nuclear reactors?<br />

<strong>Nuclear</strong> research reactors per<strong>for</strong>m the primary irradiation<br />

services. Most irradiations – the process by which an object<br />

is exposed to radiation – are per<strong>for</strong>med by reactors close to<br />

processor facilities. In some cases (Argentina, Australia<br />

and South Africa), the reactor and the processor are<br />

co-located within the same organisational structure and<br />

the single local reactor is the sole irradiator <strong>for</strong> the<br />

processing facility. If the reactor is out of operation<br />

<strong>for</strong> a period, the processor cannot operate and if the processor<br />

is out of operation, the output from the reactor<br />

cannot be processed. In Europe, an in<strong>for</strong>mal network of<br />

Is the NEA proposing solutions?<br />

The NEA says funding <strong>for</strong> the commercial production of<br />

Tc-99m by governments of producing countries should<br />

stop. This could help solve continuing supply problems.<br />

What the NEA wants to see is “full cost recovery” <strong>for</strong> reactor<br />

operators. The report suggests that the main barriers to<br />

this are in the structure of the supply chain, the cost<br />

structure and funding of nuclear research reactors and the<br />

resulting behaviour of others in the supply chain.<br />

The central problem is that the current structure of<br />

the supply chain <strong>for</strong> medical radioisotopes leaves some<br />

participants – notably the primary producers at research<br />

reactors – unable to increase the prices of their services to<br />

levels that would cover their costs.<br />

The discontinuation of government funding would<br />

compel producers to increase prices. This could, in the<br />

short-term, destabilise supply and would there<strong>for</strong>e need to<br />

be accompanied, at least temporarily, by measures to help<br />

ensure that price increases are passed on through the<br />

supply chain. One way to achieve this would be to increase<br />

price transparency and encourage supply chain<br />

participants to comply with commitments to increase<br />

prices. A temporary price floor could help ensure that<br />

producers are able to make up <strong>for</strong> the reduction of<br />

government funding through additional revenue.<br />

Inside <strong>Nuclear</strong> with NucNet<br />

Medical Radioisotopes / Why Changes are Needed to ‘Unstable’ Supply Chain


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

The report also proposes the establishment of a<br />

commodities trading plat<strong>for</strong>m that could make prices<br />

more responsive to supply and demand and help ensure<br />

production capacity is available. Alternatively, governments<br />

could maintain funding of production but have<br />

end-user countries bear the costs in proportion to the share<br />

of total supply they consume. Governments could also aim<br />

to reduce the reliance on the current supply chain through<br />

substituting Tc-99m with alternative isotopes or diagnostic<br />

methods, or by investing in alternative means of producing<br />

Mo-99/Tc-99m. However, the latter two options could be<br />

costly.<br />

What happens next?<br />

The NEA is calling on governments of producer and<br />

end-user countries to co-ordinate their ef<strong>for</strong>ts and evaluate<br />

each option in more depth. It says a more detailed study of<br />

reactor and processor production costs is needed, along<br />

with details of the level of current government funding of<br />

producers, and the magnitude of price increases that<br />

would be necessary to achieve full-cost recovery. In 2017<br />

the NEA said the supply chain should be sufficient until at<br />

least 2022, but the situation still requires careful and<br />

well-considered planning <strong>for</strong> the <strong>for</strong>eseeable future. “No<br />

single option can be recommended as the preferred<br />

solution to current issues with the reliability of supply and<br />

each option has a number of strengths and weaknesses,”<br />

the report concludes.<br />

Author<br />

NucNet<br />

The Independent Global <strong>Nuclear</strong> News Agency Editor<br />

responsible <strong>for</strong> this story: David Dalton<br />

Avenue des Arts 56 2/C<br />

1000 Bruxelles<br />

www.nucnet.org<br />

DID YOU EDITORIAL KNOW...?<br />

69<br />

Did you know...?<br />

Comprehensive Study of Economic and Social Costs<br />

of the <strong>Nuclear</strong> Phase-out in Germany 2011-2017<br />

The National Bureau of Economic Research in Cambridge,<br />

Massachusetts, published the paper “The Private and External Costs<br />

of Germany’s <strong>Nuclear</strong> Phase-out” by Stephen Jarvis, Olivier<br />

Deschenes and Akshaya Jha in its NBER Working Paper series in<br />

December 2019. The paper uses hourly plant level data and pollution<br />

monitoring data to analyze the impact of the original plant closures<br />

in 2011 and the subsequent ones till the end of 2017 not only on<br />

aggregate electricity prices and carbon emissions but also to<br />

estimate the effects on electricity production costs and local air<br />

pollution. To compare the real phase-out with a hypothetical no<br />

phase-out scenario the authors developed a machine learning<br />

framework that combines the hourly power plant data with<br />

in<strong>for</strong>mation on electricity demand, local weather conditions,<br />

electricity prices, fuel prices and plant characteristics.<br />

The overall results of the ef<strong>for</strong>t confirm the results of other studies<br />

that nuclear electricity production in Germany was primarily replaced<br />

by increased fossil fuel production from coal and gas fired plants. The<br />

paper also shows that the cost of electricity production in Germany<br />

increased and that global and local pollution from electricity<br />

generation increased substantially. The overall social cost of the<br />

phase-out to German producers and consumers is estimated at<br />

12 billion dollar per year on average (2017 USD). The majority – over<br />

70 percent – of these costs is due to the increase in local air pollution<br />

resulting from the shift from nuclear to fossil generation. In the<br />

graphs below some of the numerical results of the study are<br />

presented that compare the phase-out with the calculated no<br />

phase-out scenario.<br />

For further details<br />

please contact:<br />

Nicolas Wendler<br />

KernD<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Germany<br />

E-mail: presse@<br />

KernD.de<br />

www.KernD.de<br />

Estimated Impact of the <strong>Nuclear</strong> Phase-out on the Operating Profits<br />

of <strong>Nuclear</strong> and Fossil <strong>Power</strong> Plants, on Wholesale Electricity Prices and Electricity Production Costs<br />

(Annualized Averages from March 2011 to December 2017)<br />

p Profits<br />

60 %<br />

p Production Costs<br />

63.60 %<br />

30 %<br />

0 %<br />

-30 %<br />

30.10 %<br />

23.20 %<br />

17.00 %<br />

4.00 %<br />

8.10 %<br />

2.50 %<br />

-0.80 %<br />

-33.90 %<br />

-37.90 %<br />

<strong>Nuclear</strong> Lignite Hard Coal Gas Oil<br />

12.70 %<br />

3.90 %<br />

Wholesale Electricity Prices/<br />

Overall Production Costs<br />

Source:<br />

“The Private and<br />

External Costs of<br />

Germany’s <strong>Nuclear</strong><br />

Phase-out”,<br />

Stephen Jarvis,<br />

Olivier Deschenes,<br />

Akshaya Jha,<br />

NBER Working Paper<br />

No. 26598<br />

Did you know...?


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Calendar<br />

70<br />

2020<br />

CALENDAR<br />

19.02. – 21.<strong>02.2020</strong><br />

<strong>International</strong> <strong>Power</strong> Summit 2020. Hamburg,<br />

Germany, Arena <strong>International</strong>,<br />

www.arena-international.com<br />

26.<strong>02.2020</strong><br />

TotalDECOM – <strong>International</strong> Conference. London,<br />

UK, TotalDECOM, www.totaldecom.com<br />

02.03. – 03.03.2020<br />

Forum Kerntechnik. Berlin, Germany, VdTÜV & GRS,<br />

www.tuev-nord.de<br />

02.03. – 06.03.2020<br />

<strong>International</strong> Workshop on Developing a<br />

National Framework <strong>for</strong> Managing the Response<br />

to <strong>Nuclear</strong> Security Events. Madrid, Spain, IAEA,<br />

www.iaea.org<br />

08.03. – 12.03.2020<br />

WM Symposia – WM2019. Phoenix, AZ, USA,<br />

www.wmsym.org<br />

08.03. – 13.03.2020<br />

IYNC2020 – The <strong>International</strong> Youth <strong>Nuclear</strong><br />

Congress. Sydney, Australia, IYNC, www.iync2020.org<br />

15.03. – 19.03.2020<br />

ICAPP2020 – <strong>International</strong> Congress on Advances<br />

in <strong>Nuclear</strong> <strong>Power</strong> Plants. Abu-Dhabi, UAE, Khalifa<br />

University, www.icapp2020.org<br />

18.03. – 20.03.2020<br />

12. Expertentreffen Strahlenschutz. Bayreuth,<br />

Germany, TÜV SÜD, www.tuev-sued.de<br />

22.03. – 26.03.2020<br />

RRFM – European Research Reactor Conference.<br />

Helsinki, Finland, European <strong>Nuclear</strong> Society,<br />

www.euronuclear.org<br />

25.03. – 27.03.2020<br />

H2020 McSAFE Training Course. Eggenstein-<br />

Leopoldshafen, Germany, Karlsruhe Institute of<br />

Technology (KIT), www.mcsafe-h2020.eu<br />

29.03. – 02.04.2020<br />

PHYSOR2020 — <strong>International</strong> Conference on<br />

Physics of Reactors 2020. Cambridge, United<br />

Kingdom, <strong>Nuclear</strong> Energy Group,<br />

www.physor2020.com<br />

31.03. – 02.04.2020<br />

4 th CORDEL Regional Workshop on<br />

Harmonization to support the Operation and<br />

New Build fo NPPs including SMRs. Lyon, France,<br />

NUGENIA, www.nugenia.org<br />

30.03. – 01.04.2020<br />

INDEX <strong>International</strong> <strong>Nuclear</strong> Digital Experience.<br />

Paris, France, SFEN Société Française d’Energie<br />

Nucléaire, www.sfen-index2020.org<br />

31.03. – 03.04.2020<br />

ATH'2020 – <strong>International</strong> Topical Meeting on<br />

Advances in Thermal Hydraulics. Paris, France,<br />

Société Francaise d’Energie Nucléaire (SFEN),<br />

www.sfen-ath2020.org<br />

08.04. – 09.04.2020<br />

<strong>International</strong> SMR & Advanced Reactor Summit<br />

2020. Atlanta, GA, USA, <strong>Nuclear</strong> Energy Insider,<br />

www.nuclearenergyinsider.com<br />

19.04. – 24.04.2020<br />

<strong>International</strong> Conference on Individual<br />

Monitoring. Budapest, Hungary, EUROSAFE,<br />

www.eurosafe-<strong>for</strong>um.org<br />

20.04. – 22.04.2020<br />

World <strong>Nuclear</strong> Fuel Cycle 2020. Stockholm,<br />

Sweden, WNA World <strong>Nuclear</strong> Association,<br />

www.world-nuclear.org<br />

05.05. – 06.05.2020<br />

KERNTECHNIK 2020.<br />

Berlin, Germany, KernD and KTG,<br />

www.kerntechnik.com<br />

10.05. – 15.05.2020<br />

ICG-EAC Annual Meeting 2020. Helsinki, Finland,<br />

ICG-EAC, www.icg-eac.org<br />

11.05. – 15.05.2020<br />

<strong>International</strong> Conference on Operational Safety<br />

of <strong>Nuclear</strong> <strong>Power</strong> Plants. Beijing, China, IAEA,<br />

www.iaea.org<br />

12.05. – 13.05.2020<br />

INSC — <strong>International</strong> <strong>Nuclear</strong> Supply Chain<br />

Symposium. Munich, Germany, TÜV SÜD,<br />

www.tuev-sued.de<br />

12.05. – 14.05.2020<br />

KELI – Conference <strong>for</strong> Electrical Engineering, I&C<br />

and IT in generation plants. Bremen, Germany,<br />

VGB <strong>Power</strong>Tech, www.vgb.org<br />

14.05.2020<br />

<strong>Nuclear</strong> Solutions Exhibition. Warrington, UK,<br />

Industrial Exhibition, www.nuclear-solutions.co.uk<br />

17.05. – 22.05.2020<br />

BEPU2020– Best Estimate Plus Uncertainty <strong>International</strong><br />

Conference, Giardini Naxos. Sicily, Italy,<br />

NINE, www.nineeng.com<br />

18.05. – 22.05.2020<br />

SNA+MC2020 – Joint <strong>International</strong> Conference on<br />

Supercomputing in <strong>Nuclear</strong> Applications + Monte<br />

Carlo 2020, Makuhari Messe. Chiba, Japan, Atomic<br />

Energy Society of Japan, www.snamc2020.jpn.org<br />

20.05. – 22.05.2020<br />

<strong>Nuclear</strong> Energy Assembly. Washington, D.C., USA,<br />

NEI, www.nei.org<br />

31.05. – 03.06.2020<br />

13 th <strong>International</strong> Conference of the Croatian<br />

<strong>Nuclear</strong> Society. Zadar, Croatia, Croatian <strong>Nuclear</strong><br />

Society, www.nuclear-option.org<br />

06.06. – 12.06.2020<br />

ATALANTE 2020. Montpellier, France, CEA,<br />

www.atalante2020.org<br />

07.06. – 12.06.2020<br />

Plutonium Futures. Montpellier, France, CEA,<br />

www.pufutures2020.org<br />

08.06. – 10.06.2020<br />

8 th Asia <strong>Nuclear</strong> Business Plat<strong>for</strong>m. Yogyakarta,<br />

Indonesia, <strong>Nuclear</strong> Business Plat<strong>for</strong>m,<br />

www.nuclearbusiness-plat<strong>for</strong>m.com<br />

08.06. – 12.06.2020<br />

20 th WCNDT – World Conference on<br />

Non-Destructive Testing. Seoul, Korea, EPRI,<br />

www.wcndt2020.com<br />

15.06. – 19.06.2020<br />

<strong>International</strong> Conference on <strong>Nuclear</strong> Knowledge<br />

Management and Human Resources Development:<br />

Challenges and Opportunities. Moscow,<br />

Russian Federation, IAEA, www.iaea.org<br />

15.06. – 20.07.2020<br />

WNU Summer Institute 2020. Japan, World <strong>Nuclear</strong><br />

University, www.world-nuclear-university.org<br />

02.08. – 06.08.2020<br />

ICONE 28 – 28 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering. Disneyland Hotel, Anaheim,<br />

CA, ASME, www.event.asme.org<br />

01.09. – 04.09.2020<br />

IGORR – Standard Cooperation Event in the <strong>International</strong><br />

Group on Research Reactors Conference.<br />

Kazan, Russian Federation, IAEA, www.iaea.org<br />

09.09. – 10.09.2020<br />

VGB Congress 2020 – 100 Years VGB. Essen,<br />

Germany, VGB <strong>Power</strong>Tech e.V., www.vgb.org<br />

09.09. – 11.09.2020<br />

World <strong>Nuclear</strong> Association Symposium 2020.<br />

London, United Kingdom, WNA World <strong>Nuclear</strong><br />

Association, www.world-nuclear.org<br />

16.09. – 18.09.2020<br />

3 rd <strong>International</strong> Conference on Concrete<br />

Sustainability. Prague, Czech Republic, fib,<br />

www.fibiccs.org<br />

16.09. – 18.09.2020<br />

<strong>International</strong> <strong>Nuclear</strong> Reactor Materials<br />

Reliability Conference and Exhibition.<br />

New Orleans, Louisiana, USA, EPRI, www.snetp.eu<br />

28.09. – 01.10.2020<br />

NPC 2020 <strong>International</strong> Conference on <strong>Nuclear</strong><br />

Plant Chemistry. Antibes, France, SFEN Société<br />

Française d’Energie Nucléaire,<br />

www.sfen-npc2020.org<br />

28.09. – 02.10.2020<br />

Jahrestagung 2020 – Fachverband Strahlenschutz<br />

und Entsorgung. Aachen, Germany, Fachverband<br />

für Strahlenschutz, www.fs-ev.org<br />

07.10. – 08.10.2020<br />

3 rd India <strong>Nuclear</strong> Business Plat<strong>for</strong>m. Mumbai,<br />

India, <strong>Nuclear</strong> Business Plat<strong>for</strong>m,<br />

www.nuclearbusiness-plat<strong>for</strong>m.com<br />

12.10. – 17.10.2020<br />

FEC 2020 – 28 th IAEA Fusion Energy Conference.<br />

Nice, France, IAEA, www.iaea.org<br />

21.10. – 23.10.2020<br />

2 nd Africa <strong>Nuclear</strong> Business Plat<strong>for</strong>m.<br />

Accra, Ghana, <strong>Nuclear</strong> Business Plat<strong>for</strong>m,<br />

www.nuclearbusiness-plat<strong>for</strong>m.com<br />

26.10. – 30.10.2020<br />

NuMat 2020 – 6 th <strong>Nuclear</strong> Materials Conference.<br />

Gent, Belgium, IAEA, www.iaea.org<br />

09.11. – 13.11.2020<br />

<strong>International</strong> Conference on Radiation Safety:<br />

Improving Radiation Protection in Practice.<br />

Vienna, Austria, IAEA, www.iaea.org<br />

24.11. – 26.11.2020<br />

ICOND 2020 – 9 th <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Decommissioning. Aachen, Germany,<br />

AiNT, www.icond.de<br />

07.12. – 10.12.2020<br />

SAMMI 2020 – Specialist Workshop on Advanced<br />

Measurement Method and Instrumentation<br />

<strong>for</strong> enhancing Severe Accident Management in<br />

an NPP addressing Emergency, Stabilization and<br />

Long-term Recovery Phases. Fukushima, Japan,<br />

NEA, www.sammi-2020.org<br />

17.12. – 18.12.2020<br />

ICNESPP 2020 – 14. <strong>International</strong> Conference on<br />

<strong>Nuclear</strong> Engineering Systems and <strong>Power</strong> Plants.<br />

Kuala Lumpur, Malaysia, WASET, www.waset.org<br />

This is not a full list and may be subject to change.<br />

Calendar


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Highlights of the World <strong>Nuclear</strong><br />

Per<strong>for</strong>mance Report 2019<br />

Jonathan Cobb<br />

The world’s nuclear plants continue to per<strong>for</strong>m excellently. Growth is strong; but <strong>for</strong> the industry to reach the<br />

Harmony goal of supplying at least 25 % of the world’s electricity be<strong>for</strong>e 2050, much greater commitment from<br />

policymakers will be required.<br />

The need <strong>for</strong> the reliable, predictable and clean electricity<br />

generated by nuclear has never been greater and, worldwide,<br />

that is reflected in the growing number of new build<br />

programmes underway.<br />

However, a number of factors – both internal and<br />

external – are creating profound challenges <strong>for</strong> nuclear<br />

power in some of its most mature markets.<br />

<strong>Nuclear</strong> reactors generated a total of 2563 TWh of<br />

electricity in 2018, up from 2503 TWh in 2017. This was<br />

the sixth successive year that nuclear generation has risen,<br />

with output 217 TWh higher than in 2012 (Figure 1).<br />

<strong>Nuclear</strong> generation increased in Asia, East Europe &<br />

Russia, North America, South America and West & Central<br />

Europe. Generation fell in Africa, which has only two<br />

reactors operating, both in South Africa.<br />

In 2018 the peak total net capacity of nuclear power in<br />

operation reached 402 GWe, up from 394 GWe in 2017.<br />

The end of year capacity <strong>for</strong> 2018 was 397 GWe, up from<br />

393 GWe in 2017 (Figure 2).<br />

Over 2019 six reactors with a combined generating<br />

capacity of 5178 MWe were added to the grid, while nine<br />

units were permanently shut down. Based on provisional<br />

figures global nuclear generating capacity stood at<br />

391 GWe at the end of 2019.<br />

Construction was started in 2019 on three new power<br />

reactors: unit 2 of the Kursk II plant in Russia; unit 1 of<br />

China’s Zhangzhou plant; and unit 2 of Iran’s Bushehr<br />

plant.<br />

Of the 442 reactors that were operable at the end of<br />

2019, over half were in the USA and Europe where, despite<br />

the vital importance of nuclear to achieving sustainable<br />

energy goals, reactor retirements continue to outpace<br />

capacity additions.<br />

In 2018 the global average capacity factor was 79.8 %,<br />

down from 81.1 % in 2017 (Figure 3). Despite the small<br />

reduction, this maintains the high level of per<strong>for</strong>mance<br />

seen since 2000 following the substantial improvement<br />

over the preceding years. In general, a high capacity<br />

factor is a reflection of good operational per<strong>for</strong>mance.<br />

However, there is an increasing trend in some<br />

countries <strong>for</strong> nuclear reactors to operate in a loadfollowing<br />

mode to accommodate variable wind and<br />

solar generation, which reduces the overall capacity<br />

factor.<br />

There was a substantial improvement in capacity<br />

factors from the mid 1970s through to the end of the<br />

1990s, which since has been maintained. Whereas nearly<br />

half of all reactors had capacity factors under 70 %,<br />

the share is now less than one-quarter. In 1978 only 5 %<br />

of reactors achieved a capacity factor higher than 90 %,<br />

compared to 33 % of reactors in 2018 (Figure 4). Capacity<br />

factors in 2018 are broadly similar to the previous five<br />

years, and reflect the consistently high capacity factors<br />

seen over the past 20 years.<br />

TWh<br />

Source: World <strong>Nuclear</strong> Association and IAEA <strong>Power</strong> Reactor In<strong>for</strong>mation Service (PRIS)<br />

GWe<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

West & Central Europe<br />

South America<br />

North America<br />

East Europe & Russia<br />

Asia<br />

Africa<br />

1970<br />

1972<br />

1974<br />

1976<br />

1978<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

%<br />

1980<br />

1982<br />

1984<br />

1986<br />

1988<br />

| Fig. 1.<br />

<strong>Nuclear</strong> electricity production 1970 to 2018.<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Not operating<br />

1971<br />

1973<br />

1975<br />

Operating<br />

1977<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

| Fig. 2.<br />

<strong>Nuclear</strong> generation capacity operable (net) 1971 to 2018.<br />

90<br />

80<br />

70<br />

60<br />

50<br />

0<br />

1970<br />

1974<br />

1978<br />

1982<br />

1986<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

1990<br />

1990<br />

1992<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

2004<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

2005<br />

There is no significant age-related trend in nuclear<br />

reactor per<strong>for</strong>mance. The mean capacity factor <strong>for</strong> reactors<br />

over the last five years shows little variation with age<br />

(Figure 5). In 2019 five reactors reached the milestone<br />

of 50 years of operation: Tarapur 1 and 2 in India, Nine<br />

Mile Point 1 and R.E. Ginna in the US and Beznau 1 in<br />

Switzerland.<br />

The continued good operation of reactors is an<br />

indication of the potential <strong>for</strong> longer operations. In the US<br />

1994<br />

1998<br />

| Fig. 3.<br />

Global average capacity factor 1970 to 2018.<br />

2002<br />

2006<br />

2010<br />

2014<br />

2018<br />

2006<br />

2008<br />

2010<br />

2012<br />

2014<br />

2016<br />

2018<br />

2007<br />

2009<br />

2011<br />

2013<br />

2015<br />

2017<br />

71<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER<br />

Feature<br />

Highlights of the World <strong>Nuclear</strong> Per<strong>for</strong>mance Report 2019 ı Jonathan Cobb


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 72<br />

Number of reactors<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

%<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1978 1988 1998 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

| Fig. 4.<br />

Long-term trends in capacity factors 1978 to 2018.<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

Sum of reference unit power (MWe)<br />

>90%<br />

80-90%<br />

70-80%<br />

60-70%<br />

50-60%<br />

40-50%<br />

0-40%<br />

Turkey Point units 3 and 4 became the first reactors to be<br />

issued with licences authorizing them to operate <strong>for</strong> up to<br />

80 years.<br />

Most reactors under construction today started<br />

construction in the last nine years (Figure 6). A small<br />

number of reactors have been <strong>for</strong>mally under construction<br />

<strong>for</strong> a longer period, but may have had their construction<br />

suspended. For Mochovce 3&4 in Slovakia, where first<br />

concrete was poured in 1987, construction was suspended<br />

between 1991 and 2008. Start-up of the first unit is now<br />

expected in 2020.<br />

Over the course of nuclear energy’s 66 years of<br />

commercial operation reactor designs have evolved. One<br />

characteristic of that evolution has been an overall increase<br />

in reactor capacity, particularly over the first thirty years of<br />

reactor development.<br />

Reactor start-ups are predominantly taking place in<br />

non-OECD countries, demonstrating the importance of<br />

nuclear energy in growing economies.<br />

Permanent shutdown Operable Under construction<br />

1983<br />

35,000<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5000<br />

0<br />

1984<br />

1985<br />

1986<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1958<br />

1960<br />

1962<br />

1964<br />

1966<br />

1968<br />

1970<br />

1994<br />

1996<br />

1972<br />

1974<br />

Reactor construction start date<br />

| Fig. 6.<br />

Operational status of reactors with construction starts since 1983.<br />

West & Central Europe<br />

South America<br />

North America<br />

East Europe & Russia<br />

Asia<br />

Africa<br />

1954<br />

1956<br />

| Fig. 7.<br />

Capacity of first grid connection 1954 to 2018.<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2010<br />

2011<br />

2012<br />

2013<br />

2014<br />

1976<br />

1978<br />

1980<br />

1982<br />

1984<br />

1986<br />

1988<br />

1990<br />

1992<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

2004<br />

2006<br />

2008<br />

2010<br />

2012<br />

2015<br />

2016<br />

2017<br />

2018<br />

2014<br />

2016<br />

2018<br />

%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49<br />

Source: World <strong>Nuclear</strong> Association, IAEA PRIS<br />

Age of reactor (years)<br />

| Fig. 5.<br />

Mean capacity factor 2014-2018 by age of reactor 2014 to 2018.<br />

The evolution of reactor start-ups in different regions is<br />

shown in Figure 7. The majority of reactor capacity built<br />

between 1970 and 1990 was in West and Central Europe<br />

and in North America. Since that period the majority of<br />

reactor start-ups have been in Asia, with grid connections<br />

in East Europe and Russia also contributing to new global<br />

capacity.<br />

There is growing demand <strong>for</strong> electricity, and that<br />

electricity must be cleanly generated. The world’s<br />

population continues to grow, the economic and societal<br />

aspirations of developing countries are undimmed and<br />

demand grows as modern society produces ever-more uses<br />

of electricity.<br />

<strong>Nuclear</strong> energy can meet this growing demand,<br />

providing clean and reliable supplies of electricity.<br />

In May 2019, the <strong>International</strong> Energy Agency (IEA)<br />

published its report, “<strong>Nuclear</strong> <strong>Power</strong> in a Clean Energy<br />

System”. The vital role <strong>for</strong> nuclear energy was set out by<br />

IEA Director General Fatih Birol, who said; “Without an<br />

important contribution from nuclear power, the global<br />

energy transition will be that much harder.”<br />

The IEA report made it clear that nuclear can make a<br />

significant contribution to achieving sustainable energy<br />

goals and enhancing energy security. However, urgent<br />

action is needed to ensure that this significant contribution<br />

can be made.<br />

Fatih Birol said; “Policy makers hold the key to nuclear<br />

power’s future. Electricity market design must value the<br />

environmental and energy security attributes of nuclear<br />

power and other clean energy sources.”<br />

These conclusions were echoed by the OECD<br />

<strong>Nuclear</strong> Energy Agency’s (NEA) report, “The Costs<br />

of Decarbonisation”, which observed that; “Decarbonizing<br />

the electricity sector in a cost-effective manner while<br />

maintaining security of supply requires the rapid<br />

deployment of all available low-carbon technologies.”<br />

To achieve this would require policymakers to<br />

recognize and allocate the system costs to the technologies<br />

that cause them and to encourage new investment in<br />

all low-carbon technologies by providing stability <strong>for</strong><br />

investors. The overall conclusion of the NEA analysis was<br />

that the most effective way to achieve deep decarbonization<br />

of the electricity generation mix was to have a high<br />

proportion of electricity supplied by nuclear power.<br />

This conclusion echoes that reached in the Intergovernmental<br />

Panel on Climate Change (IPCC) report on<br />

Global Warming of 1.5 °C, published in 2018. This report<br />

evaluated 85 scenarios that would achieve the goal of<br />

limiting global warming to 1.5 °C.<br />

On average, these scenarios would see nuclear<br />

generation increasing by around two and a half times by<br />

2050. In a representative scenario, where societal and<br />

Feature<br />

Highlights of the World <strong>Nuclear</strong> Per<strong>for</strong>mance Report 2019 ı Jonathan Cobb


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

technological developments follow current patterns,<br />

nuclear generation increases over five-fold.<br />

It is evident that unless nuclear energy is a significant<br />

part of the global response to climate change it is highly<br />

unlikely we will be able to achieve a full decarbonization of<br />

our generation mix, and even if it were possible the costs<br />

would be exorbitant.<br />

Over the last two years the call <strong>for</strong> action on climate<br />

change has become louder and more urgent. Some have<br />

questioned whether nuclear energy can be deployed<br />

quickly enough to tackle climate change in time. The fact is<br />

that nuclear energy is making a major contribution to<br />

avoiding climate change today, with more than 10 % of the<br />

world’s electricity supplied by nuclear generation.<br />

One of the most effective actions to be taken to avoid<br />

greenhouse gas emissions is to ensure those reactors<br />

continue to operate to their full potential. The average age<br />

of the nuclear fleet is around 30 years. This year, five<br />

reactors have achieved fifty years of operation and reactors<br />

today are seeking approval <strong>for</strong> 60 or even 80 years of<br />

operation. Many of our current reactors have the potential<br />

to still be part of a fully decarbonized generation mix in<br />

2050.<br />

More than 50 reactors are under construction, and half<br />

of those are expected to start generating electricity over<br />

the next two years.<br />

Using nuclear avoids carbon dioxide emissions, as it<br />

reduces our dependence on coal. By 2025, the reactors<br />

under construction today will avoid the emission of<br />

450 million tonnes of carbon dioxide each year – adding to<br />

the already two billion tonnes of CO 2 avoided by the<br />

existing fleet. This is equivalent to the combined annual<br />

CO 2 emissions of Japan, Germany and Australia.<br />

Where reactors are decommissioned over the next<br />

30 years, new reactors should be constructed to replace<br />

them. As well as ensuring the continuation of the benefits<br />

of nuclear generation, construction and commissioning<br />

of replacement reactors will ensure that key skills are<br />

retained and local communities continue to have<br />

employment opportunities.<br />

But can nuclear generation be expanded fast enough to<br />

combat climate change? During the rapid expansion of<br />

nuclear generation in France in the 1980s and 1990s, most<br />

reactors were built in six to seven years. In recent years<br />

in China, nuclear reactors have been frequently<br />

constructed in around five years. In 2018, the global<br />

median construction time was longer, eight-and-a-half<br />

years, primarily because of the high proportion of first of a<br />

kind reactors starting in 2018.<br />

A commitment to a substantial expansion of nuclear<br />

generation would deliver the benefits of series construction,<br />

including faster and lower cost construction.<br />

The IPCC’s 1.5 °C report states that global greenhouse<br />

gas emissions need to start to decline almost immediately.<br />

Reactors under construction and the continued operation<br />

of existing reactors can contribute to this goal. But to<br />

achieve the further reductions that will be necessary from<br />

2025, and net zero emissions by 2050, decisions to invest<br />

in new nuclear build will need to accelerate urgently.<br />

The nuclear industry’s Harmony goal is <strong>for</strong> nuclear<br />

generation to supply 25 % of the world’s electricity be<strong>for</strong>e<br />

2050. This would require at least 1000 GWe of new nuclear<br />

build. To achieve this, new nuclear capacity added each<br />

year would need to accelerate from the current 10 GWe to<br />

around 35 GWe <strong>for</strong> the period 2030-2050. Those countries<br />

operating nuclear power plants should commit to continue<br />

to do so and those countries with recent experience of new<br />

nuclear build should commit to a rapid expansion of<br />

their construction programmes to deliver significant new<br />

nuclear construction from 2025.<br />

Beyond 2025 more countries will be able to contribute<br />

to achieving our Harmony goal. More new nuclear<br />

generation will be needed to bring economic growth, as<br />

developed countries continue their ef<strong>for</strong>ts to decarbonize<br />

their generation mixes and developing countries<br />

endeavour to meet demand <strong>for</strong> electricity driven by<br />

growing populations and industrial expansion essential to<br />

modern life.<br />

If we are to be serious about climate change we should<br />

also be serious about the solutions. Transitioning to a<br />

low-carbon economy that meets the energy needs of the<br />

global community presents a daunting task. But it is a<br />

challenge that must be met, and one that can only be met<br />

by using the full potential of nuclear energy.<br />

Author<br />

Dr Jonathan Cobb<br />

Senior Communication Manager<br />

World <strong>Nuclear</strong> Association<br />

Tower House, 10 Southampton Street<br />

London WC2E 7HA, UK<br />

FEATURE | MAJOR TRENDS IN ENERGY POLICY AND NUCLEAR POWER 73<br />

Feature<br />

Highlights of the World <strong>Nuclear</strong> Per<strong>for</strong>mance Report 2019 ı Jonathan Cobb


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

74<br />

Neue Wege der Öffentlichkeitsbeteiligung in atomrechtlichen<br />

Verfahren<br />

Tobias Leidinger<br />

SPOTLIGHT ON NUCLEAR LAW<br />

Die Beteiligung der Öffentlichkeit in atomrechtlichen Genehmigungsverfahren – z. B. für die Erlangung einer<br />

Genehmigung zum Rückbau eines Reaktors – ist obligatorisch und in der Atomrechtlichen Verfahrensordnung (AtVfV)<br />

im Einzelnen verbindlich geregelt. Neben diesem Standard-Repertoire gewinnen in<strong>for</strong>male Beteiligungs<strong>for</strong>mate in der<br />

Praxis atomrechtlicher Genehmigungsverfahren zunehmend an Bedeutung. Dazu gehören z. B. Bürger<strong>for</strong>en im Vorfeld<br />

der Antragstellung oder auch die Einbindung von Beteiligungsgruppen während des Genehmigungsverfahrens. Unter<br />

rechtlichen Gesichtspunkten stellt sich damit die Frage, wie sich die in<strong>for</strong>malen Formate zu den förmlichen Beteiligungsvorgaben<br />

der AtVfV verhalten.<br />

I<br />

Rechtliche Vorgaben und Freiräume<br />

bei der Verfahrensgestaltung<br />

1 Vorgaben der AtVfV<br />

Nach der AtVfV sind die Vorgaben für die Beteiligung<br />

der Öffentlichkeit in atomrechtlichen Genehmigungsverfahren<br />

klar bestimmt: Der öffentlichen Bekanntmachung<br />

des Vorhabens (§§ 4, 5) folgt die Auslegung<br />

des Antrags samt Unterlagen (Sicherheitsbericht, Kurzbeschreibung<br />

und UVP-Bericht) (§ 6). Innerhalb der<br />

zweimonatigen Auslegungsfrist können Einwendungen<br />

erhoben werden (§ 7), die – soweit sie für die Zulassung<br />

relevant sind – anschließend in einem nicht öffentlichen<br />

Erörterungstermin erläutert und erörtert werden können<br />

(§ 8). Daran schließt sich die eigentliche Prüfphase –<br />

regelmäßig unter Einbeziehung von externen, behördlich<br />

beauftragten Sachverständigen – in Bezug auf die Genehmigungsvoraussetzungen<br />

an, die mit der abschließenden<br />

Entscheidung der Genehmigungsbehörde endet (§ 15).<br />

2 Freiräume jenseits der AtVfV<br />

Jenseits dieser zwingenden Vorgaben bestehen in Bezug<br />

auf die Verfahrensgestaltung ergänzende Freiräume:<br />

Das gilt sowohl für den Zeitraum vor der Antragsstellung<br />

(Frühe Öffentlichkeitsbeteiligung) als auch danach<br />

( begleitende Öffentlichkeitsarbeit).<br />

Bereits vor der Antragsstellung (und damit vor Beginn<br />

des förmlichen Verfahrens) kann der Vorhabenträger –<br />

so wie in der Bestimmung über die frühe, in<strong>for</strong>male<br />

Öffentlichkeitsbeteiligung in § 25 Abs. 3 Verwaltungsverfahrensgesetz<br />

(VwVfG) als Option vorgesehen – die<br />

Öffentlichkeit über die Ziele, Mittel und Auswirkungen<br />

seines Vorhabens unterrichten und auch inhaltlich einbinden.<br />

Insoweit handelt es sich um eine „Soll-Vorgabe“,<br />

d. h. es besteht keine Pflicht, diesen Weg zu beschreiten.<br />

Die frühe Öffentlichkeitsbeteiligung nach § 25 Abs. 3<br />

VwVfG zielt darauf, das Vorhaben zu optimieren, Transparenz<br />

zu schaffen und die Akzeptanz der späteren<br />

Genehmigungsentscheidung zu fördern. Denn hier geht es<br />

nicht allein um frühzeitige In<strong>for</strong>mation, sondern um<br />

einen echten Diskurs (Gelegenheit zur Äußerung und<br />

Erörterung) und die Berücksichtigung der daraus<br />

gewonnenen Erkenntnisse im Rahmen des an schließenden<br />

förmlichen Verfahrens. Zur Konkretisierung der nach<br />

§ 25 Abs. 3 VwVfG eröffneten frühen Öffentlichkeitsbeteiligung<br />

steht mit der VDI-Richtlinie „Frühe Öffentlichkeitsbeteiligung<br />

bei Industrie- und Infrastruktur projekten”<br />

(VDI 7000) seit 2015 ein hilfreiches Instrument zur<br />

Verfügung. Die VDI 7000 wurde als „Management-<br />

Leitfaden” entwickelt, um Vorhabenträger konkret bei der<br />

Vorbereitung und Durchführung früher Öffentlichkeitsbeteiligung<br />

zu unter stützen. Zentrales Anliegen der<br />

Richtlinie ist es, durch die frühe Beteiligung der<br />

Öffentlichkeit Vertrauen in Akteure und Prozesse<br />

aufzubauen, die im weiteren Verfahren helfen,<br />

das Vorhaben insgesamt einfacher und effizienter<br />

umzu setzen. Dabei können die Maßgaben der VDI-<br />

Richtlinie flexibel eingesetzt werden – je nach Vorhaben<br />

und An<strong>for</strong>derungen –, um unterschiedliche Ansprüche<br />

und Inhalte zu bedienen.<br />

Das Ergebnis einer vor Antragstellung durchgeführten<br />

frühen Öffentlichkeitsbeteiligung soll der betroffenen<br />

Öffentlichkeit und der Behörde nach § 25 Abs. 3 VwVfG<br />

spätestens mit der Antragstellung, im Übrigen unver züglich<br />

mitgeteilt werden. Das geschieht in der Praxis regelmäßig<br />

durch einen in<strong>for</strong>mativen Bericht des Antragsstellers zu<br />

den durchgeführten Veranstaltungen und eingesetzten<br />

Formaten, den der Antragssteller seinem förmlichen<br />

Genehmigungsantrag beifügt und zugleich über das<br />

Internet der Öffentlichkeit zur Verfügung stellt.<br />

Freiräume für die Öffentlichkeitsbeteiligung bestehen<br />

aber auch nach Beginn des förmlichen Genehmigungsverfahrens.<br />

Dabei können unterschiedliche Wege<br />

be schritten werden: Zum einem kann die Öffentlichkeit<br />

auch jetzt – parallel zum förmlichen Verfahren – wiederkehrend<br />

über den Fortgang der Planung und die<br />

Konkretisierung einzelner Projektschritte in<strong>for</strong>miert und<br />

eingebunden werden. Das kann – wie im Rahmen der<br />

frühen Öffent lichkeitsbeteiligung – mittels verschiedener<br />

Formate, z. B. in Bürger<strong>for</strong>en, durch Newsletter, Info-<br />

Veranstaltungen oder „Tage der Offenen Tür“, erfolgen.<br />

Zum anderen kann eine „Beteiligungsgruppe“ gebildet<br />

werden, die sich aus interessierten „Stakeholdern“ verschiedener<br />

Interessengruppen zusammensetzt. Sie bildet<br />

ein begleitendes „ Gesprächs<strong>for</strong>um“, das z. B. unter<br />

Beteiligung eines externen Moderators wiederkehrend<br />

zusammentrifft, um bestimmte Aspekte des Vorhabens<br />

vertieft zu erörtern. Dabei unterstützt der Antragssteller<br />

dieses Beteiligungs<strong>for</strong>mat durch qualifizierte In<strong>for</strong>mationen,<br />

die schriftlich oder durch seine Fachleute für die<br />

Beteiligungsgruppe zur Verfügung gestellt werden.<br />

II Zum Verhältnis paralleler Öffentlichkeitsbeteiligungsverfahren<br />

Werden förmliche und in<strong>for</strong>male Öffentlichkeitsbeteiligung<br />

in Bezug auf ein Genehmigungsvorhaben<br />

gleichzeitig durchgeführt, stellt sich unter rechtlichen<br />

Aspekten die Frage nach ihrem Verhältnis zueinander: Im<br />

Grundsatz sind beide Ebenen und Vorgänge unabhängig<br />

voneinander. Das bedeutet insbesondere, dass Fehler im<br />

förmlichen Verfahren nicht unter Verweis auf Vorgänge<br />

oder In<strong>for</strong>mationen im in<strong>for</strong>malen Beteiligungsverfahren<br />

„ausgeglichen“ oder „ungeschehen“ gemacht werden<br />

können. Die Vorgaben des förmlichen Verfahrens nach der<br />

AtVfV sind also strikt einzuhalten. Werden sie gleichwohl<br />

verletzt, entscheiden die gesetzlichen Vorgaben in den<br />

Spotlight on <strong>Nuclear</strong> Law<br />

New Ways of Public Participation in <strong>Nuclear</strong> Licensing Procedures ı Tobias Leidinger


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

§§ 44-46 VwVfG über die „Fehlerfolgen“, d. h. darüber, ob<br />

die Genehmigung dann als „nichtig“, oder ein Fehler als<br />

„heilbar“ oder „unbeachtlich“ zu bewerten ist, so dass die<br />

Behördenentscheidung im Ergebnis Bestand hat. Insoweit<br />

existiert eine facettenreiche Kasuistik in der Rechtsprechung.<br />

Um Fehler auszuschließen und das förmliche Verfahren<br />

nicht „angreifbar“ zu machen, ist es eine besondere<br />

Heraus<strong>for</strong>derung, im Rahmen der in<strong>for</strong>malen Öffentlichkeitsbeteiligung<br />

sicherzustellen, dass der Umgang mit<br />

In<strong>for</strong>mationen „fair“ und „transparent“ erfolgt: Zum einen<br />

sollte gewährleistet sein, dass „Dritte“, die sich im<br />

förmlichen Verfahren beteiligen wollen, in Bezug auf<br />

In<strong>for</strong>mationen nicht schlechter gestellt werden als<br />

diejenigen, die auch in<strong>for</strong>mal eingebunden werden. Das<br />

lässt sich z. B. durch die Bereitstellung der In<strong>for</strong>mationen<br />

auf der Homepage des Antragsstellers einrichten.<br />

Besondere Vorsicht ist zum anderen auch in Bezug auf<br />

sicherungs relevante In<strong>for</strong>mationen er<strong>for</strong>derlich: Geht es<br />

um SEWD-relevante (Störmaßnahmen oder sonstige Einwirkungen<br />

Dritter) Vorgänge sind die Vorgaben des<br />

Sicherheits überprüfungsgesetzes (SÜG) strikt zu wahren.<br />

In<strong>for</strong> mationen, die inhaltlich die An<strong>for</strong>derungen der Kennzeichnung<br />

VS-NfD oder VS erfüllen, dürfen weder im<br />

Rahmen der förmlichen noch der in<strong>for</strong>malen Beteiligung<br />

bekannt werden. Das begrenzt auch die jeweiligen<br />

Diskussionen oder Erörterungen in der Sache – egal auf<br />

welcher Ebene. Das dient letztlich dem Grundrechtsschutz<br />

aller Beteiligten, der nicht mehr gewährleistet wäre,<br />

wenn sensible Daten über potentielle Szenarien und<br />

er<strong>for</strong> derliche Schutzmaßnahmen öffentlich erörtert<br />

würden.<br />

SPOTLIGHT ON NUCLEAR LAW 75<br />

III Fazit<br />

Es besteht ein weiter Rahmen für die Öffentlichkeitsbeteiligung<br />

in atomrechtlichen Genehmigungsverfahren:<br />

Neben den zwingend einzuhaltenden förmlichen Vorgaben<br />

der AtVfV bestehen Freiräume ergänzend für neue Wege,<br />

um die Öffentlichkeit vor und/oder während des<br />

Genehmigungsverfahrens auch in<strong>for</strong>mal zu in<strong>for</strong>mieren<br />

und einzubinden. Auch wenn beide Beteiligungsebenen<br />

rechtlich betrachtet unabhängig voneinander bestehen,<br />

dienen sie letztlich dem gleichen Ziel: Möglichst verständlich<br />

zu in<strong>for</strong>mieren, Kritik und Anregungen einzubeziehen<br />

und damit Vertrauen sowie die Akzeptanz in<br />

Bezug auf das Vorhaben zu fördern.<br />

Autor<br />

Prof. Dr. Tobias Leidinger<br />

Rechtsanwalt und Fachanwalt für Verwaltungsrecht<br />

Luther Rechtsanwaltsgesellschaft<br />

Graf-Adolf-Platz 15<br />

40213 Düsseldorf<br />

tobias.leidinger@luther-lawfirm.com<br />

Spotlight on <strong>Nuclear</strong> Law<br />

 New Ways of Public Participation in <strong>Nuclear</strong> Licensing Procedures ı Tobias Leidinger


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

76<br />

ENERGY POLICY, ECONOMY AND LAW<br />

An Integrated Approach to<br />

Risk In<strong>for</strong>med Decision Management<br />

Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes<br />

The nuclear industry presents a unique combination of challenges in the planning and deployment of both large and<br />

small projects.<br />

| Fig. 1.<br />

Hierarchy of Controls, (by the National Institute of Occupational Safety and<br />

Health) [1].<br />

The requirements of the regulatory<br />

framework, diverse stakeholders, cost<br />

effectiveness of investment, and the<br />

management of actual and perceived<br />

risks all contribute to the complexity<br />

of decisionmaking. Pragmatic decisions<br />

must be made to balance all of<br />

these and any other factors.<br />

The best solution to solve a<br />

problem today might not be the best<br />

solution tomorrow. The challenge is to<br />

understand uncertainty from the<br />

decision-making process and demonstrate<br />

that decisions are made transparently.<br />

This paper examines a solution to<br />

decision-making in the nuclear industry<br />

to help prevent lack of stakeholder<br />

buy-in due to the complexity of the<br />

problem. The method encourages<br />

communication with all stakeholders<br />

be<strong>for</strong>e during and after the decision-making<br />

process and conveys the<br />

output in a simple and highly visual<br />

way that satisfies all their different<br />

interests and points of view.<br />

provide a simple visual display of<br />

complex in<strong>for</strong>mation allowing key<br />

decision points to be compared and<br />

contrasted. It allows several different<br />

metrics under consideration to be<br />

examined on a level playing field to<br />

provide transparent, timely and accurate<br />

decisions to be reached. Integral<br />

to CompariCube® is an intuitive<br />

graphical output designed to allow<br />

stakeholders to interrogate and<br />

examine the basis of the decision.<br />

Through engagement with the<br />

client and key stakeholders time<br />

dependent risk profiles are established<br />

over a number of metrics (such as<br />

safety, cost, security, sustain ability<br />

and environment). These are presented<br />

as blocks in a cube. The chosen<br />

solution is the one that minimises the<br />

risk over time, with the solution that<br />

has the smallest integral over the 3D<br />

profiles.<br />

Background<br />

<strong>Nuclear</strong> engineered solutions traditionally<br />

follow a standard hierarchical<br />

methodology to safety starting with<br />

elimination of the hazard wherever<br />

possible, followed by reduction, isolation,<br />

followed by control, Personal<br />

Protective Equipment (PPE) and<br />

discipline, with reliance upon PPE and<br />

procedures being the weakest and<br />

there<strong>for</strong>e least favourable hazard<br />

management strategy as shown in<br />

Figure 1.<br />

CompariCube® is a registered<br />

trade mark of National <strong>Nuclear</strong> Laboratory<br />

Ltd 2016.<br />

An alternative approach may place<br />

early reliance upon the use of less<br />

favourable hazard management<br />

strategy control, <strong>for</strong> a relatively short<br />

duration of time. Overall it may be<br />

acceptable to be at the lower end of<br />

the standard hierarchical safety<br />

approach, if the resultant overall<br />

integral of risk <strong>for</strong> the whole project is<br />

assessed to be less.<br />

This is exemplified in Figure 2<br />

which shows a predictive risk profile<br />

typically involved in achieving<br />

safer, sooner and cheaper pragmatic<br />

solutions. The overall risk <strong>for</strong> each<br />

approach is expressed as the area<br />

under each of the individual two<br />

curves.<br />

Historically, radical options may<br />

be considered at early stages in the<br />

optioneering process, but are often<br />

relegated without further adequate<br />

in-depth analysis. When comparing<br />

options to find a solution to a problem,<br />

traditionally only the highly engineered<br />

solutions are considered. This<br />

may not provide the lowest risk option<br />

in aggregate, and may unintentionally<br />

increase the total risk of the project<br />

over its lifetime.<br />

NNL aimed to create a holistic and<br />

flexible approach to risk reduction,<br />

which accounts <strong>for</strong> the entire lifetime<br />

of the project and reduces overall risk<br />

Introduction<br />

The National <strong>Nuclear</strong> Laboratory<br />

(NNL) has developed CompariCube®.<br />

This software tool and accompanying<br />

process has been used <strong>for</strong> intelligent<br />

strategic decision- making when faced<br />

with complex challenges, and can be<br />

used to support short-term investment<br />

<strong>for</strong> long-term savings.<br />

CompariCube® allows the analyses<br />

of comparative data and metrics to<br />

| Fig. 2.<br />

Comparison of Two Options.<br />

Energy Policy, Economy and Law<br />

An Integrated Approach to Risk In<strong>for</strong>med Decision Management ı Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

by challenging conventions around<br />

the hierarchy of controls. The challenge<br />

was to develop a methodology<br />

that enables early evaluation of<br />

various options and their acceptability<br />

over the whole project lifetime,<br />

accounting <strong>for</strong> all conceivable project<br />

risks. NNL’s CompariCube® was developed<br />

to overturn this historical<br />

approach and offer a new way to allow<br />

all options to be equally evaluated.<br />

Evaluating options<br />

<strong>for</strong> holistic risk reduction<br />

While the term “risk” as used thus far<br />

is in the context of safety, the concept<br />

can be broadened to accommodate a<br />

wider definition in terms of project<br />

risk. Project risks encompass a broad<br />

range of factors including cost,<br />

environmental risks, regulatory requirements,<br />

af<strong>for</strong>dability, sustainability,<br />

deliverability and many others<br />

besides.<br />

Such complex and high value<br />

investment decisions as encountered<br />

in the nuclear industry require high<br />

levels of stakeholder engagement and<br />

acceptance, across a broad range of<br />

parties. Stakeholder groups will<br />

have varying degrees of specialised<br />

knowledge and each will prioritise<br />

different interests (an illustration<br />

of such stakeholders is shown in<br />

Figure 3). A key challenge <strong>for</strong><br />

CompariCube® is to incorporate<br />

effective and transparent communication<br />

across all stakeholders with<br />

varying degrees of knowledge and<br />

different interests.<br />

To accomplish this, CompariCube®<br />

makes use of a simple visualisation<br />

interface, to allow users to examine<br />

the visual representation of project<br />

risk in the <strong>for</strong>m of a three-dimensional<br />

“risk cube” <strong>for</strong> each option, which can<br />

be manipulated into different views.<br />

This ability to intuitively represent<br />

the risk curves shown in Figure 4<br />

is key to the utility of CompariCube®<br />

as a communication and stakeholder<br />

engagement tool, as well as a decision<br />

facilitation tool.<br />

Methodology<br />

The user is able to define all the axes,<br />

by setting risk levels, deciding the key<br />

metrics of importance to the project,<br />

and by defining the time duration and<br />

intervals.<br />

When the user defines the metrics,<br />

they add a set of questions they have<br />

designed to capture the issues pertinent<br />

to each metric. Each question has<br />

a user-defined set of answers.<br />

Not all aspects of a project will be<br />

rated as equally important. As such<br />

| Fig. 3.<br />

Illustration of Stakeholders with Different Knowledge and Interests.<br />

| Fig. 4.<br />

Illustration of the Comparicube® Output Concept.<br />

CompariCube® offers the ability to<br />

weight each metric and each question<br />

according to its importance to<br />

the decision-making process. This<br />

flexibility is an essential part of the<br />

decision- making process.<br />

Figure 5 shows a schematic<br />

diagram of how the user defines<br />

the inputs along each of the three<br />

axes. The metrics axis shows how<br />

the metrics may have different<br />

weightings, represented by differently<br />

sized circles. The questions can also<br />

be weighted according to their relative<br />

importance.<br />

Handling uncertainty<br />

The ”Compariline” decision line<br />

technique is a unique approach<br />

developed by NNL in support of<br />

CompariCube® to model uncertainty<br />

from highly qualitative data. NNL<br />

con ducted a literature review of [2]<br />

to [8] to consider the modelling<br />

of uncertainty with limited hard<br />

data. Expert judgement around uncertainty<br />

was generally applied<br />

under such circumstances. However,<br />

this typically requires not only a<br />

good understanding of the area<br />

of interest but also of the concept of<br />

uncertainty. The development of<br />

Compariline is based on an adaptation<br />

of semantic differential type questions<br />

commonly used in survey sampling<br />

to estimate levels of agreement<br />

to a given statement (<strong>for</strong> instance<br />

from strongly agree to strongly<br />

disagree).<br />

Decision makers identify themselves<br />

as either “Expert”, “Knowledgeable”<br />

or “Naïve” in their confidence/<br />

experience/authority around the particular<br />

question being asked. By identifying<br />

the individuals according to<br />

their knowledgeability, CompariCube®<br />

weights responses;<br />

1 Expert = 2 Knowledgeable = 4 Naive<br />

When responses from all individuals<br />

have been collated, they will make<br />

up the Compariline, as shown in<br />

Figure 6.<br />

ENERGY POLICY, ECONOMY AND LAW 77<br />

Energy Policy, Economy and Law<br />

An Integrated Approach to Risk In<strong>for</strong>med Decision Management ı Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENERGY POLICY, ECONOMY AND LAW 78<br />

| Fig. 5.<br />

Schematic Diagram of CompariCube® Case Construction.<br />

It is possible <strong>for</strong> the output data<br />

from the Compariline to be translated<br />

into a beta probability distribution.<br />

The beta distribution has an upper<br />

and lower bound and it has shape<br />

parameters that allow <strong>for</strong> it to represent<br />

a broad range of distributions,<br />

from a bounded normal distribution<br />

to a heavily skewed distribution.<br />

Figure 7 presents four beta distributions<br />

with differing shape and scale<br />

parameters. The beta distribution is<br />

considered to be most adaptable<br />

towards the types of distributions<br />

arising from CompariCube® questions.<br />

Key: X Expert X Knowledgeable X Naïve<br />

| Fig. 6.<br />

Decision Line with Weighted Scoring.<br />

| Fig. 7.<br />

Beta Probability Distributions.<br />

The current CompariCube® graphical<br />

output is a 3D bar chart, similar<br />

to that shown in Figure 4. Future development<br />

of CompariCube® will include<br />

the adaptation of graphical output<br />

to include Error bars (similar to<br />

that presented in Figure 8a), or with<br />

upper and lower bound profile (similar<br />

to that presented in Figure 8b, or<br />

Figure 8c when applied to the 3D<br />

graphical output).<br />

Application – Radiometric<br />

monitoring system<br />

improvement decision<br />

CompariCube® has successfully been<br />

used on a number of different complex<br />

investment and development,<br />

high capital expenditure decisions in<br />

the nuclear industry.<br />

One specific case study example<br />

involved the use of CompariCube® by<br />

the Project Team to assist with the<br />

complex decision-making process to<br />

help choose between the partial<br />

replacement of a Radiometrics Surveillance<br />

Systems (RSS) versus complete<br />

replacement of the RSS in a Post<br />

Irradiation Examination (PIE) facility.<br />

The RSS had been installed and<br />

operational <strong>for</strong> more than 25 years,<br />

with radiometric instruments being<br />

added and removed over this time to<br />

suit plant operations. One of the early<br />

challenges facing the project team<br />

was to consider the relative benefits<br />

and dis-benefits of the partial replacement<br />

of the RSS at a cost of circa £ 1 m<br />

versus complete replacement of the<br />

RSS at a cost of circa £ 5 m.<br />

CompariCube® was utilised by the<br />

project team to assist with this complex<br />

decision-making process, with<br />

key stakeholders. A set of six common<br />

key metrics was identified which<br />

included Safety, Cost, Deliverability,<br />

Regulatory acceptability, Substantiation,<br />

and Functionality which could<br />

be used to compare the options on an<br />

equivalent basis. A set of 16 detailed<br />

questions was created to allow investigation<br />

of each key metric which<br />

ultimately allowed the preferred<br />

option to be selected.<br />

The CompariCube® study concluded<br />

that a complete replacement of<br />

the RSS at a cost of circa £ 5 m was the<br />

preferred option as shown in Figure 9.<br />

CompariCube® provided results<br />

which were easy and intuitive to<br />

understand and communicate, uncertainties<br />

to be captured and sensitivities<br />

explored in real-time. The output<br />

from CompariCube® allowed interrogation<br />

of underpinning in<strong>for</strong>mation<br />

and provided an auditable record of<br />

all input data.<br />

Application – Fuel sampling<br />

programme options<br />

assessment study<br />

In order to identify a suitable waste<br />

management solution <strong>for</strong> a fuel<br />

sampling programme, an assessment<br />

study was required to explore and<br />

prioritise the options available <strong>for</strong> the<br />

arising fuel remnants and associated<br />

wastes. Any potential solution needed<br />

to allow the immediate customer<br />

requirement to be delivered, and to<br />

also be acceptable to the various other<br />

stakeholders involved.<br />

CompariCube® was utilised by<br />

the project team to assist with this<br />

complex decision-making process,<br />

with two workshops held with key<br />

stakeholders. The aim of the first<br />

workshop was to generate the options<br />

<strong>for</strong> management of the waste by<br />

defining an option set. Participants<br />

were split into sub-groups to facilitate<br />

focused brainstorming and provide<br />

definition to each generated option.<br />

Each option presented different technical<br />

characteristics; requirements in<br />

terms of investment and planning of<br />

facility time; and technical and<br />

engineering challenges with respect<br />

to sampling, analysis, and waste<br />

disposability. Four options were<br />

selected.<br />

This workshop also defined the<br />

in<strong>for</strong>mation requirements that would<br />

Energy Policy, Economy and Law<br />

An Integrated Approach to Risk In<strong>for</strong>med Decision Management ı Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

a) Bar chart with error bars b) Box-whisker type plot c) Continuous variable with upper and lower bound<br />

| Fig. 7.<br />

Beta Probability Distributions.<br />

be needed <strong>for</strong> each option generated,<br />

ahead of the second workshop, which<br />

focussed on the option evaluation.<br />

Members of the project team<br />

designed the CompariCube® study in<br />

advance of the second workshop. A set<br />

of five common key metrics was<br />

identified which could be used to<br />

compare the options on an equivalent<br />

basis. In order to best capture the<br />

relative merits of the four options, a<br />

large set of detailed questions was<br />

created by which to evaluate each<br />

option. The study, which was presented<br />

and completed during the<br />

workshop, evaluated a total of one<br />

hundred and thirty-six questions<br />

across the five metrics.<br />

The evaluation and prioritisation<br />

stage resulted in a list of options<br />

ordered by acceptability to stakeholders<br />

(as shown in Figure 10), with<br />

the yellow colour used to indicate<br />

‘ acceptable to the customer/other<br />

stakeholders’ and the dark orange<br />

colour used to indicate ‘not meeting<br />

customer requirements’. An Uncertainty<br />

Index was also made available<br />

<strong>for</strong> each option. This prioritised<br />

options list was subsequently used<br />

to in<strong>for</strong>m the waste management<br />

strategy <strong>for</strong> the fuel sampling programme<br />

going <strong>for</strong>wards.<br />

relevance to stakeholders on a country-specific<br />

basis, allowing public engagement<br />

activities to be tailored<br />

within member states. A future use<br />

of CompariCube® is proposed <strong>for</strong><br />

creating public-engagement specific<br />

studies based on the concept of the<br />

materiality matrix. The benefits of<br />

using CompariCube® <strong>for</strong> such a purpose<br />

would be in producing a clear<br />

visible output allowing stakeholder<br />

issues and priorities to be readily<br />

compared.<br />

CompariCube® could also be incorporated<br />

into and support other types<br />

of public engagement techniques,<br />

such as the ‘Hybrid Forum’ [10], and<br />

the ‘Backcasting’ technique used<br />

in a proposed social sustainability<br />

framework <strong>for</strong> energy infrastructure<br />

decisions [11].<br />

The Hybrid Forum concept has<br />

previously been used to make a decision<br />

on the best flooding mitigation<br />

strategy <strong>for</strong> a town in the UK, which<br />

involved “experts” and “laypersons”<br />

working together to find a solution<br />

[12]. The principles underpinning<br />

Hybrid Forums see all stakeholders as<br />

equals who have valuable expertise<br />

and knowledge, they facilitate the cocreation<br />

of new knowledge between<br />

“experts” and “laypersons” and they<br />

work on the basis that all issues are<br />

not known in advance of the <strong>for</strong>ums.<br />

Issues instead emerge through<br />

dialogue and can lead to un<strong>for</strong>eseen<br />

solutions to problems and establish<br />

partnerships between stakeholders<br />

that previously held opposing<br />

positions. It is proposed that<br />

CompariCube® could incorporate<br />

input from various stakeholders, no<br />

matter their area of expertise, and is<br />

flexible enough to include new metrics<br />

as they emerge and make the output<br />

understandable to a wide range of<br />

stakeholders allowing the co-creation<br />

of knowledge and understanding<br />

between “experts” and “laypersons”,<br />

where everyone’s input adds value to<br />

the decision-making process, and the<br />

ENERGY POLICY, ECONOMY AND LAW 79<br />

Public engagement<br />

As illustrated in Figure 3, the local<br />

community are a key stakeholder in<br />

the decision-making process. The<br />

Corporate Social Responsibility Group<br />

within Finnish nuclear power company<br />

(Teollisuuden Voima Oyj) (TVO)<br />

uses a Materiality Matrix tool, which<br />

is used to identify the aspects of social<br />

responsibility with the greatest<br />

relevance <strong>for</strong> the company’s stakeholders<br />

and business operations [9].<br />

This tool provides valuable insight<br />

into areas which hold the most<br />

| Fig. 9.<br />

CompariCube® Graphical output showing preferred Option.<br />

Energy Policy, Economy and Law<br />

An Integrated Approach to Risk In<strong>for</strong>med Decision Management ı Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENERGY POLICY, ECONOMY AND LAW 80<br />

| Fig. 10.<br />

CompariCube® Overall Assessment Cube.<br />

end result is reached in an open and<br />

transparent way. Recent research at<br />

the NNL has looked to bring this<br />

technique into the nuclear sector [13]<br />

[14].<br />

The ‘Backcasting’ technique involves<br />

communities working together<br />

to develop a series of “future energy<br />

scenarios”, and in turn work<br />

backwards to put in place the steps<br />

that are needed to get them to their<br />

desired scenario. It is argued that<br />

CompariCube® could play a role<br />

in the decision-making process <strong>for</strong><br />

communities to choose their preferred<br />

future energy scenario option.<br />

Acknowledgements<br />

Howard Chapman would like to thank<br />

Dr Colette Grundy Head of Regulation,<br />

Advanced <strong>Nuclear</strong> Technology, Business<br />

Energy and Industrial Strategy<br />

(BEIS), seconded from the <strong>Nuclear</strong><br />

Innovation Research Office (NIRO).<br />

Colette retains a role as NNL<br />

Laboratory Fellow in nuclear regulation<br />

and was involved in the early<br />

conceptualisation and development of<br />

CompariCube®.<br />

References<br />

[1] “Hierarchy of Controls”. U.S. National Institute <strong>for</strong><br />

Occupational Safety and Health. Retrieved 2017-01-31.,”<br />

[Online].<br />

[2] Y. Ben-Haim and M. Demertzis, “Decision Making in Times of<br />

Uncertainty: An Info-Gap Perspective (De Nederlandsche<br />

Bank Working Party Paper No. 487),” 26 November 2015.<br />

[Online]. Available: ssrn.com/abstract=2696000.<br />

[Accessed 16 March 2018].<br />

[3] R. Schapire, “COS511: Theoretical Machine Learning,” 1 May<br />

2014. [Online]. Available: https://www.cs.princeton.edu/<br />

courses/archive/spring14/cos511/scribe.../0501.pdf.<br />

[Accessed 20 March 2018].<br />

[4] J.-S. R. Jang, C.-T. Sun and E. Mizutani, Neuro-Fuzzy and Soft<br />

Computing: A Computational Approach to Learning Machine<br />

Intelligence, Michigan: Prentice Hall, 1996, 1997.<br />

[5] O. T. A. Henningsen, maxLik: A package <strong>for</strong> maximum<br />

likelihood estimation in R, Computational Statistics, vol. 26,<br />

pp. 443-458, 2011.<br />

[6] B. Bolker, “Maximum likelihood estimation and analysis with<br />

the bbmle package,” 2017. [Online]. Available: https://<br />

cran.r-project.org/web/packages/bbmle/bbmle.pdf. [Accessed<br />

16 March 2018].<br />

[7] A. B. Collier, “Fitting a model by maximum likelihood,”<br />

18 August 2013. [Online]. Available:<br />

http://www.exegetic.biz/blog/2013/08/fitting-a-model-bymaximum-likelihood/.<br />

[Accessed 16 March 2018].<br />

[8] W. Li, “Appendix B,” in Risk Assessment of <strong>Power</strong> Systems:<br />

Models, Methods and Applications, Wiley, 2014.<br />

[9] Teollisuuden Voima Oyj, “Materiality Analysis and<br />

Responsibility Aspects,” [Online]. Available:<br />

https://www.tvo.fi/Materiality%20analysis%20and%<br />

20responsibility%20aspects#.<br />

[Accessed 30 September 2019].<br />

[10] M. Callon, P. Lascoumes and Y. Barthe, Acting in an Uncertain<br />

World: An Essay on Technical Democracy, MIT Press, 2009.<br />

[11] J. Whitton, I. M. Parry, M. Akiyoshi and W. Lawless,<br />

“ Conceptualizing a Social Sustainability Framework <strong>for</strong><br />

Energy Infrastructure Decisions,” Energy Research & Social<br />

Science, vol. 8, pp. 127-138, 2015.<br />

[12] S. J. Whatmore and C. Landstrom, “Flood Apprentices:<br />

An Exercise in Making Things Public,” Economy and Society,<br />

vol. 40, no. 4, pp. 582-610, 2011.<br />

[13] University of Manchester, “Beyond Consultation: Hybrid<br />

Forums <strong>for</strong> the Development of <strong>Nuclear</strong> Energy,” 17 July<br />

2018. [Online]. Available: https://www.mub.eps.manchester.<br />

ac.uk/thebeam/2018/07/17/beyond-consultation-hybrid<strong>for</strong>ums-<strong>for</strong>-the-development-of-nuclear-energy/.<br />

[Accessed 30 September 2019].<br />

[14] Times & Star, “Volunteers are needed <strong>for</strong> nuclear think-tank,”<br />

18 September 2019. [Online]. Available:<br />

https://www.timesandstar.co.uk/news/<br />

17908571.volunteers-needed-nuclear-think-tank/.<br />

[Accessed 30 September 2019].<br />

Authors<br />

Howard Chapman<br />

Maria Cormack<br />

Caroline Pyke<br />

John-Patrick Richardson<br />

Reuben Holmes<br />

National <strong>Nuclear</strong> Laboratory<br />

Limited<br />

Central Laboratory, Sellafield,<br />

Seascale, Cumbria, CA20 1PG<br />

United Kingdom<br />

National <strong>Nuclear</strong> Laboratory<br />

Limited (reg. office)<br />

Chadwick House<br />

Birchwood Park<br />

Warrington, Cheshire WA3 6AE<br />

United Kingdom<br />

Energy Policy, Economy and Law<br />

An Integrated Approach to Risk In<strong>for</strong>med Decision Management ı Howard Chapman, Maria Cormack, Caroline Pyke, John-Patrick Richardson and Reuben Holmes


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Design and Implementation of<br />

Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials<br />

Cask in <strong>Nuclear</strong> Newcomers<br />

M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi<br />

<strong>Nuclear</strong> newcomer countries facing a number of key challenges in infrastructure development, e.g. they have no<br />

Intelligent Transportation Systems. There<strong>for</strong>e, one of the challenges is the safety and security of nuclear materials<br />

during transportation, storing and disposing. Where, nuclear and radiological terrorism continues to be a worldwide<br />

concern as the nature of security threats evolves. This paper tries to solve that challenge by design and implement of an<br />

embedded system <strong>for</strong> nuclear materials cask. This system is suitable <strong>for</strong> developing countries, where it is cost effective<br />

and it uses the existing infrastructure. By using GPS, GSM/GPRS and microcontroller, the embedded system will enable<br />

the responsible bodies to remotely and continuously; tracking, monitoring and inspection of nuclear materials casks;<br />

during transportation, storing and disposing. The ORIGEN code is used to calculate the thermal and radioactivity loads<br />

of the cask. The application of this system allows the rapid intervention of the concerned bodies, which will prevent<br />

many accidents, in particular those caused by terrorists, like stealing or dispersing of nuclear materials.<br />

1 Introduction<br />

Recent advancements in nuclear<br />

fission technology towards Small<br />

Modular Reactor systems, arising<br />

principally from their lower projected<br />

construction costs makes them<br />

applicable <strong>for</strong> a small investment.<br />

These benefits have led many to<br />

predict that the number of such units<br />

will increase rapidly in developing<br />

countries. In addition, developing<br />

countries made the decision to embark<br />

on a nuclear power program to<br />

enhance security of energy supply by<br />

diversification of energy resources,<br />

reduce electric power production cost<br />

and inhibit greenhouse gas emissions.<br />

There<strong>for</strong>e, <strong>Nuclear</strong> Materials (NM)<br />

inventories are predicted to increase<br />

rapidly in developing countries.<br />

Knowing that, the threat of nuclear<br />

terrorism remains one of the greatest<br />

challenges to international security,<br />

beside the weak infrastructure of<br />

developing countries. The NM will be<br />

mostly vulnerable to terrorism,<br />

especially in transportations. There<strong>for</strong>e,<br />

additional measures are required<br />

to militate against this risk. One of<br />

these measures is the continuous<br />

monitoring of nuclear materials<br />

casks/packages; during transportation,<br />

storing and disposing. Advancements<br />

in microelectronics, wireless<br />

tech nology and encryption can be<br />

achieve that continuous surveillance,<br />

by integration the modern microcontrollers<br />

with sensors and wireless<br />

communication techniques. The<br />

continuing monitoring of the NM can<br />

counter the terrorism threats by<br />

in<strong>for</strong>ming the first responders (e.g.<br />

Police and fire fighter) to not only<br />

know the position of the incident, but<br />

also the nature and severity of the<br />

accident be<strong>for</strong>e approaching the scene<br />

of the event, which allowing prompt<br />

response. Also, continues monitoring<br />

can be enhanced the safety and<br />

security of NM.<br />

If there are challenges <strong>for</strong> advanced<br />

countries in the facing of nuclear<br />

terrorism, the challenges <strong>for</strong> developing<br />

countries are greater. There<strong>for</strong>e,<br />

this paper used the existing infrastructure<br />

in these countries to build<br />

an Embedded System (ES) that can be<br />

used <strong>for</strong> continuous monitoring and<br />

surveillance of NM, which will help<br />

nuclear newcomers to counter nuclear<br />

terrorism.<br />

2 Related work<br />

For nuclear terrorism countering, the<br />

continuous monitoring system like as<br />

Argonne’s ARG-US RFID, ARG-US<br />

CommBox and RAMM systems<br />

technology [1] can be used as in<br />

advanced countries. Regarding to the<br />

lone wolves threats, where recently<br />

the world has been suffering from.<br />

The most lone wolves harmful attacks<br />

were by trucks. Admittedly, the<br />

destruction will be severely increased<br />

if the truck was loaded with NM.<br />

There<strong>for</strong>e, the NM is Vulnerable to the<br />

lone wolves threats especially during<br />

transportations. The ARG-US and<br />

RAMM systems are vulnerable to<br />

counter this kind of terrorism. There<strong>for</strong>e,<br />

to overcome this vulnerability<br />

the works in [2, 3] proposed a new<br />

design approach <strong>for</strong> Intelligent Transportation<br />

Systems (ITS) based internet<br />

of things to counter the lone wolf,<br />

just be<strong>for</strong>e the attacks done by trucks.<br />

For developing countries like it is the<br />

case of most nuclear newcomers,<br />

where they have not an ITS nor privet<br />

satellite communication like<br />

Transcom<br />

or Iridium (<strong>for</strong> two way satellite<br />

communications) [4], the system in<br />

[5] can be used. In this system, a<br />

customized Global System <strong>for</strong> Mobile<br />

communication (GSM) module is<br />

designed <strong>for</strong> wireless radiation monitoring<br />

through Short Messaging<br />

Service (SMS). This module is able to<br />

receive serial data from radiation<br />

monitoring devices such as survey<br />

meter or area monitor and transmit<br />

the data as text SMS to a host server. It<br />

provides two-way communication <strong>for</strong><br />

data transmission, status query, and<br />

configuration setup. Integration of<br />

this module with a radiation monitoring<br />

device will create mobile and<br />

wireless radiation monitoring system<br />

with prompt emergency alert at high<br />

level radiation. But, this system absent<br />

the tracking of the NM. There<strong>for</strong>e, in<br />

this paper, the proposed system used<br />

the global satellite communication <strong>for</strong><br />

NM tracking as shown in the following<br />

sections. The ES can be attached to<br />

the NM casks.<br />

3 Proposed embedded<br />

system design and<br />

operation<br />

The proposed system is an ES consists<br />

of a microcontroller with onboard<br />

GPS and GSM modules, sensors,<br />

application software, a database<br />

server and web page, Figure 1. The<br />

ES monitors critical parameters,<br />

including the status of seals, movement<br />

of object, and environmental<br />

conditions of the NM cask in real time.<br />

Also, it provides an instant warning or<br />

alarm messages (i.e. SMS), when<br />

81<br />

ENVIRONMENT AND SAFETY<br />

Environment and Safety<br />

Design and Implementation of Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers ı M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 82<br />

| Fig. 1.<br />

Embedded system block diagram.<br />

preset thresholds <strong>for</strong> the sensors are<br />

exceeded. The in<strong>for</strong>mation collected<br />

by the system is transmitted to a dedicated<br />

central database server that can<br />

be accessed by authorized users across<br />

the responsible bodies via a secured<br />

network. The ES allows the tracking<br />

and inspecting of the casks throughout<br />

their life cycles in storage, transportation,<br />

and disposal. The software<br />

provides easy-to-use graphical interfaces<br />

that allow access to all vital<br />

in<strong>for</strong>mation once the security and<br />

privilege requirements are met.<br />

3.1 Sensor modules<br />

As a prototype, the ES sensors include<br />

safety sensors (e.g. radiation and<br />

temperature), security sensor (e.g.<br />

the status of seals), and driver v iolation<br />

detector (e.g. the speed of the<br />

truck). In this paper, the Evolutionary/European<br />

<strong>Power</strong> Reactor (EPR)<br />

Spent Fuel (SF) is selected as a hypothetical<br />

source <strong>for</strong> NM.<br />

p Safety sensors are used to indicate<br />

the radiation and temperatures<br />

levels statues of the NM cask. The<br />

ORIGEN [6] computer code is used<br />

to calculate the thermal and radioactivity<br />

loads of the cask which will<br />

be used to determine the sensor<br />

threshold level. The ORIGEN computer<br />

code flowchart is shown in<br />

Figure 2. The preparation details<br />

of the ORIGEN input file based EPR<br />

fuel are stated in [7]. The radiation<br />

and temperature sensors threshold<br />

level are determined as follows.<br />

1. Radiation: As will be proven later,<br />

when EPR SF (5 % enriched) is<br />

placed in a real cask system, the<br />

dose rate on the external surface<br />

of the cask will be lower than<br />

1,000 mrem/hour. There<strong>for</strong>e, the<br />

ES prototype will be used the<br />

PIN diodes to detect the increasing<br />

in gamma level, where the<br />

1,000 mrem/hour is sufficient to<br />

excite the PIN diodes. Any gamma<br />

detector PIN diode circuit consists<br />

of a low noise amplifier and comparator,<br />

Figure 3. The photodiode<br />

circuit stated in [8] was used <strong>for</strong><br />

the gamma ray detection. The<br />

advantage of using a photodiode is<br />

its small sensitive area; there<strong>for</strong>e,<br />

it is suitable to the high dose rate of<br />

the cask and it is not affected by the<br />

low background rate due to cosmic<br />

rays.<br />

2. Temperature: EPR SF can be<br />

loaded into MPC-24 baskets. Using<br />

the stated equation [7] of Peak<br />

Cladding Temperature (PCT) given<br />

Decay Heat (DH), when the DH is<br />

1.050 kW/assembly, the error free<br />

PCT is 307.12 °C in normal condition<br />

operations. The 24 PWR SF<br />

assemblies storage cask system<br />

with a burn-up of 55 Giga Watt<br />

Day/Metric Ton Uranium (GWD/<br />

MTU) and 25.2 kW DH load, the<br />

normal temperature <strong>for</strong> long-term<br />

events (e.g. onsite and offsite<br />

transportations, and storage) are<br />

302 °C, 64 °C and 67 °C <strong>for</strong> PCT,<br />

overpack outer surface and air<br />

outlet; respectively [9]. There<strong>for</strong>e,<br />

<strong>for</strong> the EPR SF, the normal temperatures<br />

are 307 °C, 69 °C and 72 °C<br />

<strong>for</strong> PCT, overpack outer surface<br />

and air outlet; respectively. The<br />

normal temperature limits <strong>for</strong><br />

overpack outer surface and air<br />

outlet are 98 °C and 72 °C; respectively.<br />

For prototype, the circuit<br />

used two digital temperature<br />

sensors, where their positions are<br />

in overpack outer surface (near the<br />

top air outlet) and air outlet, the<br />

temperature alarm SMS will<br />

delivered to the control unit (or to<br />

an emergency specified telephone<br />

number) if the temperature<br />

exceeds 98 °C and 72 °C <strong>for</strong> overpack<br />

outer surface and air outlet;<br />

respectively.<br />

p Status of Seals: The seal sensor can<br />

be located under one or two of the<br />

seal bolts of the cask overpack. The<br />

seal sensor is a short circuit wire<br />

warped around the bolt of the<br />

cask overpack. When the bolt is<br />

loosened, the short circuit wire will<br />

open the circuit. There<strong>for</strong>e, the microcontroller<br />

trigger an alarm, the<br />

alarm is broadcasted by SMS to the<br />

responsible bodies.<br />

3.2 Online cask monitoring<br />

and tracking<br />

The designed and implemented ES is<br />

used <strong>for</strong> receiving location data from<br />

satellites (via GPS module) and<br />

monitoring data (via sensors), then<br />

transmitting the received data to the<br />

desired web servers using a General<br />

Packet Radio Services (GPRS) connection<br />

(via GSM module).<br />

| Fig. 2.<br />

ORIGEN computer code flowchart.<br />

| Fig. 3.<br />

Gamma detector PIN diode circuit block diagram.<br />

Environment and Safety<br />

Design and Implementation of Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers ı M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

| Fig. 4.<br />

Embedded system frame construction.<br />

| Fig. 5.<br />

Embedded system operation flowchart.<br />

p GPS Module: The ES used the<br />

recommended minimum specific<br />

GPS/Transit data ($GPRMC)<br />

frame. This frame contains in<strong>for</strong>mation<br />

about the locations of the<br />

cask and the cask speed over<br />

ground. The speed can be used as a<br />

driver violation, if it exceeds a<br />

predefined value (e.g. 80 km/<br />

hour). Also, it can be used as a<br />

motion detector <strong>for</strong> the cask in<br />

storage, if greater than zero km/<br />

hour.<br />

p GSM Module: The ES used GSM<br />

and GPRS international communications<br />

standard to provide wireless<br />

communications capabilities.<br />

The sending of the SMS messages<br />

are the functions of the GSM module.<br />

The connection of the ES to the<br />

internet is through the mobile operators<br />

GSM/GPRS.<br />

p Web servers: The server functions<br />

are receiving data from the ES, securely<br />

storing it, and serving this<br />

in<strong>for</strong>mation on demand to the user.<br />

There are two servers. The first<br />

is <strong>for</strong> secret data, e.g. the cask<br />

monitoring data, while the second<br />

server is <strong>for</strong> tracking data.<br />

3.3 Microcontroller<br />

The microcontroller used in ES<br />

is a Programmable System-On-Chip<br />

Cypress chip. The chip includes CPU<br />

core, configurable blocks of analogous<br />

and digital logic, and programmable<br />

interconnects. This architecture<br />

allows the user to create customized<br />

peripheral configurations <strong>for</strong> each<br />

application.<br />

3.4 Proposed Frame Format<br />

Data is sent to the main servers as<br />

frame <strong>for</strong>mat. All data are grouped in<br />

a frame with a special <strong>for</strong>mat as shown<br />

in Figure 4. Frame fields contain; cask<br />

identification number (ID), cask<br />

tracking location, seal status, and cask<br />

monitoring sensor data. The microcontroller<br />

takes the location data from<br />

the GPS module and put it in its field<br />

in the frame.<br />

3.5 Proposed Embedded<br />

System Operation<br />

The ES operation methodology is<br />

shown in Figure 5. When the ES<br />

starts, it reads the sensors statues and<br />

sends theses data <strong>for</strong> monitoring and<br />

tracking servers by GPRS. In addition,<br />

if any one of the sensor values exceeds<br />

the limit, the ES sends instantaneous<br />

SMS to the predefined telephone<br />

number; and the monitoring and<br />

tracking are instantaneous. For power<br />

saving, in normal operations (i.e. radiation<br />

level, T1 and T2 temperatures<br />

lower than limits, and the seal is not<br />

opened) the system is programmable<br />

to wait a time between each reading<br />

process (e.g. in a casks storage site,<br />

the waiting time will be about ten<br />

minutes).<br />

4 Results<br />

The ORIGEN computer code simulation<br />

results of the EPR SF radiation<br />

source terms and the practical results<br />

of the ES operation will be stated in<br />

the next subsections.<br />

4.1 Gamma Source Terms<br />

Calculation<br />

Radiation source terms of SF are<br />

photons and neutrons. In this paper,<br />

the photon source of the EPR SF is<br />

calculated using the ORIGEN code<br />

based on the EPR parameters, where<br />

the photons are the source term of<br />

gamma. The EPR SF photon source<br />

decay of the activation products,<br />

actinides and daughters, and fission<br />

products are calculated, Figure 6 (a).<br />

As shown, the main gamma source<br />

term is the fission products photons.<br />

The radioactive characteristic of the<br />

EPR SF has previously been calculated,<br />

but <strong>for</strong> a burnup and enrichment<br />

of 60 GWD/MTU and 4 % [10],<br />

respectively. To make sure that our<br />

calculations of the gamma sources<br />

(i.e. 5 % enriched EPR) correspond to<br />

that calculations (i.e. 4 % enriched<br />

EPR), we compared our results with<br />

the reference results, Figure 6 (b)<br />

shows the photon sources decay comparison<br />

of the results.<br />

From Figure 6 (b), beyond five<br />

years of SF cooling, the differences<br />

between the two curves are small. For<br />

example, at the cooling value of<br />

20 years, it is found that the percentage<br />

difference is about (0.078393 %,<br />

providing that, the values of the fluxto-dose<br />

conversion coefficients <strong>for</strong><br />

(a) 5 % enriched fuel<br />

(b) 5 % enriched and 4 % enriched fuels<br />

| Fig. 6.<br />

EPR spent fuel gamma source decay.<br />

ENVIRONMENT AND SAFETY 83<br />

Environment and Safety<br />

Design and Implementation of Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers ı M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 84<br />

(a) Normal values<br />

(a) Tracking through Google maps web page<br />

(b) Abnormal values<br />

| Fig. 7.<br />

Cask monitoring server screenshot.<br />

(b) Tracking through the Traccar modern plat<strong>for</strong>m<br />

| Fig. 8.<br />

Online cask tracking.<br />

photons given by ANSI/ANS-6.1.1-<br />

1977 are about 20 % larger than the<br />

version 1991, and ICRP74 coefficients<br />

at the energies of interest. There<strong>for</strong>e,<br />

the cask shielding calculations in<br />

[11] can be applied to our work. This<br />

means that, when EPR SF (5 %<br />

enriched) is placed in a real cask<br />

system, the dose rate on the external<br />

surface of the cask will be lower than<br />

1,000 mrem/hour, which satisfied the<br />

U.S. <strong>Nuclear</strong> Regulatory Commission<br />

requirements [12].<br />

4.2 Online Cask Monitoring<br />

The online NM cask monitoring data<br />

are given by accessing the server of<br />

the responsible body. The cask<br />

monitoring data are cask ID, seal<br />

status, location (north and east), radiation<br />

status, overpack outer surface<br />

temperature, and air outlet temperature.<br />

As a prototype, the cask<br />

seal status is all right or opened,<br />

while, cask radiation and temperature<br />

status are all right (i.e. lower than<br />

threshold limit) or over limit (i.e.<br />

larger than threshold limit), Figure 7<br />

(a, b).<br />

4.3 Online cask tracking<br />

There are two methods <strong>for</strong> NM cask<br />

tracking, where the truck’s location<br />

is given through; Google maps web<br />

page or Traccar Modern Plat<strong>for</strong>m<br />

system.<br />

4.3.1 Tracking through Google<br />

maps<br />

To track the truck’s location through<br />

the Google maps, the authorized user<br />

will copy the longitude and latitude<br />

received from a cask monitoring<br />

server to a Google maps web page<br />

to view the truck’s location on<br />

Google maps. For example, the web<br />

address shown in Figure 7 is (https:<br />

//maps.google.com/?q=30.053795,<br />

31.309676); the user should copy<br />

this address to any internet browser<br />

to locate the truck in Google map,<br />

Figure 8 (a). This method reduces the<br />

code complexity and cost of the ES.<br />

4.3.2 Tracking through<br />

the Traccar plat<strong>for</strong>m<br />

In this method, the ES used the free<br />

and open source Traccar system<br />

provided by Traccar Ltd [13]. Traccar<br />

supports more protocols and device<br />

models. It includes a fully featured<br />

web interface <strong>for</strong> desktop and mobile<br />

layouts. With Traccar, the NM cask<br />

can be viewed in real-time with no<br />

delay, by the ES GPS module. Traccar<br />

has various mapping options, including<br />

road maps and satellite<br />

imagery, Figure 8 (b). The cost of a<br />

single user account on a shared<br />

Traccar server (<strong>for</strong> 5 devices + address<br />

in<strong>for</strong>mation in status and reports) is<br />

$20.00/month. While the cost of the<br />

own tracking server (<strong>for</strong> 50 devices +<br />

address in<strong>for</strong>mation in status and<br />

reports) is $100.00/month. These<br />

subscriptions include all features<br />

provided by Traccar plat<strong>for</strong>m like<br />

Geofencing, except SMS alerting<br />

which need a supplement subscription.<br />

4.4 SMS warnings and alerts<br />

The warning SMS about driver harsh<br />

driving violations (like speeding…)<br />

can be sent to a predefined telephone<br />

number without any delay by Traccar<br />

system. In addition, <strong>for</strong> minimizing<br />

the incident consequences, the alerts<br />

about danger states of the cask (e.g.<br />

temperature and/or radiation level<br />

exceeding the limit values, seal<br />

opened…) can be sent directly to a<br />

predefined telephone numbers (like<br />

police and/or nuclear safety staff), to<br />

insure the fast response and rapid<br />

intervention.<br />

5 Discussion<br />

In the next subsections, some<br />

problems that will face the applications<br />

of the ES are mentioned.<br />

Also, the solutions are stated.<br />

5.1 Ionizing radiation effects<br />

on electronic circuits<br />

In normal operation of the NM cask,<br />

the dose rate on the external surface<br />

of the package must be lower than<br />

1,000 mrem/hour (=1000 mrad/<br />

Environment and Safety<br />

Design and Implementation of Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers ı M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi


Die Technische Universität München betreibt mit der Forschungs-Neutronenquelle<br />

Heinz Maier-Leibnitz (FRM II) in Garching bei München eine der leistungsfähigsten und<br />

modernsten Neutronenquellen weltweit. Durch den optimierten Aufbau der Quelle,<br />

der wissenschaftlichen Instrumente und der Bestrahlungseinrichtungen nehmen wir eine<br />

Spitzenstellung im Bereich der Forschung mit Neutronen und deren technischer Nutzung ein.<br />

Für die Leitung des nuklearen und technischen Betriebs ist der/die<br />

Technische Direktor/in (m/w/d)<br />

zuständig. Diese Stelle ist zum 1. April 2020 turnusgemäß neu auszuschreiben und wieder zu besetzen.<br />

Ihr Aufgabengebiet:<br />

Zu Ihren anspruchsvollen Aufgaben in einem richtungsweisenden Wissenschaftsprojekt des Freistaates<br />

Bayern gehören die Bereitstellung der Neutronen für die wissenschaftliche und anwendungsorientierte<br />

Nutzung und insbesondere die übergeordnete Koordination der Bereiche<br />

• Reaktorbetrieb<br />

• Strahlenschutz<br />

• Bestrahlungseinrichtungen<br />

• Sekundäre Quellen (heiße und kalte Quelle, Konverteranlage)<br />

• Brennstoffkreislauf<br />

• nukleare und konventionelle Sicherheit<br />

sowie die Vertretung der nukleartechnischen und gewerbebetrieblichen Belange gegenüber den<br />

Aufsichtsbehörden und die Mitarbeiterführung von ca. 120 Personen.<br />

Tiefere Kenntnisse über spezifische An<strong>for</strong>derungen können bei Bedarf in einer angemessenen<br />

Einarbeitungszeit erworben werden.<br />

Ihr An<strong>for</strong>derungsprofil:<br />

Sie haben einen technischen und/oder naturwissenschaftlichen Universitätsabschluss und verfügen über<br />

langjährige Berufserfahrung, bevorzugt im Bereich kerntechnischer Anlagen. Sie bringen herausragende<br />

und übergreifende technische Kenntnisse mit und wissen durch Ihre fachliche Kompetenz zu überzeugen.<br />

Hohe Sozialkompetenz und Personalführungsbefähigung sowie entsprechend nachgewiesene Erfahrung<br />

und Leistung werden zwingend vorausgesetzt.<br />

Der hohe Sicherheitsstandard unserer Einrichtung er<strong>for</strong>dert grundsätzlich eine atomrechtliche Zuverlässigkeits<br />

überprüfung. Die Stelle wird leistungsgerecht vergütet und ist gemäß Organisationsstatut auf fünf Jahre<br />

befristet mit der Möglichkeit zur Verlängerung.<br />

Schwerbehinderte werden bei im Wesentlichen gleicher Eignung bevorzugt eingestellt. Die TUM strebt<br />

eine Erhöhung des Frauenanteils an. Bewerbungen von Frauen werden daher ausdrücklich begrüßt.<br />

Weitere Auskünfte erhalten Sie vom Wissenschaftlichen Direktor Prof. Dr. Peter Müller­Buschbaum.<br />

Allgemeine In<strong>for</strong>mationen zum FRM II finden Sie im Internet unter www.frm2.tum.de und<br />

www.mlz-garching.de.<br />

Bitte senden Sie Ihre ausführlichen Unterlagen bis zum 14. Februar 2020 an:<br />

Technische Universität München<br />

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II)<br />

z. Hd. Herrn Wissenschaftlichen Direktor Prof. Dr. Peter Müller­Buschbaum<br />

Lichtenbergstraße 1<br />

85748 Garching<br />

E­Mail: w-direktor@frm2.tum.de<br />

Tel.: 0049 89 289 14704<br />

Fax: 0049 89 289 14995<br />

Im Rahmen Ihrer Bewerbung um eine Stelle an der Technischen Universität München (TUM) übermitteln Sie personenbezogene Daten.<br />

Beachten Sie bitte hierzu unsere Datenschutzhinweise gemäß Art. 13 Datenschutz­Grundverordnung (DSGVO) zur Erhebung und<br />

Verarbeitung von personen bezogenen Daten im Rahmen Ihrer Bewerbung. Durch die Übermittlung Ihrer Bewerbung bestätigen Sie,<br />

dass Sie die Datenschutzhinweise der TUM zur Kenntnis genommen haben.


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 86<br />

hour, =0.01 gray/hour). There<strong>for</strong>e,<br />

the electronic components of the ES<br />

will be not affected. The ionizing<br />

radiation effect on GPS and microcontrollers<br />

modules will be shown<br />

below.<br />

Renaudie et al. [14] deduced that<br />

the commercial of – the – shelf GPS<br />

receivers operate faultless up to<br />

accumulated ionizing doses of more<br />

than 9 krad (air). This is acceptable<br />

<strong>for</strong> cask in normal operation.<br />

The experimental results of a<br />

collected irradiation environment of<br />

gamma rays and neutron on MCS96<br />

microcontroller were presented by<br />

Xiao-Ming et al. [15]. The influence of<br />

the synergistic effect are:<br />

(1) the static power supply current<br />

begins to increase at the total<br />

ionizing dose (TID) of 8.0 krad (Si)<br />

in the single gamma ray irradiation<br />

environment, while in the mixed<br />

irradiation environment it begins<br />

to increase at the TID of 2.3 krad<br />

(Si) and the neutron fluence of<br />

7.51011 n/cm 2 ,<br />

(2) when the microcontroller fails<br />

to run, the neutron fluence is<br />

approximately 1.21012 n/cm 2 and<br />

the TID is 3.7 krad (Si),<br />

(3) when the internal clock generator<br />

fails to provide a clock signal, the<br />

TID is 46.6 krad (Si) in the single<br />

gamma ray irradiation environment,<br />

while the TID is 17.7 krad<br />

(Si) and the neutron fluence is<br />

5.81012 n/cm 2 in the combined<br />

irradiation environment.<br />

The results shown that, the microcontroller<br />

does not fail until the<br />

TID exposure accumulates up to<br />

11.3 krad (Si), and per<strong>for</strong>ms normally<br />

even when the neutron fluence is up<br />

to 3.01013 n/cm 2 . There<strong>for</strong>e, the<br />

microcontroller per<strong>for</strong>ms normally in<br />

the ES radiation environment, where<br />

the dose must be lower than<br />

1000 mrad/hour.<br />

5.2 GSM network losing<br />

The physical protection of stored SF<br />

and the geologic repository requirements<br />

are stated in [12] insure the<br />

continuous surveillance of the storage<br />

and the repository sites. This means,<br />

the electrical and the communication<br />

systems in the site must be maintained.<br />

Depending on these requirements,<br />

the store and the repository<br />

sites must have more than one<br />

communication networks (e.g. two<br />

to three GSM networks, which can<br />

be used by the ES). There<strong>for</strong>e, the<br />

unavailability of the communication<br />

networks is too rarely. Finally, the<br />

using of the Iridium satellite (e.g.<br />

RockBLOCK 9602) transceiver [16]<br />

models is another option <strong>for</strong> the ES.<br />

Where, RockBLOCK 9602 allows<br />

sending and receiving short messages<br />

from anywhere on earth, providing a<br />

clear view of the sky. It works far beyond<br />

the reach of Wi-Fi and GSM networks.<br />

It works in the middle of any desert<br />

and ocean. The interface of the<br />

RockBLOCK to the ES board is easy,<br />

Figure 1, with a serial interface and<br />

can be operated with a three-wire<br />

connection, which are used to transmit,<br />

receive and ground signals. The<br />

module can be read out using the AT<br />

command interface. The main drawback<br />

of the RockBLOCK is its cost,<br />

where the costs are, 249 $/module<br />

price, 20 $/activation fee, and 19 $/<br />

monthly fee and usage rating:<br />

1.17 $/1KB.<br />

5.3 Data security<br />

For maximizing the cask data security,<br />

the proposed data frame <strong>for</strong>mat (in<br />

Figure 4) designed and implemented<br />

according to our private construction.<br />

There<strong>for</strong>e, it can be re<strong>for</strong>matted every<br />

some time based on our security<br />

constrains. In addition, we can secure<br />

data based on Advanced Encryption<br />

Standard methodology.<br />

6 Conclusion<br />

Advancements in microelectronics,<br />

wireless technology and encryption<br />

have opened opportunities that<br />

previously were not available to the<br />

nuclear sector. The ES tracking and<br />

monitoring system is enhancing the<br />

safety and security; reducing the need<br />

<strong>for</strong> manned surveillance; providing<br />

real-time access to status and event<br />

data; and providing overall cost effectiveness.<br />

The ES precise monitoring<br />

and tracking of the nuclear materials<br />

can per<strong>for</strong>m the terrorists countering,<br />

provided that additional terrorism<br />

countermeasure like, the speed<br />

response and rapid intervention of<br />

the security bodies. The ES is suitable<br />

to nuclear newcomers, where most of<br />

them are developing countries.<br />

Acknowledgment<br />

Authors wish to acknowledge the<br />

Professor Ezzat A. Eisawy <strong>for</strong> his<br />

strong support. They are thankful to<br />

Eng. Nagdy <strong>for</strong> his cooperation in the<br />

laboratory work. Also, they want to<br />

thank Eng. Emile Rushdie <strong>for</strong> his<br />

precious discussion.<br />

References<br />

[1] Y.Y. Liu, K.E. Sanders, and J.M. Shuler, “Advances in tracking<br />

and monitoring transport and storage of nuclear material,”<br />

IAEA-CN-244- 186, 2016.<br />

[2] Hassan F. Morsi, M. I. Youssef, and G. F. Sultan, “Novel design<br />

based internet of things to counter lone wolf, part-A: Nice<br />

attack,” Proceedings of the <strong>International</strong> Conference on<br />

Advanced Intelligent Systems and In<strong>for</strong>matics, Egypt, 2017,<br />

Advances in Intelligent Systems and Computing, vol. 639, pp.<br />

875-884, Springer, doi: 10.1007/978-3-319- 64861-3_82<br />

[3] H. F. Morsi, M. I. Youssef, and G. F. Sultan, “Novel design<br />

based internet of things to counter lone wolf, part-B: Berlin<br />

attack,” Japan-Africa Conference on Electronics, Communications<br />

and Computers (JAC-ECC), Egypt, 2017, pp. 164-169,<br />

IEEE, doi: 10.1109/JEC-ECC.2017.8305802<br />

[4] U.S. Department of Energy Office of Environmental Management,<br />

“TRANSCOM fact sheet: transportation tracking and<br />

communication system”, 2009.<br />

[5] Nur Aira Abd Rahman, Noor Hisyam Ibrahim, Lojius Lombigit,<br />

Azraf Azman, Zainudin Jaafar, Nor Arymaswati Abdullah, and<br />

Glam Hadzir Patai Mohamad, “GSM module <strong>for</strong> wireless<br />

radiation monitoring system via SMS”, IOP Conf. Series: Materials<br />

Science and Engineering, vol. 298, paper no. 012040,<br />

2018, doi:10.1088/1757-899X/298/1/012040<br />

[6] INVAP, “ORNL/ORIGEN Version 2.1”, 2004.<br />

[7] M. I. Youssef, G. F. Sultan, and Hassan F. Morsi, “Cooling<br />

period calculation of evolutionary power reactor spent fuel<br />

<strong>for</strong> dry management safety”, <strong>Nuclear</strong> and Radiation Safety<br />

<strong>Journal</strong>, vol. 2, no. 70, pp. 17-21, 2016, UDC<br />

621.039.58:621.039.7<br />

[8] Burkhard Kainka, “Improved radiation meter counter <strong>for</strong><br />

alpha, beta and gamma radiation”, Elektor, issue11,<br />

pp. 20-25, 2011.<br />

[9] Ju-Chan Lee, Kyung-Sik Bang, Ki-Seog Seo, and Ho-Dong<br />

Kim, “Thermal analysis of a storage cask <strong>for</strong> 24 spent PWR<br />

fuel assemblies”, 14th <strong>International</strong> Symposium on the<br />

Packaging and Transportation of Radioactive Materials<br />

(PATRAM 2004), Germany, 2004.<br />

[10] Markku Anttila, “Radioactive characteristics of the spent fuel<br />

of the finnish nuclear power plants”, Posiva working report<br />

2005-71, 2005.<br />

[11] Anssu Ranta-aho, “Review of the radiation protection<br />

calculations <strong>for</strong> the encapsulation plant”, Posiva Working<br />

Report 2008-63, 2008.<br />

[12] <strong>Nuclear</strong> Regulatory Commission, “U.S. nuclear regulatory<br />

commission regulations: title 10, code of federal regulations”,<br />

Parts 71, 63, 72, and 73, 2010.<br />

[13] Traccar Ltd, “GPS tracking software - free and open source<br />

system - Traccar”, https://www.traccar.org/.<br />

[14] C. Renaudie, M. Markgraf, O. Montenbruck, and M. Garcia,<br />

“Radiation testing of commercial-off-the-shelf GPS<br />

technology <strong>for</strong> use on low earth orbit satellites,” 9 th European<br />

Conference on Radiation and Its Effects on Components and<br />

Systems, France, 2007, pp. 1-8. IEEE, doi: 10.1109/<br />

RADECS.2007.5205561<br />

[15] Jin Xiao-Ming, Fan Ru-Yu, Chen Wei, Lin Dong-Sheng, Yang<br />

Shan-Chao, Bai Xiao-Yan, Liu Yan, Guo Xiao-Qiang, and<br />

Wang Gui-Zhen, “Synergistic effects of neutron and gamma<br />

ray irradiation of a commercial CHMOS microcontroller”,<br />

Chinese Physics B, paper no. 066104, vol. 19, no. 6, 2010.<br />

[16] Proprietary and Confidential In<strong>for</strong>mation, “Iridium 9602 SBD<br />

transceiver developer’s guide, revision 6.0”, Iridium<br />

Communications Inc., 2010.<br />

Authors<br />

M. I. Youssef<br />

Faculty of Engineering<br />

Al Azhar University<br />

Cairo, Egypt<br />

M. Elzorkany<br />

National Telecommunication<br />

Institute<br />

Cairo, Egypt<br />

G. F. Sultan<br />

Morsi<br />

Egyptian <strong>Nuclear</strong> and Radiological<br />

Regulatory Authority<br />

Cairo, Egypt<br />

Environment and Safety<br />

Design and Implementation of Embedded System <strong>for</strong> <strong>Nuclear</strong> Materials Cask in <strong>Nuclear</strong> Newcomers ı M. I. Youssef, M. Elzorkany G. F. Sultan and Hassan F. Morsi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Research and Application of<br />

<strong>Nuclear</strong> Safety Culture Improvement<br />

Management <strong>for</strong> NPPs in China<br />

Xiaozhao Xu, Jun Guo and Sujia Li<br />

The traditional nuclear safety culture improvement work in is mainly about propagandize, training, and behavior<br />

observation to instill the concept. The Lack of systematic evaluating and closed-loop management makes it difficult to<br />

ensure the effectiveness. Based on these, the nuclear safety culture improvement management research work was<br />

carried out. This article proposes a nuclear safety culture dynamic improvement model and some practical applications<br />

has been carried out based on the model. Firstly, a nuclear safety culture standard that can reflect the international<br />

advanced experience and the characteristics of Chinese culture is developed; Secondly, a continuous improvement of<br />

nuclear safety culture evaluation methods and mechanisms is established, and the nuclear safety culture evaluation<br />

management system is designed and developed with the whole process of the data acquisition, storage, analysis,<br />

processing, and feedback; Finally, a comprehensive nuclear safety culture quantitative evaluation model combining<br />

Back Propagation (BP) neural network and Analytic Hierarchy Process (AHP)-Fuzzy comprehensive evaluation method<br />

is designed and applied based on the use of evaluation data and the fuzzy mathematical theory, data validation shows<br />

that this model can be used <strong>for</strong> evaluating the comprehensive grade of nuclear safety culture in NPPs, and providing<br />

basis <strong>for</strong> NPPs and corporate to monitor the nuclear safety culture level.<br />

ENVIRONMENT AND SAFETY 87<br />

1 Preface<br />

From the typical events in the<br />

domestic nuclear power industry, the<br />

operation events of the unit shut down<br />

due to the failure of employees to<br />

comply the procedures have occurred<br />

occasionally [1], and the recurrence<br />

of events caused by the failure to<br />

implement the corrective action<br />

measures required by the operating<br />

experience feedback has also<br />

emerged. These events demonstrate<br />

the importance of nuclear safety<br />

culture to nuclear safety [2].<br />

Strengthening nuclear safety by<br />

raising the nuclear safety culture<br />

level is a common consensus in the<br />

nuclear industry.<br />

It was found that the traditional<br />

nuclear safety culture promotion work<br />

mainly instills the nuclear safety<br />

culture concept through publicity and<br />

training [3]. In recent years, and some<br />

nuclear power plants have used international<br />

advanced experience to<br />

carry out activities such as personnel<br />

behavior observation and coaching,<br />

the combination of the theory and<br />

behavior practice has been greatly<br />

improved compared to the initial<br />

one-way infusion. Nevertheless, it was<br />

found that this model is not enough to<br />

ensure the continuity and effectiveness<br />

of nuclear safety culture enhancement<br />

[4], lack of systematic<br />

evaluation and closed-loop management<br />

of nuclear safety culture level, it<br />

is difficult to accurately identify the<br />

culture weakness and take corresponding<br />

improvement measures of<br />

action [5].<br />

There<strong>for</strong>e, it is necessary to carry<br />

out research work on nuclear safety<br />

culture improvement management in<br />

NPPs. Based on the nuclear safety<br />

culture dynamic improvement model,<br />

this article has carried out related<br />

research and application work in the<br />

development of nuclear safety culture<br />

standards, nuclear safety culture<br />

evaluation methods and application<br />

of evaluation data.<br />

2 Research on nuclear<br />

safety culture<br />

improvement<br />

management of NPPs<br />

2.1 <strong>Nuclear</strong> safety culture<br />

dynamic improvement<br />

model<br />

In three-level cultural theory, Edgar<br />

H. Schein [6] found culture includes<br />

three levels of underlying and visible<br />

basic assumptions, values, and<br />

behaviors, they are integrated and<br />

interrelated. If we continue to<br />

strengthen cultural values and change<br />

individual behavior through various<br />

actions, we can guide individuals’<br />

basic assumptions and values to<br />

change in the desired direction.<br />

<strong>International</strong> Atomic Energy<br />

Agency (IAEA) proposed the relevant<br />

requirements [7] <strong>for</strong> the organization<br />

to enhance the nuclear safety culture,<br />

and defined the nuclear safety<br />

culture commitments of policy level,<br />

managers and individuals. The<br />

advantage is that the classification<br />

and the responsibilities of each level is<br />

clear and specific, but there is no<br />

description of the relationship, and<br />

there is no clear driving <strong>for</strong>ce to<br />

enhance nuclear safety culture and<br />

lack of evaluation.<br />

The definition of nuclear safety<br />

culture [8] by the World <strong>Nuclear</strong><br />

Operators Association (WANO) in<br />

2006 clearly shows the relationship<br />

between employees and leaders in the<br />

promotion of nuclear safety culture,<br />

and points out the role of leaders in<br />

the promotion of nuclear safety<br />

culture.<br />

Based on the research and analysis<br />

of the above-mentioned theory,<br />

the nuclear safety culture dynamic<br />

improvement model <strong>for</strong> NPPs is proposed,<br />

as shown in Figure 1.<br />

The model clarifies the role and<br />

location of the corporate and NPPs in<br />

the promotion of nuclear safety<br />

culture, the corporate should issue<br />

unified, clear, layered, and highstandard<br />

nuclear safety culture<br />

common language and put <strong>for</strong>ward<br />

the requirements <strong>for</strong> implementing<br />

the nuclear safety culture enhancement,<br />

the common language will be<br />

widely publicized through training,<br />

publicity and other activities to<br />

deepen understanding, finally, the<br />

requirements will be reflected in the<br />

behavior of the on-site personnel.<br />

The leaders of the nuclear power<br />

plants play a vital leading role in the<br />

process of enhancing the nuclear<br />

safety culture, they are decisive <strong>for</strong>ces.<br />

They not only set an example by themselves,<br />

but also act as a model <strong>for</strong><br />

practicing nuclear safety culture.<br />

Leaders should conduct observation<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 88<br />

| Fig. 1.<br />

<strong>Nuclear</strong> safety culture dynamic improvement model <strong>for</strong> NPPs.<br />

and coaching on the behavior of<br />

employees [9], including contractor<br />

employees, to improve the nuclear<br />

safety culture level of employees.<br />

Carrying out the nuclear safety culture<br />

enhancing activities is not to increase<br />

the management system, but to incorporate<br />

the nuclear safety culture<br />

requirements into the management<br />

measures of NPPs. Finally, the corporate<br />

should organize <strong>Nuclear</strong> Safety<br />

Culture Assessment (NSCA) regularly,<br />

use relevant means to understand the<br />

nuclear safety culture status and<br />

weakness of NPPs, so as to achieve<br />

continuous improvement of the<br />

nuclear safety culture level.<br />

Current work about nuclear safety<br />

culture enhancement has basically<br />

met the requirements of NPPs in the<br />

promotion of nuclear safety culture<br />

which mentioned in the model, such<br />

as training, publicity, behavior observation<br />

and management measures<br />

implementation [10]. The regulatory<br />

requirements <strong>for</strong> corporate in the<br />

model are key issues that need to be<br />

addressed. This article will introduce<br />

relevant research and application<br />

work around these key issues, including<br />

nuclear safety culture standards,<br />

nuclear safety culture evaluation<br />

methods and management systems,<br />

and nuclear safety culture comprehensive<br />

quantitative evaluation<br />

model.<br />

2.2 Development of nuclear<br />

safety culture standard<br />

Establishing a unified nuclear safety<br />

culture standard is an essential<br />

element <strong>for</strong> the organization to promote<br />

the nuclear safety culture. By<br />

clarifying the basic requirement and<br />

behavior criterion, all levels of<br />

individuals in the organization can<br />

improve the nuclear safety culture<br />

level in accordance with the unified<br />

goals and requirements.<br />

In the development process of<br />

nuclear safety culture standards, the<br />

related requirements put <strong>for</strong>ward in<br />

the <strong>Nuclear</strong> Safety Culture Policy<br />

Statement were considered, the<br />

“Healthy <strong>Nuclear</strong> Safety Culture<br />

Traits” [11] that issued by Institute of<br />

<strong>Nuclear</strong> <strong>Power</strong> Operations (INPO) of<br />

U.S. and WANO were also studied,<br />

these will be taken care of during the<br />

standard development process. Based<br />

on this, the following “Ten Principles<br />

of Excellence <strong>Nuclear</strong> Safety Culture”<br />

(referred to as “Ten Principles”) were<br />

developed.<br />

In the development process of the<br />

“Ten Principles”, two principles are<br />

basically based on the INPO traits, and<br />

the other principles are integrated<br />

and supplemented according to the<br />

above requirements, in particular,<br />

some new attributes have been added<br />

CNNP<br />

Ten Principles<br />

such as “reflecting long-term per<strong>for</strong>mance”,<br />

“avoiding organizational<br />

complacency”, “being sensitive to<br />

change” and “reporting truthfully to<br />

regulators”. The newly developed<br />

“Ten Principles” includes 10 principles,<br />

46 attributes and 237 behavior<br />

examples, these are the requirements<br />

and reference practices to carry out<br />

nuclear safety culture construction <strong>for</strong><br />

NPPs. Table 1 shows the comparison<br />

of the NSC Ten principles and INPO/<br />

WANO Ten Traits.<br />

3 Development and<br />

application of nuclear<br />

safety culture evaluation<br />

methods<br />

<strong>Nuclear</strong> safety culture evaluation can<br />

be used to test and verify the nuclear<br />

safety culture promotion effect of the<br />

NPPs [12]. By identifying the nuclear<br />

safety culture weakness, it is possible<br />

to develop and implement improvement<br />

actions in a targeted manner to<br />

improve the nuclear safety culture<br />

level continuously [13].<br />

3.1 Design and application<br />

of NSCEMS<br />

In order to manage and utilize various<br />

nuclear safety culture evaluation data<br />

effectively, and to provide a basis <strong>for</strong><br />

subsequent data analysis, the <strong>Nuclear</strong><br />

Safety Culture Evaluation Management<br />

System (NSCEMS) was designed<br />

and developed.<br />

NSCEMS mainly collects the data<br />

of the NSCA and questionnaire<br />

survey, and stores, processes and<br />

analyzes the relevant data through<br />

the data management module. The<br />

system can evaluate the nuclear<br />

safety culture status of corporate<br />

and NPPs, and can realize multidimensional<br />

evaluation data analysis<br />

and trend analysis to identify common<br />

problems and downgrade trends,<br />

and trans<strong>for</strong>m related issues into<br />

improved actions.<br />

NSCEMS consists of three subsystems<br />

and modules, NSCA system,<br />

NSC questionnaire system and NSC<br />

evaluation management module, the<br />

workflow of the system is shown in<br />

Figure 2.<br />

WANO<br />

Ten Traits<br />

INPO<br />

Ten Traits<br />

Principles/Traits 10 10 10<br />

Attitudes 46 40 40<br />

Behavior examples 237 0 217<br />

Posters 10 0 0<br />

| Tab. 1.<br />

Comparison of the NSC Ten principles and INPO/WANO Ten Traits.<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

NSCA system is mainly used <strong>for</strong> the<br />

collection, processing and analysis of<br />

relevant data on the NSCA, including<br />

data obtained from personnel interviews<br />

and behavior observations, and<br />

provides a basis <strong>for</strong> the NSCA conclusions.<br />

NSC questionnaire system is<br />

mainly used <strong>for</strong> the collection, processing<br />

and analysis of the questionnaire<br />

survey data, involving the conclusions<br />

of the questions and related<br />

departments and post in<strong>for</strong>mation,<br />

etc., and provides a basis <strong>for</strong> comprehensively<br />

grasping the acceptance<br />

and implementation effects of the<br />

NPPs on the ten principles. NSC<br />

evaluation management module is a<br />

sub-module of the NPP peer review<br />

data management plat<strong>for</strong>m. It is<br />

mainly used to unify the relevant data<br />

of on-site assessment and questionnaire<br />

survey and NSCA conclusions,<br />

and realize the comprehensive processing<br />

and analysis of nuclear safety<br />

culture evaluation data.<br />

There are three types of data and<br />

in<strong>for</strong>mation involved in the NSCEMS,<br />

including questionnaire data, on-site<br />

assessment data and NSCA conclusions.<br />

Integrate the positive and<br />

negative attributes obtained from the<br />

analysis of the three types of data,<br />

focus on the common problems<br />

reflected by them, and comprehensively<br />

derive the positive and negative<br />

attributes that need attention. Table 2<br />

shows an analysis case of the common<br />

nuclear safety culture problems.<br />

Based on the results of the comprehensive<br />

analysis, focus on and<br />

feedback negative attributes, and find<br />

relevant facts and supporting evidence<br />

in the three types of data, and conduct<br />

the root cause analysis. Corporate and<br />

NPPs can develop corrective actions<br />

to improve the nuclear safety culture<br />

level.<br />

4 Design and application<br />

of the comprehensive<br />

nuclear safety culture<br />

quantitative evaluation<br />

model<br />

The nuclear safety culture level has<br />

always been a qualitative concept, not<br />

a quantitative concept [14]. In the<br />

past, the assessment of the nuclear<br />

safety culture level mainly stayed on<br />

the basis of subjective or expert<br />

judgment.<br />

The current NSCA mainly uses<br />

questionnaires [15], on-site interviews<br />

and other methods to obtain<br />

employees’ views, attitudes and<br />

opinions on nuclear safety culture<br />

[16]. Through the positive, negative<br />

and neutral evaluation data, the<br />

| Fig. 2.<br />

NSCEMS workflow.<br />

overall situation of nuclear safety<br />

culture and the weakness are<br />

proposed. This method basically<br />

realized the systematic evaluation of<br />

the nuclear safety culture. Although<br />

some quantitative data were initially<br />

borrowed in the evaluation process,<br />

the evaluation conclusions are still<br />

qualitative, and it is impossible to<br />

visually give the overall nuclear safety<br />

culture status and what kind of the<br />

nuclear safety culture level of the NPP.<br />

The NSC comprehensive quantitative<br />

evaluation model is used to solve<br />

this problem. Considering the multilevel<br />

nature of nuclear safety culture<br />

and the fact that NPP is a complex<br />

open system with many qualitative<br />

factors, this article adopts BP neural<br />

network and AHP-Fuzzy to carry out<br />

Questionnaire data<br />

analysis<br />

WE.5- Alternate Process<br />

<strong>for</strong> Raising Concerns<br />

LA.5- Provide resources<br />

WE.1- Respect is Evident<br />

LA.1- Strategic<br />

Commitment to Safety<br />

LA.6- Incentives, Sanctions<br />

and Rewards<br />

NSCA Site Interview<br />

data analysis<br />

| Tab. 2.<br />

Analysis case of the common nuclear safety culture problems.<br />

research and design of a comprehensive<br />

quantitative evaluation model <strong>for</strong><br />

nuclear safety culture comprehensive<br />

evaluation.<br />

4.1 <strong>Nuclear</strong> safety culture<br />

quantitative level design<br />

American psychologist Abraham<br />

Maslow put <strong>for</strong>ward the theory of<br />

demand hierarchy in “Human Incentive<br />

Theory” in 1943. Based on this theory<br />

and combined the definition<br />

of nuclear safety culture [17], the<br />

nuclear safety culture is divided into<br />

seven stages to correspond to the seven<br />

nuclear safety culture levels, specifically<br />

includes instinctive response<br />

stage, passive management stage,<br />

active management stage, employee<br />

participation stage, team mutual<br />

NSCA conclusions<br />

analysis<br />

Main negative<br />

attributes<br />

PI.2- Evaluation LA.5- Provide resources LA.5- Provide resources<br />

LA.7- Change<br />

Management<br />

LA.5- Provide resources<br />

NS.3- Risk control<br />

throughout the whole<br />

work process<br />

NS.5- High quality<br />

procedures<br />

CO.2- Bases <strong>for</strong> Decisions WE.1- Respect is Evident<br />

PI.2- Evaluation<br />

LO.5- Training<br />

NS.5- High quality procedures<br />

LO.2- Operating Experience<br />

LO.5- Training<br />

LO.3- Conduct<br />

Assessment<br />

PI.2- Evaluation<br />

LO.5- Training<br />

WE.1- Respect is Evident<br />

NS.5- High quality<br />

procedures<br />

ENVIRONMENT AND SAFETY 89<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 90<br />

NSC<br />

level<br />

Assignment<br />

range<br />

Vector value<br />

(V i )<br />

Main characteristics<br />

of the organization<br />

1 [0, 50) 25 Individuals at all levels in the organization lack nuclear safety awareness, and their safety<br />

behaviors are based on their own instinctive reactions.<br />

2 [50, 60) 55 The source power on nuclear safety mainly comes from the requirements of regulators and<br />

superiors. Individuals believe that nuclear safety is the responsibility of the leaders.<br />

3 [60, 70) 65 The management has a certain understanding of the importance of nuclear safety, the<br />

organization has defined the nuclear safety responsibilities and authority of individuals at<br />

all levels, and enhances individuals’ nuclear safety awareness by improving the quality of<br />

procedures and organizing training.<br />

4 [70, 80) 75 Individuals understand their nuclear safety responsibilities and actively improve their safety<br />

skills and safety awareness. Most line employees are willing to work with management to<br />

improve and enhance the NSC.<br />

5 [80, 90) 85 The organization recognizes nuclear safety as a collective responsibility, focusing on communication,<br />

recognizing the value of all individuals, and recognizing that respect <strong>for</strong> employees<br />

is important <strong>for</strong> nuclear safety. Free flow of in<strong>for</strong>mation in the organization, management<br />

level and employees work together to improve the NSC.<br />

6 [90, 95) 92 Individuals at all levels in the organization have a strong NSC concept, basically <strong>for</strong>ming a<br />

team value with nuclear safety is emphasized over competing priorities, and continuously<br />

improving the NSC level through continuous learning, training, and self-improvement.<br />

7 [95, 100] 97 The organization has reached a highly self-disciplined NSC level. The NSC concept has been<br />

integrated into every employee in the organization. The organization is full of trust and<br />

respect. From management level to individuals, it pays close attention to nuclear safety.<br />

NSC stage<br />

Instinctive<br />

reaction<br />

Passive<br />

management<br />

Active<br />

management<br />

Employee<br />

participation<br />

Team mutual<br />

assistance<br />

Continuous<br />

improvement<br />

Highly<br />

self-discipline<br />

| Tab. 3.<br />

<strong>Nuclear</strong> Safety Culture Level Comparison Table.<br />

assistance stage, continuous improvement<br />

stage and high self- discipline<br />

stage, Table 3 shows the nuclear safety<br />

culture level com parison.<br />

In addition to the main features<br />

and stages, the assignment range and<br />

vector value of each nuclear safety<br />

culture level are also included, and<br />

these two types of data are mainly<br />

determined based on the experience<br />

of the expert group.<br />

4.2 A quantitative evaluation<br />

method of nuclear safety<br />

culture based on BP neural<br />

network<br />

BP neural network is a multilayer feed<br />

<strong>for</strong>ward network, which is trained<br />

according to the error back propagation<br />

algorithm style, it was found that<br />

the BP neural network can learn and<br />

store a large number of I/O mapping<br />

relations, without prior mathematical<br />

equation describing the mapping<br />

relations, and it is very suitable <strong>for</strong><br />

processing a non-linear in<strong>for</strong>mation<br />

processing requirements [18]. The<br />

topology structure of BP neural<br />

network model includes input layer,<br />

hidden layer and output layer, as<br />

shown in Figure 3.<br />

According to the characteristics of<br />

the BP neural network, the design<br />

process of the NSC quantitative rating<br />

| Fig. 3.<br />

The topology structure of BP neural network model.<br />

| Fig. 5.<br />

BP neural network error curve.<br />

| Fig. 4.<br />

Algorithm flow chart of NSC quantization neural network.<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

model, determine the 46 NSC<br />

attribute evaluation score <strong>for</strong> the<br />

input data, 7 NSC levels as the output<br />

of the network model, the model of<br />

relationship between the input and<br />

output <strong>for</strong> complex nonlinear model,<br />

and set a hidden layer.<br />

The learning rule of BP neural<br />

network is to use the gradient descent<br />

method to continuously adjust the<br />

weight and threshold of the network<br />

through back propagation, so that<br />

the squared error of the network is<br />

minimized. In this algorithm, there<br />

are 16 initial training samples,<br />

including 7 ideal data samples, 7<br />

fault- tolerant data samples, and 2<br />

actual data samples. The algorithm<br />

flow is shown in Figure 4.<br />

The network achieves convergence<br />

in step 87 and the actual output value<br />

of the network satisfies the error<br />

requirement through the learning of<br />

the training samples, as shown in<br />

Figure 5 <strong>for</strong> details.<br />

(1)<br />

Matrix E is the error value after<br />

iterative calculation, it can be seen<br />

that the actual output value of the<br />

neural network is basically consistent<br />

with the expected output value. The<br />

model can be used <strong>for</strong> the evaluation<br />

of nuclear safety culture quantitative<br />

levels.<br />

4.3 <strong>Nuclear</strong> safety culture<br />

quantitative evaluation<br />

method based on AHP-<br />

Fuzzy comprehensive<br />

evaluation method<br />

AHP is a multi-objective decisionmaking<br />

method combining qualitative<br />

and quantitative analysis. It was found<br />

that the method determines the<br />

weight coefficient of each index by<br />

decomposing the decision problem<br />

into a hierarchical structure [19].<br />

Fuzzy comprehensive evaluation<br />

method is a method of making comprehensive<br />

decision-making on things<br />

subject to various factors by using<br />

fuzzy mathematics and fuzzy statistics<br />

in a fuzzy environment. Combining<br />

the two methods, the main factors<br />

affecting the NSC are established to<br />

<strong>for</strong>m an orderly hierarchical level<br />

index [20]. The AHP method is used<br />

to calculate the relative importance<br />

degree between each level of indicators.<br />

Finally, the fuzzy comprehensive<br />

Importance level<br />

| Tab. 4.<br />

<strong>Nuclear</strong> Safety Culture Level Comparison.<br />

evaluation method is used to calculate<br />

the final nuclear safety culture level.<br />

The nuclear safety culture quantitative<br />

rating steps based on the AHP-<br />

Fuzzy comprehensive evaluation<br />

method are as follows.<br />

1) Establish an evaluation indicator<br />

set, the nuclear safety culture<br />

primary and secondary indicator<br />

systems are completely based<br />

on the framework of NSC ten<br />

principles. The primary indicators<br />

are 10 principles, and the secondary<br />

indicators are a number of<br />

attributes <strong>for</strong> each principle, <strong>for</strong> a<br />

total of 46.<br />

2) Determine the weight of each level<br />

of indicators, the AHP method is<br />

used to determine the weight set<br />

of the primary and secondary<br />

indicators of nuclear safety culture.<br />

The relative importance of each<br />

evaluation index is judged by<br />

the discriminant matrix method.<br />

Table 4 is the scale of the pairwise<br />

index of each level.<br />

In the process of using the discriminant<br />

matrix method, the specific<br />

evaluation results are determined<br />

after expert discussion and have<br />

certain authority. Table 5 shows the<br />

discriminant matrix and weight of the<br />

primary indicators, and the discriminant<br />

matrix and weight of the secondary<br />

indicators are calculated in the<br />

same way.<br />

According to the above method,<br />

the weight set of the primary and<br />

secondary indicators can be calculated,<br />

wherein W is a primary indicator<br />

weight set, and W i is a secondary<br />

indicator weight set under the<br />

principle i.<br />

3) Fuzzy comprehensive evaluation,<br />

based on the data points generated<br />

by the nuclear safety culture onsite<br />

assessment, all the attributes<br />

of the coverage nuclear safety<br />

culture evaluation of these data<br />

can be evaluated by the weighted<br />

processing.<br />

(2)<br />

The element r ij (row i and column<br />

j) in the matrix R indicates the<br />

membership degree of the evaluation<br />

indicator from the factor u i to<br />

the v j level, and combines W with<br />

the evaluation matrix R to obtain<br />

the evaluation result vector B of<br />

the secondary indicators.<br />

(3)<br />

| Tab. 5.<br />

Discriminant matrix and weight of the primary indicators <strong>for</strong> NSC quantitative evaluation.<br />

C ij Assignment<br />

Two elements (i, j) are equally important 1<br />

Element i is slightly more important than element j 3<br />

Element i is significantly more important than element j 5<br />

Element i is strongly important than element j 7<br />

Element i is extremely important than element j 9<br />

Intermediate value between the above adjacent judgments 2,4,6,8<br />

Element i is compared with element j and is opposite to the above judgment result<br />

A A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 Weight<br />

A 1 1 2 4 1 3 2 1/2 5 5 7 0.169<br />

A 2 1/2 1 3 1/2 2 1 1/3 4 4 5 0.106<br />

A 3 1/4 1/3 1 1/4 1/2 1/3 1/5 2 2 3 0.046<br />

A 4 1 2 4 1 3 2 1/2 5 5 7 0.169<br />

A 5 1/3 1/2 2 1/3 1 1/2 1/4 3 3 4 0.069<br />

A 6 1/2 1 3 1/2 2 1 1/3 4 4 5 0.106<br />

A 7 2 3 5 2 4 3 1 6 6 7 0.252<br />

A 8 1/5 1/4 1/2 1/5 1/3 1/4 1/6 1 1 2 0.030<br />

A 9 1/5 1/4 1/2 1/5 1/3 1/4 1/6 1 1 2 0.030<br />

A 10 1/7 1/5 1/3 1/7 1/4 1/5 1/7 1/2 1/2 1 0.021<br />

1/C ij<br />

ENVIRONMENT AND SAFETY 91<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 92<br />

Model calculation result<br />

Where bi is calculated from the<br />

column j of W and R, which indicates<br />

the membership degree of<br />

the evaluation indicator to the NSC<br />

level V j (j=1, 2, …, 7). After the<br />

above calculation, the results of the<br />

indicator evaluation of B 1 , B 2 ,…,<br />

B 10 are obtained through fuzzy<br />

comprehensive evaluation.<br />

<br />

(4)<br />

4) NSC level calculation, after obtaining<br />

the fuzzy comprehensive<br />

evaluation vector B, the final<br />

nuclear safety culture level is calculated<br />

based on the fuzzy comprehensive<br />

evaluation vector and<br />

the NSC level vector V, where<br />

V=(V 1 ,V 2 ,V 3 ,V 4 ,V 5 ,V 6 ,V 7 ) T .<br />

G = B • V(5)<br />

BP Neural network model measurement level (a) > AHP-Fuzzy<br />

model measurement level (b)<br />

BP Neural network model measurement level (a) = AHP-Fuzzy<br />

model measurement level (b)<br />

BP Neural network model measurement level (a) < AHP-Fuzzy<br />

model measurement level (b)<br />

| Tab. 6.<br />

NSC Quantitative Grade Criterion in NPPs.<br />

According to the calculation result<br />

of G, the range of assignment of<br />

each grade is compared, and the<br />

final nuclear safety culture level is<br />

determined.<br />

4.4 Application of Quantitative<br />

Evaluation Method of<br />

<strong>Nuclear</strong> Safety Culture<br />

Considering that the above quantitative<br />

evaluation models are based on<br />

fuzzy theory, in the actual application<br />

process, we will comprehensively<br />

consider the calculation results of the<br />

BP neural network and AHP-Fuzzy<br />

models, and determine the final<br />

nuclear safety culture quantification<br />

based on the criteria shown in<br />

Table 6.<br />

According to the above method,<br />

the NSCA results of three NPPs have<br />

been measured by using the nuclear<br />

safety culture comprehensive<br />

Comprehensive evaluation result (C)<br />

C=b<br />

C=a=b<br />

C=a<br />

quantitative evaluation model, and<br />

the specific calculation results are<br />

shown in Table 7.<br />

Based on the analysis of the model<br />

verification results, the following<br />

conclusions can be known.<br />

1) From the conclusion of the nuclear<br />

safety culture comprehensive<br />

evaluation level, the test NPPs are<br />

basically in the third and fourth<br />

level of nuclear safety culture, that<br />

is to say, they are basically in<br />

the active management stage or<br />

employee participation stage. This<br />

shows that the design of the comprehensive<br />

quantitative evaluation<br />

model is basically reasonable and<br />

feasible.<br />

2) It can be seen from Table 7 that the<br />

number of negative nuclear safety<br />

culture conclusions does not show<br />

a significant proportional trend to<br />

the nuclear safety culture comprehensive<br />

evaluation level. The<br />

reason is that the NSCA conclusions<br />

refer to the on-site assessment<br />

data points, but more based<br />

on the evaluation of the collected<br />

cases or facts to make judgments.<br />

The quantitative evaluation model<br />

is based on the judgments of all<br />

the evaluation data of NPPs, which<br />

can objectively reflect the overall<br />

nuclear safety culture level of<br />

NPPs.<br />

Imprint<br />

| Editorial Advisory Board<br />

Frank Apel<br />

Erik Baumann<br />

Dr. Erwin Fischer<br />

Carsten George<br />

Eckehard Göring<br />

Dr. Florian Gremme<br />

Dr. Ralf Güldner<br />

Carsten Haferkamp<br />

Christian Jurianz<br />

Dr. Anton Kastenmüller<br />

Prof. Dr. Marco K. Koch<br />

Ulf Kutscher<br />

Herbert Lenz<br />

Jan-Christan Lewitz<br />

Andreas Loeb<br />

Dr. Thomas Mull<br />

Dr. Joachim Ohnemus<br />

Olaf Oldiges<br />

Dr. Tatiana Salnikova<br />

Dr. Andreas Schaffrath<br />

Dr. Jens Schröder<br />

Norbert Schröder<br />

Prof. Dr. Jörg Starflinger<br />

Dr. Brigitte Trolldenier<br />

Dr. Walter Tromm<br />

Dr. Hans-Georg Willschütz<br />

Dr. Hannes Wimmer<br />

| Editorial Office<br />

Christopher Weßelmann (Editor in Chief)<br />

Im Tal 121, 45529 Hattingen, Germany<br />

Phone: +49 2324 4397723<br />

Fax: +49 2324 4397724<br />

E-mail: editorial@nucmag.com<br />

Nicole Koch (Editor)<br />

c/o INFORUM, Berlin, Germany<br />

Phone: +49 176 84184604<br />

E-mail: nicole.koch@nucmag.com<br />

| Official <strong>Journal</strong> of Kerntechnische Gesellschaft e. V. (KTG)<br />

| Publisher<br />

INFORUM Verlags- und Verwaltungsgesellschaft mbH<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

www.nucmag.com<br />

| General Manager<br />

Dr. Thomas Behringer<br />

| Advertising and Subscription<br />

Petra Dinter-Tumtzak<br />

Phone: +49 30 498555-30<br />

Fax: +49 30 498555-18<br />

E-mail: petra.dinter@nucmag.com<br />

| Layout<br />

zi.zero Kommunikation<br />

Antje Zimmermann<br />

Berlin, Germany<br />

| Printing<br />

inpuncto:asmuth<br />

druck + medien gmbh<br />

Baunscheidtstraße 11, 53113 Bonn, Germany<br />

| Price List <strong>for</strong> Advertisement<br />

Valid as of 1 January 2019<br />

Published monthly, 9 issues per year<br />

Germany:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT and postage) 187.- €<br />

All EU member states without VAT number:<br />

Per issue/copy (incl. VAT, excl. postage) 24.- €<br />

Annual subscription (incl. VAT, excl. postage) 187.- €<br />

EU member states with VAT number<br />

and all other countries:<br />

Per issues/copy (no VAT, excl. postage) 22.43 €<br />

Annual subscription (no VAT, excl. postage) 174.77 €<br />

| Copyright<br />

The journal and all papers and photos contained in it are protected by<br />

copyright. Any use made thereof outside the Copyright Act without the<br />

consent of the publisher, INFORUM Verlags- und Verwaltungsgesellschaft<br />

mbH, is prohibited. This applies to reproductions, translations,<br />

micro filming and the input and incorporation into electronic systems.<br />

The individual author is held responsible <strong>for</strong> the contents of the<br />

respective paper. Please address letters and manuscripts only to the<br />

Editorial Staff and not to individual persons of the association´s staff.<br />

We do not assume any responsibility <strong>for</strong> unrequested contributions.<br />

Signed articles do not necessarily represent the views of the editorial.<br />

ISSN 1431-5254<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Plant A Plant B Plant C<br />

NSCA conclusion<br />

3) The quantitative rating and NSCA<br />

can complement each other. NSCA<br />

pays attention to some specific<br />

points, and the quantitative evaluation<br />

model provides the overall<br />

nuclear safety culture trend of<br />

NPPs.<br />

4) Since there are not many assessments<br />

based on the new nuclear<br />

safety culture standards, the horizontal<br />

comparison of the nuclear<br />

safety culture level between NPPs<br />

can be initially realized. After the<br />

data is accumulated, it can be<br />

applied to the vertical comparison<br />

of the nuclear safety culture level,<br />

the nuclear safety culture trend<br />

will be identified timely, the corrective<br />

actions will be taken and to<br />

improve nuclear safety culture continuously.<br />

5 Conclusions<br />

In view of the current problems of lack<br />

of continuity and effectiveness in the<br />

nuclear safety culture improvement<br />

work of nuclear power plants, this<br />

article can provide solutions by conducting<br />

research and application work<br />

of nuclear safety culture improvement<br />

management of NPPs. The nuclear<br />

safety culture dynamic improvement<br />

model has the foundation of theory<br />

and practice. The nuclear safety<br />

culture standard not only reflects the<br />

international advanced practices but<br />

also reflects its own experience, and<br />

can provide guidance <strong>for</strong> the NPPs to<br />

carry out the nuclear safety culture<br />

promotion work.<br />

Based on the continuous improvement<br />

of nuclear safety culture evaluation<br />

technology, nuclear safety culture<br />

evaluation can be effectively carried<br />

out to identify the nuclear safety<br />

culture weakness of NPPs. At the same<br />

time, through the establishment of<br />

nuclear safety culture evaluation<br />

management system and its supporting<br />

data analysis mechanism, it can<br />

help corporate and NPPs to mine common<br />

problems and urgent problems<br />

from various evaluation data.<br />

The nuclear safety culture comprehensive<br />

quantitative evaluation model<br />

has realized the secondary utilization<br />

of the evaluation data, and solved the<br />

problem that there are no effective<br />

means to evaluate the overall nuclear<br />

safety culture level of NPPs. Combined<br />

with the nuclear safety culture evaluation<br />

method, the model can be used to<br />

monitor the nuclear safety culture<br />

trend <strong>for</strong> corporate and NPPs.<br />

At present, the nuclear power<br />

industry have given full attention to<br />

nuclear safety culture. The research<br />

results of nuclear safety culture<br />

management research of nuclear<br />

power plants have broad application<br />

prospects in China. For example,<br />

government regulatory agency and<br />

utilities can apply the relevant results<br />

of this article to conduct nuclear safety<br />

culture monitoring, evaluation and<br />

comprehensive quantitative rating,<br />

so as to achieve comprehensive monitoring<br />

of the nuclear safety culture<br />

level. For NPPs, this achievement can<br />

also be used to identify weakness and<br />

improve the nuclear safety culture<br />

level continuously.<br />

References<br />

4 positive observations<br />

5 general observations<br />

6 negative observations<br />

[1] Park, Kyung S.; Lee, Jae in. A new method <strong>for</strong> estimating<br />

human error probabilities: AHP-SLIM. Reliability Engineering<br />

and System Safety. 4(2008), 578-587.<br />

[2] T. Lee *, K. Harrison. Assessing safety culture in nuclear<br />

power stations. Safety Science. 34 (2000), 61–97.<br />

[3] Wang Li, <strong>Nuclear</strong> Safety Cultural Conflicts and Its Countermeasures:<br />

Revelation from the Fukushima <strong>Nuclear</strong> Accident.<br />

<strong>Journal</strong> of Beijing University of Aeronautics and Astronautics<br />

(Social Sciences Edition), 2013, Vol. 26.24-29.<br />

[4] Fernandez-Muniz, Beatriz, etal.Safety culture: Analysis of the<br />

causal relationships between its key dimensions. JOURNAL<br />

OF SAFETY RESEARCH.2007,Vol.38,No. 6, 627-641.<br />

[5] Björn Wahlström. Systemic thinking in support of safety<br />

management in nuclear power plants. Safety Science.<br />

109 (2018), 201–208.<br />

[6] Schein, E.H., 2010. Organizational Culture and Leadership,<br />

fourth ed. Jossey-Bass,San Francisco.<br />

[7] <strong>International</strong> Atomic Energy Agency (IAEA) Safety series<br />

No.75-INSAG-4. Safety Culture.1991.<br />

[8] World <strong>Nuclear</strong> Operators Association (WANO) Guideline<br />

2006-02. Principles <strong>for</strong> a Strong <strong>Nuclear</strong> Safety Culture.2006.<br />

[9] Ziedelis Stanislovas, etal. Human based roots of failures<br />

in nuclear events investigations. ATW-INTERNATIONAL<br />

JOURNAL FOR NUCLEAR POWER. 2012, Vol. 57, No. 10,<br />

596-601.<br />

[10] Hazmimi Kasim, etal.The relationship of safety climate<br />

factors, decision making attitude, risk control, and risk<br />

estimate in Malaysian radiation facilities. Safety Science.<br />

113 (2019), 180–191.<br />

[11] Institute of <strong>Nuclear</strong> <strong>Power</strong> Operations(INPO) 12-012.Healthy<br />

<strong>Nuclear</strong> Safety Culture Traits.2013.<br />

3 positive observations<br />

5 general observations<br />

3negative observations<br />

[12] Sang Min Han a, Seung Min Lee, etal. Development of<br />

<strong>Nuclear</strong> Safety Culture evaluation method <strong>for</strong> an operation<br />

team based on the probabilistic approach. Annals of <strong>Nuclear</strong><br />

Energy. 111 (2018), 317–328.<br />

[13] Young Gab Kim, etal.Approach <strong>for</strong> safety culture evaluation<br />

under accident situation at NPPs ; an exploratory study using<br />

case studies. Annals of <strong>Nuclear</strong> Energy.121 (2018), 305–315.<br />

[14] Han, Kiyoon, etal. Development of a New Methodology <strong>for</strong><br />

Quantifying, <strong>Nuclear</strong> Safety Culture. ATW-INTERNATIONAL<br />

JOURNAL FOR NUCLEAR POWER. 2017,Vol. 62, No.1, 30–35.<br />

[15] Stammsen,S ,Gloeckle,W. Capturing safety culture in plant<br />

inspections - KOMFORT, an oversight tool of Baden-<br />

Wurttemberg’s nuclear regulatory authority. ATW-<br />

INTERNATIONAL JOURNAL FOR NUCLEAR POWER. 2007,<br />

Vol. 52, No.11, 731–735.<br />

[16] Markus Schöbel, etal. Digging deeper! Insights from a<br />

multi-method assessment of safety culture in nuclear power<br />

plants based on Schein’s culture model. Safety Science.<br />

95 (2017), 38–49.<br />

[17] Joanna Martyka,Kazimierz Lebecki.Safety Culture in High-<br />

Risk Industries. <strong>International</strong> <strong>Journal</strong> of Occupational Safety<br />

and Ergonomics (JOSE) ,2014, Vol. 20, No. 4, 561–572.<br />

[18] Liu, Meiyu, Shi, Jing. A cellular automata traffic flow model<br />

combined with a BP neural network based microscopic lane<br />

changing decision model. JOURNAL OF INTELLIGENT<br />

TRANSPORTATION SYSTEMS.2019, Vol.23,No. 4, 309-318.<br />

[19] Esra Ilbahar, Ali Karaşan, etal. A novel approach to risk<br />

assessment <strong>for</strong> occupational health and safety using<br />

Pythagorean fuzzy AHP & fuzzy inference system. Safety<br />

Science. 103 (2018), 124–136.<br />

[20] Qian Wang, Rong Han, etal. Research on energy conservation<br />

and emissions reduction based on AHP-fuzzy synthetic<br />

evaluation model: A case study of tobacco enterprises.<br />

<strong>Journal</strong> of Cleaner Production. 201 (2018), 88-97.<br />

Authors<br />

Xiaozhao Xu<br />

Senior Engineer<br />

Assessment Technology Supervisor<br />

of Research Institute of <strong>Nuclear</strong><br />

<strong>Power</strong> Operation<br />

Jun Guo<br />

Senior Engineer<br />

Assessment Technology Director of<br />

Research Institute of <strong>Nuclear</strong> <strong>Power</strong><br />

Operation<br />

Sujia Li<br />

Professor of Engineering<br />

Vice President of Research Institute<br />

of <strong>Nuclear</strong> <strong>Power</strong> Operation<br />

China National <strong>Nuclear</strong><br />

Corporation (CNNC)<br />

No.1021 Minzu Street, East lake<br />

High-tech Development Zone<br />

Wuhan City, Hubei Province, China<br />

4 positive observations<br />

4 general observations<br />

3 negative observations<br />

BP neural network model calculation results Level 4 Level 4 Level 3<br />

AHP-Fuzzy model calculation results Level 4 (78.84) Level 5 (81.79) Level 4 (74.23)<br />

Comprehensive quantitative evaluation level Level 4 Level 4 Level 3<br />

| Tab. 7.<br />

Calculation and application of NSC comprehensive quantitative evaluation model.<br />

ENVIRONMENT AND SAFETY 93<br />

Environment and Safety<br />

Research and Application of <strong>Nuclear</strong> Safety Culture Improvement Management <strong>for</strong> NPPs in China ı Xiaozhao Xu, Jun Guo and Sujia Li


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 94<br />

Konstruktionsprinzipien zur nuklearen<br />

und betrieblichen Sicherheit von HTR-<br />

KKW – ein Review<br />

Urban Cleve<br />

1 Ziele der HTR-Entwicklung. Bereits zu Beginn seiner Tätigkeit in 1956 als Leiter der Reaktorentwicklung<br />

bei BBC sah es Prof. Dr. Rudolf Schulten als seine Aufgabe, ein inhärent sicheres Kernkraftwerk zu<br />

entwickeln. Keine noch so schwierig zu beherrschende nukleare oder betriebliche Störung durfte zu einem „GAU“<br />

führen. Szenarien, die zu einer Verunsicherung der Bevölkerung führen könnten und damit die Akzeptanz von KKW<br />

erschweren, ja verhindern könnten, sollten durch nuklear-physikalische Maßnahmen und Konstruktionen unmöglich<br />

sein. Ziel war der „katastrophenfreie“ Kernreaktor [1].<br />

Restrisiken soll es nicht geben, sie sind<br />

grundsätzlich auszuschließen. Er<br />

erdachte die Kugel als betriebs sicheres<br />

Brennelement. Hohe Temperaturen<br />

sollten möglich sein, daher Graphit<br />

mit seiner Festigkeit bis zu 3.000 °C<br />

als wesentliches Bauelement für die<br />

Brennelemente, für den Reaktorkern<br />

und als Moderator. Kühlung des<br />

Reaktorbettes durch ein inertes Gas<br />

wie Helium im geschlossenen Kreislauf<br />

innerhalb eines Druckbehälters.<br />

Dies sind bis heute die wichtigsten<br />

Bauelemente eines HTR. Es waren<br />

geradezu visionäre Überlegungen<br />

[2, 3].<br />

Gebaut nach diesen Ideen wurden<br />

das 15 MW el AVR-Versuchskernkraftwerk<br />

in Jülich [2] und das THTR-<br />

300 MW el -Demonstrationskernkraftwerk<br />

der VEW in Hamm/Uentrop-<br />

Schmehausen.<br />

2 Sicherheitsan<strong>for</strong>derungen<br />

an zukünftige<br />

(V)HTR-KKW.<br />

In einer Besprechung auf Vorschlag<br />

des BMBF-Referates 722 „Energie“<br />

erläuterte Prof. Dr. K. Kugeler [3, 4]<br />

sicherheitstechnische An<strong>for</strong>derungen<br />

an (V)HTR-KKW, die über die derzeit<br />

nach Fukushima ge<strong>for</strong>derten An<strong>for</strong>derungen<br />

der RSK [5] hinausgehen.<br />

Alle in einem Bericht der Reaktor-<br />

Sicherheitskommission (RSK) erwähnten<br />

Kriterien lassen sich mit<br />

einem HTR realisieren.<br />

Im Einzelnen sind dies:<br />

p Erdbebenauslegung und Bodendynamik;<br />

p Hochwasserauslegung;<br />

p Weitere externe Ereignisse wie<br />

extreme Wetterbedingungen, Flugzeugabsturz,<br />

Cyberangriff, Pandemie;<br />

p Kombinationswirkungen von externen<br />

Ereignissen;<br />

p vollständiger Ausfall der Stromversorgung;<br />

Weiter sind An<strong>for</strong>derungen, beschrieben<br />

unter „Konkrete Maßnahmen“,<br />

soweit diese für einen HTR überhaupt<br />

in Frage kommen, und die beschriebenen<br />

Schadensszenarien konstruktiv<br />

und planungstechnisch realisierbar<br />

und gelten als grundlegende An<strong>for</strong>derungen<br />

an die Sicherheit, werden<br />

also in die Sicherheitsberichte aufgenommen.<br />

Darüber hinaus werden die folgenden<br />

zusätzlichen Forderungen erfüllt<br />

[3, 4].<br />

p Berstsicherer Primärgaseinschluss,<br />

auch bei Terrorangriffen und Sabotage<br />

von innen und außen;<br />

p Selbsttätige Nachwärmeabfuhr;<br />

p Coreauslegung unempfindlich<br />

gegen Reaktivitätsstörungen;<br />

p Core unempfindlich gegen Lufteinbruch;<br />

p „Zero-Emissionskonzept“ auch bei<br />

Störungen;<br />

p Keine radioaktiv ver-/bestrahlte<br />

oder kontaminierte Teile außerhalb<br />

des KKW, kein Transport<br />

dieser Teile über die Straße oder<br />

Schiene zwingend er<strong>for</strong>derlich;<br />

Eine Notkühlung für Brennelemente<br />

und ein Abklingbecken mit Kühlwasserversorgung<br />

ist nicht er<strong>for</strong>derlich,<br />

da abgezogene Kugelelemente keine<br />

Nachwärmeproduktion haben.<br />

3 Erfahrungen aus dem<br />

Betrieb des 15 MW el<br />

AVR-Versuchs-KKW<br />

in Jülich<br />

Die beim Betrieb des AVR gewonnenen<br />

positiven und negativen<br />

Erfahrung werden in dem beschriebenen<br />

neuen Konzept berücksichtigt.<br />

Als grundlegende Erfahrungen<br />

sind anzusehen [13, 19]:<br />

p Der zweimalige Nachweis der inhärenten<br />

Sicherheit durch einen<br />

simulierten GAU; /3/;<br />

p Die geringe Bruchrate bei der<br />

Umwälzung der Brennelemente;<br />

p Die ausgezeichnete Stabilität der<br />

Graphiteinbauten;<br />

p Die einwandfreie Funktion der<br />

Abschalt- und Regelstäbe;<br />

p Die Möglichkeit, Reparaturen an<br />

wichtigen Komponenten, Gebläse,<br />

Beschickungsanlage, z. T. während<br />

des Betriebes durchführen zu<br />

können, ohne dass das Personal<br />

einer zu hohen Strahlendosis ausgesetzt<br />

wurde;<br />

p Die unerwartet geringe Menge an<br />

Graphitstaub;<br />

Negativ war der Schaden am Dampferzeuger<br />

durch eine undichte<br />

Schweißnaht. Diese Störung nach<br />

INES 1 war von Anfang an eingeplant<br />

worden. Die zur Behebung eines<br />

Schadens er<strong>for</strong>derlichen konstruktiven<br />

und betrieblichen Maßnahmen<br />

waren getroffen. Das Schadensereignis<br />

lief wie in den Betriebsgenehmigungen<br />

und Betriebsvorschriften<br />

festgelegt ab und der<br />

Schaden wurde behoben. Negativ war<br />

die lange Stillstandszeit des Reaktors.<br />

Eventuelle Auswirkungen eines<br />

solchen Dampf/Wassereinbruchs waren<br />

lange vor Inbetriebnahme des<br />

AVR von mehreren renommierten<br />

wissenschaftlichen Instituten und den<br />

Genehmigungsbehörden untersucht<br />

worden. Auch wurde experimentell<br />

das Verhalten heißer Brennelemente<br />

in einem Kugelbett bei plötzlicher<br />

Abkühlung durch Wasser überprüft.<br />

In einem Bericht [9] wird dies<br />

nicht berücksichtigt und kann<br />

möglicherweise auf die zeitliche<br />

Differenz zwischen Bericht in 2006<br />

und der erteilten Betriebsgenehmigung<br />

seitens der RSK und dem<br />

TÜV im Jahre 1964 basieren. Ohne die<br />

erfolgten positiven Untersuchungen<br />

wäre eine Betriebsgenehmigung für<br />

den AVR nicht erteilt worden. Die im<br />

Bericht zusammengefassten In<strong>for</strong>mationen<br />

sind seit 40-50 Jahren<br />

bekannt, also kein neuer Gedanke.<br />

Environment and Safety<br />

Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety of HTR NPPs – a Review ı Urban Cleve


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

4 Erfahrungen mit<br />

dem 300 MW el -THTR-<br />

Demonstrations-KKW<br />

in Hamm-Uentrop/<br />

Schmehausen<br />

Die Entscheidung, nach dem AVR mit<br />

einer Leistung von 15 MW zu einem<br />

KKW mit einer Leistung von 300 MW<br />

überzugehen, und das noch, bevor<br />

Betriebsergebnisse des AVR vorlagen,<br />

war ein extrem mutiger Schritt. Es<br />

war das Ziel, nachzuweisen, dass ein<br />

HTR-KKW mit konventionellen Kraftwerken<br />

gleicher Größe im Netzbetrieb<br />

eingesetzt werden kann, und hierzu<br />

war diese Entscheidung notwendig<br />

und vor allem auch aus heutiger Sicht<br />

richtig.<br />

Das Grundkonzept des THTR-300<br />

musste gegenüber dem AVR bei<br />

mehreren wichtigen Konstruktionen<br />

geändert werden:<br />

p Spannbetondruckbehälter anstelle<br />

zweier Stahlbehälter;<br />

p Helium Primärgasdruck 40 bar<br />

gegenüber 10 bar;<br />

p Änderung der BE-Abzugsvorrichtung;<br />

p Keine doppelt ummantelten<br />

Rohrleitungen;<br />

p Kühlgasströmung von oben nach<br />

unten;<br />

p Abschalt- und Regelstäbe in den<br />

Graphiteinbauten.<br />

Leider etwas spät wurde bei einer<br />

Nachberechnung des Cores erkannt,<br />

dass wegen des wesentlich größeren<br />

Coredurchmessers und der höheren<br />

Nachwärmeproduktion der Reaktor<br />

nach Abschaltung nicht kaltgefahren<br />

werden konnte. Das Erst-Konzept<br />

musste also geändert werden. Es<br />

wurden zwei Vorschläge besprochen.<br />

Die Abschaltstäbe sollen direkt in das<br />

Kugelbett eingefahren werden, die<br />

Regelstäbe verbleiben im Grahitreflektor<br />

oder alternativ ein Ringcore<br />

mit Abschalt- und Regelstäben in den<br />

Graphiteinbauten. Da noch keine<br />

Erfahrungen über das Verhalten der<br />

Graphiteinbauten aus dem AVR<br />

vor lagen, fiel die Entscheidung zugunsten<br />

der Lösung mit Einfahren der<br />

Stäbe in das Brennelementbett. Die<br />

Gefährdung der Brennelemente durch<br />

Bruch und das mögliche Verbiegen<br />

der Stäbe wurden bewusst in Kauf<br />

genommen und als das geringere<br />

Risiko angesehen.<br />

Der befürchtete Kugelbruch ist<br />

beim Betrieb des THTR eingetreten.<br />

Er ist so hoch, dass dieses Konstruktionsmerkmal<br />

bei weiteren HTR nicht<br />

mehr verwendet werden kann.<br />

Weiter kam es zu Problemen mit<br />

der Abzugseinheit für die Brennelemente,<br />

auch hierdurch kann<br />

| THTR Thorium-Hochtemperatur-Reaktor bei Hamm-Uentrop.<br />

zusätzlicher Bruch eingetreten sein.<br />

Die Abzugseinheit des AVR ist wesentlich<br />

besser und soll bei künftigen Anlagen<br />

unverändert eingebaut werden.<br />

Beide Erfahrungen hatten keinerlei<br />

Einfluss auf die nukleare Sicherheit<br />

der Anlage, sie führte aber zu nicht<br />

unerheblichen betrieblichen Heraus<strong>for</strong>derungen.<br />

Die positiven Erfahrungen aber<br />

sind, dass Ziele, Erkenntnisse und<br />

Erfahrungen, die mit dem THTR-300<br />

erreicht werden sollten, erfolgreich<br />

realisiert wurden.<br />

Dies sind:<br />

p Ein HTR-Kernkraftwerk ist genau<br />

so gut regelbar wie ein konventionelles<br />

Kraftwerk;<br />

p Ein Frequenzregelbetrieb ist sehr<br />

gut realisierbar;<br />

p Vom Netz ge<strong>for</strong>derte Leistungsschwankungen<br />

können problemlos<br />

nachgefahren werden;<br />

p Der Betrieb mit Zwischenüberhitzung,<br />

bislang einmalig mit<br />

einen KKW realisiert, war uneingeschränkt<br />

möglich, mit einem<br />

thermodynamischen Wirkungsgrad,<br />

der genau so gut ist, wie bei<br />

konventionellen Kraftwerken.<br />

p Alle Komponenten, d. h. vor allem<br />

die Gebläse, die Abschalt- und<br />

Regelstäbe, die Brennelement-<br />

Beschickungs- und -Umwälzanlage,<br />

die Helium-Gaskreisläufe<br />

arbeiteten trotz Leistungsvergrößerung<br />

genau so zuverlässig<br />

wie beim AVR;<br />

p Der Sekundärteil mit konventioneller<br />

Stromerzeugung arbeitet<br />

absolut betriebssicher;<br />

p Der Spannbetonbehälter ist bei<br />

Stilllegung der Anlage das beste,<br />

einfachste, sicherste und preiswerteste<br />

Endlager;<br />

Diese umfassenden Erfahrungen<br />

ermöglichen den Bau neuer HTR-<br />

Groß-Kernkraftwerke [8; 14 – 19].<br />

5 Die Sicherheit der<br />

Kugel-Brennelemente<br />

Von entscheidender Bedeutung für die<br />

Sicherheit der HTR-Technik war und<br />

ist die Entwicklung der Graphitkugeln<br />

mit eingepressten, in drei Hülllagen<br />

umschlossenen Coated Particles. Hierbei<br />

werden UO 2 + ThO 2 oder UC +<br />

ThC als Brutbrennstoffe oder jedwede<br />

weitere Brennstoff- Partikel kombi nation<br />

[6] mit einem Kern- Durchmesser<br />

von 0,5 – 0,7 mm von drei gasdichten<br />

Lagen aus pyro lytischem Kohlenstoff<br />

beschichtet. Deren Durchmesser beträgt<br />

ca. 0,9 mm. Etwa 15.000 bis<br />

30.000 dieser Partikel werden in<br />

den Graphit der Kugeln eingepresst.<br />

Messungen haben gezeigt, dass diese<br />

sehr harten Schichten bis 1.600 °C<br />

gegen den Austritt von Spaltpro dukten<br />

gasdicht bleiben. Man nennt diese<br />

Coated Particles wegen ihrer Härte<br />

auch Panzerkörner. Sie sind so hart,<br />

dass sie auch bei einem Kugelbruch<br />

nicht beschädigt werden, was der<br />

Kugel bruch im THTR und die dennoch<br />

geringe Aktivität des Primärheliums<br />

zeigen. Diese dreifache Beschichtung<br />

sind die ersten drei Sicherheitsbarrieren<br />

gegen den Austritt von<br />

Spaltprodukten in das Primärgas. So<br />

konnte beim AVR die Aktivität des<br />

Primär- Heliumgases innerhalb des<br />

Reaktorbehälters von der zunächst angenommenen<br />

Aktivität von 10 7 Curie<br />

auf gemessenen 760 Curie gesenkt<br />

werden. Ein Wert, der auch bei einer<br />

ENVIRONMENT AND SAFETY 95<br />

Environment and Safety<br />

Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety of HTR NPPs – a Review ı Urban Cleve


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 96<br />

Totalemission in die Umgebung nicht<br />

zu einer zu hohen Belastung geführt<br />

hätte.<br />

Beim THTR betrug die Aktivität<br />

1x10 7 Bq bei 47.000 m 3 Primär gasvolumen.<br />

Auch hier wäre bei einer<br />

Totalemission keine Evakuierung der<br />

Umgebung er<strong>for</strong>derlich geworden.<br />

Abgebrannte und abgezogenen<br />

Brennelemente müssen sicher gelagert<br />

werden, um den Nicht verbreitungsvertrag/Non-Profileration<br />

Treaty<br />

(NPT) für nukleare Brennstoffe einhalten<br />

zu können [6, 16]. Bei der<br />

großen Zahl von Brennelementen mit<br />

variierendem Gehalt von Uran,<br />

Thorium und dem bei der Verbrennung<br />

von U-238 entstehende spaltbaren<br />

Plutonium, sowie den strahlenden<br />

Graphit-Moderatorelementen<br />

und borhaltigen Kugeln ist eine<br />

Markierung oder gar Nummerierung<br />

nicht möglich. Jedes einzelne Element<br />

wird aber gemessen. Der Plutoniumgehalt<br />

hängt von der Höhe des<br />

Abbrands des U-238 ab, je höher der<br />

Abbrand, umso geringerer Rest von<br />

Plutonium. / 16/ Diese Zusammenhänge<br />

sind im Detail er<strong>for</strong>scht und<br />

beschrieben von D.L. Moses [6].<br />

Die jahrzehnte lange Lagerung der<br />

Kugeln aus dem AVR und dem THTR<br />

in Jülich und Ahaus beweisen, dass<br />

eine gesicherte und sichere Lagerung<br />

dieser Elemente einfach und problemlos<br />

möglich ist.<br />

Brennelemente haben den alles<br />

entscheidenden Einfluss auf die<br />

Sicherheit jedes Kernkraftwerkes.<br />

Einen solch hohen Sicherheitsstand<br />

und einfache Handhabung hat<br />

kein anderes Brennelement.<br />

6 Sicherheitsmaßnahmen<br />

für die Gesamtanlage<br />

Die Konstruktion der Gesamtanlage<br />

erfolgt nach den in Kap. 2 festgelegten<br />

An<strong>for</strong>derungen.<br />

Ausgenommen hiervon sind alle<br />

sekundären Anlagen, wie Stromerzeugung,<br />

Trinkwasserproduktion<br />

und alle anderen verfahrenstechnischen<br />

Anlagenbereiche. Der Sekundärteil,<br />

also die Stromerzeugung, war<br />

bereits beim THTR-300 nicht Teil des<br />

atomrechtlichen Genehmigungsverfahrens.<br />

Der Betrieb hat gezeigt, dass<br />

durch den Wasserdampf, der im<br />

Primärgaskreislauf liegende Dampferzeuger<br />

erzeugt wird, keine Radioaktivität<br />

in den Sekundärteil übertragen<br />

wurde. Die Turbogruppe<br />

konnte verkauft werden und war<br />

über viele Jahre anschließend weiter<br />

in Betrieb. Dies war nur möglich,<br />

da sie während des nuklearen Betriebes<br />

nicht kon taminiert worden ist.<br />

Die He-He- Primärgaswärmetauscher<br />

arbeiten eher mit noch höherer<br />

Sicherheit gegen Spaltproduktdurchbruch.<br />

Ehrgeiziges Ziel der Sicherheitsplanung<br />

ist das „Zero-Emissions-<br />

Prinzip“.<br />

Auch im schlimmsten möglichen<br />

Störfall soll und darf keine unzulässig<br />

hohe radioaktive Strahlung oder<br />

Kontamination der Umgebung<br />

möglich sein.<br />

Nuklear-physikalisch gilt, dass die<br />

Anlage inhärent sicher ist [1, 3, 16].<br />

Betrieblich werden folgende baulichen<br />

Maßnahmen getroffen:<br />

p Erdbebensicheres Fundament in<br />

maximaler Stärke eines etwa zu<br />

erwartenden Erdbebens, mindestens<br />

Stärke 6;<br />

p Über dem Fundament wird ein<br />

Bunker mit starken Betonwänden<br />

errichtet. Dieser ist sturm- und<br />

wasserfest und damit luft-, gasund<br />

wasserdicht auszulegen;<br />

p Auf dem Fundament steht die<br />

Stützkonstruktion für den Spannbetonbehälter,<br />

diese trägt den<br />

Spannbetonbehälter;<br />

p Im Bunker werden alle Komponenten<br />

bearbeitet oder endgelagert,<br />

die radioaktiv strahlen oder<br />

kontaminiert sind;<br />

p Die Sicherheitseinrichtungen;<br />

p Dies sind:<br />

p Die Abzugseinheiten für Brennelemente,<br />

diese liegen innerhalb<br />

der Stützkonstruktion für<br />

den SBB;<br />

p Die Be-Schnellabzugsanlage;<br />

p Eine Werkstatt mit Dekontamination<br />

der zur Reparatur<br />

vorgesehenen Kom ponenten;<br />

p Das Lager für abgebrannte<br />

Brennelemente und bei Schnellabzug;<br />

p Die Notstromeinrichtungen<br />

und Batterie;<br />

p Alle im Störfall er<strong>for</strong>derlichen<br />

Hilfsanlagen, auch die mobilen;<br />

p Die Um- und Abluftreinigungsanlagen<br />

und Filter;<br />

p Um bzw. über den gesamten<br />

nuklearen Teil wird ein Containment<br />

errichtet, dessen Volumen so<br />

groß und druckfest ist, dass das<br />

gesamte Primärgasvolumen des<br />

SBB aufgenommen werden kann.<br />

p Brennelement-Schnellabzug;<br />

Im äußersten Notfall, bspw. bei<br />

Gefahr kriegerischer Handlungen,<br />

oder wenn keine der übrigen<br />

Sicherheitsmaßnahmen einsetzbar<br />

sein sollten, kann das Core durch<br />

Kugelabzug von Hand und deren<br />

Lagerung in speziellen Behältern<br />

in relativ kurzer Zeit von allen<br />

Kugeln entleert werden. Positiv ist,<br />

dass keine Nachwärmeproduktion<br />

erfolgt, die Behälter also nicht<br />

gekühlt werden müssen, und<br />

dass mehrere Abzugseinheiten<br />

vorhanden sind.<br />

p Die Notsteuerstelle: <br />

Es werden 2 Notsteuerstellen vorgesehen,<br />

die 1. In der Warte, also<br />

im Sekundärbereich, die 2. im<br />

Bunkerbereich.<br />

7 Die Konstruktion<br />

sicherheitsrelevanter<br />

Komponenten<br />

Sicherheitsrelevante Komponenten<br />

sind:<br />

p Der Spannbetonbehälter mit<br />

Linerkühlsystem, Isolierung und<br />

Stützkonstruktion:<br />

Der Spannbetonbehälter ist nach<br />

den dreifachgasdichten Hüllen<br />

der Coated Particles die vierte<br />

Sicherheitsbarriere gegen den<br />

Austritt von Spaltprodukten. Er ist<br />

gleichzeitig das Bio-Schild.<br />

Versuche in eine 1:20 Modell mit<br />

warmem Wasser haben nachgewiesen,<br />

dass ein Spannbetonbehälter<br />

nicht längere Zeit aufreißen<br />

kann. Nach einer Druckentlastung<br />

bei eingetretener Undichtigkeit<br />

ziehen die Spannkabel<br />

den Beton so zusammen, dass er<br />

wieder gasdicht ist. Der Bruch des<br />

Test-SBB fand erst bei 5-fachem<br />

Überdruck gegenüber Auslegungsdruck<br />

statt, einer Druckerhöhung,<br />

die praktisch nicht eintreten<br />

kann.<br />

Im Betrieb kann der SBB nur durch<br />

zu hohe Temperaturen gefährdet<br />

werden, der Betrieb der Linerkühlung<br />

muss also gewährleistet<br />

sein. Weiter erhält der SBB einen<br />

speziellen Beton mit höherer Festigkeit<br />

und verbesserter Wärmeleitfähigkeit<br />

nach außen.<br />

Die elektrischen Antriebe der<br />

Kühlwasserpumpen werden mittels<br />

Notstromdieselanlagen und<br />

Batterien im Notfall abgesichert;<br />

zusätzlich können mobile Versorgungsanlagen<br />

eingesetzt werden,<br />

sodass eine Kühlung gesichert<br />

ist.<br />

Letztlich kann der Druck im SBB<br />

durch Absenken des Druckes des<br />

Primär-Heliums und Abpumpen in<br />

das Heliumlager druckentlastet<br />

werden.<br />

p Die Primärgasgebläse<br />

Eingebaut werden mehrere Gebläse,<br />

bspw. sechs. Sie haben die<br />

Environment and Safety<br />

Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety of HTR NPPs – a Review ı Urban Cleve


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Aufgabe, die im Core produzierte<br />

Wärme im geschlossenen Primärgaskreislauf<br />

über die He-He-<br />

Wärmetauscher an das Sekundär-<br />

Helium zu übertragen, das die dort<br />

produzierte Wärme an die folgenden<br />

Anlagen im Sekundärteil<br />

abgibt. Im Störfall sollen die Gebläse<br />

betriebstüchtig sein, um die<br />

im Core produzierte Nachwärme<br />

nach außen abführen zu können.<br />

Sie haben daher eine Sicherheitsfunktion,<br />

wobei der Betrieb eines<br />

Gebläses ausreicht, um die Nachwärme<br />

abführen zu können [7].<br />

Aus diesem Grunde müssen die<br />

Antriebe der Gebläse mittels Notstromanlage<br />

und Batterien abgesichert<br />

sein. Wenn beide ausfallen<br />

sollten, bleibt genügend Zeit<br />

[16] um die Motoren mittels eines<br />

mobilen Hilfsaggregates auch von<br />

Hand betätigen zu können [7].<br />

p Die Abschalt- und Regeleinrichtungen:<br />

Alle Abschalt- und Regelstäbe<br />

befinden sich im Reflektor. Sie<br />

fallen bei Stromausfall durch<br />

Schwerkraft durch Auslösen der<br />

Kupplung in die Reflektoren ein.<br />

Bei der großen Zahl genügt es,<br />

wenn ca. 1/3 der Stäbe ausgelöst<br />

werden, um den Reaktor abzuschalten.<br />

p Der Brennelementschnellabzug:<br />

Der Brennelementschnellabzug<br />

ermöglicht es, vor allem wenn<br />

mehrere Abzugseinheiten vorhanden<br />

sind, per Schwerkraft die<br />

Kugeln in relativ kurzer Zeit abzuziehen,<br />

das Core also zu entleeren,<br />

und die Kugelelemente im Lager zu<br />

lagern.<br />

p Das Brennelementlager:<br />

Vom Brennelementlager kann<br />

keinerlei Gefahren für die Anlage<br />

ausgehen. Ein gekühltes „Abklingbecken“<br />

ist nicht er<strong>for</strong>derlich. Es<br />

liegen langjährige Erfahrungen mit<br />

der Lagerung der AVR- und der<br />

THTR-Brennelemente vor.<br />

p Das Containment:<br />

Dies ist die 5. und letzte Barriere<br />

gegen den Austritt von Radioaktivität<br />

in die Umgebung;<br />

p Instrumentierung und<br />

Notsteuerstellen:<br />

Die zentrale Warte befindet sich im<br />

Sekundärteil, hier ist auch die<br />

1. nukleare Notsteuerstelle untergebracht.<br />

8 Beherrschung extremer<br />

Einwirkungen von außen<br />

a. Kriegerische Ereignisse,<br />

Cyberangriff, Pandemie:<br />

Maßnahmen: Entleerung des<br />

Cores über Schnellabzug; Damit<br />

kann das KKW keine Gefahr mehr<br />

für die Umgebung darstellen.<br />

Abpumpen des Heliumgases in das<br />

Heliumlager.<br />

b. Flugzeugabsturz, Raketen/<br />

Droh nenangriff von außen:<br />

Schadensfolge: Containment wird<br />

durchschlagen, der Spannbetonbehälter<br />

mit 6 – 8 m dicken vorgespannten<br />

Betonwänden wird<br />

nicht durchschlagen. Gebläse<br />

und/oder Abschalt-Regelstäbe<br />

werden beschädigt. Wegen des<br />

Einbaus von Rückhaltevorrichtungen/Dichtungen<br />

für das Primärgas<br />

in den Behälterdurchdringungen<br />

dieser Komponenten bleibt der<br />

SBB gasdicht.<br />

Keine nuklearen Schadensfolgen,<br />

keine Kontamination der Umgebung.<br />

Bei geringer Undichtigkeit<br />

des SBB kann das Containment<br />

provisorisch drucklos abgedichtet<br />

werden, ohne dass die Gefahr<br />

einer zu hohen Strahlenbelastung<br />

des Personals besteht.<br />

Ferner: Entleeren des Cores;<br />

Abpumpen des He-Primärgases;<br />

c. Explosion durch Sabotage<br />

innerhalb des Containments:<br />

Folgen: Schutzbehälter wird<br />

durchschlagen, Spannbetonbehälter<br />

bleibt dicht, keine Kontamination<br />

der Umgebung.<br />

d. Explosion durch Sabotage<br />

innerhalb des Bunkers:<br />

Folge: keine unmittelbare<br />

Beschädigung des SBB, keine<br />

Kontamination der Umgebung.<br />

e. Hochwasser, Sturm, Tsunami,<br />

extreme Wetterlagen<br />

Folgen: Bunker bleibt dicht,<br />

keinerlei Folgen.<br />

9 Schlussbetrachtung:<br />

Die inhärente Sicherheit eines HTR-<br />

Reaktors ist die Basis für alle Sicherheitsanalysen.<br />

Haupt-Planungskriterium für die<br />

Sicherheit von Kernkraftwerken ist<br />

die Sicherheit der gesamten Anlage.<br />

Die Sicherheit aller eingesetzten<br />

Komponenten und der Gesamtkonstruktion<br />

ist von entscheidender<br />

Bedeutung.<br />

Sicherheitskriterien müssen gegenüber<br />

Wirtschaftlichkeitsfragen absoluten<br />

Vorrang haben.<br />

Wichtig ist, dass denkbare Störungen<br />

nur langsam ablaufen, dadurch<br />

ist genügend Zeit, die richtigen<br />

Maßnahmen zur Minderung eines<br />

Schadens einzuleiten.<br />

Mit den beschriebenen Konstruktionsprinzipien<br />

ist das von Schulten<br />

angestrebte „Zero-Emissionskonzept<br />

auch bei Betriebsstörungen“ für KKW<br />

erfüllt.<br />

Ein derartig hoher Sicherheitsstandard<br />

kann von keinem der derzeit<br />

in Betrieb oder Planung befindlichen<br />

KKW erreicht werden.<br />

Alle Konstruktionsprinzipien sind<br />

erprobt.<br />

Es gilt:<br />

„Der sicherste Reaktor ist auch der<br />

wirtschaftlichste Reaktor“.<br />

Literatur:<br />

1. Kurt Kugeler: „Gibt es den katastrophenfreien Kernreaktor?“<br />

Physikalische Blätter 57 (2001) Nr.11.<br />

2. Festschrift: „50 Jahre AVR“ 2009;<br />

3. Urban Cleve: „Die inhärente Sicherheit der HTR-Kernkraftwerke<br />

mit Kugeln als Brennelemente“. 2012.<br />

4. Kurt Kugeler: „Aspekte der VHTR-Entwicklung“.<br />

Besprechungsvorlage KIT-KARLSRUHE Dez: 2011.<br />

5. RSK Arbeitsgruppe RS I 3: “Erste Überlegungen zu<br />

Konsequenzen aus Fukushima“. RS I 3 13042/9.<br />

6. David L. Moses: „ <strong>Nuclear</strong> Safeguards Considerations <strong>for</strong><br />

Pebble Bed Reactors (PBRs)“. Paper Nr. 185 HTR-Conference<br />

Prague 2010.<br />

7. W.Rehm und W. Jahm: “Thermodynamisches Sicherheitsverhalten<br />

des HTR bei Coraufheizunfällen“. BWK Bd. 39<br />

(1987) Nr. 10.<br />

8. Horst Bieber: „Hochtemperatur-Reaktor in Hamm Störfallaber<br />

bei wem?“ DIE ZEIT (1986/24).<br />

9. Rainer Moormann: „A safety re-evaluation of the pebble bed<br />

reactor operation and its consequences <strong>for</strong> future HTRconcepts“.<br />

FZ-Jülich, Jül-4275.<br />

10. W. Krämer: “ Die Angst der Woche/ Warum wir uns vor den<br />

falschen Dingen fürchten”. ISBN 978-3-492-05486-7 2011<br />

11. VDI-Gesellschaft Energietechnik: “AVR – 20 Jahre Betrieb”.<br />

VDI Berichte 729, VDI-Verlag, 1989.<br />

12. Urban Cleve: “Verpaßte Entwicklung im Kernkraftwerksbau”.<br />

FAZ 22. 7.2008.<br />

13. Urban Cleve: „Die Technik der Hochtemperaturreaktoren“.<br />

Atw 12/2009.<br />

14. Urban Cleve: „Technik und künftige Einsatzmöglichkeiten<br />

nuklearer Hochtemperaturreaktoren“. Fusion Heft 1 2011.<br />

15. Urban Cleve: „A Technology Ready <strong>for</strong> Today“. 21st Century<br />

Science & Technology; 2010.<br />

16. Urban Cleve, Klaus Knizia, Kurt Kugeler: “The Technology of<br />

High Temperature Reactors”. ICAPP-Congress Nice 2011.<br />

17. Urban Cleve: “Die Technologie des Hochtemperaturreaktors<br />

und nukleare Hochtemperaturtechnik zur Erzeugung flüssiger<br />

Brennstoffe, von Wasserstoff und elektrischer Energie“. Atw<br />

6/2011.<br />

18. Urban Cleve: „The Technology of High Temperature Reactors<br />

and Production of <strong>Nuclear</strong> Heat“. University of Cracow,<br />

NUTECH-2011.<br />

19. Urban Cleve: “<strong>Nuclear</strong> High Temperature <strong>Power</strong> Station with<br />

Pebble Bed Reactor”. KTG Dresden, 24. März 2012.<br />

20. Urban Cleve: “Breeding of 232Uranium using 232Thorium<br />

with a Pebble Bed Reactor”.<br />

Author<br />

Dr.-Ing. Urban Cleve<br />

Ex. CTO/HA-Leiter Technik<br />

of BBC/Krupp Reaktorbau GmbH,<br />

Mannheim<br />

Hohenfriedbergerstr. 4<br />

44141 Dortmund, Germany<br />

ENVIRONMENT AND SAFETY 97<br />

Environment and Safety<br />

Design Principles <strong>for</strong> <strong>Nuclear</strong> and Operational Safety of HTR NPPs – a Review ı Urban Cleve


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 98<br />

Probabilistic Analysis of Loss of Offsite<br />

<strong>Power</strong> (LOOP) Accident in Bushehr<br />

VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant<br />

Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi<br />

The aim of this study is to present the level-1 of Probabilistic Safety Assessment (PSA) analysis of the Loss of Offsite<br />

<strong>Power</strong> (LOOP) in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant (NPP) using the Hands-On Integrated Reliability<br />

Evaluations (SAPHIRE) software. PSA is a very suitable method <strong>for</strong> determining scenarios of accidents and estimating<br />

the risk of a power plant. LOOP is one of the beyond design basis accidents that can lead to melting of the reactor core<br />

and dangerous environmental consequences. There<strong>for</strong>e, the study of this accident and its consequences is very<br />

important in nuclear power plant. For this purpose, the event tree and fault tree analysis of LOOP event is considered by<br />

SAPHIRE code and compared with the Bushehr NPP Final Safety Analysis Reports (FSAR). The total frequency of LOOP<br />

event that would lead to core damage is 3.40e-6 per year.<br />

Introduction<br />

<strong>Nuclear</strong> power plants have a lot of<br />

equipment, similar to other industrial<br />

plants, whose per<strong>for</strong>mance depends<br />

on electric power. Various equipment<br />

<strong>for</strong> monitoring and controlling the<br />

operation of units, equipment in<br />

safety systems, ventilation systems,<br />

pumps, lighting and other equipment<br />

are examples of this.<br />

Supply of offsite power plays major<br />

role <strong>for</strong> safety of <strong>Nuclear</strong> <strong>Power</strong> Plants<br />

(NPPs). Loss of Offsite <strong>Power</strong> (LOOP)<br />

event is an important contributor to<br />

the total residual risk at NPPs. The<br />

availability of Alternating Current<br />

(AC) electrical power to NPPs is thus<br />

essential <strong>for</strong> safe operations and<br />

accident recovery [3]. When the plant<br />

loses offsite power (connections to the<br />

external grid), the LOOP event occurs.<br />

In this case, on-site power can be<br />

provide by emergency diesel generators.<br />

The LOOP is a transient accident.<br />

After this accident, the reactor's scram<br />

is required and core melting occurs<br />

when the emergency electrical supply<br />

system fails to supply the power of the<br />

safety systems.<br />

PSA is a very suitable method <strong>for</strong><br />

determining scenarios of accidents<br />

and estimating the risk of a power<br />

plant. LOOP plays an important role<br />

in melting the reactor core and<br />

its complications, the probabilistic<br />

analysis of this event is very necessary.<br />

Few studies have investigated the<br />

Probabilistic analysis on LOOP in<br />

different NPPs. Cepin considered<br />

Assessment of Loss of Offsite <strong>Power</strong><br />

Initiating Event Frequency [1]. The<br />

loss of offsite power frequency is<br />

considered and the results compared<br />

to the generic results. Jiao and et al<br />

investigated Analysis of Loss of Offsite<br />

<strong>Power</strong> Events at China’s <strong>Nuclear</strong><br />

<strong>Power</strong> Plants [5]. The analysis in this<br />

paper would provide the increasing in<br />

reliability of the offsite power system.<br />

Statistical Analysis of Loss of Offsite<br />

<strong>Power</strong> Events is per<strong>for</strong>med by<br />

Volkanovski and et al [8]. In this<br />

study, the LOOP frequencies obtained<br />

<strong>for</strong> the French and German nuclear<br />

power plants during critical operation.<br />

The reliability of offsite power of<br />

nuclear power plants in evolving<br />

power systems investigated by<br />

Henneaux and et al [4]. In this<br />

investigation the Factors affecting on<br />

LOOP frequency were identified.<br />

Faghihi and et al considered the<br />

Level-1 probability safety assessment<br />

of the Iranian heavy water reactor<br />

using SAPHIRE software [2]. In part<br />

of this study, LOOP event and its role<br />

in core damage is investigated. An<br />

Approach to Estimate SBO Risks in<br />

Multi-unit <strong>Nuclear</strong> <strong>Power</strong> Plants with<br />

a Shared Alternate AC <strong>Power</strong> Source is<br />

per<strong>for</strong>med by Jung and et al [6].<br />

They developed a suitable method to<br />

evaluate accurately the amounts of<br />

risks, core damage frequencies and<br />

site risks, resulting from a station<br />

blackout event.<br />

This paper presents results of the<br />

level-1 of PSA analysis <strong>for</strong> a LOOP<br />

scenario in a Bushehr-1 VVER-1000<br />

<strong>Nuclear</strong> <strong>Power</strong> Plant (BNPP). The<br />

initiating event (IE) with complete<br />

loss of AC power, belongs to the typical<br />

beyond design basis accidents (BDBA)<br />

<strong>for</strong> which the time of plant survivability<br />

without severe fuel damage<br />

depends solely on built-in safety<br />

features.<br />

For PSA analysis of LOOP, it should<br />

be noted that the initiating event and<br />

relative event tree must be determined,<br />

and subsequently, the failure<br />

analysis of the safety systems is done<br />

by fault tree analysis. The event tree<br />

and fault tree analysis of LOOP event<br />

is considered by SAPHIRE code [7].<br />

The fault trees determine the top<br />

events occurrence probability by<br />

determining the minimal cut sets of<br />

basic events <strong>for</strong> top events. The<br />

probability of fault tree is applied to<br />

calculate the probability of sequences<br />

of event tree. These sequences could<br />

be determined the frequencies of core<br />

damage states (CDS) and core<br />

successful states (CSS). LOOP event<br />

data are extracted from the Bushehr<br />

NPP Final Safety Analysis Reports<br />

(FSAR) [3]. The SAPHIRE code results<br />

compared with FSAR results.<br />

The estimation of total core<br />

damage frequency (CDF) value was<br />

per<strong>for</strong>med with using mean values of<br />

IE frequency, mean values of the<br />

reliability indices <strong>for</strong> elements, mean<br />

values of the common cause failures<br />

(CCF) model parameters and mean<br />

value of operator error probabilities.<br />

Methods and Materials<br />

Bushehr-1 VVER-1000 is a pressurized<br />

water reactor (PWR) with a gross<br />

electric output of 1000 MW. The unit<br />

has four circulation loops, each<br />

including a main circulation pump<br />

and a horizontal steam generator. The<br />

pressurizer is connected to one of the<br />

main circulation loops. Some BNPP-1<br />

Safety Systems are included:<br />

1. Reactor Protection System, (RPS)<br />

2. Turbine Stop Valves, (TSV)<br />

3. BRU-K and BRU-A ⇔ (FASD-A and<br />

FASD-C)<br />

4. Emergency Feed Water System,<br />

(RS)<br />

5. Main Steam Isolation Valves<br />

(MSIV) ⇔ BZOK<br />

6. ECCS HP and LP, (TH)<br />

7. Accumulators, (YT)<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

8. Pressurizer Safety Valves (PSV),<br />

(YP)<br />

Also some BNPP-1 Safety Support<br />

Systems are included:<br />

1. <strong>Nuclear</strong> Component Cooling<br />

System, (TF)<br />

2. Secured Closed Cooling Water<br />

System, (VJ)<br />

3. Service Water System, (VE)<br />

4. Emergency Diesel Generators,<br />

(GY)<br />

5. Heating, Ventilation and Air Conditioning;<br />

The LOOP event represents<br />

approximately more than 26 % of the<br />

Core Damage (CD) in Bushehr-1<br />

VVER-1000 reactor. In order to<br />

increase the reliability of the auxiliary<br />

power supply system and the<br />

emergency supply system, transmission<br />

lines with different voltages<br />

of grid are commonly used. Two grids<br />

of 400 kilovolt (kV) (main grid) and<br />

230 kV (auxiliary grid) and also 10 kV<br />

buses of the normal power supply<br />

system are used in Bushehr <strong>Power</strong><br />

Plant.<br />

Loss of offsite power is an event<br />

linked with the loss of the power<br />

supply of 10 kV buses from the on-site<br />

normal operation sources and out-site<br />

sources (400 and 230 kV of grid)<br />

being external relative to the NPP. A<br />

dependent failure of the system of the<br />

normal heat removal through the<br />

turbine condensers is a result of LOOP.<br />

After the voltage in 10 kV (BA, BB,<br />

BC, BD) buses has been lost, the safety<br />

system buses (BU, BV, BW, BX) are<br />

disconnected from them, the system<br />

diesel generator (DG) are switched<br />

on, stepped start-up automatic equipment<br />

comes to actuate and safety<br />

system services are connected.<br />

LOOP results in [3]:<br />

p Reactor coolant pump (RCP) shutdown<br />

and reduction of the coolant<br />

flow rate through the reactor;<br />

p Actuation of the reactor pro tection<br />

system and closing of the turbine<br />

stop valves;<br />

p Opening of BRU-A (Fast-acting<br />

steam dump valves with discharge<br />

to atmosphere (FASD-A)).<br />

After the above-mentioned functions<br />

have been per<strong>for</strong>med, the operator<br />

realizes the reactor plant cool down<br />

through the secondary circuit using<br />

BRU-A and brings the reactor plant<br />

into the cold shutdown state. When<br />

the LOOP event occurs, the reactor<br />

must be scrammed, main and emergency<br />

feed water supply have<br />

to provide <strong>for</strong> steam generators (SG)<br />

and discharge the steam to the<br />

atmosphere, The cooling circuit<br />

pressure must be adjusted through the<br />

opening and closing of the discharge<br />

and safety valves.<br />

For achieve cold shutdown, the<br />

following safety functions must be<br />

per<strong>for</strong>med [3]:<br />

p Actuation of emergency pro tection<br />

(EP) and reactor power reduction<br />

down to the residual heat release<br />

level (function A);<br />

p Provision of main steam collector<br />

(MSC) tightness (function T);<br />

p Restriction of the pressure increase<br />

in the secondary circuit (function<br />

O’);<br />

p Provision of the SG steam line<br />

tightness after the actuation of the<br />

steam generator steam releasing<br />

valves (SRD) (function C4);<br />

p Bringing of reactor plant into the<br />

cold shutdown state (function CS).<br />

There are safety systems <strong>for</strong> safety<br />

functions that are required <strong>for</strong><br />

achieving safe mode. The safety<br />

functions and safety systems and<br />

their characteristics are presented in<br />

Table 1.<br />

ENVIRONMENT AND SAFETY 99<br />

Safety Functions Safety Systems Success Criteria<br />

Description Code Code Description<br />

Bringing reactor to subcritical state<br />

and keeping it in this condition in the<br />

entire range of operating parameters<br />

A RPS Emergency protection system Insertion into the core of required number of CPS CRs<br />

(control and protection system control rods)<br />

Ensuring MSC leak-tightness T TSV<br />

TCV<br />

MSV<br />

Secondary circuit pressure increase<br />

limitation (SGs are not isolated<br />

from MSC)<br />

Bringing reactor plant to cold shutdown<br />

condition (SG are not isolated<br />

from MSC)<br />

Heat removal from core via secondary<br />

circuit within 24 hours over opened<br />

circuit (SGs are not isolated from MSC)<br />

Ensuring steam lines tightness in<br />

section that non isolated from SG after<br />

actuating of the SRD<br />

O’ SRD<br />

Open<br />

Turbine stop valves (TSVs)<br />

Turbine control valves (TCV)<br />

Main steam valves (MSVs)<br />

Fast-acting valves <strong>for</strong> steam dump<br />

to atmosphere (FASD-A)<br />

SG safety valves (SGSVs)<br />

CS CDSS Fast-acting valves <strong>for</strong> steam dump<br />

to atmosphere (FASD-A)<br />

Emergency feed water system<br />

(EFWP)<br />

Pressurizer safety valves (SVP)<br />

Additional boron injection system<br />

(TW)<br />

Low pressure emergency core<br />

cooling system (TH10...40)<br />

Planned cooldown line (PCL)<br />

HO’’ HRSO Fast-acting valves <strong>for</strong> steam dump<br />

to atmosphere (FASD-A)<br />

Steam generators safety valves<br />

(SGSV)<br />

Auxiliary feed water pumps (AFWP)<br />

Emergency feed pumps (EFWP)<br />

Makeup system <strong>for</strong> deaerators and<br />

tanks of EFWP (UD)<br />

C4<br />

C3<br />

C2<br />

C1<br />

SRD<br />

MSC relief valves to atmosphere<br />

<strong>for</strong> steam discharge into the<br />

atmosphere (FASD-A)<br />

Cut-off gate valves upstream FASD-A<br />

Safety valves of SG (SG SV)<br />

Closure of TSV or TCV or MSV in each<br />

of four live steam lines<br />

Opening of FASD-A or one SGSV in one SG<br />

Operation of one FASD-A in cooldown mode and<br />

water supply to one SG from one EFWP, when the<br />

connection lines between RS tanks are opened<br />

AND<br />

reducing of primary circuit pressure to 2 MPa<br />

by opening of one SVP or conducts injection<br />

into pressurizer from one channel of TW system<br />

AND<br />

activation of one channel TH10...40<br />

<strong>for</strong> operation along planned cooldown line<br />

Operation of one FASD-A<br />

in the mode P 2 =const or one SG SV<br />

AND<br />

water supply to one SG from or AFWP and deaerator<br />

makeup from the makeup system (UD) or<br />

water supply to one SG from one EFWP and<br />

makeup of tank in the operating train of EFWP<br />

from the makeup system (UD), or<br />

water supply to two SGs from one out of two EFWPs in<br />

each subsystem of emergency feed water system, when<br />

the connection lines between RS tanks are opened<br />

Closing of FASD-A or cut-off gate valve,<br />

closing SG SV (in case of FASD-A has failed to open)<br />

in 4 (C4), 3 (C3), 2 (C2), 1 (C1) SGs<br />

| Tab. 1.<br />

Characteristics of safety functions and relative safety systems [3].<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

ENVIRONMENT AND SAFETY 100<br />

| Fig. 1.<br />

Event tree <strong>for</strong> LOOP event.<br />

Event tree could be constructed<br />

according the safety functions and<br />

safety systems, Figure 1. There are ten<br />

states <strong>for</strong> accident sequences.<br />

p Sequences 1 occurs under the<br />

actuation of the reactor emergency<br />

protection, provision of MSC<br />

tightness, restriction of pressure<br />

increase in the secondary circuit,<br />

provision of SG steam line tightness<br />

after the actuation of FASD-A<br />

or SGSV and after the reactor plant<br />

is brought into the cold shutdown<br />

state (realization of functions A,<br />

T, O’, C4, CS). The final state of<br />

reactor plant is cold state.<br />

p Sequences 2 occurs when the<br />

reactor plant fails to be brought<br />

into the cold shutdown state<br />

( failure to per<strong>for</strong>m CS function). In<br />

this case heat removal from the<br />

core through the secondary circuit<br />

is per<strong>for</strong>med through FASD-A or<br />

SGSV during 24 hours with the<br />

water being supplied to SG from<br />

FWP or AFWP or EFWP (realization<br />

of HO” function). The final<br />

reactor plant state is hot state.<br />

p Sequences 7 occurs in case of<br />

non-closing (after opening) of<br />

steam dump devices at all<br />

4 SGs, which leads to core damage<br />

due to full loss of heat removal via<br />

secondary circuit.<br />

p Sequences 8 occurs in case of<br />

opening failure of all steam dump<br />

devices FASD-A and SG SV, which<br />

leads to full loss of heat removal via<br />

secondary circuit.<br />

p Sequences 10 occurs in case of<br />

failure of reactor emergency protection<br />

system, which is conservatively<br />

considered as core<br />

damage.<br />

p Sequences 3 occurs in case of nonper<strong>for</strong>mance<br />

(by the operator) of<br />

function of putting reactor plant<br />

into cold state and failure of systems<br />

<strong>for</strong> heat removal via secondary<br />

circuit through open cycle.<br />

p Sequences 4, 5, 6 occur in case of<br />

closing failure of steam dump<br />

Top events<br />

A_<br />

T_<br />

Cs_<br />

Ho”_<br />

O’_<br />

C4_<br />

| Tab. 2.<br />

Fault tree analysis <strong>for</strong> top events occurrence probability.<br />

(discharge) devices (SDD) at 1, 2,<br />

or 3 SGs and a failure of water<br />

supply to SGs from AFWP and<br />

EFWP. Without working of heat<br />

removal system, these sequences<br />

lead to core damage state.<br />

p Sequences 9 occurs at non-closing<br />

of TSV, TCV and MSV, which leads<br />

to steam lines leak in part isolated<br />

from SG.<br />

It should be noted that according to<br />

the cut-off criteria (1,0E-8 1/year)<br />

mentioned in FSAR, the development<br />

of sequences 5, 6 and 9 have been<br />

withdrawn. Also <strong>for</strong> sequences 3 and<br />

4, it is assumed that the heat removal<br />

is per<strong>for</strong>med only through the secondary<br />

circuit and the heat removal<br />

through the primary circuit by bleed &<br />

feed system is not considered.<br />

Failure probability<br />

2.6E-07<br />

2.88E-08<br />

5.32E-03<br />

1.71E-03<br />

1.38E-08<br />

1.98E-06<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Basic Event Code Description SAPHIRE Analysis FSAR Analysis<br />

Probability RRR RIR<br />

CCF-VE-2-ALL CCF VE11-41D001PMR 8.7E-01 1.23E+00 2.09E+03 1.29E-01<br />

CCF-VJ-2-ALL CCF VJ11-41D001PMR 8.7E-01 1.23E+00 2.09E+03 1.29E-01<br />

CCF-UF-8-ALL CCF UF40-70D002PMR 8.90E-02 1.20E+00 2.89E+03 3.90E-02<br />

CCF-TL08-1-ALL CCF TL08D015 016,019,020 FAST 1.25E-02 1.10E+00 4.90E+02 3.43E-02<br />

CCF-PS-02-ALL CCF of switches 11-14BU,V,W,X02A 1.7E-02 1.06E+00 3.6E+02 3.37E-02<br />

HUM-BRU Actuation by operator of BRU coolibg down mode 1.02E-02 1.3E+00 8.58E+00 3.3E-02<br />

12BV-BASIC Switchgear failure 4.36E-02 1.18E+00 6.96E+00 2.87E-02<br />

11BU-BASIC Switchgear failure 4.36E-02 1.42E+00 6.78E+00 2.81E-02<br />

DEP-UD HUM-UD-RS* HUM-UD-DEAR 1.02E-02 1.07E+00 2.15E+01 2.34E-02<br />

CCF-UF-3-ALL CCF UF40-70D002PMS 1.25E-02 1.04E+00 2.66E+02 1.80E-02<br />

CCF-LP-02-ALL CCF TH10-40D001PMR 1.83E-02 1.03E+00 5.10E+02 1.80E-02<br />

CCF-DGS-ALL CCF GY10,11-40,41 DGS 3.32E-02 1.21E+00 2.65E+02 1.50E-02<br />

CCF-UF-2-ALL CCF UF40-70D001COS 1.00E-02 1.11E+00 2.65E+02 1.44E-02<br />

RA40S004VMC BZOK fails to close 3.97E-02 1.18E+00 5.41E+00 1.42E-02<br />

MAINT-TF2 Unavailability due to maintenance TF20 1.85E-02 1.14E+00 2.60E+00 1.38E-02<br />

MAINT-TL08-20 Unavailability due to maintenance TL08-20 1.85E-02 1.17E+00 3.02E+00 1.38E-02<br />

ENVIRONMENT AND SAFETY 101<br />

MAINT-TL08D016 Unavailability due to maintenance TL08D016 1.85E-02 1.17E+00 3.01E+00 1.38E-02<br />

MAINT-VJ2 Unavailability due to maintenance VJ21 1.85E-02 1.30E+00 2.36E+00 1.31E-02<br />

MAINT-VE2 Unavailability due to maintenance 1.85E-02 1.30E+00 2.36E+00 1.31E-02<br />

MAINT-UF50 Unavailability due to maintenance 1.85E-02 1.30E+00 3.27E+00 1.31E-02<br />

CCF-UF-7-ALL CCF UF40-70D001COR 2.9E-02 1.36E+00 3.10E+03 1.28E-02<br />

MAINT-VE1 Unavailability due to maintenance 1.85E-02 1.30E+00 2.36E+00 1.20E-02<br />

MAINT-VJ1 Unavailability due to maintenance VJ11 1.85E-02 1.30E+00 2.36E+00 1.20E-02<br />

MAINT-UF40 Unavailability due to maintenance 1.85E-02 1.30E+00 3.27E+00 1.20E-02<br />

CCF-UF-1-ALL CCF UF42-72S002VMR 9.72E-02 1.07E+00 2.80E+03 1.15E-02<br />

CCF-UF-4-ALL CCF UF42-72S001VMR 9.72E-02 1.07E+00 2.80E+03 1.15E-02<br />

CCF-UF-5-ALL CCF UF42-72S003VMR 9.72E-02 1.07E+00 2.80E+03 1.15E-02<br />

CCF-EHRS-01-ALL CCF of SG SV to open 1.01E-02 1.03E+00 1.06E+02 1.12E-02<br />

CCF-NHRS-19-ALL CCF of RL62-92S001 VMO 6.52E-02 1.22E+00 4.18E+01 1.08E-02<br />

MAINT-TL08-10 Unavailability due to maintenance TL08-10 1.85E-02 1.17E+00 3.01E+00 1.02E-02<br />

MAINT-TL08D015 Unavailability due to maintenance TL08D015 1.85E-02 1.17E+00 3.01E+00 1.02E-02<br />

MAINT-TF1 Unavailability due to maintenance TF10 1.85E-02 1.14E+00 2.59E+00 1.02E-02<br />

CCF-EHRS-03-ALL CCF RA10-40 S003 to open 7.48E-03 1.05E+00 3.21E+01 9.90E-03<br />

RA40S006VMC MOV fails to close 6.02E-03 1.08E+00 2.01E+01 9.70E-03<br />

TH10D001PMR Pump fails to run 1.8E-03 1.20E+00 4.41E+00 9.69E-03<br />

CCF-PS-01-ALL CCF 11-14EA 15-45 2.56E-03 1.71E+00 3.19E+02 8.05E-03<br />

CCF-TL08-4-ALL CCF TL08D015 016,019,020 FAR 9.2E-03 1.11E+00 6.01E+02 7.72E-03<br />

CCF-VE-3-ALL CCF VB96-99N001 6.48E-03 1.11E+00 3.15E+03 7.58E-03<br />

CCF-LP-01-ALL CCF TH10-40D001PMS 7.9E-03 1.12E+00 5.01E+02 6.87E-03<br />

CCF-VJ-1-ALL CCF VJ11-41D001PMS 1.25E-03 1.01E+00 1.91E+02 6.75E-03<br />

TL08D016FAST Failure to start (1/d) 1.25E-03 1.13E+00 5.64E+00 6.75E-03<br />

TL08D015FAST Failure to start (1/d) 1.25E-03 1.09E+00 5.64E+00 6.28E-03<br />

14BX-BASIC Switchgear failure 4.36E-03 1.02E+00 1.50E+00 5.97E-03<br />

CCF-VE-1-ALL CCF VE11-41D001PMS 1.25E-03 1.11E+00 1.45E+02 5.44E-03<br />

RA40S003VRO FSDV-A fails to open 7.48E-03 1.44E+00 2.21E+00 5.24E-03<br />

TL08D016FAR Failure to run 9.2E-03 1.11E+00 7.48E+00 5.09E-03<br />

UF50D002PMR Pump fails to run 8.78E-03 1.21E+00 7.61E+00 4.92E-03<br />

UF40D002PMR Pump fails to run 8.78E-03 1.11E+00 7.50E+00 4.81E-03<br />

TL08D015FAR Failure to run 9.2E-03 1.41E+00 5.81E+00 4.71E-03<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Basic Event Code Description SAPHIRE Analysis FSAR Analysis<br />

ENVIRONMENT AND SAFETY 102<br />

| Tab. 3.<br />

Importance analysis <strong>for</strong> basic events.<br />

Probability RRR RIR<br />

VJ21D001PMR Pump fails to run 8.78E-03 1.17E+00 6.11E+00 4.68E-03<br />

VE21D001PMR Pump fails to run 8.78E-03 1.17E+00 6.11E+00 4.68E-03<br />

VJ11D001PMR Pump fails to run 8.78E-03 1.11E+00 7.01E+00 4.58E-03<br />

VE11D001PMR Pump fails to run 8.78E-03 1.11E+00 7.01E+00 4.58E-03<br />

CCF group code Description SAPHIRE Analysis<br />

RIR<br />

Probability RRR RIR<br />

FSAR Analysis<br />

CCF-VE-2 CCF group VE11-41D001PMR 5.26E-01 1.10E+00 1.41E+04 1.47E-01<br />

CCF-VJ-2 CCF group VJ11-41D001PMR 5.26E-01 1.10E+00 1.41E+04 1.47E-01<br />

CCF-UF-8 CCF group UF40-70D002PMR 1.59E-02 1.01E+00 1.45E+04 5.90E-02<br />

CCF-TL08-1 CCF group TL08D015 016,019,020 FAST 6.32E-02 1.01E+00 2.99E+03 5.35E-02<br />

CCF-PS-02 CCF group of switches 11-14BU,V,W,X02A 1.52E-02 1.18E+00 8.28E+02 3.70E-02<br />

CCF-UF-3 CCF group UF40-70D002PMS 8.16E-02 1.51E+00 7.11E+02 2.14E-02<br />

CCF-LP-02 CCF group TH10-40D001PMR 3.31E-02 1.01E+00 3.87E+03 4.97E-02<br />

CCF-TL08-4 CCF group TL08D015 016,019,020 FAR 1.45E-02 1.15E+00 2.10E+3 2.24E-02<br />

CCF-EHRS-03 CCF group RA10-40 S003 (open) 4.27E-02 1.14E+00 1.21E+02 2.11E-02<br />

CCF-UF-7 CCF group UF40-70D001COR 5.26E-02 1.71E+00 4.16E+03 1.87E-02<br />

CCF-DGS CCF group GY10,11-40,41 DGS 3.1E-02 1.25E+00 1.59E+03 1.86E-02<br />

CCF-UF-2 CCF group UF40-70D001COS 6.53E-02 1.22E+00 2.47E+03 1.70E-02<br />

CCF-PS-01 CCF group 11-14EA 15-45 3.37E-02 1.61E+00 3.11E+03 1.57E-02<br />

CCF-EHRS-05 CCF group RA10-40 S004 (BZOK closure) 4.17E-02 1.33E+00 2.99E+01 1.55E-02<br />

CCF-EHRS-01 CCF group of SG SV (opening) 5.77E-02 1.61E+00 6.15E+02 1.18E-02<br />

CCF-VJ-1 CCF group VJ11-41D001PMS 3.06E-02 1.21E+00 3.41E+03 1.18E-02<br />

CCF-NHRS-19 CCF group RL62-92S001 VMO 3.73E-02 1.09E+00 3.54E+01 1.08E-02<br />

CCF-EHRS-18 CCF group RA10-40S006 (valve closure) 1.38E-02 1.91E+00 2.40E+02 1.07E-02<br />

CCF-VE-1 CCF group VE11-41D001PMS 1.38E-02 1.19E+00 2.19E+03 1.01E-02<br />

CCF-LP-01 CCF group TH10-40D001PMS 5.15E-03 1.22E+00 3.10E+03 9.72E-03<br />

CCF-VE-3 CCF group VB96-99N001 1.58E-03 1.71E+00 4.01E+03 5.37E-03<br />

CCF-LP-08 CCF group TH10-40S007VMO 7.77E-03 1.31E+00 2.11E+03 6.50E-03<br />

CCF-LP-09 CCF group TH10-40S013VMO 3.42E-03 1.55E+00 1.02E+03 6.50E-03<br />

CCF-TF-11 CCF group TF10-40D001PMR 1.59E-03 1.06E+00 8.64E+01 5.39E-03<br />

CCF-TF-09 CCF group TF60S001-004VMC 1.38E-03 1.17E+00 2.02E+03 5.06E-03<br />

CCF-EHRS-02 CCF group RA10-40S001,S002 (closure) 2.63E-3 1.12E+00 1.41E+02 4.62E-3<br />

CCF-PS-05 CCF group of switches 11-14BU,V,W,X03A 1.52E-03 1.10E+00 2.98E+01 4.39E-03<br />

CCF-TF-01 CCF group TF10-40D001PMS 1.44E-03 1.08E+00 7.98E+01 3.82E-03<br />

CCF-NHRS-08 CCF group RR12-22D001 PMR 2.45E-03 1.44E+00 3.40E+01 3.24E-03<br />

CCF-UV31-1 CCF group UV31-34D009FAS 2.04E-03 1.72E+00 1.97E+01 1.66E-03<br />

CCF-EHRS-07 CCF group RS12-42D001PMR 3.32E-03 1.18E+00 2.11E+01 1.64E-03<br />

CCF-EHRS-09 CCF group RS17-47D001PMR 3.35E-03 1.48E+00 4.12E+01 1.64E-03<br />

CCF-EHRS-15 CCF group RS12-42S005VCO 4.63E-03 1.01E+00 3.15E+01 1.46E-03<br />

CCF-LP-21 CCF group TH90S005,006VMO 5.09E-03 1.32E+00 2.14E+00 1.45E-03<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

CCF group code Description SAPHIRE Analysis<br />

RIR<br />

Probability RRR RIR<br />

FSAR Analysis<br />

CCF-LP-20 CCF group TH90S001,002VMO 5.09E-03 1.34E+00 2.19E+00 1.45E-03<br />

CCF-TL08-2 CCF group TL08D014 023,021,026 FAS 2.04E-03 1.29E+00 2.94E+01 1.36E-03<br />

CCF-NHRS-12 CCF group RR12-22S004VMO 3.92E-03 1.08E+00 1.95E+01 1.34E-03<br />

CCF-NHRS-07 CCF group RR12-22D001 PMS 1.44E-04 1.00E+00 1.29E+01 9.14E-04<br />

CCF-LP-16 CCF group TH11,12-41,42S02VCO 4.63E-04 1.12E+00 2.14E+01 8.58E-04<br />

CCF-LP-17 CCF group TH11,12-41,42S03VCO 4.63E-04 1.12E+00 2.14E+01 8.58E-04<br />

CCF-YP-2 CCF group YP21-23S007VSO(VMO) 2.14E-04 1.01E+00 1.88E+01 7.87E-04<br />

CCF-NHRS-09 CCF group RR12-22S001 VCO 5.79E-04 1.44E+00 2.84E+01 7.83E-04<br />

CCF-TF-05 CCF group TF10-40S011VMO 3.13E-04 1.00E+00 3.14E+01 7.74E-04<br />

CCF-YP-1 CCF group YP21-23S006VSO(VMO) 1.92E-04 1.02E+00 1.26E+01 7.12E-04<br />

CCF-UV31-2 CCF group UV31-34D009FAR 1.45E-04 1.81E+00 3.21E+01 6.89E-04<br />

CCF-TJ-2 CCF group TH10-40S005VCO 3.89E-04 1.48E+00 2.07E+03 6.82E-04<br />

CCF-NHRS-11 CCF group RR12-22S003VMO 3.92E-04 1.85E+00 2.75E+01 5.24E-04<br />

ENVIRONMENT AND SAFETY 103<br />

CCF-EHRS-06 CCF group RS12-42D001PMS 8.57E-04 1.11E+00 3.21E+01 4.52E-04<br />

CCF-EHRS-08 CCF group RS17-47D001PMS 8.57E-04 1.11E+00 3.21E+01 4.52E-04<br />

CCF-TL08-3 CCF group TL08D017 024,018,025 FAST 6.32E-04 1.05E+00 2.31E+01 3.95E-04<br />

CCF-TL08-5 CCF group TL08D014 023,021,026 FAR 1.45E-04 1.69E+00 2.82E+01 3.74E-04<br />

CCF-NHRS-14 CCF group RR13-23S001VMC 2.42E-04 1.16E+00 2.38E+01 3.40E-04<br />

CCF-EHRS-19 CCF group RA10-40S003(throttle) 1.87E-04 1.21E+00 3.54E+01 3.18E-04<br />

CCF-NHRS-13 CCF group RR13-23S001VMO 3.92E-04 1.00E+00 1.15E+01 2.48E-04<br />

CCF-NHRS-10 CCF group RR12-22S002VMO 3.92E-04 1.00E+00 1.15E+01 2.48E-04<br />

CCF-UF-6 CCF group UF43-73S010VMO 3.13E-04 1.21E+00 3.09E+01 1.56E-04<br />

CCF-EHRS-14 CCF group RS12-42S002VMO 3.13E-04 1.04E+00 3.47E+01 1.56E-04<br />

CCF-LP-15 CCF group TH11,12-41,42S01VMO 3.42E-04 1.17E+00 8.21E+00 1.38E-04<br />

CCF-EHRS-13 CCF group RS12-42S003VMO 2.65E-04 1.41E+00 2.79E+01 1.33E-04<br />

CCF-MSV CCF group MSV 8.25E-04 1.14E+00 2.13E+00 1.22E-04<br />

CCF-TL08-6 CCF group TL08D017 024,018,025 FAR 1.45E-04 1.00E+00 1.30E+01 1.14E-04<br />

CCF-LP-32 CCF group TH10-40S010VMO 3.42E-05 1.00E+00 4.11E+00 8.57E-05<br />

CCF-YP-5 CCF group YP21-23S001VFO 3.03E-05 1.00E+00 6.21E+01 8.14E-05<br />

CCF-PS-07 CCF group of switches 11-14BU,V,W,X04A 1.52E-5 1.02E+00 1.59E+00 7.31E-5<br />

CCF-TF-06 CCF group TF10-40S012VCO 3.89E-05 1.58E+00 7.54E+00 6.72E-05<br />

CCF-TSV-2 CCF group of TSV,TCV 6.41E-05 1.11E+00 7.98E+00 4.69E-05<br />

CCF-TSV-4 CCF group of TSV,TCV 6.41E-05 1.11E+00 7.98E+00 4.69E-05<br />

CCF-TSV-1 CCF group of TSV,TCV 6.41E-05 1.11E+00 7.98E+00 4.69E-05<br />

CCF-TSV-3 CCF group of TSV,TCV 6.41E-05 1.11E+00 7.98E+00 4.69E-05<br />

CCF-UV21-07 CCF group UV22,23D002,UV21,24D010FAS 2.04E-05 1.09E+00 1.41E+00 3.07E-05<br />

CCF-TF-12 CCF group TF21,31D001PMR 8.1E-05 1.22E+00 1.97E+00 2.05E-05<br />

CCF-EHRS-11 CCF group RS12-42S001VCO 3.88E-05 1.84E+00 2.01E+01 1.66E-05<br />

CCF-UV21-11 CCF group UV21-24D002FAR 1.39E-05 1.00E+00 1.03E+00 1.39E-05<br />

CCF-LP-33 CCF group TH10-40S037VCO 3.89E-06 1.07E+00 2.05E+00 7.63E-06<br />

CCF-UV21-08 CCF group UV21-24D001FAR 1.45E-07 1.34E+00 1.77E+00 8.44E-07<br />

| Tab. 4.<br />

Importance analysis <strong>for</strong> CCFs.<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Safety function 10 kv<br />

failure probability<br />

Reference<br />

ENVIRONMENT AND SAFETY 104<br />

11BU<br />

12BV<br />

13BW<br />

14BX<br />

| Tab. 5.<br />

Failure probability of 10 kv Safety functions.<br />

Core Damage States<br />

CD3<br />

CD4<br />

CD5<br />

CD6<br />

CD7<br />

CD8<br />

CD9<br />

CD10<br />

Total CD<br />

2.78E-02<br />

2.79E-02<br />

2.76E-02<br />

2.7E-02<br />

Frequency per year<br />

2.71E-06<br />

5.90E-07<br />

3.18E-09<br />

2.85E-10<br />

1.94E-09<br />

3.87E-09<br />

8.58E-09<br />

7.74E-08<br />

3.40E-06<br />

[1] Cepin, M. (2014). Assessment of loss of offsite power<br />

initiating event frequency, Proceedings of the 23 rd<br />

international conference nuclear energy <strong>for</strong> new Europe,<br />

Portorož, Slovenia.<br />

[2] Faghihi, F., Ramezani, E., Yousefpour, F., Mirvakili, S.M.<br />

(2008). The Level-1 probability safety assessment of the<br />

Iranian heavy water reactor using SAPHIRE software.<br />

Reliability Engineering and System Safety, 93, 1377–1409.<br />

[3] FSAR of BNPP-1. (2003). Final Safety Analysis Report of<br />

Bushehr <strong>Nuclear</strong> <strong>Power</strong> Plant, Ministry of Russian Federation<br />

of Atomic Energy (Atomenergoproekt), Moscow.<br />

[4] Henneaux, P., Labeau, P. E., Obama, J. M. (2016). Reliability<br />

of offsite power of nuclear power plants in evolving power<br />

systems, Conference: Congrès Lambda Mu 20 de Maîtrise<br />

des Risques et de Sûreté de Fonctionnement, Saint Malo,<br />

France, DOI: 10.4267/2042/61785.<br />

[5] Jiao, F., Ding, S., Li, J., Zheng, Z., Zhang, Q., Xiao, Z., Zhou, J.<br />

(2018). Analysis of Loss of Offsite <strong>Power</strong> Events at China’s<br />

<strong>Nuclear</strong> <strong>Power</strong> Plants, Sustainability, 10, 2680.<br />

[6] Jung, W.S., Yang, J.E., Ha, J. (2004). An Approach to Estimate<br />

SBO Risks in Multi-unit <strong>Nuclear</strong> <strong>Power</strong> Plants with a Shared<br />

Alternate AC <strong>Power</strong> Source. In: Spitzer C., Schmocker U., Dang<br />

V.N. (EDS) Probabilistic Safety Assessment and Management,<br />

Springer, London.<br />

[7] Kvar<strong>for</strong>dt, K.J., Wood, S.T., Smith, C.L. (2006). Systems<br />

Analysis Programs <strong>for</strong> Hands-On Integrated Reliability<br />

Evaluations (SAPHIRE 7.25) Code Reference Manual: user<br />

guide and input requirements.<br />

[8] Volkanovski, A., Avila, A. B., Veira, M. P. (2016). Statistical<br />

Analysis of Loss of Offsite <strong>Power</strong> Events, Science and<br />

Technology of <strong>Nuclear</strong> Installations, Volume 2016, Article ID<br />

7692659, 9 pages.<br />

| Tab. 6.<br />

Frequency of CDSs.<br />

Results and discussion<br />

Allocated event tree should be<br />

constructed <strong>for</strong> achieving the final<br />

CDF. Event tree could be developed<br />

due to the safety functions and safety<br />

systems, Figure 1. Evaluating the<br />

frequency of occurrence of initiation<br />

event and top events in event tree<br />

calculated by appropriate fault trees.<br />

The failure probability of top events<br />

are evaluated by appropriate fault<br />

trees, Table 2. The failure probability<br />

of each top event must be evaluated by<br />

using a logical combination of basic<br />

events through logic gates. For this<br />

purpose, the fault trees of all safety<br />

systems are considered. The in<strong>for</strong>mation<br />

of basic events <strong>for</strong> fault tree<br />

analysis entered in code. Also common<br />

cause failures (CCFs) evaluated<br />

by using alpha factor model. Importance<br />

analysis <strong>for</strong> some basic events<br />

and several CCFs are presented in<br />

Table 3, 4 respectively (compared<br />

with FSAR results).<br />

Because of the 10 kV buses play an<br />

important role in the LOOP accident<br />

analysis, the failure probability of<br />

their safety systems buses (BU, BV,<br />

BW, BX) are also given in the Table 5.<br />

Final CDSs and their cor responding<br />

frequencies are presented in Table 6.<br />

There are ten end states <strong>for</strong> sequences.<br />

Two of end states lead to core successful<br />

state and eight of end states lead<br />

to core damage state. The highest<br />

frequency of CDSs related to sequences<br />

number 3. Total core damage<br />

frequency considered by frequencies<br />

of eight CDSs. Total CDF is 3.40E-06<br />

per year. According FSAR calculation,<br />

total CDF is 3.84E-06 per year. The<br />

full event tree diagram is shown in<br />

Figure 1.<br />

Conclusion<br />

LOOP plays a major role in BNPP core<br />

damage (about 26 %), all safety<br />

aspects of the reactor must be used<br />

to prevent the occurrence of the<br />

accident. In this paper, level-1 PSA<br />

considered <strong>for</strong> LOOP event in BNPP.<br />

As reviewed in this paper,<br />

sequences number 3, 7, 8, 9 and 10<br />

are very important. The highest<br />

frequency of CDSs related to sequence<br />

number 3. Total CDF <strong>for</strong> initiating<br />

event LOOP is calculated 3.40E-06 per<br />

year. The difference between the<br />

value calculated in the FSAR and<br />

the value obtained in this study is<br />

because of the development of<br />

sequences 5, 6 and 9 have been withdrawn.<br />

Also <strong>for</strong> sequences 3 and 4,<br />

it is assumed that the heat removal<br />

is per<strong>for</strong>med only through the<br />

secondary circuit and the heat<br />

removal through the primary circuit<br />

by bleed & feed system is not considered.<br />

Also CCF has a significant<br />

effect on CDF. Neglecting the CCFs<br />

would lead to misleading results.<br />

In general, the results obtained in<br />

this paper are well-matched with the<br />

results of the FSAR. This study shows<br />

that the probabilistic analysis of<br />

beyond design basis accidents is<br />

necessary.<br />

Authors<br />

Mohsen Esfandiari<br />

Gholamreza Jahanfarnia<br />

Department of <strong>Nuclear</strong><br />

Engineering<br />

Science and Research Branch<br />

Islamic Azad University<br />

Tehran, Iran<br />

Kamran Sepanloo<br />

Ehsan Zarifi<br />

Reactor and <strong>Nuclear</strong> Safety<br />

Research School<br />

<strong>Nuclear</strong> Science and Technology<br />

Research Institute (NSTRI)<br />

Tehran, Iran<br />

Environment and Safety<br />

Probabilistic Analysis of Loss of Offsite <strong>Power</strong> (LOOP) Accident in Bushehr VVER-1000/V446 <strong>Nuclear</strong> <strong>Power</strong> Plant ı Mohsen Esfandiari, Kamran Sepanloo, Gholamreza Jahanfarnia and Ehsan Zarifi


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Experimental Study of Thermal Neutron<br />

Reflection Coefficient <strong>for</strong> two-layered<br />

Reflectors<br />

Khurram Mehboob<br />

In this research project, the thermal neutron reflection coefficient has been measured (albedo αth) <strong>for</strong> different<br />

combinations of reflector materials <strong>for</strong> several thicknesses by using 3.0 Curie Americium Beryllium ( 241 Am- 9 Be) neutron<br />

source and a BF3 detector. The maximum value of neutron reflection from paraffin has been measured as 0.734 ± 0.020<br />

appropriate to the value 0.83 mentioned in the literature. The reflection of neutrons has been measured <strong>for</strong> two-layered<br />

medium i.e. copper-aluminum, copper-wood, wood-paraffin, and paraffin-iron of various thickness in a horizontal<br />

arrangement. MATLAB has been used <strong>for</strong> the analytical simulation by devolving pseudocode that solves the diffusion<br />

equations in two different mediums. It has been observed that the reflection coefficient increases exponentially<br />

by introducing a 2 nd layer, only if the 2 nd medium has less diffusion length and higher diffusion coefficient.<br />

The experimental results have been found in concord with analytical results. Poisson distribution has been used<br />

<strong>for</strong> uncertainties analysis.<br />

Introduction<br />

Commonly neutron reflection is used<br />

<strong>for</strong> the bulk analysis of chemical<br />

sampling, neutron dosimetry, detection<br />

of mines and underground<br />

explosive, boron neutron capture<br />

therapy, detection of moisture in<br />

hydrogenous materials and enhancement<br />

of multiplication factor in a<br />

nuclear reactor. The neutron reflection<br />

is (albedo αth) a quotative<br />

measure of the effectiveness of the<br />

nuclear reactor core. The neutron<br />

reflection coefficient of different<br />

materials has been used to reduce the<br />

critical core size and fuel mass in<br />

nuclear reactors [1]. The reflector is<br />

characterized by its reflection coefficient.<br />

The neutron reflection<br />

coefficient is defined as the ratio of<br />

back-scattered neutrons to the total<br />

incident neutron fluence in a diffusing<br />

medium [2]. A good reflector is<br />

characterized by its high scattering<br />

cross section and low absorption cross<br />

section having high slowing-down<br />

power with small atomic weight [3].<br />

Reflection of neutrons depends on the<br />

reflector composition and geometrical<br />

configurations [4].<br />

In recent years, the studies have<br />

been carried out <strong>for</strong> the measurement<br />

of neutron reflection from different<br />

types of reflectors. S. Dawahra et al.<br />

[1] have used beryllium, heavy water,<br />

graphite and light water as to measure<br />

the efficacy of these reflectors in a<br />

10 MW reactor using MCNP4C code.<br />

Whereas the reflection coefficients of<br />

the neutron from single voided<br />

reflectors and multilayered reflectors<br />

have been measured experimentally<br />

by Mirza et al. [5] and Mehboob et<br />

al. [6] respectively. Both pieces of<br />

research have reported the increase in<br />

thermal neutron reflection with<br />

increasing in reflector thickness.<br />

However, recently Rubina et al. [7]<br />

have experimentally and theoretically<br />

studied the response of BF 3 detector<br />

using three reflector materials i.e.<br />

aluminum, wood, and Perspex. The<br />

Monte Carlo base theoretical studies<br />

have been carried out by developing a<br />

computation code in MATLAB.<br />

However, only a few studies have been<br />

carried out to measure the reflection<br />

105<br />

RESEARCH AND INNOVATION<br />

| Fig. 1.<br />

Block diagram of experimental and Detection Setup.<br />

Research and Innovation<br />

Experimental Study of Thermal Neutron Reflection Coefficient <strong>for</strong> two-layered Reflectors ı Khurram Mehboob


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

RESEARCH AND INNOVATION 106<br />

| Fig. 2.<br />

Single layer thermal neutron reflection coefficient (albedo) (a) experimental (b) analytical Simulation.<br />

coefficient in two layers reflectors. In<br />

this work, the experimental and<br />

theoretic study of reflection of the<br />

neutron from the different combination<br />

of reflector medium has been<br />

studied using 241 Am- 9 Be neutron<br />

source with 7.2 × 10 6 neutrons/<br />

second neutron emission rate, neutron<br />

ab sorber cadmium sheet, paraffin wax<br />

as a neutron moderator and a BF 3<br />

detector. During experimentation<br />

first, each selected material has been<br />

set to its saturation thickness then a<br />

second material is added a second<br />

layer to measure its effect on reflection<br />

coefficient (albedo). Analytical simulation<br />

has been carried out and compared<br />

with the experimental results.<br />

1 Materials and method<br />

The BF 3 detector is cylindrical in<br />

shape with the cylindrical outer<br />

cathode and small diametral tungsten<br />

wire. The cylindrical case is usually<br />

made up of aluminum due to its less<br />

neutron interaction correction. The<br />

operating voltage of proportional BF 3<br />

detector <strong>for</strong> gas multiplication is the<br />

order of 100 V to 500 V. These type of<br />

BF 3 detectors are limited to the<br />

temperature up to 100 °C as pulse<br />

height resolution decreases beyond<br />

the room temperatures.<br />

2.1 Experimental Setup and<br />

measurements<br />

A three Curie cylindrical 241 Am- 9 Be<br />

neutron source with the neutron<br />

emission rate of 7.22 × 10 6 neutrons/<br />

second was placed in the 64 × 6 × 64<br />

wooden container homogenously<br />

filled with paraffin wax. The neutron<br />

source was enclosed in a cylinder<br />

placed in a container at the depth of<br />

11 cm from the top level. In order to<br />

approximate the thermal flux, a thick<br />

layer of 7 cm of paraffin wax was<br />

placed on the top of the container.<br />

The detector was placed over the slap<br />

within a supporting groove. The<br />

reflectors were placed horizontally<br />

at the top of the slab as shown in<br />

Figure 1. A semi-cylindrical cadmium<br />

sheet was placed on the half side of<br />

the detector to make the detector<br />

sensitive to thermal neutrons from its<br />

other half side. The transmitted<br />

reflected flux could be measured by<br />

rotating the detector at the angle of<br />

180°. The interaction of neutrons in<br />

BF 3 detector is depicted in Equation 1.<br />

(1)<br />

The measuring electronics was set up<br />

according to the NIM standard<br />

as shown in Figure 1. Since a large<br />

electric field is required <strong>for</strong> the gas<br />

multiplication, there<strong>for</strong>e, the detector<br />

was operated at about 1500 V using<br />

external high-tension supply. The<br />

electronic pulse from BF3 detector<br />

passes through the preamplifier<br />

which shapes the pulse and fed to<br />

the amplifier to achieve a user-defined<br />

gain. The unipolar pulse is then fed<br />

to timing single-channel analyzer<br />

(TSCA) where a logical signal is<br />

received as an output. The discriminator<br />

level was fixed In TSCA to<br />

reduce the noise and false pulses.<br />

Logical signals were recorded in the<br />

counter/timing unit. A cathoderay<br />

oscilloscope (CRO) and a personal<br />

computer rebased multichannel analyzer<br />

(MCA) were adjusted to be such<br />

that the bipolar pulses were received<br />

by the gateway to SCA.<br />

Four different material e.g. wood,<br />

copper, aluminum, and paraffin<br />

wax of different thickness and different<br />

combinations were used. These<br />

materials have been selected due to<br />

the typical materials used in neutron<br />

shielding and <strong>for</strong> neutron reflection<br />

[8]. The experimental setup was<br />

arranged as shown in Figure 1 the<br />

counts <strong>for</strong> all the reflectors <strong>for</strong> various<br />

thicknesses in different combinations<br />

were recorded through TSCA and<br />

the corresponding spectrum was<br />

col lected on the MCA such that in the<br />

first set of observations, the cadmium<br />

cover faced the neutron source, and in<br />

the second set, it was reversed. The<br />

reflection coefficient (Albedo) was<br />

measured <strong>for</strong> various thicknesses<br />

of reflectors. The uncertainties<br />

in the experimental measurements<br />

have been carried out by Poisson distribution.<br />

The uncertainty in albedo is<br />

given by Equation 2.<br />

(2)<br />

2 Result and discussions<br />

First, the thermal neutron reflection<br />

coefficient (albedo) paraffin, wood,<br />

aluminum, and copper were measured<br />

to its saturation value (Figure 2). The<br />

saturation value of albedo <strong>for</strong> paraffin<br />

wax, wood, copper and aluminum has<br />

been found 0.734 ± 0.020, 0.699 ±<br />

0.002, 0.12 ± 0.001 and 0.27 ± 0.001<br />

respectively. A good com parison has<br />

been seen in perinatal and analytical<br />

simulated results. A heard wood slabs<br />

have been used <strong>for</strong> in this experiment<br />

whose composition is a mixture of<br />

carbohydrates, cellulose, minerals,<br />

and water. For analytical simulation,<br />

Research and Innovation<br />

Experimental Study of Thermal Neutron Reflection Coefficient <strong>for</strong> two-layered Reflectors ı Khurram Mehboob


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

| Fig. 3.<br />

Effect of wood as a 2 nd reflector to copper on thermal neutron albedo.<br />

| Fig. 4.<br />

Effect of aluminum as a 2 nd reflector to copper on thermal neutron albedo.<br />

RESEARCH AND INNOVATION 107<br />

| Fig. 5.<br />

Effect of paraffin as a 2 nd reflector to wood on thermal neutron albedo.<br />

| Fig. 6.<br />

Effect of iron as a 2 nd reflector to paraffin on thermal neutron albedo.<br />

the combination of the hardwood is<br />

chosen as 50.2 % carbon, 6.2 %<br />

hydrogen, 43.5 % oxygen, and 0.1 %<br />

nitrogen [9]. The paraffin reflection<br />

coefficient has been measured<br />

0.73 ± 0.01 that is comparable to the<br />

value listed in the literature (0.83)<br />

[10].<br />

The reflection coefficient (albedo)<br />

<strong>for</strong> wood has been found 4.8 % less<br />

than the paraffin. The albedo <strong>for</strong><br />

different reflectors first increased<br />

exponentially then reached to the<br />

saturation value. The maximum<br />

reflection coefficient (albedo) <strong>for</strong><br />

monolithic wood has been measured<br />

0.699 ± 0.003, which is comparable<br />

able to analytical simulated value<br />

0.71.<br />

The situation value <strong>for</strong> neutron<br />

reflection coefficient (albedo) <strong>for</strong><br />

copper has been measured 0.12 ±<br />

0.001, which is comparable to value<br />

0.11 reported by Doty, D. R. [11].<br />

Whereas the saturation value of the<br />

reflection coefficient <strong>for</strong> aluminum<br />

has been measured to 0.27 ± 0.001.<br />

Since the copper has a higher cross<br />

section (Σs = 0.6709 cm-1) compare<br />

to aluminum (Σs = 0.08976 cm-1)<br />

there<strong>for</strong>e the copper albedo curve<br />

is little steeper as compared to<br />

aluminum. The experimental and<br />

analytical simulated results <strong>for</strong><br />

paraffin, wood, aluminum, and<br />

copper are depicted in Figure 2.<br />

In order to see the effect of the 2 nd<br />

layer in neutron reflection coefficient<br />

combinations of different reflectors<br />

has been used. The 2 nd reflector has<br />

been introduced after the saturation<br />

thickness of the first reflector. The<br />

effect of wood as a 2 nd reflector to<br />

copper is depicted in Figure 3. As<br />

predicted the reflection of neutron<br />

increased abruptly as the wood is<br />

added as a 2 nd reflector. The saturation<br />

from copper has been received<br />

at 5 cm of thickness. Addition of<br />

wood as a 2 nd reflector at this point<br />

showed an exponential increase in<br />

reflection coefficient. this is because<br />

of the less scattering correction of<br />

copper and higher scattering crosssection<br />

of wood. Similar behavior<br />

has been seen in analytical simulated<br />

results.<br />

Theoretically, the 2 nd layer with<br />

higher reflection and diffusion<br />

coefficient contributes in increasing<br />

the reflection coefficient. Glasstone<br />

and Edlund [12] derived the<br />

thermal neutron albedo as a function<br />

of 2D/L.<br />

Similarly, aluminum as a 2 nd reflector<br />

plays the same role when added<br />

after cooper saturation thickness. An<br />

increment with a slope of 1.0 × 10 -4<br />

has been observed with aluminum<br />

as a 2 nd reflector. A similar slope has<br />

also been reported by Doty, D. R. [11]<br />

in his experimental study with the<br />

increase in aluminum thickness. The<br />

effect of aluminum as a 2 nd reflector to<br />

copper is depicted in Figure 4. The<br />

experiment results have been found<br />

inconsistent with the analytical<br />

simulated results.<br />

If the 2 nd reflector has nearly the<br />

same reflection coefficient as that <strong>for</strong><br />

1 st reflector then no significant effect<br />

has been seen to total reflection coefficient.<br />

This effect has been observed by<br />

introducing the paraffin as the 2 nd<br />

reflector to wood. Since the wood<br />

and paraffin nearly have the same<br />

saturation reflection coefficients and<br />

<strong>for</strong> both reflectors, the 2D/L value is<br />

almost similar. There<strong>for</strong>e, no significant<br />

effect has been observed <strong>for</strong><br />

paraffin as the 2 nd reflector to wood.<br />

The effect of paraffin as a 2 nd reflector<br />

to wood is depicted in Figure 5.<br />

Research and Innovation<br />

Experimental Study of Thermal Neutron Reflection Coefficient <strong>for</strong> two-layered Reflectors ı Khurram Mehboob


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

RESEARCH AND INNOVATION 108<br />

Some perturbations have been<br />

observed as an effect of iron as a 2 nd<br />

reflector to paraffin. Since the ratio of<br />

two times of diffusion coefficient to<br />

diffusion length (2D/L) <strong>for</strong> iron is<br />

greater but the reflection coefficient<br />

is small compared to paraffin. There<strong>for</strong>e,<br />

the reflection from the ion is<br />

small compared to the reflection<br />

from paraffin. The experimental<br />

and analytical simulated results<br />

are depicted in Figure 6. Doty, D. R.<br />

[11] has reported the saturated<br />

albedo <strong>for</strong> iron is 0.4. whereas we<br />

have found the saturated reflected<br />

value of iron is 0.304 comparable<br />

to 0.4.<br />

3 Conclusion<br />

In this work, the experimental and<br />

theoretic study of reflection of the<br />

neutron from the different combination<br />

of reflector medium has been<br />

studied using 241 Am- 9 Be neutron<br />

source with 7.2 × 106 neutrons/<br />

second neutron emission rate, neutron<br />

absorber cadmium sheet, paraffin<br />

wax as a neutron moderator and a BF 3<br />

detector. Pseudocode has been<br />

developed in MATLAB <strong>for</strong> analytical<br />

simulation. For analytical simulation<br />

cross-sectional and diffusion, lengths<br />

have been taken from appendix II Table<br />

II.3 of [13] and the National Physical<br />

Laboratory [14].<br />

First, the thermal neutron albedo<br />

reflection coefficient <strong>for</strong> aluminum,<br />

paraffin wax, copper has been<br />

measured and compared with analytical<br />

simulated results. Then the<br />

effect of the 2 nd layer to the 1 st reflector<br />

has been studied. The results<br />

indicate that if the 2 nd reflector has a<br />

higher reflection coefficient than the<br />

first type of reflector then the reflection<br />

of neutrons increased abruptly.<br />

This has been seen by introducing<br />

wood and aluminum as the 2 nd reflector<br />

to copper (Figure 3, 4).<br />

Similarly, when the 2 nd reflector<br />

has the same or smaller reflection<br />

coefficient compare to 1 st reflector<br />

then no significant effect has been<br />

seen. This effect has been observed<br />

by introducing paraffin and iron as a<br />

2 nd reflector to wood and paraffin<br />

respectively (Figure 5, 6). A higher<br />

amount of fluctuation and perturbation<br />

has been observed when the<br />

2 nd reflector was introduced. Poisson<br />

distribution has been used <strong>for</strong> uncertainty<br />

analysis<br />

The results indicate that the 2 nd<br />

reflector has a significant effect on the<br />

total thermal neutron reflection<br />

coefficient. The effect of 2 nd reflector<br />

could be used to enhance shielding<br />

configurations and improve the<br />

compact shielding <strong>for</strong> reactors.<br />

Acknowledgements<br />

This project was funded by the<br />

Deanship of Scientific Research<br />

(DSR), King Abdulaziz University,<br />

Jeddah, under grant No. (D-211-135-<br />

1440). The authors, there<strong>for</strong>e, gratefully<br />

acknowledge the DSR technical<br />

and financial support.<br />

References<br />

[1] Dawahra, S., Khattab, Saba, G., Study the effects of different<br />

reflector types on the neutronic parameters of the 10MW<br />

MTR reactor using the MCNP4C code. Ann. Nucl. Energy,<br />

2015; 85: 1115–1118.<br />

[2] Stacey.M.W. <strong>Nuclear</strong> reactor Physics, 2nd Edition Willey-VGC<br />

Veller GmbH & Co. KgaA, 2001: ISBN 978-3-527-40679-1.<br />

[3] Albarhoum, M. Graphite reflecting characteristics and<br />

shielding factors <strong>for</strong> Miniature Neutron Source Reflectors.<br />

Ann. Nucl. Energy. 2011: 38, 14–20<br />

[4] Csikai, J., Buczko, C.M.. The concept of the reflection crosssection<br />

of thermal neutrons. Appl. Radiat. Isot. 1999; 50:<br />

487–490.<br />

[5] Mirza, S.M., Tufail, M., Liaqat, M.R. Thermal neutron albedo<br />

and diffusion parameter measurements <strong>for</strong> monolithic and<br />

geometric voided reflectors. Radiat. Meas. 2006; 41: 89–94.<br />

[6] Mehboob, K., Ahmed, R., Ali, M., Tabassum, U. Thermal<br />

neutron albedo measurements <strong>for</strong> multilithic reflectors. Ann.<br />

Nucl. Energy. 2013: 62, 1–7.<br />

[7] Rubina, N. et al. Experimental and theoretical study of BF 3<br />

detector response <strong>for</strong> thermal neutrons in reflecting materials,<br />

Nucl. Eng. Tech. 2018; 50: 439-445.<br />

[8] Neeley, G.W., Newell, D.L, Larson, S.L., et al., Reactivity Effects<br />

of Moderator and Reflector Materials on a Finite Plutonium<br />

System, SAIC, 2004, Rev. I, US NRC-Public Documents.<br />

[9] Ragland, K. W., Aerts, D. J. Properties of wood <strong>for</strong> combustion<br />

analysis. Bioresource. Technol. 1991; 37: 161-168.<br />

[10] Kogan, A.M., et al. The reflection of neutrons of various energies<br />

by paraffin and by water. Atomnaya Energ. 1959.<br />

[11] Doty, D. R. An absolute measurement of thermal neutron albedo<br />

<strong>for</strong> several materials. U.S. Naval civil engineering laboratory,<br />

1965: Y-F008-08-05-201, DASA-11.026.<br />

[12] Glasstone, S., Edlund, M.C , The Elements of <strong>Nuclear</strong> Reactor<br />

Theory. D, Van Nostrand Corporation, New York. 1952.<br />

[13] Lamarsh, J. R. Introduction to <strong>Nuclear</strong> Engineering. 3rd Edition,<br />

Prentice Hall. 2001, ISBN: 0-201-82498-1,<br />

[14] NPL, National Physical Laboratory. 4.7.3 Attenuation of fast<br />

neutrons: neutron moderation and diffusion, 2012: URL:<br />

http://www.kayelaby.npl.co.uk/atomic_and_nuclear_physics/4_7/4_7_3.html<br />

Author<br />

Khurram Mehboob (Ph.D.)<br />

Associate Professor<br />

Department of <strong>Nuclear</strong><br />

Engineering, Faculty of<br />

Engineering,<br />

King AbdulAziz University (KAU),<br />

P. O. Box 80204<br />

Jeddah 21589 Saudi Arabia<br />

Research and Innovation<br />

Experimental Study of Thermal Neutron Reflection Coefficient <strong>for</strong> two-layered Reflectors ı Khurram Mehboob


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Workshop on the “Safety of Extended<br />

Dry Storage of Spent <strong>Nuclear</strong> Fuel” –<br />

SEDS 2019<br />

Florian Rowold, Klemens Hummelsheim and Maik Stuke<br />

For the third time now, the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH held its workshop “Safety of<br />

Extended Dry Storage of Spent <strong>Nuclear</strong> Fuel (SEDS)”. The workshop met its initial objectives and expectations from<br />

2017 and now it provides an annual plat<strong>for</strong>m <strong>for</strong> national and international experts to exchange in<strong>for</strong>mation and<br />

discuss recent technical and scientific progress and developments. Taking place from the 5 th to 7 th of June 2019 in<br />

Garching, the workshop was attended by nearly 50 experts from 24 institutes of 7 countries. For Germany, the broad<br />

range of experts was represented by universities and research organizations, technical support organizations, fuel<br />

vendors, and the Federal Ministry <strong>for</strong> Economic Affairs and Energy. With 17 oral contributions the science-focused<br />

agenda of the workshop reflected the broad diversity in current research projects. The topics comprised material<br />

behavior of claddings and sealings, simulation approaches <strong>for</strong> thermal cask evaluations and thermo-mechanical fuel<br />

rod per<strong>for</strong>mance. Furthermore, specific aspects were addressed such as non-destructive testing of casks or aging<br />

management issues and regulatory aspects. On a positive note, it could be seen that the number of research projects<br />

with an experimental focus has increased since the last year.<br />

109<br />

REPORT<br />

Peter Kaufholz from GRS in Garching<br />

opened the workshop with a pre -<br />

sentation entitled “Dry storage of<br />

spent fuel and high-level waste in<br />

Germany: Situation and Technical<br />

Safety Aspects”, where he talked<br />

about the scientific issues connected<br />

to the condition of long-term stored<br />

spent fuel with high burn-up. Technical<br />

challenges have been identified<br />

with rising interests on the extended<br />

dry storage in the recent past. Matter<br />

of interest are e.g. the drying conditions,<br />

the hydrogen terminal solid<br />

solubility, fission gas release, pin<br />

pressure and cladding strain. The<br />

proof of cladding integrity is not only<br />

important <strong>for</strong> the storage itself but<br />

especially <strong>for</strong> transport and conditioning<br />

afterwards. Science and<br />

engineering need to focus on the<br />

reduction of the existing uncertainties<br />

in the prediction of degradation<br />

phenomena in extended dry storage<br />

of spent nuclear fuel.<br />

Karim Ben Ouaghrem from the<br />

French technical support organization<br />

Institut de Radioprotection et de Sûreté<br />

Nucléaire (IRSN) presented a “Dry<br />

storage overview and IRSN studies”.<br />

Upon request from the French government,<br />

IRSN published a report on<br />

existing concepts of spent fuel storage<br />

in France and worldwide. Considering<br />

the characteristics of different fuel<br />

types and storage concepts (wet or dry,<br />

on-site or centralized), the assets and<br />

limiting factors of dry storage were addressed.<br />

Currently, IRSN is conducting<br />

a study on safety issues raised by the<br />

assessments of the package design<br />

safety report of the dual-purpose casks<br />

(DPC) and by the preparations of the<br />

DPC <strong>for</strong> transport. To guarantee the<br />

safety of transport after storage, the<br />

topics that need to be evaluated are<br />

the impact of material aging (e.g. cladding,<br />

neutron resin), characterization<br />

of monitored parameters during<br />

storage (e.g. lid interspace pressure,<br />

temperature) and the controls per<strong>for</strong>med<br />

be<strong>for</strong>e shipment (e.g. corrosion,<br />

screw tightening check).<br />

Timur Kandemir from the new<br />

operator of the storage facilities <strong>for</strong><br />

spent fuel and high-level waste in<br />

Germany, the Bundesgesellschaft für<br />

Zwischenlagerung (BGZ), gave an overview<br />

on the “Aging Management at<br />

German Interim Storage Facilities<br />

<strong>for</strong> Spent Fuel and High-Level<br />

Waste”. The guidelines <strong>for</strong> a periodic<br />

safety review (PSR) and an aging management<br />

<strong>for</strong> spent fuel storage facilities<br />

were introduced in 2014 after a twoyear<br />

pilot phase. The periodic safety<br />

review is an integral verification of the<br />

facility safety status at regular intervals<br />

of ten years, whereas the aging<br />

management includes continuous control<br />

of aging effects during storage operation.<br />

The outcomes and findings<br />

from the aging management are being<br />

incorporated into the PSR, whereas<br />

the aging management measures are<br />

reviewed in the PSR and adapted if<br />

necessary. The aging management<br />

measures are limited to accessible cask<br />

areas, safety relevant systems, components<br />

and buildings. A graduated<br />

approach in accordance to the protection<br />

goal relevance of the systems and<br />

com ponents is applied within the<br />

aging management.<br />

Andreja Peršič from the Slovenian<br />

<strong>Nuclear</strong> Safety Administration (SNSA)<br />

reported about the “Regulatory<br />

Aspects Regarding New Dry Storage<br />

of Spent <strong>Nuclear</strong> Fuel at the Krško<br />

NPP”. To prevent severe accidents and<br />

mitigate their consequences, the Krško<br />

nuclear power plant (NPP) assessed<br />

the options to reduce the risks associated<br />

with spent fuel which is currently<br />

stored in the spent fuel pool. The new<br />

dry storage facility at the Krško NPP<br />

will have a capacity of 2.600 spent fuel<br />

assemblies in 70 casks of the Holtec HI-<br />

STORM MPC design. It is designed <strong>for</strong><br />

a minimum operation of 60 years and<br />

the construction shall begin in 2021.<br />

The licensing process is challenging <strong>for</strong><br />

the operator as well as <strong>for</strong> the regulator.<br />

Even though the storage technology is<br />

proven, site specific conditions and<br />

regulatory requirements make the<br />

process unique. Aging management<br />

already had to be considered in the<br />

design phase of the licensing process<br />

and the aging management program is<br />

one of the important preconditions <strong>for</strong><br />

operation license issuing. A surveillance<br />

program is required as well as an<br />

environmental and seismic qualification<br />

of systems, structures and components.<br />

Furthermore, a systematic<br />

approach to evaluate operating experience<br />

is mandatory.<br />

Aaron W. Colldeweih from the Paul<br />

Scherrer Institute (PSI) in Switzerland<br />

presented some details from a running<br />

PhD in his talk “Impact of hydrogen<br />

on fuel cladding properties and<br />

example of Delayed Hydride<br />

Cracking”. He started with a brief<br />

overview of the research work on the<br />

behavior of nuclear fuel claddings<br />

under the influence of hydrogen. In<br />

this respect, thermo-mechanical testing<br />

is per<strong>for</strong>med on hydrogen diffusion,<br />

precipitation and hydride reorientation,<br />

creep and fracture toughness.<br />

Post-test examinations comprise<br />

classical analytical methods like metallography,<br />

but also Focused Ion Beam<br />

(FIB), Scanning Electron Microscopy<br />

(SEM) including Back Scattered Electron<br />

detection (BSE) and Electron<br />

Report<br />

Workshop on the “Safety of Extended Dry Storage of Spent <strong>Nuclear</strong> Fuel” – SEDS 2019 ı Florian Rowold, Klemens Hummelsheim and Maik Stuke


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

110<br />

REPORT<br />

Backscatter Diffraction (EBSD) as well<br />

as neutron radio graphy. Finite-<br />

Element- Modelling is used to simulate<br />

new geometries and test conditions.<br />

Regarding the delayed hydride cracking<br />

(DHC) investigations, differently<br />

shaped Zircaloy-2 cladding tubes with<br />

and without initial axial and radial<br />

cracks are prepared and undergo the<br />

described testing methods. The goal of<br />

the work is to clarify the role of cladding<br />

toughness <strong>for</strong> the DHC behavior.<br />

Elmar W. Schweitzer from<br />

Framatome GmbH, Germany, gave a<br />

lecture on the “End-of-Reactor-Life<br />

State of Spent <strong>Nuclear</strong> Fuel as Major<br />

Input <strong>for</strong> Long Term Dry Storage<br />

Fuel Integrity Assessment” from a<br />

vendor’s point of view. Framatome as a<br />

manufacturer of nuclear power plants<br />

and has been delivering fuel assemblies<br />

<strong>for</strong> operation of the plants. The behavior<br />

of nuclear fuel under irradiation<br />

up to end-of-life (EOL) is a prerequisite<br />

<strong>for</strong> evaluating the additional damage<br />

permissible during the dry storage<br />

period. Limitation of temperature and<br />

hoop stress by the present design criteria<br />

is the best way to circumvent any<br />

issues arising from long-term storage<br />

of used fuel. Nevertheless, an exact<br />

knowledge of the EOL state of the fuel<br />

rods is necessary in order to assess<br />

effects related to hoop stress and cladding<br />

strain. Also, parts from the fuel<br />

assembly structure, e.g. guide tubes,<br />

spacer grids, water channels, fuel<br />

channels etc. start to raise interest,<br />

since these structures are important <strong>for</strong><br />

a safe repacking of the spent fuel from<br />

the storage and transport cask into a<br />

disposal cask. Mechanical properties of<br />

irradiated cladding and fuel assembly<br />

components (fast neutron fluence, corrosion<br />

state) are necessary <strong>for</strong> transport<br />

evaluation of the spent fuel.<br />

The presentation of Dimitri<br />

Papaioannou from the European<br />

Commission Joint Research Centre<br />

(JRC) in Germany was titled “Experimental<br />

Studies on the Mechanical<br />

Stability of Spent <strong>Nuclear</strong> Fuel<br />

Rods”. He presented recent experimental<br />

results from the spent fuel studies<br />

at the JRC in Karlsruhe on safety<br />

issues associated to handling and<br />

transportation of nuclear fuel rods. In<br />

the experiments, a pressurized rod<br />

segment has been subject to dynamic<br />

impact and quasi-static three-pointbending<br />

tests. The devices are installed<br />

in a hot cell. The rod segment stemmed<br />

from a PWR fuel rod with burn up<br />

67 GWd/tHM. A high-speed camera<br />

was used to record the impact test and<br />

thereby to determine the deflection<br />

and absorbed energy. In the threepoint-bending<br />

tests, the load, pressure<br />

and displacement were recorded and<br />

plotted. Post-test examinations were<br />

carried out to characterize the released<br />

mass upon rupturing in both experiments.<br />

The final goal of these investigations<br />

is to determine criteria and<br />

conditions governing the response of<br />

spent fuel rods to an external mechanical<br />

load in accident scenarios.<br />

Uwe Zencker from the Bundesanstalt<br />

für Material<strong>for</strong>schung und -prüfung<br />

(BAM), Germany, gave a talk about<br />

“Brittle failure of spent fuel claddings<br />

during long-term dry interim<br />

storage”. The current research project<br />

BRUZL, which translates to fracturemechanical<br />

analysis of spent fuel claddings<br />

during long-term dry interim<br />

storage, has the general aim to develop<br />

risk assessment methods <strong>for</strong> potential<br />

brittle failure under mechanical loads<br />

after extended dry storage. The project<br />

<strong>for</strong>esees ring compression tests with<br />

unirradiated cladding samples with<br />

representative hydride distribution.<br />

Additional finite-element-analysis of<br />

the ring compression tests will include<br />

fracture-mechanical calcu lations, allowing<br />

failure analysis and the identification<br />

of failure criteria dependent on<br />

hydride distribution (density, orientation,<br />

and size), properties of cladding<br />

material, mechanical load, and temperature.<br />

The project is funded by the<br />

Federal Ministry <strong>for</strong> Economic Affairs<br />

and Energy (BMWi).<br />

Another new research project was<br />

introduced by Benedict Bongartz from<br />

the University of Hannover, Germany.<br />

He gave a presentation on the<br />

“ Investigation of the temporal<br />

rearrangement behavior of zirconium<br />

hydride precipitates in interim<br />

and final storage”. Within this work,<br />

the specific experimental equipment<br />

and the required process technology is<br />

set up to load cladding tubes with hydrogen<br />

contents of up to 500 wppm.<br />

After the cladding tubes have been<br />

loaded with hydrogen, a combination<br />

of cooling and mecha nical stress application<br />

is planned in order to recreate<br />

and investigate the reorientation of the<br />

hydrides in a laboratory environment.<br />

The hydride precipitation in the zirconium<br />

cladding will be investigated<br />

with classical materials science investigations<br />

such as metallography,<br />

scanning and transmission electron<br />

microscopy and X-ray diffraction. Additionally,<br />

new investigation methods<br />

such as X-ray microscopy are envisaged<br />

to obtain new three- dimensional geometric<br />

data about the precipitates.<br />

In his talk, Marc Péridis from GRS<br />

gave an update on his work about<br />

“Temperature fields in a loaded<br />

spent fuel cask”. The temperature is a<br />

key parameter during dry storage since<br />

it governs most of the claddings aging<br />

mechanisms. As both, high and low<br />

temperatures are relevant <strong>for</strong> different<br />

effects, conservative models or a limited<br />

consideration only on the hottest<br />

fuel zone are insufficient <strong>for</strong> safety<br />

studies. Considerably more, it is necessary<br />

to carry out best-estimate calculations.<br />

A generic detailed cask model,<br />

inspired by the GNS CASTOR® V/19,<br />

was set up and used to calculate the<br />

temperature propagation from the inventories<br />

to the cask body with<br />

COBRA-SFS. The comparison of the<br />

results with similar models in<br />

COCOSYS and ANSYS CFX showed<br />

good agreement. Within the recent<br />

work, ParaView was introduced as a<br />

graphic interface to visualize the<br />

COBRA-SFS results. In the future, the<br />

COBRA-SFS model is intended to be<br />

used <strong>for</strong> transient calculations. This<br />

will enable the user to describe the<br />

temperature evolution during the<br />

drying process, which has an important<br />

impact on the material properties.<br />

In the second contribution about<br />

thermal modeling, Marta Galbán<br />

Barahona from ENUSA, Spain, re ported<br />

about her work progress with the<br />

presentation entitled “Analysis in<br />

Spent <strong>Nuclear</strong> Fuel Cask Using<br />

COBRA-SFS”. In comparison to the<br />

GRS work, ENUSA used the COBRA-<br />

SFS code to simulate a storage cask of<br />

the TN-24P type. The results obtained<br />

<strong>for</strong> the helium filled TN-24P cask were<br />

compared to measured temperature<br />

data. There was a particularly good<br />

agreement in the center of the fuel<br />

assembly, where the maximum temperature<br />

is located. In the peripheral<br />

assemblies, the maximum differences<br />

in temperature values were approximately<br />

15 °C. Recently implemented<br />

post-process scripts allowed a simpler<br />

evaluation of the data with graphics<br />

and colored maps. As a result of the<br />

scripts, parameters such as helium flux<br />

could be analyzed, where an unusual<br />

flux distribution was found. Sensitivity<br />

studies have been per<strong>for</strong>med to analyze<br />

the impact on the tem peratures. It<br />

was found, that the impact of the specific<br />

flux distribution was negligible.<br />

Francisco Feria from CIEMAT, Spain,<br />

gave a talk about the “Progress on the<br />

modeling of in-clad hydrogen behavior<br />

within FRAPCON-xt”. FRAPCONxt<br />

in its base version is a fuel per<strong>for</strong>mance<br />

code, which has been extended<br />

to simulate fuel rods under dry storage<br />

conditions. The code has been further<br />

developed to model the inclad hydride<br />

radial reorientation as a continuation<br />

of the modelling derived on hydrogen<br />

migration/precipitation. Moreover, an<br />

uncertainty quantification method<br />

has been adapted to predict the<br />

best estimate plus the corresponding<br />

Report<br />

Workshop on the “Safety of Extended Dry Storage of Spent <strong>Nuclear</strong> Fuel” – SEDS 2019 ı Florian Rowold, Klemens Hummelsheim and Maik Stuke


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

uncertainty. Recent results allowed the<br />

conclusion that realistic scenarios prevent<br />

the <strong>for</strong>mation of radial hydrides,<br />

whereas giving credit to limiting conditions<br />

would not allow ruling out this<br />

degrading mechanism. Depending on<br />

experimental data made available,<br />

further work is <strong>for</strong>eseen to validate the<br />

modelling with more representative<br />

data based on irradiated material and<br />

to derive a technological limit concerning<br />

the cladding embrittlement due to<br />

radial hydrides <strong>for</strong>med.<br />

To further address and support<br />

thermo-mechanical activities, Felix<br />

Bold from GRS held a presentation<br />

called “Proposal of a Benchmark<br />

Describing the Thermo-Mechanical<br />

behavior During Dry Storage”,<br />

wherein he invited all interested<br />

parties, who are willing to improve<br />

their modeling experience and to<br />

share their knowledge about the<br />

extended storage of spent nuclear fuel.<br />

The goal of this benchmark is the<br />

prediction and the code-to-code<br />

comparison of the thermo-mechanical<br />

parameters such as cladding temperature,<br />

hoop stress and strain as well<br />

as the hydrogen and hydride behavior<br />

during the storage period. For the<br />

starting conditions it is planned to use<br />

fuel rod data or output of a fuel per<strong>for</strong>mance<br />

code capable of simulating the<br />

fuel rod state at the end of operation.<br />

This will provide rod and pellet geometry,<br />

corrosion, internal gas state<br />

and the initial hydrogen load. The<br />

transient conditions will include the<br />

change of environment from water<br />

cooling in the spent fuel pool to helium<br />

atmosphere in the cask as well as the<br />

temperature changes during reactor<br />

shut down and the drying process. The<br />

results of the benchmark will be published<br />

and presented in 2020 on the<br />

4th GRS workshop.<br />

With his talk about the “Long-term<br />

evaluation of sealing systems <strong>for</strong><br />

radioactive waste packages”,<br />

Matthias Jaunich provided a round-up<br />

of another important research area addressed<br />

by the BAM. The work<br />

per<strong>for</strong>med <strong>for</strong> many years now, aims at<br />

understanding the long-term behavior<br />

of the sealing systems during possible<br />

extended storage and sub sequent transportation<br />

scenarios. It comprises accelerated<br />

aging tests on metallic and elastomeric<br />

seals and covers experimental<br />

investigations to get a database on the<br />

component/ material behavior. Based<br />

on the results, appropriate analytical<br />

descriptions and models were developed.<br />

For the metal seals, a linear<br />

logarithmic correlation and an extrapolation<br />

of the remaining seal <strong>for</strong>ce and<br />

useable resilience <strong>for</strong> up to 100 years<br />

seems possible, but the question about<br />

the confidence range has yet to be<br />

answered. The elastomer seals exhibited<br />

hardness increase and sealing<br />

<strong>for</strong>ce decrease during the aging test.<br />

Deriving from the tests, the researchers<br />

were able to present an approach <strong>for</strong> a<br />

lifetime prediction of the seals.<br />

With his presentation about<br />

“Radio nuclides present at inner<br />

PWR fuel rod segment Zircaloy cladding<br />

surfaces in the context of safety<br />

of extended dry storage of spent<br />

nuclear fuel”, Michel Herm from the<br />

Karlsruhe Institute of Technology (KIT)<br />

shifted the focus to another interesting<br />

issue. Beside the often-discussed hydrogen<br />

effects, the fuel rod cladding<br />

could also be affected by various other<br />

processes during reactor operation and<br />

beyond. Precipitates of fission or activation<br />

products, e.g. Cs, I, Te, and Cl,<br />

present at the fuel-cladding interface,<br />

possibly exhibit corrosive properties<br />

and thus affect the integrity of the<br />

cladding. There<strong>for</strong>e, irradiated pressurized<br />

water reactor UO 2 and MOX<br />

fuel rod segments were prepared and<br />

examined. The composition of agglomerates<br />

found on the inner surfaces of<br />

the plenum area and in fuel-cladding<br />

interaction layers were analyzed by<br />

means of SEM-EDS/WDS, XPS, and<br />

synchrotron radiation- based techniques.<br />

In addition, the present radionuclide<br />

inventory was compared<br />

to calculated values using a MCNP/<br />

CINDER approach.<br />

In a second contribution from the<br />

KIT, Mirco Große reported on the<br />

“ Experimental Simulation of Long-<br />

Term Dry Storage in the QUENCH<br />

Facility of KIT – Availabilities and<br />

Plans”. The QUENCH facility at KIT is<br />

dedicated <strong>for</strong> tests simulating design<br />

basis and beyond design basis accidents<br />

in light water reactors on a fuel<br />

rod bundle scale. However, this test<br />

bundle can also be used <strong>for</strong> long-term<br />

cooling experiments simulating dry<br />

storage conditions. A description of the<br />

facility and reports about the planned<br />

experiments within the framework of<br />

the collaborative research project<br />

SPIZWURZ was given. The project<br />

investigates the behavior of cladding<br />

materials under typical long-term<br />

storage conditions. The experimental<br />

bundle consists of 21 to 31 fuel rod<br />

simulators with Zircaloy-4, ZIRLO and<br />

Dx/D4 Duplex claddings. The rods are<br />

electrically heated and can be pressurized<br />

separately. The inner pressure<br />

will be up to 5 MPa. The test will start<br />

with a maximum cladding temperature<br />

of 500 °C at the hottest bundle position<br />

and the temperature will be reduced by<br />

1 K/day during a period of 8 month.<br />

The axial and radial hydrogen distribution<br />

will be measured post-test by<br />

neutron imaging methods. Metallographic<br />

investigations will be used to<br />

determine the change in the hydride<br />

orientation.<br />

Michael Wagner from the Technical<br />

University of Dresden, Germany, closed<br />

the workshop with the last talk about<br />

the “Investigations on potential<br />

methods <strong>for</strong> the long-term monitoring<br />

of the state of fuel elements in<br />

dry storage casks: recent results”.<br />

Four non-invasive measuring methods<br />

were assessed regarding their suitability<br />

<strong>for</strong> the condition monitoring of<br />

the cask inventory by means of<br />

simulations and experiments. For this<br />

purpose, damage scenarios of the cask<br />

inventory were assumed in a CASTOR<br />

V/19. The identified scenarios based<br />

on investigations on damage mechanisms.<br />

The simulations and experiments<br />

showed that the measurement<br />

of neutron and gamma radiation fields<br />

and muon imaging have the greatest<br />

potential as monitoring methods.<br />

These will also be further investigated<br />

in a follow-up project. In principle,<br />

the acoustic methods have a high<br />

in<strong>for</strong>mative value, but the transfer of<br />

experimental results to real con ditions<br />

is difficult. Thermography showed a<br />

low practicality as a monitoring method<br />

due to its limited expressiveness.<br />

The 2019 SEDS workshop showed<br />

that the topic of extended storage of<br />

spent nuclear fuel with all its different<br />

aspects is continuing to draw a large<br />

interest in the scientific landscape. In<br />

fact, the ef<strong>for</strong>ts in terms of research<br />

projects and collaborations increased<br />

in the recent past. Especially <strong>for</strong> Germany<br />

and European countries, where<br />

very high burnup and mixed oxide<br />

fuels were used and dry storage in<br />

casks is a preferred option <strong>for</strong> the<br />

spent fuel, this is a positive sign, since<br />

not all knowledge gaps are answered<br />

yet and require further work. The annual<br />

workshop “Safety of Extended<br />

Dry Storage of Spent <strong>Nuclear</strong> Fuel”<br />

established itself as a place to address<br />

those knowledge gaps and exchange<br />

in<strong>for</strong>mation in a broad community on<br />

a very scientific level. This year the<br />

4th workshop will be held again as a<br />

three-day event at GRS in Garching<br />

during the first week of June 2020.<br />

Authors<br />

Florian Rowold<br />

Klemens Hummelsheim<br />

Maik Stuke<br />

Gesellschaft für Anlagen- und<br />

Reaktorsicherheit (GRS) gGmbH<br />

Bereich Stilllegung und Entsorgung<br />

Abteilung Stilllegung und<br />

Zwischenlagerung<br />

Forschungszentrum,<br />

Boltzmannstr. 14,<br />

85748 Garching b. München<br />

111<br />

REPORT<br />

Report<br />

Workshop on the “Safety of Extended Dry Storage of Spent <strong>Nuclear</strong> Fuel” – SEDS 2019 ı Florian Rowold, Klemens Hummelsheim and Maik Stuke


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

112<br />

Inside<br />

Einladung zum Vortrag<br />

KTG INSIDE<br />

KTG Inside<br />

Verantwortlich<br />

für den Inhalt:<br />

Die Autoren.<br />

Lektorat:<br />

Natalija Cobanov,<br />

Kerntechnische<br />

Gesellschaft e. V.<br />

(KTG)<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

T: +49 30 498555-50<br />

F: +49 30 498555-51<br />

E-Mail:<br />

natalija.cobanov@<br />

ktg.org<br />

www.ktg.org<br />

Stand der weltweiten Entwicklung der Kernenergie<br />

von Dr. Ludger Mohrbach<br />

am Donnerstag, den 19. März 2020 um 17:30 Uhr,<br />

PreussenElektra GmbH, Tresckowstraße 5,<br />

Hannover<br />

Die einzige heute verfügbare Option zur Lösung des<br />

weltweiten Energieversorgungsproblems zu bisher<br />

gewohnten Kosten, bei vergleichsweise geringen CO 2 -<br />

Emissionen und einer gesicherten Energieversorgung ist<br />

neben der nur regional weiter ausbaubaren Großwasserkraft<br />

die Kernspaltungsenergie, die technologisch derzeit<br />

weltweit von 31 Ländern genutzt wird, bei fünf weiteren<br />

Newcomern durch Neubau erschlossen wird und in vier<br />

weiteren in der Planung ist.<br />

Die Kernbrennstoffe Uran und Thorium sind für viele<br />

Jahrhunderte ausreichend vorhanden und bei Nutzung in<br />

<strong>for</strong>tgeschrittenen Reaktoren für viele Tausend Jahre. Die<br />

Entsorgung in tiefen geologischen Erdschichten war und<br />

ist aufgrund der kleinen Rückstandsmassen technisch und<br />

wirtschaftlich realisierbar.<br />

Historisch und ganzheitlich betrachtet ist die Kernenergie<br />

ein sehr sicherer Energieträger. Bezogen auf die<br />

MWh erzeugte Energie gibt es keine Stromerzeugungsart,<br />

bei der weniger Menschen zu Schaden kommen.<br />

Gleichwohl ist das weltweit einzige Land, das heute<br />

einen echten Ausstieg betreibt, Deutschland. So hat z. B.<br />

Frankreich, von der deutschen Öffentlichkeit kaum<br />

reflektiert, kürzlich eine Laufzeitverlängerung um<br />

( zunächst) zehn Jahre beschlossen.<br />

Nukleare Sektorkopplung über die Erzeugung von<br />

synthetischen Brennstoffen, den Wärmemarkt und<br />

insbesondere auch Meerwasserentsalzung kann das<br />

Klimaproblem zu heutigen Bereitstellungskosten lösen.<br />

Der Anteil der Kernenergie von derzeit ca. 11 % an der<br />

weltweiten Strom- und damit von ca. 6 % an der Primärenergieerzeugung<br />

sollte somit so schnell wie möglich<br />

gesteigert werden. Welche technischen Optionen hierfür<br />

zur Verfügung stehen, insbesondere auch in Bezug auf<br />

weiterentwickelte Kernreaktoren der Generation IV, wird<br />

im Vortrag vorgestellt.<br />

Im Anschluss an den etwa einstündigen Vortrag wird es<br />

ausreichend Gelegenheit für weitere Diskussionen geben.<br />

Interessierte KTG-Mitglieder sowie Freunde und<br />

Bekannte sind herzlich eingeladen.<br />

Mit freundlichen Grüßen<br />

Dr.-Ing. Hans-Georg Willschütz<br />

Sprecher KTG-Sektion NORD<br />

Thomas Fröhmel<br />

Stellv. Sprecher der KTG-Sektion NORD<br />

PS: Wir bitten um eine namentliche Anmeldung<br />

der Teilnehmer bis zum 3. März 2020 an<br />

thomas.froehmel@preussenelektra.de<br />

Dr.-Ing. Ludger Mohrbach studierte Maschinenbau mit der Vertiefungsrichtung<br />

Reaktortechnik an der Ruhr- Universität Bochum und promovierte<br />

dort 1989 zur Thermohydraulik des Schnellen Brüters. Bis 2019 war<br />

er als persönlicher Referent der Geschäftsführung, Referent und Leiter der<br />

Abteilung „Kerntechnik“ beim inter nationalen Technischen Verband der<br />

Kraftwerksbetreiber VGB in Essen tätig.<br />

Herzlichen Glückwunsch!<br />

Wenn Sie künftig eine<br />

Erwähnung Ihres<br />

Geburtstages in der<br />

<strong>atw</strong> wünschen, teilen<br />

Sie dies bitte der KTG-<br />

Geschäftsstelle mit.<br />

Die KTG gratuliert ihren Mitgliedern sehr herzlich zum Geburtstag<br />

und wünscht ihnen weiterhin alles Gute!<br />

März 2020<br />

50 Jahre | 1970<br />

10. Dr. Stefan Nießen, Erlangen<br />

13. Dipl.-Ìng. (FH) Michael Remshardt,<br />

Leingarten<br />

55 Jahre | 1965<br />

22. Karsten Müller Kleinmachnow<br />

60 Jahre | 1960<br />

23. Peter Reimann, Lingen<br />

65 Jahre | 1955<br />

06. Prof. Dr. Peter-Wilhelm Phlippen,<br />

Geilenkirchen<br />

70 Jahre | 1950<br />

23. Hans-Dieter Schmidt, Dortmund<br />

75 Jahre | 1945<br />

04. Dr. Bernd Hofmann,<br />

Eggenstein-Leopoldshafen<br />

11. Dr. Ulrich Krugmann, Erlangen<br />

11. Joachim Lange, Burgdorf<br />

15. Bernhard Brand, Forchheim<br />

20. Dipl.-Ing. mult. Herbert Niederhausen,<br />

Gebhardshain<br />

76 Jahre | 1944<br />

02. Dr. Peter Schnur, Hannover<br />

10. Prof. Dr. Reinhard Odoj, Hürtgenwald<br />

11. Hamid Mehrfar, Dormitz<br />

77 Jahre | 1943<br />

16. Dipl.-Ing. Jochen Heinecke, Kürten<br />

20. Dipl.-Ing. Jörg Brauns, Hanau<br />

80 Jahre | 1940<br />

01. Dipl.-Ing. Wolfgang Stumpf, Moers<br />

03. Dipl.-Ing. Eberhard Schomer, Erlangen<br />

18. Dipl.-Ing. Friedhelm Hülsmann,<br />

Garbsen<br />

81 Jahre |1939<br />

01. Prof. Dr. Günter Höhlein,<br />

Unterhaching<br />

82 Jahre | 1938<br />

14. Dr. Peter Paetz, Bergisch Gladbach<br />

KTG Inside


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

84 Jahre | 1936<br />

19. Dr. Hermann Hinsch, Hannover<br />

85 Jahre | 1935<br />

02. Dipl.-Ing. Joachim Hospe, München<br />

20. Dr. Jürgen Ahlf, Neustadt in Holstein<br />

87 Jahre | 1933<br />

30. Dipl.-Phys. Dieter Pleuger, Kiedrich<br />

89 Jahre | 1931<br />

17. Dipl.-Ing. Hans Waldmann, Schwabach<br />

90 Jahre | 1930<br />

25. Dr. Hans-Ulrich Borgstedt, Karlsruhe<br />

113<br />

NEWS<br />

Top<br />

First small modular reactors<br />

open a new world<br />

of applications<br />

(wna) The two barge-mounted reactors<br />

onboard Akademik Lomonosov<br />

have started providing electricity to<br />

the coastal town of Pevek in Russia.<br />

This marks the official start of operations<br />

<strong>for</strong> the world’s first small modular<br />

reactors and makes today a historic<br />

one <strong>for</strong> the global nuclear industry.<br />

World <strong>Nuclear</strong> Association Director<br />

General Agneta Rising warmly welcomed<br />

the news, “It is fantastic to see<br />

this innovative new floating nuclear<br />

power plant begin operating just in<br />

time <strong>for</strong> the winter celebrations.<br />

It will provide much needed clean<br />

electricity and heat to this remote<br />

arctic community.”<br />

In celebration of the accomplishment<br />

and in preparation <strong>for</strong> the New<br />

Year, Christmas tree lights were<br />

switched on using electricity from the<br />

reactors. The plant will be linked up to<br />

the local district heating network<br />

sometime in 2020. While the two<br />

reactors with a combined output of<br />

64 megawatts represent only a small<br />

addition to global nuclear generating<br />

capacity, they mark an important<br />

evolution in nuclear technology.<br />

Large reactors and SMRs are not<br />

so much competing technologies as<br />

complementary partners. Large reactors<br />

produce huge amounts of reliable,<br />

low-cost, low-carbon electricity<br />

while SMRs expand the range of<br />

useful nuclear applications.<br />

Rising continued, “There are<br />

around 50 advanced nuclear technologies<br />

under development at the<br />

moment with many countries pursuing<br />

novel designs and seeking to use<br />

nuclear technology <strong>for</strong> new and<br />

exciting applications. This may be the<br />

world’s first SMR, but many more will<br />

soon follow. These smaller reactors<br />

are well-suited <strong>for</strong> supplying electricity<br />

to hard-to-reach regions as well as<br />

serving smaller grids and industrial<br />

centres. We are at the dawn of a new<br />

era in nuclear technology.”<br />

| (20211012)<br />

ROSATOM’s first of a kind<br />

floating power unit connects<br />

to isolated electricity grid<br />

in Pevek, Russia’s Far East<br />

(rosatom) The floating power unit<br />

(FPU) Akademik Lomonosov has been<br />

connected to the grid, generating electricity<br />

<strong>for</strong> the first time in the isolated<br />

Chaun-Bilibino network in Pevek,<br />

Chukotka, Russia’s Far East. This<br />

happened after the Russian regulator<br />

Rostekhnadzor issued an operations<br />

permit, as well as permission to connect<br />

to the northern electricity grid<br />

maintained by Chukotenergo JSC.<br />

Pevek residents marked this<br />

symbolic day by turning on the fairy<br />

lights on the town’s Christmas tree.<br />

Rosatom’s Director General Alexey<br />

Likhachev said: “After its connection<br />

to the grid, Akademik Lomonosov<br />

becomes the world’s first nuclear<br />

power plant based on SMR-class technology<br />

to generate electricity. This is a<br />

remarkable milestone <strong>for</strong> both the<br />

Russian and the world’s nuclear<br />

energy industry. This is also a major<br />

step in establishing Pevek as the new<br />

energy capital of the region”.<br />

The project has been welcomed by<br />

scientists, nuclear energy experts and<br />

environmentalists across the world.<br />

Kirsty Gogan, Head of Energy <strong>for</strong><br />

Humanity, an NGO (London), said:<br />

“For hard-to-reach regions, with a<br />

climate that is simultaneously too<br />

harsh to support the use of renewable<br />

energies and too fragile to continue its<br />

heavy dependence on fossil fuels,<br />

small nuclear, including floating<br />

plants, is the only answer. Akademik<br />

Lomonosov is the first step towards<br />

demonstrating its potential <strong>for</strong> decarbonisation<br />

of the Arctic and beyond”.<br />

Connecting the FPU generators to<br />

the network was carried out after<br />

parameter synchronisation with the<br />

coastal network. This happened after<br />

the completed construction of the onshore<br />

facilities, ensuring the transfer of<br />

electricity from the FPUs to Chukotka’s<br />

high voltage networks. A vast amount<br />

of work was also carried out on constructing<br />

the heat supply networks.<br />

Connecting the FNPP to Pevek’s heat<br />

networks will be completed in 2020.<br />

| ROSATOM’s first of a kind floating power unit connects to isolated electricity<br />

grid in Pevek, Russia’s Far East, Credit: Rosatom<br />

Once the FNPP will begin commercial<br />

operations, it will make it Russia’s<br />

11th nuclear power plant. It will also<br />

mark the first time in Russia’s nuclear<br />

energy history that two nuclear power<br />

plants (the Akademik Lomonosov<br />

FNPP and the Bilibino NPP) operate in<br />

the same region.<br />

Notes to the editor:<br />

The nuclear FPU Akademik Lomonosov<br />

is equipped with two KLT-40C reactor<br />

systems (each with a capacity of 35<br />

MW) similar to those used on icebreakers.<br />

It is designed by Rosatom to work as<br />

a part of the Floating <strong>Nuclear</strong> Thermal<br />

<strong>Power</strong> Plant (FNPP). The vessel is<br />

144 metres long and 30 metres wide,<br />

and has a displacement of 21,000<br />

tonnes. Akademik Lomonosov – the<br />

first ship of this kind – was named <strong>for</strong><br />

18th century Russian scientist Mikhail<br />

Lomonosov. Aka demik Lomo nosov is a<br />

pilot project and a ‘working prototype’<br />

<strong>for</strong> a future fleet of floating nuclear<br />

power plants and on-shore installations<br />

based on Russian-made SMRs. The<br />

small power units will be available <strong>for</strong><br />

deployment to hard- to-reach areas of<br />

Russia’s North and Far-East, as well as<br />

<strong>for</strong> export.<br />

SMR-based nuclear power plants<br />

(featuring reactors of less than<br />

300 MWe each), floating and on-shore,<br />

are designed to made it possible to supply<br />

electricity to hard-to-reach areas,<br />

smaller grids and off-grid installations.<br />

These small nuclear reactors can operate<br />

non-stop without the need <strong>for</strong> refuelling<br />

<strong>for</strong> three to five years, thereby<br />

considerably reducing the cost of electricity<br />

generation. Whilst variable<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

114<br />

NEWS<br />

renewable energy installations such as<br />

wind and solar <strong>for</strong> such areas require an<br />

expensive a polluting diesel back-up or<br />

an expensive energy storage, small nuclear<br />

power plants ensure uninterrupted<br />

electricity supply even <strong>for</strong> energy intensive<br />

users. The reactors have the potential<br />

to work particularly well in regions<br />

with extended coastlines, power<br />

supply shortages, and limited access to<br />

electrical grids. The plant can be delivered<br />

to any point along a coast and connected<br />

to existing electrical grids.<br />

| (20211018); www.rosatom.ru<br />

www.fnpp.info<br />

World<br />

U.S.: Policymakers and energy<br />

companies plan to reduce<br />

carbon and know they’ll need<br />

nuclear<br />

(nei) In mid-January 2020, the<br />

leaders of the House Energy and Commerce<br />

Committee released an overview<br />

of the Climate Leadership and<br />

Environmental Action <strong>for</strong> our Nation’s<br />

(CLEAN) Future Act, a <strong>for</strong>thcoming<br />

bill to put the United States on a path<br />

to reduce carbon emissions.<br />

At the heart of the bill is a requirement<br />

<strong>for</strong> electricity providers to increase<br />

the portion of their power that<br />

comes from clean sources, including<br />

nuclear energy, and to reach 100 percent<br />

clean by 2050. The bill builds<br />

upon the commitments that states<br />

and companies have been making<br />

to significantly reduce carbon emissions.<br />

Prior to 2017, 28 states enacted<br />

some <strong>for</strong>m of legally binding requirement<br />

to deploy clean electricity. A typical<br />

state target would require 20 percent<br />

of the state’s electricity to come<br />

from clean sources. Only two of those<br />

28 states adopted technology-inclusive<br />

policies that would allow carbon-free<br />

nuclear energy to meet the goal.<br />

Now, states have clearly changed<br />

their perspective. In the last three<br />

years, 13 states have created or updated<br />

their standards and they tend to be<br />

much more ambitious and inclusive.<br />

The majority of these call <strong>for</strong> 100 percent<br />

clean electricity and the majority<br />

are technology-neutral, which will<br />

allow nuclear to be part of the<br />

generating portfolio to meet these<br />

goals.<br />

Analysts at the think tank Third<br />

Way created a tool that tracks who is<br />

making commitments to reduce emissions<br />

in the U.S. They have an online<br />

calculator that allows you to see the<br />

targets set by states, cities and companies<br />

to reduce emissions. It paints an<br />

interesting picture of how this landscape<br />

has changed in recent years: it’s<br />

not just state governments that are<br />

acting.<br />

The map that Third Way shows<br />

makes it clear that utilities are charting<br />

a path to carbon reductions. Twenty-eight<br />

electric sector companies<br />

have publicly put <strong>for</strong>ward targets <strong>for</strong><br />

their generating portfolios. This is a<br />

meaningful segment of the power sector<br />

with companies including American<br />

Electric <strong>Power</strong> Co., Duke Energy<br />

Corp., DTE Energy, Xcel Energy Inc.,<br />

Southern Co. and NRG Energy Inc.,<br />

among others.<br />

Their targets are ambitious. Almost<br />

all call <strong>for</strong> something like 80 percent<br />

carbon reductions or even 100 percent<br />

clean electricity. With this ambition<br />

comes a recognition that nuclear<br />

needs to be among the tools available<br />

to meet these goals. Of the 14 commitments<br />

made in 2019, 12 were technology-inclusive.<br />

This trend is very important. Carbon<br />

reduction policies must be defined<br />

to include nuclear energy as part<br />

of the available solutions. <strong>Nuclear</strong> energy<br />

makes up more than 55 percent<br />

of carbon-free energy in the U.S.,<br />

making it a key component of any plan<br />

to reduce carbon emissions. Including<br />

nuclear will also help to reduce costs<br />

and maintain reliability as emissions<br />

are reduced.<br />

In 2020, we can expect to see a<br />

great deal of attention on policy proposals<br />

to reduce carbon emissions.<br />

States and utilities have already begun<br />

to map out where we need to go and<br />

including nuclear as part of the solution<br />

will help to get us there.<br />

(20211007)<br />

| www.nei.org<br />

NEA: <strong>Nuclear</strong> and social<br />

science nexus: challenges and<br />

opportunities <strong>for</strong> speaking<br />

across the disciplinary divide<br />

(oecd-nea) The NEA organised a workshop<br />

on the "<strong>Nuclear</strong> and Social<br />

Science Nexus: Challenges and<br />

Oppor tunities <strong>for</strong> Speaking Across the<br />

Disciplinary Divide" on 12‐13 December<br />

2019. The first‐of‐its‐kind event<br />

brought together over 100 participants,<br />

including social science and<br />

humanities researchers, academic<br />

nuclear engineers, practitioners and<br />

policy makers. The participants<br />

examined the current scope of<br />

research in the social sciences with a<br />

focus on nuclear energy, and identified<br />

ways of trans<strong>for</strong>ming research<br />

findings into recommendations <strong>for</strong><br />

practice. The two‐day workshop<br />

aimed to build intellectual bridges<br />

across the nuclear and social sciences,<br />

as well as the academic and practitioner<br />

divides. Selected papers from<br />

the workshop will be published in a<br />

<strong>for</strong>thcoming special issue of the<br />

nuclear engineering journal <strong>Nuclear</strong><br />

Technology. Workshop participants<br />

expressed a keen interest in developing<br />

inter- and transdisciplinary<br />

research collaborations and continuing<br />

their dialogue beyond the workshop.<br />

The NEA will work to identify<br />

opportunities <strong>for</strong> such collaborations<br />

in the coming months.<br />

| (20211108); www.oecd-nea.org<br />

Europe<br />

Foratom: Just Transition<br />

Mechanism must support all<br />

low-carbon options<br />

(<strong>for</strong>atom) FORATOM welcomes the<br />

EU’s goal of providing financial support<br />

to coal-dependent regions in<br />

order to assist them in their decarbonisation<br />

ef<strong>for</strong>ts. Indeed, the transition<br />

to a low-carbon economy should not<br />

come at the detriment to society.<br />

There<strong>for</strong>e, we fully support EU funds<br />

being earmarked to help people transition<br />

from jobs in carbon-intensive<br />

sectors into low-carbon industries.<br />

That being said, FORATOM regrets<br />

the European Commission’s proposal<br />

to exclude such funds being used <strong>for</strong><br />

nuclear power plants. Several reports<br />

published over the last 18 months<br />

(IPCC, IEA and even the Commission<br />

itself) highlight that low-carbon<br />

nuclear is an essential component of a<br />

low-carbon economy. Actually, at the<br />

end of last year, several Member<br />

States made it clear that in order to<br />

commit to the 2050 decarbonisation<br />

targets then they must be allowed to<br />

invest in nuclear power.<br />

“The benefits of transitioning<br />

workers from the coal into the nuclear<br />

industry have already been demonstrated<br />

in both France and the UK”,<br />

states FORATOM Director General<br />

Yves Desbazeille. “We there<strong>for</strong>e find it<br />

hard to justify such a proposal by the<br />

Commission. At the end of the day, the<br />

EU should be focusing on helping<br />

people in these regions to transition<br />

into low-carbon industries. Limiting<br />

the low-carbon sectors which will be<br />

eligible <strong>for</strong> such funds will make<br />

achieving our low-carbon targets<br />

without leaving anyone behind a lot<br />

more difficult – if not impossible”.<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

Operating Results October 2019<br />

Plant name Country Nominal<br />

capacity<br />

Type<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Month Year Since<br />

commissioning<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Month Year Month Year<br />

OL1 Olkiluoto BWR FI 910 880 745 687 447 6 453 520 268 108 728 100.00 96.98 99.88 96.13 100.30 96.14<br />

OL2 Olkiluoto BWR FI 910 880 745 687 012 6 113 476 258 010 019 100.00 91.81 99.99 91.33 100.24 91.08<br />

KCB Borssele PWR NL 512 484 745 374 368 5 512 786 167 234 474 99.12 85.37 99.12 85.30 98.11 82.20<br />

KKB 1 Beznau 7) PWR CH 380 365 745 283 936 2 411 259 129 745 369 100.00 87.69 100.00 87.52 100.33 86.87<br />

KKB 2 Beznau 7) PWR CH 380 365 745 283 005 2 386 203 136 736 610 100.00 86.71 100.00 86.53 100.05 85.95<br />

KKG Gösgen 7) PWR CH 1060 1010 745 785 806 6 680 686 320 556 214 100.00 87.32 99.99 86.80 99.51 86.38<br />

KKM Mühleberg BWR CH 390 373 745 284 160 2 778 890 130 183 205 100.00 100.00 99.93 99.76 97.80 97.66<br />

CNT-I Trillo PWR ES 1066 1003 745 786 501 6 935 768 254 227 436 100.00 90.24 100.00 89.87 98.41 88.58<br />

Dukovany B1 1) PWR CZ 500 473 548 261 151 2 923 685 115 153 179 73.56 82.33 70.72 81.81 70.11 80.14<br />

Dukovany B2 PWR CZ 500 473 745 367 280 2 083 213 110 317 384 100.00 58.76 99.69 58.15 98.60 57.11<br />

Dukovany B3 PWR CZ 500 473 745 356 858 3 029 376 109 527 417 100.00 85.54 100.00 85.18 95.80 83.04<br />

Dukovany B4 PWR CZ 500 473 745 372 929 3 617 748 110 061 017 100.00 99.85 100.00 99.70 100.12 99.17<br />

Temelin B1 PWR CZ 1080 1030 745 805 805 6 302 005 120 663 047 100.00 80.67 99.97 80.43 99.96 79.83<br />

Temelin B2 PWR CZ 1080 1030 745 811 582 6 607 392 115 879 909 100.00 83.47 100.00 83.24 100.68 83.70<br />

Doel 1 2) PWR BE 454 433 92 40 658 2 291 598 137 736 060 12.39 68.11 11.98 67.77 11.69 67.67<br />

Doel 2 2) PWR BE 454 433 0 0 2 533 531 136 335 470 0 77.50 0 76.20 0 76.14<br />

Doel 3 PWR BE 1056 1006 745 798 464 6 397 257 261 529 742 100.00 82.90 100.00 82.30 101.11 82.54<br />

Doel 4 PWR BE 1084 1033 745 811 772 7 662 270 268 035 680 100.00 100.00 100.00 96.60 98.91 95.32<br />

Tihange 1 PWR BE 1009 962 745 740 727 7 293 792 306 124 650 100.00 100.00 99.94 99.98 98.56 99.18<br />

Tihange 2 3) PWR BE 1055 1008 128 131 910 2 286 338 256 938 268 17.18 31.32 17.09 30.70 16.94 29.92<br />

Tihange 3 PWR BE 1089 1038 745 799 779 7 746 449 278 973 722 100.00 99.97 100.00 99.31 99.15 97.99<br />

115<br />

NEWS<br />

Plant name<br />

Type<br />

Nominal<br />

capacity<br />

gross<br />

[MW]<br />

net<br />

[MW]<br />

Operating<br />

time<br />

generator<br />

[h]<br />

Energy generated, gross<br />

[MWh]<br />

Time availability<br />

[%]<br />

Energy availability<br />

[%] *) Energy utilisation<br />

[%] *)<br />

Month Year Since Month Year Month Year Month Year<br />

commissioning<br />

KBR Brokdorf DWR 1480 1410 745 986 722 8 378 370 358 946 180 100.00 86.83 93.96 81.51 89.20 77.28<br />

KKE Emsland DWR 1406 1335 745 1 028 413 8 746 219 355 565 188 100.00 87.04 100.00 86.94 98.20 85.25<br />

KWG Grohnde DWR 1430 1360 745 1 009 147 8 685 609 386 259 822 100.00 88.06 99.92 87.78 94.09 82.70<br />

KRB C Gundremmingen SWR 1344 1288 745 999 296 8 419 961 339 361 715 100.00 86.98 100.00 86.41 99.34 85.42<br />

KKI-2 Isar DWR 1485 1410 745 1 070 070 9 904 910 363 630 723 100.00 95.13 99.98 94.81 96.36 91.05<br />

GKN-II Neckarwestheim DWR 1400 1310 745 1 028 300 8 376 010 338 202 844 100.00 92.83 100.00 84.61 98.85 82.12<br />

KKP-2 Philippsburg 4) DWR 1468 1402 745 1 005 849 8 843 211 375 004 366 100.00 87.61 99.95 87.38 90.50 81.28<br />

The European nuclear industry<br />

currently sustains more than 1.1 million<br />

jobs in the EU and generates more<br />

than half a trillion euros in GDP according<br />

to a study by Deloitte. Looking<br />

ahead to 2050, the authors believe<br />

that, on average, the industry would<br />

support more than 1.3 million jobs annually<br />

and generate €576 billion per<br />

year in GDP. This shows that nuclear<br />

offers benefits both in terms of decarbonising<br />

the power sector and providing<br />

European citizens with much<br />

needed jobs.<br />

| (20211028); www.<strong>for</strong>atom.org<br />

Reactors<br />

Russian NPPs set a new<br />

record in terms of electric<br />

power output<br />

(rosatom) In 2019, the Russian nuclear<br />

power plants (affiliate companies of<br />

the Rosenergoatom Joint-Stock<br />

Company) set a new electric power<br />

output record – over 208.784 billion<br />

kilowatt-hours, which means they<br />

have grown their joint production and<br />

exceeded their previous record of<br />

2018 (204.275 billion kWh) by over<br />

4.5 billion kWh.<br />

The FAS assignment <strong>for</strong> 2019 has<br />

been delivered at the rate of 103 %<br />

with the planned production of<br />

202.7 billion kWh.<br />

The biggest contributions into the<br />

new Company’s record were from the<br />

Rostov (over 33.8 billion kWh), the<br />

Kalinin (over 31 billion kWh), and the<br />

Balakovo NPPs (over 30 billion kWh).<br />

Thus, a share of nuclear power<br />

plants in Russia’s energy mix has increased<br />

up to 19.04% in 2019 (in<br />

2018 this indicator was 18.7%). In<br />

the United Energy Grid (UEG) of<br />

Russia, without considering electricity<br />

generation by Bilibino NPP which<br />

operates in the isolated power system,<br />

a generation share of nuclear power<br />

plants has increased up to 19.3 %<br />

(19.1 % in 2018).<br />

| (20211041); www.rosatom.ru<br />

ASN issues a position statement<br />

on the orientations of<br />

the generic phase of the<br />

fourth periodic safety reviews<br />

of the 1300 MWe reactors<br />

(asn) On 11 December 2019, ASN<br />

issued a position statement on the<br />

orientations of the generic phase of<br />

the fourth periodic safety review of<br />

EDF’s 1300 MWe nuclear reactors.<br />

ASN considers that the general<br />

objectives set by EDF <strong>for</strong> this review<br />

are acceptable in principle. However,<br />

it asks EDF to modify or supplement<br />

these general objectives <strong>for</strong> this safety<br />

review, to consider certain baseline<br />

requirements <strong>for</strong> reassessment of the<br />

safety of its facilities and to add study<br />

topics to its review programme. The<br />

requests made by ASN are to a large<br />

*)<br />

Net-based values<br />

(Czech and Swiss<br />

nuclear power<br />

plants gross-based)<br />

1)<br />

Refueling<br />

2)<br />

Inspection<br />

3)<br />

Repair<br />

4)<br />

Stretch-out-operation<br />

5)<br />

Stretch-in-operation<br />

6)<br />

Hereof traction supply<br />

7)<br />

Incl. steam supply<br />

8)<br />

New nominal<br />

capacity since<br />

January 2016<br />

9)<br />

Data <strong>for</strong> the Leibstadt<br />

(CH) NPP will<br />

be published in a<br />

further issue of <strong>atw</strong><br />

BWR: Boiling<br />

Water Reactor<br />

PWR: Pressurised<br />

Water Reactor<br />

Source: VGB<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

116<br />

NEWS<br />

extent based on those made in 2016<br />

<strong>for</strong> the fourth periodic safety review of<br />

the 900 MWe reactors.<br />

In France, the operating lifetime of<br />

a nuclear reactor is not defined in advance.<br />

However, pursuant to Article L.<br />

593-18 of the Environment Code, the<br />

licensee of a basic nuclear installation<br />

must conduct a periodic safety review<br />

of its facility every ten years. The periodic<br />

safety review must be able to verify<br />

the facility’s compliance with the<br />

rules that apply to it and to update the<br />

assessment of the risks and drawbacks<br />

it constitutes <strong>for</strong> public health and<br />

safety and the protection of the environment,<br />

while notably taking account<br />

of the condition of the facility,<br />

experience acquired during operation,<br />

changing knowledge and the<br />

rules applicable to similar facilities.<br />

The review thus leads the licensee to<br />

improve the safety level of the facility.<br />

Following this review, ASN issues a<br />

position statement on the conditions<br />

<strong>for</strong> the continued operation of the<br />

facility.<br />

In 2017, EDF initiated the fourth<br />

periodic safety review of its twenty<br />

1300 MWe nuclear power reactors. As<br />

with the previous periodic safety<br />

reviews and in order to take advantage<br />

of the standardised nature of its<br />

reactors, EDF intends to carry out this<br />

periodic safety review in two stages:<br />

p a “generic” periodic review phase,<br />

concerning subjects common to all<br />

the 1300 MWe reactors. This<br />

generic approach is a means of<br />

pooling and sharing studies of<br />

facility ageing control, obsolescence<br />

and compliance, as well<br />

as the safety reassessment and<br />

design studies <strong>for</strong> any modifications<br />

to the facilities;<br />

p a “specific” periodic safety review<br />

phase, concerning each individual<br />

reactor and which is scheduled to<br />

run from 2027 to 2035. This phase<br />

addresses the particular characteristics<br />

of the facility and its environment,<br />

<strong>for</strong> example the level of natural<br />

hazards to be considered and<br />

the condition of the facility.<br />

The “generic” periodic safety review<br />

phase begins with a definition of the<br />

objectives assigned to this periodic<br />

safety review. In this respect, EDF<br />

transmitted a “periodic safety review<br />

guidance file” which specifies its objectives.<br />

Following the generic studies<br />

phase, ASN will also issue a position<br />

statement on the adequacy of the<br />

modifications planned by EDF.<br />

For the particular purpose of the<br />

1300 MWe reactors fourth periodic<br />

safety review, which is aiming <strong>for</strong><br />

continued operation beyond 40 years,<br />

ASN wished to promote broader participation<br />

by the stakeholders as of the<br />

generic phase objectives definition<br />

stage. Thus ASN’s position was the<br />

subject of a discussion meeting with<br />

the stakeholders (members of the<br />

HCTISN, the ANCCLI and CLIs, plus<br />

qualified personalities) at the ASN<br />

headquarters on 16 October 2019 and<br />

a public consultation on the website<br />

from 17 October to 17 November<br />

2019. The comments collected more<br />

specifically led ASN to ask EDF to produce<br />

a summary at the end of the<br />

generic periodic safety review phase,<br />

presenting the safety differences that<br />

will persist between the 1300 MWe<br />

reactors and the Flamanville EPR<br />

reactor, and to re<strong>for</strong>mulate the request<br />

concerning organisational and<br />

human factors.<br />

| (20211106);<br />

www.french-nuclear-safety.fr<br />

Company News<br />

Taiwan opts <strong>for</strong> GNS containers<br />

(gns) During an international tender<br />

procedure, GNS has been awarded a<br />

contract by Taiwan <strong>Power</strong> Company<br />

(TPC) <strong>for</strong> the development of containers<br />

<strong>for</strong> the transport and interim<br />

storage of intermediate and low-level<br />

radioactive waste. Within the scope<br />

of the upcoming national decommissioning<br />

projects, this is the first<br />

contract awarded internationally by<br />

TPC after the decommissioning of<br />

Chinshan <strong>Nuclear</strong> <strong>Power</strong> Plant had<br />

been announced in 2019. The containers<br />

are dedicated <strong>for</strong> metallic<br />

waste from the dismantling of the<br />

reactors and primary peripherals from<br />

all Taiwanese nuclear power plants.<br />

The order comprises the development<br />

of a total of five different<br />

| GNS design “SBoX®” (type B(U)) container (20210919).<br />

1<br />

2<br />

3<br />

container types (1x type B(U), 4x type<br />

IP-2). The containers are based on<br />

the proven GNS designs “SBoX®” (type<br />

B(U)) and steel sheet containers (type<br />

IP-2).<br />

The scope of supply also includes<br />

the complete handling and loading<br />

equipment as well as the preliminary<br />

plan <strong>for</strong> cutting the reactor and primary<br />

peripherals. Additionally, the<br />

order also comprises five prototypes,<br />

which will be manufactured by domestic<br />

partner companies in Taiwan,<br />

training courses and the cold handling<br />

at Chinshan NPP.<br />

Edward H.C. Chang, Director of<br />

<strong>Nuclear</strong> Backend Management Department<br />

at TPC: “During the open tender<br />

process GNS convinced Taipower with<br />

their experienced packaging solutions<br />

and their proven technology, which<br />

are believed as reliable and efficient.<br />

We expect that through this bilateral<br />

cooperation, Taipower will achieve<br />

the localization of container‘s mass<br />

production in the future.”<br />

Dr. Linus Bettermann, Head of<br />

Sales Department Casks at GNS: “The<br />

order from Taiwan proves the international<br />

competitiveness of our container<br />

systems. The decision of TPC<br />

underlines the leading role of GNS as<br />

a supplier of packaging <strong>for</strong> nuclear<br />

waste, which occurs in large quantities<br />

especially during nuclear power<br />

plant decommissioning.”<br />

| (20210919); www.gns.de<br />

Framatome signs a cooperation<br />

agreement with Japan<br />

on the development of fast<br />

neutron reactors<br />

(framatome) Framatome has signed a<br />

cooperation agreement in Tokyo with<br />

the CEA and Japanese organizations<br />

JAEA, MHI and MFBR on the development<br />

of fast neutron reactors. This<br />

agreement follows the agreement<br />

established in 2014 <strong>for</strong> the ASTRID<br />

program, through which a great many<br />

DESCRIPTION<br />

The GNS SBoX ® is a container <strong>for</strong> interim<br />

storage and final disposal of all kinds of<br />

radioactive waste from nuclear facilities. It<br />

consists of welded heavy-walled steel sheets.<br />

With an empty weight of 16,500 kg, the<br />

maximum payload is normally 8,500 kg. The<br />

outer dimensions are 2,000 * 1,600 * 1,700 mm<br />

(l * w * h).<br />

The GNS SBoX ® is available with round or<br />

rectangular lid systems.There are<br />

connections <strong>for</strong> drying and filling facilities<br />

integrated in the lid [3], which come with<br />

separate closure lids [2]. For protection<br />

against mechanical damages and ingress of<br />

dust the lid of the GNS SBoX ® is additionally<br />

covered with a protection plate [1].<br />

The GNS SBoX ® can be delivered with an<br />

integrated heating system, which enables<br />

short drying times and a low surface<br />

temperature during und after drying. This<br />

reduces the overall drying cycle time<br />

significantly.<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

technical outcomes have been jointly<br />

achieved and which has enabled close<br />

collaborative ties to be established<br />

between the parties.<br />

The new agreement aims to further<br />

research on high-stakes topics <strong>for</strong> this<br />

reactor technology. Subjects of interest<br />

include severe accidents, thermalhydraulics<br />

and fuel behavior, justification<br />

of material per<strong>for</strong>mance and<br />

durability, under-sodium inspection<br />

and instrumentation. This agreement<br />

will contribute to maintain and to<br />

develop the Framatome' skills and<br />

expertise in the field of fast reactors.<br />

| (20210920); www.framatome.com<br />

Uranium<br />

Prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Year<br />

Year<br />

Separative work: Spot market price range [USD*/kg UTA]<br />

Conversion: Spot conversion price range [USD*/kgU]<br />

180.00<br />

) 1 23.00<br />

160.00<br />

140.00<br />

120.00<br />

1980<br />

Yearly average prices in real USD, base: US prices (1982 to1984) *<br />

1985<br />

1990<br />

1995<br />

2000<br />

2005<br />

) 1<br />

2010<br />

2015<br />

2019<br />

Uranium prize range: Spot market [USD*/lb(US) U 3O 8]<br />

140.00<br />

) 1<br />

| Uranium spot market prices from 1980 to 2019 and from 2008 to 2019.<br />

The price range is shown. In years with U.S. trade restrictions the unrestricted uranium spot market price is shown.<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

22.00<br />

20.00<br />

18.00<br />

16.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

) 1<br />

Jan. 2011<br />

Jan. 2012<br />

Jan. 2013<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

117<br />

NEWS<br />

Westinghouse wins ovation<br />

i&c modernization project at<br />

Kozloduy units 5&6<br />

(westinghouse) Westinghouse Electric<br />

Company announced that it has<br />

signed a contract with Kozloduy<br />

<strong>Nuclear</strong> <strong>Power</strong> Plant (NPP) in Bulgaria<br />

to migrate the current Ovation<br />

plat<strong>for</strong>m- based in<strong>for</strong>mation and control<br />

(I&C) systems at units 5&6 to its<br />

latest standard, bringing even more<br />

competitiveness and efficiency in the<br />

way these plants are operating.<br />

Kozloduy will migrate to the latest<br />

Ovation plat<strong>for</strong>m, which will include<br />

the integration of a Safety Parameter<br />

Display System, Emergency Operator<br />

Procedures (EOP) and partial modernization<br />

of the Full-Scope Simulator.<br />

“The digitalization and modernization<br />

of the operating nuclear fleet<br />

is a key part of our client’s long-term<br />

operations and a strategic priority <strong>for</strong><br />

Westinghouse,” said Tarik Choho,<br />

president of Westinghouse’s Europe,<br />

Middle East and Africa (EMEA) Operating<br />

Plant Services Business Unit.<br />

“We are pleased to support Kozloduy<br />

5&6 in their ef<strong>for</strong>ts to utilize the best<br />

available technology and supply<br />

cost-competitive and clean energy to<br />

Bulgaria <strong>for</strong> decades to come.”<br />

The Ovation plat<strong>for</strong>m is one of the<br />

most advanced I&C plat<strong>for</strong>ms <strong>for</strong> the<br />

energy sector and is widely used at<br />

both operating and new nuclear<br />

plants. As the supplier of the Ovation<br />

plat<strong>for</strong>m to the nuclear industry,<br />

Westinghouse has implemented<br />

Ovation at the Kozloduy NPP <strong>for</strong><br />

more than 15 years and the plat<strong>for</strong>m<br />

has proven to be safe, reliable and<br />

very cost-efficient. Westinghouse is<br />

committed to support Kozloduy units<br />

5&6 in maintaining the Ovation<br />

plat<strong>for</strong>m <strong>for</strong> at least another 30 years,<br />

supporting Kozloduy’s plans to<br />

operate units 5&6 at least until 2049.<br />

| (20210921);<br />

www.westinghouse.com<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

Market data<br />

(All in<strong>for</strong>mation is supplied without<br />

guarantee.)<br />

<strong>Nuclear</strong> Fuel Supply<br />

Market Data<br />

In<strong>for</strong>mation in current (nominal)<br />

U.S.-$. No inflation adjustment of<br />

prices on a base year. Separative work<br />

data <strong>for</strong> the <strong>for</strong>merly “secondary<br />

market”. Uranium prices [US-$/lb<br />

U 3 O 8 ; 1 lb = 453.53 g; 1 lb U 3 O 8 =<br />

0.385 kg U]. Conversion prices [US-$/<br />

kg U], Separative work [US-$/SWU<br />

(Separative work unit)].<br />

Jan. 2013<br />

Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

2017<br />

p Uranium: 19.25–26.50<br />

p Conversion: 4.50–6.75<br />

p Separative work: 39.00–50.00<br />

2018<br />

p Uranium: 21.75–29.20<br />

p Conversion: 6.00–14.50<br />

p Separative work: 34.00–42.00<br />

2019<br />

January 2019<br />

p Uranium: 28.70–29.10<br />

p Conversion: 13.50–14.50<br />

p Separative work: 41.00–44.00<br />

February 2019<br />

p Uranium: 27.50–29.25<br />

p Conversion: 13.50–14.50<br />

p Separative work: 42.00–45.00<br />

March 2019<br />

p Uranium: 24.85–28.25<br />

p Conversion: 13.50–14.50<br />

p Separative work: 43.00–46.00<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

| Separative work and conversion market price ranges from 2008 to 2019. The price range is shown.<br />

)1<br />

In December 2009 Energy Intelligence changed the method of calculation <strong>for</strong> spot market prices. The change results in virtual price leaps.<br />

* Actual nominal USD prices, not real prices referring to a base year<br />

Sources: Energy Intelligence, Nukem; Bilder/Figures: <strong>atw</strong> 2020<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Jan. 2008<br />

Jan. 2009<br />

Jan. 2010<br />

Jan. 2011<br />

Jan. 2012<br />

April 2019<br />

p Uranium: 25.50–25.88<br />

p Conversion: 15.00–17.00<br />

p Separative work: 44.00–46.00<br />

May 2019<br />

p Uranium: 23.90–25.25<br />

p Conversion: 17.00–18.00<br />

p Separative work: 46.00–48.00<br />

June 2019<br />

p Uranium: 24.30–25.00<br />

p Conversion: 17.00–18.00<br />

p Separative work: 47.00–49.00<br />

July 2019<br />

p Uranium: 24.50–25.60<br />

p Conversion: 18.00–19.00<br />

p Separative work: 47.00–49.00<br />

August 2019<br />

p Uranium: 24.90–25.60<br />

p Conversion: 19.00–20.00<br />

p Separative work: 47.00–49.00<br />

September 2019<br />

p Uranium: 24.80–26.00<br />

p Conversion: 20.00–21.00<br />

p Separative work: 47.00–50.00<br />

October 2019<br />

p Uranium: 23.75–25.50<br />

p Conversion: 21.00–22.00<br />

p Separative work: 47.00–50.00<br />

November 2019<br />

p Uranium: 23.95–26.25<br />

p Conversion: 22.00–23.00<br />

p Separative work: 48.00–50.00<br />

| Source: Energy Intelligence<br />

www.energyintel.com<br />

Jan. 2013<br />

Year<br />

Jan. 2014<br />

Jan. 2015<br />

Jan. 2016<br />

Jan. 2017<br />

Jan. 2018<br />

Jan. 2019<br />

Jan. 2020<br />

News


<strong>atw</strong> Vol. 65 (2020) | Issue 2 ı February<br />

118<br />

NUCLEAR TODAY<br />

John Shepherd is a<br />

freelance journalist<br />

and communications<br />

consultant.<br />

Sources:<br />

NBER working paper<br />

https://bit.ly/<br />

35QIQLd<br />

IAEA director-general<br />

remarks<br />

https://bit.ly/30iJShT<br />

Brookhaven National<br />

Lab project<br />

https://bit.ly/<br />

2FMq7pp<br />

IEE analysis<br />

https://bit.ly/<br />

35SYQMy<br />

Climate of Opinion Frowns on Germany<br />

as <strong>Nuclear</strong> Exit Continues<br />

Germany’s sad shuffle towards a nuclear exit has continued with the closure of another clean energy power station.<br />

Unit 2 of Germany’s Philippsburg nuclear power plant was disconnected from the grid on 31 December, marking the<br />

end of 35 years of operation.<br />

Although planned, the closure came as economists<br />

released a model of Germany’s electrical system to see<br />

what would have happened if it had kept shuttered nuclear<br />

plants running. According to economists at the US National<br />

Bureau of Economic Research (NBER), keeping nuclear<br />

plants online would have saved the lives of 1,100 people a<br />

year who succumb to air pollution released by coal- burning<br />

power plants.<br />

The NBER working paper said lost nuclear electricity<br />

production due to the phase-out was replaced primarily<br />

by coal-fired production and net electricity imports. “The<br />

social cost of this shift from nuclear to coal is approximately<br />

$12 billion dollars per year.” More than 70 % of this cost<br />

came from “increased mortality risk associated with exposure<br />

to the local air pollution emitted when burning fossil<br />

fuels”, the NBER paper said. Even the largest estimates of<br />

the reduction in the costs associated with nuclear accident<br />

risk and waste disposal due to the phase-out are far smaller<br />

than 12 billion dollars.<br />

If further evidence of Germany’s ill-judged nuclear exit<br />

were needed, look no further than a separate report from<br />

the Institute of Energy Economics (IEE) at the University of<br />

Cologne, which concluded the country could “significantly”<br />

miss its target of covering 65 % of gross electricity<br />

con sumption with renewables by 2030. Analysis by an IEE<br />

team calculated that gross electricity consumption could<br />

rise to 748 terawatt hours (TWh) by 2030. At the same time,<br />

electricity generation from renewables would rise to<br />

345 TWh. “The share of renewable energies would thus be<br />

only 46 %, instead of the targeted 65 %.<br />

When will the anti-nuclear brigade face up to climate<br />

reality? Thankfully, the <strong>International</strong> Atomic Energy<br />

Agency (IAEA) has long since shaken off its reticence to say<br />

anything that might be deemed as ‘promoting’ nuclear<br />

power. The agency’s new director-general, Rafael Mariano<br />

Grossi, used one of his first major speeches since taking office<br />

to hammer home the fact that nuclear power is already<br />

reducing carbon dioxide emissions by about two gigatonnes<br />

annually. He said that was the equivalent of taking more<br />

than 400 million cars off the world’s roads every year.<br />

The IAEA chief, who was speaking at a side event during<br />

the COP 25 UN Climate Change Conference in Madrid,<br />

warned that while 30 countries currently use nuclear<br />

power, if any major users were to halt nuclear energy<br />

programmes overnight “this would have very serious<br />

consequences <strong>for</strong> CO 2 emissions”.<br />

And Grossi rightly pointed out that nuclear energy<br />

should not been seen as being in competition with renewables.<br />

“In order to achieve climate change goals and ensure<br />

sufficient energy <strong>for</strong> the future, we need to make use of all<br />

available sources of clean energy,” he said.<br />

In contrast to Germany, the US nuclear industry has a<br />

spring in its step <strong>for</strong> the new year – thanks to a pre-<br />

Christmas vote by Congress that included $1.5 billion <strong>for</strong><br />

nuclear energy programmes in appropriations <strong>for</strong> the<br />

2020 fiscal year. The nuclear cash boost represented a<br />

12.5 % increase over the previous year.<br />

In addition, Congress supported a seven-year reauthorisation<br />

of the Export-Import Bank (the US’ official export<br />

credit agency), which the country’s <strong>Nuclear</strong> Energy<br />

Institute (NEI) said would help to level the playing field <strong>for</strong><br />

American companies competing against <strong>for</strong>eign stateowned<br />

competitors.<br />

The reauthorisation marked what the NEI said was a<br />

“welcome departure” from a series of short-term authorisations<br />

since 2012 – which had made US nuclear suppliers<br />

pursuing long-term projects particularly vulnerable to<br />

perceptions that the Bank’s future was in doubt.<br />

According to the NEI, more than 95 % of the world’s<br />

nuclear construction projects are being built outside of the<br />

US and, to compete, US suppliers must be able to offer<br />

competitive financing to potential customers. “In international<br />

nuclear energy markets, a competitive export<br />

credit agency is a requirement to bid on virtually every<br />

project,” the NEI said.<br />

Indeed, the Trump administration can be credited with<br />

offering increasingly positive signals to the benefit of the<br />

domestic nuclear industry.<br />

The US Department of Energy has selected Brookhaven<br />

National Laboratory in New York State as the site <strong>for</strong> a<br />

planned new research facility that will benefit the global<br />

nuclear physics community. The Electron Ion Collider<br />

(EIC), which will be designed and built over 10 years at an<br />

estimated cost between $1.6 and $2.6 billion, will smash<br />

electrons into protons and heavier atomic nuclei “in an<br />

ef<strong>for</strong>t to penetrate the mysteries of the ‘strong <strong>for</strong>ce’ that<br />

binds the atomic nucleus together.<br />

In the UK, which will <strong>for</strong>mally leave the European<br />

Union on 31 January 2020, the future of investment in the<br />

fading but much-needed nuclear park faces another<br />

tumultuous year.<br />

EDF has appointed Rothschild as financial advisers to<br />

the Sizewell C project and the French energy giant said it is<br />

“working on sales documents to be issued once we have<br />

clear government policy on the detail of the funding<br />

model”. EDF wants to start building the Sizewell C plant,<br />

comprising two UK EPR nuclear reactor units, in 2022.<br />

Meanwhile, a parliamentary report in uranium-rich Australia<br />

said the federal government should consider a partial<br />

lifting of the current moratorium on nuclear energy to allow<br />

the deployment of new and emerging technologies.<br />

This year is also expected to see a milestone development<br />

in the United Arab Emirates, where the first of four<br />

nuclear reactor units at the Barakah nuclear power plant is<br />

said to be aiming to start up within months. The first of<br />

Barakah’s units had been due to come online in late 2017,<br />

but faced regulatory and related delays.<br />

The start of electricity generation at Barakah will make<br />

the UAE the first country in the region to deliver commercial<br />

nuclear power – and others in the oil-producing region,<br />

including Saudi Arabia, are keen to follow.<br />

As the world’s petro giants gear up <strong>for</strong> a nuclearpowered<br />

future, one can only hope nations still addicted to<br />

fossil fuels take note.<br />

<strong>Nuclear</strong> Today<br />

Climate of Opinion Frowns on Germany as <strong>Nuclear</strong> Exit Continues ı John Shepherd


Kommunikation und<br />

Training für Kerntechnik<br />

<strong>International</strong> sicher agieren<br />

Seminar:<br />

English <strong>for</strong> the <strong>Nuclear</strong> Industry<br />

Im internationalen Dialog ist Englisch die universelle Sprache. Dies gilt für Geschäfts beziehungen<br />

im Allgemeinen ebenso wie für die Branche der Kerntechnik im Speziellen. In Deutschland gewinnen<br />

der internationale Austausch und damit die englische Sprache eine noch größere Bedeutung,<br />

insbesondere bedingt durch die auf das Jahr 2022 begrenzte Stromerzeugung aus Kernenergie.<br />

Seminarinhalte<br />

ı<br />

ı<br />

ı<br />

ı<br />

Introductions and in<strong>for</strong>mal conversations<br />

Preparing a meeting<br />

Intercultural communication<br />

PR in the nuclear industry<br />

Den Teilnehmerinnen und Teilnehmern wird über eine praxisorientierte Didaktik und unter der<br />

Verwendung „kerntechnischen Vokabulars“ das notwendige Know-how für den beruflichen Alltag<br />

vermittelt. Dabei gilt es sprachlich bedingte Kommunikationsbarrieren mit internationalem Kollegium<br />

und Kunden zu überwinden.<br />

Zielgruppe<br />

Diese 2-tägige Schulung richtet sich an Fach- und Führungskräfte, Projektverantwortliche<br />

sowie Mitarbeiterinnen und Mitarbeiter aus allen Fachbereichen, bei denen Englisch für die<br />

organisationsinterne und/oder externe Kommunikation von Bedeutung ist.<br />

Maximale Teilnehmerzahl: 12 Personen<br />

Referentin<br />

Angela Lloyd<br />

Language and intercultural trainer (English native speaker)<br />

Wir freuen uns auf Ihre Teilnahme!<br />

Termin<br />

2 Tage<br />

1. bis 2. April 2020<br />

Tag 1: 10:30 bis 17:30 Uhr<br />

Tag 2: 09:00 bis 16:30 Uhr<br />

Veranstaltungsort<br />

Kaiserin Friedrich-Haus<br />

Bibliothek<br />

Robert-Koch Platz 7<br />

10115 Berlin<br />

Teilnahmegebühr<br />

898,– € ı zzgl. 19 % USt.<br />

Im Preis inbegriffen sind:<br />

ı Seminarunterlagen<br />

ı Teilnahmebescheinigung<br />

ı Pausenverpflegung<br />

inkl. Mittagessen<br />

Kontakt<br />

INFORUM<br />

Verlags- und Verwaltungsgesellschaft<br />

mbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Petra Dinter-Tumtzak<br />

Fon +49 30 498555-30<br />

Fax +49 30 498555-18<br />

Seminare@KernD.de<br />

Bei Fragen zur Anmeldung<br />

rufen Sie uns bitte an oder<br />

senden uns eine E-Mail.


#51KT<br />

www.kerntechnik.com<br />

Medienpartner<br />

51. KERNTECHNIK<br />

2020<br />

Jetzt anmelden!<br />

www.kerntechnik.com/kerntechnik/registration/<br />

5. – 6. Mai 2020<br />

Estrel Convention Center<br />

Berlin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!