23.12.2012 Views

Current Opinion in Investigational Drugs

Current Opinion in Investigational Drugs

Current Opinion in Investigational Drugs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong><br />

Mike Williams EDITOR<br />

Vol 7 No 1 January 2006<br />

Stanley Crooke, Annette Doherty, William Hagmann, John Kemp, Jacob J Plattner CO-EDITORS<br />

In this issue<br />

Central and peripheral nervous system<br />

• The genome: Five years on<br />

• Steroid therapy for exudative age-related<br />

macular degeneration<br />

• Nitrone sp<strong>in</strong> on cerebral ischemia<br />

• <strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease<br />

• The mechanism of action of gabapent<strong>in</strong> <strong>in</strong><br />

neuropathic pa<strong>in</strong><br />

• 5-HT 1A receptor activation <strong>in</strong> pa<strong>in</strong> relief<br />

• Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong><br />

pa<strong>in</strong> pathways<br />

• Does VEGF represent a potential treatment for<br />

amyotrophic lateral sclerosis?<br />

• Ispronicl<strong>in</strong>e<br />

• AEOL-10150<br />

• Vivitrex


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> Vol 7 No 1 January 2006<br />

Editor <strong>in</strong> Chief Michael Williams USA<br />

Co-Editors Stanley Crooke USA Annette Doherty UK William Hagmann USA John<br />

Kemp GERMANY Jacob J Plattner USA<br />

Patent Editor Hermann AM Mucke AUSTRIA<br />

Thomson Scientific<br />

Middlesex House<br />

34-42 Cleveland Street<br />

London<br />

W1T 4JE<br />

UK<br />

Tel +44 (0)20 7070 6565<br />

Fax +44 (0)20 7070 6570<br />

Email: TS.Custserv.EMEA@thomson.<br />

com<br />

Manag<strong>in</strong>g Editor<br />

Barbara Chan<br />

Email: barbara.chan@thomson.com<br />

In-house Editors<br />

Tracey Coll<strong>in</strong>s (Anti-<strong>in</strong>fectives, Endocr<strong>in</strong>e<br />

and Metabolics, and Oncological)<br />

Email: tracey.coll<strong>in</strong>s@thomson.com<br />

Paula F<strong>in</strong>n (Anti-<strong>in</strong>flammatory,<br />

Cardiovascular and Renal, and Nervous<br />

System)<br />

Email: paula.f<strong>in</strong>n@thomson.com<br />

Editorial Board<br />

Janet Allen (UK)<br />

Rafael Apitz-Castro (Venezuela)<br />

John F Barrett (USA)<br />

Maria Belvisi (UK)<br />

Frank Bennett (USA)<br />

Andreas Billich (Austria)<br />

Norbert Bischofberger (USA)<br />

Roy Black (USA)<br />

Mel Blumenthal (USA)<br />

Frank Cerasoli (USA)<br />

Bruce Chabner (USA)<br />

Daniel Chu (USA)<br />

Kelv<strong>in</strong> Cooper (USA)<br />

Joseph Coyle (USA)<br />

Neal Cutler (USA)<br />

Mohsen Daneshtalab (Canada)<br />

Erik De Clercq (Belgium)<br />

Chet De Groat (USA)<br />

Errol DeSouza (Germany)<br />

Andy Dray (Canada)<br />

Mariano Elices (USA)<br />

Jilly Evans (USA)<br />

Tony Evans (Australia)<br />

Giora Feuerste<strong>in</strong> (USA)<br />

Alan C Foster (USA)<br />

W<strong>in</strong> Gutteridge (Switzerland)<br />

Jean Marc Herbert (France)<br />

Taff Jones (Canada)<br />

Loran Killar (USA)<br />

Gav<strong>in</strong> Kilpatrick (UK)<br />

George Koob (USA)<br />

Daniel Lane (USA)<br />

Alan Lewis (USA)<br />

John McCall (USA)<br />

Rodger McMillan (UK)<br />

He<strong>in</strong>z Moser (USA)<br />

Bo Öberg (Sweden)<br />

Jose Palacios (Spa<strong>in</strong>)<br />

Alan Palmer (UK)<br />

Michael Parnham (Croatia)<br />

Herbert P<strong>in</strong>edo (Netherlands)<br />

Yves Pommier (USA)<br />

John Reed (UK)<br />

Malcolm Richardson (F<strong>in</strong>land)<br />

Steve Rosenberg (USA)<br />

Alessandro Sette (USA)<br />

Jim Sikorski (USA)<br />

John Souness (USA)<br />

Paul Smith (New Zealand)<br />

Ken Tanaka (USA)<br />

Eugene Thorsett (USA)<br />

Section Editors<br />

January 2006/July 2006<br />

Central and Peripheral Nervous System<br />

Mike Briley (France), Mike Crowell (USA), Robert<br />

Davis (USA), Steve England (UK), Peter<br />

Goadsby (UK), Clifford Woolf (USA), Mike Wyllie<br />

(UK), Stev<strong>in</strong> Zorn (USA)<br />

February 2006/August 2006<br />

Anti-<strong>in</strong>fectives<br />

Rob<strong>in</strong> Cooper (USA), Simon Croft (Switzerland),<br />

Christian Hubschwerlen (Switzerland), Jeffrey H<br />

Toney (USA), Alan Johnson (UK), Barney<br />

Koszalka (USA), Nicholas Meanwell (USA), R<strong>in</strong>o<br />

Rappuoli (Italy), John Rex (UK), David A Stevens<br />

(USA)<br />

March 2006/September 2006<br />

Cardiovascular and Renal<br />

Frank Barone (USA), Tom Colatsky (USA), De-Zai<br />

Dai (Ch<strong>in</strong>a), Delv<strong>in</strong> Knight (USA), Brian Krause<br />

(USA), Keith E Suckl<strong>in</strong>g (UK), J Ruth Wu-Wong<br />

(USA)<br />

April 2006/October 2006<br />

Endocr<strong>in</strong>e and Metabolics<br />

Bruno Allolio (Germany), Franklyn Bolander (USA),<br />

Joy H<strong>in</strong>son (UK), Nigel Levens (France), Terry<br />

Opgenorth (USA)<br />

May 2006/November 2006<br />

Anti-<strong>in</strong>flammatory, Immunologicals and<br />

Biologicals<br />

Cynthia Darl<strong>in</strong>gton (New Zealand), Francis Dumont<br />

(USA), David Howat (France), Cees Korstanje<br />

(Netherlands), Tony Mann<strong>in</strong>g (USA), Randall Morris<br />

(USA), Neville Punchard (UK)<br />

June 2006/December 2006<br />

Oncological<br />

Suresh Ambudkar (USA), Andrew Dorr (USA),<br />

David Gewirtz (USA), Michael Lotze (USA), Ala<strong>in</strong><br />

Rolland (USA), Edward Sausville (USA), Ian<br />

Stratford (UK), Mario Sznol (USA), Paul<br />

Workman (UK)


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong><br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong><br />

ISSN 1472-4472<br />

is published monthly by:<br />

Thomson Scientific<br />

Middlesex House<br />

34-42 Cleveland Street<br />

London<br />

W1T 4JE<br />

UK<br />

Tel: +44(0)20 7070 6565<br />

Fax: +44(0)20 7070 6570<br />

Email: TS.Custserv.EMEA@thomson.com<br />

Editorial Director Bernadette Swords<br />

Manag<strong>in</strong>g Editor (Journal) Barbara Chan<br />

Manag<strong>in</strong>g Editor (Evaluations) Sue Gotham<br />

In-house Editors (Journal) Tracey Coll<strong>in</strong>s, Paula<br />

F<strong>in</strong>n<br />

In-house Editors (Evaluations) Peter Aylett, Ruth<br />

Os<strong>in</strong>ame, Tom Phillips<br />

Assistant Editors Timur Mehmet, Amanda Pr<strong>in</strong>ce,<br />

Peter Stanislas<br />

Production Editor Debbie Wallbank<br />

Cover design © 2006 Andrew SR Featherstone -<br />

Research Graphix<br />

Copyright © 2005 The Thomson Corporation<br />

No part of this publication may be reproduced, stored<br />

<strong>in</strong> a retrieval system, or transmitted <strong>in</strong> any electronic<br />

or other form without prior permission of the copyright<br />

owner.<br />

Article repr<strong>in</strong>ts are available through Thomson<br />

Scientific’s repr<strong>in</strong>t service. For <strong>in</strong>formation contact:<br />

TS.Custserv.EMEA@thomson.com<br />

Advertis<strong>in</strong>g <strong>in</strong>formation<br />

Advertis<strong>in</strong>g is accepted <strong>in</strong> <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong>. For further <strong>in</strong>formation on<br />

this and other products produced by Thomson<br />

Scientific, contact: Ken Forrest, Thomson Scientific,<br />

Holbrook House, 14 Great Queen Street, London,<br />

WC2B 5DF, UK<br />

Ken.Forrest@thomson.com, +44 (0)20 7424 2168 or<br />

visit our website at<br />

www.thomsoncurrentdrugs.com<br />

While every effort is made by the publisher<br />

and editorial board to see that no <strong>in</strong>accurate or<br />

mislead<strong>in</strong>g data, op<strong>in</strong>ion or statement appear<br />

<strong>in</strong> this journal, they wish to make it clear that<br />

the data and op<strong>in</strong>ions appear<strong>in</strong>g <strong>in</strong> the articles<br />

and advertisements here<strong>in</strong> are the<br />

responsibility of the contributor or advertiser<br />

concerned. Accord<strong>in</strong>gly, the publishers, the<br />

editorial board and section editors and their<br />

respective employees, officers and agents<br />

accept no liability whatsoever for the<br />

consequences of any such <strong>in</strong>accurate or<br />

mislead<strong>in</strong>g data, op<strong>in</strong>ion or statement.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> is<br />

<strong>in</strong>dexed by Index Medicus, MEDLINE,<br />

EMBASE/Excerpta Medica, Chemical<br />

Abstracts and Derwent Drug File.<br />

Pr<strong>in</strong>ted <strong>in</strong> the UK<br />

Subscription <strong>in</strong>formation Annual subscription (twelve issues)<br />

Subscription rates <strong>in</strong>clude airspeed delivery<br />

North America Japan Rest of World<br />

Corporate $ 3641 ¥ 496,780 £ 2297<br />

Additional copy $ 1849 ¥ 248,390 £ 1146<br />

Academic rate $ 1849 ¥ 248,390 £ 1146<br />

Orders<br />

All orders (except for Japan) should<br />

be placed with<br />

Thomson Scientific<br />

Customer Support and Order<br />

Process<strong>in</strong>g Department<br />

1st Floor, Holbrook House<br />

14 Great Queen Street<br />

London<br />

WC2B 5DF<br />

UK<br />

Tel +44 (0) 20 7344 2800<br />

Fax +44 (0)20 7344 2972<br />

Orders for Japan<br />

Technomics Inc<br />

Nihonbashi TM Bldg<br />

1-8-11 Nihonbashi<br />

Horidome-cho<br />

Chuo-ku<br />

Tokyo 103<br />

Japan<br />

Tel +81 3 3666 2952<br />

Fax +81 3 3666 2730<br />

Subscription queries<br />

All enquiries should be addressed to<br />

Thomson Scientific<br />

Customer Support and Order Process<strong>in</strong>g Department<br />

1st Floor, Holbrook House<br />

14 Great Queen Street<br />

London<br />

WC2B 5DF<br />

UK<br />

Tel +44 (0)20 7344 2800<br />

Fax +44 (0)20 7344 2972<br />

In case of particular difficulty please contact<br />

TS.Custserv.EMEA@thomson.com


Aims and organization<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> is a monthly publication cover<strong>in</strong>g all therapeutic areas, <strong>in</strong> recognition of the<br />

<strong>in</strong>creas<strong>in</strong>gly multi-discipl<strong>in</strong>ary nature of modern drug discovery and development. With <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong><br />

<strong>Drugs</strong>, we aim to help the reader by provid<strong>in</strong>g <strong>in</strong> a systematic manner:<br />

• critical reviews of selected areas of <strong>in</strong>vestigational drug research<br />

• expert evaluation of selected drugs currently <strong>in</strong> cl<strong>in</strong>ical trials<br />

• selection of the most <strong>in</strong>terest<strong>in</strong>g papers and patents, annotated by experts.<br />

Subject division<br />

Six therapeutic categories are covered with each be<strong>in</strong>g featured <strong>in</strong> separate journal issues, and each therapeutic area be<strong>in</strong>g<br />

covered twice-yearly. The broad therapeutic categories and the specialist topics with<strong>in</strong> each are as follows:<br />

• Anti-<strong>in</strong>fectives Antifungals and antiparasitics; antibacterials (β-lactams, glycopeptides and other agents); antibacterials<br />

(qu<strong>in</strong>olones, macrolides and oxazolid<strong>in</strong>ones); vacc<strong>in</strong>es; antivirals (HIV); antivirals (non-HIV)<br />

• Anti-<strong>in</strong>flammatory, Immunologicals and Biologicals Musculoskeletal; respiratory; dermatology; nervous system;<br />

transplantation<br />

• Cardiovascular and Renal Hypertension and renal failure; stroke and ang<strong>in</strong>a; arrhythmia and heart failure;<br />

antithrombotics; hemostasis and hematological diseases; atherosclerosis, hypercholesterolemia and heart disease<br />

• Endocr<strong>in</strong>e and Metabolics Diabetes, reproductive endocr<strong>in</strong>ology, hormone disorders, bone metabolism and obesity<br />

• Central and Peripheral Nervous System Pa<strong>in</strong>; neuro-urology and neurogastroenterology; neurodegenerative and<br />

cognitive disorders; affective/behavioral/personality disorders and substance abuse; neurology and neuroprotection;<br />

schizophrenia and psychosis<br />

• Oncological Cell signal<strong>in</strong>g modulators; cytotoxic drugs; immunotherapeutic drugs and monoclonal antibodies; prote<strong>in</strong><br />

therapeutics, <strong>in</strong>clud<strong>in</strong>g growth factors; gene therapy; antisense <strong>in</strong>hibitors<br />

Each issue also conta<strong>in</strong>s a general alerts section which covers all therapeutic areas.<br />

Selection of topics to be reviewed Section Editors, who are major authorities <strong>in</strong> the field, are appo<strong>in</strong>ted by the Editors of<br />

the journal. They divide their section <strong>in</strong>to a number of topics, ensur<strong>in</strong>g that the field is comprehensively covered and that all<br />

issues of current importance are emphasized. Section Editors commission reviews from authorities on each topic that they<br />

have selected. Section Editors also identify compounds of significant promise and commission expert evaluations of these<br />

drugs. Submitted articles are peer reviewed before publication.<br />

Contents<br />

Patent alerts Brief commentaries on the scientific and/or commercial significance of new patents selected and written by<br />

experts with<strong>in</strong> their respective fields. These are presented beside the patent abstract from Patent fast-alert, published by<br />

Thomson <strong>Current</strong> <strong>Drugs</strong>.<br />

Paper alerts Expert commentary on a selection of recently published papers is provided.<br />

Therapeutic overviews Short m<strong>in</strong>i-reviews <strong>in</strong> which an area of <strong>in</strong>terest to the pharmaceutical <strong>in</strong>dustry is critically reviewed <strong>in</strong><br />

the context of recent developments. These pieces are <strong>in</strong>tended to be personal, thought-provok<strong>in</strong>g and controversial, where<br />

appropriate.<br />

Reviews Authors write concise reviews <strong>in</strong> which they present recent developments <strong>in</strong> their subject, emphasiz<strong>in</strong>g the aspects<br />

that, <strong>in</strong> their op<strong>in</strong>ion, are most important and provide short annotations to the papers and patents that they consider to be the<br />

most <strong>in</strong>terest<strong>in</strong>g from all those recently published <strong>in</strong> their topic. The reviews focus predom<strong>in</strong>antly on <strong>in</strong>vestigational drugs, or<br />

the therapeutic/commercial applications of new discoveries.<br />

Drug evaluations Expert commentary on the scientific and commercial potential of selected drugs <strong>in</strong> cl<strong>in</strong>ical trials are<br />

provided <strong>in</strong> each issue, <strong>in</strong> the form of drug evaluations. An evaluation is a review of the available literature (scientific and<br />

commercial) and acts as an expert guide to the bibliography, highlight<strong>in</strong>g references of particular <strong>in</strong>terest. <strong>Op<strong>in</strong>ion</strong> on the<br />

drug's potential, with a personal viewpo<strong>in</strong>t on its therapeutic and economic viability, are <strong>in</strong>cluded. The bibliographies conta<strong>in</strong><br />

only those papers referenced <strong>in</strong> the report, but readers may purchase the full bibliography, as it appears <strong>in</strong> <strong>Current</strong> <strong>Drugs</strong>'<br />

<strong>Investigational</strong> <strong>Drugs</strong> database (IDdb), if they wish.<br />

Literature classifications Key references relat<strong>in</strong>g to the drug are classified accord<strong>in</strong>g to a set of standard head<strong>in</strong>gs to<br />

provide a quick guide to the bibliography. These head<strong>in</strong>gs are as follows:<br />

Chemistry: References which discuss synthesis and structure-activity relationships.<br />

Metabolism: References which discuss metabolism, pharmacok<strong>in</strong>etics and toxicity.<br />

Biology: References which disclose aspects of the drug's pharmacology <strong>in</strong> animal models.<br />

Cl<strong>in</strong>ical: Reports of cl<strong>in</strong>ical phase studies <strong>in</strong> volunteers provid<strong>in</strong>g, where available, data on the follow<strong>in</strong>g: whether the<br />

experiment is placebo-controlled or double- or s<strong>in</strong>gle-bl<strong>in</strong>d, number of patients, dosage.<br />

Literature annotations Throughout the journal, a bullet<strong>in</strong>g system is used to denote <strong>in</strong>formation deemed by the author or<br />

editor to be either: • of special <strong>in</strong>terest; or •• of outstand<strong>in</strong>g <strong>in</strong>terest.<br />

Bi-annual <strong>in</strong>dexes Every six months, follow<strong>in</strong>g completion of coverage of each therapeutic area, cumulative <strong>in</strong>dexes of<br />

contents are provided.


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> Vol 7 No 1 January 2006<br />

Paper alert<br />

1 Mohsen Daneshtalab, Mariano J Elices & Robert E Hurst<br />

Patent selection<br />

4 Hermann AM Mucke<br />

Patent alert<br />

7 Hermann AM Mucke, Peter Norman & Clifford Whelan<br />

Central and Peripheral Nervous System<br />

Mike Briley, Mike Crowell, Robert Davis, Steve England,<br />

Peter Goadsby, Clifford Woolf, Mike Wyllie & Stev<strong>in</strong> Zorn<br />

14 Michael Williams<br />

Editorial overview: The genome: Five years on<br />

18 Maneli Mozaffarieh & Andreas Wedrich<br />

Editorial overview: Steroid therapy for exudative age-related<br />

macular degeneration: Bridg<strong>in</strong>g the gap until a cure is found<br />

20 Sheila A Doggrell<br />

Nitrone sp<strong>in</strong> on cerebral ischemia<br />

25 Tom H Johnston & Jonathan M Brotchie<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update<br />

33 J Kenneth Baillie & Ian Power<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong><br />

40 Francis C Colpaert<br />

5-HT1A receptor activation: New molecular and neuroadaptive<br />

mechanisms of pa<strong>in</strong> relief<br />

48 Joseph W Lynch & Robert J Callister<br />

Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong> pa<strong>in</strong> pathways<br />

54 Joanna Iłżecka<br />

Does VEGF represent a potential treatment for amyotrophic<br />

lateral sclerosis?<br />

60 Hugo Geerts<br />

Ispronicl<strong>in</strong>e (Targacept)<br />

70 Richard W Orrell<br />

AEOL-10150 (Aeolus)<br />

81 Christ<strong>in</strong>e E Head<strong>in</strong>g<br />

Vivitrex (Alkermes/Cephalon)<br />

89 Erratum


The next issue of this journal (Vol 7 No 2 February 2006)<br />

Will conta<strong>in</strong>:<br />

Anti-<strong>in</strong>fectives<br />

Rob<strong>in</strong> Cooper, Simon Croft, Christian Hubschwerlen, Jeffrey H<br />

Toney, Alan Johnson, Barney Koszalka, Nicholas Meanwell, R<strong>in</strong>o<br />

Rappuoli, John Rex & David A Stevens<br />

Barney Koszalka & Nicholas Meanwell<br />

Editorial overview: Viral entry mechanisms<br />

Mark Erion<br />

HepDirect prodrugs for target<strong>in</strong>g nucleotide-based antiviral drugs to<br />

the liver<br />

Asim Kumar Debnath<br />

Prospects and strategies for the discovery and development of<br />

small-molecule <strong>in</strong>hibitors of six-helix bundle formation <strong>in</strong> class 1 viral<br />

fusion prote<strong>in</strong>s<br />

Robert Smolic, Mart<strong>in</strong>a Volarevic, Cather<strong>in</strong>e H Wu & George Y<br />

Wu<br />

Potential applications of siRNA <strong>in</strong> hepatitis C virus therapy<br />

Larry Boone<br />

Next generation non-nucleoside reverse transcriptase <strong>in</strong>hibitors for<br />

the treatment of HIV<br />

Maria Zambon<br />

Influenza immunization strategies<br />

David Koelle<br />

Novel treatment options for herpes simplex virus<br />

Ursula Theuretzbacher & Jeffrey H Toney<br />

Nature's clarion call of antibacterial resistance: Are we listen<strong>in</strong>g?<br />

David Shlaes<br />

Novel tetracycl<strong>in</strong>es<br />

David Kaufman<br />

Veronate (Inhibitex)<br />

Joseph Jao-Yiu Sung & Henry Lik-Yuen Chan<br />

HBV-ISS (Dynavax)<br />

David McMillan<br />

StreptAvax (ID Biomedical)


Paper alert<br />

A selection of <strong>in</strong>terest<strong>in</strong>g recently published papers from<br />

major journals relat<strong>in</strong>g to drug discovery and research.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):1-3<br />

© The Thomson Corporation ISSN 1472-4472<br />

Contents<br />

1 Anti-<strong>in</strong>fectives<br />

2 Endocr<strong>in</strong>e & metabolic<br />

2 Oncological<br />

Anti-<strong>in</strong>fectives<br />

Selected by Mohsen Daneshtalab (Memorial University, St<br />

John's, NL, Canada)<br />

In vitro and <strong>in</strong> vivo antibacterial activities of SM-216601, a<br />

new broad-spectrum parenteral carbapenem.<br />

Ueda Y, Kanazawa K, Eguchi K, Takemoto K, Eriguchi Y,<br />

Sunagawa M (Sumitomo Pharmaceuticals Research Division,<br />

Osaka, Japan).<br />

Antimicrob Agents Chemother (2005) 49(10):4185-4196.<br />

•• Significance The emergence of multidrug-resistant, Grampositive<br />

bacteria such as methicill<strong>in</strong>-resistant Staphylococcus<br />

aureus (MRSA), penicill<strong>in</strong>-resistant Streptococcus pneumoniae<br />

(PRSP) and vancomyc<strong>in</strong>-resistant enterococci (VRE), has<br />

affected the usefulness of antibacterial chemotherapy <strong>in</strong> recent<br />

years. Resistance to β-lactam antibiotics is a serious concern<br />

because this class of compounds exhibits several advantages<br />

over other antibacterials. Thus, there is an urgent need for new<br />

β-lactam agents effective aga<strong>in</strong>st resistant pathogens. These<br />

researchers previously reported that 2-(4-arylthiazole-2-ylthio)-<br />

1β-methylcarbapenems, such as SM-17466 (Sumitomo Seika<br />

Chemicals Co Ltd/F Hoffmann-La Roche Ltd) and its<br />

derivatives, showed potent activity aga<strong>in</strong>st MRSA ow<strong>in</strong>g to<br />

their high aff<strong>in</strong>ity for penicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (PBP)2a.<br />

SM-17466 was also effective aga<strong>in</strong>st Enterococcus faecium<br />

compared with other carbapenems. These observations<br />

prompted the search for novel carbapenems with potent<br />

activity aga<strong>in</strong>st MRSA and VRE. SM-216601 (Sumitomo Seika<br />

Chemicals Co Ltd/F Hoffmann-La Roche Ltd), a<br />

dihydropyrrolyl thiazole analog of SM-17466, was identified,<br />

which demonstrated broad-spectrum antibacterial activity<br />

aga<strong>in</strong>st Gram-positive and Gram-negative bacteria. This paper<br />

describes <strong>in</strong> vitro studies <strong>in</strong>vestigat<strong>in</strong>g the activity of SM-216601<br />

aga<strong>in</strong>st different cl<strong>in</strong>ical isolates compared with vancomyc<strong>in</strong>,<br />

l<strong>in</strong>ezolid and several other β-lactams. In addition, the efficacy of<br />

SM-216601 aga<strong>in</strong>st systemic <strong>in</strong>fections <strong>in</strong> mice caused by<br />

methicill<strong>in</strong>-sensitive S aureus, MRSA, Escherichia coli,<br />

Pseudomonas aerug<strong>in</strong>osa and experimental E faecium<br />

subcutaneous abscesses is described.<br />

F<strong>in</strong>d<strong>in</strong>gs This study <strong>in</strong>vestigated the <strong>in</strong> vitro antibacterial<br />

activity, aff<strong>in</strong>ity for bacterial PBPs and resistance to<br />

hydrolysis by dehydropeptidase (DHP)-1 of SM-216601, and<br />

evaluated its <strong>in</strong> vivo efficacy aga<strong>in</strong>st Gram-positive and<br />

Gram-negative bacteria and pharmacok<strong>in</strong>etics <strong>in</strong> mice.<br />

SM-216601 exhibited potent activity aga<strong>in</strong>st MRSA, PRSP,<br />

VRE, ampicill<strong>in</strong>-resistant Haemophilus <strong>in</strong>fluenzae, Moraxella<br />

catarrhalis, E coli, Klebsiella pneumoniae and Proteus mirabilis.<br />

In addition, SM-216601 was highly efficacious aga<strong>in</strong>st<br />

experimentally <strong>in</strong>duced <strong>in</strong>fections <strong>in</strong> mice caused by<br />

S aureus, E faecium, E coli and P aerug<strong>in</strong>osa. Its sensitivity aga<strong>in</strong>st<br />

renal DHP-1 was similar to that of meropenem and superior to<br />

that of imipenem. SM-216601 exhibited improved<br />

pharmacok<strong>in</strong>etics compared with imipenem and meropenem<br />

<strong>in</strong> mice, rats, dogs and cynomolgus monkeys.<br />

Design, synthesis, and biological activity of m-tyros<strong>in</strong>ebased<br />

16- and 17-membered macrocyclic <strong>in</strong>hibitors of<br />

hepatitis C virus NS3 ser<strong>in</strong>e protease.<br />

Chen KX, Njoroge FG, Pichardo J, Prongay A, Butkiewicz N, Yao<br />

N, Madison V, Girijavallabhan V (Scher<strong>in</strong>g-Plough Research<br />

Institute, Kenilworth, NJ, USA).<br />

J Med Chem (2005) 48(20):6229-6235.<br />

• Significance The worldwide spread of hepatitis C virus<br />

(HCV) <strong>in</strong>fection has caused a global health crisis. The only<br />

therapies currently available for the treatment of HCV <strong>in</strong>fection<br />

are subcutaneous <strong>in</strong>terferon (IFN)α or pegylated IFNα<br />

monotherapy, or the comb<strong>in</strong>ation of IFNα or pegylated IFNα<br />

and oral ribavir<strong>in</strong>. These therapies have limited efficacies and<br />

cause considerable side effects <strong>in</strong> patients. Therefore, the search<br />

for small molecules with high efficacy and less toxicity<br />

cont<strong>in</strong>ues. The viral NS3 prote<strong>in</strong> and its correspond<strong>in</strong>g enzyme,<br />

NS3 protease, are attractive drug targets <strong>in</strong> HCV. Many<br />

protease <strong>in</strong>hibitors that have peptidic molecular structures have<br />

been developed <strong>in</strong> recent years. However, because of low<br />

bioavailability and poor pharmacok<strong>in</strong>etics, most of these<br />

<strong>in</strong>hibitors have failed to make it onto the market.<br />

Peptidomimetics are peptidic analogs that resist hydrolytic<br />

enzymes while exhibit<strong>in</strong>g the same enzyme <strong>in</strong>hibitory<br />

characteristics as the correspond<strong>in</strong>g peptides. The potential of<br />

cyclic hexapeptides as <strong>in</strong>hibitors of the HCV NS3 protease have<br />

been reported <strong>in</strong> a number of studies. Based on these<br />

discoveries, novel 16- and 17-membered r<strong>in</strong>g analogs were<br />

synthesized and evaluated for HCV NS3 protease <strong>in</strong>hibitory<br />

activity.<br />

F<strong>in</strong>d<strong>in</strong>gs The synthesis of these cyclic peptides began with<br />

the coupl<strong>in</strong>g of the commercially available N-Boccyclohexylglyc<strong>in</strong>e<br />

and m-tyros<strong>in</strong>e methyl ester, which <strong>in</strong> five<br />

steps gave rise to methyl 11(S)-cyclohexyl-9.12-dioxo-2-oxa-<br />

10,13-diazabicyclo[14.3.1]eicosa-1(20),16,18-triene-14(S)carboxylate.<br />

Hydrolysis of this <strong>in</strong>termediate followed by<br />

coupl<strong>in</strong>g with [2-(3-am<strong>in</strong>o-2-hydroxy-hexanoylam<strong>in</strong>o)acetylam<strong>in</strong>o]-phenylacetic<br />

acid tert-butyl ester hydrochloride<br />

afforded the desired 17-membered macrocyclic compounds<br />

as either O-tert-butyl ester, free carboxylic acid, or the<br />

correspond<strong>in</strong>g mono- or dimethylamide analogs. The<br />

correspond<strong>in</strong>g 16-membered analogs were synthesized <strong>in</strong><br />

the same manner as above. In an HCV protease cont<strong>in</strong>uous<br />

assay, the 16-membered analogs were less active than the<br />

correspond<strong>in</strong>g 17-membered analogs. This study confirmed<br />

the potential of these 17-membered macrocycles as lead<br />

compounds for further development of anti-HCV drugs.<br />

Synthesis and structure-activity relationships of novel<br />

anti-hepatitis C agents: N 3 ,5'-cyclo-4-(β-D-ribofuranosyl)vic-triazolo[4,5-b]pyrid<strong>in</strong>-5-one<br />

derivatives.<br />

Wang P, Du J, Rachakonda S, Chun B-K, Tharnish PM, Stuyver<br />

LJ, Otto MJ, Sch<strong>in</strong>azi RF, Watanabe KA (Pharmasset Inc,<br />

Pr<strong>in</strong>ceton, NJ, USA).<br />

J Med Chem (2005) 48(20):6454-6460.<br />

• Significance Chronic hepatitis C virus (HCV) <strong>in</strong>fection is<br />

1


2 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

predicted to become a major challenge for healthcare providers,<br />

especially as the currently asymptomatic carriers of this virus<br />

may develop hepatocellular carc<strong>in</strong>oma. Furthermore, the death<br />

rate due to HCV <strong>in</strong>fection is predicted to triple <strong>in</strong> the next ten to<br />

20 years. <strong>Current</strong> treatment protocols <strong>in</strong>volve either the<br />

adm<strong>in</strong>istration of <strong>in</strong>terferon (IFN)α or its pegylated form alone<br />

or <strong>in</strong> comb<strong>in</strong>ation with ribavir<strong>in</strong> (RBV). IFNα causes<br />

neuropsychiatric adverse effects and anemia is the most<br />

common side effect of RBV. In addition, the response rate for<br />

both therapeutic approaches is < 50%. Thus, the identification<br />

of new and effective drugs for the treatment of HCV <strong>in</strong>fection is<br />

critical. These researchers previously identified a novel<br />

compound, N 3,5'-cyclo-4-(β-D-ribofuranosyl)-vic-triazolo[4,5b]pyrid<strong>in</strong>-5-one<br />

(CRTP), which exhibited moderate anti-HCV<br />

activity <strong>in</strong> a subgenomic RNA replicon system. In an effort to<br />

discover more potent anti-HCV agents, a series of 6- and 7substituted<br />

derivatives of CRTP were synthesized. In this<br />

study, different 5-thiono, 6-halo, 7-alkylam<strong>in</strong>o and 7-methyl<br />

analogs of CRTP were synthesized and their anti-HCV activity<br />

and cytotoxicity evaluated. Some of the newly synthesized<br />

compounds exhibited 8- to 40-fold more potent anti-HCV<br />

activity than that of CRTP.<br />

F<strong>in</strong>d<strong>in</strong>gs CRTP was <strong>in</strong>itially synthesized from 1-(2,3,5-tri-Obenzoyl-β-D-ribofuranosyl)-5-nitropyrid<strong>in</strong>-2-one<br />

us<strong>in</strong>g either<br />

a five-step traditional synthetic method or a one-pot<br />

synthetic method. Further synthetic procedures <strong>in</strong>volv<strong>in</strong>g<br />

CRTP resulted <strong>in</strong> 5-thiono, 6-chloro/bromo, 7-am<strong>in</strong>o or 7alkylam<strong>in</strong>o<br />

analogs. The 7-methyl analog of CRTP was<br />

prepared us<strong>in</strong>g a different methodology. The synthesized<br />

compounds were tested for their ability to <strong>in</strong>hibit HCV RNA<br />

<strong>in</strong> a subgenomic replicon Huh-7 cell l<strong>in</strong>e. Cytotoxicity was<br />

determ<strong>in</strong>ed us<strong>in</strong>g an MTS assay. Among the compounds<br />

tested, the 5-thiono, 6-chloro, 6-bromo, 7-am<strong>in</strong>o, 7methylam<strong>in</strong>o<br />

and 7-methyl analogs exhibited more potent<br />

anti-HCV activity than CRTP, with the 6-chloro and 6-bromo<br />

analogs be<strong>in</strong>g the most potent. This study suggests a direct<br />

correlation between the anti-HCV activity and the<br />

cytotoxicity of these compounds.<br />

Endocr<strong>in</strong>e & metabolics<br />

Selected by Mariano J Elices (PharmaMar USA, Cambridge,<br />

MA, USA)<br />

Normal fast<strong>in</strong>g plasma glucose levels and type 2<br />

diabetes <strong>in</strong> young men.<br />

Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat<br />

T, Kochba I, Rudich A; Israeli Diabetes Research Group<br />

(Medical Corps Headquarters, Tel-Hashomer, Israel).<br />

N Engl J Med (2005) 353(14):1454-1462.<br />

• Significance Science textbooks generally list the range of<br />

fast<strong>in</strong>g plasma glucose values for healthy <strong>in</strong>dividuals<br />

(normoglycemic) as be<strong>in</strong>g 70 to 110 mg/dl. However, <strong>in</strong><br />

2003, an expert committee at the American Diabetes<br />

Association (ADA) revised this long-held view and<br />

suggested that fast<strong>in</strong>g blood glucose levels of 101 to 109<br />

mg/dl represent impairment of glucose metabolism and<br />

thus pose a risk for the development of type 2 diabetes. In<br />

general, the <strong>in</strong>cidence of type 2 diabetes has <strong>in</strong>creased <strong>in</strong><br />

developed countries, <strong>in</strong>clud<strong>in</strong>g among younger members of<br />

the population that have traditionally not been considered to<br />

be at risk; thus it is of significant value to uncover risk<br />

factors for this illness.<br />

F<strong>in</strong>d<strong>in</strong>gs In order to address which risk factors contribute to<br />

the development of type 2 diabetes, the <strong>in</strong>vestigators exam<strong>in</strong>ed<br />

a computerized database that was established <strong>in</strong> 1992 to<br />

capture data from the MELANY (MEtabolic, Lifestyle, And<br />

Nutrition assessment <strong>in</strong> Young adults) trial. This trial was<br />

conducted among military personnel over 25 years of age <strong>in</strong><br />

Israel who received periodic exam<strong>in</strong>ations every three to five<br />

years. At the time of their periodic visit, each <strong>in</strong>dividual gave a<br />

blood sample after a 14-h fast<strong>in</strong>g period, and received a medical<br />

exam<strong>in</strong>ation; a detailed questionnaire was also completed by<br />

each <strong>in</strong>dividual. The primary endpo<strong>in</strong>t of the study was a new<br />

diagnosis of type 2 diabetes dur<strong>in</strong>g the trial (based on criteria<br />

outl<strong>in</strong>ed by the ADA expert committee) which <strong>in</strong>volved the<br />

record<strong>in</strong>g of two fast<strong>in</strong>g plasma glucose levels of at least 126<br />

mg/dl. Of 13,163 male <strong>in</strong>dividuals with fast<strong>in</strong>g blood glucose<br />

levels of ≤ 100 mg/dl, there were 208 new cases of type 2<br />

diabetes (ie, a 1.6% <strong>in</strong>cidence) spann<strong>in</strong>g an average of 5.7 years<br />

of follow-up. Multivariate models showed that males with<br />

fast<strong>in</strong>g blood glucose at the high end of the normal range (91 to<br />

99 mg/dl), comb<strong>in</strong>ed with serum triglyceride levels of ≥ 150<br />

mg/dl, had an 8.23-fold higher risk of develop<strong>in</strong>g type 2<br />

diabetes compared with <strong>in</strong>dividuals with fast<strong>in</strong>g plasma<br />

glucose and serum triglyceride levels of ≤ 86 and < 150 mg/dl,<br />

respectively. In a similar manner, hazard ratios revealed a 8.29fold<br />

higher risk of develop<strong>in</strong>g type 2 diabetes <strong>in</strong> obese men<br />

(body mass <strong>in</strong>dex ≥ 30) even when they had a normal, albeit<br />

high, fast<strong>in</strong>g blood glucose (91 to 99 mg/dl), compared with<br />

control <strong>in</strong>dividuals with fast<strong>in</strong>g plasma glucose levels and a<br />

body mass <strong>in</strong>dex of ≤ 86 mg/dl and < 25, respectively. These<br />

data strongly suggest that normoglycemic <strong>in</strong>dividuals with<br />

either serum triglyceride levels > 150 mg/dl or exhibit<strong>in</strong>g<br />

relative obesity (ie, body mass <strong>in</strong>dex ≥ 30) are at an <strong>in</strong>creased<br />

risk of develop<strong>in</strong>g type 2 diabetes later <strong>in</strong> life. From a healthcare<br />

standpo<strong>in</strong>t, these f<strong>in</strong>d<strong>in</strong>gs expose a host of opportunities <strong>in</strong><br />

diagnostic, preventive and therapeutic areas <strong>in</strong> type 2 diabetes.<br />

Oncological<br />

Selected by Robert E Hurst (Oklahoma University Health<br />

Sciences Center, OK, USA)<br />

A potential synergistic anticancer effect of paclitaxel<br />

and amifost<strong>in</strong>e on endometrial cancer.<br />

Dai D, Holmes AM, Nguyen T, Davies S, Theele DP,<br />

Verschraegen C, Leslie KK (University of New Mexico Health<br />

Sciences Center, Albuquerque, NM, USA).<br />

Cancer Res (2005) 65(20):9517-9524.<br />

• Significance Although the prognosis for endometrial cancer<br />

is generally good, advanced or recurrent cases have a poor<br />

prognosis, with chemotherapy offer<strong>in</strong>g mostly palliative<br />

therapy. Amifost<strong>in</strong>e has been proven to protect normal cells<br />

aga<strong>in</strong>st a number of chemotherapeutic agents, <strong>in</strong>clud<strong>in</strong>g<br />

paclitaxel. Amifost<strong>in</strong>e not only allows the adm<strong>in</strong>istration of<br />

higher doses of paclitaxel but, <strong>in</strong> this study, the drug also had a<br />

direct effect on endometrial cancer cells, and acted<br />

synergistically with paclitaxel. Thus, comb<strong>in</strong>ation therapy<br />

with these two drugs may be more effective than paclitaxel<br />

alone.


F<strong>in</strong>d<strong>in</strong>gs In vitro studies with poorly differentiated Hec50co<br />

endometrial cancer cells demonstrated that amifost<strong>in</strong>e had<br />

direct anticancer effects, produc<strong>in</strong>g G1 arrest of the cell cycle<br />

and <strong>in</strong>duc<strong>in</strong>g apoptosis. Amifost<strong>in</strong>e was also active <strong>in</strong> a<br />

flank xenograft model <strong>in</strong> nude mice. A s<strong>in</strong>gle dose of<br />

Paper alert 3<br />

amifost<strong>in</strong>e (178 µM) reduced the IC50 value of paclitaxel<br />

from 14 to 2 nM, and amifost<strong>in</strong>e acted synergistically with<br />

paclitaxel to <strong>in</strong>duce G2 to M growth arrest and apoptosis.<br />

The survival of mice was improved significantly over either<br />

agent alone <strong>in</strong> a flank xenograft model.


4<br />

Patent selection<br />

The follow<strong>in</strong>g recently issued patents have been pre-selected<br />

as be<strong>in</strong>g of particular <strong>in</strong>terest from the <strong>Current</strong> Patents<br />

Gazette. Full alerts will appear <strong>in</strong> forthcom<strong>in</strong>g issues of<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong>.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):4-6<br />

© The Thomson Corporation ISSN 1472-4472<br />

Oncologic, endocr<strong>in</strong>e and metabolic<br />

NOVARTIS AG Inhibitors of IAP. WO-2005097791 (20<br />

October 2005)<br />

• Compounds that <strong>in</strong>hibit the b<strong>in</strong>d<strong>in</strong>g of Smac prote<strong>in</strong> to<br />

<strong>in</strong>hibitors of apoptosis prote<strong>in</strong>s (IAPs), thereby promot<strong>in</strong>g the<br />

apoptosis of rapidly divid<strong>in</strong>g cells are described. These<br />

compounds are useful for the treatment of proliferation diseases<br />

such as cancer. This application represents cont<strong>in</strong>uation of<br />

research by this group on Smac and IAPs (see also WO-<br />

2004005248 and WO-2005074989); a May 2005 press release<br />

from Novartis gives details of the Smac mimetic project. Some<br />

of the <strong>in</strong>ventors have previously worked on k<strong>in</strong>ase <strong>in</strong>hibitors<br />

and <strong>in</strong>tegr<strong>in</strong> receptor antagonists.<br />

UNIVERSITY OF WESTERN AUSTRALIA Osteoblast growth<br />

factor. WO-2005100389 (27 October 2005)<br />

• Caltr<strong>in</strong> (calcium transport <strong>in</strong>hibitor), a small cyste<strong>in</strong>e-rich<br />

secretory prote<strong>in</strong> isolated from a hematopoietic macrophage<br />

cell l<strong>in</strong>e, elevates cytosolic calcium levels and may be used<br />

for treat<strong>in</strong>g or prevent<strong>in</strong>g bone disorders. The <strong>in</strong>ventors are<br />

named on prior applications from Verigen Transplantation<br />

Service International AG, for example, WO-03026689,<br />

concern<strong>in</strong>g the use of growth factors from chondrocytes for<br />

the treatment of osteogenesis.<br />

MEDIQUEST THERAPEUTICS INC Polyam<strong>in</strong>e analogs that<br />

activate antizyme frameshift<strong>in</strong>g. WO-2005105729 (10<br />

November 2005)<br />

• Polyam<strong>in</strong>e analogs that activate antizyme frameshift<strong>in</strong>g to<br />

downregulate production of endogenous polyam<strong>in</strong>es by<br />

ornith<strong>in</strong>e decarboxylase and transport via the correspond<strong>in</strong>g<br />

polyam<strong>in</strong>e transporter are claimed. These compounds are<br />

useful <strong>in</strong> the treatment of cellular proliferation-associated<br />

<strong>in</strong>dications, particularly alopecia. This application claims<br />

several polyam<strong>in</strong>es, of which two compounds have previously<br />

been specifically claimed <strong>in</strong> US-06914079 (by the same<br />

<strong>in</strong>ventors). MediQuest, <strong>in</strong> collaboration with researchers at the<br />

University of Utah, is <strong>in</strong>vestigat<strong>in</strong>g a series of polyam<strong>in</strong>e<br />

analogs. The company is also <strong>in</strong>vestigat<strong>in</strong>g a polyam<strong>in</strong>e<br />

transporter <strong>in</strong>hibitor ORI-1202.<br />

PFIZER INC Inhibitors of checkpo<strong>in</strong>t k<strong>in</strong>ases (Wee1 and<br />

Chk1). US-20050250836 (10 November 2005)<br />

• Novel substituted <strong>in</strong>dacene molecules that specifically <strong>in</strong>hibit<br />

one or both of the checkpo<strong>in</strong>t k<strong>in</strong>ases Wee1 and Chk1 and are<br />

useful <strong>in</strong> the treatment of proliferative disorders are described.<br />

Pfizer is <strong>in</strong>vestigat<strong>in</strong>g PD-166285, a prote<strong>in</strong> k<strong>in</strong>ase <strong>in</strong>hibitor.<br />

Results presented at the American Association for Cancer<br />

Research meet<strong>in</strong>g <strong>in</strong> April 2000 <strong>in</strong>dicated that PD-166285<br />

<strong>in</strong>hibited Wee1 tyros<strong>in</strong>e k<strong>in</strong>ase. Pfizer (formerly Agouron) is<br />

also <strong>in</strong>vestigat<strong>in</strong>g a series of Chk1 <strong>in</strong>hibitors for the potential<br />

treatment of cancer. As of May 2005, <strong>in</strong>vestigations were<br />

ongo<strong>in</strong>g (see WO-03091255).<br />

SMITHKLINE BEECHAM CORP; CYTOKINETICS INC Certa<strong>in</strong><br />

chemical entities, compositions, and methods. WO-<br />

2005107762 (17 November 2005)<br />

• Substituted heterocyclic amides as <strong>in</strong>hibitors of CENP-E<br />

k<strong>in</strong>es<strong>in</strong> activity for the treatment of cellular proliferative<br />

disorders are described. This cont<strong>in</strong>ues the collaboration<br />

between Cytok<strong>in</strong>etics and GlaxoSmithKl<strong>in</strong>e (formerly<br />

SmithKl<strong>in</strong>eBeecham), although this appears to be a new<br />

research direction as previous research relates to KSP<br />

k<strong>in</strong>es<strong>in</strong> (see WO-2005060692, which names three of the<br />

present <strong>in</strong>ventors). Cytok<strong>in</strong>etics and GlaxoSmithKl<strong>in</strong>e have<br />

two KSP <strong>in</strong>hibitors <strong>in</strong> phase I and II trials for cancer.<br />

BUCK INSTITUTE; TOURO UNIVERSITY; THE BURNHAM INSTITUTE<br />

Artificially designed pore-form<strong>in</strong>g prote<strong>in</strong>s with<br />

antitumor effects. US-20050256040 (17 November 2005)<br />

• Use of a small globular prote<strong>in</strong> (SGP) to disrupt a biological<br />

membrane is claimed. SGP is established as the prototype for a<br />

new class of artificial prote<strong>in</strong>s designed for therapeutic<br />

application. SGP can be used for disrupt<strong>in</strong>g tumor growth (eg,<br />

Kaposi's sarcoma, breast carc<strong>in</strong>oma, malignant melanoma of<br />

the sk<strong>in</strong>, lung and prostate cancer and metastases). This<br />

application cont<strong>in</strong>ues the <strong>in</strong>ventors' cancer research (eg, WO-<br />

2005094383). One of the <strong>in</strong>ventors is associated with the<br />

Burnham Institute and the other with the University of Touro.<br />

E MERCK PATENT GMBH GM3 synthase as a therapeutic<br />

target <strong>in</strong> microvascular complications of diabetes. WO-<br />

2005108600 (17 November 2005)<br />

• GM3 synthase <strong>in</strong>hibitors to treat microvascular complications<br />

of diabetes (eg, diabetic nephropathy) are claimed. Also claimed<br />

is a method for screen<strong>in</strong>g for GM3 synthase <strong>in</strong>hibitors. See also<br />

WO-00234201 and WO-09936396 for previous applications<br />

by members of this team.<br />

Pulmonary-allergy, dermatological,<br />

gastro<strong>in</strong>test<strong>in</strong>al and anti-<strong>in</strong>flammatory<br />

ONO PHARMACEUTICAL CO LTD Novel BLT2-mediated<br />

disease, and BLT2 b<strong>in</strong>d<strong>in</strong>g agent and compound. WO-<br />

2005102388 (03 November 2005)<br />

• A compound capable of selective b<strong>in</strong>d<strong>in</strong>g to BLT2 is<br />

disclosed. Its use as a therapeutic agent for BLT2-mediated<br />

disease, <strong>in</strong>clud<strong>in</strong>g cutaneous disorders, bowel disease and<br />

HIV <strong>in</strong>fection, is described. This application may be related<br />

to the company's ONO-4057, a dual antagonist of two<br />

leukotriene B4 receptors, BLT1 and BLT2, for the potential<br />

treatment of Behcet's disease, psoriasis and <strong>in</strong>flammatory<br />

bowel disease. WO-2004031118 (by different <strong>in</strong>ventors) is<br />

cited as relevant <strong>in</strong> the search report.<br />

NOVARTIS AG CRTH2 receptor antagonists. WO-<br />

2005105727 (10 November 2005)<br />

• Novel compounds as CRTH2 (G-prote<strong>in</strong>-coupled<br />

chemoattractant receptor expressed on Th2 cells) receptor<br />

antagonists, useful for the treatment of respiratory and<br />

<strong>in</strong>flammatory conditions, are disclosed. CRTH2 appears to<br />

be a new target for Novartis and the <strong>in</strong>ventors, this be<strong>in</strong>g<br />

their only patent application on the receptor. Oxagen and<br />

Ortho-McNeil are currently lead<strong>in</strong>g this field, with both<br />

companies hav<strong>in</strong>g programs <strong>in</strong> precl<strong>in</strong>ical development.


Anti-<strong>in</strong>fectives<br />

JANSSEN PHARMACEUTICA NV Inhibitors of bacterial type III<br />

prote<strong>in</strong> secretion systems. US-20050250819 (10<br />

November 2005)<br />

• Novel triaz<strong>in</strong>e compounds as <strong>in</strong>hibitors of bacterial type III<br />

prote<strong>in</strong> secretion systems, useful for the treatment and<br />

prevention of bacterial <strong>in</strong>fections, particularly Gramnegative<br />

bacterial <strong>in</strong>fections, are described. The <strong>in</strong>ventors<br />

have been named on other applications disclos<strong>in</strong>g<br />

antibacterials. However, this specific action appears to be a<br />

new target.<br />

Biological and immunological<br />

CATALYST BIOSCIENCES INC Cleavage of VEGF and VEGF<br />

receptor by wild-type and mutant proteases. WO-<br />

2005100556 (27 October 2005)<br />

• Mutated granzyme B polypeptides (mute<strong>in</strong>s) that cleave<br />

vascular endothelial growth factor (VEGF) or the VEGF<br />

receptor and <strong>in</strong>hibit angiogenesis are claimed. The mute<strong>in</strong>s<br />

may be used for the treatment of angiogenesis-related<br />

disorders (eg, cancer, <strong>in</strong>flammation, diabetes and macular<br />

degeneration). This is only the company's second<br />

application and cont<strong>in</strong>ues its development of modified<br />

enzymes (see WO-2004031733). In July 2005, Catalyst<br />

exclusively licensed <strong>in</strong>tellectual property cover<strong>in</strong>g protease<br />

eng<strong>in</strong>eer<strong>in</strong>g from Torrey P<strong>in</strong>es.<br />

CURTIN UNIVERSITY OF TECHNOLOGY Therapeutic hepar<strong>in</strong>s<br />

and their b<strong>in</strong>d<strong>in</strong>g to <strong>in</strong>terleuk<strong>in</strong>s 4 and 5, and PECAM-1.<br />

WO-2005100374 (27 October 2005)<br />

• These glycosam<strong>in</strong>oglycan oligosaccharides are claimed for<br />

use <strong>in</strong> the treatment of a wide range of conditions. The<br />

British <strong>in</strong>ventor appears to be based at the National<br />

Institute for Biological Standards and Control.<br />

Bassiri A, Das A, Dillon S, Duffy K, Seideman J, Mbow ML,<br />

Karlsson L, Sun S, Zhu J, Cunn<strong>in</strong>gham M Toll-like receptor<br />

9 effector agents and uses thereof. US-20050244410 (03<br />

November 2005)<br />

• Cell-surface toll-like receptor 9 (TLR9) effector agents, such<br />

as TLR9 receptor b<strong>in</strong>d<strong>in</strong>g agents and TLR9 ligand b<strong>in</strong>d<strong>in</strong>g<br />

agents (namely antibodies and other prote<strong>in</strong>s), and their use<br />

<strong>in</strong> modulat<strong>in</strong>g immune responses for the treatment of, for<br />

example, <strong>in</strong>fections, cancer and <strong>in</strong>flammation, are described.<br />

The <strong>in</strong>ventors appear to be based at Centocor and feature on<br />

a related application, WO-2004096156.<br />

E MERCK PATENT GMBH Dihydrobenzothiophenes. WO-<br />

2005108355 (17 November 2005)<br />

• Dihydrobenzothiophenes as modulators of mitotic motor<br />

prote<strong>in</strong>s, particularly Eg5, useful for the treatment of, for<br />

example, angiogenesis, cancers, arteriosclerosis, eye<br />

disorders and <strong>in</strong>flammation, are disclosed. See WO-<br />

2005063735 for substituted tetrahydroqu<strong>in</strong>ol<strong>in</strong>e derivatives<br />

with the same action.<br />

Central and peripheral nervous system<br />

Patent selection 5<br />

BIOCORTECH Derivatives of 14,15-dihydro 20,21d<strong>in</strong>oreburnamen<strong>in</strong>-14-ol,<br />

and applications thereof. WO-<br />

2005103047 (03 November 2005)<br />

• 14,15-Dihydro 20,21-d<strong>in</strong>oreburnamen<strong>in</strong>-14-ol derivatives<br />

are targeted at the treatment of depression. A similar use of<br />

the parent nucleus was claimed <strong>in</strong> WO-2005082365. This<br />

application is possibly l<strong>in</strong>ked to BC-19, an orally active<br />

small molecule believed to reactivate the norep<strong>in</strong>ephr<strong>in</strong>e<br />

pathways, which Biocortech is develop<strong>in</strong>g for the potential<br />

treatment of depression. By April 2005, phase II trials of<br />

BC-19 were underway.<br />

SANGAMO BIOSCIENCES INC Treatment of neuropathic pa<strong>in</strong><br />

with z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong>s. WO-2005100392 (27 October<br />

2005)<br />

• Use of a nucleic acid consist<strong>in</strong>g of a z<strong>in</strong>c f<strong>in</strong>ger DNAb<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong> eng<strong>in</strong>eered to b<strong>in</strong>d target genes and<br />

modulate overexpression of dorsal root ganglia genes (eg,<br />

VR1, TRKA and Nav1.8) of pa<strong>in</strong> patients, and a<br />

transcriptional repression doma<strong>in</strong>, are described. This<br />

application appears to be related to the company's ZFP TF<br />

(pa<strong>in</strong>) gene therapy, us<strong>in</strong>g Avigen's adeno-associated virus<br />

gene delivery system for the potential treatment of<br />

neuropathic pa<strong>in</strong>. See US-20040091991 and WO-<br />

2005028630.<br />

ELI LILLY & CO BACE <strong>in</strong>hibitors. WO-2005108358/WO-<br />

2005108358 (17 November 2005)<br />

• Alkylamide-substituted pyrrolid<strong>in</strong>e and related<br />

ethanolam<strong>in</strong>e derivatives are disclosed. These compounds<br />

are β-amyloid precursor prote<strong>in</strong> cleav<strong>in</strong>g enzyme (BACE)<br />

<strong>in</strong>hibitors, and appear to be some of the first small molecules<br />

to emerge from the program. See WO-00068266 and WO-<br />

00069262 for related drug screen<strong>in</strong>g methods and<br />

technology. Lilly is <strong>in</strong>vestigat<strong>in</strong>g ethanolam<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

peptide-based BACE <strong>in</strong>hibitors, <strong>in</strong>clud<strong>in</strong>g LY-2070103, for<br />

the potential treatment of Alzheimer's disease. In August<br />

2005, one of the <strong>in</strong>ventors from this team presented<br />

precl<strong>in</strong>ical data from this program at the 230th American<br />

Chemical Society meet<strong>in</strong>g <strong>in</strong> Wash<strong>in</strong>gton DC.<br />

Cardiovascular, ocular and renal<br />

ARYX THERAPEUTICS INC New 4-hydroxycoumar<strong>in</strong><br />

derivatives are vitam<strong>in</strong> K epoxide reductase <strong>in</strong>hibitors -<br />

useful for the treatment of coagulation disorders. WO-<br />

2005100336 (27 October 2005)<br />

• 3-Substituted 4-hydroxy-2-oxo-2H-chrom-3-ene derivatives<br />

are claimed. See WO-02085882 for related warfar<strong>in</strong><br />

analogs. ARYx is <strong>in</strong>vestigat<strong>in</strong>g ATI-5000, a warfar<strong>in</strong><br />

analog identified us<strong>in</strong>g its RetroMetabolic platform<br />

technology, for the potential treatment of deep ve<strong>in</strong><br />

thrombosis and prevention of stroke <strong>in</strong> atrial fibrillation<br />

patients.


6 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

JAPAN HEALTH SCIENCE FOUNDATION; UNIVERSITY OF<br />

TOKUSHIMA Agent for controll<strong>in</strong>g cholesterol<br />

homeostasis-associated gene transcription activity<br />

mediated by FXR activation. WO-2005097097 (20 October<br />

2005)<br />

• Two of the <strong>in</strong>ventors are based at Tokushima Bunri<br />

University, and all are named on WO-2005092328, which<br />

disclosed bis(bibenzyl) cyclic ether derivatives as farnesoid<br />

X-receptor (FXR) activators, useful for the treatment of<br />

hyperlipidemia.<br />

THERAPTOSIS SA Caspase-2 <strong>in</strong>hibitors and their biological<br />

applications. WO-2005105829 (10 November 2005)<br />

• Novel caspase-2 <strong>in</strong>hibitors and their use for treat<strong>in</strong>g<br />

ischemia are claimed. Several of these <strong>in</strong>ventors claimed<br />

double-stranded RNA molecules with this activity <strong>in</strong> WO-<br />

2004103389.


Patent alert<br />

Patent alert provides abstracts and expert commentary on a<br />

selection of recent patents that have been identified as be<strong>in</strong>g<br />

of particular <strong>in</strong>terest. Selections are based on patent abstracts<br />

featured <strong>in</strong> patent products published by Thomson<br />

Scientific. <strong>Current</strong> op<strong>in</strong>ions are provided based on the<br />

novelty of the <strong>in</strong>vention and its potential application.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):7-13<br />

© The Thomson Corporation ISSN 1472-4472<br />

Contents<br />

7 Anti-<strong>in</strong>flammatory & immunomodulatory<br />

8 Cardiovascular & renal<br />

9 Central & peripheral nervous system<br />

10 Endocr<strong>in</strong>e & metabolics<br />

12 Oncological<br />

Anti-<strong>in</strong>flammatory & immunomodulatory<br />

Selected by Clifford Whelan (Phlogopharm Ltd, Hatfield,<br />

Hertfordshire, UK)<br />

New C5a receptor <strong>in</strong>hibitory compounds - useful for<br />

treat<strong>in</strong>g, eg, <strong>in</strong>flammation and S aureus <strong>in</strong>fections<br />

ALLIGATOR BIOSCIENCE AB (PUBL) (Van Strijp JAD, De Haas<br />

CJC, Kemm<strong>in</strong>k J, Van Kessel KPM)<br />

WO-2005100385, 27 October 2005<br />

Compounds for prevent<strong>in</strong>g <strong>in</strong>tramolecular contact of Nterm<strong>in</strong>al<br />

residues 10 to 18 of human C5aR with the extracellular<br />

loops, are claimed. Also claimed are further compositions and<br />

use of the compounds for treat<strong>in</strong>g conditions <strong>in</strong>volv<strong>in</strong>g the C5a<br />

receptor on cells other than neutrophils, monocytes and<br />

endothelial cells, for example, <strong>in</strong>flammation, and for use <strong>in</strong><br />

therapeutic vacc<strong>in</strong>es for <strong>in</strong>fections caused by chemotaxis<br />

<strong>in</strong>hibitory prote<strong>in</strong> from Staphylococcus aureus (CHIPS)produc<strong>in</strong>g<br />

bacteria. The agents are stated to be small enough for<br />

use <strong>in</strong> therapy. U937 cells express<strong>in</strong>g C5aR were <strong>in</strong>cubated with<br />

<strong>in</strong>creas<strong>in</strong>g concentrations of CHIPS31-121 or CHIPS31-121<br />

mutant compounds. The samples were further <strong>in</strong>cubated with<br />

10 µg/ml of FITC-labeled anti-C5aR S5/1 monoclonal antibody.<br />

The IC50 values of the CHIPS31-121 mutants, <strong>in</strong> which s<strong>in</strong>gle<br />

am<strong>in</strong>o acids were substituted <strong>in</strong>to alan<strong>in</strong>es, were calculated.<br />

The CHIPS31-121 mutants with the lowest IC50 values (ng/ml)<br />

were N47 (5), R46 (10), Y121 deleted (10), K54 (10), K50 (10),<br />

G102 (12) and K101 (15). Chemical sequences are provided <strong>in</strong><br />

the source document.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

S aureus is a common member of the bacterial flora on human<br />

sk<strong>in</strong>. Although its presence is usually symptom free, it can<br />

cause a number of pathologies, rang<strong>in</strong>g from superficial<br />

pustules to major life-threaten<strong>in</strong>g <strong>in</strong>fections. Furthermore, the<br />

evolution of stra<strong>in</strong>s of S aureus that are resistant to antibiotic<br />

therapy makes the development of novel approaches to the<br />

treatment of <strong>in</strong>fection an important therapeutic target.<br />

Neutrophil accumulation at the site of <strong>in</strong>flammation and<br />

<strong>in</strong>fection is a hallmark of acute <strong>in</strong>flammation. Neutrophil<br />

chemotaxis can result from a wide range of compounds and<br />

this may have physiological importance. However, major<br />

chemoattractants <strong>in</strong> acute <strong>in</strong>flammation are complement<br />

products formed from plasma prote<strong>in</strong>. This disclosure describes<br />

a series of prote<strong>in</strong>s that <strong>in</strong>hibit b<strong>in</strong>d<strong>in</strong>g of the complement<br />

product C5a to its receptor. The prote<strong>in</strong>s described are based on<br />

an endogenous prote<strong>in</strong> released by S aureus. Such prote<strong>in</strong>s are<br />

likely to reduce neutrophil accumulation <strong>in</strong> vivo and may even<br />

be of benefit <strong>in</strong> <strong>in</strong>flammatory diseases, such as chronic<br />

obstructive pulmonary disease, <strong>in</strong> which products released by<br />

activated neutrophils appear to <strong>in</strong>itiate changes that are not<br />

beneficial. However, <strong>in</strong> <strong>in</strong>fection, particularly that characterized<br />

by abscess formation, neutrophil chemotaxis appears to conta<strong>in</strong><br />

the <strong>in</strong>fection, and patients who are deficient <strong>in</strong> complement<br />

products seem to suffer severe <strong>in</strong>fections. Thus, further research<br />

is required to determ<strong>in</strong>e whether the prote<strong>in</strong>s described will<br />

have utility <strong>in</strong> the treatment of <strong>in</strong>fection, and to determ<strong>in</strong>e how<br />

they can be utilized as anti-<strong>in</strong>flammatory agents.<br />

New imidazole compounds are H4 receptor <strong>in</strong>hibitors -<br />

useful for the <strong>in</strong>hibition of leukocyte recruitment and for<br />

the treatment of <strong>in</strong>flammation and immune disorders<br />

JANSSEN PHARMACEUTICA NV (Buzard DJ, Edwards JP,<br />

K<strong>in</strong>drachuk DE, Venable JD)<br />

WO-2005092066, 06 October 2005<br />

New imidazole compounds are claimed, as well as their use<br />

as H4 receptor <strong>in</strong>hibitors for the <strong>in</strong>hibition of leukocyte<br />

recruitment and for the treatment of <strong>in</strong>flammation. The<br />

compounds are claimed to be useful for the treatment of<br />

<strong>in</strong>flammatory response (eg, to chemotherapy or <strong>in</strong>fection),<br />

allergy, dermatological disorders, autoimmune disease,<br />

lymphatic disorders, immunodeficiency, asthma, chronic<br />

obstructive pulmonary disease, atherosclerosis, rheumatoid<br />

arthritis, multiple sclerosis and <strong>in</strong>flammatory bowel disease<br />

(eg, Crohn's disease or ulcerative colitis). The compounds<br />

can also be isotopically labeled and used <strong>in</strong> diagnostic<br />

imag<strong>in</strong>g. No suitable advantage is given. The illustrated<br />

compound had a Ki value of 6 nM when tested <strong>in</strong> vitro for its<br />

ability to b<strong>in</strong>d to human histam<strong>in</strong>e H4 receptors expressed<br />

by SK-N-MC or COS7 cells. Seventy specific compounds are<br />

claimed, <strong>in</strong>clud<strong>in</strong>g 1-(3-[4-[4,5-bis-(3-methoxyphenyl)-1Himidazol-2-yl]-3-chlorophenoxy]propyl)-4-methyl[1,4]diazepane.<br />

C<br />

H 3<br />

O<br />

O CH3<br />

H<br />

N<br />

Cl O<br />

N<br />

WO-2005092066<br />

(Janssen)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Leukocyte accumulation is one of the hallmarks of<br />

<strong>in</strong>flammation. Generally <strong>in</strong> the lesion, granulocytes and<br />

macrophages act as effector cells and lymphocytes act to<br />

orchestrate the response. Many reports <strong>in</strong> the literature suggest<br />

N<br />

N<br />

CH 3<br />

7


8 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

that histam<strong>in</strong>e may have a role <strong>in</strong> the process of leukocyte<br />

recruitment by act<strong>in</strong>g on leukocytes to promote chemotaxis,<br />

and by act<strong>in</strong>g on endothelial cells to <strong>in</strong>crease P-select<strong>in</strong><br />

expression and promote leukocyte adhesion. Until recently,<br />

research <strong>in</strong> this area was unclear, partly because the histam<strong>in</strong>e<br />

receptors mediat<strong>in</strong>g these events were not well def<strong>in</strong>ed. The<br />

f<strong>in</strong>d<strong>in</strong>g that leukocytes, such as eos<strong>in</strong>ophils, express histam<strong>in</strong>e<br />

H4 receptors that mediate histam<strong>in</strong>e-<strong>in</strong>duced chemotaxis has<br />

provided researchers with an additional therapeutic target that<br />

this disclosure seeks to exploit.<br />

Eos<strong>in</strong>ophils are thought to be the effector cells responsible for<br />

the <strong>in</strong>flammatory changes that underlie asthma, atopic<br />

dermatitis and other pathologies. Thus, it seems reasonable to<br />

propose that compounds that <strong>in</strong>hibit eos<strong>in</strong>ophil accumulation<br />

<strong>in</strong> tissues will have therapeutic utility. However, a degree of<br />

redundancy exists <strong>in</strong> the <strong>in</strong>flammatory process, which may<br />

enable the body to mount a response <strong>in</strong> the absence of one<br />

pathway. The same appears to be the case with eos<strong>in</strong>ophil<br />

recruitment, where many factors appear to be chemotactic<br />

agents for eos<strong>in</strong>ophils. For example, <strong>in</strong>terleuk<strong>in</strong> (IL)-5 is an<br />

important factor <strong>in</strong> eos<strong>in</strong>ophil recruitment, yet antibodies to<br />

IL-5 failed to produce a cl<strong>in</strong>ically beneficial effect when<br />

adm<strong>in</strong>istered to patients with asthma.<br />

The compounds described <strong>in</strong> this disclosure, if developed,<br />

will enable the role of histam<strong>in</strong>e H4 receptors <strong>in</strong> the process<br />

of leukocyte recruitment to be tested <strong>in</strong> humans. Such trials<br />

will determ<strong>in</strong>e the therapeutic potential of such compounds.<br />

Use of a composition compris<strong>in</strong>g a nicot<strong>in</strong>e ligand and<br />

an antidepressant - for treat<strong>in</strong>g ulcerative colitis<br />

THE JOYCE CLARKE LIVING TRUST AGREEMENT (Clarke DE)<br />

US-20050234024, 20 October 2005<br />

A method for treat<strong>in</strong>g ulcerative colitis <strong>in</strong> a patient hav<strong>in</strong>g<br />

<strong>in</strong>flammatory bowel disease, emphysema, chronic heart<br />

failure, lung cancer and esophageal cancer by adm<strong>in</strong>ister<strong>in</strong>g<br />

a composition compris<strong>in</strong>g a comb<strong>in</strong>ation of nicot<strong>in</strong>e, its<br />

analog or an antagonist, and an antidepressant is claimed. A<br />

substitute for smok<strong>in</strong>g compris<strong>in</strong>g the composition and a kit<br />

compris<strong>in</strong>g the composition are also claimed. No suitable<br />

advantage is given, and no suitable biological data are<br />

presented. The antidepressant is claimed to be bupropion.<br />

N<br />

CH 3<br />

N<br />

US-20050234024<br />

(Joyce Clarke Liv<strong>in</strong>g Trust)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Ulcerative colitis is a common <strong>in</strong>flammatory condition of the<br />

colon that affects <strong>in</strong>dividuals of all ages <strong>in</strong> the developed<br />

world. It has a major impact on the quality of life of those<br />

affected and has an impact on the economy of developed<br />

countries. Furthermore, ulcerative colitis is not well treated,<br />

thus there is a need for an effective therapy, particularly one<br />

that reduces the frequency of hospital admissions.<br />

It is well documented that the <strong>in</strong>cidence of ulcerative colitis<br />

among non-smokers is 3- to 4-fold greater than among smokers<br />

and that nicot<strong>in</strong>e appears to be responsible for this protective<br />

effect. In addition, when tobacco smokers cease smok<strong>in</strong>g,<br />

ulcerative colitis is often precipitated. While nicot<strong>in</strong>e can be<br />

used to treat ulcerative colitis, it is addictive and has many<br />

actions on the cardiovascular system. Some laboratories have<br />

<strong>in</strong>vestigated whether the mechanism of the addictive effect of<br />

nicot<strong>in</strong>e is dist<strong>in</strong>ct from the beneficial action with a view to<br />

develop<strong>in</strong>g a selective agent, although none of these projects<br />

has resulted <strong>in</strong> a cl<strong>in</strong>ically useful agent.<br />

Bupropion is used when smokers are attempt<strong>in</strong>g to reduce<br />

their dependence on nicot<strong>in</strong>e (tobacco), although this drug is<br />

not without adverse events. This disclosure describes an<br />

<strong>in</strong>terest<strong>in</strong>g comb<strong>in</strong>ation for the treatment of ulcerative<br />

colitis, <strong>in</strong> which nicot<strong>in</strong>e is used to treat colitis and<br />

bupropion is used to prevent the depression that occurs on<br />

withdrawal of the nicot<strong>in</strong>e. Whether or not bupropion will<br />

prevent nicot<strong>in</strong>e addiction is unclear. Furthermore, it seems<br />

unlikely that the addition of bupropion will prevent adverse<br />

cardiovascular effects. Thus, much research is required to<br />

see if this approach to the treatment of a disease with much<br />

unmet medical need will have utility.<br />

Cardiovascular & renal<br />

Selected by Hermann AM Mucke (Pharmaceutical<br />

Consultant and Analyst, Vienna, Austria) and Clifford<br />

Whelan (Phlogopharm Ltd, Hatfield, Hertfordshire, UK)<br />

New 4-hydroxycoumar<strong>in</strong> derivatives are vitam<strong>in</strong> K<br />

epoxide reductase <strong>in</strong>hibitors - useful for the treatment of<br />

coagulation disorders<br />

ARYX THERAPEUTICS (Druzgala P, Becker C)<br />

WO-2005100336, 27 October 2005<br />

Novel 4-hydroxycoumar<strong>in</strong> derivatives, their salts and<br />

compositions conta<strong>in</strong><strong>in</strong>g them are claimed. The compounds<br />

are disclosed to be useful for the treatment of coagulation<br />

disorders and to act by <strong>in</strong>hibit<strong>in</strong>g vitam<strong>in</strong> K epoxide<br />

reductase. The compounds are stable, and have a shorter<br />

half-life and a lower <strong>in</strong>cidence of side effects and toxicity<br />

compared with prior art anticoagulants. The effect of several<br />

compounds on vitam<strong>in</strong> K epoxide reductase activity was<br />

determ<strong>in</strong>ed. The specified compound displayed an IC50<br />

value of 5.07 µM. The stability of the compounds to<br />

metabolism by pooled human liver microsomes, conta<strong>in</strong><strong>in</strong>g<br />

both CYP450 and esterase, with or without an NADPH cofactor,<br />

was also determ<strong>in</strong>ed. The specified compound had<br />

stabilities at 90 m<strong>in</strong> of 91 and 96%, respectively, and stability<br />

<strong>in</strong> buffer of 92% at 90 m<strong>in</strong>; both the compound and its<br />

correspond<strong>in</strong>g acid metabolite had no <strong>in</strong>hibitory effect on<br />

human IKr <strong>in</strong> stably transfected HEK-293 cells, nor <strong>in</strong> a broad<br />

cellular and biochemical receptor screen<strong>in</strong>g assay. The<br />

specified compound, 1,1,1,3,3,3-hexafluoro-2-methylpropan-<br />

2-yl 4-((4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)benzoate,<br />

is the only compound specifically claimed for use.


OH<br />

O O<br />

WO-2005100336<br />

(Aryx)<br />

C<br />

H 3<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Vitam<strong>in</strong> K epoxide reductase recycles the epoxide created by<br />

γ-glutamyl carboxylase before vitam<strong>in</strong> K can be re-used as an<br />

essential cofactor for the post-translational γ-carboxylation of<br />

several blood coagulation factors. Genetic polymorphisms of<br />

this quite recently uncovered enzyme complex could be partly<br />

responsible for the variable response to warfar<strong>in</strong> therapy, but<br />

polymorphisms <strong>in</strong> the CYP2C9 gene, affect<strong>in</strong>g S-warfar<strong>in</strong><br />

clearance, are probably more important. This has<br />

spurred development of warfar<strong>in</strong> analogs (<strong>in</strong>clud<strong>in</strong>g<br />

4-hydroxycoumar<strong>in</strong>s) as more predictable anticoagulants. The<br />

compounds of the <strong>in</strong>vention conta<strong>in</strong> a halogenated ester group,<br />

which makes them more susceptible to degradation by<br />

hydrolases, while reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g their CYP450<br />

metabolism. This should greatly alleviate the problem of drug<br />

<strong>in</strong>teraction, which is also typical for warfar<strong>in</strong>. Such designed<br />

compounds could offer powerful alternatives to the current<br />

platelet aggregation <strong>in</strong>hibitors.<br />

Use of a composition to <strong>in</strong>hibit PUMA function <strong>in</strong><br />

cardiomyocytes - for prevent<strong>in</strong>g or reduc<strong>in</strong>g<br />

ischemia/reperfusion-<strong>in</strong>duced myocardial cell death<br />

BOSTON BIOMEDICAL RESEARCH INSTITUTE (Erhardt P, Toth A)<br />

WO-2005099772, 27 October 2005<br />

The use of a composition to <strong>in</strong>hibit p53 upregulated modulator<br />

of apoptosis (PUMA) function <strong>in</strong> cardiomyocytes is claimed for<br />

prevent<strong>in</strong>g or reduc<strong>in</strong>g ischemia/reperfusion <strong>in</strong>duced<br />

myocardial cell death. The composition is adm<strong>in</strong>istered dur<strong>in</strong>g<br />

or after an ischemic attack, and <strong>in</strong>hibits b<strong>in</strong>d<strong>in</strong>g of PUMA to<br />

Bcl-2 or Bcl-xL. It is claimed that the <strong>in</strong>vention is also useful for<br />

screen<strong>in</strong>g for <strong>in</strong>hibitors of PUMA expression, for prevent<strong>in</strong>g<br />

cell death <strong>in</strong> stem-cell explants <strong>in</strong>tended to restore cardiac<br />

function. The <strong>in</strong>vention provides an effective means of<br />

protect<strong>in</strong>g cardiomyocytes from cell death follow<strong>in</strong>g<br />

myocardial <strong>in</strong>farction. The hearts of PUMA-deficient mice<br />

showed significantly better functional recovery at the end of<br />

reperfusion than hearts from wild-type litter mates, <strong>in</strong>clud<strong>in</strong>g<br />

recovery of left ventricular developed pressure, first derivatives<br />

of left ventricular pressure, and left ventricular end-diastolic<br />

pressure. In addition, the functional recovery of PUMAdeficient<br />

hearts accompanies correspond<strong>in</strong>g <strong>in</strong>hibition of<br />

apoptosis and necrosis as well as reduced <strong>in</strong>farct size. Chemical<br />

structures are provided <strong>in</strong> the source document.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Follow<strong>in</strong>g stroke or myocardial <strong>in</strong>farction, cells that are<br />

deprived of a blood supply die. On reperfusion, many cells<br />

that are at risk also die, often as a result of free radical<br />

damage. Whereas cells killed as a direct result of the <strong>in</strong>farct<br />

die from necrosis, those exposed to free radicals may<br />

undergo apoptosis. Thus, an agent that <strong>in</strong>hibits apoptosis<br />

may have utility <strong>in</strong> the acute therapy of ischemic disease.<br />

The p53 gene modulates apoptosis and offers an attractive<br />

O<br />

O<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

Patent alert 9<br />

target for the development of agents that modulate this<br />

process.<br />

This disclosure describes some experiments <strong>in</strong> which mice<br />

deficient <strong>in</strong> the p53 upregulated modulator of apoptosis, a<br />

factor that promotes apoptosis, developed smaller <strong>in</strong>farcts<br />

and showed better recovery <strong>in</strong> a model of myocardial<br />

<strong>in</strong>farction than their wild-type litter mates. Thus, <strong>in</strong><br />

pr<strong>in</strong>ciple, <strong>in</strong>hibition of apoptosis leads to a reduction <strong>in</strong><br />

<strong>in</strong>farct size and improved recovery. The disclosure claims<br />

the use of antisense oligonucleotides as a means of <strong>in</strong>hibit<strong>in</strong>g<br />

apoptosis, although it is not clear how these agents would be<br />

used therapeutically. Patients present cl<strong>in</strong>ically with an<br />

<strong>in</strong>farct, thus any therapy with a long onset of action may not<br />

have utility. Alternatively, the use of such compounds as<br />

prophylactic agents <strong>in</strong> patients with a history of<br />

cardiovascular disease may render these patients susceptible<br />

to the development of tumors, given that many tumors do<br />

not undergo apoptosis as a result of mutations <strong>in</strong> the p53<br />

gene. Thus, while this disclosure is an <strong>in</strong>terest<strong>in</strong>g concept,<br />

further research is required before the utility of the<br />

hypothesis can be tested cl<strong>in</strong>ically.<br />

Central & peripheral nervous system<br />

Selected by Hermann AM Mucke (Pharmaceutical<br />

Consultant and Analyst, Vienna, Austria)<br />

Use of an annex<strong>in</strong> II <strong>in</strong>hibitor - for treat<strong>in</strong>g<br />

neurodegenerative diseases or CNS disorders<br />

QUARK BIOTECH INC/FUJISAWA PHARMACEUTICAL CO LTD<br />

(Fe<strong>in</strong>ste<strong>in</strong> EM, Mett I, Shtutman M)<br />

WO-2005091716, 06 October 2005<br />

A method for treat<strong>in</strong>g neurodegenerative diseases, central<br />

nervous system (CNS) disorders or <strong>in</strong>jury to CNS, for example,<br />

sp<strong>in</strong>al cord <strong>in</strong>jury and traumatic bra<strong>in</strong> <strong>in</strong>jury, compris<strong>in</strong>g<br />

adm<strong>in</strong>ister<strong>in</strong>g a composition of an annex<strong>in</strong> II <strong>in</strong>hibitor is<br />

claimed. The use of an annex<strong>in</strong> II <strong>in</strong>hibitor for promot<strong>in</strong>g or<br />

enhanc<strong>in</strong>g recovery from the claimed diseases and an <strong>in</strong>hibitor<br />

of annex<strong>in</strong> II are also claimed. The neurodegenerative diseases<br />

are claimed to be stroke, hypertension, cerebral vascular<br />

disease, systemic hypotension, Park<strong>in</strong>son's disease, epilepsy,<br />

depression, amyotrophic lateral sclerosis, Alzheimer's disease,<br />

Hunt<strong>in</strong>gton's disease and HIV-<strong>in</strong>duced dementia. A method for<br />

diagnos<strong>in</strong>g neurodegenerative diseases and ischemic events by<br />

detect<strong>in</strong>g the levels of annex<strong>in</strong> II polypeptide is disclosed. The<br />

annex<strong>in</strong> II <strong>in</strong>hibitor is disclosed to <strong>in</strong>hibit neurotoxic-stress<strong>in</strong>duced<br />

apoptosis. No suitable advantage is given, and no<br />

suitable biological data are presented. The annex<strong>in</strong> II <strong>in</strong>hibitor is<br />

claimed to be a compound, for example, sodium nitroprusside<br />

or Tyrphost<strong>in</strong> AG1024, or an antisense polynucleotide.<br />

Chemical sequences are provided <strong>in</strong> the source document.<br />

C<br />

H 3<br />

C<br />

H 3<br />

HO<br />

CH 3<br />

Br<br />

N<br />

WO-2005091716<br />

(Quark Biotech/Fujisawa)<br />

N


10 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

The annex<strong>in</strong>s are a family of highly homologous calcium<br />

and phospholipid b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s. Annex<strong>in</strong> II serves as a<br />

co-receptor for both plasm<strong>in</strong>ogen and tissue plasm<strong>in</strong>ogen<br />

activator on endothelial cells and greatly facilitates the<br />

generation of plasm<strong>in</strong>. Its primary role is believed to be <strong>in</strong><br />

coagulation, although <strong>in</strong>volvement <strong>in</strong> cell-membrane fusion<br />

and cancer <strong>in</strong>vasion has also been demonstrated. This<br />

<strong>in</strong>vention relates to the discovery that the expression of<br />

annex<strong>in</strong> II is <strong>in</strong>volved <strong>in</strong> neuronal apoptosis <strong>in</strong>duced by<br />

oxidative or ischemic stress. Us<strong>in</strong>g stroke-specific neuronal<br />

cDNA subtraction libraries on microarrays prepared from<br />

rats before and after middle cerebral artery occlusion, the<br />

<strong>in</strong>ventors determ<strong>in</strong>ed that the annex<strong>in</strong> II gene is upregulated<br />

with<strong>in</strong> 6 h of ischemia, reaches a maximum at 48 h and can<br />

be repressed <strong>in</strong> vivo by pre-treatment with a specific siRNA.<br />

In situ hybridization demonstrated <strong>in</strong>duction of prote<strong>in</strong><br />

expression on leukocytes and macrophages, but not <strong>in</strong><br />

neurons, which makes the <strong>in</strong>vention less surpris<strong>in</strong>g because<br />

this <strong>in</strong>dicates that the neurotoxic action of annex<strong>in</strong> II is not a<br />

direct one; rather it ties <strong>in</strong>to known mechanisms. Only<br />

detailed functional studies can reveal if this prote<strong>in</strong> could<br />

actually become a drug target or rather should be 'better left<br />

alone' (Blood (2005) 105(5):1845-1846).<br />

New g<strong>in</strong>kgolide derivatives and compositions are<br />

amyloid β prote<strong>in</strong> <strong>in</strong>hibitors - useful for the treatment of<br />

Alzheimer's disease<br />

THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW<br />

YORK (Vitolo OV, Nakanishi K, Shelanski ML, Krane S, Arancio<br />

O, Jaracz S, Berova ND)<br />

WO-2005092324, 06 October 2005<br />

Novel g<strong>in</strong>kgolide derivatives, compositions conta<strong>in</strong><strong>in</strong>g<br />

them, optionally <strong>in</strong> comb<strong>in</strong>ation with an antioxidant,<br />

compositions compris<strong>in</strong>g a mixture of g<strong>in</strong>kgolides, a process<br />

for the extraction of G<strong>in</strong>kgo biloba, and the use of the<br />

compositions for the treatment of neurological and<br />

neurodegenerative disease, especially Alzheimer's disease,<br />

are claimed. The composition produced by the claimed<br />

process is stated to be more efficacious than the currently<br />

available standardized extract Egb-761. Compounds were<br />

tested as <strong>in</strong>hibitors of β-amyloid (1-42) prote<strong>in</strong>-<strong>in</strong>duced<br />

long-term potentiation (LTP) <strong>in</strong> a hippocampal slice assay.<br />

At concentrations of 1 µM, g<strong>in</strong>kgolide J and g<strong>in</strong>kgolide A<br />

both restored long-term potentiation values to control levels,<br />

while neither g<strong>in</strong>kgolide B nor g<strong>in</strong>kgolide C was effective.<br />

Several compounds are specifically claimed for use, for<br />

example, g<strong>in</strong>kgolide J. Compositions conta<strong>in</strong><strong>in</strong>g g<strong>in</strong>kgolide J<br />

and g<strong>in</strong>kgolide A are also claimed.<br />

O<br />

O<br />

H<br />

CH 3<br />

OH CH3 CH<br />

OH 3<br />

O<br />

CH 3<br />

O<br />

O<br />

OH O H<br />

O<br />

WO-2005092324<br />

(Trustees of Columbia University)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

When extracts from G<strong>in</strong>kgo biloba were first offered as<br />

cognition enhancers several decades ago, their scientific<br />

foundation was extremely narrow, and even a decade ago<br />

our knowledge at the molecular level was limited. Today,<br />

hardly a month passes <strong>in</strong> which the peer-reviewed and<br />

patent literature does not carry new, well-founded<br />

contributions concern<strong>in</strong>g G<strong>in</strong>kgo compounds. That<br />

g<strong>in</strong>kgolide B can block β-amyloid (1-42)-<strong>in</strong>duced<br />

neurotoxicity had been published before, but scientists from<br />

Columbia University have now extended this to g<strong>in</strong>kgolides<br />

A and J. More importantly, they have shown that these<br />

molecules also <strong>in</strong>hibit β-amyloid blockade of neuronal LTP.<br />

At concentrations of 1 µM, g<strong>in</strong>kgolides A and J both restored<br />

LTP <strong>in</strong> hippocampal slices to control levels, while the B- and<br />

C-type molecules were <strong>in</strong>effective. Less than a month before<br />

the pert<strong>in</strong>ent March 2004 priority date, a Ukra<strong>in</strong>ian research<br />

group had published the f<strong>in</strong>d<strong>in</strong>g that 5 µM of g<strong>in</strong>kgolide B<br />

(but not J) completely <strong>in</strong>hibited the <strong>in</strong>duction of<br />

hippocampal LTP (Neurochem Int (2004) 44(3):171-177). LTP<br />

modulation has much more profound therapeutic<br />

implications than simple neuroprotection, and <strong>in</strong> the case of<br />

the g<strong>in</strong>kgolides it might be caused by the <strong>in</strong>terplay of two<br />

mechanisms: blockade of glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites and<br />

antagonism of receptors for platelet-activat<strong>in</strong>g factor, a<br />

bioactive lipid that has been proposed to be a retrograde<br />

mediator of LTP.<br />

Endocr<strong>in</strong>e & metabolics<br />

Selected by Peter Norman (Norman Consult<strong>in</strong>g, Burnham,<br />

Bucks, UK)<br />

New sulfonamide derivatives are PPARα agonists -<br />

useful for the treatment of, eg, lipid disorders and<br />

atherosclerosis<br />

PFIZER PRODUCTS INC (Hamanaka ES, Kehrli ME Jr)<br />

WO-2005092845, 06 October 2005<br />

Novel sulfonamide derivatives, their salts or prodrugs,<br />

compositions conta<strong>in</strong><strong>in</strong>g them, optionally <strong>in</strong> comb<strong>in</strong>ation<br />

with additional active <strong>in</strong>gredients, and methods of their use for<br />

the treatment of dyslipidemia, obesity, hypertriglyceridemia,<br />

hyperlipidemia, hypoalphalipoprote<strong>in</strong>emia, metabolic<br />

syndrome, diabetes mellitus, hyper<strong>in</strong>sul<strong>in</strong>emia, impaired<br />

glucose tolerance, <strong>in</strong>sul<strong>in</strong> resistance, diabetic complications,<br />

atherosclerosis, hypertension, coronary heart disease,<br />

hypercholesterolemia, <strong>in</strong>flammation, osteoporosis,<br />

thrombosis, peripheral vascular disease, cognitive<br />

dysfunction or congestive heart failure are claimed. These<br />

compounds are stated to be peroxisome proliferatoractivated<br />

receptor (PPAR) agonists, particularly PPARα<br />

agonists. No suitable advantage is given. The ability of the<br />

compounds to reduce postpartum serum non-esterified fatty<br />

acid (NEFA) and liver triglyceride levels was determ<strong>in</strong>ed <strong>in</strong><br />

calv<strong>in</strong>g dairy cattle follow<strong>in</strong>g dos<strong>in</strong>g (route unspecified) on<br />

alternate days <strong>in</strong> the week prior to calv<strong>in</strong>g and for 8 days<br />

follow<strong>in</strong>g. Several compounds are specifically claimed, for<br />

example, 2-methyl-5-(4'-trifluoromethoxybiphenyl-4-ylsulfamoyl)-benzoic<br />

acid, which significantly (p < 0.01)


educed serum NEFA and liver triglyceride levels at a dose<br />

of 0.5 mg/kg. Functional and anti-atherosclerotic studies are<br />

additionally described, but no result<strong>in</strong>g data are presented.<br />

F<br />

F<br />

F<br />

O<br />

H<br />

N<br />

S<br />

O O<br />

WO-2005092845<br />

(Pfizer)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

PPAR agonists of vary<strong>in</strong>g specificities have attracted<br />

considerable attention for the treatment of various metabolic<br />

disorders. However, their development has encountered<br />

many problems ow<strong>in</strong>g to side effects and toxicity, lead<strong>in</strong>g to<br />

the abandonment of many compounds and caus<strong>in</strong>g the Food<br />

and Drug Adm<strong>in</strong>istration (FDA) to impose additional<br />

toxicology requirements for this class of compounds. The<br />

FDA's rejection of the dual PPAR agonist muraglitazar has<br />

prompted Bristol-Myers Squibb Co and Merck & Co Inc to<br />

consider discont<strong>in</strong>u<strong>in</strong>g development of the drug. This<br />

application is notable for two reasons: first, Pfizer has shown<br />

limited <strong>in</strong>terest <strong>in</strong> the development of PPAR agonists, and<br />

second, because the acid head group <strong>in</strong> the claimed<br />

compounds is present as a benzoic acid rather than the more<br />

common phenylpropionic acid or its isosteres.<br />

Use of alkyne MCH antagonists - for the treatment of,<br />

eg, obesity, metabolic disorders or diabetes<br />

BOEHRINGER INGELHEIM INTERNATIONAL GMBH (Stenkamp D,<br />

Mueller SG, Lustenberger P, Lehmann-L<strong>in</strong>tz T, Roth GJ, Rudolf<br />

K, Sch<strong>in</strong>dler M, Thomas L, Lotz R)<br />

US-20050234101, 20 October 2005<br />

The use of alkyne derivatives, their tautomers, enantiomers<br />

or salts, or compositions compris<strong>in</strong>g them, to <strong>in</strong>fluence<br />

eat<strong>in</strong>g behavior, reduce body weight or prevent or treat a<br />

metabolic disorder is claimed. The metabolic disorder is<br />

claimed to be selected from the group consist<strong>in</strong>g of bulimia,<br />

bulimia nervosa, cachexia, anorexia, anorexia nervosa or<br />

hyperphagia. The compounds are also claimed to be useful<br />

for the treatment of diabetes, diabetic ret<strong>in</strong>opathy,<br />

neuropathy or nephropathy, <strong>in</strong>sul<strong>in</strong> resistance, cardiac<br />

<strong>in</strong>sufficiency, arteriosclerosis, high blood pressure, arthritis,<br />

hyperlipidemia, mastocytosis, emotional disorders, affective<br />

disorders, depression, anxiety, sleep disorders, reproductive<br />

disorders, sexual disorders, memory disorders, epilepsy,<br />

dementia, hormonal disorders, ur<strong>in</strong>ary <strong>in</strong>cont<strong>in</strong>ence,<br />

hyperactive ur<strong>in</strong>ary bladder, urgency or enuresis, and<br />

dependencies or withdrawal symptoms. The compounds are<br />

stated to act as melan<strong>in</strong> concentrat<strong>in</strong>g hormone (MCH)<br />

antagonists. No specific advantage is given. The activity of<br />

these compounds was assessed <strong>in</strong> an MCH-1 receptorb<strong>in</strong>d<strong>in</strong>g<br />

test. Several compounds are specifically claimed, for<br />

example, (2-{4-[5-(4-chlorophenyl)pyrid<strong>in</strong>-2-ylethynyl]-2methylphenoxy}ethyl)(cyclohexyl)cyclopentylam<strong>in</strong>e,<br />

which<br />

had an IC50 value of 6.2 nM.<br />

O<br />

OH<br />

CH 3<br />

N<br />

O<br />

C<br />

H 3<br />

US-20050234101<br />

(Boehr<strong>in</strong>ger Ingelheim)<br />

N<br />

Patent alert 11<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Obesity is a major problem <strong>in</strong> all developed countries and is<br />

an underly<strong>in</strong>g causal factor <strong>in</strong> the development of many<br />

other conditions, such as type 2 diabetes and heart disease.<br />

Despite this, there are few approved therapeutic agents for<br />

the treatment of obesity, and none of the currently marketed<br />

drugs are well tolerated. A number of new approaches for<br />

the treatment of obesity are under <strong>in</strong>vestigation and the<br />

development of MCH antagonists is prom<strong>in</strong>ent <strong>in</strong> this<br />

regard. Boehr<strong>in</strong>ger has not previously shown an <strong>in</strong>terest <strong>in</strong><br />

this target; however, this application and WO-2005085221<br />

suggest that this is another research area <strong>in</strong> which the<br />

company is actively <strong>in</strong>volved, and that it is seek<strong>in</strong>g to<br />

expand its metabolic disease portfolio.<br />

New substituted pyrimid<strong>in</strong>e derivatives are DPP-IV<br />

<strong>in</strong>hibitors - useful for treat<strong>in</strong>g, eg, diabetes, cancer,<br />

autoimmune disease, HIV <strong>in</strong>fection and immunodeficiency<br />

SYRRX INC (Feng J, Gwaltney SL, Stafford JA, Zhang Z)<br />

WO-2005095381, 13 October 2005<br />

Novel substituted pyrimid<strong>in</strong>e and related derivatives, a<br />

process for their preparation and methods of their use for<br />

<strong>in</strong>hibit<strong>in</strong>g dipeptidyl peptidase (DPP)-IV and for the<br />

treatment of types 1 and 2 diabetes, cancer (particularly<br />

colorectal, prostate, breast, thyroid, sk<strong>in</strong>, lung or head and<br />

neck cancer), autoimmune disorders (<strong>in</strong>clud<strong>in</strong>g rheumatoid<br />

arthritis, psoriasis and multiple sclerosis), HIV <strong>in</strong>fection,<br />

<strong>in</strong>adequate lymphocyte or hematopoietic cell levels,<br />

chemotherapy or radiation therapy side effects (particularly<br />

kidney failure and bone marrow disorders) and<br />

immunodeficiency are claimed. The compounds are<br />

selective for DPP-IV over other proteases. Protocols for<br />

protease <strong>in</strong>hibition assays are described. The compounds are<br />

stated to exhibit selective DPP-IV <strong>in</strong>hibitory activity at<br />

concentrations of at least 50-fold less than those required to<br />

<strong>in</strong>hibit fibroblast activation prote<strong>in</strong>-α, with Ki values<br />

rang<strong>in</strong>g between 10 -9 and 10 -5 M, but no specific data are<br />

presented. Several compounds are specifically claimed,<br />

<strong>in</strong>clud<strong>in</strong>g 2-(6-[3(R)-am<strong>in</strong>opiperid<strong>in</strong>-1-yl]-3-methyl-2,4-dioxo-<br />

3,4-dihydro-2H-pyrimid<strong>in</strong>-1-ylmethyl)benzonitrile.<br />

N<br />

H 2<br />

N<br />

N<br />

N<br />

O<br />

N<br />

WO-2005095381<br />

(Syrrx)<br />

O<br />

CH 3<br />

Cl


12 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

A number of new approaches to the treatment of diabetes<br />

are be<strong>in</strong>g pursued. Of these, the development of DPP-IV<br />

<strong>in</strong>hibitors is by far the most advanced, with three<br />

compounds (MK-431 (Merck & Co Inc/Banyu<br />

Pharmaceutical Co Ltd/Ono Pharmaceutical Co Ltd),<br />

saxaglipt<strong>in</strong> (Bristol-Myers Squibb Co) and vildaglipt<strong>in</strong><br />

(Novartis Institutes for BioMedical Research Inc)) currently<br />

<strong>in</strong> phase III cl<strong>in</strong>ical trials. These compounds, like nearly all<br />

other DPP-IV <strong>in</strong>hibitors, are based on the almost ubiquitous<br />

2-pyrrolonitrile chemotype. Few other chemotypes have<br />

been described, and the compounds claimed <strong>in</strong> this<br />

application represent a considerable variation <strong>in</strong> this regard.<br />

This difference may be due to the successful exploitation of<br />

structure-aided drug design that is the focus of research at<br />

Takeda San Diego (formerly Syrrx).<br />

Oncological<br />

Selected by Peter Norman (Norman Consult<strong>in</strong>g, Burnham,<br />

Bucks, UK)<br />

New 6-phenylfuro[2,3-d]pyrimid<strong>in</strong>e derivatives are DDR2<br />

tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitors - useful for the treatment of<br />

rheumatoid arthritis, cirrhosis and cancer<br />

KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY/JEIL<br />

PHARMACEUTICAL CO LTD (Yang B-S, Yang K-M, Kim H-J, Park<br />

I-S, Park S-D, Lee J-H, Kwon H-M, Woo B-Y)<br />

WO-2005092896, 06 October 2005<br />

Novel 6-phenylfuro[2,3-d]pyrimid<strong>in</strong>e derivatives and their<br />

salts, compositions conta<strong>in</strong><strong>in</strong>g them, their use as <strong>in</strong>hibitors<br />

of the discoid<strong>in</strong> doma<strong>in</strong> receptor (DDR)2 tyros<strong>in</strong>e k<strong>in</strong>ase,<br />

and <strong>in</strong> the treatment of hepatocirrhosis, rheumatism and<br />

cancer are claimed. The DDR prote<strong>in</strong> has been reported to<br />

enhance the development of fibroblasts and to show<br />

<strong>in</strong>creased expression <strong>in</strong> metastatic cancer cells. The claimed<br />

compounds are the first low-molecular-weight <strong>in</strong>hibitors of<br />

DDR2 k<strong>in</strong>ase described. In a rat cannulated bile duct model<br />

of cirrhosis, adm<strong>in</strong>istration of one compound (10<br />

mg/kg/day for 2 weeks) <strong>in</strong>hibited hydroxy furor<strong>in</strong><br />

production from 4.93 to 2.23 mg/g (the normal level).<br />

Approximately 200 compounds are exemplified. No<br />

compounds are specifically claimed.<br />

Cl<br />

O<br />

N<br />

CH3 HN<br />

WO-2005092896<br />

(Korea Institute of Science and Technology/Jeil)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

DDR2 is a widely expressed member of a subfamily of<br />

receptor tyros<strong>in</strong>e k<strong>in</strong>ases whose ligands are fibrillar<br />

collagens. Studies <strong>in</strong> knockout mice suggest that it acts to<br />

regulate cellular proliferation and, for example, fibroblast<br />

signal<strong>in</strong>g. Tyros<strong>in</strong>e k<strong>in</strong>ases <strong>in</strong> this subfamily have attracted<br />

little attention until now, thus the appearance of this<br />

application claim<strong>in</strong>g the first documented <strong>in</strong>hibitors of<br />

N<br />

S<br />

N<br />

N<br />

DDR2 k<strong>in</strong>ase is likely to evoke considerable efforts <strong>in</strong> the<br />

field. The claimed compounds also represent a novel<br />

chemotype of tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor, which may have<br />

enhanced selectivity compared with the better characterized<br />

tyros<strong>in</strong>e k<strong>in</strong>ases.<br />

New thioalkeneamide derivatives are transketolase<br />

<strong>in</strong>hibitors - useful for the treatment of cancer<br />

ARRAY BIOPHARMA INC (Boyd SA)<br />

WO-2005095344, 13 October 2005<br />

Novel thioalkeneamide derivatives and their use, either<br />

alone or <strong>in</strong> comb<strong>in</strong>ation with a thiam<strong>in</strong>e-restricted diet<br />

and/or other therapeutic agents, to <strong>in</strong>hibit transketolase<br />

activity and cellular nucleic acid synthesis, and to reduce the<br />

cellular levels of ribulose/ribose-5-phosphate are claimed.<br />

These compounds are also claimed to <strong>in</strong>crease apoptosis <strong>in</strong><br />

tumor cells and to reduce tumor growth. They are stated to<br />

be additionally useful as <strong>in</strong>hibitors of metastasis and<br />

angiogenesis. No suitable advantage is given. Several<br />

compounds are specifically claimed, <strong>in</strong>clud<strong>in</strong>g N-(2-am<strong>in</strong>o-6methylpyrid<strong>in</strong>-3-ylmethyl)-N-{2-[2-[(2-am<strong>in</strong>o-6-methylpyrid<strong>in</strong>-3ylmethyl)formylam<strong>in</strong>o]-1-(2-hydroxyethyl)-propenyl-disulfanyl]-<br />

4-hydroxy-1-methylbut-1-enyl}formamide (AR-00342632), which<br />

had an IC50 value of 10 nM aga<strong>in</strong>st HCT116 colon carc<strong>in</strong>oma<br />

cells <strong>in</strong> vitro.<br />

C<br />

H 3<br />

N<br />

NH 2<br />

C<br />

H 3<br />

N<br />

O<br />

H<br />

S S<br />

OH<br />

OH<br />

H<br />

WO-2005095344<br />

(Array)<br />

N<br />

CH 3<br />

O NH 2<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Transketolase is a metabolic enzyme that plays a crucial role<br />

<strong>in</strong> tumor cell nucleic acid synthesis, us<strong>in</strong>g glucose through<br />

the elevated non-oxidative pentose phosphate pathway.<br />

Thus, <strong>in</strong>hibitors of this enzyme constitute a novel approach<br />

to the treatment of cancer. To date, this possibility has been<br />

almost completely neglected, with only Array's disclosure of<br />

the activity of AR-00342632 at the 2005 American Chemical<br />

Society meet<strong>in</strong>g, and S*BIO and Chiron's description of the<br />

identification of lead compounds via high-throughput<br />

screen<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g any <strong>in</strong>terest. This application was one<br />

of two from Array (see also WO-2005095391). AVEO<br />

Pharmaceuticals published WO-2005094803 claim<strong>in</strong>g such<br />

<strong>in</strong>hibitors on the same day.<br />

New 2-am<strong>in</strong>omethylthiazole-5-carboxamide derivatives<br />

are prote<strong>in</strong> k<strong>in</strong>ase modulators - useful for the treatment<br />

of, eg, neurological disease and cancer<br />

LEXICON GENETICS INC (J<strong>in</strong> H, Shi Z-C, Theis H, Kolb H)<br />

WO-2005097766, 20 October 2005<br />

New 2-am<strong>in</strong>omethylthiazole-5-carboxamide derivatives,<br />

their compositions, and their use for the treatment of, for<br />

example, allergy, cardiovascular disease, cancer, dental<br />

disease, dermatological disease, endocr<strong>in</strong>e disease,<br />

metabolic disorder, gastro<strong>in</strong>test<strong>in</strong>al disease, genitour<strong>in</strong>ary<br />

N<br />

CH 3


disease, hematological disease, hepatobiliary disease,<br />

<strong>in</strong>fection, musculoskeletal disease, neurological disease,<br />

nutritional disorder, ocular disease, psychiatric disorder,<br />

pulmonary disease and leukemia are claimed. It is disclosed<br />

that the compounds can be used for the treatment of<br />

diseases mediated by prote<strong>in</strong> k<strong>in</strong>ase <strong>in</strong>hibition. No suitable<br />

advantage is given. No biological data are presented. The<br />

specified compound is one of several 2-am<strong>in</strong>omethylthiazole-5-carboxamide<br />

compounds specifically claimed.<br />

C<br />

H 3<br />

N<br />

N<br />

S<br />

N<br />

N<br />

H<br />

O<br />

WO-2005097766<br />

(Lexicon Genetics)<br />

CH 3<br />

O CH3<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Lexicon Genetics is one of several genomics companies that<br />

has switched its bus<strong>in</strong>ess strategy to pursue the<br />

development of small-molecule therapeutics. In January<br />

2005, Lexicon Genetics <strong>in</strong>dicated that it had identified two<br />

small-molecule candidates, the more advanced of which<br />

(LX-1521) is an anti-apoptotic k<strong>in</strong>ase <strong>in</strong>hibitor discovered<br />

from Lexicon's LG152 k<strong>in</strong>ase target program. Until October<br />

2005, Lexicon Genetics had not published any patent<br />

applications claim<strong>in</strong>g k<strong>in</strong>ase <strong>in</strong>hibitors. The appearance of<br />

this application and WO-2005095420, which claims<br />

thiazolopyrazoles, provides the first <strong>in</strong>dication as to the<br />

chemical strategy that is be<strong>in</strong>g pursued.<br />

New 3-am<strong>in</strong>opyrazole derivatives are tropomyos<strong>in</strong>related<br />

k<strong>in</strong>ase <strong>in</strong>hibitors - useful for the treatment of<br />

cancer and fibroproliferative/differentiative disorders<br />

ASTRAZENECA AB/ASTRAZENECA UK LTD (Lyne P, Wang B,<br />

Wang T)<br />

WO-2005103010, 03 November 2005<br />

Novel 3-am<strong>in</strong>opyrazole derivatives, their salts, processes for<br />

their preparation, compositions conta<strong>in</strong><strong>in</strong>g them and<br />

methods of their use as tropomyos<strong>in</strong>-related k<strong>in</strong>ase (Trk)<br />

<strong>in</strong>hibitors for the treatment of cancers, fibroproliferative/<br />

differentiative disorders, psoriasis, rheumatoid arthritis,<br />

Patent alert 13<br />

Kaposi's sarcoma, hemangioma, nephropathy, atheroma,<br />

atherosclerosis, arterial restenosis, autoimmune disease,<br />

<strong>in</strong>flammation, bone disease or ocular disease with ret<strong>in</strong>al<br />

vessel proliferation are claimed. The compounds are<br />

particularly stated to <strong>in</strong>hibit TrkA and TrkB activity. No<br />

suitable advantage is given. The ability of compounds to<br />

<strong>in</strong>hibit TrkA and TrkB activity was determ<strong>in</strong>ed <strong>in</strong> vitro us<strong>in</strong>g<br />

an amplified lum<strong>in</strong>escent proximity assay and appropriate<br />

biot<strong>in</strong>ylated polypeptide substrates. Compounds are stated<br />

to have IC50 values of 0.01 to 10 µM aga<strong>in</strong>st TrkB activity. No<br />

specific biological data aga<strong>in</strong>st TrkB are presented. Six<br />

compounds are specifically claimed, for example, (R)-4-(5cyclopropyl-1H-pyrazol-3-ylam<strong>in</strong>o)-2-[1-(4-fluorophenyl)-<br />

2-hydroxyethylam<strong>in</strong>o]-5-nitrobenzonitrile, which had an<br />

IC50 value of 0.859 µM aga<strong>in</strong>st TrkA.<br />

F<br />

HO<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

WO-2005103010<br />

(AstraZeneca)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

TrkA and TrkB are two members of the Trk proto-oncogene<br />

family and thus constitute logical targets for the<br />

development of novel anticancer agents. Despite this,<br />

relatively few small-molecule <strong>in</strong>hibitors of these k<strong>in</strong>ases<br />

have been described to date, and, of those that have, a<br />

number are broad-spectrum k<strong>in</strong>ase <strong>in</strong>hibitors. AstraZeneca<br />

is the first company to describe compounds that appear to<br />

be specific <strong>in</strong>hibitors of these k<strong>in</strong>ases, and which also<br />

represent a fairly novel k<strong>in</strong>ase <strong>in</strong>hibitor chemotype. This<br />

application claims compounds similar to those<br />

claimed <strong>in</strong> the application WO-2005049033, but employs<br />

pyrazolyl-am<strong>in</strong>obenzene derivatives rather than pyrazolylam<strong>in</strong>opyrimid<strong>in</strong>es.<br />

NH<br />

N +<br />

O<br />

O


14<br />

Editorial overview<br />

The genome: Five years on<br />

Michael Williams<br />

Address<br />

Department of Molecular Pharmacology and Biological Chemistry<br />

Fe<strong>in</strong>berg School of Medic<strong>in</strong>e<br />

Northwestern University<br />

Chicago<br />

IL 60611<br />

USA<br />

Email: mazar<strong>in</strong>e1643@comcast.net<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):14-17<br />

© The Thomson Corporation ISSN 1472-4472<br />

In 2001, one of the major milestones <strong>in</strong> the history of<br />

biomedical research was achieved, namely the publication of<br />

draft maps of the human genome [1,2], an activity that was<br />

reportedly completed <strong>in</strong> 2003 [3]. This was <strong>in</strong>evitably<br />

accompanied by various predictions that the discrete<br />

molecular source of all human diseases would soon be<br />

known [4-6] and, as a consequence, that the path to the<br />

discovery of novel, more efficacious and safer drugs, based<br />

on as yet unknown and unproven targets resident <strong>in</strong> the<br />

genome, would be exponentially more facile, more<br />

productive, faster and cheaper, ow<strong>in</strong>g to the unique diseaseassociation<br />

of the targets. The then US President, Bill<br />

Cl<strong>in</strong>ton, predicted that 'with this new found knowledge,<br />

humank<strong>in</strong>d is on the verge of ga<strong>in</strong><strong>in</strong>g immense new power<br />

to heal' [7]. Conversely, recent research by Accenture/CMR<br />

International notes that 'only 3% of projects aimed at new<br />

targets will enter precl<strong>in</strong>ical development compared with<br />

17% for projects on established targets' [8].<br />

Almost five years later, an <strong>in</strong>formal survey of 500 scientists<br />

<strong>in</strong>volved <strong>in</strong> the drug discovery process found that 67% were<br />

unconv<strong>in</strong>ced that the genome maps had 'even moderate<br />

effects on drug research' [9]. Similarly, biotechnology<br />

<strong>in</strong>dustry observers and genomic scientists cautioned that the<br />

promised 'fruits of genomics' [10] are unlikely to emerge <strong>in</strong><br />

the near future, with a 10 to 20 year timeframe be<strong>in</strong>g<br />

considered more likely [11].<br />

Additionally, <strong>in</strong> follow<strong>in</strong>g the theme of us<strong>in</strong>g novel<br />

approaches to f<strong>in</strong>d<strong>in</strong>g new drugs, <strong>in</strong> this same group of 500<br />

scientists, 64% 'considered that their organization, at best,<br />

only supported <strong>in</strong>novation to a moderate extent' [9], echo<strong>in</strong>g<br />

similar comments made by Drews [12] and Vagelos [13].<br />

This f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicated a disconnect between the concept of<br />

<strong>in</strong>novation−'the act of <strong>in</strong>troduc<strong>in</strong>g someth<strong>in</strong>g new'−that is<br />

religiously cited as the driver for drug discovery [8,14], and<br />

the rampant technology acquisition and implementation <strong>in</strong><br />

the biotech and pharmaceutical <strong>in</strong>dustries over the past<br />

decade. Clearly, the acquisition of enabl<strong>in</strong>g technologies is<br />

very dist<strong>in</strong>ct from their effective use and subsequent ability<br />

to impact the way th<strong>in</strong>gs are done. In reflect<strong>in</strong>g on the<br />

contributions of the late Paul Janssen to the pharmaceutical<br />

<strong>in</strong>dustry, Black noted that successful drug discovery should<br />

avoid 'wishful th<strong>in</strong>k<strong>in</strong>g' and superficiality, and focus <strong>in</strong>stead<br />

on conception, concentration, commitment and creativity<br />

[15]. In this context, the strategic management of the<br />

drug-discovery process appears critical to support the<br />

process of <strong>in</strong>novation and entrepreneurship [16] to ensure<br />

that the enabl<strong>in</strong>g technologies actually contribute to, rather<br />

than diffuse, the focus.<br />

As with many of the new technologies <strong>in</strong> biomedical<br />

research, the expectations for genome-based <strong>in</strong>formation<br />

have far outweighed their fledgl<strong>in</strong>g status with 'overhyp<strong>in</strong>g'<br />

be<strong>in</strong>g a frequently expressed concern [17-20]. Genetics was<br />

described as a 'science of exceptions' by Jones <strong>in</strong> 2000, with<br />

human life expectancy far more dependent on the<br />

environment (epigenetics) than the genome (genetics) [17].<br />

Jones also noted that geneticists have made promises<br />

regard<strong>in</strong>g the deliverables <strong>in</strong> genetics for decades,<br />

controversially suggest<strong>in</strong>g that four letters of the genetic<br />

code might more reasonably be H, Y, P and E.<br />

However, hype related to new technology <strong>in</strong>troductions is not<br />

unique to either the genome or biomedical research and has<br />

been formalized <strong>in</strong> Fenn's 'hype cycle' (Figure 1) [21]. Initially<br />

used <strong>in</strong> 1995, the concept has been more broadly extended to<br />

the maturity and adoption rates of a wide range of emerg<strong>in</strong>g<br />

technologies <strong>in</strong> different <strong>in</strong>dustries. The question for the<br />

genome-based, biomedical research enterprise <strong>in</strong> 2006 is where<br />

genome-based drug discovery currently lies on the maturity<br />

scale. One may argue that the thought leaders <strong>in</strong> genomics are<br />

still operat<strong>in</strong>g <strong>in</strong> the 'peak of <strong>in</strong>flated expectations', while those<br />

reduc<strong>in</strong>g the genome to practice (by fiat or choice) <strong>in</strong> pharma<br />

and biotech are operat<strong>in</strong>g <strong>in</strong> the 'trough of disillusionment'<br />

(Figure 1) [9]. The sceptics are at least ahead of the pundits on<br />

the hype cycle abscissa of maturity.<br />

While many heritable disorders have already been identified <strong>in</strong><br />

which a mutation <strong>in</strong> a s<strong>in</strong>gle gene is necessary and sufficient to<br />

produce a disease, critics of genome-based drug discovery have<br />

po<strong>in</strong>ted out that the genetic associations for Hunt<strong>in</strong>gton's<br />

disease [22], sickle cell anemia [23] and cystic fibrosis [24] were<br />

known before the mapp<strong>in</strong>g of the genome and, despite the<br />

identification of discrete molecular lesions <strong>in</strong>volv<strong>in</strong>g these<br />

associations, have yet to yield effective treatments. Similarly, <strong>in</strong><br />

the Alzheimer's disease (AD) field, the two key mechanisms<br />

thought to contribute to disease progression and neuronal<br />

death−amyloid β deposition and tau hyperphosphorylation<br />

[25]−together with the genetic association of AD with<br />

apolipoprote<strong>in</strong> E alleles [26], have been active research targets<br />

for many years with, aga<strong>in</strong>, little progress hav<strong>in</strong>g been made <strong>in</strong><br />

either understand<strong>in</strong>g the orig<strong>in</strong> and contribution of the<br />

molecular lesion to disease etiology or how this knowledge can<br />

be used to f<strong>in</strong>d effective treatments. Of additional concern <strong>in</strong><br />

the area of AD therapeutics is that the National Institute for<br />

Health and Cl<strong>in</strong>ical Excellence <strong>in</strong> the UK has recently<br />

recommended that the drugs currently approved for use <strong>in</strong> the<br />

treatment of AD (eg, donezepil) are no longer prescribed,<br />

because their benefit to the patient does not justify their cost<br />

[27]; the implications of this recommendation represent part of<br />

a much broader debate [28].


Figure 1. The hype cycle.<br />

Visibility<br />

Technology<br />

trigger<br />

Positive<br />

hype<br />

Don't jo<strong>in</strong> <strong>in</strong> just because it's '<strong>in</strong>'<br />

Peak of <strong>in</strong>flated<br />

expectations<br />

Negative<br />

hype<br />

Don't miss out just because it's 'out'<br />

Trough of<br />

disillusionment<br />

Maturity<br />

Slope of<br />

enlightenment<br />

Plateau of<br />

productivity<br />

Editorial overview 15<br />

Technology trigger: a breakthrough technology that generates significant <strong>in</strong>terest and rampant acquisition and deal mak<strong>in</strong>g and claims to<br />

revolutionize the future of drug discovery.<br />

Peak of <strong>in</strong>flated expectations: a phase of over enthusiasm and unrealistic predictions <strong>in</strong> the press, dur<strong>in</strong>g which successes <strong>in</strong> terms of<br />

<strong>in</strong>vestigational new drugs are <strong>in</strong>frequent. Conference organizers reap the benefits from organiz<strong>in</strong>g frequent 'updates' on the usefulness and<br />

utilization of the technology with speakers who spend the majority of their time attend<strong>in</strong>g such conferences and are thus removed from the<br />

practicalities of try<strong>in</strong>g to use the technology effectively.<br />

Trough of disillusionment: the technology s<strong>in</strong>ks from the limelight as it did not live up to its over-<strong>in</strong>flated expectations; technocrats and<br />

research management move onto the next technology trigger <strong>in</strong> the hope that this will be 'the one'. The phenomenon of hype addiction is<br />

apparent.<br />

Slope of enlightenment: additional focused research leads to a true understand<strong>in</strong>g of the utility of the technology (eg, parallel synthesis<br />

versus comb<strong>in</strong>atorial chemistry).<br />

Plateau of productivity: the practical benefits of the technology are widely demonstrated and accepted. It is found to make a big difference<br />

just as those who are long gone said they thought it would (modified from reference [45]).<br />

(Reproduced with permission from Gartner and L<strong>in</strong>den A, Fenn J: Understand<strong>in</strong>g Gartner's Hype Cycles. Research ID R-20-197, Gartner,<br />

Stamford, CT, USA. © 2003 Gartner) [21].<br />

Additional examples of tantaliz<strong>in</strong>g gene associations with<br />

disease phenotypes that have already been established, yet<br />

rema<strong>in</strong> controversial, are: the dopam<strong>in</strong>e transporter and<br />

attention-deficit hyperactivity disorder [29], the breast<br />

cancer gene and cancer [30], the cystic fibrosis<br />

transmembrane conductance regulator and cystic fibrosis<br />

[31], and α1 antitryps<strong>in</strong> deficiency and chronic obstructive<br />

pulmonary disease [32].<br />

An <strong>in</strong>terest<strong>in</strong>g observation regard<strong>in</strong>g the perceived<br />

commercial value of the genome, albeit an extremely shortterm<br />

view, is that the majority of the high-profile<br />

genomic/genetics companies founded <strong>in</strong> the 1990s<br />

[33]−Celera, Human Genome Sciences, Incyte, Millennium,<br />

Exelexis, Curagen and Genset−have either dramatically<br />

changed their bus<strong>in</strong>ess model toward that of more<br />

traditional biotechs (eg, small-molecule and/or biologicals<br />

drug discovery) or ceased to exist, leav<strong>in</strong>g only Myriad<br />

Genetics <strong>in</strong> Salt Lake City, USA and DeCode genetics, based<br />

primarily <strong>in</strong> Reykjavik, Iceland, as the rema<strong>in</strong><strong>in</strong>g two<br />

players of note <strong>in</strong> the field of genome-based medic<strong>in</strong>e, each<br />

build<strong>in</strong>g on unique access to discrete patient populations<br />

with extensive genealogical and genetic records: members of<br />

the Mormon Church <strong>in</strong> Salt Lake City, and the population of<br />

Iceland <strong>in</strong> Reykjavik.<br />

With an <strong>in</strong>creas<strong>in</strong>g recognition of the significant challenges<br />

<strong>in</strong>herent <strong>in</strong> translat<strong>in</strong>g genomic <strong>in</strong>formation to practice (the<br />

99% perspiration part of the def<strong>in</strong>ition of genius ascribed to<br />

Thomas Edison), thought leaders have had no compunction<br />

<strong>in</strong> leav<strong>in</strong>g the <strong>in</strong>complete bus<strong>in</strong>ess of the genome beh<strong>in</strong>d to<br />

focus their attentions on the many other 'omics' that exist<br />

beyond the genome. These <strong>in</strong>clude proteomics [34], which<br />

provides even bigger technical challenge than genomics,<br />

given an <strong>in</strong>f<strong>in</strong>itely more complex data set full of labile<br />

unknowns dependent on post-translational modification<br />

(such as phosphorylation, glycosylation and splic<strong>in</strong>g) and<br />

the need for extensive subproteomic analysis based on the<br />

current limitations of mass spectrometroscopic-based<br />

analytical capabilities that lag far beh<strong>in</strong>d the questions be<strong>in</strong>g<br />

posed [35,36].<br />

The latest of the 'omic' sciences is that of the '<strong>in</strong>teractome'<br />

[37], an evolv<strong>in</strong>g collection of b<strong>in</strong>ary prote<strong>in</strong>-prote<strong>in</strong>


16 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>in</strong>teractions that may form the scaffold for functional genomics<br />

and proteomics, that has emerged from the recently published<br />

draft of the human haplotype map (HapMap) [37,38]. HapMap<br />

is anticipated to 'provide <strong>in</strong>sight <strong>in</strong>to development and disease<br />

mechanisms at a systems level' and to facilitate genome-wide<br />

association studies, represent<strong>in</strong>g a major step forward <strong>in</strong><br />

understand<strong>in</strong>g human disease etiology, provided that the same<br />

concerns regard<strong>in</strong>g data replication that are prevalent <strong>in</strong> the<br />

genome [39], and more so <strong>in</strong> the proteome [36], are not a<br />

function of the enhanced complexity and practice of the<br />

<strong>in</strong>teractome [40].<br />

While there is early enthusiasm for the promise of the<br />

<strong>in</strong>teractome (the 'technology trigger' phase of the hype cycle)<br />

Sharon Begley of the Wall Street Journal (who brought the<br />

world the parts model of the Boe<strong>in</strong>g 777 as a metaphor for<br />

the reductionistic approach to decipher<strong>in</strong>g the genome) [41]<br />

has questioned the 'limited' value of the HapMap [19] <strong>in</strong> the<br />

context of tw<strong>in</strong> studies [42] <strong>in</strong> which identical DNA and<br />

haplotypes lead to different phenotypes.<br />

Dur<strong>in</strong>g the course of this year, <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong> hopes to present a series of Editorials,<br />

written or suggested by members of its Editorial Board, that<br />

are focused on the challenges and progress <strong>in</strong> utiliz<strong>in</strong>g<br />

<strong>in</strong>formation from the genome and its 'omic' progeny <strong>in</strong> the<br />

context of both discrete therapeutic areas and genomeassociated<br />

technology platforms. In an era of considerable<br />

scepticism as to the value of new biologies [9,18] and their<br />

ability to be <strong>in</strong>tegrated with more traditional approaches to<br />

drug discovery [43], the capacity of these discipl<strong>in</strong>es to add<br />

to the solutions, rather than the problems that are deemed to<br />

be contribut<strong>in</strong>g to the dearth of new drug <strong>in</strong>troductions [8,<br />

43,44], will be reviewed.<br />

Suggested read<strong>in</strong>g<br />

1. Lander ES, L<strong>in</strong>ton LM, Birren B, Nusbaum C, Zody MC, Baldw<strong>in</strong> J,<br />

Devon K, Dewar K, Doyle M, Fitz Hugh W, Funke R et al: Initial<br />

sequenc<strong>in</strong>g and analysis of the human genome. Nature (2001)<br />

409(6822):860-921.<br />

2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith<br />

HO, Yandell M, Evans CA, Holt RA, Gocayne JD et al: The sequence<br />

of the human genome. Science (2001) 291(5507):1304-1351.<br />

3. Coll<strong>in</strong>s FS, Morgan M, Patr<strong>in</strong>os A: The human genome project:<br />

Lessons from large-scale biology. Science (2003) 300(5617):286-<br />

290.<br />

4. Moore SD: Biotechnology executives discuss the impact of the<br />

genetic revolution. Wall Street Journal (2000) July 24:B10-B11.<br />

5. Coll<strong>in</strong>s FS, Green ED, Guttmacher AE, Guyer MS: A vision for the<br />

future of genomics research. Nature (2003) 422(6934):835-847.<br />

6. Stoughton RB, Friend SH: How molecular profil<strong>in</strong>g could<br />

revolutionize drug discovery. Nat Rev Drug Discov (2005) 4(4):345-<br />

350.<br />

7. Belk<strong>in</strong> L: A doctor for the future. New York Times Magaz<strong>in</strong>e (2005)<br />

November 06:68-115.<br />

8. Carney S: How can we avoid the productivity gap? Drug Disc Today<br />

(2005) 10(15):1011-1013.<br />

9. Carney S: Question: What do you call 500 scientists com<strong>in</strong>g<br />

together to address the productivity gap? Answer: A start. Drug<br />

Disc Today (2005) 10(15):1025-1029.<br />

10. Lehman Brothers/McK<strong>in</strong>sey & Co: The Fruits of Genomics. New York,<br />

NY, USA (2001) January.<br />

11. Weatherall D: Personalised medic<strong>in</strong>es: Hopes and realities. Royal<br />

Society, London, UK (2005):1-52.<br />

12. Drews J: Strategic trends <strong>in</strong> the drug <strong>in</strong>dustry. Drug Disc Today<br />

(2003) 8(9):411-420.<br />

13. Osbourne E: After plateau, 'big growth phase' due for<br />

biotechnology: Vagelos. BioWorld Today (2005): May 25.<br />

14. Frantz S: Europe fiddles while <strong>in</strong>novation burns. Nat Rev Drug<br />

Discov (2005) 4(9):704-705.<br />

15. Black J: A personal perspective on Dr Paul Janssen. J Med Chem<br />

(2005) 48(6):1687-1688.<br />

16. Sams-Dodd F: Optimiz<strong>in</strong>g the discovery organization for<br />

<strong>in</strong>novation. Drug Disc Today (2005) 10(15):1049-1056.<br />

17. Jones S: Genetics <strong>in</strong> Medic<strong>in</strong>e: Real Promises, Unreal<br />

Expectations. Milbank Memorial Fund Report (2000) 9:June.<br />

18. Kub<strong>in</strong>yi H: Drug research: Myths, hype and reality. Nat Rev Drug<br />

Discov (2003) 2(8):665-668.<br />

19. Guttmacher AE, Coll<strong>in</strong>s FS: Realiz<strong>in</strong>g the promise of genomics <strong>in</strong><br />

biomedical research. J Am Med Assoc (2005) 294(11):1399-1402.<br />

20. Begley S: L<strong>in</strong>k<strong>in</strong>g DNA profiles to diseases may not lead to<br />

prevention. Wall Street Journal (2005) November 04:B1.<br />

21. L<strong>in</strong>den A, Fenn J: Understand<strong>in</strong>g Gartner's hype cycles. Research ID<br />

R-20-197, Gartner, Stamford, CT, USA (2003).<br />

22. Marx J: Neurodegeneration: Hunt<strong>in</strong>gton's research po<strong>in</strong>ts to<br />

possible new therapies. Science (2005) 310(5745):43-45.<br />

23. Edwards CL, Scales MT, Loughl<strong>in</strong> C, Bennett GG, Harris-Peterson S,<br />

De Castro LM, Whitworth E, Abrams M, Feliu M, Johnson S, Wood M et<br />

al: A brief review of the pathophysiology, associated pa<strong>in</strong>, and<br />

psychosocial issues <strong>in</strong> sickle cell disease. Int J Behav Med (2005)<br />

12(3):171-179.<br />

24. Rubenste<strong>in</strong> RC: Novel, mechanism-based therapies for cystic<br />

fibrosis. Curr Op<strong>in</strong> Pediatr (2005) 17(3):385-392.<br />

25. Forman MS, Trojanowski JQ, Lee VM-Y: Neurodegenerative<br />

diseases: A decade of discoveries paves the way for therapeutic<br />

breakthroughs. Nat Med (2004) 10(10):1055-1063.<br />

26. Fenili D, McLaur<strong>in</strong> J: Cholesterol and ApoE: A target for Alzheimer's<br />

disease therapeutics. Curr Drug Targets CNS Neurol Disord (2005)<br />

4(5):553-567.<br />

27. Whalen J: Brita<strong>in</strong> stirs outcry by weigh<strong>in</strong>g benefits of drugs versus<br />

price. Wall Street Journal (2005) November 27:A1-A11.<br />

28. Avorn J: Powerful Medic<strong>in</strong>es: The Benefits, Risks and Costs of<br />

Prescription <strong>Drugs</strong>. Knopf, New York, NY, USA (2004):1-464.<br />

29. Langley K, Turic D, Peirce TR, Mills S, Van Den Bree MB, Owen MJ,<br />

O'Donovan MC, Thapar A: No support for association between the<br />

dopam<strong>in</strong>e transporter (DAT1) gene and ADHD. Am J Med Genetics<br />

Part B: Neuropsychiatric Genetics (2005) 139(1):7-10.<br />

30. Couz<strong>in</strong> J: Choices−and uncerta<strong>in</strong>ties−for women with BRCA<br />

mutations. Science (2003) 302(5645):592.<br />

31. Des Georges M, Guittard C, Altieri J-P, Templ<strong>in</strong> C, Sarles J, Sarda P,<br />

Claustres M: High heterogeneity of CFTR mutations and unexpected<br />

low <strong>in</strong>cidence of cystic fibrosis <strong>in</strong> Mediterranean France. J Cystic<br />

Fibrosis (2004) 3(4):265-272.<br />

32. DeMeo DL, Silverman EK: Genetics of chronic obstructive pulmonary<br />

disease. Sem<strong>in</strong> Respir Crit Care Med (2003) 24(2):151-160.<br />

33. Rab<strong>in</strong>ow P: French DNA. University of Chicago Press, Chicago, IL,<br />

USA (1999).<br />

34. Figuys D: Proteomics: The basic overview. In: Industrial Proteomics:<br />

Applications for Biotechnology and Pharmaceuticals. John Wiley & Sons<br />

Inc, New York, NY, USA (2005):1-62.


35. Huber LA: Is proteomics head<strong>in</strong>g <strong>in</strong> the wrong direction? Nat Rev<br />

Mol Cell Biol (2003) 4(1):74-80.<br />

36. Kopec K, Bozyczko-Coyne D, Williams M: Target identification and<br />

validation <strong>in</strong> drug discovery: The role of proteomics. Biochem<br />

Pharmacol (2005) 69(8):1133-1139.<br />

37. Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N,<br />

Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord M et<br />

al: Towards a proteome-scale map of the human prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teraction network. Nature (2005) 437(7062):1173-1178.<br />

38. Altshuler D, Brooks LD, Chakravarti A, Coll<strong>in</strong>s FS, Daly MJ, Donnelly P,<br />

International HapMap Consortium: A haplotype map of the human<br />

genome. Nature (2005) 437(7063):1299-1320.<br />

39. Williams M: Genome-based drug discovery: Prioritiz<strong>in</strong>g disease<br />

susceptibility/disease-associated genes as novel drug targets for<br />

schizophrenia. Curr Op<strong>in</strong> Investig <strong>Drugs</strong> (2003) 4(1):31-36.<br />

Editorial overview 17<br />

40. Kruglyak L: Power tools for human genetics. Nat Genet (2005)<br />

37(12):1299-1300.<br />

41. Begley S: Biologists hail dawn of a new approach: Don't shoot the<br />

radio. Wall Street Journal Marketplace (2003) February 21:B1.<br />

42. Wong AHC, Gottesman II, Petronis A: Phenotypic differences <strong>in</strong><br />

genetically identical organisms: The epigenetic perspective. Hum<br />

Mol Genet (2005) 14(1):R11-R18.<br />

43. Williams M: Systems and <strong>in</strong>tegrative biology as alternative guises<br />

for pharmacology: Prime time for an iPharm concept? Biochem<br />

Pharmacol (2005) 70(12):1707-1716.<br />

44. Milne GM Jr: Pharmaceutical productivity - the imperative for new<br />

paradigms. Ann Rep Med Chem (2003) 38:383-396.<br />

45. McFedries P: Hype cycle. Word Spy (2001) November 29.<br />

www.wordspy.com/words/hypecycle.asp


18<br />

Editorial overview<br />

Steroid therapy for exudative age-related macular degeneration: Bridg<strong>in</strong>g<br />

the gap until a cure is found<br />

Maneli Mozaffarieh & Andreas Wedrich*<br />

Address<br />

Department of Ophthalmology<br />

Medical University of Graz<br />

Auenbruggerplatz 4<br />

A-8036 Graz<br />

Austria<br />

Email: andreas.wedrich@meduni-graz.at<br />

* To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):18-19<br />

© The Thomson Corporation ISSN 1472-4472<br />

Age-related macular degeneration (AMD) is a devastat<strong>in</strong>g<br />

disease affect<strong>in</strong>g <strong>in</strong>dividuals of over 50 years of age, and is<br />

the lead<strong>in</strong>g cause of irreversible bl<strong>in</strong>dness <strong>in</strong> the developed<br />

world [1,2]. It is estimated that 1.6% of the population <strong>in</strong> the<br />

50- to 65-year-old age group is affected, and <strong>in</strong> the UK there<br />

are 16,000 new cases per year. The implications of this<br />

untreatable disease <strong>in</strong> terms of social impact, healthcare<br />

costs and personal misery are considerable. <strong>Current</strong><br />

treatments for both the wet and dry forms of the disease are<br />

of limited efficacy [3], and, therefore, there is keen <strong>in</strong>terest<br />

among scientists and physicians to develop new therapies.<br />

Corticosteroids have long been the cornerstone of ocular<br />

anti-<strong>in</strong>flammatory therapy. In addition, they can suppress<br />

cell proliferation. Consequently, steroids have been used for<br />

the treatment of several ocular diseases, adm<strong>in</strong>istered either<br />

locally or systemically. In recent years, one particular<br />

steroid, triamc<strong>in</strong>olone acetonide, has received much<br />

attention from scientists. Various researchers studied the<br />

possibility of <strong>in</strong>ject<strong>in</strong>g this corticosteroid directly <strong>in</strong>to the<br />

eye, firstly <strong>in</strong> animals [4,5] and later <strong>in</strong> selected patients. The<br />

<strong>in</strong>travitreal use of this corticosteroid ga<strong>in</strong>ed popularity<br />

amongst ophthalmologists for the treatment of a wide range<br />

of ret<strong>in</strong>al diseases, <strong>in</strong>clud<strong>in</strong>g diabetic and cystoid macular<br />

edema and exudative AMD.<br />

Steroids, along with the majority of other drugs, do not exert<br />

solely beneficial effects. One common side effect is the rise of<br />

<strong>in</strong>traocular pressure (IOP) that is associated with steroid use.<br />

This issue was addressed <strong>in</strong> a study where a group of<br />

known steroid responders were treated with four different<br />

steroids topically [6]. The results of this study showed that<br />

IOP did not beg<strong>in</strong> to <strong>in</strong>crease until after 3 and 5 weeks of<br />

treatment. The beauty of this f<strong>in</strong>d<strong>in</strong>g for ophthalmologists<br />

was that <strong>in</strong> the worst-case scenario, there rema<strong>in</strong>s a 3-week<br />

w<strong>in</strong>dow of relative safety when treat<strong>in</strong>g with a topical<br />

ophthalmic corticosteroid. Moreover, almost all patients<br />

with primary-care conditions respond to treatment <strong>in</strong> less<br />

than 2 weeks when the steroid is applied topically.<br />

Therefore, should we be concerned about the risk of IOP<br />

elevation after triamc<strong>in</strong>olone acetonide <strong>in</strong>travitreal use for<br />

exudative AMD? Furthermore, do we <strong>in</strong>crease the chances<br />

of improved vision for patients <strong>in</strong> the long term when<br />

<strong>in</strong>ject<strong>in</strong>g this steroid through the <strong>in</strong>travitreal route? The<br />

results of some of the research that has been conducted <strong>in</strong><br />

this area show that even 4 mg of <strong>in</strong>travitreal triamc<strong>in</strong>olone<br />

significantly raises IOP [7,8]. In one particular study, the<br />

researchers describe us<strong>in</strong>g 25 mg of triamc<strong>in</strong>olone for<br />

<strong>in</strong>travitreal <strong>in</strong>jections [9], which may <strong>in</strong>crease IOP even more<br />

significantly. The <strong>in</strong>vestigators suggested that the advantage of<br />

a higher dose would be the longer <strong>in</strong>traocular availability of the<br />

drug [10], rather than the temporary visual improvements<br />

encountered <strong>in</strong> patients after <strong>in</strong>travitreal <strong>in</strong>jections [8], despite<br />

the possible side effects. It appears that our scientific<br />

enthusiasm for possible visual improvements <strong>in</strong> exudative<br />

AMD with steroid <strong>in</strong>jections has forced us to step sideways.<br />

Indeed, various studies suggest that <strong>in</strong> exudative AMD, the<br />

modes of action of triamc<strong>in</strong>olone are l<strong>in</strong>ked to the<br />

downregulation of <strong>in</strong>flammatory markers and endothelial<br />

cell permeability [11,12]. However, moderate-to-high<br />

concentrations of this drug would be required at the site of<br />

action <strong>in</strong> order to prevent further growth of subret<strong>in</strong>al<br />

neovascular tissue. For patients, this requirement would mean<br />

that triamc<strong>in</strong>olone must be <strong>in</strong>jected repeatedly, otherwise visual<br />

improvements would only occur <strong>in</strong> the short term [8]. The<br />

question that then arises is up to how many <strong>in</strong>travitreal<br />

<strong>in</strong>jections of this steroid can be tolerated by the eye of each<br />

patient? Unfortunately, most of the research that has been<br />

conducted <strong>in</strong> this area to date has not been associated with a<br />

long enough follow-up time, one of the longer follow-up times<br />

be<strong>in</strong>g 18 months [7]. We therefore do not have a fair idea of the<br />

actual long-term outcome (ie, visual improvement or the side<br />

effects of this drug), particularly when <strong>in</strong>ject<strong>in</strong>g via the<br />

<strong>in</strong>travitreal route more than once.<br />

Another concern when us<strong>in</strong>g <strong>in</strong>travitreal steroids is the<br />

association of steroid use with an <strong>in</strong>crease <strong>in</strong> lens opacity. In<br />

one particular study <strong>in</strong> which <strong>in</strong>travitreal <strong>in</strong>jections of<br />

triamc<strong>in</strong>olone were adm<strong>in</strong>istered for the treatment of diffuse<br />

diabetic macular edema [13], a 3-fold <strong>in</strong>crease of the posterior<br />

subcapsular cataract score among phakic patients occurred.<br />

This trend toward cataract progression suggests that cataract is<br />

a likely risk of steroid <strong>in</strong>jections. Cataracts <strong>in</strong>fluence quality-oflife<br />

measures [14], and therefore a delay of cataract onset could<br />

have a tremendous <strong>in</strong>fluence on the health of patients and on<br />

healthcare costs. The issue of cataract progression is also of<br />

particular <strong>in</strong>terest for patients with AMD, because there is<br />

controversy regard<strong>in</strong>g the possible benefits or risks of cataract<br />

surgery <strong>in</strong> these patients. While some reports suggest that<br />

cataract surgery may worsen the progression of AMD [15,16],<br />

others describe a benefit [17,18]. It may therefore be more<br />

justified to resist the temptation to treat patients with multiple<br />

<strong>in</strong>travitreal steroid <strong>in</strong>jections as there is currently no evidence<br />

of long-term benefits and, by <strong>in</strong>creas<strong>in</strong>g the chances of<br />

cataracts, patients may become more vulnerable to possible<br />

side effects after surgery.<br />

A further side effect of corticosteroid <strong>in</strong>jections is steroid<strong>in</strong>duced<br />

<strong>in</strong>fection [19,20]. Some researchers have reported


cases of pseudo-endophthalmitis [21], which appear to<br />

resolve without any specific treatment. At this po<strong>in</strong>t we can<br />

only postulate that, <strong>in</strong> case of true <strong>in</strong>fectious<br />

endophthalmitis, the course of the disease may be altered <strong>in</strong><br />

the presence of a moderate-to-high dose (25 mg) of<br />

triamc<strong>in</strong>olone acetonide, which may necessitate patients<br />

be<strong>in</strong>g treated aggressively. Placebo-controlled cl<strong>in</strong>ical trials<br />

<strong>in</strong> large multicenter populations, with a long-term followup,<br />

could provide evidence of the efficacy of this drug and<br />

assess possible side effects and complications. However, it<br />

may be difficult to design effective placebo-controlled trials<br />

<strong>in</strong> a study for which an <strong>in</strong>vasive procedure is required.<br />

Overall, there is still no strong body of scientific evidence to<br />

support the benefits of <strong>in</strong>travitreal <strong>in</strong>jections of steroids <strong>in</strong><br />

the prevention of age-related eye disease. Additional data<br />

regard<strong>in</strong>g the toxic effects of steroids on the ret<strong>in</strong>a and optic<br />

nerve, the optimum dosage and the number of <strong>in</strong>travitreal<br />

<strong>in</strong>jections that can be tolerated by the eyes of the patients, as<br />

well as the perceptions of the patients themselves and<br />

quality-of-life measures, could provide physicians with<br />

more <strong>in</strong>sight and help them to understand the long-term<br />

risks and benefits for patients.<br />

So why should we proceed with caution <strong>in</strong> view of the<br />

possibility that <strong>in</strong>travitreal <strong>in</strong>jections of steroids may have<br />

important benefits? Firstly, mak<strong>in</strong>g recommendations before<br />

there is adequate knowledge to support long-term effects<br />

erodes the credibility of science <strong>in</strong> the eyes of the public.<br />

Moreover, <strong>in</strong>travitreal triamc<strong>in</strong>olone acetonide <strong>in</strong>jections<br />

may not promote additional ga<strong>in</strong> <strong>in</strong> the quality of life or<br />

overall health of the patients. We suggest that physicians<br />

effectively educate their patients with regard to all benefits<br />

and possible side effects of steroids <strong>in</strong> order for the patients<br />

to establish realistic expectations. In particular, they should<br />

be <strong>in</strong>formed that there is no firm scientific knowledge as to<br />

whether steroid <strong>in</strong>jections are at all beneficial <strong>in</strong> the longterm<br />

for the treatment of exudative AMD. Further careful<br />

<strong>in</strong>vestigations of the pathogenesis of AMD, <strong>in</strong> addition to<br />

studies of the effects of <strong>in</strong>travitreal steroid <strong>in</strong>jections, are<br />

required <strong>in</strong> order to ga<strong>in</strong> a greater understand<strong>in</strong>g of the<br />

treatment possibilities for this debilitat<strong>in</strong>g disease. Until<br />

then, <strong>in</strong>travitreal steroid <strong>in</strong>jections will rema<strong>in</strong> a bridge over<br />

the therapy gap until a cure is found.<br />

Suggested read<strong>in</strong>g<br />

1. Bressler NM, Bressler SB, F<strong>in</strong>e SL: Age-related macular<br />

degeneration. Surv Ophthalmol (1988) 32(6):375-413.<br />

2. Kle<strong>in</strong> R, Kle<strong>in</strong> BE, L<strong>in</strong>ton KL: Prevalence of age-related maculopathy.<br />

The Beaver Dam Eye Study. Ophthalmology (1992) 99(6):933-943.<br />

3. Mozaffarieh M, Sacu S, Wedrich A: The role of the carotenoids, lute<strong>in</strong><br />

and zeaxanth<strong>in</strong>, <strong>in</strong> protect<strong>in</strong>g aga<strong>in</strong>st age-related macular<br />

degeneration: A review based on controversial evidence. Nutr J<br />

(2003) 2:20.<br />

4. Ciulla TA, Criswell MH, Danis RP, Hill TE: Intravitreal triamc<strong>in</strong>olone<br />

acetonide <strong>in</strong>hibits choroidal neovascularization <strong>in</strong> a laser-treated<br />

rat model. Arch Ophthalmol (2001) 119(3):399-404.<br />

Editorial overview 19<br />

5. Danis RP, B<strong>in</strong>gaman DP, Yang Y, Ladd B: Inhibition of preret<strong>in</strong>al and<br />

optic nerve head neovascularization <strong>in</strong> pigs by <strong>in</strong>travitreal<br />

triamc<strong>in</strong>olone acetonide. Ophthalmology (1996) 103(12):2099-2104.<br />

6. Leibowitz HM, Bartlett JD, Rich R, McQuirter H, Stewart R, Assil K:<br />

Intraocular pressure-rais<strong>in</strong>g potential of 1.0% rimexolone <strong>in</strong><br />

patients respond<strong>in</strong>g to corticosteroids. Arch Ophthalmol (1996)<br />

114(8):933-937.<br />

7. Challa JK, Gillies MC, Penfold PL, Gyory JF, Hunyor AB, Billson FA:<br />

Exudative macular degeneration and <strong>in</strong>travitreal triamc<strong>in</strong>olone: 18<br />

month follow up. Aust N Z J Ophthalmol (1998) 26(4):277-281.<br />

8. Danis RP, Ciulla TA, Pratt LM, Anliker W: Intravitreal triamc<strong>in</strong>olone<br />

acetonide <strong>in</strong> exudative age-related macular degeneration. Ret<strong>in</strong>a<br />

(2000) 20(3):244-250.<br />

9. Jonas JB, Kreissig I, Hugger P, Sauder G, Panda-Jonas S, Degenr<strong>in</strong>g<br />

R: Intravitreal triamc<strong>in</strong>olone acetonide for exudative age related<br />

macular degeneration. Br J Ophthalmol (2003) 87(4):462-468.<br />

10. Rodriguez-Coleman H, Yuan P, Kim H, Gravl<strong>in</strong> L, Srivastava S, Csaky<br />

KG, Rob<strong>in</strong>son MR: Intravitreal <strong>in</strong>jection of triamc<strong>in</strong>olone for diffuse<br />

macular edema. Arch Ophthalmol (2004) 122(7):1085-1086.<br />

11. Penfold PL, Wen L, Madigan MC, Gillies MC, K<strong>in</strong>g NJ, Provis JM:<br />

Triamc<strong>in</strong>olone-acetonide modulates permeablility and <strong>in</strong>tercellular<br />

adhesion molecule-1 (ICAM-1) expression of the ECV304 cell l<strong>in</strong>e:<br />

Implications for macular degeneration. Cl<strong>in</strong> Exp Immunol (2000)<br />

121(3):458-465.<br />

12. Penfold PL, Wong JG, Gyory J, Billson FA: Effects of triamc<strong>in</strong>olone<br />

acetonide on microglial morphology quantitative expression of<br />

MHC-II <strong>in</strong> exudative age-related macular degeneration. Cl<strong>in</strong><br />

Experiment Ophthalmol (2001) 29(3):188-192.<br />

13. Jonas JB, Kreissig I, Sofker A, Degenr<strong>in</strong>g RF: Intravitreal <strong>in</strong>jection of<br />

triamc<strong>in</strong>olone for diffuse diabetic macular edema. Arch Ophthalmol<br />

(2003) 121(1):57-61.<br />

14. Mozaffarieh M, Krepler K, He<strong>in</strong>zl H, Sacu S, Wedrich A: Visual<br />

function, quality of life and patient satisfaction after ophthalmic<br />

surgery: A comparative study. Ophthalmologica (2004) 218(1):26-30.<br />

15. Pollack A, Bukelman A, Zalish M, Leiba H, Oliver M: The course of<br />

age-related macular degeneration follow<strong>in</strong>g bilateral cataract<br />

surgery. Ophthalmic Surg Lasers (1998) 29(4):286-294.<br />

16. Van de Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, Pameyer JH, de<br />

Jong PT: Increased prevalence of disciform macular degeneration<br />

after cataract extraction with implantation of an <strong>in</strong>traocular lens. Br<br />

J Ophthalmol (1994) 78(6):441-445.<br />

17. Shuttleworth GN, Luhishi EA, Harrad RA: Do patients with age related<br />

maculopathy and cataract benefit from cataract surgery? Br J<br />

Ophthalmol (1998) 82(6):611-616.<br />

18. Armbrecht AM, F<strong>in</strong>dlay C, Kaushal S, Asp<strong>in</strong>all P, Hill AR, Dhillon B: Is<br />

cataract surgery justified <strong>in</strong> patients with age related macular<br />

degeneration? A visual function and quality of life assessment. Br J<br />

Ophthalmol (2000) 84(12):1343-1348.<br />

19. Engelman CJ, Palmer JD, Egbert P: Orbital abscess follow<strong>in</strong>g<br />

subtenon triamc<strong>in</strong>olone <strong>in</strong>jection. Arch Ophthalmol (2004)<br />

122(4):654-655.<br />

20. Nelson ML, Tennant MT, Sival<strong>in</strong>gam A, Regillo CD, Belmont JB,<br />

Martidis A: Infectious and presumed non<strong>in</strong>fectious endophthalmitis<br />

after <strong>in</strong>travitreal triamc<strong>in</strong>olone acetonide <strong>in</strong>jection. Ret<strong>in</strong>a (2003)<br />

23(5):686-691.<br />

21. Sutter FK, Gillies MC: Pseudo-endophthalmitis after <strong>in</strong>travitreal<br />

<strong>in</strong>jection of triamc<strong>in</strong>olone. Br J Ophthalmol (2003) 87(8):972-974.


20<br />

Nitrone sp<strong>in</strong> on cerebral ischemia<br />

Sheila A Doggrell<br />

Address<br />

Division of Health Practice<br />

Auckland University of Technology-Akoranga Campus<br />

90 Akoranga Drive<br />

Northcote<br />

Auckland<br />

New Zealand<br />

Email: s.doggrell@xtra.co.nz<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):20-24<br />

© The Thomson Corporation ISSN 1472-4472<br />

Cl<strong>in</strong>ical trials with radical scaveng<strong>in</strong>g antioxidants have<br />

shown little or no benefit <strong>in</strong> the treatment of ischemic stroke.<br />

The sp<strong>in</strong> trap nitrones covalently b<strong>in</strong>d with short-lived reactive<br />

radicals to <strong>in</strong>activate them for longer than the conventional<br />

scaveng<strong>in</strong>g antioxidants. One of these agents, NXY-059, is<br />

effective <strong>in</strong> animal models of cerebral ischemia, and is <strong>in</strong> phase<br />

III cl<strong>in</strong>ical trials for ischemic stroke by AstraZeneca, under<br />

license from Renovis. Second-generation nitrones (azulenyl<br />

nitrones) have also been described and shown to be<br />

neuroprotective <strong>in</strong> animal models. Thus, at last, it seems that<br />

antioxidants that are potent enough to have considerable<br />

potential for the treatment of cerebral ischemia are <strong>in</strong><br />

development.<br />

Keywords Animal model, azulenyl nitrone, cerebral ischemia,<br />

cl<strong>in</strong>ical trial, NXY-059, PBN, S-PBN, stilbazulenyl nitrone<br />

Introduction<br />

Stroke is the lead<strong>in</strong>g cause of disability and the third lead<strong>in</strong>g<br />

cause of death <strong>in</strong> the western world. Approximately 750,000<br />

new cases occur <strong>in</strong> the US each year, and although strokes<br />

are more prevalent <strong>in</strong> the elderly, they can occur at all ages,<br />

and are more common <strong>in</strong> African-Americans than<br />

Caucasians. The only pharmacological treatment for acute<br />

ischemic stroke currently used is tissue plasm<strong>in</strong>ogen<br />

activator (tPA) to dissolve the clot.<br />

As the most common cause of ischemic stroke <strong>in</strong> humans is<br />

an <strong>in</strong>farct <strong>in</strong> the middle cerebral artery [1], animal stroke<br />

models should ideally <strong>in</strong>volve occlusion of this artery.<br />

Although cerebral <strong>in</strong>farcts can reperfuse, a considerable<br />

amount of time may elapse before this occurs [2];<br />

consequently it is appropriate to study potential<br />

neuroprotective drugs <strong>in</strong> both transient and permanent<br />

occlusion animal models.<br />

The bra<strong>in</strong> is a highly oxygenated organ that consumes<br />

approximately a fifth of the total oxygen of the body, and<br />

which derives most of its energy from oxidative metabolism<br />

of the mitochondrial respiratory cha<strong>in</strong>. It is extremely<br />

sensitive to oxidative damage from free radicals, which<br />

occurs dur<strong>in</strong>g ischemia/reperfusion <strong>in</strong>sult and ultimately<br />

leads to neuronal cell death. Plasma levels of the antioxidant<br />

vitam<strong>in</strong> C are lowered, whereas markers of oxidative stress<br />

are <strong>in</strong>creased <strong>in</strong> patients with ischemic stroke [3], <strong>in</strong>dicat<strong>in</strong>g<br />

that antioxidants may be useful <strong>in</strong> the prevention and<br />

treatment of this disorder. However, antioxidant vitam<strong>in</strong><br />

supplementation is <strong>in</strong>effective <strong>in</strong> prevent<strong>in</strong>g stroke [4], and<br />

limited success has been achieved with free-radical<br />

scavengers (reviewed <strong>in</strong> reference [5]).<br />

Free-radical scavengers, such as vitam<strong>in</strong> E, donate a<br />

hydrogen ion to a radical to form a second radical−the<br />

tocopherol radical with vitam<strong>in</strong> E−which is relatively stable.<br />

However, the tocopherol radical can generate radicals itself<br />

under certa<strong>in</strong> circumstances, for example, exposure to<br />

reduc<strong>in</strong>g metals. Nitrone sp<strong>in</strong> traps are so-called because<br />

they covalently b<strong>in</strong>d with short-lived reactive radicals, such<br />

as hydroxyl radicals, as stable nitroxides. Historically, the<br />

nitrones were used to identify and elucidate free radicals<br />

and associated chemical and biological mechanisms. More<br />

recently, the therapeutic potential of nitrones as<br />

neuroprotective agents has been considered. In the first part<br />

of this review, the effects of the first generation of nitrones <strong>in</strong><br />

animal models of cerebral ischemia are discussed. One of<br />

these nitrones, NXY-059 (AstraZeneca plc/Renovis Inc;<br />

Figure 1), is undergo<strong>in</strong>g phase III cl<strong>in</strong>ical trials for the<br />

treatment of stroke and is discussed <strong>in</strong> more detail <strong>in</strong> this<br />

review. F<strong>in</strong>ally, the second-generation nitrones, the azulenyl<br />

nitrones, which are much more potent sp<strong>in</strong> traps than the<br />

first-generation nitrones, are considered as neuroprotective<br />

agents <strong>in</strong> a variety of animal models, <strong>in</strong>clud<strong>in</strong>g cerebral<br />

ischemia.<br />

First-generation nitrones<br />

PBN, S-PBN, MDL-101002 and S-34176<br />

The first nitrone sp<strong>in</strong> trap agent to demonstrate<br />

neuroprotective properties was α-phenyl-tert-butyl nitrone<br />

(PBN; Figure 1). Interest<strong>in</strong>gly, it was found that nitrone sp<strong>in</strong><br />

trap agents were effective when adm<strong>in</strong>istered after the<br />

ischemic event. Thus, when PBN was adm<strong>in</strong>istered 30 m<strong>in</strong><br />

prior to, or 30 m<strong>in</strong> after, a 5-m<strong>in</strong> bilateral occlusion of the<br />

carotid artery <strong>in</strong> the gerbil, it reduced the subsequent<br />

damage to the hippocampal CAI pyramidal cell layer [6•,7],<br />

and this protection was associated with the ability to<br />

prevent a cascade of free radical generation by form<strong>in</strong>g sp<strong>in</strong><br />

adducts [8]. Subsequently, PBN was shown to reduce<br />

cortical <strong>in</strong>farction when <strong>in</strong>jected before and after transient<br />

middle cerebral artery occlusion <strong>in</strong> the rat, a standard model<br />

of ischemic stroke [9]. In the focal embolic cerebral ischemia<br />

model <strong>in</strong> the rat, both PBN and N-tert-butyl-(2-sulfophenyl)nitrone<br />

(S-PBN; AstraZeneca plc/Renovis Inc; Figure 1)<br />

reduced the neurological deficit and cerebral <strong>in</strong>farct volume<br />

when commenced 2 h after the <strong>in</strong>troduction of an<br />

autologous thrombus <strong>in</strong>to the right-side middle coronary<br />

artery [10].<br />

The next group of nitrone sp<strong>in</strong> traps had a cyclic structure<br />

and demonstrated improved activity over PBN. These<br />

<strong>in</strong>cluded MDL-101002 (Figure 1), which is more potent than<br />

PBN <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g iron-<strong>in</strong>duced peroxidation <strong>in</strong> liposomes,<br />

as well as <strong>in</strong> trapp<strong>in</strong>g superoxide anions and hydroxyl<br />

radicals [11]. Furthermore, the hydroxyl radical adducts<br />

formed with MDL-101002 had a longer half-life (5 m<strong>in</strong>) than<br />

adducts formed with PBN [11]. MDL-101002 was reported to


Figure 1. The structures of selected first generation nitrones.<br />

C<br />

H 3<br />

C<br />

H 3<br />

HO<br />

Na<br />

CH 3<br />

N +<br />

O<br />

S<br />

O<br />

O<br />

O<br />

S<br />

O<br />

OH<br />

NXY-059<br />

(AstraZeneca/Renovis)<br />

Na<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

be neuroprotective <strong>in</strong> the transient and permanent middle<br />

cerebral artery ligation models of stroke <strong>in</strong> rats [12],<br />

however, there have been no further reports of its<br />

development for the treatment of stroke.<br />

The chemical structures of some imidazolyl nitrones have been<br />

described [13], with the <strong>in</strong> vivo activity of one of these agents,<br />

S-34176 (Servier; Figure 1), reported <strong>in</strong> 2005. When<br />

adm<strong>in</strong>istered at a dose of 75 mg/kg <strong>in</strong>traperitoneally 30 m<strong>in</strong><br />

before transient global ischemia, S-34176 prevented delayed<br />

neuronal death <strong>in</strong> the hippocampal CA1 area <strong>in</strong> the rat [14]. The<br />

effects of S-34176 when adm<strong>in</strong>istered after cerebral <strong>in</strong>farction <strong>in</strong><br />

an animal model have not been reported to date.<br />

NXY-059: Animal and cellular studies<br />

The nitrone compound that has been studied most to date is<br />

NXY-059 (reviewed <strong>in</strong> reference [15]). In the rat transient<br />

focal cerebral ischemia model (2 h of middle cerebral artery<br />

occlusion), NXY-059 reduced <strong>in</strong>farct volume when<br />

adm<strong>in</strong>istered at 30 mg/kg/h commenc<strong>in</strong>g 3 to 6 h after the<br />

start of reperfusion [16]. This agent was more water soluble<br />

than PBN, but also proved more efficacious despite hav<strong>in</strong>g<br />

less ability to penetrate the blood-bra<strong>in</strong> barrier (BBB) [16].<br />

This f<strong>in</strong>d<strong>in</strong>g suggests that one of the benefits of NXY-059 is<br />

its ability to <strong>in</strong>hibit free radical damage to the endothelium<br />

with<strong>in</strong> the blood vessel. A subsequent study, us<strong>in</strong>g the same<br />

model, showed that when NXY-059 treatment (1, 10 and 30<br />

mg/kg/h) was commenced 2.75 h after occlusion, both the<br />

neurological deficit (scored from forelimb flexion,<br />

spontaneous rotation and absence of response to<br />

contralateral whisker stimulation) and <strong>in</strong>farct size were<br />

reduced <strong>in</strong> a dose-dependent manner at 24 h [17].<br />

In permanent focal cerebral ischemia <strong>in</strong> the spontaneously<br />

hypertensive rat (clip on middle cerebral artery), there was a<br />

22.6% <strong>in</strong>farct of the contralateral hemisphere 24 h after<br />

occlusion [18]. The <strong>in</strong>farct size was reduced to 17.4% with a<br />

cont<strong>in</strong>uous <strong>in</strong>fusion of NXY-059 (30 mg/kg/h) commenced<br />

5 m<strong>in</strong> after occlusion, but this did not reach significance [18].<br />

At 60 mg/kg/h NXY-059, the <strong>in</strong>farct size was reduced to<br />

14.5%, which was a significant reduction [18]. A subsequent<br />

study us<strong>in</strong>g permanent ischemia <strong>in</strong> normotensive rats showed<br />

that with a load<strong>in</strong>g dose of 32.5 mg NXY-059 adm<strong>in</strong>istered<br />

subcutaneously, followed by 30 mg/kg/h of NXY-059<br />

adm<strong>in</strong>istered via an osmotic m<strong>in</strong>ipump (commenced 5 m<strong>in</strong><br />

after occlusion), there was a reduction <strong>in</strong> the damage to the<br />

sub-cortex, but not the cortex, and that higher doses reduced<br />

the damaged area <strong>in</strong> both the cortex and sub-cortex<br />

CH 3<br />

N +<br />

O<br />

CH 3<br />

N +<br />

O<br />

O<br />

S<br />

O<br />

OH<br />

Na<br />

Nitrone sp<strong>in</strong> on cerebral ischemia Doggrell 21<br />

PBN S-PBN<br />

MDL-101002<br />

S-34176<br />

(AstraZeneca/Renovis)<br />

(Servier)<br />

N +<br />

O<br />

CH 3<br />

CH 3<br />

H3C<br />

C<br />

H 3<br />

CH 3<br />

N +<br />

O<br />

H<br />

N<br />

N<br />

F F<br />

[17]. A further experiment showed that a 50-mg/kg/h dose<br />

of NXY-059 gave some neuroprotection <strong>in</strong> both the cortex<br />

and sub-cortex when the <strong>in</strong>fusion was commenced 2 h after<br />

the occlusion [17].<br />

In humans, agents that improve functional disability after<br />

stroke are required. Thus, the f<strong>in</strong>d<strong>in</strong>g that NXY-059 reduces<br />

the functional disability result<strong>in</strong>g from ischemic stroke <strong>in</strong><br />

monkeys was welcomed. At a dose of 28 mg/kg for 48 h,<br />

commenced 5 m<strong>in</strong> after middle cerebral artery occlusion,<br />

NXY-059 improved the reach of monkeys with their<br />

hemiparetic arm, lessened spatial perceptual neglect at 3 and<br />

10 weeks, and reduced bra<strong>in</strong> damage [19]. Of more <strong>in</strong>terest<br />

was a subsequent study <strong>in</strong> the monkey middle cerebral<br />

artery occlusion model show<strong>in</strong>g that if a higher dose of<br />

NXY-059 was adm<strong>in</strong>istered, the commencement of <strong>in</strong>fusion<br />

could be delayed for 4 h after occlusion while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the beneficial effect [20•]. In conclusion, NXY-059 treatment<br />

ameliorated long-term motor impairment, improved the use<br />

of the contralateral stroke-affected arm, and lessened spatial<br />

neglect, while reduc<strong>in</strong>g <strong>in</strong>farct size [20•].<br />

Several drugs that have shown efficacy <strong>in</strong> animal models of<br />

stroke, <strong>in</strong>clud<strong>in</strong>g the γ-am<strong>in</strong>obutyric acid mimetic<br />

clomethiazole [21] and N-methyl-D-aspartate antagonists<br />

(eg, AR-R15896AR (AstraZeneca plc)) [22], have been<br />

unsuccessful <strong>in</strong> cl<strong>in</strong>ical trials because of a lack of efficacy or<br />

tolerability [21,22]. In the monkey model of stroke, NXY-059<br />

was more efficacious than clomethiazole or AR-R15896AR,<br />

produc<strong>in</strong>g a greater reduction <strong>in</strong> <strong>in</strong>farct size follow<strong>in</strong>g<br />

middle cerebral artery occlusion [23]. Of the three drugs,<br />

only NXY-059 improved motor deficit and reduced spatial<br />

neglect after 10 weeks [23].<br />

At present, the only effective treatment for ischemic stroke is<br />

the fibr<strong>in</strong>olytic agent tPA, which acts by dissolv<strong>in</strong>g the clot.<br />

The efficacy of NXY-059 has been studied <strong>in</strong> embolic models<br />

of cerebral ischemia alone and <strong>in</strong> comb<strong>in</strong>ation with tPA; the<br />

number of small clots that had to be adm<strong>in</strong>istered to rabbits<br />

to <strong>in</strong>duce neurological deficits was <strong>in</strong>creased by both<br />

NXY-059 and tPA when adm<strong>in</strong>istered alone 3 h after<br />

external carotid ligation [24]. When used as a comb<strong>in</strong>ation<br />

therapy, NXY-059 and tPA had an additive effect on<br />

<strong>in</strong>creas<strong>in</strong>g the number of small clots required to cause<br />

neurological deficits [24]. Subsequently, it was shown that<br />

the late co-adm<strong>in</strong>istration (6 h) of NXY-059 and the synthetic<br />

tPA tenecteplase was associated with an improvement <strong>in</strong><br />

behavioral deficits [25].<br />

F


22 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

PBN has effective BBB penetration, but questions have<br />

rema<strong>in</strong>ed about whether NXY-059 penetrates the BBB<br />

sufficiently for it to have a central mechanism of action. In a coculture<br />

of endothelial cells and primary astrocytes as a model of<br />

the BBB, uptake of PBN was high, but uptake of S-PBN and<br />

NXY-059 was not [26]. However, the permeability of BBB by<br />

NXY-059 <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g length of ischemia,<br />

although there was no uptake <strong>in</strong>to endothelial cells [26].<br />

In addition to act<strong>in</strong>g as a sp<strong>in</strong> trap for free radicals, NXY-059<br />

may be neuroprotective by <strong>in</strong>hibit<strong>in</strong>g the release of<br />

cytochrome C, a key <strong>in</strong>itiator of apoptosis. Cytochrome C<br />

levels <strong>in</strong>creased dur<strong>in</strong>g reperfusion after a 2-h occlusion of<br />

the rat cerebral artery, and NXY-059 treatment prevented<br />

this <strong>in</strong>crease [27].<br />

NXY-059: Cl<strong>in</strong>ical studies<br />

NXY-059 was well tolerated by healthy volunteers at an<br />

<strong>in</strong>fusion rate of 1.1 to 1.5 mg/kg/h for up to 72 h [28].<br />

Excretion of NXY-059 occurred via the renal route and, <strong>in</strong><br />

<strong>in</strong>dividuals with renal impairment, plasma clearance was<br />

directly proportional to glomerular filtration rate [29].<br />

NXY-059 usually has a half-life of 2 to 4 h, but this was<br />

extended to 10 to 12 h <strong>in</strong> <strong>in</strong>dividuals with moderate and<br />

severe renal impairment [29]. Consequently, <strong>in</strong> patients with<br />

renal impairment, the dose of NXY-059 needs to be adjusted<br />

on the basis of creat<strong>in</strong><strong>in</strong>e clearance [29].<br />

When adm<strong>in</strong>istered to patients with<strong>in</strong> 24 h of stroke,<br />

NXY-059 (250 mg over 1 h, followed by 85 mg/h for 71 h, or<br />

500 mg over 1 h, followed by 170 mg/h for 71 h) was well<br />

tolerated [30]. In this small study of tolerability, the cl<strong>in</strong>ical<br />

outcome scores were collected for descriptive purposes only,<br />

and no improvement <strong>in</strong> cl<strong>in</strong>ical outcome was demonstrated<br />

for these doses, possibly because the study was not designed<br />

to measure efficacy [30]. Furthermore, the doses of NXY-059<br />

used gave plasma levels (25 and 40 µmol/l) that were lower<br />

than those associated with neuroprotection <strong>in</strong> animal studies<br />

(200 µmol/l) [30], and thus may have been too low to be<br />

efficacious. Subsequently, higher doses of NXY-059 were<br />

tested <strong>in</strong> patients with<strong>in</strong> 24 h of stroke onset (915 mg over 1<br />

h, followed by 420 mg/h for 71 h, or 1820 mg over 1 h,<br />

followed by 844 mg/h for 71 h), with the higher dose<br />

achiev<strong>in</strong>g a steady-state plasma level of 260 µmol/l, which<br />

Figure 2. The structures of STAZN and lipid- and water-soluble AZNs.<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

CH 3<br />

N +<br />

CH 3<br />

O<br />

C<br />

H 3<br />

CH 3<br />

_<br />

O<br />

STAZN<br />

(University of Miami)<br />

CH 3<br />

N +<br />

C<br />

H 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

C<br />

H 3<br />

was above that associated with therapeutic benefit <strong>in</strong><br />

animals [31]. Furthermore, the higher doses were also well<br />

tolerated [31]. Although these studies were not conducted to<br />

determ<strong>in</strong>e effectiveness, at day 30, 58% of the 38 patients<br />

adm<strong>in</strong>istered the 844-mg dose of NXY-059 were assessed as<br />

good on the Barthel Index Score, compared with 47% of<br />

patients from the placebo group [31].<br />

NXY-059 (as Cerovive) is currently undergo<strong>in</strong>g phase III cl<strong>in</strong>ical<br />

trials for the treatment of ischemic stroke. The Stroke Acute<br />

Ischemia NXY Treatment (SAINT-1) trial is evaluat<strong>in</strong>g the effect<br />

of NXY-059 on disability and neurological recovery <strong>in</strong> acute<br />

ischemic stroke patients [32]. The Independent Data and Safety<br />

Monitor<strong>in</strong>g Board that reviewed the outcome after a 3-month<br />

follow-up <strong>in</strong> 1000 patients recommended that the trial be<br />

cont<strong>in</strong>ued [32]. In May 2005, AstraZeneca announced that the<br />

first analysis of data from the SAINT-1 trial <strong>in</strong> 1700 patients<br />

showed a significant reduction (p = 0.038) for patients treated<br />

with NXY-059 compared with those receiv<strong>in</strong>g placebo, based<br />

on the Modified Rank<strong>in</strong> Scale for neurological impairment [33].<br />

However, there was no significant difference between<br />

NXY-059 and placebo on the National Institutes of Health<br />

Stroke Scale [33].<br />

Second-generation nitrones<br />

Azulenyl nitrones<br />

Azulenyl nitrones (AZNs) are a class of compounds that can<br />

be synthesized from the natural product guaiazulene [34]<br />

and possess oxidation potentials far lower than that of firstgeneration<br />

nitrones [35•]. For example, the nitronylsubstituted<br />

hydrocarbon stilbazulenyl nitrone (STAZN,<br />

University of Miami; Figure 2) is 300-fold more potent at<br />

<strong>in</strong>hibit<strong>in</strong>g the free radical-mediated aerobic peroxidation of<br />

cumene than PBN or NXY-059 [36•]. Furthermore, because<br />

STAZN is lipid soluble, it is likely to cross the BBB.<br />

STAZN has neuroprotective activity <strong>in</strong> a rat model of<br />

traumatic bra<strong>in</strong> <strong>in</strong>jury. Anesthetized rats were subjected to a<br />

right parietoccipital parasagittal fluid-percussion <strong>in</strong>jury, and<br />

neurological status was evaluated on days 1, 2 and 7 [37•]. At a<br />

dose of 30 mg/kg, when adm<strong>in</strong>istered 5 m<strong>in</strong> and 4 h after the<br />

trauma, STAZN improved neurological scores on days 2 and<br />

7 compared with vehicle [37•]. The mean contusion area was<br />

CH 3<br />

C<br />

H 3<br />

_<br />

O<br />

CH 3<br />

N +<br />

O<br />

CH3 CH3 H<br />

O<br />

CH 3<br />

C<br />

H 3<br />

CH 3<br />

C<br />

H 3<br />

_<br />

O<br />

CH 3<br />

N +<br />

H<br />

CH3 CH3 C<br />

H 3<br />

H<br />

N +<br />

O<br />

CH 3<br />

lipid-soluble AZN water-soluble AZN<br />

CH 3


4.8 mm 2 <strong>in</strong> vehicle-treated rats, which was reduced by 63%<br />

to 1.8 mm 2 follow<strong>in</strong>g treatment with STAZN [37•]. This<br />

reduction was <strong>in</strong> the deep cortical contusion, with the<br />

hippocampal cell loss <strong>in</strong> the CA3 sector be<strong>in</strong>g unaffected by<br />

STAZN [37•].<br />

STAZN was also neuroprotective <strong>in</strong> animal models of<br />

Park<strong>in</strong>son's disease and Hunt<strong>in</strong>gton's disease. The<br />

neurotox<strong>in</strong> 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e<br />

(MPTP) causes Park<strong>in</strong>sonian syndrome <strong>in</strong> humans, and is<br />

commonly used to create animal models of Park<strong>in</strong>son's<br />

disease. The toxic metabolite of MPTP accumulates <strong>in</strong> the<br />

mitochondria of dopam<strong>in</strong>ergic nerves, where it impairs<br />

energy production and <strong>in</strong>creases free radical production to<br />

ultimately lead to dopam<strong>in</strong>ergic nerve death. In the MPTP<br />

model <strong>in</strong> mice, both a lipid-soluble and a water-soluble<br />

azulenyl nitrone (Figure 2), adm<strong>in</strong>istered prior to and after<br />

MPTP adm<strong>in</strong>istration, protected aga<strong>in</strong>st dopam<strong>in</strong>e<br />

depletion, and were more efficacious than S-PBN [35•].<br />

In 1998, AZNs were shown to be neuroprotective <strong>in</strong> cerebral<br />

ischemia. The hippocampal neurons of gerbils are<br />

particularly sensitive to ischemia, and after 7 m<strong>in</strong> of bilateral<br />

carotid occlusion followed by 5 days of reperfusion, a 70%<br />

loss of neurons <strong>in</strong> the CA1 hippocampus resulted [34]. This<br />

loss was reduced to 36% by an <strong>in</strong>traperitoneal<br />

adm<strong>in</strong>istration of 100 mg/kg of AZN 30 m<strong>in</strong> prior to the<br />

occlusion [34].<br />

STAZN (10 or 20 mg/kg) adm<strong>in</strong>istered <strong>in</strong>traperitoneally 30 m<strong>in</strong><br />

before and 3, 12 and 24 h after MPTP adm<strong>in</strong>istration, reduced<br />

the depletion of dopam<strong>in</strong>ergic nerves <strong>in</strong> the substantia nigra<br />

pars compacta <strong>in</strong> animal models of Hunt<strong>in</strong>gton's and<br />

Park<strong>in</strong>son's diseases [38•]. In this study, the mitochondrial<br />

<strong>in</strong>hibitor 3-nitropropionic acid was used to create an animal<br />

model of Hunt<strong>in</strong>gton's disease. Treatment with STAZN (before<br />

and dur<strong>in</strong>g the adm<strong>in</strong>istration of 3-nitropropionic acid)<br />

reduced levels of the lipid peroxidation product<br />

melondialdehyde and the lesion volumes [38•].<br />

Importantly, STAZN was shown to be neuroprotective <strong>in</strong><br />

cerebral ischemia when adm<strong>in</strong>istered after occlusion. A<br />

standard neurobehavioral assessment demonstrated that<br />

after 2 h of middle coronary artery occlusion, rats improved<br />

modestly over a 72-h period [39••]. This improvement was<br />

quicker and more extensive when rats were treated with<br />

STAZN at <strong>in</strong>traperitoneal doses of 0.6 mg/kg at onset and<br />

repeated after 2 h of reperfusion [39••]. STAZN treatment<br />

also reduced the <strong>in</strong>farct volume, with the neuroprotection<br />

be<strong>in</strong>g predom<strong>in</strong>antly <strong>in</strong> the cortical region; <strong>in</strong> 13 of 22<br />

STAZN-treated rats, the cortical <strong>in</strong>farct was almost<br />

completely prevented [39••]. The researchers commented<br />

that the neuroprotection seen with STAZN exceeded that<br />

observed with many other agents <strong>in</strong> a similar model [39••].<br />

The doses of STAZN needed for a neuroprotective effect<br />

were 300- to 600-fold lower than those needed to <strong>in</strong>duce<br />

neuroprotection with NXY-059 [38•].<br />

Pharmacok<strong>in</strong>etic studies showed that STAZN was slowly<br />

absorbed after <strong>in</strong>traperitoneal <strong>in</strong>jection <strong>in</strong> the rat, with a<br />

Nitrone sp<strong>in</strong> on cerebral ischemia Doggrell 23<br />

computed half-life of 13.9 h [40]. After <strong>in</strong>travenous <strong>in</strong>jection<br />

of STAZN, a two-component decay occurred, with half-lives<br />

of 28 m<strong>in</strong> and 6.7 h [40]. STAZN permeated the bra<strong>in</strong>, where<br />

levels <strong>in</strong> the whole forebra<strong>in</strong> of the rat were 2.5% of blood<br />

levels, and also accumulated <strong>in</strong> rat liver [40].<br />

Conclusion<br />

The effectiveness of free radical-scaveng<strong>in</strong>g antioxidants <strong>in</strong><br />

cl<strong>in</strong>ical trials for the prevention and treatment of cerebral<br />

ischemia has been disappo<strong>in</strong>t<strong>in</strong>g. The sp<strong>in</strong> trap nitrones<br />

covalently b<strong>in</strong>d with short-lived reactive radicals to<br />

<strong>in</strong>activate them for longer than the conventional scaveng<strong>in</strong>g<br />

antioxidants. The first nitrone sp<strong>in</strong> trap agent shown to be<br />

neuroprotective was PBN. More importantly, it was<br />

discovered that nitrone sp<strong>in</strong> trap agents were effective when<br />

adm<strong>in</strong>istered after onset of ischemia. One of these agents,<br />

NXY-059, has demonstrated efficacy <strong>in</strong> animal models of<br />

cerebral ischemia and is undergo<strong>in</strong>g cl<strong>in</strong>ical trials for<br />

ischemic stroke. Second-generation nitrones (AZNs) with a<br />

greater ability to remove reactive radicals have been<br />

<strong>in</strong>vestigated <strong>in</strong> studies, <strong>in</strong> which neuroprotection <strong>in</strong> animal<br />

models of traumatic bra<strong>in</strong> <strong>in</strong>jury, Park<strong>in</strong>son's disease,<br />

Hunt<strong>in</strong>gton's disease and cerebral ischemia have been<br />

demonstrated. Thus, at last, it seems that potent antioxidants<br />

that have considerable potential for the treatment of cerebral<br />

ischemia are <strong>in</strong> development.<br />

References<br />

1. Mohr JP, Gauther JC, Hier D, Ste<strong>in</strong> RW: Middle cerebral artery. In:<br />

Stroke: Pathophysiology, Diagnosis and Management. Barnett HJ, Mohr<br />

JP, Ste<strong>in</strong> BM, Yatsu FM (Eds), Churchill Liv<strong>in</strong>gstone, New York, NY,<br />

USA (1992) 1:377-450.<br />

2. R<strong>in</strong>gelste<strong>in</strong> EB, B<strong>in</strong>iek R, Wehller C, Ammel<strong>in</strong>g B, Nolte PN, Thron A:<br />

Type and extent of hemispheric bra<strong>in</strong> <strong>in</strong>farctions and cl<strong>in</strong>ical<br />

outcome <strong>in</strong> early and delayed middle cerebral artery recanalization.<br />

Neurology (1992) 42(2):289-298.<br />

3. Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folste<strong>in</strong> MF, Mart<strong>in</strong> A:<br />

Decreased levels of plasma vitam<strong>in</strong> C and <strong>in</strong>creased concentration<br />

of <strong>in</strong>flammatory and oxidative stress markers after stroke. Stroke<br />

(2004) 35(1):163-168.<br />

4. Heart Protection Study Collaborative Group: MRC/BHF Heart<br />

Protection Study of antioxidant vitam<strong>in</strong> supplementation <strong>in</strong> 20,536<br />

high-risk <strong>in</strong>dividuals: A randomised placebo-controlled trial. Lancet<br />

(2002) 360(9326):23-33.<br />

5. Green AR, Ashwood T: Free radical trapp<strong>in</strong>g as a therapeutic<br />

approach to neuroprotection <strong>in</strong> stroke: Experimental and cl<strong>in</strong>ical<br />

studies with NXY-059 and free radical scavengers. Curr Drug<br />

Targets CNS Neurol Disord (2005) 4(2):109-118.<br />

6. Phillis JW, Clough-Helfman C: Protection from cerebral ischemic<br />

<strong>in</strong>jury <strong>in</strong> gerbils with the sp<strong>in</strong> trap agent N-tert-butyl-αphenylnitrone<br />

(PBN). Neurosci Lett (1990) 116(3):315-319.<br />

• This is the first paper describ<strong>in</strong>g the neuroprotective effect of a nitrone.<br />

7. Clough-Helfman C, Phillis JW: The free radical trapp<strong>in</strong>g agent N-tertbutyl-α-phenylnitrone<br />

(PBN) attenuates cerebral ischaemic <strong>in</strong>jury<br />

<strong>in</strong> gerbils. Free Radic Res Commun (1991) 15(3):177-186.<br />

8. Sen S, Phillis JW: α-Phenyl-tert-butyl-nitrone (PBN) attenuated hydroxyl<br />

radical production dur<strong>in</strong>g ischemia-reperfusion <strong>in</strong>jury of rat bra<strong>in</strong>: An<br />

EPR study. Free Radic Res Commun (1993) 19(4):255-265.<br />

9. Zaus<strong>in</strong>ger S, Hungerhuber E, Baethmann A, Reulen H, Schmid-Elsaesser R:<br />

Neurological impairment <strong>in</strong> rats after transient middle cerebral artery<br />

occlusion: A comparative study under various treatment paradigms.<br />

Bra<strong>in</strong> Res (2000) 863(1-2):94-105.


24 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

10. Yang Y, Li Q, Shuaib A: Neuroprotection by 2-h postischemia<br />

adm<strong>in</strong>istration of two free radical scavengers, α-phenyl-N-tert-butylnitrone<br />

(PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), <strong>in</strong> rats<br />

subjected to focal embolic cerebral ischemia. Exp Neurol (2000)<br />

163(1):39-45.<br />

11. Thomas CE, Ohlweiler DF, Carr AA, Nieduzak TR, Hay DA, Adams G, Vaz<br />

R, Bernotas RC: Characterization of the radical trapp<strong>in</strong>g activity of a<br />

novel series of cyclic nitrone sp<strong>in</strong> traps. J Biol Chem (1996) 271(6):3097-<br />

3104.<br />

12. Johnson MP, McCarty DR, Velayo NL, Markgraf CG, Chmielewski PA,<br />

Ficorilli JV, Cheng HC, Thomas CE: MDL 101,002, a free radical sp<strong>in</strong> trap,<br />

is efficacious <strong>in</strong> permanent and transient focal ischemia models. Life<br />

Sci (1998) 63(4):241-253.<br />

13. Dha<strong>in</strong>aut A, Tizot A, Raimbaud E, Lockhart B, Lestage P, Goldste<strong>in</strong> S:<br />

Synthesis, structure, and neuroprotective properties of novel<br />

imidazolyl nitrones. J Med Chem (2000) 43(11):2165-2175.<br />

14. Lockhart B, Roger A, Bonhomme N, Goldste<strong>in</strong> S, Lestage P: In vivo<br />

neuroprotective effects of the novel imidazolyl nitrone free-radical<br />

scavenger (Z)-α-[(2-thiazol-2-yl)imidazole-4-yl]-N-tert-butylnitrone<br />

(S34176). Eur J Pharmacol (2005) 511(2-3):127-136.<br />

15. Green AR, Ashwood T, Odergren T, Jackson DM: Nitrones as<br />

neuroprotective agents <strong>in</strong> cerebral ischemia with particular reference to<br />

NXY-059. Pharmacol Ther (2003) 100(3):195-214.<br />

16. Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesjo BK: Neuroprotective<br />

effects of a novel nitrone, NXY-059, after transient focal cerebral<br />

ischemia <strong>in</strong> the rat. J Cereb Blood Flow Metab (1999) 19(7):778-787.<br />

17. Sydserff SG, Borelli AR, Green AR, Cross AJ: Effect of NXY-059 on <strong>in</strong>farct<br />

volume after transient or permanent middle cerebral artery occlusion <strong>in</strong><br />

the rat; studies on dose, plasma concentration and therapeutic time<br />

w<strong>in</strong>dow. Br J Pharmacol (2002) 135(1):103-112.<br />

18. Zhao Z, Cheng M, Maples KR, Ma JY, Buchan AM: NXY-059, a novel free<br />

radical trapp<strong>in</strong>g compound, reduces cortical <strong>in</strong>farction after permanent<br />

focal ischemia <strong>in</strong> the rat. Bra<strong>in</strong> Res (2001) 909(1-2):46-50.<br />

19. Marshall JW, Duff<strong>in</strong> KJ, Green AR, Ridley RM: NXY-059, a free radicaltrapp<strong>in</strong>g<br />

agent, substantially lessens the functional disability result<strong>in</strong>g<br />

from cerebral ischemia <strong>in</strong> primate species. Stroke (2001) 32(1):190-198.<br />

20. Marshall JW, Cumm<strong>in</strong>gs RM, Bowes LJ, Ridley RM, Green AR: Functional<br />

and histological evidence for the protective effect of NXY-059 <strong>in</strong> a<br />

primate model of stroke when given 4 hours after occlusion. Stroke<br />

(2003) 34(9):2228-2233.<br />

• This paper describes the efficacy of NXY-059 <strong>in</strong> a monkey model of stroke.<br />

21. Lyden P, Shauib A, Ng K, Lev<strong>in</strong> K, Atk<strong>in</strong>son RP, Rajput A, Wechsler L,<br />

Ashwood T, Claesson L, Odergren T, Salazar-Grueso E: Clomethiazole<br />

acute stroke study <strong>in</strong> ischemic stroke (CLASS-I): F<strong>in</strong>al results. Stroke<br />

(2002) 33(1):122-128.<br />

22. Diener HC, AlKhedr A, Busse O, Hacke W, Z<strong>in</strong>gmark PH, Jonsson N, Basun<br />

H: Treatment of acute ischaemic stroke with the low-aff<strong>in</strong>ity, usedependent<br />

NMDA antagonist AR-R15896AR. A safety and tolerability<br />

study. J Neurol (2002) 249(5):561-568.<br />

23. Marshall JW, Green AR, Ridley RM: Comparison of the neuroprotective<br />

effect of clomethiazole, AR-R15896AR and NXY-059 <strong>in</strong> a primate model<br />

of stroke us<strong>in</strong>g histological and behavioural measures. Bra<strong>in</strong> Res (2003)<br />

972(1-2):119-126.<br />

24. Lapchak PA, Araujo DM, Song D, Wei J, Ziv<strong>in</strong> JA: Neuroprotective effects<br />

of the sp<strong>in</strong> trap agent disodium-[(tert-butylim<strong>in</strong>o)methyl]benzene-1,3disulfonate<br />

N-oxide (generic NXY-059) <strong>in</strong> a rabbit small clot embolic<br />

stroke model - comb<strong>in</strong>ation studies with the thrombolytic tissue<br />

plasm<strong>in</strong>ogen activator. Stroke (2002) 33(5):1411-1415.<br />

25. Lapchak PA, Song D, Wei J, Ziv<strong>in</strong> JA: Coadm<strong>in</strong>istration of NXY-059<br />

and tenecteplase six hours follow<strong>in</strong>g embolic strokes <strong>in</strong> rabbits<br />

improved cl<strong>in</strong>ical rat<strong>in</strong>g scores. Exp Neurol (2004) 188(2):279-285.<br />

26. Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S: In<br />

vitro blood-bra<strong>in</strong> barrier permeability and cerebral endothelial cell<br />

uptake of the neuroprotective nitrone compound NXY-059 <strong>in</strong><br />

normoxic, hypoxic and ischemic conditions. Bra<strong>in</strong> Res (2002) 955<br />

(1-2):229-235.<br />

27. Han M, He QP, Yong G, Siesjo BK, Li PA: NXY-059, a nitrone with<br />

free radical trapp<strong>in</strong>g properties <strong>in</strong>hibits release of cytochrome C<br />

after cerebral ischemia. Cell Mol Biol (Noisy-le-grand) (2003)<br />

49(8):1249-1252.<br />

28. Edenius C, Strid S, Breitholtz-Emanuelsson A, Dal<strong>in</strong> L, Jerl<strong>in</strong>g M,<br />

Fransson B: NXY-059, the first nitrone be<strong>in</strong>g developed for stroke, is<br />

safe and well tolerated <strong>in</strong> young and elderly healthy volunteers.<br />

Cerebrovasc Dis (1999) 9:102.<br />

29. Strid S, Borga O, Edenius C, Jostell KG, Odergren T, Weil A:<br />

Pharmacok<strong>in</strong>etics <strong>in</strong> renally impaired subjects of NXY-059, a<br />

nitrone-based, free-radical trapp<strong>in</strong>g agent developed for the<br />

treatment of acute stoke. Eur J Cl<strong>in</strong> Pharmacol (2002) 58(6):409-415.<br />

30. Lees KR, Sharma AK, Barer D, Ford GA, Kostulas V, Cheng Y-F,<br />

Odergren T: Tolerability and pharmacok<strong>in</strong>etics of the nitrone<br />

NXY-059 <strong>in</strong> patients with acute stroke. Stroke (2001) 32(3):675-680.<br />

31. Lees KR, Barer D, Ford GA, Hacke W, Kostulas V, Sharma AK,<br />

Odegren T: Tolerability of NXY-059 at higher target concentrations<br />

<strong>in</strong> patients with acute stroke. Stroke (2003) 34(2):482-487.<br />

32. Renovis Inc: Phase III trials for CEROVIVE (NXY-059) will cont<strong>in</strong>ue<br />

as planned follow<strong>in</strong>g <strong>in</strong>terim data analysis. Press Release (2004):<br />

October 14.<br />

33. AstraZeneca plc: First results from SAINT-1 trial show<br />

AstraZeneca's CEROVIVE (NXY-059) demonstrates a reduction <strong>in</strong><br />

disability <strong>in</strong> patients with acute ischemia stroke. Press Release<br />

(2005):May 04.<br />

34. Althaus JS, Fleck TJ, Becker DA, Hall ED, Vonvoigtlander PF: Azulenyl<br />

nitrones: Colorimetric detection of oxyradical end products and<br />

neuroprotection <strong>in</strong> the gerbil transient forebra<strong>in</strong> ischemia/reperfusion<br />

model. Free Radic Biol Med (1998) 24(5):738-744.<br />

35. Klivenyi P, Matthews RT, Wermer M, Yang L, MacGarvey U, Becker<br />

DA, Natero R, Beal MF: Azulenyl nitrone sp<strong>in</strong> trap protects aga<strong>in</strong>st<br />

MPTP neurotoxicity. Exp Neurol (1998) 152(1):163-166.<br />

• This paper describes the neuroprotective effect of azulenyl nitrones <strong>in</strong> an<br />

animal model of Park<strong>in</strong>son's disease.<br />

36. Becker DA, Ley JJ, Echegoyen L, Alvarado R: Stilbazulenyl nitrone<br />

(STAZN): A nitronyl-substituted hydrocarbon with the potency of<br />

classical phenolic cha<strong>in</strong>-break<strong>in</strong>g antioxidants. J Am Chem Soc<br />

(2002) 124(17):4678-4684.<br />

• This study demonstrated that STAZN has higher antioxidant activity than<br />

PBN and NXY-059.<br />

37. Belayev L, Becker DA, Alonso OF, Liu Y, Busto R, Ley JJ, G<strong>in</strong>sberg<br />

MD: Stilbazulenyl nitrone, a novel azulenyl nitrone antioxidant:<br />

Improved neurological deficit and reduced contusion size after<br />

traumatic bra<strong>in</strong> <strong>in</strong>jury <strong>in</strong> rats. J Neurosurg (2002) 96(6):1077-1083.<br />

• This study demonstrated the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of traumatic bra<strong>in</strong> <strong>in</strong>jury.<br />

38. Yang L, Cal<strong>in</strong>gasan NY, Chen J, Ley JJ, Becker DA, Beal MF: A novel<br />

azulenyl nitrone antioxidant protects aga<strong>in</strong>st MPTP and 3nitropropionic<br />

acid neurotoxicities. Exp Neurol (2005) 191(1):86-93.<br />

• This study demonstrated the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of Hunt<strong>in</strong>gton's disease.<br />

39. G<strong>in</strong>sberg MD, Becker DA, Busto R, Belayev A, Zhang Y, Khoutorova L,<br />

Ley JJ, Zhao W, Belayev L: Stilbazulenyl nitrone, a novel<br />

antioxidant, is highly neuroprotective <strong>in</strong> focal ischemia. Ann Neurol<br />

(2003) 54(3):330-342.<br />

•• This paper describes the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of ischemic stroke.<br />

40. Ley JJ, Vigdorchik A, Belayev K, Zhao W, Busto R, Khoutorova L, Becker<br />

DA, G<strong>in</strong>sberg MD: Stilbazulenyl nitrone, a second-generation azulenyl<br />

nitrone antioxidant, confers endur<strong>in</strong>g neuroprotection <strong>in</strong> experimental<br />

focal cerebral ischemia <strong>in</strong> the rat: Neurobehavior, histopathology, and<br />

pharmacok<strong>in</strong>etics. J Pharmacol Exp Ther (2005) 313(3):1090-1100.


<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update<br />

Tom H Johnston 1 & Jonathan M Brotchie 1,2 *<br />

Addresses<br />

1 Toronto Western Research Institute<br />

Toronto Western Hospital<br />

University Health Network<br />

399 Bathurst Street, MC 11-419<br />

Toronto<br />

ON M5T 2S8<br />

Canada<br />

Email: brotchie@uhnres.utoronto.ca<br />

2Atuka Ltd<br />

37th Floor<br />

First Canadian Place<br />

100 K<strong>in</strong>g Street West<br />

Toronto<br />

ON M5X 1C9<br />

Canada<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):25-32<br />

© The Thomson Corporation ISSN 1472-4472<br />

The current development of emerg<strong>in</strong>g pharmacological<br />

treatments for Park<strong>in</strong>son's disease (PD), from precl<strong>in</strong>ical to<br />

launch, is summarized. Advances over the past year are<br />

highlighted, <strong>in</strong>clud<strong>in</strong>g the significant progress of several drugs<br />

through various stages of development. Several agents have<br />

been discont<strong>in</strong>ued from development, either because of adverse<br />

effects or lack of cl<strong>in</strong>ical efficacy. The methyl-esterified form of<br />

L-DOPA (melevodopa) and the monoam<strong>in</strong>e oxidase type B<br />

<strong>in</strong>hibitor rasagil<strong>in</strong>e have both been launched. With regard to<br />

the monoam<strong>in</strong>e re-uptake <strong>in</strong>hibitors, many changes have been<br />

witnessed, with new agents reach<strong>in</strong>g precl<strong>in</strong>ical development<br />

and pre-exist<strong>in</strong>g ones be<strong>in</strong>g discont<strong>in</strong>ued or hav<strong>in</strong>g no<br />

development reported. Of the dopam<strong>in</strong>e agonists, many<br />

cont<strong>in</strong>ue to progress successfully through cl<strong>in</strong>ical trials.<br />

Others have struggled to demonstrate a significant advantage<br />

over currently available treatments and have been<br />

discont<strong>in</strong>ued. The field of non-dopam<strong>in</strong>ergic treatments<br />

rema<strong>in</strong>s dynamic. The α2 adrenergic receptor antagonists and<br />

the adenos<strong>in</strong>e A2A receptor antagonists rema<strong>in</strong> <strong>in</strong> cl<strong>in</strong>ical<br />

trials. Trials of the neuronal synchronization modulator<br />

levetiracetam are at an advanced stage, and there has also been<br />

a new addition to the class (ie, seletracetam). There has been a<br />

change <strong>in</strong> the landscape of neuroprotective agents that<br />

modulate disease progression. Candidates from the classes of<br />

growth factors and glyceraldehyde-3-phosphate dehydrogenase<br />

<strong>in</strong>hibitors have been discont<strong>in</strong>ued, or no development has been<br />

reported, and the mixed l<strong>in</strong>eage k<strong>in</strong>ase <strong>in</strong>hibitor CEP-1347 has<br />

been discont<strong>in</strong>ued for PD treatment. Other drugs <strong>in</strong> this field,<br />

such as neuroimmunophil<strong>in</strong>s, estrogens and α-synucle<strong>in</strong><br />

oligomerization <strong>in</strong>hibitors, rema<strong>in</strong> <strong>in</strong> development.<br />

Keywords Adenos<strong>in</strong>e A2A, antipark<strong>in</strong>sonian, monoam<strong>in</strong>e<br />

oxidase <strong>in</strong>hibitors, non-dopam<strong>in</strong>ergic<br />

Introduction<br />

A summary of select antipark<strong>in</strong>sonian, antidysk<strong>in</strong>etic and<br />

neuroprotective/neurorestorative agents discussed <strong>in</strong> this<br />

review is presented <strong>in</strong> Tables 1 to 3. For a detailed<br />

discussion of the rationale for the majority of drugs <strong>in</strong><br />

development, refer to our orig<strong>in</strong>al review [1]. It should be<br />

25<br />

noted that, for commercial reasons, much of the <strong>in</strong>formation<br />

that relates to the development of these compounds is not<br />

available <strong>in</strong> the public doma<strong>in</strong> and our understand<strong>in</strong>g is<br />

derived from a variety of media reports of vary<strong>in</strong>g levels of<br />

reliability (eg, scientific literature, websites and company<br />

annual reports).<br />

Antipark<strong>in</strong>sonian symptomatic agents<br />

In the field of antipark<strong>in</strong>sonian therapies, the development of<br />

two dopam<strong>in</strong>e-replac<strong>in</strong>g compounds, etilevodopa and<br />

sumanirole, has been discont<strong>in</strong>ued [2,3]. In both <strong>in</strong>stances, it<br />

seems that this was not due to a lack of antipark<strong>in</strong>sonian<br />

efficacy, but rather because of a lack of any advantage over<br />

compet<strong>in</strong>g products. The discont<strong>in</strong>uation of Pfizer's sumanirole<br />

is disappo<strong>in</strong>t<strong>in</strong>g because it represented the first truly dopam<strong>in</strong>e<br />

D2-selective agonist [4], and thus had great promise as an agent<br />

that might avoid some of the complications that are associated<br />

with traditional dopam<strong>in</strong>e replacement therapy, such as<br />

dysk<strong>in</strong>esia and psychosis [5]. The reason beh<strong>in</strong>d the failure is<br />

unclear, and the entirety of Pfizer's precl<strong>in</strong>ical data on this agent<br />

may never enter the public doma<strong>in</strong>. However, from what has<br />

been made public, it appears that the precl<strong>in</strong>ical <strong>in</strong>vestigations<br />

to def<strong>in</strong>e the advantageous properties of sumanirole over its<br />

competitors, especially with respect to development/<br />

expression of dysk<strong>in</strong>esia and/or psychosis, were quite limited.<br />

This was particularly so <strong>in</strong> studies <strong>in</strong> 1-methyl-4-phenyl-1,2,3,6tetrahydropyrid<strong>in</strong>e<br />

(MPTP) primates, where little beyond<br />

antipark<strong>in</strong>sonian efficacy appears to have been presented<br />

publicly [6,7]. Cl<strong>in</strong>ical trials designed to maximize the potential<br />

advantages of sumanirole might thus have been overlooked.<br />

Another significant change <strong>in</strong> the field with<strong>in</strong> the last year<br />

is the decl<strong>in</strong>e <strong>in</strong> optimism regard<strong>in</strong>g monoam<strong>in</strong>e uptake<br />

<strong>in</strong>hibitors. Although the concept of enhanc<strong>in</strong>g rema<strong>in</strong><strong>in</strong>g<br />

levels of dopam<strong>in</strong>e with such compounds was supported<br />

by studies <strong>in</strong> MPTP-lesioned marmosets [8,9], the<br />

development of brasofens<strong>in</strong>e, SPD-473 and SPD-451 has<br />

been discont<strong>in</strong>ued [10]. The reasons beh<strong>in</strong>d these failures<br />

vary, but <strong>in</strong>clude, for example, lack of efficacy (SPD-473)<br />

[11]. In light of these developments, the results of the<br />

ongo<strong>in</strong>g phase II trial of NS-2330 (NeuroSearch<br />

A/S/Boehr<strong>in</strong>ger Ingleheim Corp) [12] and the<br />

development of SEP-226330 (Sepracor Inc), an agent<br />

claimed to reduce dopam<strong>in</strong>e and noradrenal<strong>in</strong>e, but not<br />

seroton<strong>in</strong>, re-uptake, are awaited with <strong>in</strong>terest [13].<br />

Advances <strong>in</strong> the development of patch and controlledrelease<br />

formulations of agonists have been made. Lead<strong>in</strong>g<br />

the way are studies with the rotigot<strong>in</strong>e patch (Schwarz<br />

Pharma AG/Otsuka Pharmaceutical Co Ltd), which is at the<br />

pre-registration stage, while the lisuride transcutaneous<br />

patch (Neurobiotec GmbH/Prestwick Pharmaceuticals Inc)<br />

has advanced to phase III cl<strong>in</strong>ical trials [14]. A controlledrelease<br />

version of the D2 agonist rop<strong>in</strong>irole<br />

(GlaxoSmithKl<strong>in</strong>e plc/SkyePharma plc) is undergo<strong>in</strong>g phase<br />

III cl<strong>in</strong>ical trials [15].


26 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 1. Examples of antipark<strong>in</strong>sonian agents.<br />

Compound Develop<strong>in</strong>g company/<br />

<strong>in</strong>stitution<br />

Class of<br />

compound<br />

Dopam<strong>in</strong>ergic<br />

L-DOPA <strong>in</strong>haled<br />

(Inhaled levodopa)<br />

O-1369<br />

Boston Life Sciences Inc Dopam<strong>in</strong>e<br />

(BLS-602/BLS-605)<br />

uptake <strong>in</strong>hibitor<br />

SEP-226330 Sepracor Inc Dopam<strong>in</strong>e/<br />

norep<strong>in</strong>ephr<strong>in</strong>e<br />

reuptake<br />

<strong>in</strong>hibitor<br />

H<br />

O CH 3<br />

Cl<br />

Cl<br />

HO<br />

O<br />

O<br />

OH O<br />

OH<br />

OH<br />

Phase of<br />

cl<strong>in</strong>ical<br />

development<br />

Other potential<br />

actions<br />

Alkermes Inc - Precl<strong>in</strong>ical -<br />

Reference<br />

[35•]<br />

Precl<strong>in</strong>ical - [36]<br />

Precl<strong>in</strong>ical - [13]<br />

Rotigot<strong>in</strong>e nasal spray Schwarz Pharma AG D2 agonist Phase I Neuroprotective [37]<br />

BIA 3202<br />

(BIA-3-270)<br />

BIAL Group COMT <strong>in</strong>hibitor Phase I Neuroprotective [38]<br />

Cell therapy (dopam<strong>in</strong>e<br />

Titan<br />

Human ret<strong>in</strong>al Phase II - [39]<br />

producers, Park<strong>in</strong>son's)<br />

Pharmaceuticals Inc/ pigment<br />

(Spheram<strong>in</strong>e)<br />

Scher<strong>in</strong>g AG epithelial cells<br />

on microcarrier<br />

beads that<br />

produce<br />

L-DOPA<br />

NS-2330<br />

NeuroSearch A/S/ Monam<strong>in</strong>e Phase II Cognitive [40]<br />

H C 3<br />

Boehr<strong>in</strong>ger Ingelheim reuptake<br />

enhancement.<br />

N H<br />

Corp<br />

<strong>in</strong>hibitor<br />

Antidepressant<br />

Rop<strong>in</strong>irole<br />

GlaxoSmithKl<strong>in</strong>e plc/<br />

(ReQuip CR)<br />

SkyePharma plc<br />

Lisuride transdermal patch Prestwick<br />

Pharmaceuticals Inc/<br />

NeuroBiotech GmbH<br />

Saf<strong>in</strong>amide<br />

Newron Pharmaceuticals<br />

(PNU-151774E)<br />

SpA<br />

N<br />

H 2<br />

O<br />

CH 3<br />

H<br />

N<br />

Bifeprunox<br />

(DU-127090)<br />

N<br />

H<br />

N<br />

O<br />

O<br />

SLV-308<br />

(SME-308)<br />

CH 3<br />

N<br />

O<br />

N<br />

H<br />

Rotigot<strong>in</strong>e<br />

(N-0923/SPM-962)<br />

OH<br />

N<br />

N<br />

N<br />

O<br />

O<br />

CH 3<br />

HCl<br />

S<br />

F<br />

Solvay SA/<br />

H Lundbeck A/S/<br />

Wyeth Pharmaceuticals<br />

D3/weak D2<br />

agonist<br />

Phase III Neuroprotective [15]<br />

D2/D1 agonist Phase III - [14]<br />

MAO-B<br />

<strong>in</strong>hibitor/Na + and<br />

K + channel<br />

modulator<br />

D2 partial<br />

agonist/5-HT1A<br />

agonist<br />

Solvay SA D2 partial<br />

Schwarz Pharma AG/<br />

Otsuka Pharmaceutical<br />

Co Ltd<br />

agonist/5-HT1A<br />

agonist<br />

Phase III Neuroprotective [41,42,43••,<br />

44]<br />

Phase III - [45]<br />

Phase III Antidepressant [46]<br />

D2 agonist Pre-registered Neuroprotective [47]


Table 1. Examples of antipark<strong>in</strong>sonian agents (cont<strong>in</strong>ued).<br />

Compound Develop<strong>in</strong>g company/<br />

<strong>in</strong>stitution<br />

Piribedil<br />

(Trivastal)<br />

Zonisamide<br />

(Zonegran)<br />

Rasagil<strong>in</strong>e<br />

(TVP-1012/Agilect (US)/Azilect<br />

(Europe)<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 27<br />

Class of<br />

compound<br />

Servier D2/3 agonist/α2<br />

antagonist<br />

Da<strong>in</strong>ippon Sumitomo<br />

Pharma Co Ltd/<br />

Donga Pharmaceutical<br />

Co Ltd/Eisai Co Ltd<br />

Teva Pharmaceutical<br />

Industries Ltd/<br />

Eisai Co Ltd/<br />

H Lundbeck A/S<br />

Complex<br />

dopam<strong>in</strong>ergic<br />

Irreversible MAO-<br />

B <strong>in</strong>hibitor<br />

Zandopa<br />

Zandu Complex<br />

(HP-200/Mucuna pruriens)<br />

dopam<strong>in</strong>ergic<br />

SPD-451 Shire plc Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Brasofens<strong>in</strong>e<br />

(NS-2214)<br />

C<br />

H 3<br />

N<br />

H<br />

SPD-473<br />

(BTS-74398)<br />

O CH 3<br />

N Cl<br />

Cl<br />

O<br />

O<br />

OH<br />

OH<br />

NeuroSearch A/S Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Shire plc Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Phase of<br />

cl<strong>in</strong>ical<br />

development<br />

Launched but<br />

new adjunct<br />

trials underway<br />

Other potential<br />

actions<br />

Reference<br />

- [48]<br />

Launched Neuroprotective [49-51]<br />

Launched Neuroprotective [52]<br />

Launched Neuroprotective [53-56]<br />

No development<br />

reported<br />

Cognitive<br />

enhancement.<br />

Antidepressant<br />

Discont<strong>in</strong>ued Cognitive<br />

enhancement.<br />

Antidepressant<br />

Discont<strong>in</strong>ued Cognitive<br />

enhancement.<br />

Antidepressant<br />

Sumanirole<br />

(PNU-95666)<br />

Non-dopam<strong>in</strong>ergic<br />

Pfizer Inc D2 agonist Discont<strong>in</strong>ued - [3]<br />

Adenos<strong>in</strong>e A2A blocker Adenos<strong>in</strong>e<br />

Therapeutics LLC<br />

A2A antagonist Precl<strong>in</strong>ical Neuroprotective [58]<br />

Adenos<strong>in</strong>e A2A receptor<br />

Neurocr<strong>in</strong>e<br />

A2A antagonist Precl<strong>in</strong>ical Neuroprotective [59]<br />

antagonists<br />

Biosciences Inc/<br />

Almirall Prodesfarma<br />

SA<br />

V-2006 Biogen IDEC Inc A2A antagonist Phase I Neuroprotective [25]<br />

AVE-1625 sanofi-aventis CB1 antagonist Phase I - [60]<br />

Sch-58261 analogs Scher<strong>in</strong>g-Plough Corp A2A antagonist Phase II Neuroprotective [61]<br />

Istradefyll<strong>in</strong>e<br />

Kyowa Hakko Kogyo A2A antagonist Phase III Neuroprotective [62-64]<br />

(KW-6002)<br />

Co Ltd<br />

CH 3<br />

O<br />

N<br />

C<br />

H 3<br />

O CH 3<br />

N<br />

Aricept<br />

(Donepezil/E-2020)<br />

N<br />

N<br />

Alt<strong>in</strong>icl<strong>in</strong>e<br />

(SIB-1508Y)<br />

HC<br />

N<br />

H<br />

CH 3<br />

N<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

Eisai Co Ltd/Pfizer Inc AchE <strong>in</strong>hibitor Launched<br />

(pre-registered<br />

for PD-related<br />

dementia)<br />

SIBIA Neurosciences<br />

Inc<br />

α4β2 selective<br />

nicot<strong>in</strong>ic agonist<br />

No development<br />

reported<br />

Cognitive<br />

enhancement<br />

Cognitive<br />

enhancement<br />

AchE acetylchol<strong>in</strong>esterase, CB cannab<strong>in</strong>oid, COMT catechol-O-methyltransferase, MAO monoam<strong>in</strong>e oxidase, PD Park<strong>in</strong>son's disease.<br />

[10]<br />

[57]<br />

[11]<br />

[65]<br />

[66]


28 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 2. Examples of antidysk<strong>in</strong>etic agents for Park<strong>in</strong>son's disease.<br />

Compound Develop<strong>in</strong>g<br />

company/<br />

<strong>in</strong>stitution<br />

Fipamezole<br />

(JP-1730)<br />

F<br />

CH 3<br />

Talampanel<br />

(K<strong>in</strong>ampa/LY-300164)<br />

C<br />

H 3<br />

BP-897<br />

(ST-280)<br />

O<br />

C<br />

H 3<br />

O<br />

N<br />

N<br />

N<br />

H<br />

Sarizotan<br />

(EMD-128130)<br />

F<br />

N<br />

NH 2<br />

HCl<br />

N<br />

H<br />

N<br />

NH<br />

O<br />

O<br />

N<br />

HCl<br />

C<br />

H 3<br />

O<br />

O<br />

N<br />

Class of<br />

compound<br />

Phase of<br />

development<br />

Other potential<br />

actions<br />

Juvantia Pharma Ltd α2 antagonist Phase II Extended 'on'<br />

time<br />

Reference<br />

IVAX Corp AMPA antagonist Phase II Neuroprotective [68]<br />

Bioprojet Pharma D3 partial agonist Phase II - [69]<br />

Merck KGaA 5-HT1A agonist Phase II Extended 'on'<br />

time<br />

Seletracetam<br />

(UCB-44212)<br />

UCB SA SV2A modulator Phase II - [29]<br />

ACP-103<br />

ACADIA<br />

Pharmaceuticals Inc<br />

5-HT2A <strong>in</strong>verse<br />

agonist<br />

Phase II Antipsychotic [70,71]<br />

E-2007 Eisai Co Ltd AMPA antagonist Phase II Neuroprotective [72]<br />

Seroquel<br />

(Quetiap<strong>in</strong>e)<br />

AstraZeneca plc 5-HT2A/C/D2/3<br />

antagonist<br />

Phase II for PD<br />

(launched for<br />

schizophrenia)<br />

Antipsychotic [73,74]<br />

AMPA α-am<strong>in</strong>o-3-hydroxy-5-methyl-4-isoxazolepropionic acid.<br />

Intense <strong>in</strong>terest is now focused on the area of monoam<strong>in</strong>e oxidase<br />

(MAO) <strong>in</strong>hibitors. In the past year, many data have accrued with<br />

regard to the antipark<strong>in</strong>sonian actions of the MAO-B <strong>in</strong>hibitor<br />

rasagil<strong>in</strong>e [11-15,16••], which has now been launched <strong>in</strong> the UK.<br />

Also approved for launch across Europe under the brand name<br />

Azilect, the results of two large cl<strong>in</strong>ical trials have demonstrated<br />

that rasagil<strong>in</strong>e is efficacious both as a monotherapy <strong>in</strong> early-stage<br />

Park<strong>in</strong>son's disease (PD) patients [16••,17••], and as an adjunct to<br />

L-DOPA therapy <strong>in</strong> advanced PD patients with motor<br />

fluctuations [18,19]. Precl<strong>in</strong>ical data suggest a potential<br />

neuroprotective action of rasagil<strong>in</strong>e [20] that might be reflected <strong>in</strong><br />

the f<strong>in</strong>d<strong>in</strong>gs of the TVP-1012 <strong>in</strong> Early Monotherapy for<br />

Park<strong>in</strong>son's disease Outpatients (TEMPO) study. In TEMPO,<br />

early-stage PD patients who commence treatment with rasagil<strong>in</strong>e<br />

as adjunctive therapy are associated with better outcomes at one<br />

year than those patients who delay the start of treatment [21].<br />

However, equally plausible explanations that are unrelated to<br />

neuroprotection could underlie the f<strong>in</strong>d<strong>in</strong>gs of TEMPO.<br />

Whatever the explanation, evidence is accumulat<strong>in</strong>g for the<br />

<strong>in</strong>itiation of rasagil<strong>in</strong>e therapy early after diagnosis.<br />

[67]<br />

[26••]<br />

In the field of non-dopam<strong>in</strong>ergic anti-park<strong>in</strong>sonian agents, the<br />

spotlight rema<strong>in</strong>s on harness<strong>in</strong>g the undoubted potential of<br />

adenos<strong>in</strong>e A2A antagonists. Progress with istradefyll<strong>in</strong>e (Kyowa<br />

Hakko Kogyo Co Ltd) rema<strong>in</strong>s relatively slow, although new<br />

f<strong>in</strong>d<strong>in</strong>gs show<strong>in</strong>g that its action is ma<strong>in</strong>ta<strong>in</strong>ed have been<br />

presented [22], and several phase III trials are now underway<br />

[23,24]. Biogen Idec Inc is develop<strong>in</strong>g the non-xanth<strong>in</strong>e A2A<br />

antagonist V-2006 under license from Vernalis plc [25].<br />

Development by both companies represents a potentially<br />

powerful comb<strong>in</strong>ation that could drive the development of<br />

V-2006 so that it is at the same level as istradefyll<strong>in</strong>e with<strong>in</strong> the<br />

next year. New entrants to this field <strong>in</strong>clude Adenos<strong>in</strong>e<br />

Therapeutics, Neurocr<strong>in</strong>e Biosciences and Almirall Prodesfarma,<br />

although little is known about their developmental candidates<br />

at this stage. It is not clear how the adenos<strong>in</strong>e A2A field will<br />

develop; istradefyll<strong>in</strong>e has prime-mover advantage at present,<br />

but if one of the emerg<strong>in</strong>g molecules can build on the lessons<br />

learned from the development of istradefyll<strong>in</strong>e, or prove useful<br />

as a monotherapy and not just an adjunct to dopam<strong>in</strong>e<br />

replacement (as seems likely to be the case with istradefyll<strong>in</strong>e),<br />

then this advantage could rapidly be negated.


Table 3. Examples of neuroprotective/neurorestorative agents for Park<strong>in</strong>son's disease.<br />

C<br />

H 3<br />

C<br />

H 3<br />

OH<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 29<br />

Compound Develop<strong>in</strong>g company/<br />

Class of<br />

Phase of Other potential Reference<br />

<strong>in</strong>stitution<br />

compound development actions<br />

PAN-408 and PAN-527 Panacea Pharmaceuticals Inc α-Synucle<strong>in</strong><br />

oligomerization<br />

<strong>in</strong>hibitors<br />

Precl<strong>in</strong>ical -<br />

[75]<br />

Sonic hedgehog prote<strong>in</strong><br />

Curis Inc/<br />

Hh agonist Precl<strong>in</strong>ical -<br />

[76]<br />

agonists<br />

Wyeth Pharmaceuticals<br />

GYKI-47261 IVAX Corp AMPA antagonist Precl<strong>in</strong>ical Anti-dysk<strong>in</strong>etic [77]<br />

FR-255595 Astellas Pharma Inc PARP-1 <strong>in</strong>hibitor Precl<strong>in</strong>ical - [78]<br />

CERE-120<br />

(Neurtur<strong>in</strong>)<br />

Ceregene Inc GDNF analog Phase I - [79]<br />

MX-4509<br />

(MITO-4509)<br />

MIGENIX Inc Estrogen analog Phase I/II - [80]<br />

Cereact<br />

Ono Pharmaceutical Co Ltd/ Astrocyte modulator Phase II for PD<br />

-<br />

[81,82]<br />

(ONO-2506/arundic acid)<br />

Merck & Co Inc<br />

(phase III for<br />

O<br />

cerebral<br />

<strong>in</strong>farction)<br />

PYM-50028<br />

(P-63)<br />

Phytopharm plc Not known Phase II - [83]<br />

GPI-1485 MGI Pharma Inc/Symphony Neuroimmunophil<strong>in</strong> Phase II -<br />

[84]<br />

Neuro Development Co<br />

ligand<br />

SR-57667 sanofi-aventis Non-peptide<br />

neurotrophic<br />

Phase IIb Neuroprotective [85]<br />

Creat<strong>in</strong>e<br />

Avicena Group Inc Mitochondrial<br />

Phase III<br />

[86]<br />

NH<br />

permeability<br />

-<br />

H N 2 N<br />

OH<br />

transition pore<br />

<strong>in</strong>hibitor<br />

CH 3<br />

Liaterm<strong>in</strong>e<br />

(GDNF)<br />

Omigapil<br />

(CGP-3466/TCH-346)<br />

H C 3<br />

N<br />

O<br />

O<br />

CH<br />

Amgen Inc Endogenous<br />

neurotrophic factor<br />

Discont<strong>in</strong>ued -<br />

[30]<br />

Novartis AG GAPDH <strong>in</strong>hibitor Discont<strong>in</strong>ued - [87]<br />

AMPA α-am<strong>in</strong>o-3-hydroxy-5-methyl-4-isoxazolepropionic acid, GAPDH glyceraldehyde-3-phosphate dehydrogenase, GDNF glial-derived<br />

neurotrophic factor, PARP poly(ADP-ribose) polymerase, PD Park<strong>in</strong>son's disease.<br />

Antidysk<strong>in</strong>etic agents<br />

Developments <strong>in</strong> the field of non-dopam<strong>in</strong>ergic<br />

antidysk<strong>in</strong>etic drugs have generally been positive. Two<br />

agents, the α2 adrenoceptor antagonist fipamezole<br />

(Juvantia Pharma Ltd) and the 5-hydroxytryptam<strong>in</strong>e (5-<br />

HT)1A agonist sarizotan (Merck KGaA) [26••], have both<br />

successfully demonstrated antidysk<strong>in</strong>etic efficacy <strong>in</strong> phase<br />

IIa studies. Preparations for phase III trials of sarizotan are<br />

now underway [27]. It is unclear as to how UCB SA<br />

<strong>in</strong>tends to develop the anticonvulsant levetiracetam for L-<br />

DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia, s<strong>in</strong>ce it has been suggested<br />

that there will be significant issues of tolerability ow<strong>in</strong>g to<br />

somnolence [28]; however, if it can be tolerated <strong>in</strong> an<br />

<strong>in</strong>dividual, antidysk<strong>in</strong>etic actions are achievable.<br />

Precl<strong>in</strong>ical data on a next-generation analog of<br />

levetiracetam, seletracetam (UCB SA), have been reported<br />

[29], demonstrat<strong>in</strong>g the apparent commitment of UCB to<br />

both the target and therapeutic area.<br />

Neuroprotective/neurorestorative agents<br />

In the research of disease-modify<strong>in</strong>g compounds, many<br />

potential agents cont<strong>in</strong>ue to vie for the opportunity to<br />

demonstrate efficacy. The field rema<strong>in</strong>s characterized by a<br />

lack of any s<strong>in</strong>gle target recognized as be<strong>in</strong>g more favorable<br />

than another, and the likelihood that several classes of<br />

compounds will eventually occupy this space may become a<br />

reality. The logistics of conduct<strong>in</strong>g cl<strong>in</strong>ical trials of diseasemodify<strong>in</strong>g<br />

agents rema<strong>in</strong> challeng<strong>in</strong>g [30], and development<br />

of some compounds for PD has been discont<strong>in</strong>ued, for<br />

example, the glial-derived neurotrophic factor, liaterm<strong>in</strong>e<br />

(Amgen Inc) [31]; the neurotroph<strong>in</strong> synthesis-enhancer,<br />

mixed l<strong>in</strong>eage k<strong>in</strong>ase <strong>in</strong>hibitor CEP-1347 (Cephalon Inc/H<br />

Lundbeck A/S/ Kyowa Hakko Kogyo Co Ltd) [32]; and the<br />

glyceraldehyde-3-phosphate dehydrogenase <strong>in</strong>hibitor<br />

TCH-346 (Novartis AG) [33]. In a similar manner to<br />

rasagil<strong>in</strong>e, much attention has also been focused on the<br />

neuroprotective potential of other pre-exist<strong>in</strong>g symptomatic


30 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

antipark<strong>in</strong>sonian agents. For example, data were recently<br />

presented <strong>in</strong> support of a protective action of rotigot<strong>in</strong>e<br />

whereby the progression of disability was attenuated <strong>in</strong> those<br />

patients with early-stage PD who received this agent [34].<br />

Conclusion<br />

In conclusion, the area of drug development <strong>in</strong> PD rema<strong>in</strong>s<br />

active and there is realistic hope of new therapies reach<strong>in</strong>g<br />

the market <strong>in</strong> the short to mid term.<br />

References<br />

1. Johnston TH, Brotchie JM: <strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's<br />

disease. Curr Op<strong>in</strong> Investig <strong>Drugs</strong> (2004) 5(7):720-726.<br />

2. Teva Pharmaceutical Ltd: Teva & Lundbeck announce phase III trials<br />

did not demonstrate etilevodopa superiority over standard<br />

levodopa. Press Release (2003):January 06.<br />

www.tevapharm.com/pr/2003/pr_371.asp<br />

3. Pfizer Inc: Pfizer announces the discont<strong>in</strong>uation of sumanirole<br />

development. F<strong>in</strong>ancial Report (2004) July.<br />

www.pfizer.com/pfizer/annualreport/2004/f<strong>in</strong>ancial/pr<strong>in</strong>t/r6.pdf<br />

4. Sethy VH, Ellerbrock BR, Wu H: U-95666E: A potential antipark<strong>in</strong>sonian<br />

drug with anxiolytic activity. Prog<br />

Neuropsychopharmacol Biol Psychiatry (1997) 21(5):873-883.<br />

5. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc<br />

JL: Limitations of current Park<strong>in</strong>son's disease therapy. Ann Neurol<br />

(2003) 53(Suppl 3):S3-S12; discussion S12-S15.<br />

6. DuChane J, Jenk<strong>in</strong>son C: Changes <strong>in</strong> quality of life result<strong>in</strong>g from<br />

treatment for persons with advanced Park<strong>in</strong>son's disease:<br />

Sumanirole versus placebo. International Congress on Park<strong>in</strong>son's<br />

Disease and Movement Disorders, Miami, FL, USA (2002):P309.<br />

7. Gomez-Mancilla B, Selzer K, Chapman K, Wang M, Simpson S:<br />

Sumanirole is a promis<strong>in</strong>g new agent <strong>in</strong> the treatment of<br />

Park<strong>in</strong>son's disease. International Congress on Park<strong>in</strong>son's Disease<br />

and Movement Disorders, Miami, FL, USA (2002):P323.<br />

8. Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner<br />

P: The monoam<strong>in</strong>e reuptake blocker brasofens<strong>in</strong>e reverses<br />

ak<strong>in</strong>esia without dysk<strong>in</strong>esia <strong>in</strong> MPTP-treated and levodopa-primed<br />

common marmosets. Mov Disord (2002) 17(5):877-886.<br />

9. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P: Dopam<strong>in</strong>e,<br />

but not norep<strong>in</strong>ephr<strong>in</strong>e or seroton<strong>in</strong>, reuptake <strong>in</strong>hibition reverses motor<br />

deficits <strong>in</strong> 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e-treated primates.<br />

J Pharmacol Exp Ther (2002) 303(3):952-958.<br />

10. Shire Pharmaceuticals Inc: Shire: A focused global pharmaceutical<br />

company. Focus<strong>in</strong>g on a bright future. Annual Review (2003).<br />

www.shire.com/shire/uploads/reports/AR_2003.pdf<br />

11. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P: The<br />

monoam<strong>in</strong>e reuptake <strong>in</strong>hibitor BTS 74 398 fails to evoke<br />

established dysk<strong>in</strong>esia but does not synergise with levodopa <strong>in</strong><br />

MPTP-treated primates. Mov Disord (2004) 19(1):15-21.<br />

12. Neurosearch Inc: NeuroSearch's partner Boehr<strong>in</strong>ger Ingelheim has<br />

concluded the enrollment of patients <strong>in</strong> three cl<strong>in</strong>ical phase II<br />

studies with NS2330 for the treatment of Alzheimer's and<br />

Park<strong>in</strong>son's diseases. Annual Report (2004):November 09.<br />

http://neurosearch.com/pub/pdf/20041109_uk.pdf<br />

13. Sepracor Inc: Therapeutic areas: CNS, SEP-226330. Company Web Site<br />

(2005).<br />

http://www.sepracor.com/therap/sep226330.html<br />

14. Prestwick Pharmaceuticals Form S1. FORM S-1 (2005):April 22.<br />

15. GlaxoSmithKl<strong>in</strong>e Inc: GlaxoSmithKl<strong>in</strong>e announces phase III trial of<br />

controlled release rop<strong>in</strong>irole. Press Release (2005):April 12.<br />

http://science.gsk.com/pipel<strong>in</strong>e/pipel<strong>in</strong>e-march2005.pdf<br />

16. Stern MB, Marek KL, Friedman J, Hauser RA, LeWitt PA, Tarsy D,<br />

Olanow CW: Double-bl<strong>in</strong>d, randomized, controlled trial of rasagil<strong>in</strong>e<br />

as monotherapy <strong>in</strong> early Park<strong>in</strong>son's disease patients. Mov Disord<br />

(2004) 19(8):916-923.<br />

•• This paper describes one of two large studies demonstrat<strong>in</strong>g that oncedaily<br />

adm<strong>in</strong>istration of rasagil<strong>in</strong>e can significantly <strong>in</strong>crease the time dur<strong>in</strong>g<br />

which patients receive antipark<strong>in</strong>sonian benefit from L-DOPA without<br />

troublesome dysk<strong>in</strong>esia.<br />

17. Lew M, Hauser RA, Hurtig H, Ondo W, Wojcieszek J: Long-term efficacy of<br />

rasagil<strong>in</strong>e <strong>in</strong> Park<strong>in</strong>son's disease. Mov Disord (2005) 20:P250.<br />

•• The second of two large studies demonstrat<strong>in</strong>g that once-daily adm<strong>in</strong>istration of<br />

rasagil<strong>in</strong>e can significantly <strong>in</strong>crease the time dur<strong>in</strong>g which patients receive<br />

antipark<strong>in</strong>sonian benefit from L-DOPA without troublesome dysk<strong>in</strong>esia.<br />

18. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, Tolosa E:<br />

Rasagil<strong>in</strong>e as an adjunct to levodopa <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease and motor fluctuations (LARGO, last<strong>in</strong>g effect <strong>in</strong> adjunct<br />

therapy with rasagil<strong>in</strong>e given once daily, study): A randomised, doublebl<strong>in</strong>d,<br />

parallel-group trial. Lancet (2005) 365(9463):947-954.<br />

19. Park<strong>in</strong>son Study Group: A randomized placebo-controlled trial of<br />

rasagil<strong>in</strong>e <strong>in</strong> levodopa-treated patients with Park<strong>in</strong>son disease and<br />

motor fluctuations: The PRESTO study. Arch Neurol (2005)<br />

62(2):241-248.<br />

20. Mandel S, We<strong>in</strong>reb O, Amit T, Youdim MB: Mechanism of<br />

neuroprotective action of the anti-Park<strong>in</strong>son drug rasagil<strong>in</strong>e and its<br />

derivatives. Bra<strong>in</strong> Res Bra<strong>in</strong> Res Rev (2005) 48(2):379-387.<br />

21. Hauser RA, Lew M, Hurtig H, Ondo W, Wojcieszek J: Early treatment<br />

with rasagil<strong>in</strong>e is more beneficial than delayed treatment start <strong>in</strong><br />

the long-term management of Park<strong>in</strong>son's disease. Mov Disord<br />

(2005) 20:P251.<br />

22. Mark MH: Long-term efficacy of istradefyll<strong>in</strong>e <strong>in</strong> patients with<br />

advanced Park<strong>in</strong>son's disease. Mov Disord (2005) 20:P310.<br />

23. Kyowa Hakko to focus on biotechnology. Pharma Jpn (2004) 1920: P6.<br />

24. Kyowa Hakko Kogyo Co Ltd: Overseas R&D activities. Company<br />

World Wide Web Site (2004):November 18.<br />

25. Biogen IDEC Inc: Vernalis and Biogen Idec to collaborate on<br />

research for Park<strong>in</strong>son's disease. Press Release (2004):June 24.<br />

http://biogen.com/news/BiogenIDECPR_045.htm<br />

26. Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitrova T, Sherzai A,<br />

Mouradian MM, Chase TN: Effects of seroton<strong>in</strong> 5-HT1A agonist <strong>in</strong><br />

advanced Park<strong>in</strong>son's disease. Mov Disord (2005) 20(8):932-936.<br />

•• This study was the first demonstration <strong>in</strong> humans that 5HT1A agonists can<br />

reduce L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia, and confirms f<strong>in</strong>d<strong>in</strong>gs from MPTPlesioned<br />

monkeys.<br />

27. EMD Pharmaceuticals: Sarizotan HCl <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease suffer<strong>in</strong>g from treatment-associated dysk<strong>in</strong>esia. (2005):August<br />

01.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/show/NCT00105508<br />

28. Meco G, Fabrizio E, Epifanio A, Raimondo GD, Vanacore N, Morgante<br />

L: Levetiracetam <strong>in</strong> L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia. Cl<strong>in</strong><br />

Neuropharmacol (2005) 28(2):102-103.<br />

29. Michel A, Ravenscroft P, Hill MP, Bezard E, Crossman AR, Klitgaard H:<br />

Seletracetam (UCB 44212) reduces L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia <strong>in</strong><br />

the MPTP-lesioned marmoset model of Park<strong>in</strong>son's disease. Mov<br />

Disord (2005) 20:S102.<br />

30. Meissner W, Hill MP, Tison F, Gross CE, Bezard E: Neuroprotective<br />

strategies for Park<strong>in</strong>son's disease: Conceptual limits of animal models<br />

and cl<strong>in</strong>ical trials. Trends Pharmacol Sci (2004) 25(5):249-253.<br />

31. Amgen Inc: Follow<strong>in</strong>g complete review of phase 2 trial data Amgen<br />

confirms decision to halt GDNF study; Comprehensive review of<br />

scientific f<strong>in</strong>d<strong>in</strong>gs, patient safety, drove decision. Press Release<br />

(2005):February 11.<br />

http://www.amgen.com/media/media_pr_detail.jsp?year=2005&releaseI<br />

D=673490<br />

32. Lundbeck Inc: Cephalon and Lundbeck announce discont<strong>in</strong>uation of<br />

CEP-1347 cl<strong>in</strong>ical trial <strong>in</strong> Park<strong>in</strong>son's disease. Press Release<br />

(2005):May 11.<br />

http://www.lundbeck.com/<strong>in</strong>vestor/releases/ReleaseDetails/Release_158_<br />

EN.asp


33. Novartis AG: Novartis shows dynamic momentum <strong>in</strong> <strong>in</strong>dustrylead<strong>in</strong>g<br />

pipel<strong>in</strong>e. Press Release (2005):January 20.<br />

34. Watts R, LeWitt P, Giladi N, Sommerville K, Boroojerdi B: Treatment<br />

with rotigot<strong>in</strong>e transdermal system may attenuate progression of<br />

disability <strong>in</strong> patients with early-stage Park<strong>in</strong>son's disease. In:<br />

Annual Meet<strong>in</strong>g of the American Academy of Neurology, Miami Beach,<br />

FL, USA (2005):57.<br />

35. Bartus RT, Emerich D, Snodgrass-Belt P, Fu K, Salzberg-Brenhouse H,<br />

Lafreniere D, Novak L, Lo ES, Cooper T, Basile AS: A pulmonary<br />

formulation of L-DOPA enhances its effectiveness <strong>in</strong> a rat model of<br />

Park<strong>in</strong>son's disease. J Pharmacol Exp Ther (2004) 310(2):828-835.<br />

• This paper describes early precl<strong>in</strong>ical use of a novel approach to deliver<strong>in</strong>g<br />

L-DOPA via the pulmonary route.<br />

36. Boston Life Sciences Inc: Boston Life Sciences Inc product pipel<strong>in</strong>e.<br />

O-1369, novel DAT blocker for the treatment of Park<strong>in</strong>son's<br />

disease. Company Web Site (2005):W<strong>in</strong>ter.<br />

http://www.bostonlifesciences.com/productpipel<strong>in</strong>e.html<br />

37. Schwarz Pharma Inc: Schwarz Pharma's results exceed<br />

expectations. Press Release (2004): February 18.<br />

http://cms.schwarzpharma.com/_uploads/assets/3268_PR_Prelim<strong>in</strong>ary<br />

%20Report%202003_e.pdf<br />

38. Almeida L, Vaz-da-Silva M, Silveira P, Falcao A, Maia J, Loureiro A,<br />

Torrao L, Machado R, Wright L, Soares-da-Silva P: Pharmacok<strong>in</strong>eticpharmacodynamic<br />

<strong>in</strong>teraction between BIA 3-202, a novel COMT<br />

<strong>in</strong>hibitor, and levodopa/carbidopa. Cl<strong>in</strong> Neuropharmacol (2004)<br />

27(1):17-24.<br />

39. Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Allen RC,<br />

Subramanian T, Doudet D, Honey CR, Bakay RA: Stereotaxic <strong>in</strong>trastriatal<br />

implantation of human ret<strong>in</strong>al pigment epithelial (hRPE) cells attached<br />

to gelat<strong>in</strong> microcarriers: A potential new cell therapy for Park<strong>in</strong>son's<br />

disease. J Neural Transm Suppl (2003) 65:215-227.<br />

40. Neurosearch A/S: NeuroSearch's partner Boehr<strong>in</strong>ger Ingelheim has<br />

concluded the enrollment of patients <strong>in</strong> three cl<strong>in</strong>ical phase II<br />

studies with NS2330 for the treatment of Alzheimer's and<br />

Park<strong>in</strong>son's diseases. Press Release (2004):November 09.<br />

http://www.neurosearch.com/pub/pdf/20041109_uk.pdf<br />

41. Chazot PL: Saf<strong>in</strong>amide (Newron Pharmaceuticals). Curr Op<strong>in</strong> Investig<br />

<strong>Drugs</strong> (2001) 2(6):809-813.<br />

42. Maj R, Fariello RG, Ukmar G, Varasi M, Pevarello P, McArthur RA,<br />

Salvati P: PNU-151774E protects aga<strong>in</strong>st ka<strong>in</strong>ate-<strong>in</strong>duced status<br />

epilepticus and hippocampal lesions <strong>in</strong> the rat. Eur J Pharmacol<br />

(1998) 359(1):27-32.<br />

43. Stocchi F, Arnold G, Onofrj M, Kwiec<strong>in</strong>ski H, Szczudlik A, Thomas A,<br />

Bonuccelli U, Van Dijk A, Cattaneo C, Sala P, Fariello RG:<br />

Improvement of motor function <strong>in</strong> early Park<strong>in</strong>son's disease by<br />

saf<strong>in</strong>amide. Neurology (2004) 63(4):746-748.<br />

•• This was the first demonstration <strong>in</strong> humans that saf<strong>in</strong>amide may have value<br />

<strong>in</strong> the treatment of Park<strong>in</strong>son's disease, by <strong>in</strong>creas<strong>in</strong>g the time dur<strong>in</strong>g which<br />

patients can receive antipark<strong>in</strong>sonian benefits of L-DOPA.<br />

44. Newron Pharmaceuticals SpA: Newron <strong>in</strong>itiates Park<strong>in</strong>son's disease<br />

phase III trial with saf<strong>in</strong>amide. Press Release (2004):September 13.<br />

http://www.newron.com/press.asp?Action=news&<strong>in</strong>tNewsID=17<br />

45. H Lundbeck A/S: Bifeprunox enters cl<strong>in</strong>ical phase III. Press Release<br />

(2003):September 02.<br />

http://www.lundbeck.com/<strong>in</strong>vestor/releases/ReleaseDetails/Release_10<br />

5_EN.asp<br />

46. Solvay SA: Park<strong>in</strong>son's: Solvay Pharmaceuticals moves SLV 308<br />

compound <strong>in</strong>to phase III cl<strong>in</strong>ical development. Press Release<br />

(2005):February 03.<br />

http://www.solvayhealthcare.co.uk/news/newsitems/0,,27259-2-0,00.htm<br />

47. Pharma Inc: Schwarz Pharma's NDA for rotigot<strong>in</strong>e transdermal<br />

system is filed by FDA. Press Release (2005):March 29.<br />

http://www.schwarzpharma.com/?node_id=2402<br />

48. Servier Inc: Details of adjunct trials for Trivastal (Piribedil). Company<br />

Web Site (2005). http://www.servier.com/<br />

49. Gluck MR, Santana LA, Granson H, Yahr MD: Novel dopam<strong>in</strong>e<br />

releas<strong>in</strong>g response of an anti-convulsant agent with possible anti-<br />

Park<strong>in</strong>son's activity. J Neural Transm (2004) 111(6):713-724.<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 31<br />

50. Murata M: Novel therapeutic effects of the anti-convulsant, zonisamide,<br />

on Park<strong>in</strong>son's disease. Curr Pharm Des (2004) 10(6):687-693.<br />

51. Murata M, Horiuchi E, Kanazawa I: Zonisamide has beneficial effects<br />

on Park<strong>in</strong>son's disease patients. Neurosci Res (2001) 41(4):397-399.<br />

52. Teva Pharmaceutical Industries Ltd: Teva and Lundbeck announce<br />

European approval for AZILECT (rasagil<strong>in</strong>e) 1mg for Park<strong>in</strong>son's<br />

disease. Press Release (2005):February 22.<br />

http://www.tevapharm.com/pr/2005/pr_514.asp<br />

53. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt<br />

H, Timmermann L, Van der Giessen R, Lees AJ: Mucuna pruriens <strong>in</strong><br />

Park<strong>in</strong>son's disease: A double bl<strong>in</strong>d cl<strong>in</strong>ical and pharmacological<br />

study. J Neurol Neurosurg Psychiatry (2004) 75(12):1672-1677.<br />

54. Manyam BV, Dhanasekaran M, Hare TA: Neuroprotective effects of<br />

the antipark<strong>in</strong>son drug Mucuna pruriens. Phytother Res (2004)<br />

18(9):706-712.<br />

55. Misra L, Wagner H: Alkaloidal constituents of Mucuna pruriens<br />

seeds. Phytochemistry (2004) 65(18):2565-2567.<br />

56. Manyam BV, Dhanasekaran M, Hare TA: Effect of antipark<strong>in</strong>son drug<br />

HP-200 (Mucuna pruriens) on the central monoam<strong>in</strong>ergic<br />

neurotransmitters. Phytother Res (2004) 18(2):97-101.<br />

57. Neurosearch A/S: Neurosearch research and development status<br />

May 2005 show<strong>in</strong>g discont<strong>in</strong>uation of NS-2214. Company Web Site<br />

(2005) May.<br />

http://www.neurosearch.com/pub/pdf/capitalmarket-RD%20may%202005.pdf<br />

58. Adenos<strong>in</strong>e Therapeutics LLC: Product pipel<strong>in</strong>e for 2005. Company<br />

Web Site (2005): March.<br />

http://www.adenrx.com/pipe.html<br />

59. Neurocr<strong>in</strong>e Biosciences Inc: Research program for 2005. Company<br />

Web Site (2005).<br />

http://www.neurocr<strong>in</strong>e.com/html/res_researchMa<strong>in</strong>.html<br />

60. sanofi-aventis Inc: Development status of central nervous system<br />

drugs. Company Web Site (2005):August 31.<br />

http://en.sanofi-aventis.com/rd/portfolio/p_rd_portfolio_snc.asp<br />

61. Scher<strong>in</strong>g-Plough Corp: Scher<strong>in</strong>g-Plough Product pipel<strong>in</strong>e: Worldwide<br />

prescription products. Company Web Site (2005):November.<br />

http://www.sch-plough.com/pdf/productpipel<strong>in</strong>e.pdf<br />

62. Hauser RA, Hubble JP, Truong DD: Randomized trial of the<br />

adenos<strong>in</strong>e A2A receptor antagonist istradefyll<strong>in</strong>e <strong>in</strong> advanced PD.<br />

Neurology (2003) 61(3):297-303.<br />

63. Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, Castagnoli<br />

N Jr, Chen JF: Neuroprotection by caffe<strong>in</strong>e and more specific A2A<br />

receptor antagonists <strong>in</strong> animal models of Park<strong>in</strong>son's disease.<br />

Neurology (2003) 61(11 Suppl 6):S55-S61.<br />

64. Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie<br />

M, Morris MJ, Mouradian MM, Chase TN: Adenos<strong>in</strong>e A2A receptor<br />

antagonist treatment of Park<strong>in</strong>son's disease. Neurology (2003)<br />

61(3):293-296.<br />

65. Eisai Inc: Two new studies showed Alzheimer's disease treatment<br />

beneficial <strong>in</strong> other types of memory-related conditions. Press<br />

Release (2003):April 04.<br />

http://www.eisai.com/view_press_release.asp?ID=210&press=67<br />

66. Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK:<br />

Effects of SIB-1508Y, a novel neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor agonist, on motor behavior <strong>in</strong> park<strong>in</strong>sonian monkeys. Mov<br />

Disord (1998) 13(4):637-642.<br />

67. Juvantia Pharma Ltd: Juvantia Pharma announces positive results<br />

of phase IIa study <strong>in</strong> Park<strong>in</strong>son's disease. Press Release<br />

(2004):June 28.<br />

http://www.juvantia.com/eng/news/newsarchive/?nid=35<br />

68. Ivax Corp: Central nervous system: IVAX is develop<strong>in</strong>g new drugs to<br />

treat diseases of the bra<strong>in</strong> and sp<strong>in</strong>al cord. Company Web Site (2005).<br />

http://www.ivax.com/jsps/rd_<strong>in</strong>itiatives/cns.jsp<br />

69. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C,<br />

Sokoloff P: Attenuation of levodopa-<strong>in</strong>duced dysk<strong>in</strong>esia by<br />

normaliz<strong>in</strong>g dopam<strong>in</strong>e D3 receptor function. Nat Med (2003)<br />

9(6):762-767.


32 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

70. Acadia Pharmaceuticals Inc: ACADIA Pharmaceuticals announces<br />

encourag<strong>in</strong>g <strong>in</strong>terim results from ongo<strong>in</strong>g phase II trial of ACP-103<br />

for treatment-<strong>in</strong>duced psychosis <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease. Press Release (2005): June 22.<br />

http://news.acadia-pharm.com/phoenix.zhtml?c=125180&p=irolnews<br />

71. Acadia Pharmaceuticals Inc: ACADIA Pharmaceuticals announces<br />

encourag<strong>in</strong>g <strong>in</strong>terim results from phase II study of ACP-103 <strong>in</strong><br />

schizophrenia patients with haloperidol-<strong>in</strong>duced akathisia. Press<br />

Release (2004):January 12.<br />

http://news.acadia-pharm.com/phoenix.zhtml?c=125180&p=irolnews<br />

72. Eisai Co Ltd: Eisai annual report 2004 describ<strong>in</strong>g cl<strong>in</strong>ical trial status<br />

of E2007. Annual Report (2004).<br />

http://www.eisai.co.jp/pdf/eannual/epdf2004an.pdf<br />

73. Oh JD, Bibbiani F, Chase TN: Quetiap<strong>in</strong>e attenuates levodopa<strong>in</strong>duced<br />

motor complications <strong>in</strong> rodent and primate park<strong>in</strong>sonian<br />

models. Exp Neurol (2002) 177(2):557-564.<br />

74. Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ: Low dose<br />

quetiap<strong>in</strong>e for drug <strong>in</strong>duced dysk<strong>in</strong>esias <strong>in</strong> Park<strong>in</strong>son's disease: A<br />

double bl<strong>in</strong>d cross over study. J Neurol Neurosurg Psychiatry (2004)<br />

75(2):295-297.<br />

75. Panacea Pharmaceuticals Inc: Panacea describe pre-cl<strong>in</strong>ical status<br />

of PAN-408 and PAN-527. Company Web Site (2005).<br />

http://www.panaceapharma.com/technology/park<strong>in</strong>son.aspx<br />

76. Dass B, Iravani MM, Huang C, Barsoum J, Engber TM, Galdes A,<br />

Jenner P: Sonic hedgehog delivered by an adeno-associated virus<br />

protects dopam<strong>in</strong>ergic neurones aga<strong>in</strong>st 6-OHDA toxicity <strong>in</strong> the rat.<br />

J Neural Transm (2005) 112(6):763-778.<br />

77. IVAX Inc: IVAX laboratories pipel<strong>in</strong>e. A pipel<strong>in</strong>e that spans a wide<br />

spectrum. Company Web Site (2005).<br />

http://www.ivaxlaboratories.com/jsps/pipel<strong>in</strong>e.jsp<br />

78. Iwashita A, Yamazaki S, Mihara K, Hattori K, Yamamoto H, Ishida J,<br />

Matsuoka N, Mutoh S: Neuroprotective effects of a novel poly(ADPribose)<br />

polymerase-1 <strong>in</strong>hibitor, 2-[3-[4-(4-chlorophenyl)-1-piperaz<strong>in</strong>yl]<br />

propyl]-4( 3 H)-qu<strong>in</strong>azol<strong>in</strong>one (FR255595), <strong>in</strong> an <strong>in</strong> vitro model of cell<br />

death and <strong>in</strong> mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e<br />

model of Park<strong>in</strong>son's disease. J Pharmacol Exp Ther (2004)<br />

309(3):1067-1078.<br />

79. Ceregene Inc: Ceregene reports <strong>in</strong>itiation of phase 1 cl<strong>in</strong>ical trial of<br />

novel gene therapy for patients with Park<strong>in</strong>son's disease. PRESS<br />

RELEASE (2005):September 21.<br />

80. Migenix Inc: Migenix receives approval to <strong>in</strong>itiate MX-4509 phase I/II<br />

study. Press Release (2005): April 28.<br />

http://www.migenix.com/newsreleases/042805.pdf<br />

81. Kato H, Araki T, Imai Y, Takahashi A, Itoyama Y: Protection of<br />

dopam<strong>in</strong>ergic neurons with a novel astrocyte modulat<strong>in</strong>g agent<br />

(R)-(-)-2-propyloctanoic acid (ONO-2506) <strong>in</strong> an MPTP-mouse model<br />

of Park<strong>in</strong>son's disease. J Neurol Sci (2003) 208(1-2):9-15.<br />

82. Ono Pharmaceutical Co Ltd: Development status of ONO-2506 for<br />

<strong>in</strong>jection/PROGLIA. Press Release (2005):May 26.<br />

83. Phytopharm plc: Commences phase II proof of pr<strong>in</strong>ciple study <strong>in</strong><br />

Alzheimer's disease. Press Release (2003):December 09.<br />

84. NINDS: NINDS Park<strong>in</strong>son's disease neuroprotection trial of CoQ10<br />

and GPI 1485. Press Release (2005):August 01.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/gui/show/NCT00076492?order=1<br />

85. sanofi-aventis Inc: Molecules of tomorrow: sanofi-aventis describe<br />

the cl<strong>in</strong>ical trial status of SR 57667. Press Release (2005):November<br />

15.<br />

http://en.sanofi-aventis.com/rd/molecules/p_rd_molecules.asp<br />

86. NINDS: A multi-center, double-bl<strong>in</strong>d, pilot study of m<strong>in</strong>ocycl<strong>in</strong>e and<br />

creat<strong>in</strong>e <strong>in</strong> subjects with early untreated Park<strong>in</strong>son's disease.<br />

NINDS Park<strong>in</strong>son's disease neuroprotection trial (2003):May.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/show/NCT00063193?order=1<br />

87. Novartis AG: Novartis shows dynamic momentum <strong>in</strong> <strong>in</strong>dustrylead<strong>in</strong>g<br />

pipel<strong>in</strong>e. Press Release (2005):January 20.


The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong><br />

J Kenneth Baillie* & Ian Power<br />

Address<br />

Department of Anaesthesia, Critical Care and Pa<strong>in</strong> Medic<strong>in</strong>e<br />

University of Ed<strong>in</strong>burgh<br />

Royal Infirmary of Ed<strong>in</strong>burgh<br />

51 Little France Street<br />

Ed<strong>in</strong>burgh<br />

EH16 4SA<br />

UK<br />

Email: j.k.baillie@doctors.org.uk<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):33-39<br />

© The Thomson Corporation ISSN 1472-4472<br />

Neuropathic pa<strong>in</strong> is a common and potentially treatable cause<br />

of considerable lifelong morbidity. Effective pharmacological<br />

treatments are scarce, but one group of drugs that has shown<br />

promise is the antiepileptics. Gabapent<strong>in</strong> has become popular as<br />

a first-l<strong>in</strong>e treatment for neuropathic pa<strong>in</strong> because of its<br />

efficacy as an ant<strong>in</strong>europathic agent and relatively benign sideeffect<br />

profile. However, its mechanism of action is far from<br />

clear. This review discusses the available evidence for the<br />

postulated mechanisms of action of gabapent<strong>in</strong>. Understand<strong>in</strong>g<br />

the mechanism of action of this agent may well lead to the<br />

development of safer and more effective ant<strong>in</strong>europathic drugs.<br />

Keywords Allodynia, hyperalgesia, gabapent<strong>in</strong>,<br />

γ-am<strong>in</strong>obutyric acid, mechanism of action, neuropathic pa<strong>in</strong>,<br />

voltage-gated calcium channel<br />

Introduction<br />

Neuropathic pa<strong>in</strong> results from abnormal fir<strong>in</strong>g of damaged<br />

peripheral nerves, often associated with direct nerve <strong>in</strong>jury<br />

or nerve damage from diabetic, post-herpetic or alcoholic<br />

neuropathy. It has a considerable socioeconomic impact [1],<br />

affect<strong>in</strong>g more than 500,000 people <strong>in</strong> the UK alone [2], the<br />

great majority of whom will require lifelong drug treatment<br />

to control otherwise <strong>in</strong>tolerable suffer<strong>in</strong>g. There has been<br />

much recent <strong>in</strong>terest <strong>in</strong> novel anti-epileptic agents as<br />

potentially useful treatments for neuropathic pa<strong>in</strong>. This<br />

review will summarize the available evidence regard<strong>in</strong>g the<br />

mechanism of action of one such anti-epileptic drug,<br />

gabapent<strong>in</strong> (Figure 1).<br />

The etiologies of neuropathic pa<strong>in</strong> are dist<strong>in</strong>ct from<br />

nociceptive pa<strong>in</strong>, and several drugs that are effective for one<br />

type of pa<strong>in</strong> are relatively <strong>in</strong>effective for the other.<br />

Neuropathic pa<strong>in</strong> may be entirely <strong>in</strong>dependent of any<br />

peripheral nerve stimulus, or it may be manifest as an<br />

abnormal sensation of pa<strong>in</strong> <strong>in</strong> response to stimulation of<br />

other sensory modalities. A series of gene transcription<br />

factors are activated lead<strong>in</strong>g to a wide range of phenotypic<br />

alterations, <strong>in</strong>clud<strong>in</strong>g a reduction <strong>in</strong> the <strong>in</strong>hibitory<br />

neurotransmitter γ-am<strong>in</strong>obutyric acid (GABA), downregulation<br />

of GABA receptors [3••], and loss of GABAergic neurons [4].<br />

At a cellular level, there are many physiological and<br />

biochemical similarities with epilepsy. Direct <strong>in</strong>jury to the<br />

peripheral nerves leads to recurrent abnormal ectopic<br />

33<br />

discharges [5,6], and many of the excitatory neurotransmitters<br />

released <strong>in</strong> neuropathic pa<strong>in</strong> are also implicated <strong>in</strong> the<br />

propagation of seizure activity. Alterations <strong>in</strong> membrane ion<br />

channels can be found <strong>in</strong> both conditions, predispos<strong>in</strong>g the<br />

membranes to abnormal depolarization [7••]. Furthermore,<br />

anti-epileptic medications are often also effective <strong>in</strong> the<br />

treatment of neuropathic pa<strong>in</strong> [8].<br />

Designed as an analog of GABA that would cross the bloodbra<strong>in</strong><br />

barrier [9], gabapent<strong>in</strong> (1-(am<strong>in</strong>omethyl)-cyclohexane<br />

acetic acid) was orig<strong>in</strong>ally marketed worldwide as an antiepileptic.<br />

Other anti-epileptics, such as carbamazep<strong>in</strong>e and<br />

phenyto<strong>in</strong>, have also been effective treatments for neuropathic<br />

pa<strong>in</strong> [8]. The ma<strong>in</strong> problem with the use of these older antiepileptics<br />

is the wide range of side effects. When gabapent<strong>in</strong><br />

was also found to have ant<strong>in</strong>europathic activity, it quickly<br />

became popular because of its relatively mild and dosedependent<br />

side-effect profile, and annual worldwide sales<br />

are now <strong>in</strong> excess of US $2 billion [10•]. Other new<br />

anticonvulsants, such as pregabal<strong>in</strong> (Figure 1), a structural<br />

analog of gabapent<strong>in</strong>, may also prove to be useful<br />

treatments <strong>in</strong> neuropathic pa<strong>in</strong> [11].<br />

Figure 1. The structures of gabapent<strong>in</strong> and pregabal<strong>in</strong>.<br />

NH 2<br />

O<br />

OH<br />

C<br />

H 3<br />

N<br />

H 2<br />

CH 3<br />

gabapent<strong>in</strong> pregabal<strong>in</strong><br />

Efficacy, safety and pharmacok<strong>in</strong>etics<br />

Gabapent<strong>in</strong> is effective <strong>in</strong> reduc<strong>in</strong>g pa<strong>in</strong>-related behavior<br />

patterns <strong>in</strong> a variety of animal models of neuropathic pa<strong>in</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g static allodynia [12], mechanical hyperalgesia [13],<br />

thermal hyperalgesia [13], mechanical allodynia [14,15] and<br />

thermal allodynia [16]. In humans, gabapent<strong>in</strong> reduces<br />

neuropathic pa<strong>in</strong> caused by diabetes mellitus [17], postherpetic<br />

neuralgia [18], cancer [19] and a variety of other<br />

neuropathic pa<strong>in</strong> syndromes [20]. Gabapent<strong>in</strong> is <strong>in</strong>effective<br />

<strong>in</strong> acute post-operative pa<strong>in</strong> follow<strong>in</strong>g mastectomy [21] and,<br />

<strong>in</strong>terest<strong>in</strong>gly, the analgesic efficacy of this agent is<br />

dependent on the presence of some pathological state, such<br />

as nerve <strong>in</strong>jury or <strong>in</strong>flammation [22]. A recent systematic<br />

meta analysis of randomized, controlled trials of gabapent<strong>in</strong><br />

yielded a comb<strong>in</strong>ed number of patients needed to treat<br />

(NNT) with the drug for an improvement <strong>in</strong> neuropathic<br />

pa<strong>in</strong> of 4.3 [10•], comparable with those for carbamazep<strong>in</strong>e<br />

and phenyto<strong>in</strong> [8].<br />

There is also encourag<strong>in</strong>g evidence of an additive effect of<br />

gabapent<strong>in</strong> with other ant<strong>in</strong>europathic and analgesic agents<br />

<strong>in</strong> rat models of neuropathic pa<strong>in</strong> [12,23,24] and healthy<br />

human volunteers [25]. Furthermore, gabapent<strong>in</strong> prevents<br />

the development of opiate tolerance <strong>in</strong> rats [26]. In an<br />

elegantly designed cl<strong>in</strong>ical trial, Gilron et al showed that the<br />

O<br />

OH


34 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

comb<strong>in</strong>ation of gabapent<strong>in</strong> and morph<strong>in</strong>e achieves a<br />

significant further reduction <strong>in</strong> pa<strong>in</strong> scores <strong>in</strong> a large<br />

majority of patients with neuropathic pa<strong>in</strong> [27•].<br />

Importantly, gabapent<strong>in</strong> has relatively m<strong>in</strong>or side effects<br />

and, as supported by the data from the available trials,<br />

withdrawal of treatment ow<strong>in</strong>g to side effects has not been<br />

significantly more common than <strong>in</strong> placebo groups. The<br />

numbers needed to harm (NNH) for m<strong>in</strong>or harm (tolerable<br />

adverse effects) was 3.7. The relative frequencies of adverse<br />

effects <strong>in</strong>cluded dizz<strong>in</strong>ess (24%), somnolence (20%),<br />

headache (10%), diarrhea (10%), confusion (7%) and nausea<br />

(8%) [18]. Dose titrations up to 3600 mg/day have been used<br />

<strong>in</strong> trials, although the maximum licensed dose <strong>in</strong> the UK is<br />

1800 mg/day. The available evidence suggests little<br />

potential for adverse <strong>in</strong>teractions with other agents.<br />

Although gabapent<strong>in</strong> exists at physiological pH as a<br />

zwitterion, and hence would be expected to exhibit limited<br />

permeability across membrane barriers, radiolabel<strong>in</strong>g<br />

studies have shown that it accumulates rapidly with<strong>in</strong><br />

neuronal cytosol [28]. This accumulation may be expla<strong>in</strong>ed<br />

by the carriage of gabapent<strong>in</strong> by system L am<strong>in</strong>o acid<br />

transporters, which operate across gut membranes [29] and<br />

neuronal and glial cell membranes [30]. This system<br />

becomes saturated at higher doses, which accounts for the<br />

non-l<strong>in</strong>ear relationship between oral doses and plasma<br />

concentration [29]. Gabapent<strong>in</strong> competes with am<strong>in</strong>o acids<br />

such as L-leuc<strong>in</strong>e, L-phenylalan<strong>in</strong>e and L-val<strong>in</strong>e at this<br />

transporter [30], although this is unlikely to be directly<br />

related to its mechanism of action [15].<br />

Gabapent<strong>in</strong> exhibits very little prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g [31] and is<br />

excreted unchanged by the kidneys, with a first-order<br />

elim<strong>in</strong>ation pattern. Its plasma half-life is predictable and<br />

correlates with creat<strong>in</strong><strong>in</strong>e clearance [32].<br />

Anatomical site of action<br />

B<strong>in</strong>d<strong>in</strong>g sites for gabapent<strong>in</strong> are concentrated <strong>in</strong> the outer layer<br />

of the rat cerebral cortex [33] and <strong>in</strong> the superficial lam<strong>in</strong>ae of<br />

the dorsal horn [34••]. Peak anti-epileptic activity <strong>in</strong> rats occurs<br />

approximately 2 h after peak bra<strong>in</strong> <strong>in</strong>terstitial concentration<br />

[28]. The time course of ant<strong>in</strong>europathic activity after<br />

<strong>in</strong>trathecal <strong>in</strong>jection is similar [35], suggest<strong>in</strong>g that <strong>in</strong>traneural<br />

transport is prerequisite for both actions of gabapent<strong>in</strong>.<br />

In isolated slices of rat bra<strong>in</strong>stem, gabapent<strong>in</strong> <strong>in</strong>hibits<br />

substance P-mediated release of the excitatory neurotransmitter<br />

Figure 2. The structures of anti-epileptic drugs used to treat neuropathic pa<strong>in</strong>.<br />

O<br />

H<br />

N<br />

N<br />

H<br />

O<br />

N<br />

H N 2 O H N N<br />

2<br />

Cl<br />

Cl<br />

N<br />

N<br />

glutamate [36]. Furthermore, <strong>in</strong> vivo experiments have<br />

shown that gabapent<strong>in</strong> prevents the release of excitatory<br />

neurotransmitters, <strong>in</strong>clud<strong>in</strong>g glutamate, <strong>in</strong> sp<strong>in</strong>al cord<br />

microdialysate follow<strong>in</strong>g nociceptive stimulation by<br />

<strong>in</strong>traperitoneal acetic acid [37] or neuropathic pa<strong>in</strong> caused<br />

by sciatic nerve ligation [13].<br />

Possible mechanisms of action<br />

Does the mechanism of ant<strong>in</strong>europathic action of gabapent<strong>in</strong><br />

differ from its anti-epileptic action? Until both mechanisms<br />

are elucidated, we can <strong>in</strong>fer from the widely differ<strong>in</strong>g<br />

chemical structures of those anti-epileptic drugs that are<br />

used for neuropathic pa<strong>in</strong> (gabapent<strong>in</strong>, phenyto<strong>in</strong>,<br />

carbamazep<strong>in</strong>e, lamotrig<strong>in</strong>e, clonazepam and valproate;<br />

Figure 2) [10•] that it is unlikely that they all act at the same<br />

site. It would therefore be unlikely that all of these drugs<br />

each act at two dist<strong>in</strong>ct sites to produce two different, but<br />

common, effects; control of seizures and relief of<br />

neuropathic pa<strong>in</strong>. Given the relative specificity of these<br />

agents for neuropathic pa<strong>in</strong>, and the epileptiform activity<br />

observed <strong>in</strong> damaged sensory afferent fibers [5], it seems<br />

more plausible that both effects are mediated through a<br />

s<strong>in</strong>gle mechanism of action.<br />

Receptor-mediated actions<br />

Although gabapent<strong>in</strong> was orig<strong>in</strong>ally designed as an analog of<br />

the central <strong>in</strong>hibitory neurotransmitter GABA [9], no conclusive<br />

evidence has been found of a direct <strong>in</strong>teraction with any of the<br />

key receptors <strong>in</strong> central pa<strong>in</strong> transmission. Initial studies<br />

demonstrated that it has no direct agonist activity at GABA<br />

receptors [38] and does not b<strong>in</strong>d with high aff<strong>in</strong>ity to any<br />

GABA receptor subtype [39••]. More recent <strong>in</strong>vestigations<br />

us<strong>in</strong>g cloned receptors have found evidence of selective agonist<br />

activity at a subtype of presynaptic GABAB receptors on<br />

excitatory neurons [40•] (discussed below).<br />

Although D-ser<strong>in</strong>e, which acts as an agonist at the <strong>in</strong>hibitory<br />

glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g site on N-methyl-D-aspartate (NMDA)<br />

receptors, reverses some of the actions of gabapent<strong>in</strong> [41], it<br />

has been shown that gabapent<strong>in</strong> itself does not directly<br />

<strong>in</strong>teract with the glyc<strong>in</strong>e-NMDA complex [39••,42] and<br />

gabapent<strong>in</strong> reduces downstream excitatory neurotransmitter<br />

release from rat bra<strong>in</strong> slices, even after NMDA receptorblock<strong>in</strong>g<br />

drugs have been adm<strong>in</strong>istered [43]. F<strong>in</strong>ally,<br />

gabapent<strong>in</strong> exhibits a profound synergistic anti-allodynic<br />

action with the AMPA receptor antagonist 6-cyano-7nitroqu<strong>in</strong>oxal<strong>in</strong>e-2,3-dione<br />

(CNQX) [35], suggest<strong>in</strong>g that the<br />

two drugs do not act at the same site.<br />

NH 2<br />

H<br />

N<br />

N N +<br />

O<br />

phenyto<strong>in</strong> carbamazep<strong>in</strong>e lamotrig<strong>in</strong>e clonazepam valproate<br />

O<br />

Cl<br />

O<br />

C<br />

H 3<br />

O<br />

OH<br />

CH 3


A specific b<strong>in</strong>d<strong>in</strong>g site on voltage-gated Ca 2+<br />

channels<br />

The search for the site of action of the new anti-epileptic<br />

agent was significantly advanced by Suman-Chauhan et al,<br />

who identified a new, high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site for<br />

gabapent<strong>in</strong> <strong>in</strong> rat bra<strong>in</strong> homogenate [39••]. Interest<strong>in</strong>gly,<br />

the b<strong>in</strong>d<strong>in</strong>g of gabapent<strong>in</strong> to this site was dependent on<br />

the system L transporter, suggest<strong>in</strong>g that gabapent<strong>in</strong> may<br />

have to cross a cell membrane <strong>in</strong> order to take effect. The<br />

b<strong>in</strong>d<strong>in</strong>g site has been identified as the α2δ subunit of<br />

voltage-gated Ca 2+ channels [34••]. This auxiliary subunit<br />

is upregulated after nerve <strong>in</strong>jury [44-46] and, when coexpressed<br />

with the α1 subunit, br<strong>in</strong>gs about a substantial<br />

<strong>in</strong>crease <strong>in</strong> transmembrane Ca 2+ current [47]. The <strong>in</strong>flux of<br />

Ca 2+ ions through voltage-gated Ca 2+ channels is<br />

necessary for excitatory neurotransmitter release (see<br />

Figure 3) [48-50]. The α2δ subunit has been the subject of<br />

much recent <strong>in</strong>terest as a potential target for novel drug<br />

development [51].<br />

Figure 3. Relevant mechanisms of pa<strong>in</strong> transmission <strong>in</strong> dorsal columns.<br />

GABA γ-am<strong>in</strong>obutyric acid, NMDA N-methyl-D-aspartate [7••,40•,49,57••,60••,82].<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 35<br />

A gabapent<strong>in</strong> analog, 3-methyl gabapent<strong>in</strong>, has one isomeric<br />

form with high aff<strong>in</strong>ity at α2δ subunits and another with much<br />

lower aff<strong>in</strong>ity. Field et al have shown that the high-aff<strong>in</strong>ity<br />

isomer is an effective ant<strong>in</strong>europathic agent, whereas the lowaff<strong>in</strong>ity<br />

isomer did not have ant<strong>in</strong>europathic activity <strong>in</strong> two<br />

different rat models [52].<br />

Gabapent<strong>in</strong> b<strong>in</strong>ds to α2δ subunits [34••,53] and <strong>in</strong>hibits highthreshold<br />

neuronal Ca 2+ currents [54,55], and <strong>in</strong> cultured dorsal<br />

root ganglion cells, whole-cell Ca 2+ current is reduced by this<br />

agent [56]. Gabapent<strong>in</strong>-mediated Ca 2+ channel blockade<br />

appears to preferentially affect presynaptic P/Q-type voltagegated<br />

Ca 2+ channels, reduc<strong>in</strong>g the release of the excitatory<br />

am<strong>in</strong>o acids glutamate and aspartate; this effect occurs at<br />

therapeutically relevant concentrations <strong>in</strong> rat [57••] and human<br />

bra<strong>in</strong> [43]. As the α2δ subunit is expressed <strong>in</strong> all subtypes of<br />

voltage-gated Ca 2+ channels [58], the apparent selectivity of<br />

gabapent<strong>in</strong> for P/Q-type channels [57••] does not fit with the<br />

hypothesis that gabapent<strong>in</strong> acts by directly <strong>in</strong>hibit<strong>in</strong>g Ca 2+<br />

channels, and has yet to be expla<strong>in</strong>ed.


36 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Several studies have shown that magnesium chloride and the<br />

synthetic polyam<strong>in</strong>e sperm<strong>in</strong>e <strong>in</strong>hibit the b<strong>in</strong>d<strong>in</strong>g of gabapent<strong>in</strong><br />

to high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g sites, presumably α2δ subunits, <strong>in</strong> rats<br />

[39••], mice [59] and pigs [42]. Intrathecal <strong>in</strong>fusion of<br />

magnesium chloride effectively attenuates the anti-allodynic<br />

effect of gabapent<strong>in</strong> <strong>in</strong> a rat model [60••]. Nevertheless, the role<br />

of the α2δ subunit <strong>in</strong> the ant<strong>in</strong>europathic action of gabapent<strong>in</strong> is<br />

far from clear. Sperm<strong>in</strong>e had no effect on the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> the same study [60••]. Furthermore, both<br />

magnesium chloride and sperm<strong>in</strong>e can promote gabapent<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g to purified α2δ subunit prote<strong>in</strong> and appear to have a<br />

temperature-dependent effect on the drug <strong>in</strong> mice, stimulat<strong>in</strong>g<br />

b<strong>in</strong>d<strong>in</strong>g at 30°C, and <strong>in</strong>hibit<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g at 4°C [59]. F<strong>in</strong>ally, both<br />

magnesium chloride and sperm<strong>in</strong>e are allosteric modulators of<br />

NMDA receptors and could <strong>in</strong>teract with gabapent<strong>in</strong> through a<br />

different site altogether [61].<br />

K + channel activation<br />

There have been some reports that gabapent<strong>in</strong> activates<br />

<strong>in</strong>wardly rectify<strong>in</strong>g K + channels, result<strong>in</strong>g <strong>in</strong> membrane<br />

hyperpolarization and decreased excitability [40•,62]. Ng et<br />

al found that gabapent<strong>in</strong> activates post-synaptic K + currents<br />

<strong>in</strong> rat bra<strong>in</strong> slices and Xenopus oocytes [40•]. However, this<br />

activation was dependent on expression of a specific cloned<br />

GABAB receptor subtype (gb1a-gb2). Furthermore, GABA<br />

had a similar effect on Xenopus oocytes express<strong>in</strong>g GABAB<br />

receptors, suggest<strong>in</strong>g that activation of K + currents is a<br />

receptor-mediated effect.<br />

Selective agonism at GABAB receptors (gb1a-gb2)<br />

GABA receptors are of two types; the multi-subunit chloride<br />

channel receptor GABAA subtype, at which gabapent<strong>in</strong> does<br />

not b<strong>in</strong>d <strong>in</strong> significant quantities [39••], and the G-prote<strong>in</strong>coupled<br />

GABAB receptor [63]. Although several studies have<br />

not found that gabapent<strong>in</strong> b<strong>in</strong>ds to any subtype of GABAB<br />

receptors to a significant degree [39••,64••,65], one group has<br />

provided evidence that expression of gb1a-gb2 GABAB<br />

receptors is prerequisite for gabapent<strong>in</strong> to alter membrane ion<br />

permeability [40•,66]. This is of particular <strong>in</strong>terest because<br />

agonism at GABAB receptors may account for both the<br />

gabapent<strong>in</strong>-mediated <strong>in</strong>hibition of voltage-gated Ca 2+ channels<br />

and activation of <strong>in</strong>wardly rectify<strong>in</strong>g K + channels [67••,68].<br />

A recent pharmacological study provides further evidence<br />

that an important <strong>in</strong>teraction occurs between gabapent<strong>in</strong><br />

and the subtype of GABAB receptors constitutively<br />

expressed on pre-synaptic regions of excitatory <strong>in</strong>terneurons<br />

to <strong>in</strong>hibit excitatory neurotransmitter release [69••].<br />

Importantly, GABAergic neurons were spared, and the<br />

effect of gabapent<strong>in</strong> on excitatory neurotransmitter release<br />

was sensitive to specific GABAB receptor antagonists. It is<br />

possible that GABAB receptor blockade prevented<br />

gabapent<strong>in</strong> action by <strong>in</strong>direct physiological antagonism [70],<br />

as residual GABA is likely to have been present <strong>in</strong> the rat<br />

bra<strong>in</strong> slices used for this experiment. However, this<br />

postulation does not expla<strong>in</strong> the direct effect of gabapent<strong>in</strong><br />

on a GABAB subtype expressed on Xenopus oocytes [40•].<br />

Increased GABA synthesis or release<br />

GABA is an important <strong>in</strong>hibitory neurotransmitter with<br />

numerous pharmacological <strong>in</strong>teractions [71]. Blockade of<br />

GABA causes hypersensitivity and allodynia consistent with<br />

neuropathic pa<strong>in</strong> [72], and partial nerve <strong>in</strong>jury reduces<br />

dorsal horn synaptic <strong>in</strong>hibition ow<strong>in</strong>g to apoptosis of<br />

GABAergic <strong>in</strong>terneurons [4]. As discussed previously,<br />

gabapent<strong>in</strong> does not have a direct action at GABAA receptors<br />

[38], GABA-receptor-block<strong>in</strong>g drugs do not alter the<br />

ant<strong>in</strong>europathic efficacy of gabapent<strong>in</strong> [73], and gabapent<strong>in</strong><br />

has no effect on GABA reuptake [74]. However, synthesis<br />

and release of GABA <strong>in</strong> the bra<strong>in</strong> are <strong>in</strong>creased by<br />

gabapent<strong>in</strong> [75,76], and magnetic resonance imag<strong>in</strong>g<br />

spectroscopy of epileptic patients tak<strong>in</strong>g gabapent<strong>in</strong><br />

demonstrated a global <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> GABA [77]. This<br />

observation may be because of <strong>in</strong>hibition of GABAtransam<strong>in</strong>ase<br />

[78], activation of glutamic acid decarboxylase<br />

[79] that is sufficient to <strong>in</strong>crease GABA synthesis by 50 to<br />

100% [80], or promotion of non-vesicular GABA release [81].<br />

In an <strong>in</strong>terest<strong>in</strong>g contrast with the f<strong>in</strong>d<strong>in</strong>g of Parker et al that<br />

gabapent<strong>in</strong> acts on pre-synaptic GABAB receptors to <strong>in</strong>hibit<br />

excitatory neurotransmitter release while spar<strong>in</strong>g<br />

GABAergic neurons [69••], gabapent<strong>in</strong> <strong>in</strong>creased the<br />

extrasynaptic NMDA-mediated current <strong>in</strong> GABAergic, but<br />

not non-GABAergic, neurons <strong>in</strong> a rat model of <strong>in</strong>flammatory<br />

pa<strong>in</strong> [82,83]. This action may <strong>in</strong>crease activity <strong>in</strong> <strong>in</strong>hibitory<br />

sp<strong>in</strong>al cord <strong>in</strong>terneurons, thus releas<strong>in</strong>g GABA under<br />

conditions associated with neuropathic pa<strong>in</strong>. However,<br />

neither NMDA receptor modulation [60••] nor GABA<br />

receptor blockade [73] significantly alters the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> rat models of pa<strong>in</strong>.<br />

Increase <strong>in</strong> peripheral whole-blood seroton<strong>in</strong><br />

Mood has a profound effect on perception of pa<strong>in</strong> [84], so it<br />

is a realistic possibility that some of the analgesic effects of<br />

gabapent<strong>in</strong> <strong>in</strong> humans may be mediated by global<br />

serotonergic activation [85]. Indeed, gabapent<strong>in</strong> has been<br />

used to treat a variety of mood and anxiety disorders,<br />

although randomized cl<strong>in</strong>ical trials have so far been<br />

disappo<strong>in</strong>t<strong>in</strong>g [86]. Direct evidence from rats has<br />

contradicted this postulated mechanism; neither pretreatment<br />

of rats with a central nervous system seroton<strong>in</strong>deplet<strong>in</strong>g<br />

compound [73] nor blockade of seroton<strong>in</strong><br />

receptors [87] had any effect on the antihyperalgesic efficacy<br />

of gabapent<strong>in</strong>. We conclude that seroton<strong>in</strong> is unlikely to be<br />

central to the mechanism of action of gabapent<strong>in</strong>.<br />

Conclusions<br />

Despite its orig<strong>in</strong>al conception as a drug designed to mimic<br />

a specific neurotransmitter, gabapent<strong>in</strong> has become widely<br />

established <strong>in</strong> cl<strong>in</strong>ical practice without a satisfactory<br />

explanation of how it works. As summarized above, debate<br />

regard<strong>in</strong>g its mechanisms of action now centers on the<br />

apparent discrepancy between the high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site<br />

on α2δ subunits of voltage-gated Ca 2+ channels [34••], and<br />

persuasive evidence of a direct action at GABAB receptors<br />

[40•].<br />

It has been difficult to dist<strong>in</strong>guish between direct effects of<br />

the drug at Ca 2+ channels and receptor-mediated <strong>in</strong>hibition<br />

of Ca 2+ current because of an apparently ubiquitous<br />

physiological <strong>in</strong>terdependence. Both actions occur at<br />

therapeutically relevant concentrations, and both may


prevent the release of excitatory neurotransmitters and thus<br />

account for the mechanism of action of gabapent<strong>in</strong> <strong>in</strong><br />

neuropathic pa<strong>in</strong>. The presence of a high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site<br />

for gabapent<strong>in</strong> on Ca 2+ channels, and the fact that the<br />

obliteration of the effect of gabapent<strong>in</strong> when b<strong>in</strong>d<strong>in</strong>g at this site<br />

is prevented [60••], constitute persuasive evidence <strong>in</strong> favor of a<br />

direct effect on Ca 2+ channel activity. However, the deliberate<br />

structural similarity with GABA, and the demonstration that<br />

gabapent<strong>in</strong> can mimic the effect of GABA on a cloned subtype<br />

of GABAB receptors to alter membrane ion permeability [66],<br />

suggest that the mechanism of action of gabapent<strong>in</strong> may be<br />

much closer to that for which it was orig<strong>in</strong>ally designed. Even<br />

before the mechanism of action of gabapent<strong>in</strong> has been fully<br />

elucidated, the candidate mechanisms described here may<br />

become rich resources for novel drug development.<br />

References<br />

1. Chapman CR, Gavr<strong>in</strong> J: Suffer<strong>in</strong>g: The contributions of persistent<br />

pa<strong>in</strong>. Lancet (1999) 353(9171):2233-2237.<br />

2. Allen S: Pharmacotherapy of neuropathic pa<strong>in</strong>. Cont<strong>in</strong> Educ Anaesth<br />

Crit Care Pa<strong>in</strong> (2005) 5(4):134-137.<br />

3. Woolf CJ, Mannion RJ: Neuropathic pa<strong>in</strong>: Aetiology, symptoms,<br />

mechanisms, and management. Lancet (1999) 353(9168):1959-1964.<br />

4. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ:<br />

Partial peripheral nerve <strong>in</strong>jury promotes a selective loss of<br />

GABAergic <strong>in</strong>hibition <strong>in</strong> the superficial dorsal horn of the sp<strong>in</strong>al<br />

cord. J Neurosci (2002) 22(15):6724-6731.<br />

5. Ochoa J, Torebjork HE, Culp WJ, Schady W: Abnormal spontaneous<br />

activity <strong>in</strong> s<strong>in</strong>gle sensory nerve fibers <strong>in</strong> humans. Muscle Nerv<br />

(1982) 5(9S):S74-S77.<br />

6. Wall PD, Gutnick M: Ongo<strong>in</strong>g activity <strong>in</strong> peripheral nerves: The<br />

physiology and pharmacology of impulses orig<strong>in</strong>at<strong>in</strong>g from a<br />

neuroma. Exp Neurol (1974) 43(3):580-593.<br />

7. Woolf CJ, Salter MW: Neuronal plasticity: Increas<strong>in</strong>g the ga<strong>in</strong> <strong>in</strong> pa<strong>in</strong>.<br />

Science (2000) 288(5472):1765-1769.<br />

•• This is a review of the mechanisms of sp<strong>in</strong>al transmission of chronic neuropathic<br />

pa<strong>in</strong>.<br />

8. Wiffen P, Coll<strong>in</strong>s S, McQuay H, Carroll D, Jadad A, Moore A:<br />

Anticonvulsant drugs for acute and chronic pa<strong>in</strong>. Cochrane<br />

Database Syst Rev (2005) (3):CD001133.<br />

9. Satz<strong>in</strong>ger G: Antiepileptics from γ-am<strong>in</strong>obutyric acid.<br />

Arzneimittelforschung (1994) 44(3):261-266.<br />

10. Wiffen P, McQuay H, Edwards J, Moore R: Gabapent<strong>in</strong> for acute and<br />

chronic pa<strong>in</strong>. Cochrane Database Syst Rev (2005) (3):CD005452.<br />

• This paper constitutes a comprehensive and authoritative meta-analysis of<br />

randomized controlled cl<strong>in</strong>ical trials of gabapent<strong>in</strong>.<br />

11. Sabatowski R, Galvez R, Cherry DA, Jacquot F, V<strong>in</strong>cent E, Maisonobe<br />

P, Versavel M: Pregabal<strong>in</strong> reduces pa<strong>in</strong> and improves sleep and<br />

mood disturbances <strong>in</strong> patients with post-herpetic neuralgia:<br />

Results of a randomised, placebo-controlled cl<strong>in</strong>ical trial. Pa<strong>in</strong><br />

(2004) 109(1-2):26-35.<br />

12. Field MJ, Gonzalez MI, Tallarida RJ, S<strong>in</strong>gh L: Gabapent<strong>in</strong> and the<br />

neurok<strong>in</strong><strong>in</strong>1 receptor antagonist CI-1021 act synergistically <strong>in</strong> two rat<br />

models of neuropathic pa<strong>in</strong>. J Pharmacol Exp Ther (2002) 303(2):730-735.<br />

13. Coderre TJ, Kumar N, Lefebvre CD, Yu JS: Evidence that gabapent<strong>in</strong><br />

reduces neuropathic pa<strong>in</strong> by <strong>in</strong>hibit<strong>in</strong>g the sp<strong>in</strong>al release of<br />

glutamate. J Neurochem (2005) 94(4):1131-1139.<br />

14. Hwang JH, Yaksh TL: Effect of subarachnoid gabapent<strong>in</strong> on tactileevoked<br />

allodynia <strong>in</strong> a surgically <strong>in</strong>duced neuropathic pa<strong>in</strong> model <strong>in</strong><br />

the rat. Reg Anesth (1997) 22(3):249-256.<br />

15. Cheng JK, Pan HL, Eisenach JC: Antiallodynic effect of <strong>in</strong>trathecal<br />

gabapent<strong>in</strong> and its <strong>in</strong>teraction with clonid<strong>in</strong>e <strong>in</strong> a rat model of<br />

postoperative pa<strong>in</strong>. Anesthesiology (2000) 92(4):1126-1131.<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 37<br />

16. Chen SR, Pan HL: Effect of systemic and <strong>in</strong>trathecal gabapent<strong>in</strong> on<br />

allodynia <strong>in</strong> a new rat model of postherpetic neuralgia. Bra<strong>in</strong> Res<br />

(2005) 1042(1):108-113.<br />

17. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M,<br />

LaMoreaux L, Garofalo E: Gabapent<strong>in</strong> for the symptomatic treatment<br />

of pa<strong>in</strong>ful neuropathy <strong>in</strong> patients with diabetes mellitus: A<br />

randomized controlled trial. J Am Med Assoc (1998) 280(21):1831-<br />

1836.<br />

18. Rowbotham M, Harden N, Stacey B, Bernste<strong>in</strong> P, Magnus-Miller L:<br />

Gabapent<strong>in</strong> for the treatment of postherpetic neuralgia: A<br />

randomized controlled trial. J Am Med Assoc (1998) 280(21):1837-<br />

1842.<br />

19. Caraceni A, Zecca E, Bonezzi C, Arcuri E, Yaya Tur R, Maltoni M,<br />

Visent<strong>in</strong> M, Gorni G, Mart<strong>in</strong>i C, Tirelli W, Barbieri M, De Conno F:<br />

Gabapent<strong>in</strong> for neuropathic cancer pa<strong>in</strong>: A randomized controlled<br />

trial from the Gabapent<strong>in</strong> Cancer Pa<strong>in</strong> Study Group. J Cl<strong>in</strong> Oncol<br />

(2004) 22(14):2909-2917.<br />

20. Serpell MG: Gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> syndromes: A<br />

randomised, double-bl<strong>in</strong>d, placebo-controlled trial. Pa<strong>in</strong> (2002)<br />

99(3):557-566.<br />

21. Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl<br />

JB: A randomized study of the effects of s<strong>in</strong>gle-dose gabapent<strong>in</strong><br />

versus placebo on postoperative pa<strong>in</strong> and morph<strong>in</strong>e consumption<br />

after mastectomy. Anesthesiology (2002) 97(3):560-564.<br />

22. Stanfa LC, S<strong>in</strong>gh L, Williams RG, Dickenson AH: Gabapent<strong>in</strong>,<br />

<strong>in</strong>effective <strong>in</strong> normal rats, markedly reduces C-fibre evoked<br />

responses after <strong>in</strong>flammation. Neuroreport (1997) 8(3):587-590.<br />

23. Shimoyama N, Shimoyama M, Davis AM, Inturrisi CE, Elliott KJ: Sp<strong>in</strong>al<br />

gabapent<strong>in</strong> is ant<strong>in</strong>ociceptive <strong>in</strong> the rat formal<strong>in</strong> test. Neurosci Lett<br />

(1997) 222(1):65-67.<br />

24. Matthews EA, Dickenson AH: A comb<strong>in</strong>ation of gabapent<strong>in</strong> and<br />

morph<strong>in</strong>e mediates enhanced <strong>in</strong>hibitory effects on dorsal horn<br />

neuronal responses <strong>in</strong> a rat model of neuropathy. Anesthesiology<br />

(2002) 96(3):633-640.<br />

25. Eckhardt K, Ammon S, Hofmann U, Riebe A, Gugeler N, Mikus G:<br />

Gabapent<strong>in</strong> enhances the analgesic effect of morph<strong>in</strong>e <strong>in</strong> healthy<br />

volunteers. Anesth Analg (2000) 91(1):185-191.<br />

26. Gilron I, Biederman J, Jhamandas K, Hong M: Gabapent<strong>in</strong> blocks and<br />

reverses ant<strong>in</strong>ociceptive morph<strong>in</strong>e tolerance <strong>in</strong> the rat pawpressure<br />

and tail-flick tests. Anesthesiology (2003) 98(5):1288-1292.<br />

27. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL:<br />

Morph<strong>in</strong>e, gabapent<strong>in</strong>, or their comb<strong>in</strong>ation for neuropathic pa<strong>in</strong>. N<br />

Engl J Med (2005) 352(13):1324-1334.<br />

• This paper describes a recent trial that demonstrated the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> comb<strong>in</strong>ation with morph<strong>in</strong>e.<br />

28. Welty DF, Schielke GP, Vartanian MG, Taylor CP: Gabapent<strong>in</strong><br />

anticonvulsant action <strong>in</strong> rats: Disequilibrium with peak drug<br />

concentrations <strong>in</strong> plasma and bra<strong>in</strong> microdialysate. Epilepsy Res<br />

(1993) 16(3):175-181.<br />

29. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN: A saturable<br />

transport mechanism <strong>in</strong> the <strong>in</strong>test<strong>in</strong>al absorption of gabapent<strong>in</strong> is<br />

the underly<strong>in</strong>g cause of the lack of proportionality between<br />

<strong>in</strong>creas<strong>in</strong>g dose and drug levels <strong>in</strong> plasma. Pharm Res (1993)<br />

10(2):276-281.<br />

30. Su TZ, Lunney E, Campbell G, Oxender DL: Transport of gabapent<strong>in</strong>,<br />

a γ-am<strong>in</strong>o acid drug, by system 1 α-am<strong>in</strong>o acid transporters: A<br />

comparative study <strong>in</strong> astrocytes, synaptosomes, and CHO cells. J<br />

Neurochem (1995) 64(5):2125-2131.<br />

31. Vollmer KO, von Hodenberg A, Kolle EU: Pharmacok<strong>in</strong>etics and<br />

metabolism of gabapent<strong>in</strong> <strong>in</strong> rat, dog and man. Arzneimittelforschung<br />

(1986) 36(5):830-839.<br />

32. Blum RA, Comstock TJ, Sica DA, Schultz RW, Keller E, Reetze P,<br />

Bockbrader H, Tuerck D, Busch JA, Reece PA: Pharmacok<strong>in</strong>etics of<br />

gabapent<strong>in</strong> <strong>in</strong> subjects with various degrees of renal function. Cl<strong>in</strong><br />

Pharmacol Ther (1994) 56(2):154-159.<br />

33. Hill DR, Suman-Chauhan N, Woodruff GN: Localization of<br />

[ 3 H]gabapent<strong>in</strong> to a novel site <strong>in</strong> rat bra<strong>in</strong>: Autoradiographic<br />

studies. Eur J Pharmacol (1993) 244(3):303-309.


38 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

34. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN:<br />

The novel anticonvulsant drug, gabapent<strong>in</strong> (Neuront<strong>in</strong>), b<strong>in</strong>ds to the α2δ<br />

subunit of a calcium channel. J Biol Chem (1996) 271(10):5768-5776.<br />

•• Identification of the gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g site discovered by Suman-Chauhan<br />

and co-workers.<br />

35. Chen SR, Eisenach JC, McCasl<strong>in</strong> PP, Pan HL: Synergistic effect<br />

between <strong>in</strong>trathecal non-NMDA antagonist and gabapent<strong>in</strong> on<br />

allodynia <strong>in</strong>duced by sp<strong>in</strong>al nerve ligation <strong>in</strong> rats. Anesthesiology<br />

(2000) 92(2):500-506.<br />

36. Maneuf YP, Hughes J, McKnight AT: Gabapent<strong>in</strong> <strong>in</strong>hibits the<br />

substance P-facilitated K + -evoked release of [ 3 H]glutamate from rat<br />

caudial trigem<strong>in</strong>al nucleus slices. Pa<strong>in</strong> (2001) 93(2):191-196.<br />

37. Feng Y, Cui M, Willis WD: Gabapent<strong>in</strong> markedly reduces acetic acid<strong>in</strong>duced<br />

visceral nociception. Anesthesiology (2003) 98(3):729-733.<br />

38. Taylor CP: Emerg<strong>in</strong>g perspectives on the mechanism of action of<br />

gabapent<strong>in</strong>. Neurology (1994) 44(6 Suppl 5):S10-S16.<br />

39. Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN: Characterisation of<br />

[ 3 H]gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to a novel site <strong>in</strong> rat bra<strong>in</strong>: Homogenate b<strong>in</strong>d<strong>in</strong>g<br />

studies. Eur J Pharmacol (1993) 244(3):293-301.<br />

•• This is a description of the discovery of a high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site for<br />

gabapent<strong>in</strong>, subsequently identified by Gee and co-workers.<br />

40. Ng GY, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, Belley M,<br />

Trimble L, Bateman K, Alder L, Smith A et al: γ-Am<strong>in</strong>obutyric acid type B<br />

receptors with specific heterodimer composition and postsynaptic<br />

actions <strong>in</strong> hippocampal neurons are targets of anticonvulsant<br />

gabapent<strong>in</strong> action. Mol Pharmacol (2001) 59(1):144-152.<br />

• This paper describes an important demonstration of gabapent<strong>in</strong> agonism at<br />

GABAB receptors.<br />

41. S<strong>in</strong>gh L, Field MJ, Ferris P, Hunter JC, Oles RJ, Williams RG, Woodruff<br />

GN: The antiepileptic agent gabapent<strong>in</strong> (Neuront<strong>in</strong>) possesses<br />

anxiolytic-like and ant<strong>in</strong>ociceptive actions that are reversed by Dser<strong>in</strong>e.<br />

Psychopharmacology (Berl) (1996) 127(1):1-9.<br />

42. Dissanayake VU, Gee NS, Brown JP, Woodruff GN: Sperm<strong>in</strong>e<br />

modulation of specific [ 3 H]-gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to the detergentsolubilized<br />

porc<strong>in</strong>e cerebral cortex α2δ calcium channel subunit. Br<br />

J Pharmacol (1997) 120(5):833-840.<br />

43. F<strong>in</strong>k K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann<br />

H, Gothert M: Inhibition of neuronal Ca 2+ <strong>in</strong>flux by gabapent<strong>in</strong> and<br />

pregabal<strong>in</strong> <strong>in</strong> the human neocortex. Neuropharmacology (2002)<br />

42(2):229-236.<br />

44. Costigan M, Befort K, Karchewski L, Griff<strong>in</strong> RS, D'Urso D, Allchorne A,<br />

Sitarski J, Mannion JW, Pratt RE, Woolf CJ: Replicate high-density rat<br />

genome oligonucleotide microarrays reveal hundreds of regulated<br />

genes <strong>in</strong> the dorsal root ganglion after peripheral nerve <strong>in</strong>jury. BMC<br />

Neurosci (2002) 3:16.<br />

45. Li CY, Song YH, Higuera ES, Luo ZD: Sp<strong>in</strong>al dorsal horn calcium channel<br />

α2δ-1 subunit upregulation contributes to peripheral nerve <strong>in</strong>jury<strong>in</strong>duced<br />

tactile allodynia. J Neurosci (2004) 24(39):8494-8499.<br />

46. Luo ZD, Chaplan SR, Higuera ES, Sork<strong>in</strong> LS, Stauderman KA, Williams ME,<br />

Yaksh TL: Upregulation of dorsal root ganglion α2δ calcium channel<br />

subunit and its correlation with allodynia <strong>in</strong> sp<strong>in</strong>al nerve-<strong>in</strong>jured rats. J<br />

Neurosci (2001) 21(6):1868-1875.<br />

47. Felix R: Voltage-dependent Ca 2+ channel α2δ auxiliary subunit:<br />

Structure, function and regulation. Receptors Channels (1999) 6(5):351-<br />

362.<br />

48. Suszkiw JB, Murawsky MM, Shi M: Further characterization of phasic<br />

calcium <strong>in</strong>flux <strong>in</strong> rat cerebrocortical synaptosomes: Inferences<br />

regard<strong>in</strong>g calcium channel type(s) <strong>in</strong> nerve end<strong>in</strong>gs. J Neurochem<br />

(1989) 52(4):1260-1269.<br />

49. Kato A, Ohkubo T, Kitamura K: Algogen-specific pa<strong>in</strong> process<strong>in</strong>g <strong>in</strong><br />

mouse sp<strong>in</strong>al cord: Differential <strong>in</strong>volvement of voltage-dependent Ca 2+<br />

channels <strong>in</strong> synaptic transmission. Br J Pharmacol (2002) 135(5):1336-<br />

1342.<br />

50. Nachshen DA: Regulation of cytosolic calcium concentration <strong>in</strong><br />

presynaptic nerve end<strong>in</strong>gs isolated from rat bra<strong>in</strong>. J Physiol (1985)<br />

363:87-101.<br />

51. Schwarz JB, Gibbons SE, Graham SR, Colbry NL, Guzzo PR, Le VD,<br />

Vartanian MG, K<strong>in</strong>sora JJ, Lotarski SM, Li Z, Dickerson MR et al: Novel<br />

cyclopropyl β-am<strong>in</strong>o acid analogues of pregabal<strong>in</strong> and gabapent<strong>in</strong><br />

that target the α2δ prote<strong>in</strong>. J Med Chem (2005) 48(8):3026-3035.<br />

52. Field MJ, Hughes J, S<strong>in</strong>gh L: Further evidence for the role of the α2δ<br />

subunit of voltage dependent calcium channels <strong>in</strong> models of<br />

neuropathic pa<strong>in</strong>. Br J Pharmacol (2000) 131(2):282-286.<br />

53. Brown JP, Gee NS: Clon<strong>in</strong>g and deletion mutagenesis of the α2δ<br />

calcium channel subunit from porc<strong>in</strong>e cerebral cortex. Expression<br />

of a soluble form of the prote<strong>in</strong> that reta<strong>in</strong>s [ 3 H]gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

activity. J Biol Chem (1998) 273(39):25458-25465.<br />

54. Stefani A, Spadoni F, Giacom<strong>in</strong>i P, Lavaroni F, Bernardi G: The effects<br />

of gabapent<strong>in</strong> on different ligand- and voltage-gated currents <strong>in</strong><br />

isolated cortical neurons. Epilepsy Res (2001) 43(3):239-248.<br />

55. Stefani A, Spadoni F, Bernardi G: Gabapent<strong>in</strong> <strong>in</strong>hibits calcium<br />

currents <strong>in</strong> isolated rat bra<strong>in</strong> neurons. Neuropharmacology (1998)<br />

37(1):83-91.<br />

56. Sutton KG, Mart<strong>in</strong> DJ, P<strong>in</strong>nock RD, Lee K, Scott RH: Gabapent<strong>in</strong><br />

<strong>in</strong>hibits high-threshold calcium channel currents <strong>in</strong> cultured rat<br />

dorsal root ganglion neurones. Br J Pharmacol (2002) 135(1):257-<br />

265.<br />

57. F<strong>in</strong>k K, Meder W, Dooley DJ, Gothert M: Inhibition of neuronal Ca 2+<br />

<strong>in</strong>flux by gabapent<strong>in</strong> and subsequent reduction of neurotransmitter<br />

release from rat neocortical slices. Br J Pharmacol (2000)<br />

130(4):900-906.<br />

•• This study was an elegant demonstration of gabapent<strong>in</strong>-mediated <strong>in</strong>hibition<br />

of pre-synaptic P/Q-type voltage-gated Ca 2+ channels.<br />

58. Isom LL, De Jongh KS, Catterall WA: Auxiliary subunits of voltagegated<br />

ion channels. Neuron (1994) 12(6):1183-1194.<br />

59. Taylor MT, Bonhaus DW: Allosteric modulation of [ 3 H]gabapent<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g by ruthenium red. Neuropharmacology (2000) 39(7):1267-<br />

1273.<br />

60. Cheng JK, Lai YJ, Chen CC, Cheng CR, Chiou LC: Magnesium<br />

chloride and ruthenium red attenuate the antiallodynic effect of<br />

<strong>in</strong>trathecal gabapent<strong>in</strong> <strong>in</strong> a rat model of postoperative pa<strong>in</strong>.<br />

Anesthesiology (2003) 98(6):1472-1479.<br />

•• This was an important pharmacological study demonstrat<strong>in</strong>g that agents<br />

that reduce gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g at voltage-gated Ca 2+ channels prevent the<br />

ant<strong>in</strong>europathic effect of gabapent<strong>in</strong>.<br />

61. Foster AC, Fagg GE: Neurobiology. Tak<strong>in</strong>g apart NMDA receptors.<br />

Nature (1987) 329(6138):395-396.<br />

62. Freiman TM, Kukolja J, He<strong>in</strong>emeyer J, Eckhardt K, Aranda H, Rom<strong>in</strong>ger<br />

A, Dooley DJ, Zentner J, Feuerste<strong>in</strong> TJ: Modulation of K + -evoked [ 3 H]noradrenal<strong>in</strong>e<br />

release from rat and human bra<strong>in</strong> slices by<br />

gabapent<strong>in</strong>: Involvement of KATP channels. Naunyn Schmiedebergs<br />

Arch Pharmacol (2001) 363(5):537-542.<br />

63. Misgeld U, Bijak M, Jarolimek W: A physiological role for GABAB<br />

receptors and the effects of baclofen <strong>in</strong> the mammalian central<br />

nervous system. Prog Neurobiol (1995) 46(4):423-462.<br />

64. Jensen AA, Mosbacher J, Elg S, L<strong>in</strong>genhoehl K, Lohmann T, Johansen<br />

TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Brauner-<br />

Osborne H: The anticonvulsant gabapent<strong>in</strong> (Neuront<strong>in</strong>) does not act<br />

through γ-am<strong>in</strong>obutyric acid-B receptors. Mol Pharmacol (2002)<br />

61(6):1377-1384.<br />

65. Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, Charles<br />

KJ, Wood M, Davies CH, Pangalos MN: Gabapent<strong>in</strong> is not a GABAB<br />

receptor agonist. Neuropharmacology (2001) 41(8):965-975.<br />

66. Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D,<br />

Robitaille R, Low MJ, O'Neill GP, Metters K, Lacaille JC et al: The<br />

anticonvulsant, antihyperalgesic agent gabapent<strong>in</strong> is an agonist at<br />

bra<strong>in</strong> γ-am<strong>in</strong>obutyric acid type B receptors negatively coupled to<br />

voltage-dependent calcium channels. J Pharmacol Exp Ther (2001)<br />

298(1):15-24.<br />

67. Vacher CM, Bettler B: GABAB receptors as potential therapeutic<br />

targets. Curr Drug Targets CNS Neurol Disord (2003) 2(4):248-259.<br />

•• A review of GABAB receptor pharmacology.


68. Bertrand S, Nouel D, Mor<strong>in</strong> F, Nagy F, Lacaille JC: Gabapent<strong>in</strong> actions<br />

on Kir3 currents and N-type Ca 2+ channels via GABAB receptors <strong>in</strong><br />

hippocampal pyramidal cells. Synapse (2003) 50(2):95-109.<br />

69. Parker DA, Ong J, Mar<strong>in</strong>o V, Kerr DI: Gabapent<strong>in</strong> activates<br />

presynaptic GABAB heteroreceptors <strong>in</strong> rat cortical slices. Eur J<br />

Pharmacol (2004) 495(2-3):137-143.<br />

•• This paper describes an <strong>in</strong>terest<strong>in</strong>g comparison of the effects of gabapent<strong>in</strong><br />

and some known GABAB receptor antagonists <strong>in</strong> a rat model of excitatory<br />

transmission.<br />

70. Sills GJ: Not another gabapent<strong>in</strong> mechanism! Epilepsy Curr (2005)<br />

5(2):75-77.<br />

71. Macdonald RL, Olsen RW: GABAA receptor channels. Annu Rev<br />

Neurosci (1994) 17:569-602.<br />

72. Sivilotti L, Woolf CJ: The contribution of GABAA and glyc<strong>in</strong>e<br />

receptors to central sensitization: Dis<strong>in</strong>hibition and touch-evoked<br />

allodynia <strong>in</strong> the sp<strong>in</strong>al cord. J Neurophysiol (1994) 72(1):169-179.<br />

73. Dixit RK, Bhargava VK: Neurotransmitter mechanisms <strong>in</strong> gabapent<strong>in</strong><br />

ant<strong>in</strong>ociception. Pharmacology (2002) 65(4):198-203.<br />

74. Suzdak PD, Jansen JA: A review of the precl<strong>in</strong>ical pharmacology of<br />

tiagab<strong>in</strong>e: A potent and selective anticonvulsant GABA uptake<br />

<strong>in</strong>hibitor. Epilepsia (1995) 36(6):612-626.<br />

75. Kocsis JD, Honmou O: Gabapent<strong>in</strong> <strong>in</strong>creases GABA-<strong>in</strong>duced<br />

depolarization <strong>in</strong> rat neonatal optic nerve. Neurosci Lett (1994)<br />

169(1-2):181-184.<br />

76. Kuzniecky R, Ho S, Pan J, Mart<strong>in</strong> R, Gilliam F, Faught E, Hether<strong>in</strong>gton<br />

H: Modulation of cerebral GABA by topiramate, lamotrig<strong>in</strong>e, and<br />

gabapent<strong>in</strong> <strong>in</strong> healthy adults. Neurology (2002) 58(3):368-372.<br />

77. Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH: The<br />

effect of gabapent<strong>in</strong> on bra<strong>in</strong> γ-am<strong>in</strong>obutyric acid <strong>in</strong> patients with<br />

epilepsy. Ann Neurol (1996) 39(1):95-99.<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 39<br />

78. Goldlust A, Su TZ, Welty DF, Taylor CP, Oxender DL: Effects of<br />

anticonvulsant drug gabapent<strong>in</strong> on the enzymes <strong>in</strong> metabolic<br />

pathways of glutamate and GABA. Epilepsy Res (1995) 22(1):1-11.<br />

79. Taylor CP, Vartanian MG, Andruszkiewicz R, Silverman RB: 3-Alkyl<br />

GABA and 3-alkylglutamic acid analogues: Two new classes of<br />

anticonvulsant agents. Epilepsy Res (1992) 11(2):103-110.<br />

80. Loscher W, Honack D, Taylor CP: Gabapent<strong>in</strong> <strong>in</strong>creases<br />

am<strong>in</strong>ooxyacetic acid-<strong>in</strong>duced GABA accumulation <strong>in</strong> several<br />

regions of rat bra<strong>in</strong>. Neurosci Lett (1991) 128(2):150-154.<br />

81. Honmou O, Oyelese AA, Kocsis JD: The anticonvulsant gabapent<strong>in</strong><br />

enhances promoted release of GABA <strong>in</strong> hippocampus: A field<br />

potential analysis. Bra<strong>in</strong> Res (1995) 692(1-2):273-277.<br />

82. Gu Y, Huang LY: Gabapent<strong>in</strong> potentiates N-methyl-D-aspartate<br />

receptor mediated currents <strong>in</strong> rat GABAergic dorsal horn neurons.<br />

Neurosci Lett (2002) 324(3):177-180.<br />

83. Gu Y, Huang LY: Gabapent<strong>in</strong> actions on N-methyl-D-aspartate<br />

receptor channels are prote<strong>in</strong> k<strong>in</strong>ase C-dependent. Pa<strong>in</strong> (2001)<br />

93(1):85-92.<br />

84. Price DD: Psychological and neural mechanisms of the affective<br />

dimension of pa<strong>in</strong>. Science (2000) 288(5472):1769-1772.<br />

85. Rao ML, Clarenbach P, Vahlensieck M, Kratzschmar S: Gabapent<strong>in</strong><br />

augments whole blood seroton<strong>in</strong> <strong>in</strong> healthy young men. J Neural<br />

Transm (1988) 73(2):129-134.<br />

86. Yatham LN: Newer anticonvulsants <strong>in</strong> the treatment of bipolar<br />

disorder. J Cl<strong>in</strong> Psychiatry (2004) 65(Suppl 10):28-35.<br />

87. Yoon MH, Choi JI, Jeong SW: Sp<strong>in</strong>al gabapent<strong>in</strong> and<br />

ant<strong>in</strong>ociception: Mechanisms of action. J Korean Med Sci (2003)<br />

18(2):255-261.


40 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

5-HT1A receptor activation: New molecular and neuroadaptive mechanisms<br />

of pa<strong>in</strong> relief<br />

Francis C Colpaert<br />

Address<br />

Institut de Recherche Pierre Fabre<br />

3 rue des Satellites<br />

BP 94244<br />

31432 Toulouse Cedex 4<br />

France<br />

Email: francis.colpaert@pierre-fabre.com<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):40-47<br />

© The Thomson Corporation ISSN 1472-4472<br />

Guided by an understand<strong>in</strong>g of signal transduction <strong>in</strong> pa<strong>in</strong>process<strong>in</strong>g<br />

systems, high-efficacy 5-hydroxytryptam<strong>in</strong>e (5-<br />

HT)1A receptor activation, by means of F-13640, has been<br />

discovered as a new molecular mechanism of pa<strong>in</strong> relief <strong>in</strong><br />

laboratory animals, <strong>in</strong>duc<strong>in</strong>g two neuroadaptive phenomena.<br />

Firstly, this activation cooperates with nociceptive stimulation,<br />

paradoxically caus<strong>in</strong>g analgesia, and secondly, <strong>in</strong>verse<br />

tolerance develops so that the result<strong>in</strong>g analgesia grows rather<br />

than decays. As an apparent result of these novel<br />

neuroadaptive mechanisms, F-13640 exerts an analgesic action<br />

<strong>in</strong> rat models of acute, tonic and chronic nociceptive pa<strong>in</strong> that<br />

is rivaled only by large doses of high-efficacy µ-opioid receptor<br />

agonists. In models of neuropathic allodynia of peripheral or<br />

central orig<strong>in</strong>, chronic F-13640 adm<strong>in</strong>istration causes an<br />

analgesia that surpasses that observed with morph<strong>in</strong>e or other<br />

agents exemplify<strong>in</strong>g other central nervous system drug<br />

mechanisms of pa<strong>in</strong> relief (eg, ketam<strong>in</strong>e, imipram<strong>in</strong>e and<br />

gabapent<strong>in</strong>). Indeed, F-13640 produces long-last<strong>in</strong>g, preemptive<br />

and, most remarkably, curative-like actions <strong>in</strong><br />

neuropathic allodynia. Although await<strong>in</strong>g proof-of-concept<br />

evidence <strong>in</strong> humans, high-efficacy 5-HT1A receptor activation<br />

may uniquely challenge the opioids for pa<strong>in</strong> therapy.<br />

Keywords 5-HT1A receptors, analgesia, neuropathic pa<strong>in</strong>,<br />

nociceptive pa<strong>in</strong>, opioids, tolerance<br />

Introduction<br />

Neuroanatomical and physiological studies have long<br />

implicated seroton<strong>in</strong> (5-hydroxytryptam<strong>in</strong>e; 5-HT) <strong>in</strong> the<br />

central nervous system (CNS) control of pa<strong>in</strong> (eg, descend<strong>in</strong>g<br />

<strong>in</strong>hibition) [1], and while a host of 5-HT receptors are known to<br />

mediate the cellular actions of seroton<strong>in</strong> [2], the 5-HT1A<br />

seroton<strong>in</strong> receptor subtype has not traditionally been<br />

considered as a molecular target for pa<strong>in</strong> therapy [3-8].<br />

However, it will be argued here that high-efficacy activation of<br />

CNS 5-HT1A receptors may perhaps now beg<strong>in</strong> to challenge the<br />

opioids as an option for the treatment of pa<strong>in</strong>, although the<br />

latter have been the ma<strong>in</strong>stay treatment of pa<strong>in</strong> for over<br />

thousands of years. Somewhat ironically, this stark<br />

development results from studies <strong>in</strong>to opioid tolerance <strong>in</strong> the<br />

1970s, and from a well-accepted concept that attempted to<br />

account for tolerance to opioid analgesia.<br />

Signal transduction <strong>in</strong> pa<strong>in</strong>-process<strong>in</strong>g systems<br />

The concept account<strong>in</strong>g for opioid analgesia tolerance specifies<br />

that any <strong>in</strong>put to pa<strong>in</strong>-process<strong>in</strong>g systems causes not a s<strong>in</strong>gle<br />

effect, but dual effects that are bidirectional, or opposite, <strong>in</strong> sign<br />

[9,10•,11,12]. Thus, morph<strong>in</strong>e causes not only analgesia as a<br />

'first-order' effect, but also a 'second-order' hyperalgesia that<br />

outlasts opioid receptor activation for some time. The first-order<br />

analgesia results directly from receptor activation, but the<br />

second-order effect is an <strong>in</strong>direct consequence of this analgesia<br />

and follows <strong>in</strong> time. Upon chronic opioid exposure, the secondorder<br />

pa<strong>in</strong>, or sensitization to nociceptive <strong>in</strong>put, grows and<br />

counteracts the first-order analgesia. Thus, opioid tolerance is<br />

due, paradoxically, to opioid pa<strong>in</strong> [10•,13,14].<br />

Intrigu<strong>in</strong>gly, the concept of high-efficacy activation of 5-HT1A<br />

receptors as an option for the treatment of pa<strong>in</strong> suggested that a<br />

mechanism wholly different from opioid receptor activation<br />

could possibly exist, whereby analgesia could be produced.<br />

Indeed, accord<strong>in</strong>g to this concept, the stimulation of peripheral<br />

nociceptors would <strong>in</strong>itially produce pa<strong>in</strong> as a first-order effect,<br />

but also hypoalgesia as a second-order effect; with chronicity,<br />

this second-order hypoalgesia should grow, counteract the firstorder<br />

pa<strong>in</strong> and, remarkably, develop <strong>in</strong>to an <strong>in</strong>creas<strong>in</strong>gly<br />

powerful analgesia (ie, <strong>in</strong>verse tolerance). Of equal importance,<br />

accord<strong>in</strong>g to the concept, is that one nociceptive stimulation<br />

should cooperate with another, concomitant stimulation of<br />

nociceptors to paradoxically <strong>in</strong>duce second-order hypoalgesia<br />

[4,9]. The potential of such an <strong>in</strong>tervention is considerable; it<br />

would be most effective <strong>in</strong> the treatment of severe pa<strong>in</strong> and<br />

would resolve <strong>in</strong>accessible, opioid-resistant, chronic pa<strong>in</strong>s.<br />

Thus, s<strong>in</strong>ce the 1970s, researchers currently at Pierre Fabre SA<br />

have employed an <strong>in</strong>creas<strong>in</strong>g array of neuropharmacological<br />

tools <strong>in</strong> an attempt to identify a mammalian prote<strong>in</strong> and a<br />

molecular action by which the central effects of peripheral<br />

nociceptive stimulation can be mimicked. This prote<strong>in</strong> should<br />

<strong>in</strong>itiate the neuroadaptive mechanisms of <strong>in</strong>verse tolerance and<br />

nociceptor cooperation, and its effects should constitute the<br />

opposite of those of opioids. 5-HT1A receptor activation has<br />

now been identified as the neuropharmacological <strong>in</strong>tervention<br />

whereby those neuroadaptive and therapeutic objectives can<br />

possibly be achieved [15•].<br />

F-13640<br />

F-13640 (Pierre Fabre SA; Figure 1) is a newly synthesized<br />

methylam<strong>in</strong>o-pyrid<strong>in</strong>e that has nanomolar and selective aff<strong>in</strong>ity<br />

for both rat and human G-prote<strong>in</strong>-coupled 5-HT1A receptors; at<br />

1000-fold higher concentrations the compound does not <strong>in</strong>teract<br />

with many other neurotransmitter receptors, uptake sites, ion<br />

channels and enzymes. Importantly, F-13640 has strong activity<br />

at 5-HT1A receptors and stimulates [ 35S]GTPγS b<strong>in</strong>d<strong>in</strong>g by a<br />

magnitude far greater than that observed with the 5-HT1A<br />

agonists buspirone and 8-hydroxy-2-di-n-propylam<strong>in</strong>o-tetral<strong>in</strong><br />

(8-OH-DPAT), and more recently identified selective 5-HT1A<br />

agonists [15•,16,17]. This comb<strong>in</strong>ation of potency, selectivity<br />

and high efficacy can also be observed <strong>in</strong> vivo; after<br />

<strong>in</strong>traperitoneal <strong>in</strong>jection <strong>in</strong> rat, F-13640 readily penetrates the<br />

bra<strong>in</strong> [18], <strong>in</strong>hibits sp<strong>in</strong>al-cord-wide dynamic neuron and<br />

s<strong>in</strong>gle motor unit responses to nociceptive electrical<br />

stimulation [19], and exerts analgesia from (ED50) doses of<br />

0.029 mg/kg upwards [20•]. Its effects are consistently


antagonized by the selective 5-HT1A antagonist WAY-100636<br />

[15•,20•,21,22] and the amplitude of its 5-HT1A receptormediated<br />

actions is unrivaled by other selective 5-HT1A<br />

receptor ligands [15•,20•].<br />

Figure 1. The structure of F-13640.<br />

C<br />

H 3<br />

N<br />

N<br />

H<br />

O<br />

F-13640<br />

(Pierre Fabre)<br />

Cooperation and <strong>in</strong>verse tolerance: Acute<br />

actions<br />

Studies have probed the sensitivity of normal rats to<br />

nociceptive stimulation by means of the Randall-Selitto<br />

technique, which determ<strong>in</strong>es the threshold mechanical<br />

stimulation of the h<strong>in</strong>dpaw required to <strong>in</strong>duce vocalization<br />

[15•]. While a subcutaneous <strong>in</strong>jection of 5 mg/kg morph<strong>in</strong>e<br />

produced an <strong>in</strong>itial hypoalgesia followed by hyperalgesia, 0.63<br />

mg/kg of <strong>in</strong>traperitoneal F-13640 caused hyperalgesia followed<br />

by hypoalgesia; these data <strong>in</strong>dicate bidirectional signal<br />

transduction and 5-HT1A receptor activation-produc<strong>in</strong>g effects<br />

that are the <strong>in</strong>verse of µ-opioid receptor activation. Repeated<br />

<strong>in</strong>jection of morph<strong>in</strong>e caused hyperalgesia and tolerance to its<br />

analgesic effect; repeated F-13640 <strong>in</strong>jection caused hypoalgesia<br />

and tolerance to its pro-algesic effect. After a 2-week<br />

subcutaneous <strong>in</strong>fusion of either 5 mg/day morph<strong>in</strong>e or 0.63<br />

mg/day F-13640, rats demonstrated a normal sensitivity to the<br />

mechanical stimulation. In morph<strong>in</strong>e-<strong>in</strong>fused animals, acute<br />

<strong>in</strong>jection of the opioid antagonist naloxone at this po<strong>in</strong>t caused<br />

hyperalgesia; mirror<strong>in</strong>g this action, the <strong>in</strong>jection of the 5-HT1A<br />

antagonist WAY-100635 <strong>in</strong> F-13640-<strong>in</strong>fused animals caused<br />

powerful hypoalgesia [15•]. The latter f<strong>in</strong>d<strong>in</strong>g offers a stark<br />

demonstration of the second-order nature of the analgesic effect<br />

of F-13640 and <strong>in</strong>itial evidence that high-efficacy 5-HT1A<br />

receptor stimulation may exert a pre-emptive action on pa<strong>in</strong> of<br />

nociceptive orig<strong>in</strong>.<br />

As discussed, an acute, <strong>in</strong>traperitoneal <strong>in</strong>jection of F-13640<br />

<strong>in</strong>itially produces hyperalgesia. Remarkably, and<br />

demonstrat<strong>in</strong>g cooperation, at the same time after the <strong>in</strong>jection<br />

of the same dose of F-13640, the compound produces analgesia<br />

<strong>in</strong> rats receiv<strong>in</strong>g an <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong> a model of<br />

tonic nociceptive pa<strong>in</strong>. Similar pro- and hypoalgesic effects<br />

occur with a host of other 5-HT1A receptor ligands [15•] <strong>in</strong> a<br />

manner that is behaviorally specific [23]. However, the<br />

magnitude of both of these effects depends on the extent to<br />

which the ligands activate the receptor; thus, the low-efficacy<br />

5-HT1A agonist buspirone is essentially <strong>in</strong>active, and<br />

F-13640 produces profound effects. These agents and another<br />

seven 5-HT1A receptor ligands produced pro- and hypoalgesic<br />

effects with a rank order that correlates highly (p < 0.001) with<br />

the extent to which they stimulate [ 35S]GTP-γS b<strong>in</strong>d<strong>in</strong>g [15•].<br />

Indeed, with the exception of the high-efficacy opioid agonist<br />

morph<strong>in</strong>e, none of the available analgesics exert<strong>in</strong>g their actions<br />

by peripheral or central mechanisms rivals the magnitude of<br />

N<br />

F<br />

Cl<br />

F<br />

5-HT1A receptor activation Colpaert 41<br />

analgesia that F-13640 produces <strong>in</strong> this model [20•]. Tables 1<br />

and 2 provide comparative data on the ability of various agents<br />

to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g and paw elevation,<br />

respectively [20•]. Although several agents <strong>in</strong>hibited paw<br />

lick<strong>in</strong>g to vary<strong>in</strong>g degrees, only F-13640 fully <strong>in</strong>hibited both<br />

behaviors at the early and late phases after formal<strong>in</strong> <strong>in</strong>jection.<br />

Formal<strong>in</strong> <strong>in</strong>jection causes c-Fos prote<strong>in</strong> expression <strong>in</strong> sp<strong>in</strong>al<br />

cord dorsal horn neurons as well as pa<strong>in</strong> behaviors; an<br />

<strong>in</strong>traperitoneal dose of morph<strong>in</strong>e as high as 20 mg/kg is<br />

required to match the extent to which 0.63 mg/kg of<br />

<strong>in</strong>traperitoneal F-13640 suppresses formal<strong>in</strong>-<strong>in</strong>duced c-Fos<br />

prote<strong>in</strong> expression [24].<br />

The exceptionally powerful analgesia that F-13640 produces <strong>in</strong><br />

the formal<strong>in</strong> model of tonic nociceptive pa<strong>in</strong> led the research<br />

group to exam<strong>in</strong>e its possible effectiveness for <strong>in</strong>tra- and postoperative<br />

pa<strong>in</strong> associated with orthopedic surgery <strong>in</strong> rats that<br />

received an <strong>in</strong>cision of the sk<strong>in</strong>, fascia and plantar muscle of the<br />

foot [25], and underwent drill<strong>in</strong>g of a hole <strong>in</strong> the calcaneus [26].<br />

As with a pre-operative <strong>in</strong>traperitoneal <strong>in</strong>jection of the shortact<strong>in</strong>g<br />

opioid remifentanil (0.63 mg/kg), the same dose of<br />

<strong>in</strong>traperitoneal F-13640 lowered the requirement for <strong>in</strong>traoperative<br />

isoflurane anesthesia, <strong>in</strong>dicat<strong>in</strong>g that the<br />

5-HT1A agonist exerted analgesia equivalent to that of the<br />

opioid <strong>in</strong> this model. When adm<strong>in</strong>istered after surgery, F-13640<br />

suppressed post-operative pa<strong>in</strong> behaviors (ie, paw flexion and<br />

elevation) <strong>in</strong> a last<strong>in</strong>g manner; <strong>in</strong> contrast, remifentanil<br />

produced a short-lived analgesia that was followed by a longerlived<br />

hyperalgesia [22]. The peri-operative use of opioids <strong>in</strong><br />

humans often produces a hyperalgesia and tolerance that have<br />

been well documented <strong>in</strong> the immediate postoperative episode<br />

[27-29]. However, surgery conducted under opioid analgesia<br />

may also be followed by a chronic pa<strong>in</strong> state [30,31] that may<br />

perhaps result from long-last<strong>in</strong>g opioid (second-order)<br />

hyperalgesia. Thus, high-efficacy 5-HT1A receptor activation<br />

might rival the <strong>in</strong>tra- and post-operative analgesia that is offered<br />

by opioids and also obviate (and pre-empt) the short- and longterm<br />

<strong>in</strong>creases <strong>in</strong> post-operative pa<strong>in</strong> that opioids may <strong>in</strong>duce.<br />

Long-term neuroadaptive actions<br />

The studies considered here exam<strong>in</strong>ed the effects of agents that<br />

were cont<strong>in</strong>uously <strong>in</strong>fused by means of subcutaneously<br />

implanted osmotic pumps, for 2 weeks or longer, <strong>in</strong> rats that<br />

were subjected to manipulations that model chronic pa<strong>in</strong> of<br />

nociceptive or neuropathic orig<strong>in</strong>.<br />

Chronic nociceptive pa<strong>in</strong><br />

The oral self adm<strong>in</strong>istration of a fentanyl solution offers a<br />

measure of the spontaneous, persistent and severe chronic<br />

nociceptive pa<strong>in</strong> that is associated with adjuvant arthritis <strong>in</strong> the<br />

rat [32]. While normal rats demonstrate hyperalgesia early after<br />

F-13640 (0.63 mg/day) pump implantation, the agent produces<br />

a dose-dependent, full analgesia <strong>in</strong> arthritic rats that is at least<br />

equivalent to that found with 5 mg/day of morph<strong>in</strong>e [15•],<br />

the dose at which morph<strong>in</strong>e produces dependence. The<br />

f<strong>in</strong>d<strong>in</strong>g that 2 weeks of morph<strong>in</strong>e treatment produces<br />

analgesia is surpris<strong>in</strong>g, because <strong>in</strong> normal rats the same<br />

treatment results <strong>in</strong> complete analgesic tolerance with<strong>in</strong> 8 h<br />

of pump implantation [15•]. However, the concept that<br />

guided this research also suggests that nociceptive<br />

stimulation hampers the development of opioid tolerance <strong>in</strong>


42 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 1. Quantification of the ability of various analgesic agents to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g dur<strong>in</strong>g the early and late phases follow<strong>in</strong>g <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong><br />

rats.<br />

Drug Dose range Inhibition of formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g<br />

Early phase Late phase<br />

ED50 95% CL MSD Lowest mean score ED50 95% CL MSD Lowest mean score<br />

Morph<strong>in</strong>e 1.25 to 40 2.4 1.1 to 5.4 10 1 ± 0.49 (10) < 1.25 - 1.25 0 ± 0 (10)<br />

Buprenorph<strong>in</strong>e 0.01 to 10 0.25 0.051 to 1.1 0.63 0.86 ± 0.46 (2.5) 0.051 0.0075 to 0.35 0.16 0.43 ± 0.3 (0.63)<br />

Imipram<strong>in</strong>e 2.5 to 40 7.6 2.5 to 23 10 0 ± 0 (40) 3.6 1.5 to 8.6 10 0 ± 0 (40)<br />

Amitryptyl<strong>in</strong>e 2.5 to 40 15 7.5 to 30 10 0 ± 0 (40) 5.1 3 to 8.7 10 0 ± 0 (40)<br />

Paroxet<strong>in</strong>e 2.5 to 40 13 6 to 28 10 0.57 ± 0.29 (40) 4.4 1.2 to 16 10 0 ± 0 (40)<br />

Aspir<strong>in</strong> 160 > 160 - > 160 5 ± 0.62 (160) > 160 - 160 5.8 ± 0.59 (160)<br />

Diclofenac 40 to 160 > 160 - 160 0.86 ± 0.34 (160) > 160 - 160 0 ± 0 (160)<br />

Paracetamol 10 to 160 > 160 - > 160 4.7 ± 0.61 (160) 93.1 a 9.9 to 872 160 4.0 ± 1.2 (160)<br />

Rofecoxib 40 to 160 > 160 - > 160 5.7 ± 0.42 (40) > 160 - > 160 6.7 ± 0.57 (40)<br />

Celecoxib 40 to 160 > 160 - > 160 5.1 ± 0.7 (40) > 160 - > 160 5.4 ± 0.78 (40)<br />

Gabapent<strong>in</strong> 10 to 640 > 640 - 40 4.1 ± 0.86 (40) < 10 - 10 2.3 ± 0.68 (160)<br />

Baclofen 0.63 to 2.5 > 2.5 - > 2.5 3.1 ± 1.3 (2.5) > 2.5 - 2.5 2.6 ± 1.3 (2.5)<br />

Carbamazep<strong>in</strong>e 40 > 40 - > 40 5.7 ± 1.1 (40) < 40 - > 40 5 ± 1.4 (40)<br />

Ketam<strong>in</strong>e 10 to 40 22 a<br />

ND 40 0.57 ± 0.57 (40) 22 a<br />

ND 40 1.6 ± 1.0 (40)<br />

Sumatriptan<br />

40 > 40 - 40 5.7 ± 0.64 (40) > 40 - 40 6.5 ± 0.3 (40)<br />

ABT-594 0.01 to 0.16 0.033 0.012 to 0.092 0.16 0.57 ± 0.57 (0.16) 0.013 0.0021 to 0.086 0.16 1.4 ± 1.4 (0.16)<br />

F-13640 0.01 to 2.5 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16) 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16)<br />

All compounds were <strong>in</strong>jected <strong>in</strong>traperitoneally 15 m<strong>in</strong> before formal<strong>in</strong> <strong>in</strong>jection. ED50 values, confidence limits (CL) and all drug doses are <strong>in</strong> mg/kg. The maximal drug effect is represented by the<br />

lowest mean (± SEM) score found with any dose (dose between brackets). a the ED50 was not calculated but was found by l<strong>in</strong>ear <strong>in</strong>terpolation. MSD m<strong>in</strong>imal significant dose, ND not determ<strong>in</strong>ed<br />

because of <strong>in</strong>sufficient data.<br />

42 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1


5-HT1A receptor activation Colpaert 43<br />

Table 2. Quantification of the ability of various analgesic agents to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw elevation dur<strong>in</strong>g the early and late phases follow<strong>in</strong>g <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong><br />

rats.<br />

Drug Dose range Inhibition of formal<strong>in</strong>-<strong>in</strong>duced paw elevation<br />

Early phase Late phase<br />

ED50 95% CL MSD Lowest mean score ED50 95% CL MSD Lowest mean score<br />

Morph<strong>in</strong>e 1.25 to 40 4.2 2.2 to 7.8 10 3.1 ± 1.2 (40) 2.1 1.1 to 3.7 10 0 ± 0 (10)<br />

Buprenorph<strong>in</strong>e 0.01 to 10 > 10 - > 10 9.1 ± 0.7 (10) 5.8 0.51 to 70 0.63 5.4 ± 1.9 (0.63)<br />

Imipram<strong>in</strong>e 2.5 to 40 14 3.9 to 48 40 3.4 ± 1.3 (40) 7.2 2.8 to 19 10 0 ± 0 (40)<br />

Amitryptyl<strong>in</strong>e 2.5 to 40 18 9.2 to 36 40 0 ± 0 (40) 18 9.2 to 36 40 0 ± 0 (40)<br />

Paroxet<strong>in</strong>e 2.5 to 40 > 40 - > 40 9.3 ± 0.47 (40) 16 6.1 to 41 40 2.7 ± 1.8 (40)<br />

Aspir<strong>in</strong> 160 > 160 - > 160 8.8 ± 0.55 (160) > 160 - > 160 9.8 ± 0.14 (160)<br />

Diclofenac 40 to 160 > 160 - 160 4.1 ± 0.77 (160) > 160 - 160 0.43 ± 0.43 (160)<br />

Paracetamol 10 to 160 > 160 - > 160 9.7 ± 0.29 (160) 55 16 to 192 160 5.2 ± 1.5 (160)<br />

Rofecoxib 40 to 160 > 160 - > 160 9.6 ± 0.2 (160) > 160 - > 160 9.4 ± 0.43 (40)<br />

Celecoxib 40 to 160 > 160 - > 160 9.7 ± 0.18 (160) > 160 - > 160 10 ± 0 (160)<br />

Gabapent<strong>in</strong> 10 to 640 > 640 - > 640 9.5 ± 0.3 (40) > 640 - > 640 8.5 ± 1.2 (160)<br />

Baclofen 0.63 to 2.5 > 2.5 - > 2.5 7 ± 1.6 (2.5) > 2.5 - 2.5 4.3 ± 1.4 (2.5)<br />

Carbamazep<strong>in</strong>e 40 > 40 - > 40 10 ± 0 (40) > 40 - > 40 10 ± 0 (40)<br />

Ketam<strong>in</strong>e 10 to 40 > 40 - > 40 9.7 ± 0.29 (40) > 40 - 40 5.7 ± 2 (40)<br />

Sumatriptan 40 > 40 - > 40 9.7 ± 0.29 (40) > 40 - > 40 10 ± 0 (40)<br />

ABT-594 0.01 to 0.16 0.041 0.014 to 0.12 0.16 1.4 ± 1.4 (0.16) 0.068 0.027 to 0.18 0.16 1.4 ± 1.4 (0.16)<br />

F-13640 0.01 to 2.5 0.029 0.0075 to 0.11 0.16 0 ± 0 (0.63) 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16)<br />

All compounds were <strong>in</strong>jected <strong>in</strong>traperitoneally 15 m<strong>in</strong> before formal<strong>in</strong> <strong>in</strong>jection. ED50 values, confidence limits (CL) and all drug doses are <strong>in</strong> mg/kg. The maximal drug effect is represented by the<br />

lowest mean (± SEM) score found with any dose (dose between brackets). MSD m<strong>in</strong>imal significant dose.<br />

Table 3. Comparative data on the effects of F-13640 and four other centrally act<strong>in</strong>g analgesics <strong>in</strong> rat models of chronic nociceptive or neuropathic pa<strong>in</strong>.<br />

Parameter (unit) Treatment (mg/rat/day)<br />

Vehicle<br />

Morph<strong>in</strong>e<br />

Ketam<strong>in</strong>e<br />

Imipram<strong>in</strong>e Gabapent<strong>in</strong> (10) F-13640<br />

(0)<br />

Chronic nociceptive pa<strong>in</strong> (adjuvant arthritis)<br />

(5)<br />

(20)<br />

(2.5)<br />

(0.63)<br />

FSA (g) 60 (40 to 72) 42* (21 to 63) 52 (34 to 88) 47* (18 to 51) 49 (36 to 70) 35** (20 to 54)<br />

Chronic neuropathic pa<strong>in</strong> (sp<strong>in</strong>al cord <strong>in</strong>jury)<br />

Response to brush (score) 2.2 (0.07) 2.7 (0.07) 2.5 (0.09) 2.3 (0.12) 2.2 (0.10) 1.0*** (0.11)<br />

Response to cold (score) 2.7 (0.05) 2.8 (0.07) 2.7 (0.07) 2.8 (0.05) 2.5 (0.07) 2.0** (0.09)<br />

von Frey threshold (g) 1.4 (0.05) 3.7 (0.04) 4.3 (0.03) 3.9 (0.04) 4.6 (0.05) 5.7* (0.07)<br />

Chronic neuropathic pa<strong>in</strong> (sciatic nerve constriction)<br />

von Frey threshold (g) 17 (0.89) 20 (1.30) 20 (3.80) 22 (3.80) 23* (4.40) 24** (2.30)<br />

Data are based on observations that were made dur<strong>in</strong>g 2 weeks after the subcutaneous implantation of osmotic m<strong>in</strong>ipumps that <strong>in</strong>fused vehicle or agents at a constant rate. Doses (expressed <strong>in</strong><br />

mg/rat/day) for the four reference analgesics correspond to the highest dose (concentration) that could be adm<strong>in</strong>istered <strong>in</strong> the experimental conditions. Results are expressed as the median (and<br />

<strong>in</strong>ter-quartile range for fentanyl self adm<strong>in</strong>istered; FSA) or the mean (+SEM for other parameters). (*p < 0.05; **p < 0.01; ***p < 0.001).<br />

5-HT1A receptor activation Colpaert 43


44 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

both an <strong>in</strong>tensity- and duration-dependent manner [10•]. Thus,<br />

the susta<strong>in</strong>ed, <strong>in</strong>tense nociception associated with adjuvant<br />

arthritis may have sufficiently <strong>in</strong>hibited opioid analgesia<br />

tolerance development for morph<strong>in</strong>e analgesia to have<br />

rema<strong>in</strong>ed significant, at least over the 2-week period. Agents<br />

exemplify<strong>in</strong>g other central mechanisms of analgesia (eg, the 5-<br />

HT and noradrenal<strong>in</strong>e re-uptake <strong>in</strong>hibitor imipram<strong>in</strong>e (2.5<br />

mg/day), the excitatory am<strong>in</strong>o acid antagonist ketam<strong>in</strong>e (20<br />

mg/day), and the anticonvulsant gabapent<strong>in</strong> (10 mg/day))<br />

were <strong>in</strong>active (Table 3). Similar to tonic nociceptive pa<strong>in</strong>, the<br />

data suggest that high-efficacy 5-HT1A receptor activation<br />

produces an analgesia with chronic nociceptive pa<strong>in</strong> that is<br />

rivaled only, if at all, by morph<strong>in</strong>e-like opioids.<br />

Chronic neuropathic pa<strong>in</strong><br />

In a model of peripheral neuropathic pa<strong>in</strong>, rats undergo a<br />

unilateral chronic constriction <strong>in</strong>jury of the common sciatic<br />

nerve and demonstrate a lowered threshold for von Frey<br />

filament stimulation to <strong>in</strong>duce paw withdrawal [33]. A 2-week<br />

<strong>in</strong>fusion of morph<strong>in</strong>e, ketam<strong>in</strong>e or imipram<strong>in</strong>e produced a<br />

slight, non-significant <strong>in</strong>crease of the ipsilateral reduced<br />

threshold <strong>in</strong> sal<strong>in</strong>e-treated rats (17 g), while gabapent<strong>in</strong> exerted<br />

a significant effect (Table 3). F-13640 produced a larger, highly<br />

significant <strong>in</strong>crease, suggest<strong>in</strong>g robust efficacy <strong>in</strong> this model<br />

[15•]. This effect on ipsilateral threshold was behaviorally<br />

specific, <strong>in</strong> that F-13640 did not modify the contralateral<br />

threshold <strong>in</strong> sal<strong>in</strong>e-treated rats (69 g).<br />

In a model of central neuropathic pa<strong>in</strong>, rats received a<br />

photochemical, ischemic <strong>in</strong>jury of sp<strong>in</strong>al cord dorsal segments<br />

L3 to L5 and developed allodynic responses to cutaneous<br />

stimulations such as von Frey filament application, a gentle<br />

brush or a cold spray [34]. Interest<strong>in</strong>gly, and as with sciatic<br />

nerve constriction, subcutaneously <strong>in</strong>fused morph<strong>in</strong>e,<br />

ketam<strong>in</strong>e, imipram<strong>in</strong>e and gabapent<strong>in</strong> <strong>in</strong>creased the von Frey<br />

threshold to some extent, although not significantly so; these<br />

agents also exerted no significant effect <strong>in</strong> response to a gentle<br />

brush or a cold spray (Table 3). In contrast, F-13640 robustly<br />

<strong>in</strong>hibited all three responses [15•]. The effects of F-13640 grew<br />

<strong>in</strong> the course of the 2-week treatment period, demonstrat<strong>in</strong>g<br />

<strong>in</strong>verse analgesic tolerance.<br />

The acute <strong>in</strong>jection of F-13640, as well as that of morph<strong>in</strong>e,<br />

can counteract allodynic responses to von Frey filament<br />

stimulation <strong>in</strong> rats susta<strong>in</strong><strong>in</strong>g a chronic constriction <strong>in</strong>jury of<br />

the <strong>in</strong>fra-orbital nerve (IoN-CCI), a model of trigem<strong>in</strong>al<br />

neuropathic pa<strong>in</strong> [35]. The effects of F-13640 <strong>in</strong> this model<br />

are aga<strong>in</strong> behaviorally specific [36]. In these rats, morph<strong>in</strong>e<br />

<strong>in</strong>fusion <strong>in</strong>itially produces a robust, significant analgesia to<br />

which complete tolerance develops after 2 weeks; the effects<br />

of F-13640 <strong>in</strong>creased rather than decl<strong>in</strong>ed dur<strong>in</strong>g the 2-week<br />

period, aga<strong>in</strong> demonstrat<strong>in</strong>g <strong>in</strong>verse tolerance [37•,38,39,40•].<br />

Collectively, these data suggest that high-efficacy 5-HT1A<br />

receptor activation may produce exceptionally powerful and<br />

susta<strong>in</strong>ed, 'symptomatic' analgesia with chronic neuropathic<br />

pa<strong>in</strong> of peripheral or central orig<strong>in</strong>.<br />

Pre-emptive and curative-like analgesia<br />

Much as opioids <strong>in</strong>duce a hyperalgesia and tolerance that<br />

may outlast µ-opioid receptor activation for a long time (eg,<br />

a year [10•,41]), the signal-transduction concept suggests<br />

that a neuropharmacological manipulation that generates<br />

the <strong>in</strong>verse of opioid actions should <strong>in</strong>duce analgesia (and<br />

cont<strong>in</strong>ue to demonstrate <strong>in</strong>verse tolerance) long after its<br />

implementation has been discont<strong>in</strong>ued.<br />

Rats were <strong>in</strong>fused with 0.63 mg/day of F-13640 for 8 weeks<br />

start<strong>in</strong>g 24 h before the sp<strong>in</strong>al cord <strong>in</strong>jury described<br />

previously; with all three cutaneous stimulations the<br />

treatment effect persisted unabated for 2 months follow<strong>in</strong>g<br />

discont<strong>in</strong>uation of treatment [42]. These data, together with<br />

the consideration that F-13640 is effective <strong>in</strong> neuropathic<br />

pa<strong>in</strong> regardless of its peripheral or central orig<strong>in</strong>, suggest<br />

that high-efficacy 5-HT1A receptor activation may<br />

powerfully 'pre-empt' pa<strong>in</strong> ensu<strong>in</strong>g from neuronal damage,<br />

such as that result<strong>in</strong>g from surgical nerve <strong>in</strong>jury or diabetes.<br />

To explore this suggestion, rats hav<strong>in</strong>g susta<strong>in</strong>ed sp<strong>in</strong>al cord<br />

<strong>in</strong>jury and hav<strong>in</strong>g fully developed allodynia were then<br />

<strong>in</strong>fused with F-13640 (0.63 mg/day) for 56 days. The<br />

treatment <strong>in</strong>creas<strong>in</strong>gly alleviated and eventually normalized<br />

the allodynic responses, thereby demonstrat<strong>in</strong>g <strong>in</strong>verse<br />

tolerance. More importantly, dur<strong>in</strong>g the 70-day period that<br />

ensued, the effects of F-13640 persisted, demonstrat<strong>in</strong>g an<br />

unprecedented 'curative-like' action on allodynic pa<strong>in</strong> [40•].<br />

It rema<strong>in</strong>s to be determ<strong>in</strong>ed whether these pre-emptive and<br />

curative-like actions are mediated by the neuron-protective<br />

and astroglial reaction-<strong>in</strong>hibitory effects that 5-HT1A<br />

agonists may produce <strong>in</strong> ischemic bra<strong>in</strong> tissue [43].<br />

Although it might be of <strong>in</strong>terest to similarly exam<strong>in</strong>e the<br />

potential pre-emptive and curative-like actions of morph<strong>in</strong>e,<br />

ketam<strong>in</strong>e, imipram<strong>in</strong>e and gabapent<strong>in</strong>, the absence of<br />

significant symptomatic effects with these agents <strong>in</strong> the<br />

sp<strong>in</strong>al cord <strong>in</strong>jury model has prevented the research group<br />

from do<strong>in</strong>g so. Indeed, any such pre-emptive actions<br />

reported so far have concerned pa<strong>in</strong> parameters that<br />

respond <strong>in</strong> a symptomatic manner to the agents be<strong>in</strong>g<br />

considered [44,45]. Prom<strong>in</strong>ent among these agents are<br />

opioids, and the largest symptomatic effects observed to<br />

date with cont<strong>in</strong>uous, 2-week <strong>in</strong>fusion of any comparable<br />

analgesic <strong>in</strong> any model of neuropathic pa<strong>in</strong> were obta<strong>in</strong>ed<br />

with 5 mg/day of morph<strong>in</strong>e <strong>in</strong> the IoN-CCI model [37•,38].<br />

As <strong>in</strong>dicated, soon after the <strong>in</strong>itiation of morph<strong>in</strong>e <strong>in</strong>fusion,<br />

a robust analgesia occurs <strong>in</strong> this model, to which tolerance<br />

develops with<strong>in</strong> 2 weeks. At that stage, discont<strong>in</strong>uation of<br />

morph<strong>in</strong>e <strong>in</strong>fusion does not afford analgesia, and <strong>in</strong> fact<br />

causes hyperallodynia [53].<br />

Tolerability<br />

Although the data discussed previously allow assessment of<br />

the comparative therapeutic potential of F-13640 relative to<br />

currently available treatments to a considerable extent, the<br />

evidence available so far offers only little <strong>in</strong> the way of an<br />

evaluation of the relative tolerability of the compound.<br />

Regard<strong>in</strong>g the opioids, however, one issue stands out; it is<br />

now recognized that the chronic use of opioids <strong>in</strong>duces an<br />

analgesic tolerance that not only limits, or dissipates their<br />

therapeutic usefulness, but is also accompanied by<br />

hyperalgesia and opioid-<strong>in</strong>duced pa<strong>in</strong> [10•,13,14]. In<br />

addition to the well-known side effects of opioids, this drug<strong>in</strong>duced<br />

pa<strong>in</strong> may become 'excruciat<strong>in</strong>g', thus severely


compromis<strong>in</strong>g the tolerability of opioids; <strong>in</strong>deed, the<br />

discont<strong>in</strong>uation of opioid treatment <strong>in</strong> these conditions may<br />

act to alleviate pa<strong>in</strong> [46]. The precl<strong>in</strong>ical data discussed<br />

suggest that, <strong>in</strong> contrast, chronic adm<strong>in</strong>istration of F-13640<br />

produces an analgesia that grows rather than decays. Of<br />

particular concern, is that agents that <strong>in</strong>teract with<br />

serotonergic neurotransmission (eg, 5-HT re-uptake<br />

<strong>in</strong>hibitors and opioids) may <strong>in</strong>duce 'seroton<strong>in</strong> syndrome' <strong>in</strong><br />

humans [47]. In several animal species, 5-HT1A agonists,<br />

<strong>in</strong>clud<strong>in</strong>g F-13640, <strong>in</strong>duce behavioral effects such as the<br />

retraction of the lower lip and postural movements <strong>in</strong> rats,<br />

forepaw tread<strong>in</strong>g, splayed h<strong>in</strong>dlimbs, flat body posture and<br />

locomotion [48-50]. Among the agents that <strong>in</strong>duce at least<br />

some of those signs <strong>in</strong> rats are antidepressant uptake<br />

<strong>in</strong>hibitors of 5-HT and noradrenal<strong>in</strong>e and buspirone [49,51],<br />

yet while the occurrence of seroton<strong>in</strong> syndrome is<br />

sporadically reported with several 5-HT and noradrenal<strong>in</strong>e<br />

uptake <strong>in</strong>hibitors and opioids [47], no such occurrence has<br />

been observed with buspirone, <strong>in</strong> spite of the considerable<br />

evidence of the syndrome that has now accumulated with<br />

regard to this agent <strong>in</strong> humans. However, no cl<strong>in</strong>ical data<br />

are currently available regard<strong>in</strong>g selective, higher-efficacy<br />

5-HT1A agonists such as F-13640.<br />

Clearly, however, with repeated or cont<strong>in</strong>uous adm<strong>in</strong>istration,<br />

the analgesic action of F-13640 grows, while at the same time<br />

tachyphylaxis develops to the ability of the drug to <strong>in</strong>duce<br />

behavioral and other signs, for example, hypothermia<br />

[15•,37•,38,39,40•,42], <strong>in</strong>dicat<strong>in</strong>g that, <strong>in</strong> the rat, the<br />

tolerability of 5-HT1A agonists <strong>in</strong>creases considerably <strong>in</strong><br />

conditions of chronic drug adm<strong>in</strong>istration.<br />

Neurobiology of hyper- and hypoalgesia<br />

The evidence discussed <strong>in</strong> this review is consistent with<br />

recent data <strong>in</strong>dicat<strong>in</strong>g that both 5-HT1A and µ-opioid<br />

receptor agonists produce apparently complex, paradoxical<br />

hypo- and hyperalgesic actions (see references [10•,11-14]<br />

for reviews). To a considerable extent, this apparent<br />

complexity is likely resolved by tak<strong>in</strong>g <strong>in</strong>to account the<br />

'base-l<strong>in</strong>e' stimulation to which pa<strong>in</strong>-process<strong>in</strong>g systems are<br />

exposed. Thus, both 5-HT1A receptor-mediated and opioid<br />

hyperalgesia are counteracted <strong>in</strong> a duration- and <strong>in</strong>tensitydependent<br />

manner by nociceptive stimulation, which<br />

enhances the analgesia produced by both 5-HT1A and opioid<br />

receptor agonists [10•]. Thus, while 5-HT1A agonists may<br />

counteract opioid hypoalgesia <strong>in</strong> animals that are exposed to<br />

limited nociceptive stimulation [52], F-13640 counteracts the<br />

hyper-allodynia that develops follow<strong>in</strong>g long-term opioid<br />

treatment <strong>in</strong> IoN-CCI-lesioned, chronically allodynic rats<br />

[53].<br />

The 5-HT1A receptor, like µ-opioid receptors, is an <strong>in</strong>hibitory<br />

G-prote<strong>in</strong>-coupled receptor. It is located with high density<br />

post-synaptically to 5-HT neurons <strong>in</strong> the hippocampus and<br />

neocortex and, as a pre-synaptic autoreceptor, <strong>in</strong> the raphe<br />

nuclei from where projections descend to pa<strong>in</strong>-process<strong>in</strong>g<br />

neurons <strong>in</strong> the sp<strong>in</strong>al cord dorsal horn where 5-HT1A<br />

receptors are located post-synaptically [2,54]. Marked<br />

regional differences <strong>in</strong> the functional adaptation of 5-HT1A<br />

receptors occur after long-term stimulation; chronic<br />

exposure to direct or <strong>in</strong>direct (ie, 5-HT uptake <strong>in</strong>hibitors)<br />

5-HT1A receptor activation Colpaert 45<br />

agonists desensitizes 5-HT1A presynaptic autoreceptors <strong>in</strong><br />

the raphe nuclei without alter<strong>in</strong>g the response properties of<br />

post-synaptic 5-HT1A receptors <strong>in</strong> the projection areas (eg,<br />

the sp<strong>in</strong>al cord dorsal horn) of raphe neurons [55]. Thus,<br />

with chronic exposure, the 5-HT1A autoreceptor-mediated<br />

<strong>in</strong>hibitory feedback control of serotonergic neurotransmission<br />

decays, enabl<strong>in</strong>g serotonergic signal<strong>in</strong>g at post-synaptic<br />

5-HT1A receptors [55]. This desensitization of presynaptic<br />

5-HT1A autoreceptors may conceivably play a role <strong>in</strong> the<br />

tachyphylaxis that develops to 5-HT1A agonist-<strong>in</strong>duced<br />

hyperalgesia, but further research is required to elucidate<br />

this po<strong>in</strong>t.<br />

Conclusions<br />

The precl<strong>in</strong>ical evidence summarized here suggests that<br />

high-efficacy 5-HT1A receptor stimulation presents a new<br />

molecular and neuroadaptive approach to the treatment of<br />

acute and chronic, nociceptive and neuropathic pa<strong>in</strong> states,<br />

as well as achiev<strong>in</strong>g pa<strong>in</strong> relief <strong>in</strong> conditions that have<br />

rema<strong>in</strong>ed <strong>in</strong>accessible, even after opioid or other treatment.<br />

Hav<strong>in</strong>g never been studied <strong>in</strong> humans, cl<strong>in</strong>ical<br />

<strong>in</strong>vestigations are now <strong>in</strong> order to assess the efficacy of<br />

compounds such as F-13640 <strong>in</strong> patients.<br />

References<br />

1. Hamon M, Bourgo<strong>in</strong> S: Seroton<strong>in</strong> and its receptors <strong>in</strong> pa<strong>in</strong> control.<br />

In: Novel Aspects of Pa<strong>in</strong> Management: Opioids and Beyond. Sawynok<br />

J, Cowan A (Eds), Wiley, New York, NY, USA (1999):203-228.<br />

2. Barnes NM, Sharp T: A review of central 5-HT receptors and their<br />

function. Neuropharmacology (1999) 38(8):1083-1152.<br />

3. Dickensen AH, Besson JM: Pharmacological control of pa<strong>in</strong>: Nonopioid<br />

targets. In: The Paths of Pa<strong>in</strong>. Merskey H, Loeser JD, Dubner R<br />

(Eds), IASP Press, Seattle, WA, USA (2005):191-208.<br />

4. Dray A, Rang H: The how and why of chronic pa<strong>in</strong> states and the<br />

what of new analgesia therapies. Trends Neurosci (1998) 21(8):315-<br />

317.<br />

5. Haegerstrand A: Trends and targets for treatment of pa<strong>in</strong>, a<br />

pharmaceutical <strong>in</strong>dustry perspective. Acta Anesthesiol Scand (1998)<br />

42(Suppl 113):31-33.<br />

6. Hunt SP, Mantyh PW: The molecular dynamics of pa<strong>in</strong> control. Nat<br />

Rev Neurosci (2001) 2(2):83-91.<br />

7. Kowaluk EA, Arneric SP, Williams M: Opportunities <strong>in</strong> pa<strong>in</strong> therapy:<br />

Beyond the opioids and NSAIDS. Exp Op<strong>in</strong> Emerg <strong>Drugs</strong> (1998) 3(1):1-38.<br />

8. Sah DWY, Ossipo MH, Porreca F: Neurotrophic factors as novel<br />

therapeutics for neuropathic pa<strong>in</strong>. Nat Rev Drug Discov (2003)<br />

2(6):460-472.<br />

9. Colpaert FC: Narcotic cue, narcotic analgesia, and the tolerance<br />

problem: The regulation of sensitivity to drug cues and to pa<strong>in</strong> by an<br />

<strong>in</strong>ternal cue process<strong>in</strong>g model. In: Stimulus Properties of <strong>Drugs</strong>: Ten<br />

Years of Progress. Colpaert FC, Rosecrans JA (Eds), Elsevier/North Holland<br />

Biomedical Press, Amsterdam, the Netherlands (1978):301-321.<br />

10. Colpaert FC: System theory of pa<strong>in</strong> and of opiate analgesia: No<br />

tolerance to opiates. Pharmacol Rev (1996) 48(3):355-402.<br />

• This paper describes a concept of paradoxical signal transduction <strong>in</strong> pa<strong>in</strong>process<strong>in</strong>g<br />

systems.<br />

11. Colpaert FC, Frégnac Y: Paradoxical signal transduction <strong>in</strong><br />

neurobiological systems. Mol Neurobiol (2001) 24(1-3):145-168.<br />

12. Xu XJ, Colpaert FC, Wiesenfeld-Hall<strong>in</strong> Z: Opioid hyperalgesia and<br />

tolerance versus 5-HT1A receptor-mediated <strong>in</strong>verse tolerance.<br />

Trends Pharmacol Sci (2003) 24(12):634-639.<br />

13. Mao J: Opioid-<strong>in</strong>duced abnormal pa<strong>in</strong> sensitivity: Implications <strong>in</strong><br />

cl<strong>in</strong>ical opioid therapy. Pa<strong>in</strong> (2002) 100(3):213-217.


46 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

14. Ossipov MH, Lai J, Vanderah TW, Porreca F: Induction of pa<strong>in</strong><br />

facilitation by susta<strong>in</strong>ed opioid exposure: Relationship to opioid<br />

ant<strong>in</strong>ociceptive tolerance. Life Sci (2003) 73(6):783-800.<br />

15. Colpaert FC, Tarayre JP, Koek W, Pauwels PJ, Bard<strong>in</strong> L, Xu XJ,<br />

Wiesenfeld-Hall<strong>in</strong> Z, Cosi C, Carilla-Durand E, Assié MB, Vacher B:<br />

Large-amplitude 5-HT1A receptor activation: A new mechanism of<br />

profound central analgesia. Neuropharmacology (2002) 43(6):945-<br />

958.<br />

• This paper reports the discovery of cooperation and <strong>in</strong>verse tolerance as<br />

novel neuroadaptive mechanisms of pa<strong>in</strong> relief, achiev<strong>in</strong>g unprecedented<br />

analgesia <strong>in</strong> chronic conditions.<br />

16. Pauwels PJ, Colpaert FC: Ca 2+ responses <strong>in</strong> Ch<strong>in</strong>ese hamster ovary-<br />

K1 cells demonstrate an atypical pattern of ligand-<strong>in</strong>duced 5-HT1A<br />

receptor activation. J Pharmacol Exp Ther (2003) 307(2):608-614.<br />

17. Wurch T, Colpaert FC, Pauwels PJ: Mutation <strong>in</strong> a prote<strong>in</strong> k<strong>in</strong>ase C<br />

phosphorylation site of the 5-HT1A receptor preferentially<br />

attenuates Ca 2+ responses to partial as opposed to higher-efficacy<br />

5-HT1A agonists. Neuropharmacology (2003) 44(7):873-881.<br />

18. Bard<strong>in</strong> L, Assié M-B, Pélissou M, Royer-Urios I, Newman-Tancredi A,<br />

Ribet J-P, Sautel F, Koek W, Colpaert FC: Dual, hyperalgesic and<br />

analgesic effects of the high-efficacy 5-hydroxytryptam<strong>in</strong>e1A<br />

(5-HT1A) agonist F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5methyl-pyrid<strong>in</strong>-2-ylmethyl)-am<strong>in</strong>o]-methyl}piperid<strong>in</strong>-1-yl]methanone,<br />

fumaric acid salt]: Relationship with 5-HT1A receptor occupancy<br />

and k<strong>in</strong>etic parameters. J Pharmacol Exp Ther (2005) 312(3):1034-<br />

1042.<br />

19. You H-J, Colpaert FC, Arendt-Nielsen L: The novel analgesic and<br />

high-efficacy 5-HT1A receptor agonist F 13640 <strong>in</strong>hibits nociceptive<br />

responses, w<strong>in</strong>d-up, and after-discharges <strong>in</strong> sp<strong>in</strong>al neurons and<br />

withdrawal reflexes. Exp Neurol (2005) 191(1):174-183.<br />

20. Bard<strong>in</strong> L, Tarayre JP, Malfetes N, Koek W, Colpaert FC: Profound,<br />

non-opioid analgesia produced by the high-efficacy 5-HT1A agonist<br />

F 13640 <strong>in</strong> the formal<strong>in</strong> model of tonic nociceptive pa<strong>in</strong>.<br />

Pharmacology (2003) 67(4):182-194.<br />

• This study demonstrated the remarkable comparative magnitude of 5-HT1A<br />

agonist-<strong>in</strong>duced analgesia <strong>in</strong> a model of tonic nociceptive pa<strong>in</strong>.<br />

21. Buritova J, Tarayre JP, Besson JM, Colpaert F: The novel analgesic<br />

and high-efficacy 5-HT1A receptor agonist, F 13640 <strong>in</strong>duces c-Fos<br />

prote<strong>in</strong> expression <strong>in</strong> sp<strong>in</strong>al cord dorsal horn neurons. Bra<strong>in</strong> Res<br />

(2003) 974(1-2):212-221.<br />

22. Kiss I, Degryse AD, Bard<strong>in</strong> L, Gomez de Segura IA, Colpaert FC: The<br />

novel analgesic, F13640, produces <strong>in</strong>tra- and postoperative<br />

analgesia <strong>in</strong> a rat model of surgical pa<strong>in</strong>. Eur J Pharmacol (2005)<br />

523(1-3):29-39.<br />

23. Bard<strong>in</strong> L, Tarayre JP, Koek W, Colpaert FC: In the formal<strong>in</strong> model of<br />

tonic nociceptive pa<strong>in</strong>, 8-OH-DPAT produces 5-HT1A receptormediated,<br />

behaviorally specific analgesia. Eur J Pharmacol (2001)<br />

421(2):109-114.<br />

24. Buritova J, Larrue S, Aliaga M, Besson JM, Colpaert FC: Effects of the<br />

high-efficacy 5-HT1A receptor agonist, F 13640 <strong>in</strong> the formal<strong>in</strong> pa<strong>in</strong><br />

model: A c-Fos study. Eur J Pharmacol (2005) 514(2-3):121-130.<br />

25. Brennan TJ, Vandermeulen EP, Gebhart GF: Characterisation of a rat<br />

model of <strong>in</strong>cisional pa<strong>in</strong>. Pa<strong>in</strong> (1996) 64(3):493-501.<br />

26. Houghton AK, Hewitt E, Westlund KN: Enhanced withdrawal<br />

responses to mechanical and thermal stimuli after bone <strong>in</strong>jury. Pa<strong>in</strong><br />

(1997) 73(3):325-337.<br />

27. Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST: Intraoperative high dose<br />

fentanyl <strong>in</strong>duces postoperative fentanyl tolerance. Can J Anaesth<br />

(1999) 46(9):872-877.<br />

28. Cooper DW, L<strong>in</strong>dsay SL, Ryall DM, Kokri MS, Eldabe SS, Lear GA:<br />

Does <strong>in</strong>trathecal fentanyl produce acute cross-tolerance to i.v.<br />

morph<strong>in</strong>e? Br J Anesth (1997) 78(3):311-313.<br />

29. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P,<br />

Fletcher D, Chauv<strong>in</strong> M: Acute opioid tolerance: Intraoperative<br />

remifentanil <strong>in</strong>creases postoperative pa<strong>in</strong> and morph<strong>in</strong>e<br />

requirement. Anesthesiology (2000) 93(2):409-417.<br />

30. Macrae WA: Chronic pa<strong>in</strong> after surgery. Br J Anesth (2001) 87(1):88-98.<br />

31. Perk<strong>in</strong>s FM, Kehlet H: Chronic pa<strong>in</strong> as an outcome of surgery. A<br />

review of predictive factors. Anesthesiology (2000) 93(4):1123-1133.<br />

32. Colpaert FC: Evidence that adjuvant arthritis <strong>in</strong> the rat is associated<br />

with chronic pa<strong>in</strong>. Pa<strong>in</strong> (1987) 28(2):201-222.<br />

33. Bennett GJ, Xie YK: A peripheral mononeuropathy <strong>in</strong> rat that<br />

produces disorders of pa<strong>in</strong> sensation like those seen <strong>in</strong> man. Pa<strong>in</strong><br />

(1988) 33(1):87-107.<br />

34. Hao JX, Wiesenfeld-Hall<strong>in</strong> Z, Xu XJ: Treatment of chronic allodynia <strong>in</strong><br />

sp<strong>in</strong>ally <strong>in</strong>jured rats: Effects of <strong>in</strong>trathecal selective opoid receptor<br />

agonists. Pa<strong>in</strong> (1998) 75(2-3):209-217.<br />

35. Vos BP, Strassman AM, Maciewicz RJ: Behavioral evidence of<br />

trigem<strong>in</strong>al neuropathic pa<strong>in</strong> follow<strong>in</strong>g chronic constriction <strong>in</strong>jury to<br />

the rat's <strong>in</strong>fraorbital nerve. J Neurosci (1994) 14(5 Pt 1):2708-2723.<br />

36. Deseure K, Koek W, Colpaert FC, Adriaensen H: The 5-HT1A receptor<br />

agonist F 13640 attenuates mechanical allodynia <strong>in</strong> a rat model of<br />

trigem<strong>in</strong>al neuropathic pa<strong>in</strong>. Eur J Pharmacol (2002) 456(1-3):51-57.<br />

37. Deseure K, Koek W, Adriaensen H, Colpaert FC: Cont<strong>in</strong>uous<br />

adm<strong>in</strong>istration of the 5-hydroxytryptam<strong>in</strong>e1A agonist (3-chloro-4fluoro-phenyl)-[4-fluoro-4-[[(5-methyl-pyrid<strong>in</strong>-2-ylmethyl)-am<strong>in</strong>o]methyl]piperid<strong>in</strong>-1-yl]-methanone<br />

(F 13640) attenuates allodynialike<br />

behavior <strong>in</strong> a rat model of trigem<strong>in</strong>al neuropathic pa<strong>in</strong>. J<br />

Pharmacol Exp Ther (2003) 306(2):505-514.<br />

• This paper reports how tolerance develops to morph<strong>in</strong>e <strong>in</strong> a model of<br />

neuropathic allodynia, and <strong>in</strong>verse tolerance develops with 5-HT1A receptor<br />

activation.<br />

38. Deseure KR, Adriaensen HF, Colpaert FC: Effects of the comb<strong>in</strong>ed<br />

cont<strong>in</strong>uous adm<strong>in</strong>istration of morph<strong>in</strong>e and the high-efficacy 5-<br />

HT1A agonist, F 13640 <strong>in</strong> a rat model of trigem<strong>in</strong>al neuropathic pa<strong>in</strong>.<br />

Eur J Pa<strong>in</strong> (2004) 8(6):547-554.<br />

39. Bru<strong>in</strong>s Slot LA, Koek W, Tarayre JP, Colpaert FC: Tolerance and<br />

<strong>in</strong>verse tolerance to the hyperalgesic and analgesic actions,<br />

respectively, of the novel analgesic, F 13640. Eur J Pharmacol<br />

(2003) 466(3):271-279.<br />

40. Colpaert FC, Wu WP, Hao J-X, Royer I, Sautel F, Wiesenfeld-Hall<strong>in</strong> Z,<br />

Xu XJ: High-efficacy 5-HT1A receptor activation causes a curativelike<br />

action on allodynia <strong>in</strong> rats with sp<strong>in</strong>al cord <strong>in</strong>jury. Eur J<br />

Pharmacol (2004) 497(1):29-33.<br />

• First evidence of a curative-like drug action on chronic neuropathic pa<strong>in</strong>.<br />

41. Coch<strong>in</strong> J, Kornetsky C: Development and loss of tolerance to<br />

morph<strong>in</strong>e <strong>in</strong> the rat after s<strong>in</strong>gle and multiple <strong>in</strong>jections. J Pharmacol<br />

Exp Ther (1964) 145:1-10.<br />

42. Wu WP, Hao JX, Xu XJ, Wiesenfeld-Hall<strong>in</strong> Z, Koek W, Colpaert FC: The<br />

very-high-efficacy 5-HT1A receptor agonist, F 13640, preempts the<br />

development of allodynia-like behaviors <strong>in</strong> rats with sp<strong>in</strong>al cord<br />

<strong>in</strong>jury. Eur J Pharmacol (2003) 478(2-3):131-137.<br />

43. Ramos AJ, Rubio MD, Defagot C, Hischberg L, Villar MJ, Brusco A: The<br />

5-HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces<br />

astroglial reaction after ischemic damage caused by cortical<br />

devascularization. Bra<strong>in</strong> Res (2004) 1030(2):201-220.<br />

44. Kiss<strong>in</strong> I: Preemptive analgesia. Anesthesiology (2000) 93(4):1138-<br />

1143.<br />

45. Mon<strong>in</strong>iche S, Kehlet H, Dahl JB: A qualitative and quantitative<br />

systematic review of preemptive analgesia for postoperative pa<strong>in</strong><br />

relief: The role of tim<strong>in</strong>g of analgesia. Anaesthesiology (2002)<br />

96(3):725-741.<br />

46. Bru<strong>in</strong>s Slot LA, Pauwels PJ, Colpaert FC: Sign-reversal dur<strong>in</strong>g<br />

persistent activation <strong>in</strong> µ-opioid signal transduction. J Theor Biol<br />

(2002) 215(2):169-182.<br />

47. Boyer EW, Shannon M: The seroton<strong>in</strong> syndrome. N Engl J Med<br />

(2005) 352(11):1112-1120.<br />

48. Berendsen HH, Jenck F, Broekkamp CL: Selective activation of 5-<br />

HT1A receptors <strong>in</strong>duces lower lip retraction <strong>in</strong> the rat. Pharmacol<br />

Biochem Behav (1989) 33(4):821-827.<br />

49. Green AR: 5-HT-mediated behaviour. Animal studies.<br />

Neuropharmacology (1984) 23(12B):1521-1528.


50. Tricklebank MD: The behavioural response to 5-HT receptor<br />

agonists and subtype of the central 5-HT receptor. Trends<br />

Pharmacol Sci (1985) 14:403-407.<br />

51. Smith LM, Peroutka SJ: Differential effects of 5-hydroxytryptam<strong>in</strong>e1A<br />

selective drugs on the 5-HT behavioral syndrome. Pharmacol<br />

Biochem Behav (1986) 24(6):1513-1519.<br />

52. Millan MJ, Bervoets K, Colpaert, FC: 5-Hydroxytryptam<strong>in</strong>e (5-HT)1A<br />

receptors and the tail flick response. II. High efficacy 5-HT1A<br />

agonists attenuate morph<strong>in</strong>e-<strong>in</strong>duced ant<strong>in</strong>oception <strong>in</strong> mice <strong>in</strong> a<br />

competitive-like manner. J Pharmacol Exp Ther (1991) 256(3):938-<br />

992.<br />

5-HT1A receptor activation Colpaert 47<br />

53. Colpaert FC, Deseure K, St<strong>in</strong>us L, Adriaensen H: High-efficacy 5-HT1A<br />

receptor activation counteracts opioid hyperallodynia and affective<br />

condition<strong>in</strong>g. J Pharmacol Exp Ther (2005) 316:1-8.<br />

54. Hamon M, Bourgo<strong>in</strong> S: Seroton<strong>in</strong> and its receptors <strong>in</strong> pa<strong>in</strong> control.<br />

In: Novel Aspects of Pa<strong>in</strong> Management: Opioids and Beyond. Sawynok<br />

J, Cowan A (Eds), Wiley, New York, NY, USA (1999):203-228.<br />

55. Lanfumey L, Hamon M: 5-HT1 receptors. Curr Drug Targets - CNS<br />

Neurol Disord (2004) 3:1-10.


48<br />

Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong> pa<strong>in</strong> pathways<br />

Joseph W Lynch 1 * & Robert J Callister 2<br />

Addresses<br />

1 School of Biomedical Sciences<br />

University of Queensland<br />

Brisbane<br />

QLD 4072<br />

Australia<br />

Email: j.lynch@uq.edu.au<br />

2School of Biomedical Sciences<br />

Faculty of Health and Hunter Medical Research Institute<br />

University of Newcastle<br />

Callaghan<br />

NSW 2308<br />

Australia<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):48-53<br />

© The Thomson Corporation ISSN 1472-4472<br />

Although glyc<strong>in</strong>e receptor Cl − channels (GlyRs) have long been<br />

known to mediate <strong>in</strong>hibitory neurotransmission onto sp<strong>in</strong>al<br />

nociceptive neurons, their therapeutic potential for peripheral<br />

analgesia has received little attention. However, it has been shown<br />

that α3-subunit-conta<strong>in</strong><strong>in</strong>g GlyRs are concentrated <strong>in</strong>to regions of<br />

the sp<strong>in</strong>al cord dorsal horn where nociceptive afferents term<strong>in</strong>ate.<br />

Furthermore, <strong>in</strong>flammatory mediators specifically <strong>in</strong>hibit α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs, and deletion of the mur<strong>in</strong>e α3 gene confers<br />

<strong>in</strong>sensitivity to chronic <strong>in</strong>flammatory pa<strong>in</strong>. This strongly<br />

implicates GlyRs <strong>in</strong> the <strong>in</strong>flammation-mediated dis<strong>in</strong>hibition of<br />

centrally project<strong>in</strong>g nociceptive neurons. Future therapies aimed<br />

at specifically <strong>in</strong>creas<strong>in</strong>g current flux through α3-conta<strong>in</strong><strong>in</strong>g<br />

GlyRs may prove effective <strong>in</strong> provid<strong>in</strong>g analgesia.<br />

Keywords Analgesia, chloride channel, drug discovery,<br />

<strong>in</strong>flammatory pa<strong>in</strong>, <strong>in</strong>hibitory neurotransmission,<br />

neuropathic pa<strong>in</strong>, sp<strong>in</strong>al cord<br />

Introduction<br />

Pa<strong>in</strong> is a complex and highly modifiable sensory experience.<br />

Over the past 50 years our view of pa<strong>in</strong> mechanisms and<br />

treatment has changed considerably. The current paradigm<br />

is that pa<strong>in</strong> results from the complex <strong>in</strong>teraction of a variety<br />

of synaptic <strong>in</strong>puts <strong>in</strong> a pathway that beg<strong>in</strong>s at peripheral<br />

receptors, ascends the neural axis, and f<strong>in</strong>ally reaches the<br />

cerebral cortex and limbic structures, such as the amygdala<br />

[1•]. The majority of current approaches to treat<strong>in</strong>g pa<strong>in</strong> are<br />

based on the idea that <strong>in</strong>creas<strong>in</strong>g the level of <strong>in</strong>hibitory drive<br />

or tone at key central nervous system (CNS) regions <strong>in</strong> the<br />

pa<strong>in</strong> pathway can alter pa<strong>in</strong> perception [2-4,5•]. Because<br />

γ-am<strong>in</strong>obutyric acid (GABA)A and glyc<strong>in</strong>e receptor Cl −<br />

channels (GABAARs and GlyRs) mediate <strong>in</strong>hibitory<br />

neurotransmission <strong>in</strong> the CNS, they represent key targets for<br />

pharmacologically manipulat<strong>in</strong>g <strong>in</strong>hibitory drive.<br />

Until recently, <strong>in</strong>vestigation of <strong>in</strong>hibitory mechanisms <strong>in</strong><br />

pa<strong>in</strong> process<strong>in</strong>g focused on the role of GABAARs <strong>in</strong> various<br />

regions of the pa<strong>in</strong> pathway, particularly <strong>in</strong> the dorsal horn<br />

of the sp<strong>in</strong>al cord and <strong>in</strong> the bra<strong>in</strong>stem [2,3,5•,6]. The role of<br />

GlyRs <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g has largely been ignored because<br />

of the lack of pharmaceutical agents that specifically<br />

modulate them <strong>in</strong> a therapeutically useful way. However, this<br />

situation has changed with the demonstration that α3 subunitconta<strong>in</strong><strong>in</strong>g<br />

GlyRs expressed <strong>in</strong> sp<strong>in</strong>al cord dorsal horn synapses<br />

are specifically <strong>in</strong>hibited by <strong>in</strong>flammatory mediators [7••].<br />

These GlyRs, which are sparsely expressed outside the sp<strong>in</strong>al<br />

cord dorsal horn, represent a new analgesic target. Molecules<br />

that can specifically enhance (or potentiate) Cl − current flow<br />

through this particular GlyR isoform offer promise as<br />

therapeutic lead compounds. The challenge now is to identify<br />

such molecules. This review summarizes our current<br />

understand<strong>in</strong>g of GlyRs <strong>in</strong> terms of their distribution <strong>in</strong> regions<br />

of the CNS important <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g, their subunit<br />

composition, and mechanisms by which they may be<br />

modulated.<br />

The ascend<strong>in</strong>g pa<strong>in</strong> pathway<br />

Although there is much conjecture and disagreement regard<strong>in</strong>g<br />

the specific details of ascend<strong>in</strong>g pa<strong>in</strong> pathways [1•,8-11], any<br />

approach to the treatment of pa<strong>in</strong>ful conditions requires an<br />

understand<strong>in</strong>g of the elements and circuitry of the pathway.<br />

The classic pa<strong>in</strong>-process<strong>in</strong>g pathway <strong>in</strong>volves numerous<br />

neuron clusters (hereafter termed 'nodes') located <strong>in</strong><br />

anatomically discrete regions of the CNS (Figure 1A). The<br />

nodes, especially those <strong>in</strong> the sp<strong>in</strong>al cord and bra<strong>in</strong>stem, are<br />

known to conta<strong>in</strong> sub-synaptic GlyRs and GABAARs that<br />

participate <strong>in</strong> Cl − -mediated fast <strong>in</strong>hibitory synaptic<br />

transmission [12,13,14•,15-17]. Immunohistochemical and<br />

electrophysiological studies have also shown that cortical and<br />

sub-cortical centers conta<strong>in</strong> extra-synaptic GlyRs (for examples,<br />

see below). Because these extra-synaptic receptors are located <strong>in</strong><br />

bra<strong>in</strong> regions known to be important <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g, the<br />

specific target<strong>in</strong>g of extra-synaptic GlyRs may, <strong>in</strong> pr<strong>in</strong>cipal,<br />

offer a therapeutic route for the treatment of pa<strong>in</strong>. However, as<br />

the role of non-synaptic GlyRs <strong>in</strong> bra<strong>in</strong> function is not yet<br />

understood, we focus on synaptic GlyRs as potential targets for<br />

pa<strong>in</strong> therapies.<br />

Nociceptors located <strong>in</strong> the sk<strong>in</strong>, deep tissues and viscera signal<br />

the presence of potentially harmful (or noxious) stimuli (Figure<br />

1B and C) [1•]. Central projections from these peripheral<br />

receptors enter the sp<strong>in</strong>al cord dorsal horn via small-diameter<br />

(Aδ- and C-fiber) primary afferents [18•,19•]. Other sensory<br />

receptors also provide signals to the dorsal horn regard<strong>in</strong>g nonnoxious<br />

stimuli <strong>in</strong> both cutaneous and deep tissues, via largediameter,<br />

myel<strong>in</strong>ated Aβ fibers [1•]. Inputs from both small-<br />

and large-diameter afferents make synaptic connections with<br />

various neuronal types <strong>in</strong> specific stratified zones (or lam<strong>in</strong>ae)<br />

of the dorsal horn (Figure 1C). Neurons <strong>in</strong> lam<strong>in</strong>ae I and II (the<br />

outermost strata) receive both monosynaptic and polysynaptic<br />

<strong>in</strong>put from Aδ- and C-fibers. Neurons <strong>in</strong> lam<strong>in</strong>ae III to IV<br />

receive <strong>in</strong>put almost exclusively from large-diameter Aβ-fibers,<br />

and neurons <strong>in</strong> lam<strong>in</strong>a V receive <strong>in</strong>put from Aδ-, C- and Aβfibers.<br />

Projection neurons <strong>in</strong> lam<strong>in</strong>ae I and V relay this<br />

<strong>in</strong>formation onto ascend<strong>in</strong>g pa<strong>in</strong> pathways [8].<br />

Classic textbook views of dorsal horn circuitry overly focus<br />

on projection neurons because they are the output neurons<br />

of the dorsal horn, contribute to ascend<strong>in</strong>g pathways, and


Figure 1. Important components of the pa<strong>in</strong> pathway.<br />

A<br />

Cortex<br />

Thalamus<br />

PAG, LC<br />

PB<br />

RVM<br />

DH<br />

B<br />

C<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 49<br />

(A) Key process<strong>in</strong>g nodes <strong>in</strong> the pa<strong>in</strong> pathway. Spike tra<strong>in</strong>s carry<strong>in</strong>g <strong>in</strong>formation regard<strong>in</strong>g noxious and <strong>in</strong>nocuous stimuli are processed <strong>in</strong><br />

the dorsal horn (DH) of the sp<strong>in</strong>al cord and further processed <strong>in</strong> various nodes (ellipses) as they ascend the neural axis to eventually reach<br />

the thalamus and cortical regions. Midbra<strong>in</strong> nodes, such as the periaqueductal gray (PAG), locus coeruleus (LC), and para-brachial nucleus<br />

(PB), exert powerful descend<strong>in</strong>g modulatory effects on the DH via their projections to another pa<strong>in</strong> node, the rostral ventromedial medulla<br />

(RVM sp<strong>in</strong>al projection: thick arrow). (B) Sp<strong>in</strong>al cord cross-section show<strong>in</strong>g peripheral sensory afferents enter<strong>in</strong>g the DH, the first process<strong>in</strong>g<br />

node <strong>in</strong> the pa<strong>in</strong> pathway. Projection neurons (black stars) provide the output of the dorsal horn and are located <strong>in</strong> lam<strong>in</strong>ae I and V. (C)<br />

Expanded view (region circled <strong>in</strong> B) of the DH emphasis<strong>in</strong>g the role of excitatory (gray circles) and <strong>in</strong>hibitory (white circles) <strong>in</strong>terneurons <strong>in</strong><br />

DH circuitry. In the superficial strata (lam<strong>in</strong>ae I and II) of the DH, Aδ- and C-fibers contact projection neurons (black stars) as well as<br />

excitatory and <strong>in</strong>hibitory <strong>in</strong>terneurons. These <strong>in</strong>terneurons contact other <strong>in</strong>terneurons and also receive <strong>in</strong>put from descend<strong>in</strong>g pathways (not<br />

shown; see Figure 1A). Neurons <strong>in</strong> deeper lam<strong>in</strong>ae (IV to VI) receive <strong>in</strong>put from Aδ- and C-fibers <strong>in</strong> addition to large-diameter Aβ-fibers. In<br />

some chronic pa<strong>in</strong> states, it is believed that sp<strong>in</strong>al cord circuits are altered so that the <strong>in</strong>fluence of large-diameter afferents on the excitability<br />

of projection neurons <strong>in</strong>creases. Numerous studies have shown that reduced <strong>in</strong>hibition <strong>in</strong> DH circuits plays a key role, however, the exact<br />

circuitry and mechanisms are unknown.<br />

provide different qualities to pa<strong>in</strong> perception [8,20].<br />

However, it must be emphasized that the neuron population<br />

of the dorsal horn is highly heterogeneous. Most neurons<br />

are, <strong>in</strong> fact, excitatory or <strong>in</strong>hibitory <strong>in</strong>terneurons [21••,22].<br />

The <strong>in</strong>hibitory <strong>in</strong>terneurons can be broadly grouped <strong>in</strong>to<br />

those that express GABAARs and those that express both<br />

GABAARs and GlyRs [12,13]. Importantly, their activity can<br />

dramatically alter the excitability of projection neurons<br />

[14•,21••,22-25]. Thus, understand<strong>in</strong>g <strong>in</strong>hibitory <strong>in</strong>terneuron<br />

function is central to pa<strong>in</strong> mechanisms, pa<strong>in</strong> perception and<br />

pa<strong>in</strong> therapy (Figure 1C).<br />

Descend<strong>in</strong>g pathways<br />

A major pr<strong>in</strong>ciple of sensory system neurobiology is that the<br />

CNS itself exerts powerful control over the flow of<br />

<strong>in</strong>formation from peripheral receptors [2,3,8]. The first<br />

experimental evidence for such an 'endogenous pa<strong>in</strong> control<br />

mechanism' came <strong>in</strong> the late 1960s, when it was reported<br />

that stimulation of the midbra<strong>in</strong> periaqueductal gray (PAG)<br />

reduced responses to pa<strong>in</strong>ful stimuli <strong>in</strong> rats [26]. Subsequent<br />

studies have reported that stimulation of analogous bra<strong>in</strong><br />

regions <strong>in</strong> humans can produce analgesia <strong>in</strong> patients<br />

suffer<strong>in</strong>g from <strong>in</strong>tractable cancer pa<strong>in</strong> [27]. Accord<strong>in</strong>gly,<br />

there has been considerable cl<strong>in</strong>ical <strong>in</strong>terest <strong>in</strong> this<br />

mechanism [28]. Indeed, opiate adm<strong>in</strong>istration, currently a<br />

major therapeutic approach to the treatment of both acute<br />

C<br />

Aδ<br />

Aβ<br />

and chronic pa<strong>in</strong>, relies on the recruitment of endogenous<br />

(<strong>in</strong>hibitory) pa<strong>in</strong> control mechanisms [29,30].<br />

The importance of descend<strong>in</strong>g pathways <strong>in</strong> blunt<strong>in</strong>g or<br />

<strong>in</strong>hibit<strong>in</strong>g responses to pa<strong>in</strong>ful stimuli is now well accepted<br />

[2,6,29]. Unfortunately, some studies <strong>in</strong> animal models of<br />

chronic pa<strong>in</strong> have shown that activation of descend<strong>in</strong>g<br />

pathways can also enhance pa<strong>in</strong> responses [31,32]. Thus, the<br />

role of descend<strong>in</strong>g <strong>in</strong>puts is more complex than previously<br />

thought and this could help expla<strong>in</strong> why the treatment of<br />

chronic pa<strong>in</strong> has been so problematic.<br />

Several bra<strong>in</strong>stem nuclei are well recognized as midbra<strong>in</strong><br />

pa<strong>in</strong> process<strong>in</strong>g nodes (Figure 1A). These <strong>in</strong>clude the PAG,<br />

the locus coeruleus (LC), the parabrachial nucleus (PB) and<br />

the rostral ventromedial medulla (RVM) [2,3]. Although<br />

these regions conta<strong>in</strong> GlyRs [33,34••,35-37], the exact<br />

circuitry and synaptic l<strong>in</strong>kages <strong>in</strong>volved are extremely<br />

complex and are poorly understood. The available<br />

electrophysiological, anatomical and behavioral data suggest<br />

that the more rostral nuclei exert their modulatory effects on<br />

sp<strong>in</strong>al cord process<strong>in</strong>g via relays to the RVM (Figure 1A).<br />

RVM <strong>in</strong>puts arrive at all cell types <strong>in</strong> the dorsal horn of the<br />

sp<strong>in</strong>al cord [19•,34••,38]; however, little is known about<br />

specific descend<strong>in</strong>g connections with glyc<strong>in</strong>ergic<br />

<strong>in</strong>terneurons.


50 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Inhibitory mechanisms <strong>in</strong> the sp<strong>in</strong>al cord and<br />

the gate theory of pa<strong>in</strong><br />

In 1965, Melzack and Wall proposed the 'gate control' theory<br />

of pa<strong>in</strong> [39••]. At the time there was great <strong>in</strong>terest <strong>in</strong><br />

descend<strong>in</strong>g <strong>in</strong>hibitory pathways and their capacity to <strong>in</strong>hibit<br />

sp<strong>in</strong>al reflexes [40]. Simplistically, this theory stated that<br />

<strong>in</strong>hibitory synaptic mechanisms <strong>in</strong> the sp<strong>in</strong>al cord dorsal<br />

horn play a key role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g whether peripheral<br />

stimuli on small-diameter afferent fibers (Aδ- and C-fibers)<br />

can raise the level of excitability <strong>in</strong> projection neurons and<br />

subsequently be perceived as pa<strong>in</strong>ful. Even though the<br />

orig<strong>in</strong>al theory has been criticized, its <strong>in</strong>fluence has persisted<br />

because it emphasized the importance of <strong>in</strong>hibitory<br />

mechanisms.<br />

Under normal conditions, <strong>in</strong>hibitory drive <strong>in</strong> sp<strong>in</strong>al<br />

projection and local circuit neurons is mediated by both<br />

GABAAergic and glyc<strong>in</strong>ergic synapses [5•,14•,25,34••,35,41].<br />

Although the exact contribution of these two forms of<br />

<strong>in</strong>hibition is unknown, the faster k<strong>in</strong>etics of glyc<strong>in</strong>ergic<br />

<strong>in</strong>hibitory post-synaptic currents implies that they have<br />

dist<strong>in</strong>ct roles <strong>in</strong> synaptic <strong>in</strong>tegration [12,13,42]. It is also<br />

important to note that these receptors may cease to be<br />

<strong>in</strong>hibitory <strong>in</strong> neuropathic pa<strong>in</strong>; an <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tracellular<br />

Cl − <strong>in</strong> lam<strong>in</strong>a I neurons follow<strong>in</strong>g peripheral nerve <strong>in</strong>jury<br />

results <strong>in</strong> depolarization and action potential generation<br />

follow<strong>in</strong>g GABAAR activation [43].<br />

Follow<strong>in</strong>g both peripheral <strong>in</strong>flammation and nerve <strong>in</strong>jury,<br />

there is an extensive physiological and morphological<br />

reorganization <strong>in</strong> dorsal horn circuitry, which ultimately<br />

leads to a net reduction <strong>in</strong> <strong>in</strong>hibitory tone [5•,44•,45-48] and<br />

<strong>in</strong>creased excitability <strong>in</strong> ascend<strong>in</strong>g pathways. Likewise,<br />

descend<strong>in</strong>g <strong>in</strong>hibitory mechanisms act<strong>in</strong>g via pre- and postsynaptic<br />

mechanisms are known to be important <strong>in</strong> sett<strong>in</strong>g<br />

excitability levels <strong>in</strong> both normal and pathological<br />

conditions [1•,2,8].<br />

GlyR subunit composition and distribution<br />

GlyRs belong to the cyste<strong>in</strong>e-loop family of ligand-gated ion<br />

channel receptors. A total of five GlyR subunits (α1 to α4<br />

and β) plus several splice variants have been identified [49•].<br />

Functional receptors comprise either α homomeric<br />

pentamers or α:β heteromers <strong>in</strong> a 2:3 stoichiometry [50••].<br />

The cytoplasmic prote<strong>in</strong> gephyr<strong>in</strong> b<strong>in</strong>ds only to the βsubunit<br />

and is essential for cluster<strong>in</strong>g GlyRs at post-synaptic<br />

densities [51].<br />

Homomeric α2 GlyRs are abundantly and evenly distributed<br />

over the membrane surface of embryonic neurons [52].<br />

Because <strong>in</strong>tracellular Cl − concentration is high, activation of<br />

embryonic GlyRs <strong>in</strong>duces neuronal depolarization and a<br />

subsequent calcium <strong>in</strong>flux that is important for neuronal<br />

differentiation [53,54]. Glyc<strong>in</strong>ergic synapses beg<strong>in</strong> to form<br />

before birth <strong>in</strong> the rat, with their appearance correlat<strong>in</strong>g with<br />

the expression of the β-subunit [55]. By the third postnatal<br />

week, most α2 homomers have been replaced by α1β<br />

heteromers [52]. This isoform predom<strong>in</strong>ates at sp<strong>in</strong>al cord<br />

<strong>in</strong>hibitory synapses and also mediates <strong>in</strong>hibitory<br />

neurotransmission <strong>in</strong> several bra<strong>in</strong>stem nuclei, as well as at<br />

def<strong>in</strong>ed synapses <strong>in</strong> the cerebellum and ret<strong>in</strong>a [49•]. The α2<br />

and α3 subunits are expressed at lower levels <strong>in</strong> the adult<br />

and exhibit dist<strong>in</strong>ct synaptic expression patterns that are<br />

particularly evident <strong>in</strong> the ret<strong>in</strong>a [56,57•]. The α3 subunit is<br />

also <strong>in</strong>corporated <strong>in</strong>to GlyRs on neurons <strong>in</strong> lam<strong>in</strong>a II of the<br />

dorsal horn [7••]. The α4 subunit is a pseudo-gene <strong>in</strong><br />

humans [58].<br />

Non-synaptic GlyRs are more widely distributed throughout<br />

the adult nervous system. They have so far been found <strong>in</strong><br />

the cortex [53], dorsal midbra<strong>in</strong> [59••], hippocampus [60],<br />

caudatoputamen [61] and basolateral amygdala [62]. As<br />

stated previously, little is known about their roles. However,<br />

one study, published <strong>in</strong> 2005, demonstrated that α3 subunit<br />

transcripts undergo RNA edit<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> a P185L<br />

substitution <strong>in</strong> the external ligand-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> [59••].<br />

This mutation dramatically <strong>in</strong>creases glyc<strong>in</strong>e sensitivity,<br />

with the result that non-synaptic α3-conta<strong>in</strong><strong>in</strong>g GlyRs <strong>in</strong> the<br />

superior colliculus are held open by ambient glyc<strong>in</strong>e,<br />

result<strong>in</strong>g <strong>in</strong> strong tonic <strong>in</strong>hibition [59••]. The amount of<br />

mutant transcript <strong>in</strong> immature bra<strong>in</strong> is <strong>in</strong>creased by bra<strong>in</strong><br />

slic<strong>in</strong>g, suggest<strong>in</strong>g that the RNA edit<strong>in</strong>g process may be an<br />

adaptive mechanism to compensate for excessive<br />

excitability. Many questions rema<strong>in</strong> about this mechanism.<br />

For example, its anatomical distribution and subunitspecificity<br />

are not known, and the extent to which it occurs<br />

<strong>in</strong> vivo under physiological or realistic pathological<br />

(<strong>in</strong>clud<strong>in</strong>g pa<strong>in</strong>) conditions also rema<strong>in</strong>s to be elucidated.<br />

GlyR α3 subunits and pa<strong>in</strong><br />

Although GlyR α3 subunits are sparsely distributed, some<br />

research has identified a specific role for them <strong>in</strong> sp<strong>in</strong>al cord<br />

pa<strong>in</strong> process<strong>in</strong>g. First it was shown that the <strong>in</strong>flammatory<br />

mediator prostagland<strong>in</strong> E2 (PGE2) reduced <strong>in</strong>hibitory<br />

glyc<strong>in</strong>ergic neurotransmission onto lam<strong>in</strong>a II neurons [63••].<br />

This effect, mediated via activation of the EP2 receptor,<br />

<strong>in</strong>volved the activation of a cholera-tox<strong>in</strong>-sensitive G prote<strong>in</strong><br />

and a cAMP-dependent prote<strong>in</strong> k<strong>in</strong>ase. This important<br />

f<strong>in</strong>d<strong>in</strong>g implied that <strong>in</strong>flammatory pa<strong>in</strong> sensitization is<br />

mediated, at least <strong>in</strong> part, by an <strong>in</strong>hibition of sp<strong>in</strong>al<br />

glyc<strong>in</strong>ergic neurotransmission.<br />

A subsequent study demonstrated that α1 and α3 subunits<br />

were equally represented at glyc<strong>in</strong>ergic synapses <strong>in</strong> lam<strong>in</strong>a<br />

II neurons [7••]. Recomb<strong>in</strong>antly expressed α3 GlyRs were<br />

<strong>in</strong>hibited by PGE2 via a prote<strong>in</strong> k<strong>in</strong>ase (PK)A-dependent<br />

phosphorylation [7••]. However, α1 GlyRs, which do not<br />

have PKA-dependent phosphorylation sites, were not<br />

affected. This prompted the hypothesis that the α3 subunit<br />

was specifically modulated by <strong>in</strong>flammatory stimuli. A GlyR<br />

α3 knockout mouse was used to test this theory further.<br />

Although the mice displayed no overt behavioral<br />

phenotype, the PGE2-dependent decrease of lam<strong>in</strong>a II<br />

glyc<strong>in</strong>ergic currents was abolished [7••]. Behaviorally,<br />

normal and GlyR α3 -/- mice responded similarly to acute<br />

pa<strong>in</strong> stimuli. However, peripheral <strong>in</strong>flammation produced<br />

pa<strong>in</strong> sensitization <strong>in</strong> normal animals, but not <strong>in</strong> the GlyR α3<br />

-/- animals [7••]. These f<strong>in</strong>d<strong>in</strong>gs show that the currents<br />

carried by α3-conta<strong>in</strong><strong>in</strong>g GlyRs are specifically <strong>in</strong>hibited <strong>in</strong><br />

an animal model of <strong>in</strong>flammatory pa<strong>in</strong>. Such an effect would


educe the <strong>in</strong>hibitory drive onto nociceptive projection<br />

neurons, thereby <strong>in</strong>creas<strong>in</strong>g the transmission of nociceptive<br />

stimuli to the bra<strong>in</strong>.<br />

The GlyR α3 subunit as a therapeutic target<br />

In pr<strong>in</strong>cipal, there are several ways to compensate for the<br />

effects of <strong>in</strong>flammation on α3-conta<strong>in</strong><strong>in</strong>g GlyRs. One is to<br />

<strong>in</strong>crease the magnitude or slow the decay rate of glyc<strong>in</strong>ergic<br />

synaptic currents <strong>in</strong> lam<strong>in</strong>a II neurons (Figure 1C), and<br />

another is to <strong>in</strong>crease the magnitude of non-synaptic GlyRs<br />

(or other Cl − channels) <strong>in</strong> these neurons. Although<br />

<strong>in</strong>creas<strong>in</strong>g the current through α1-conta<strong>in</strong><strong>in</strong>g GlyRs should<br />

compensate for the decrease <strong>in</strong> current through α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs, the risk of side effects is higher given that<br />

α1 subunits are more widespread outside lam<strong>in</strong>a II. Ideally,<br />

therapeutic <strong>in</strong>terventions should selectively <strong>in</strong>crease current<br />

through the downregulated (ie, phosphorylated) α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs.<br />

Unfortunately, very little is known about the pharmacology of<br />

α3-conta<strong>in</strong><strong>in</strong>g GlyRs. Until publication of the study by Harvey<br />

et al [7••], this subunit was virtually ignored because of its low<br />

expression and limited distribution. The physiology and<br />

molecular pharmacology of α1, α2, α1β and α2β GlyRs have<br />

been studied <strong>in</strong> much more detail, and several classes of<br />

compounds (eg, trope<strong>in</strong>es, alcohols and volatile anesthetics,<br />

butyrolactones, neurosteroids and dihydropyrid<strong>in</strong>es) are<br />

known to potentiate these receptors <strong>in</strong> a subunit-specific<br />

manner [49•]. These compound families may provide a start<strong>in</strong>g<br />

po<strong>in</strong>t for identify<strong>in</strong>g α3-specific potentiat<strong>in</strong>g agents.<br />

An alternative therapeutic approach might <strong>in</strong>volve <strong>in</strong>terfer<strong>in</strong>g<br />

with post-translational modifications that affect the magnitude<br />

or sensitivity of glyc<strong>in</strong>ergic currents. One potential mechanism<br />

<strong>in</strong>volves the previously described RNA edit<strong>in</strong>g process that<br />

leads to the α3 subunit P185L mutation. If the glyc<strong>in</strong>e sensitivity<br />

of sp<strong>in</strong>al α3 GlyRs could be <strong>in</strong>creased via this mechanism, the<br />

result<strong>in</strong>g enhanced <strong>in</strong>hibition may effect some degree of relief<br />

from chronic pa<strong>in</strong> syndromes.<br />

Conclusion<br />

Pa<strong>in</strong>-process<strong>in</strong>g circuitry <strong>in</strong>creases <strong>in</strong> complexity as it<br />

ascends the neural axis. A great deal is now known<br />

regard<strong>in</strong>g the neuronal types and distribution of GlyR<br />

subunits <strong>in</strong> sp<strong>in</strong>al cord pa<strong>in</strong>-process<strong>in</strong>g circuits, but rather<br />

less is known about their role <strong>in</strong> higher bra<strong>in</strong> regions. Thus,<br />

the sp<strong>in</strong>al cord dorsal horn would appear to be the best<br />

place to focus efforts on us<strong>in</strong>g GlyR modulation to alter pa<strong>in</strong><br />

process<strong>in</strong>g. As sp<strong>in</strong>al GlyR α3 subunits are specifically<br />

<strong>in</strong>hibited by <strong>in</strong>flammatory mediators <strong>in</strong> an animal model of<br />

chronic pa<strong>in</strong>, this receptor provides an excellent candidate<br />

therapeutic target.<br />

References<br />

1. Willis WD, Coggeshall RE: Sensory mechanisms of the sp<strong>in</strong>al cord, Third<br />

Edition. Kluwer Academic/Plenum Publishers, New York, NY, USA (2004).<br />

• This classic text summarizes the anatomy, physiology and pharmacology of<br />

the sp<strong>in</strong>al cord dorsal horn.<br />

2. Millan MJ: Descend<strong>in</strong>g control of pa<strong>in</strong>. Prog Neurobiol (2002)<br />

66(6):355-474.<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 51<br />

3. Gebhart GF: Descend<strong>in</strong>g modulation of pa<strong>in</strong>. Neurosci Biobehav Rev<br />

(2004) 27(8):729-737.<br />

4. Woolf CJ, Salter MW: Neuronal plasticity: Increas<strong>in</strong>g the ga<strong>in</strong> <strong>in</strong><br />

pa<strong>in</strong>. Science (2000) 288(5472):1765-1769.<br />

5. Sivilotti L, Woolf CJ: The contribution of GABAA and glyc<strong>in</strong>e<br />

receptors to central sensitization: Dis<strong>in</strong>hibition and touch-evoked<br />

allodynia <strong>in</strong> the sp<strong>in</strong>al cord. J Neurophysiol (1994) 72(1):169-179.<br />

• This study showed that reduc<strong>in</strong>g the level of <strong>in</strong>hibitory tone <strong>in</strong> the sp<strong>in</strong>al cord<br />

by <strong>in</strong>troduc<strong>in</strong>g antagonists of GABAA and GlyRs, exaggerated responses to<br />

pa<strong>in</strong>ful cutaneous <strong>in</strong>puts. Moreover, responses to normally <strong>in</strong>nocuous stimuli<br />

(carried on Aβ-fibers) were exaggerated under these conditions.<br />

6. Basbaum AI, Fields HL: Endogenous pa<strong>in</strong> control systems:<br />

Bra<strong>in</strong>stem sp<strong>in</strong>al pathways and endorph<strong>in</strong> circuitry. Annu Rev<br />

Neurosci (1984) 7:309-338.<br />

7. Harvey RJ, Depner UB, Wassle H, Ahmadi S, He<strong>in</strong>dl C, Re<strong>in</strong>old H,<br />

Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A et al: GlyR<br />

α3: An essential target for sp<strong>in</strong>al PGE2-mediated <strong>in</strong>flammatory pa<strong>in</strong><br />

sensitization. Science (2004) 304(5672):884-887.<br />

•• This is a landmark paper implicat<strong>in</strong>g the GlyR α3 subunit as a therapeutic<br />

target for <strong>in</strong>flammatory pa<strong>in</strong>.<br />

8. Willis WD, Westlund KN: Neuroanatomy of the pa<strong>in</strong> system and of<br />

the pathways that modulate pa<strong>in</strong>. J Cl<strong>in</strong> Neurophysiol (1997) 14(1):2-<br />

31.<br />

9. Price DD: Central neural mechanisms that <strong>in</strong>terrelate sensory and<br />

affective dimensions of pa<strong>in</strong>. Mol Interv (2002) 2(6):392-403.<br />

10. Craig AD: How do you feel? Interoception: The sense of the<br />

physiological condition of the body. Nat Rev Neurosci (2002)<br />

3(8):655-666.<br />

11. Craig AD: Pa<strong>in</strong> mechanisms: Labeled l<strong>in</strong>es versus convergence <strong>in</strong><br />

central process<strong>in</strong>g. Annu Rev Neurosci (2003) 26(1):1-30.<br />

12. Chery N, de Kon<strong>in</strong>ck Y: Junctional versus extrajunctional glyc<strong>in</strong>e<br />

and GABAA receptor-mediated IPSCs <strong>in</strong> identified lam<strong>in</strong>a I neurons<br />

of the adult rat sp<strong>in</strong>al cord. J Neurosci (1999) 19(17):7342-7355.<br />

13. Graham BA, Schofield PR, Sah P, Callister RJ: Altered <strong>in</strong>hibitory<br />

synaptic transmission <strong>in</strong> superficial dorsal horn neurones <strong>in</strong><br />

spastic and oscillator mice. J Physiol (2003) 551(3):905-916.<br />

14. Cron<strong>in</strong> JN, Bradbury EJ, Lidierth M: Lam<strong>in</strong>ar distribution of GABAA- and<br />

glyc<strong>in</strong>e-receptor mediated tonic <strong>in</strong>hibition <strong>in</strong> the dorsal horn of the rat<br />

lumbar sp<strong>in</strong>al cord: Effects of picrotox<strong>in</strong> and strychn<strong>in</strong>e on expression<br />

of Fos-like immunoreactivity. Pa<strong>in</strong> (2004) 112(1-2):156-163.<br />

• This study showed that block<strong>in</strong>g tonic <strong>in</strong>hibitory drive <strong>in</strong> the dorsal horn<br />

leads to <strong>in</strong>creased activity (based on c-Fos expression) of neurons <strong>in</strong> both the<br />

superficial and deep dorsal horn.<br />

15. Baccei ML, Fitzgerald M: Development of GABAergic and glyc<strong>in</strong>ergic<br />

transmission <strong>in</strong> the neonatal rat dorsal horn. J Neurosci (2004)<br />

24(20):4749-4757.<br />

16. Todd AJ, Watt C, Spike RC, Sieghart W: Colocalization of GABA,<br />

glyc<strong>in</strong>e, and their receptors at synapses <strong>in</strong> the rat sp<strong>in</strong>al cord. J<br />

Neurosci (1996) 16(3):974-982.<br />

17. Maxwell DJ, Todd AJ, Kerr R: Colocalization of glyc<strong>in</strong>e and GABA <strong>in</strong><br />

synapses on sp<strong>in</strong>omedullary neurons. Bra<strong>in</strong> Res (1995) 690(1):127-<br />

132.<br />

18. Sugiura Y, Lee CL, Perl ER: Central projections of identified,<br />

unmyel<strong>in</strong>ated (C) afferent fibers <strong>in</strong>nervat<strong>in</strong>g mammalian sk<strong>in</strong>.<br />

Science (1986) 234(4774):358-361.<br />

• Us<strong>in</strong>g anatomical trac<strong>in</strong>g methods, this paper showed that C-fiber afferents<br />

carry<strong>in</strong>g <strong>in</strong>formation from mechanically and temperature-sensitive nociceptors<br />

term<strong>in</strong>ate <strong>in</strong> the superficial dorsal horn.<br />

19. Light AR, Perl ER: Sp<strong>in</strong>al term<strong>in</strong>ation of functionally identified<br />

primary afferent neurons with slowly conduct<strong>in</strong>g myel<strong>in</strong>ated fibers.<br />

J Comp Neurol (1979) 186(2):133-150.<br />

• This study showed that term<strong>in</strong>als of Aδ-fibers carry<strong>in</strong>g <strong>in</strong>formation about<br />

noxious cutaneous stimuli ramified extensively <strong>in</strong> lam<strong>in</strong>ae I and II of the cat<br />

and monkey sp<strong>in</strong>al cord.<br />

20. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK: Human bra<strong>in</strong><br />

mechanisms of pa<strong>in</strong> perception and regulation <strong>in</strong> health and<br />

disease. Eur J Pa<strong>in</strong> (2005) 9(4):463-484.


52 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

21. Lu Y, Perl ER: A specific <strong>in</strong>hibitory pathway between substantia<br />

gelat<strong>in</strong>osa neurons receiv<strong>in</strong>g direct C-fiber <strong>in</strong>put. J Neurosci (2003)<br />

23(25):8752-8758.<br />

•• This is a landmark and a technically heroic study us<strong>in</strong>g simultaneous patchclamp<br />

record<strong>in</strong>g from pairs of synaptically l<strong>in</strong>ked <strong>in</strong>terneurons <strong>in</strong> the superficial<br />

dorsal horn. It showed that <strong>in</strong>hibitory <strong>in</strong>terneurons received monosynaptic<br />

<strong>in</strong>put from C-fibers. Additional studies are needed to unravel the precise role<br />

of <strong>in</strong>hibitory circuits <strong>in</strong> the dorsal horn.<br />

22. Lu Y, Perl ER: Modular organization of excitatory circuits between<br />

neurons of the sp<strong>in</strong>al superficial dorsal horn (lam<strong>in</strong>ae I and II). J<br />

Neurosci (2005) 25(15):3900-3907.<br />

23. Yoshimura M, Jessell T: Am<strong>in</strong>o acid-mediated EPSPs at primary<br />

afferent synapses with substantia gelat<strong>in</strong>osa neurones <strong>in</strong> the rat<br />

sp<strong>in</strong>al cord. J Physiol (1990) 430:315-335.<br />

24. Cervero F, Iggo A: The substantia gelat<strong>in</strong>osa of the sp<strong>in</strong>al cord: A<br />

critical review. Bra<strong>in</strong> (1980) 103(4):717-772.<br />

25. Light AR, Kavookjian AM: Morphology and ultrastructure of<br />

physiologically identified substantia gelat<strong>in</strong>osa (lam<strong>in</strong>a II) neurons<br />

with axons that term<strong>in</strong>ate <strong>in</strong> deeper dorsal horn lam<strong>in</strong>ae (III-V). J<br />

Comp Neurol (1988) 267(2):172-189.<br />

26. Reynolds DV: Surgery <strong>in</strong> the rat dur<strong>in</strong>g electrical analgesia <strong>in</strong>duced<br />

by focal bra<strong>in</strong> stimulation. Science (1969) 164(878):444-445.<br />

27. Young RF, Brechner T: Electrical stimulation of the bra<strong>in</strong> for relief of<br />

<strong>in</strong>tractable pa<strong>in</strong> due to cancer. Cancer (1986) 57(6):1266-1272.<br />

28. Ren K, Dubner R: Descend<strong>in</strong>g modulation <strong>in</strong> persistent pa<strong>in</strong>: An<br />

update. Pa<strong>in</strong> (2002) 100(1-2):1-6.<br />

29. Fields HL: Pa<strong>in</strong> modulation: Expectation, opioid analgesia and<br />

virtual pa<strong>in</strong>. Prog Bra<strong>in</strong> Res (2000) 122:245-253.<br />

30. Pan ZZ, Fields HL: Endogenous opioid-mediated <strong>in</strong>hibition of<br />

putative pa<strong>in</strong>-modulat<strong>in</strong>g neurons <strong>in</strong> rat rostral ventromedial<br />

medulla. Neuroscience (1996) 74(3):855-862.<br />

31. Urban MO, Gebhart GF: Suprasp<strong>in</strong>al contributions to hyperalgesia.<br />

Proc Natl Acad Sci USA (1999) 96(14):7687-7692.<br />

32. Urban MO, Gebhart GF: Central mechanisms <strong>in</strong> pa<strong>in</strong>. Med Cl<strong>in</strong> North<br />

Am (1999) 83(3):585-596.<br />

33. Somogyi J, Llewellyn-Smith IJ: Patterns of colocalization of GABA,<br />

glutamate and glyc<strong>in</strong>e immunoreactivities <strong>in</strong> term<strong>in</strong>als that<br />

synapse on dendrites of noradrenergic neurons <strong>in</strong> rat locus<br />

coeruleus. Eur J Neurosci (2001) 14(2):219-228.<br />

34. Peng YB, L<strong>in</strong> Q, Willis WD: Effects of GABA and glyc<strong>in</strong>e receptor<br />

antagonists on the activity and PAG-<strong>in</strong>duced <strong>in</strong>hibition of rat<br />

dorsal horn neurons. Bra<strong>in</strong> Res (1996) 736(1-2):189-201.<br />

•• This study showed that descend<strong>in</strong>g <strong>in</strong>hibition, <strong>in</strong>duced by PAG stimulation,<br />

of dorsal horn neuron activity <strong>in</strong>volves GABA and/or glyc<strong>in</strong>e release <strong>in</strong> the<br />

sp<strong>in</strong>al cord and that there is tonic release of these <strong>in</strong>hibitory<br />

neurotransmitters.<br />

35. L<strong>in</strong> Q, Peng Y, Willis WD: Glyc<strong>in</strong>e and GABAA antagonists reduce<br />

the <strong>in</strong>hibition of primate sp<strong>in</strong>othalamic tract neurons produced by<br />

stimulation <strong>in</strong> periaqueductal gray. Bra<strong>in</strong> Res (1994) 654(2):286-302.<br />

36. Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M:<br />

Localization of glyc<strong>in</strong>e receptors <strong>in</strong> the rat central nervous system:<br />

An immunocytochemical analysis us<strong>in</strong>g monoclonal antibody.<br />

Neuroscience (1988) 25(2):613-624.<br />

37. Sato K, Zhang JH, Saika T, Sato M, Tada K, Tohyama M: Localization<br />

of glyc<strong>in</strong>e receptor α 1 subunit mRNA-conta<strong>in</strong><strong>in</strong>g neurons <strong>in</strong> the rat<br />

bra<strong>in</strong>: An analysis us<strong>in</strong>g <strong>in</strong> situ hybridization histochemistry.<br />

Neuroscience (1991) 43(2-3):381-395.<br />

38. Light AR, Casale EJ, Menetrey DM: The effects of focal stimulation <strong>in</strong><br />

nucleus raphe magnus and periaqueductal gray on <strong>in</strong>tracellularly<br />

recorded neurons <strong>in</strong> sp<strong>in</strong>al lam<strong>in</strong>ae I and II. J Neurophysiol (1986)<br />

56(3):555-571.<br />

39. Melzack R, Wall PD: Pa<strong>in</strong> mechanisms: A new theory. Science (1965)<br />

150(699):971-979.<br />

•• This is a classic paper propos<strong>in</strong>g the importance of <strong>in</strong>hibitory mechanisms<br />

<strong>in</strong> the sp<strong>in</strong>al cord dorsal horn for understand<strong>in</strong>g the treatment of pa<strong>in</strong>. It also<br />

provides an historical account of arguments for 'specificity' and 'patterned<br />

activity' theories of pa<strong>in</strong> process<strong>in</strong>g and perception.<br />

40. Lundberg A, Norrssell U, Voorhoeve P: Effects from the sensory<br />

motor cortex on ascend<strong>in</strong>g sp<strong>in</strong>al pathways. Acta Physiol Scand<br />

(1963) 59:462-473.<br />

41. Yoshimura M, Nishi S: Primary afferent-evoked glyc<strong>in</strong>e- and GABAmediated<br />

IPSPs <strong>in</strong> substantia gelat<strong>in</strong>osa neurones <strong>in</strong> the rat sp<strong>in</strong>al<br />

cord <strong>in</strong> vitro. J Physiol (1995) 482(1):29-38.<br />

42. Keller AF, Coull JA, Chery N, Poisbeau P, De Kon<strong>in</strong>ck Y: Regionspecific<br />

developmental specialization of GABA-glyc<strong>in</strong>e cosynapses<br />

<strong>in</strong> lam<strong>in</strong>as I-II of the rat sp<strong>in</strong>al dorsal horn. J Neurosci (2001)<br />

21(20):7871-7880.<br />

43. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De<br />

Kon<strong>in</strong>ck P, De Kon<strong>in</strong>ck Y: Trans-synaptic shift <strong>in</strong> anion gradient <strong>in</strong><br />

sp<strong>in</strong>al lam<strong>in</strong>a I neurons as a mechanism of neuropathic pa<strong>in</strong>.<br />

Nature (2003) 424(6951):938-942.<br />

44. Sork<strong>in</strong> LS, Puig S: Neuronal model of tactile allodynia produced by<br />

sp<strong>in</strong>al strychn<strong>in</strong>e: Effects of excitatory am<strong>in</strong>o acid receptor antagonists<br />

and a µ-opiate receptor agonist. Pa<strong>in</strong> (1996) 68(2-3):283-292.<br />

• This study showed the importance of GlyR-mediated <strong>in</strong>hibitory tone <strong>in</strong><br />

chronic pa<strong>in</strong> syndromes, such as tactile allodynia.<br />

45. Sork<strong>in</strong> LS, Puig S, Jones DL: Sp<strong>in</strong>al bicucull<strong>in</strong>e produces<br />

hypersensitivity of dorsal horn neurons: Effects of excitatory<br />

am<strong>in</strong>o acid antagonists. Pa<strong>in</strong> (1998) 77(2):181-190.<br />

46. Wall PD, Lidierth M, Hillman P: Brief and prolonged effects of Lissauer<br />

tract stimulation on dorsal horn cells. Pa<strong>in</strong> (1999) 83(3):579-589.<br />

47. Baba H, Doubell TP, Woolf CJ: Peripheral <strong>in</strong>flammation facilitates Aβ<br />

fiber-mediated synaptic <strong>in</strong>put to the substantia gelat<strong>in</strong>osa of the<br />

adult rat sp<strong>in</strong>al cord. J Neurosci (1999) 19(2):859-867.<br />

48. Kont<strong>in</strong>en VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic<br />

evidence for <strong>in</strong>creased endogenous gabaergic but not glyc<strong>in</strong>ergic<br />

<strong>in</strong>hibitory tone <strong>in</strong> the rat sp<strong>in</strong>al nerve ligation model of neuropathy.<br />

Anesthesiology (2001) 94(2):333-339.<br />

49. Lynch JW: Molecular structure and function of the glyc<strong>in</strong>e receptor<br />

chloride channel. Physiol Rev (2004) 84(4):1051-1095.<br />

• This paper <strong>in</strong>cludes a reasonably comprehensive review of GlyR molecular<br />

pharmacology.<br />

50. Grudz<strong>in</strong>ska J, Schemm R, Haeger S, Nicke A, Schmalz<strong>in</strong>g G, Betz H,<br />

Laube B: The β subunit determ<strong>in</strong>es the ligand b<strong>in</strong>d<strong>in</strong>g properties of<br />

synaptic glyc<strong>in</strong>e receptors. Neuron (2005) 45(5):727-739.<br />

•• This paper calls <strong>in</strong>to question two long-stand<strong>in</strong>g dogmas <strong>in</strong> the GlyR field.<br />

First, it shows that the α subunit conta<strong>in</strong>s high-aff<strong>in</strong>ity glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites.<br />

Second, it makes a strong case for revis<strong>in</strong>g the heteromeric GlyR<br />

stoichiometry from 3α:2β to 2α:3β.<br />

51. Kneussel M, Betz H: Receptors, gephyr<strong>in</strong> and gephyr<strong>in</strong>-associated<br />

prote<strong>in</strong>s: Novel <strong>in</strong>sights <strong>in</strong>to the assembly of <strong>in</strong>hibitory<br />

postsynaptic membrane specializations. J Physiol (2000) 525(1):1-9.<br />

52. Becker CM, Hoch W, Betz H: Glyc<strong>in</strong>e receptor heterogeneity <strong>in</strong> rat<br />

sp<strong>in</strong>al cord dur<strong>in</strong>g postnatal development. EMBO J (1988)<br />

7(12):3717-3726.<br />

53. Fl<strong>in</strong>t AC, Liu X, Kriegste<strong>in</strong> AR: Nonsynaptic glyc<strong>in</strong>e receptor<br />

activation dur<strong>in</strong>g early neocortical development. Neuron (1998)<br />

20(1):43-53.<br />

54. Tapia JC, Mentis GZ, Navarrete R, Nualart F, Figueroa E, Sanchez A,<br />

Aguayo LG: Early expression of glyc<strong>in</strong>e and GABAA receptors <strong>in</strong><br />

develop<strong>in</strong>g sp<strong>in</strong>al cord neurons. Effects on neurite outgrowth.<br />

Neuroscience (2001) 108(3):493-506.<br />

55. Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ:<br />

Changes on the properties of glyc<strong>in</strong>e receptors dur<strong>in</strong>g neuronal<br />

development. Bra<strong>in</strong> Res Bra<strong>in</strong> Res Rev (2004) 47(1-3):33-45.<br />

56. Haverkamp S, Muller U, Harvey K, Harvey RJ, Betz H, Wassle H:<br />

Diversity of glyc<strong>in</strong>e receptors <strong>in</strong> the mouse ret<strong>in</strong>a: Localization of<br />

the α3 subunit. J Comp Neurol (2003) 465(4):524-539.<br />

57. Haverkamp S, Muller U, Zeilhofer HU, Harvey RJ, Wassle H: Diversity<br />

of glyc<strong>in</strong>e receptors <strong>in</strong> the mouse ret<strong>in</strong>a: Localization of the α2<br />

subunit. J Comp Neurol (2004) 477(4):399-411.<br />

• This paper and reference [56] provide detailed, high-quality analyses of the<br />

differential distribution patterns of GlyR α1, α2 and α3 subunits <strong>in</strong> the ret<strong>in</strong>ae<br />

of normal and GlyR α3 knockout mice.


58. Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA: Analysis of<br />

the set of GABAA receptor genes <strong>in</strong> the human genome. J Biol Chem<br />

(2004) 279(40):41422-41435.<br />

59. Meier JC, Henneberger C, Melnick I, Racca C, Harvey RJ, He<strong>in</strong>emann<br />

U, Schmieden V, Grantyn R: RNA edit<strong>in</strong>g produces glyc<strong>in</strong>e receptor<br />

α3(P185L), result<strong>in</strong>g <strong>in</strong> high agonist potency. Nat Neurosci (2005)<br />

8(6):736-744.<br />

•• This study not only shows that RNA edit<strong>in</strong>g results <strong>in</strong> a mutation affect<strong>in</strong>g<br />

the agonist sensitivity of α3 GlyR subunit, but it demonstrates a physiological<br />

role for this mechanism.<br />

60. Mori M, Gahwiler BH, Gerber U: β-Alan<strong>in</strong>e and taur<strong>in</strong>e as<br />

endogenous agonists at glyc<strong>in</strong>e receptors <strong>in</strong> rat hippocampus <strong>in</strong><br />

vitro. J Physiol (2002) 539(1):191-200.<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 53<br />

61. Darste<strong>in</strong> M, Landwehrmeyer GB, Kl<strong>in</strong>g C, Becker CM, Feuerste<strong>in</strong> TJ:<br />

Strychn<strong>in</strong>e-sensitive glyc<strong>in</strong>e receptors <strong>in</strong> rat caudatoputamen are<br />

expressed by chol<strong>in</strong>ergic <strong>in</strong>terneurons. Neuroscience (2000)<br />

96(1):33-39.<br />

62. McCool BA, Farroni JS: Subunit composition of strychn<strong>in</strong>e-sensitive<br />

glyc<strong>in</strong>e receptors expressed by adult rat basolateral amygdala<br />

neurons. Eur J Neurosci (2001) 14(7):1082-1090.<br />

63. Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU: PGE2 selectively<br />

blocks <strong>in</strong>hibitory glyc<strong>in</strong>ergic neurotransmission onto rat<br />

superficial dorsal horn neurons. Nat Neurosci (2002) 5(1):34-40.<br />

•• This study provided the first evidence that <strong>in</strong>flammatory mediators<br />

specifically downregulate glyc<strong>in</strong>ergic synaptic currents <strong>in</strong> the superficial dorsal<br />

horn.


54<br />

Does VEGF represent a potential treatment for amyotrophic lateral<br />

sclerosis?<br />

Joanna Iłżecka<br />

Address<br />

Department of Neurology<br />

Medical University<br />

Jaczewskiego 8<br />

20-954 Lubl<strong>in</strong><br />

Poland<br />

Email: ilzecka@onet.pl<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):54-59<br />

© The Thomson Corporation ISSN 1472-4472<br />

Amyotrophic lateral sclerosis (ALS) is a progressive<br />

neurodegenerative disease. The pathogenesis of ALS is unclear<br />

and there is no effective treatment. Vascular endothelial growth<br />

factor (VEGF) is a cytok<strong>in</strong>e that has a protective function via<br />

angiogenic, neurotrophic, gliotrophic and anti-apoptotic<br />

activity. Data <strong>in</strong>dicate that VEGF can <strong>in</strong>hibit neurodegeneration<br />

<strong>in</strong> ALS and may have therapeutic potential <strong>in</strong> this disease. The<br />

use of gene therapy to deliver VEGF <strong>in</strong>to the central nervous<br />

system is be<strong>in</strong>g evaluated.<br />

Keywords Amyotrophic lateral sclerosis, neurodegeneration,<br />

neuroprotection, therapy, vascular endothelial growth factor<br />

Introduction<br />

Amyotrophic lateral sclerosis (ALS) is a progressive<br />

neurodegenerative disease affect<strong>in</strong>g motor neurons <strong>in</strong> the<br />

sp<strong>in</strong>al cord, bra<strong>in</strong> stem and motor cortex. The pathogenesis<br />

of ALS is still obscure, but there is evidence that oxidative<br />

stress, glutamate-<strong>in</strong>duced toxicity and withdrawal of trophic<br />

factors may play an important role [1]. It was previously<br />

revealed that mutations <strong>in</strong> the superoxide dismutase<br />

(SOD)1 gene are implicated <strong>in</strong> pathogenesis of familial ALS<br />

[2] and <strong>in</strong>vestigations have shown that apoptosis appears to<br />

be the primary mechanism of cell death <strong>in</strong> this disease. In<br />

the past few years, attention has been paid to the potential<br />

role of vascular endothelial growth factor (VEGF) <strong>in</strong> the<br />

pathogenesis of ALS. Data from the literature <strong>in</strong>dicate that<br />

VEGF can play a protective and reparative function <strong>in</strong> the<br />

central nervous system (CNS) via angiogenic, neurotrophic,<br />

gliotrophic and anti-apoptotic activity.<br />

VEGF is a glycoprote<strong>in</strong> act<strong>in</strong>g via receptors VEGFR1 (Flt-1),<br />

VEGFR2 (KDR/Flk-1), VEGFR3 (Flt-4) and neuropil<strong>in</strong>-1 and<br />

-2 [3,4]. Spliet et al demonstrated an altered expression of<br />

VEGFRs <strong>in</strong> human sp<strong>in</strong>al cord <strong>in</strong> ALS, <strong>in</strong>dicat<strong>in</strong>g their<br />

significant role <strong>in</strong> sp<strong>in</strong>al cord pathology [5]. VEGF-1<br />

expression is <strong>in</strong>creased <strong>in</strong> reactive astroglial cells and <strong>in</strong> the<br />

blood vessels of ALS sp<strong>in</strong>al cord. The higher expression of<br />

VEGFR2 <strong>in</strong> blood vessels of sp<strong>in</strong>al cord and lower<br />

expression of VEGF-3 <strong>in</strong> neuropil was also observed.<br />

The <strong>in</strong>teractions between neuronal, astrocytic and<br />

endothelial cells are important for metabolic bra<strong>in</strong> functions.<br />

Blood vessels can modulate the activity of neurons and the<br />

<strong>in</strong>fluence of neurons on blood vessel function. The vascular<br />

tone of the blood vessels is regulated through excitatory<br />

signal transmissions, and astrocytes play a critically<br />

important role <strong>in</strong> this process. It is known that VEGF is a<br />

major regulator of angiogenesis, and both angiogenesis and<br />

neurogenesis are regulated by systemic coord<strong>in</strong>ations.<br />

Neuroangiogenic factors, <strong>in</strong>clud<strong>in</strong>g VEGF, <strong>in</strong>fluence the<br />

proliferation and differentiation of neuronal and endothelial<br />

cells [6]. This growth factor <strong>in</strong>duces endothelial regeneration<br />

and <strong>in</strong>fluences nitric oxide and prostacycl<strong>in</strong> production,<br />

result<strong>in</strong>g <strong>in</strong> vasodilatation, <strong>in</strong>hibition of vascular smoothmuscle<br />

cell proliferation and aggregation of platelets [7,8].<br />

VEGF <strong>in</strong>fluences vascularization and reduces retrograde<br />

degeneration of transected corticosp<strong>in</strong>al tract axons [9]. It<br />

can promote collateral vessel growth <strong>in</strong> animal models of<br />

ischemia [10]. VEGF can also protect regression of vasa<br />

nervorum, which improves the function of peripheral nerves<br />

[11]. A previous study revealed that local production of<br />

VEGF by microvessels supports the survival and<br />

regeneration of motor nerves [12].<br />

VEGF and neuroprotection<br />

Previous data have shown that VEGF may <strong>in</strong>fluence<br />

neuronal and glial cells [13], and it was demonstrated that<br />

VEGF expressed by neurons can serve both paracr<strong>in</strong>e and<br />

autocr<strong>in</strong>e functions <strong>in</strong> the CNS [14]. Studies have shown that<br />

VEGF and its receptors, localized on neurons and astrocytes,<br />

play a neuroprotective role aga<strong>in</strong>st ischemia and sp<strong>in</strong>al cord<br />

<strong>in</strong>jury. The functions of vascular and nervous tissue are<br />

l<strong>in</strong>ked because VEGF shares common receptor signal<strong>in</strong>g<br />

with SEMA3A [15].<br />

Accord<strong>in</strong>g to Sun and Guo, the mechanisms by which VEGF<br />

exerts neuroprotection <strong>in</strong>clude the modulation of the<br />

phosphatidyl<strong>in</strong>ositol 3'-k<strong>in</strong>ase (PI3K)/Akt/nuclear factor<br />

(NF)κB signal<strong>in</strong>g pathway, <strong>in</strong>duction of neural progenitor<br />

proliferation, activation of neuron maturation <strong>in</strong> adult rat<br />

bra<strong>in</strong> and <strong>in</strong>hibition of apoptosis [16]. However, these<br />

neuroprotective mechanisms have not been confirmed <strong>in</strong><br />

human studies and it is difficult to assess the molecular<br />

activity of VEGF <strong>in</strong> ALS patients. Thus far, it is still<br />

uncerta<strong>in</strong> whether apoptosis plays a role <strong>in</strong> cell death <strong>in</strong><br />

ALS, or if the <strong>in</strong>hibition of apoptosis by VEGF has a<br />

protective effect <strong>in</strong> this disease. Studies have demonstrated<br />

that VEGF is a mitogen for astrocytes [17], and VEGF has<br />

been shown to stimulate neurogenesis <strong>in</strong> the proliferative<br />

zones of the human bra<strong>in</strong> [18]. VEGF also has a neurotrophic<br />

effect, via <strong>in</strong>duction of motor neurons that confer protection<br />

aga<strong>in</strong>st hypoxia [19•], and can reduce the hypoxic death of<br />

cultured cerebral cortical neurons via activation of VEGFR2<br />

[20]. In endothelial cells, VEGF attenuates oxidative <strong>in</strong>jury<br />

through <strong>in</strong>hibition of reactive species production and by<br />

<strong>in</strong>duction of SOD2 expression [21,22]. It was also observed<br />

that VEGF has a neuroprotective effect on hippocampal<br />

neurons [23,24]. Another <strong>in</strong>vestigation showed that the<br />

<strong>in</strong>activation of VEGF <strong>in</strong> the nervous system leads to<br />

dim<strong>in</strong>ish<strong>in</strong>g vessel density, result<strong>in</strong>g <strong>in</strong> ischemia and severe<br />

degeneration [25]. It is also known that manganese<br />

superoxide dismutase (Mn-SOD) plays a protective role


aga<strong>in</strong>st oxidative stress <strong>in</strong>jury. VEGF can stimulate<br />

expression of Mn-SOD through the negative PI3K/Aktforkhead<br />

pathway and the positive prote<strong>in</strong> k<strong>in</strong>ase C-NFκB<br />

pathway [26]. VEGFR and Akt offer protection <strong>in</strong><br />

experimental models of hypoxic cerebellar granule neurons<br />

[27], and VEGF also protects motor neurons aga<strong>in</strong>st<br />

glutamate and N-methyl-D-aspartate toxicity. VEGF <strong>in</strong>hibits<br />

glutamate-mediated toxicity through PI3K/Akt and<br />

MEK/ERK anti-apoptotic pathways [28••], and it has also<br />

been revealed that VEGF plays an important role <strong>in</strong> the<br />

growth and structural stability of neurons [29]. A protective<br />

effect was observed <strong>in</strong> hippocampal, cortical, cerebellar,<br />

dopam<strong>in</strong>ergic and other neurons, along with a<br />

neuroprotective role <strong>in</strong> cerebral ischemic stroke [30,31],<br />

offer<strong>in</strong>g protection via enhanc<strong>in</strong>g angiogenesis <strong>in</strong> the<br />

penumbra and reduc<strong>in</strong>g <strong>in</strong>farct volume [32,33]. Previous<br />

studies demonstrated that VEGF <strong>in</strong>fluences apoptosis,<br />

exert<strong>in</strong>g anti-apoptotic activity through <strong>in</strong>hibition of<br />

caspase-3 pathways and via VEGFR2-mediated activation of<br />

PI3K, Akt and NFκB pathways [34,35]. One study,<br />

conducted on cerebral cortical neurons and other cell l<strong>in</strong>es,<br />

showed that VEGF <strong>in</strong>hibits apoptosis through the activation<br />

<strong>in</strong>hibitor of apoptosis prote<strong>in</strong> (XIAP) and Bcl-2 [36]. VEGF<br />

has a protective role aga<strong>in</strong>st oxidative stress and mutant<br />

SOD1-mediated motor neuron death via activation of the<br />

PI3K/Akt pathway [37].<br />

It has been observed that glia may have an important role <strong>in</strong><br />

neurodegeneration <strong>in</strong> ALS. VEGF <strong>in</strong>fluences the growth and<br />

differentiation of astrocytes <strong>in</strong> the CNS; it has gliotrophic<br />

effects via the mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase/<br />

extracellular signal-related k<strong>in</strong>ase and PI3K signal<strong>in</strong>g pathways<br />

[38]. Krum and Khaibull<strong>in</strong>a demonstrated that <strong>in</strong>hibition of<br />

endogenous VEGF <strong>in</strong>fluences the revascularization and<br />

proliferation of astroglia <strong>in</strong> the bra<strong>in</strong> [39]. This f<strong>in</strong>d<strong>in</strong>g<br />

<strong>in</strong>dicates a significant role for VEGF <strong>in</strong> the repair of CNS<br />

tissue after <strong>in</strong>jury. VEGF also <strong>in</strong>duces the proliferation of<br />

microglial cells <strong>in</strong> the bra<strong>in</strong> [40]. The ma<strong>in</strong> problem with the<br />

above <strong>in</strong>vestigations is that they were conducted on<br />

experimental animal models and all of the protective<br />

functions of VEGF have not yet been confirmed <strong>in</strong> humans.<br />

The activities of VEGF warrant further cl<strong>in</strong>ical research<br />

and/or neuropathological studies of human ALS because it<br />

is not certa<strong>in</strong> that VEGF has a protective effect <strong>in</strong> this<br />

context.<br />

It appears that migration of neural progenitors is an<br />

important process for repair<strong>in</strong>g the CNS. VEGF can<br />

<strong>in</strong>fluence stem cells, <strong>in</strong>clud<strong>in</strong>g neural progenitors, and it is<br />

also known that VEGF mRNA and its receptors are<br />

expressed <strong>in</strong> neural stem cells [41]. Zhang et al showed that<br />

progenitor cells may express VEGF receptors and that<br />

VEGFR2 mediates the effect of VEGF on progenitor<br />

migration [42]. Accord<strong>in</strong>g to Brusselmans et al, VEGF is a<br />

survival factor for embryonic stem cells dur<strong>in</strong>g hypoxia [43].<br />

Experiments showed that hypoxia <strong>in</strong>creases the expression<br />

of VEGF and its receptor <strong>in</strong> neural stem cells, result<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>hibition of apoptosis [44]. Additionally, it has been<br />

demonstrated that the gene transfer of VEGF <strong>in</strong>to neural<br />

stem cells reduces apoptosis caused by hypoxia [45]. This<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicates that VEGF has a protective role on neural<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 55<br />

stem cells and neurogenesis <strong>in</strong> the adult nervous system.<br />

The <strong>in</strong>vestigation of VEGF function <strong>in</strong> the develop<strong>in</strong>g bra<strong>in</strong><br />

showed that the <strong>in</strong>activation of this growth factor leads to<br />

neural damage of the bra<strong>in</strong> tissue [46].<br />

Judg<strong>in</strong>g by these protective effects of VEGF, this growth factor<br />

may have cl<strong>in</strong>ical utility <strong>in</strong> the treatment of different diseases,<br />

<strong>in</strong>clud<strong>in</strong>g ischemic disorders such as stroke or myocardial<br />

<strong>in</strong>farction. It may also have an application <strong>in</strong> the therapy of<br />

different neurodegenerative diseases, <strong>in</strong>clud<strong>in</strong>g ALS. However,<br />

there are some concerns with the cl<strong>in</strong>ical use of this growth<br />

factor and, furthermore, the protective effects of VEGF<br />

described above have not yet been confirmed <strong>in</strong> humans.<br />

VEGF and ALS<br />

There is evidence to suggest that VEGF may play a<br />

protective role <strong>in</strong> ALS. It is known that the expression of<br />

VEGF is upregulated by hypoxia, which <strong>in</strong>creases<br />

transcription because of the higher stability of VEGF mRNA,<br />

and through the b<strong>in</strong>d<strong>in</strong>g of the transcription factor hypoxia<strong>in</strong>ducible<br />

factor-1 to the 5'-promoter region [47]. In contrast,<br />

it has been demonstrated that the hypoxic <strong>in</strong>duction of<br />

VEGF <strong>in</strong> SOD1 transgenic mice (an animal model of ALS) is<br />

selectively impaired from a very early stage. The high<br />

basel<strong>in</strong>e and the low hypoxia-<strong>in</strong>duced expression of VEGF<br />

has been observed <strong>in</strong> the sp<strong>in</strong>al cord of SOD1 mutant mice<br />

[48]. Downregulation of VEGF expression <strong>in</strong> the sp<strong>in</strong>al cord<br />

of G93A SOD1 rats has also been shown [49]. One study<br />

showed that deletion of the hypoxia-responsive element <strong>in</strong><br />

the promoter region of the VEGF gene <strong>in</strong> transgenic mice<br />

leads to degeneration of motor neurons [50••]. The <strong>in</strong>crease<br />

<strong>in</strong> reactive oxygen species production observed <strong>in</strong> ALS can<br />

activate hypoxia-<strong>in</strong>ducible factors, result<strong>in</strong>g <strong>in</strong> the <strong>in</strong>creased<br />

transcription of VEGF [51]. As previously described,<br />

glutamate-mediated toxicity may play an important role <strong>in</strong><br />

the pathogenesis of ALS. It is possible that the impairment of<br />

VEGF expression <strong>in</strong> ALS caused by hypoxia can augment<br />

sensitivity of motor neurons for glutamate-mediated<br />

toxicity. It is also known that glial cells <strong>in</strong>fluence VEGF<br />

expression, and a high basel<strong>in</strong>e VEGF level observed <strong>in</strong><br />

transgenic SOD1 mice might be the result of astrogliosis or<br />

changes <strong>in</strong> pro-<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong> the ALS sp<strong>in</strong>al<br />

cord [52]. Thus, changes <strong>in</strong> VEGF may be due to the<br />

pathomorphological status of glia caused by the <strong>in</strong>fluence of<br />

harmful factors, <strong>in</strong>clud<strong>in</strong>g ischemia and <strong>in</strong>flammation.<br />

Human genetic studies have shown that there is an<br />

association between VEGF and ALS; two at-risk VEGF<br />

genotypes <strong>in</strong>fluence risk for ALS. Moreover, the human<br />

haplotypes that are associated with low VEGF levels<br />

<strong>in</strong>crease the risk for ALS [53••]. Huez et al determ<strong>in</strong>ed two<br />

homozygous recessive haplotypes of VEGF that are def<strong>in</strong>ed<br />

by s<strong>in</strong>gle nucleotide polymorphisms <strong>in</strong> the promoter and <strong>in</strong><br />

the 5'-untranslated region (5'-UTR) of exon 1 as risk haplotypes<br />

of ALS [54]. Moreover, it was revealed that haplotypes<br />

AAG/AAG and AGG/AGG <strong>in</strong>fluence the expression of<br />

VEGF by <strong>in</strong>hibit<strong>in</strong>g VEGF mRNA transcription and<br />

translation, result<strong>in</strong>g <strong>in</strong> dim<strong>in</strong>ish<strong>in</strong>g VEGF levels that could<br />

lead to motor neuron death. It has also been suggested that<br />

other regulators of the VEGF pathway, such as VEGFR2 and<br />

NRP1 and their effectors, might <strong>in</strong>fluence risk for ALS.


56 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

The results of these genetic studies must be confirmed <strong>in</strong><br />

future experiments as it is not clear whether primary genetic<br />

factors are responsible for the effects of VEGF expression.<br />

The fact that oxidative stress also primarily <strong>in</strong>fluences<br />

expression and levels of VEGF <strong>in</strong> these cases cannot be<br />

excluded. Data have shown decreased VEGF plasma levels<br />

<strong>in</strong> ALS patients compared with controls, but no correlation<br />

was found with the cl<strong>in</strong>ical parameters of the disease. In<br />

contrast, Nygren et al observed that VEGF levels rema<strong>in</strong>ed<br />

unchanged <strong>in</strong> the sp<strong>in</strong>al cord of ALS patients compared<br />

with controls, but that serum VEGF levels were <strong>in</strong>creased <strong>in</strong><br />

ALS patients, probably due to hypoxia [55]. It was observed<br />

that CSF VEGF levels were <strong>in</strong>creased <strong>in</strong> ALS patients with<br />

long duration of disease and <strong>in</strong> limb-onset ALS [56].<br />

Another study showed low cerebrosp<strong>in</strong>al fluid VEGF levels<br />

dur<strong>in</strong>g the first year of ALS, which were <strong>in</strong>dependent of<br />

VEGF promoter polymorphism [57]. Thus, there are<br />

discrepancies <strong>in</strong> the data from human studies and it is<br />

difficult to conclude that changes <strong>in</strong> VEGF levels may lead to<br />

neurodegeneration <strong>in</strong> ALS. It is possible that such diverse<br />

results are caused by different haplotypes <strong>in</strong> the ALS<br />

patients studied. Thus, it is difficult to compare the results<br />

from different studies and to draw the correct conclusions.<br />

The pathomorphological studies conducted on the sp<strong>in</strong>al<br />

cord and bra<strong>in</strong> of ALS patients could provide further<br />

<strong>in</strong>formation concern<strong>in</strong>g VEGF expression and function <strong>in</strong><br />

the CNS.<br />

It was hypothesized that decreased VEGF levels could<br />

<strong>in</strong>fluence the neurotrophic and angiogenic activity of this<br />

growth factor. The mechanism of motor neuron loss <strong>in</strong> ALS<br />

has not been elucidated, but it appears that decreased VEGF<br />

levels could affect blood flow <strong>in</strong> the sp<strong>in</strong>al cord, which<br />

<strong>in</strong>fluences the life span of motor neurons. It is possible that<br />

reduced neural perfusion caused by decreased VEGF levels<br />

may be due to affected vasoregulation, possibly via nitric<br />

oxide activity. Conversely, decreased VEGF levels may also<br />

affect the activity of perivascular autonomic nerves that can<br />

lead to the impairment of vascular tone and sp<strong>in</strong>al cord<br />

perfusion [58•]. Additionally, decreased VEGF levels might<br />

dim<strong>in</strong>ish its neurotrophic activity on motor neurons. There<br />

is evidence that impaired VEGF regulation <strong>in</strong> mice leads to<br />

reduction of sp<strong>in</strong>al cord VEGF levels, especially dur<strong>in</strong>g<br />

hypoxia, result<strong>in</strong>g <strong>in</strong> a neural blood flow reduction of 50%.<br />

Motor neurons are more vulnerable to hypoperfusion, and<br />

chronic ischemia of the sp<strong>in</strong>al cord can cause motor neuron<br />

degeneration. Decreased regional cerebral blood flow has<br />

been observed <strong>in</strong> ALS patients [59], yet its connection to<br />

VEGF levels has not been <strong>in</strong>vestigated. Accord<strong>in</strong>g to<br />

Lambrechts et al, sufficient VEGF levels <strong>in</strong> humans with high<br />

VEGF-produc<strong>in</strong>g genotypes protect the perfusion of<br />

neurons, but the low levels of this cytok<strong>in</strong>e may be a risk<br />

factor for ALS [60•]. It seems that the above mentioned<br />

mechanism might play a role <strong>in</strong> neurodegeneration <strong>in</strong> ALS,<br />

but this requires further research.<br />

Muscle atrophy is one of the signs of disease <strong>in</strong> ALS. It was<br />

revealed that VEGF stimulates the regeneration of skeletal<br />

muscles via the protection of myogenic cells from apoptosis<br />

and the stimulation of growth of myogenic fibers. On<br />

balance, it was observed that progenitor cells from bone<br />

marrow, which are <strong>in</strong>duced by VEGF, can also <strong>in</strong>fluence the<br />

regeneration of muscle [61]. Thus, theoretically, VEGF could<br />

<strong>in</strong>hibit muscle damage <strong>in</strong> ALS and might be useful for<br />

muscle protection therapy <strong>in</strong> this disease, but no cl<strong>in</strong>ical<br />

studies have yet confirmed this.<br />

The protective effects of VEGF that have been demonstrated<br />

<strong>in</strong> experimental studies have not been confirmed <strong>in</strong> cl<strong>in</strong>ical<br />

trials. Data have shown that treatment with a variety of<br />

different growth factors, <strong>in</strong>clud<strong>in</strong>g ciliary neurotrophic<br />

factor, <strong>in</strong>sul<strong>in</strong> growth factor, glial cell-derived neurotrophic<br />

factor (GDNF) and bra<strong>in</strong>-derived neurotrophic factor, did<br />

not significantly <strong>in</strong>fluence ALS. It was suggested that the<br />

<strong>in</strong>efficiency of treatment us<strong>in</strong>g growth factors was caused by<br />

the subcutaneous route of their adm<strong>in</strong>istration and was the<br />

result of the limited ability of the growth factors to cross the<br />

blood-bra<strong>in</strong> barrier (BBB) [62]. It is possible that the transfer<br />

of VEGF across the BBB us<strong>in</strong>g viral vectors might be the best<br />

route of adm<strong>in</strong>istration, and it is suspected that VEGF<br />

therapy could be most effective <strong>in</strong> the earliest phase after the<br />

cl<strong>in</strong>ical signs of ALS onset. Experiments conducted on a<br />

transgenic mouse model of ALS showed that VEGF may be<br />

an effective treatment after disease onset and can delay<br />

<strong>in</strong>itiation and slow progression of the disease [63••,64••].<br />

Thus, the application of this therapy to humans, especially<br />

<strong>in</strong> the earliest phase of the disease, requires evaluation <strong>in</strong><br />

extensive cl<strong>in</strong>ical studies. Storkebaum et al [65] showed that<br />

<strong>in</strong>tracerebroventricular delivery of recomb<strong>in</strong>ant VEGF <strong>in</strong> the<br />

transgenic SOD1 rat model of ALS delays disease onset and<br />

prolongs survival of animals. Based on available data, the<br />

transplantation of genetically modified cells <strong>in</strong>to the CNS<br />

may be a promis<strong>in</strong>g strategy for the delivery and expression<br />

of different neurotrophic factors, <strong>in</strong>clud<strong>in</strong>g VEGF. It has<br />

been suggested that the specific promoters may control the<br />

gene expression that is required for dose-specific and timespecific<br />

therapy [66]. VEGF can be delivered <strong>in</strong>to the CNS by<br />

several routes, <strong>in</strong>clud<strong>in</strong>g as a recomb<strong>in</strong>ant prote<strong>in</strong>, and<br />

through delivery of the gene as a naked plasmid or via viral<br />

vector [67]; these routes of adm<strong>in</strong>istration are promis<strong>in</strong>g for<br />

cl<strong>in</strong>ical therapy. Studies are cont<strong>in</strong>u<strong>in</strong>g, and it has been<br />

demonstrated that us<strong>in</strong>g adeno-associated virus as a vector<br />

for gene delivery <strong>in</strong>to motor neuron-like cells may be an<br />

important strategy <strong>in</strong> the future treatment of ALS [68]. Kle<strong>in</strong><br />

et al showed GDNF delivery us<strong>in</strong>g human neural progenitor<br />

cells <strong>in</strong> a rat model of ALS [69]. Another potential treatment<br />

option is via the adm<strong>in</strong>istration of the heat shock prote<strong>in</strong> co<strong>in</strong>ducers,<br />

which <strong>in</strong>fluence cell stress response to cell<br />

protection [70]. However, it is difficult to evaluate the effect<br />

of such therapy <strong>in</strong> human ALS.<br />

Stem cells<br />

Human embryonic stem cells and neural stem cells can be<br />

used <strong>in</strong> reparative therapy <strong>in</strong> ALS. Human neural stem-cellderived<br />

chol<strong>in</strong>ergic neurons can <strong>in</strong>nervate muscle <strong>in</strong> motor<br />

neuron-deficient adult rats [71], and Vastag observed<br />

partially reversed paralysis <strong>in</strong> a rat model of ALS after stemcell<br />

therapy [72]. However, there are no data concern<strong>in</strong>g the<br />

<strong>in</strong>fluence of stem cells on cl<strong>in</strong>ical signs <strong>in</strong> human ALS,<br />

although stem-cell transplantation had a protective effect <strong>in</strong><br />

animal models. The mechanisms of stem-cell protection are<br />

unclear, but it has been suggested that cell fusion,


neurotrophic factor release, <strong>in</strong>clud<strong>in</strong>g VEGF, endogenous<br />

stem-cell proliferation and transdifferentiation may all play<br />

a role [73].<br />

Stem-cell therapy may be a promis<strong>in</strong>g treatment for ALS<br />

[74]. It is known that VEGF promotes the maturation of<br />

neurons and endothelial cells by <strong>in</strong>fluenc<strong>in</strong>g stem cells that<br />

support reparative processes <strong>in</strong> the nervous system. The<br />

therapeutic effect exerted by embryonic and neural stem<br />

cells might, at least <strong>in</strong> part, be mediated by the secretion of<br />

VEGF. The protective effect of non-<strong>in</strong>vasive cell-based<br />

therapy of ALS has been observed by us<strong>in</strong>g <strong>in</strong>travenous<br />

adm<strong>in</strong>istration of human umbilical cord blood cells <strong>in</strong> a<br />

mouse model of ALS [75]. It might be <strong>in</strong>terest<strong>in</strong>g to apply<br />

such non-<strong>in</strong>vasive therapy <strong>in</strong> humans, but there are no data<br />

concern<strong>in</strong>g cl<strong>in</strong>ical trials of this nature. The transplantation<br />

of neurons and glia us<strong>in</strong>g human motor neuronal progenitor<br />

cells or xenografts of animal cells has also been proposed.<br />

However, <strong>in</strong> a rat model, Li et al demonstrated that grafted<br />

cells do not migrate and die by apoptosis [76]. One cl<strong>in</strong>ical<br />

study showed that the <strong>in</strong>trasp<strong>in</strong>al cord implantation of<br />

autologous mesenchymal stem cells was safe [77], but this<br />

result needs confirmation <strong>in</strong> other studies. Accord<strong>in</strong>g to<br />

Silani et al, stem-cell therapy should be used <strong>in</strong> comb<strong>in</strong>ation<br />

with other treatments, such as trophic factors, <strong>in</strong>clud<strong>in</strong>g<br />

VEGF [78]. Moreover, it was demonstrated that comb<strong>in</strong>ed<br />

cord blood stem cells and gene therapy <strong>in</strong>duced<br />

angiogenesis and improved cardiac performance <strong>in</strong> a mouse<br />

model of acute myocardial <strong>in</strong>farction [79]. Thus, this<br />

comb<strong>in</strong>ed therapy could be promis<strong>in</strong>g for the future <strong>in</strong> ALS,<br />

although there are no data concern<strong>in</strong>g cl<strong>in</strong>ical trials of such<br />

therapy. However, <strong>in</strong> the past, different comb<strong>in</strong>ed therapies<br />

have been applied <strong>in</strong> ALS patients and their effect did not<br />

br<strong>in</strong>g any significant cl<strong>in</strong>ical improvement.<br />

Prote<strong>in</strong> aggregates<br />

The aggregation of prote<strong>in</strong>s is a typical pathomorphological<br />

hallmark of different neurodegenerative diseases, <strong>in</strong>clud<strong>in</strong>g<br />

ALS [80]. Some publications <strong>in</strong>dicate that the toxicity of prote<strong>in</strong><br />

aggregates may be responsible for neurodegeneration. Yang et<br />

al demonstrated that VEGF dim<strong>in</strong>ishes β-amyloid-<strong>in</strong>duced<br />

neurotoxicity <strong>in</strong> Alzheimer's disease through the <strong>in</strong>hibition<br />

of β-amyloid aggregation and the production of reactive<br />

oxygen species [81]. VEGF may also attenuate toxicity of<br />

prote<strong>in</strong> aggregates <strong>in</strong> ALS. This needs cl<strong>in</strong>ical <strong>in</strong>vestigation,<br />

but it appears that us<strong>in</strong>g VEGF for the <strong>in</strong>hibition of<br />

aggregates <strong>in</strong> ALS might be an <strong>in</strong>terest<strong>in</strong>g therapeutic<br />

strategy. It is also possible that other components of the<br />

VEGF pathway might play a role <strong>in</strong> motor neuron death.<br />

These <strong>in</strong>clude other VEGF receptors and their signal<strong>in</strong>g<br />

effectors [82].<br />

Conclusions<br />

In recent years, attention has been focused on the role of<br />

gene therapy and stem-cell therapy for ALS. Based on<br />

available data, it seems that VEGF could be an important<br />

growth factor for ALS therapy. The protective function that<br />

VEGF exerts via its angiotrophic, neurotrophic and<br />

gliotrophic effects might <strong>in</strong>hibit neurodegeneration <strong>in</strong> ALS.<br />

Additionally, the protective effect of VEGF on stem cells of<br />

adult CNS tissue could support reparative processes <strong>in</strong> ALS<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 57<br />

and slow neurodegeneration. It is known that endogenous<br />

precursors or stem cells can differentiate <strong>in</strong>to new<br />

corticosp<strong>in</strong>al motor neurons <strong>in</strong> the adult bra<strong>in</strong> and<br />

molecular modification of their activity by VEGF might<br />

<strong>in</strong>fluence cell death. However, there are some limitations to<br />

us<strong>in</strong>g this cytok<strong>in</strong>e cl<strong>in</strong>ically, <strong>in</strong> that the beneficial effect of<br />

VEGF therapy that has been observed <strong>in</strong> animal models has<br />

not been confirmed <strong>in</strong> cl<strong>in</strong>ical trials. Moreover, there are<br />

some technical difficulties surround<strong>in</strong>g the delivery of VEGF<br />

<strong>in</strong>to the human CNS. It is known that the application of<br />

different growth factors <strong>in</strong> cl<strong>in</strong>ical trials did not have a<br />

significant effect, but gene therapy to deliver VEGF <strong>in</strong>to<br />

sp<strong>in</strong>al cord and bra<strong>in</strong>, or comb<strong>in</strong>ed therapy with stem cells,<br />

should be considered as a future treatment for ALS.<br />

References<br />

1. McGeer EG, McGeer PL: Pharmacologic approaches to the treatment of<br />

amyotrophic lateral sclerosis. Bio<strong>Drugs</strong> (2005) 19(1):31-37.<br />

2. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A,<br />

Donaldson D, Goto J, Oregan JP, Deng H-X, Rahmani Z et al: Mutations <strong>in</strong><br />

Cu/Zn superoxide dismutase gene are associated with familial<br />

amyotrophic lateral sclerosis. Nature (1993) 362(6415):59-62.<br />

3. de Vries C, Esscobedo JA, Ueno K, Houck K, Ferrara N, Williams LT:<br />

The fms-like tyros<strong>in</strong>e k<strong>in</strong>ase, a receptor for vascular endothelial<br />

growth factor. Science (1992) 255(5047):989-991.<br />

4. Millauer B, Wizigmann-Voos S, Schnurch H, Mart<strong>in</strong>ez R, Moller NP,<br />

Risau W, Ullrich A: High aff<strong>in</strong>ity VEGF b<strong>in</strong>d<strong>in</strong>g and developmental<br />

expression suggest Flk-1 as a major regulator of vasculogenesis<br />

and angiogenesis. Cell (1993) 72(6):835-846.<br />

5. Spliet WG, Aronica E, Ramkema M, Witmer AN, Schl<strong>in</strong>gemann RO, de<br />

Jong JM, Troost D: Immunohistochemical localization of vascular<br />

endothelial growth factor receptors -1, -2 and -3 <strong>in</strong> human sp<strong>in</strong>al<br />

cord: Altered expression <strong>in</strong> amyotrophic lateral sclerosis.<br />

Neuropathol Appl Neurobiol (2004) 30(4):351-359.<br />

6. Park JA, Choi KS, Kim SY, Kim KW: Coord<strong>in</strong>ated <strong>in</strong>teraction of the<br />

vascular and nervous systems: From molecule- to cell-based<br />

approaches. Biochem Biophys Res Commun (2003) 311(2):247-253.<br />

7. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Mart<strong>in</strong><br />

J, Zachary I: Vascular endothelial growth factor stimulates<br />

prostacycl<strong>in</strong> production and activation of cytosolic phospholipase<br />

A2 <strong>in</strong> endothelial cells via p42/p44 mitogen-activated prote<strong>in</strong><br />

k<strong>in</strong>ase. FEBS Lett (1997) 420(1):28-32.<br />

8. Lait<strong>in</strong>en M, Zachary I, Breier G, Pakkanen T, Hakk<strong>in</strong>en T, Luoma J, Abedi H,<br />

Risau W, Soma M, Laakso M, Mart<strong>in</strong> JF, Yla-Herttuala S: VEGF gene<br />

transfer reduces <strong>in</strong>timal thicken<strong>in</strong>g via <strong>in</strong>creased production of nitric<br />

oxide <strong>in</strong> carotid arteries. Hum Gene Ther (1997) 8(15):1737-1744.<br />

9. Facchiano F, Fernandez E, Mancarella S, Maira G, Miscusi M,<br />

D'Arcangelo D, Cim<strong>in</strong>o-Reale G, Falchetti ML, Capogrossi MC, Pall<strong>in</strong>i R:<br />

Promotion of regeneration of corticosp<strong>in</strong>al tract axons <strong>in</strong> rats with<br />

recomb<strong>in</strong>ant vascular endothelial growth factor alone and<br />

comb<strong>in</strong>ed with adenovirus cod<strong>in</strong>g for this factor. J Neurosurg (2002)<br />

97(1):161-168.<br />

10. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its<br />

receptors. Nat Med (2003) 9(6):669-676.<br />

11. Schratzbereger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C,<br />

Silver M, Kra<strong>in</strong><strong>in</strong> JG, We<strong>in</strong>berg DH, Ropper AH, Isner JM: Reversal of<br />

experimental diabetic neuropathy by VEGF gene transfer. J Cl<strong>in</strong><br />

Invest (2001) 107(9):1083-1092.<br />

12. Bearden SE, Segal SS: Microvessels promote motor nerve survival<br />

and regeneration through local VEGF release follow<strong>in</strong>g ectopic<br />

reattachment. Microcirculation (2004) 11(8):633-644.<br />

13. Carmeliet P, Storkebaum E: Vascular and neuronal effects of VEGF<br />

<strong>in</strong> the nervous system: Implications for neurological disorders.<br />

Sem<strong>in</strong> Cell Dev Biol (2002) 13(1):39-53.


58 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

14. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB,<br />

Madri JA, Ment LR: Paracr<strong>in</strong>e and autocr<strong>in</strong>e functions of neuronal<br />

vascular endothelial growth factor (VEGF) <strong>in</strong> the central nervous<br />

system. J Biol Chem (2002) 277(13):11410-11415.<br />

15. Rosenste<strong>in</strong> JM, Krum JM: New roles for VEGF <strong>in</strong> nervous tissue -<br />

beyond blood vessels. Exp Neurol (2004) 187(2):246-253.<br />

16. Sun FY, Guo X: Molecular and cellular mechanisms of<br />

neuroprotection by vascular endothelial growth factor. J Neurosci<br />

Res (2005) 79(1-2):180-184.<br />

17. Krum JM, Mani N, Rosenste<strong>in</strong> JM: Angiogenic and astroglial<br />

responses to vascular endothelial growth factor adm<strong>in</strong>istration <strong>in</strong><br />

adult rat bra<strong>in</strong>. Neuroscience (2002) 110(4):589-604.<br />

18. J<strong>in</strong> K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA: Vascular<br />

endothelial growth factor (VEGF) stimulates neurogenesis <strong>in</strong> vitro<br />

and <strong>in</strong> vivo. Proc Natl Acad Sci USA (2002) 99(18):11946-11950.<br />

19. Van Den Bosch L, Storkebaum E, Vlem<strong>in</strong>ckx V, Moons L,<br />

Vanopdenbosch L, Scheveneels W, Carmeliet P, Robberecht W:<br />

Effects of vascular endothelial growth factor (VEGF) on motor<br />

neuron degeneration. Neurobiol Dis (2004) 17(1):21-28.<br />

• This paper describes how VEGF has a neurotrophic effect on motor neurons<br />

<strong>in</strong> vitro.<br />

20. J<strong>in</strong> KL, Mao XO, Greenberg DA: Vascular endothelial growth factor:<br />

Direct neuroprotective effect on <strong>in</strong> vitro ischemia. Proc Natl Acad<br />

Sci USA (2000) 97(18):10242-10247.<br />

21. Yang W, de Bono DP: A new role for vascular endothelial growth<br />

factor and fibroblast growth factors: Increas<strong>in</strong>g endothelial<br />

resistance to oxidative stress. FEBS Lett (1997) 403(2):139-142.<br />

22. Abid MR, Tsai JC, Spokes KC, Deshpande SS, Irani K, Aird WC: Vascular<br />

endothelial growth factor <strong>in</strong>duces manganese-superoxide dismutase<br />

expression <strong>in</strong> endothelial cells by a Rac1-regulated NADPH oxidasedependent<br />

mechanism. FASEB J (2001) 15(13):2548-2550.<br />

23. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek<br />

MP, Mitsuda N, Tohyama M: Vascular endothelial growth factor<br />

rescues hippocampal neurons from glutamate-<strong>in</strong>duced toxicity:<br />

Signal transduction cascades. FASEB J (2001) 15(7):1218-1220.<br />

24. Svensson B, Peters M, Konig HG, Poppe M, Levkau B, Rothermundt M,<br />

Arolt V, Kogel D, Prehn JH: Vascular endothelial growth factor<br />

protects cultured rat hippocampal neurons aga<strong>in</strong>st hypoxic <strong>in</strong>jury<br />

via an antiexcitotoxic, caspase-<strong>in</strong>dependent mechanism. J Cereb<br />

Blood Flow Metab (2002) 22(10):1170-1175.<br />

25. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J, Damert A, Miquerol<br />

L, Muhlner U, Kle<strong>in</strong> R, Ferrara N, Wagner EF et al: Cortical and ret<strong>in</strong>al<br />

defects caused by dosage-dependent reductions <strong>in</strong> VEGF-A<br />

paracr<strong>in</strong>e signal<strong>in</strong>g. Dev Biol (2003) 262(2):225-241.<br />

26. Abid MR, Schoots IG, Spokes KC, Wu SQ, Mawh<strong>in</strong>ney Ch, Aird WC:<br />

Vascular endothelial growth factor-mediated <strong>in</strong>duction of<br />

manganese superoxide dismutase occurs through redoxdependent<br />

regulation of forkhead and IκB/NFκB. J Biol Chem (2004)<br />

279(42):44030-44038.<br />

27. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB:<br />

Neuroprotection by hypoxic precondition<strong>in</strong>g requires sequential<br />

activation of vascular endothelial growth factor receptor and Akt. J<br />

Neurosci (2002) 22(15):6401-6407.<br />

28. Greenberg DA, J<strong>in</strong> K: VEGF and ALS: The luckiest growth factor?<br />

Trends Mol Med (2004) 10(1):1-3.<br />

•• A review describ<strong>in</strong>g the role of VEGF <strong>in</strong> neuroprotection and ALS.<br />

29. Rosenste<strong>in</strong> JM, Mani N, Khaibull<strong>in</strong>a A, Krum JM: Neurotrophic effects of<br />

vascular endothelial growth factor on organotypic cortical explants and<br />

primary cortical neurons. J Neurosci (2003) 23(35):11036-11044.<br />

30. Hayashi T, Abe K, Itoyama Y: Reduction of ischemic damage by<br />

application of vascular endothelial growth factor <strong>in</strong> rat bra<strong>in</strong> after<br />

transient ischemia. J Cereb Blood Flow Metab (1998) 18(8):887-895.<br />

31. Sun Y, J<strong>in</strong> K, Xie L, Childs J, Mao XO, Logv<strong>in</strong>ova A, Greenberg DA:<br />

VEGF-<strong>in</strong>duced neuroprotection, neurogenesis and angiogenesis<br />

after focal cerebral ischemia. J Cl<strong>in</strong> Invest (2003) 111(12):1843-1851.<br />

32. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen<br />

N, Chopp M: VEGF enhances angiogenesis and promotes bloodbra<strong>in</strong><br />

leakage <strong>in</strong> the ischemic bra<strong>in</strong>. J Cl<strong>in</strong> Invest (2000) 106(7):829-<br />

838.<br />

33. Harrigan MR, Ennis SR, Sullivan SE, Keep RF: Effects of<br />

<strong>in</strong>traventricular <strong>in</strong>fusion of vascular endothelial growth factor on<br />

cerebral blood flow, edema, and <strong>in</strong>farct volume. Acta Neurochir<br />

(Wien) (2003) 145(1):49-53.<br />

34. J<strong>in</strong> K, Mao XO, Batteur SP, McEachron E, Leahy A, Greenberg DA:<br />

Caspase-3 and the regulation of hypoxic neuronal death by<br />

vascular endothelial growth factor. Neuroscience (2001) 108(2):351-<br />

358.<br />

35. Sondell M, Lundborg G, Kanje M: Vascular endothelial growth factor<br />

has neurotrophic activity and stimulates axonal outgrowth,<br />

enhanc<strong>in</strong>g cell survival and Schwann cell proliferation <strong>in</strong> the<br />

peripheral nervous system. J Neurosci (1999) 19(14):5731-5740.<br />

36. Tran J, Rak J, Sheehan C, Saibil SD, La Casse E, Korneluk RG, Kerbel<br />

RS: Marked <strong>in</strong>duction of the IAP family antiapoptotic prote<strong>in</strong>s<br />

surviv<strong>in</strong> and XIAP by VEGF <strong>in</strong> vascular endothelial cells. Biochem<br />

Biophys Res Commun (1999) 264(3):781-788.<br />

37. Li B, Xu W, Luo C, Gozal D, Liu R: VEGF-<strong>in</strong>duced activation of the<br />

PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron<br />

cell. Bra<strong>in</strong> Res Mol Bra<strong>in</strong> Res (2003) 111(1-2):155-164.<br />

38. Mani N, Khaibull<strong>in</strong>a A, Krum JM, Rosenste<strong>in</strong> JM: Astrocyte growth<br />

effects of vascular endothelial growth factor (VEGF) application to<br />

per<strong>in</strong>atal neocortical explants: Receptor mediation and signal<br />

transduction pathways. Exp Neurol (2005) 192(2):394-406.<br />

39. Krum JM, Khaibull<strong>in</strong>a A: Inhibition of endogenous VEGF impedes<br />

revascularization and astroglial proliferation: Roles for VEGF <strong>in</strong><br />

bra<strong>in</strong> repair. Exp Neurol (2003) 181(2):241-257.<br />

40. Forstreuter F, Lucius R, Mentle<strong>in</strong> R: Vascular endothelial growth<br />

factor <strong>in</strong>duces chemotaxis and proliferation of microglial cells. J<br />

Neuroimmunol (2002) 132(1-2): 93-98.<br />

41. Maurer MH, Tripps WK, Feldmann RE Jr, Kusch<strong>in</strong>sky W: Expression of<br />

vascular endothelial growth factor and its receptors <strong>in</strong> rat neural<br />

stem cells. Neurosci Lett (2003) 344(3):165-168.<br />

42. Zhang H, Vutskits L, Pepper MS, Kiss JZ: VEGF is a chemoattractant<br />

for FGF-2-stimulated neural progenitors. J Cell Biol (2003)<br />

163(6):1375-1384.<br />

43. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerch<strong>in</strong><br />

M: A novel role for vascular endothelial growth factor as an<br />

autocr<strong>in</strong>e survival factor for embryonic stem cells dur<strong>in</strong>g hypoxia.<br />

J Biol Chem (2005) 280(5):3493-3499.<br />

44. Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H,<br />

W<strong>in</strong>kler J, Aigner L, Plate KH, Kuhn HG: Direct stimulation of adult<br />

neural stem cells <strong>in</strong> vitro and neurogenesis <strong>in</strong> vivo by vascular<br />

endothelial growth factor. Bra<strong>in</strong> Pathol (2004) 14(3):237-248.<br />

45. Shen QY, Lu RY, Li M, Wang LM, Xiao SH, X<strong>in</strong>g YG: Recomb<strong>in</strong>ant<br />

adenovirus-mediated vascular endothelial growth factor gene<br />

transfer attenuates hypoxia-<strong>in</strong>duced apoptosis of neural stem cells<br />

<strong>in</strong> vitro. Di Yi Jun Yi Da Xue Xue Bao (2005) 25(4):366-370.<br />

46. Raab S, Beck H, Gaumann A, Yuce A, Gerber HP, Plate K, Hammes<br />

HP, Ferrara N, Breier G: Impaired bra<strong>in</strong> angiogenesis and neuronal<br />

apoptosis <strong>in</strong>duced by conditional homozygous <strong>in</strong>activation of<br />

vascular endothelial growth factor. Thromb Haemost (2004)<br />

91(3):595-605.<br />

47. Zachary I: Vascular endothelial growth factor. Int J Biochem Cell Biol<br />

(1998) 30(11):1169-1174.<br />

48. Murakami T, Ilieva H, Shiote M, Nagata M, Nagano I, Shoji M, Abe K:<br />

Hypoxic <strong>in</strong>duction of vascular endothelial growth factor is<br />

selectively impaired <strong>in</strong> mice carry<strong>in</strong>g the mutant SOD1 gene. Bra<strong>in</strong><br />

Res (2003) 989(2):231-237.<br />

49. Xie Y, Weydt P, Howland DS, Kliot M, Moller T: Inflammatory<br />

mediators and growth factors <strong>in</strong> the sp<strong>in</strong>al cord of G93A SOD1<br />

rats. Neuroreport (2004) 15(16):2513-2516.


50. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans<br />

K, Van Dorpe J, Hell<strong>in</strong>gs P, Gorsel<strong>in</strong>k M, Heymans S, Theilmeier G et<br />

al: Deletion of the hypoxia-response element <strong>in</strong> the vascular<br />

endothelial growth factor promoter causes motor neuron<br />

degeneration. Nat Genet (2001) 28(2):131-138.<br />

•• This paper describes how deletion of the hypoxia-response element <strong>in</strong> the<br />

VEGF promoter lowered expression of this cytok<strong>in</strong>e <strong>in</strong> the sp<strong>in</strong>al cord,<br />

result<strong>in</strong>g <strong>in</strong> motor neuron degeneration.<br />

51. Agani FH, Pichiule P, Chavez JC, LaManna JC: The role of<br />

mitochondria <strong>in</strong> the regulation of hypoxia-<strong>in</strong>ducible factor 1<br />

expression dur<strong>in</strong>g hypoxia. J Biol Chem (2000) 275(46):35863-35867.<br />

52. Nguyen MD, Julien JP, Rivest S: Induction of pro<strong>in</strong>flammatory<br />

molecules <strong>in</strong> mice with amyotrophic lateral sclerosis: No<br />

requirement for proapoptotic <strong>in</strong>terleuk<strong>in</strong>-1β <strong>in</strong> neurodegeneration.<br />

Ann Neurol (2001) 50(5):630-639.<br />

53. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F,<br />

Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I, Al-Chalabi A<br />

et al: VEGF is a modifier of amyotrophic lateral sclerosis <strong>in</strong> mice<br />

and humans and protects motor neurons aga<strong>in</strong>st ischemic death.<br />

Nat Genet (2003) 34(4):383-394.<br />

•• This paper reports that haplotypes that decrease plasma VEGF levels may<br />

<strong>in</strong>fluence neurodegeneration <strong>in</strong> ALS.<br />

54. Huez I, Bornes S, Bresson D, Creancier L, Prats H: New vascular<br />

endothelial growth factor isoform generated by <strong>in</strong>ternal ribosome<br />

entry site - driven CUG translation <strong>in</strong>itiation. Mol Endocr<strong>in</strong>ol (2001)<br />

15(12):2197-2210.<br />

55. Nygren I, Larsson A, Johansson A, Askmark H: VEGF is <strong>in</strong>creased <strong>in</strong><br />

serum but not <strong>in</strong> sp<strong>in</strong>al cord from patients with amyotrophic lateral<br />

sclerosis. Neuroreport (2002) 13(17):2199-2201.<br />

56. Ilzecka J: Cerebrosp<strong>in</strong>al fluid vascular endothelial growth factor<br />

levels <strong>in</strong> patients with amyotrophic lateral sclerosis. Cl<strong>in</strong> Neurol<br />

Neurosurg (2004) 106(4):289-293.<br />

57. Devos D, Moreau C, Lassale P, Perez T, De Seze J, Brunand-Danel V,<br />

Destee A, Tonnel AB, Just N: Low level of the vascular endothelial<br />

growth factor <strong>in</strong> CSF from early ALS patients. Neurology (2004)<br />

62(11):2127-2129.<br />

58. Storkebaum E, Carmeliet P: VEGF: A critical player <strong>in</strong><br />

neurodegeneration. J Cl<strong>in</strong> Invest (2004) 113(1):14-18.<br />

• A review of the role of VEGF <strong>in</strong> neurodegeneration, and its potential<br />

application <strong>in</strong> neuroprotection.<br />

59. Kobari M, Obara K, Watanabe S, Dembo T, Fukuuchi Y: Local cerebral<br />

blood flow <strong>in</strong> motor neuron disease: Correlation with cl<strong>in</strong>ical<br />

f<strong>in</strong>d<strong>in</strong>gs. J Neurol Sci (1996) 144(1-2):64-69.<br />

60. Lambrechts D, Storkebaum E, Carmeliet P: VEGF: Necessary to<br />

prevent motoneuron degeneration, sufficient to treat ALS? Trends<br />

Mol Med (2004) 10(6):275-282.<br />

• A review of VEGF activity as an angiogenic and neurotrophic factor, and its<br />

role <strong>in</strong> neurodegeneration and therapy of ALS.<br />

61. Arsic N, Zacchigna S, Zentil<strong>in</strong> L, Ramirez-Correa G, Pattar<strong>in</strong>i L, Salvi A,<br />

S<strong>in</strong>agra G, Giacca M: Vascular endothelial growth factor stimulates<br />

skeletal muscle regeneration <strong>in</strong> vivo. Mol Ther (2004) 10(5):844-854.<br />

62. Bruijn LI: Amyotrophic lateral sclerosis: From disease mechanisms<br />

to therapies. Biotechniques (2002) 32(5):1112-1121.<br />

63. Zheng C, Nennesmo I, Fadeel B, Henter JI: Vascular endothelial<br />

growth factor prolongs survival <strong>in</strong> a transgenic mouse model of<br />

ALS. Ann Neurol (2004) 56(4): 564-567.<br />

•• This paper describes how VEGF delays progression of ALS symptoms and<br />

prolongs survival <strong>in</strong> a Cu/Zn SOD1 transgenic model of ALS.<br />

64. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA,<br />

K<strong>in</strong>gsman SM, Carmeliet P, Mazarakis ND: VEGF delivery with<br />

retrogradely transported lentivector prolongs survival <strong>in</strong> a mouse<br />

ALS model. Nature (2004) 429(6990):413-417.<br />

•• This paper describes how the <strong>in</strong>jection of VEGF-express<strong>in</strong>g lentiviral vector<br />

<strong>in</strong>to the muscles of G93A SOD1 transgenic mice can delay onset and <strong>in</strong>hibit<br />

progression of ALS.<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 59<br />

65. Storkebaum E, Lambrechts D, Dewerch<strong>in</strong> M, Moreno-Murciano MP,<br />

Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M,<br />

Wyns S et al: Treatment of motoneuron degeneration by<br />

<strong>in</strong>tracerebroventricular delivery of VEGF <strong>in</strong> a rat model of ALS. Nat<br />

Neurosci (2005) 8(1):85-92.<br />

66. Wyman T, Rohrer D, Kirigiti P, Nichols H, Pilcher K, Nilaver G, Machida<br />

C: Promoter-activated expression of nerve growth factor for<br />

treatment of neurodegenerative diseases. Gene Ther (1999)<br />

6(10):1648-1660.<br />

67. Shah PB, Losordo DW: Non-viral vectors for gene therapy: Cl<strong>in</strong>ical<br />

trials <strong>in</strong> cardiovascular disease. Adv Genet (2005) 54:339-361.<br />

68. Keir SD, Xiao X, Li J, Kennedy PG: Adeno-associated virus-mediated<br />

delivery of glial cell l<strong>in</strong>e-derived neurotrophic factor protects motor<br />

neuron-like cells from apoptosis. J Neurovirol (2001) 7(5):437-446.<br />

69. Kle<strong>in</strong> SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M,<br />

Aebischer P, Svendsen CN: GDNF delivery us<strong>in</strong>g human neural<br />

progenitor cells <strong>in</strong> a rat model of ALS. Hum Gene Ther (2005)<br />

16(4):509-521.<br />

70. Nirmalananthan N, Greensmith L: Amyotrophic lateral sclerosis:<br />

Recent advances and future therapies. Curr Op<strong>in</strong> Neurol (2005)<br />

18(6):712-719.<br />

71. Gao J, Coggeshall RE, Tarasenko YI, Wu P: Human neural stem cellderived<br />

chol<strong>in</strong>ergic neurons <strong>in</strong>nervate muscle <strong>in</strong> motoneuron<br />

deficient adult rats. Neuroscience (2005) 131(2):257-262.<br />

72. Vastag B: Stem cells step closer to the cl<strong>in</strong>ic: Paralysis partially<br />

reversed <strong>in</strong> rats with ALS-like disease. J Am Med Assoc (2001)<br />

285(13):1691-1693.<br />

73. Silani V, Corbo M: Cell-replacement therapy with stem cells <strong>in</strong><br />

neurodegenerative diseases. Curr Neurovasc Res (2004) 1(3):283-<br />

289.<br />

74. Silani V, Leigh N: Stem therapy for ALS: Hope and reality. Amyotroph<br />

Lateral Scler Other Motor Neuron Disord (2003) 4(1):8-10.<br />

75. Garbuzova-Davis S, Will<strong>in</strong>g AE, Zigova T, Saporta S, Justen EB, Lane<br />

JC, Hudson JE, Chen N, Davis CD, Sanberg PR: Intravenous<br />

adm<strong>in</strong>istration of human umbilical cord blood cells <strong>in</strong> a mouse<br />

model of amyotrophic lateral sclerosis: Distribution, migration, and<br />

differentiation. J Hematother Stem Cell Res (2003) 12(3):255-270.<br />

76. Li P, Tessler A, Han SS, Fischer I, Rao MS, Selzer ME: Fate of<br />

immortalized human neuronal progenitor cells transplanted <strong>in</strong> rat<br />

sp<strong>in</strong>al cord. Arch Neurol (2005) 62(2):223-229.<br />

77. Mazz<strong>in</strong>i L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C,<br />

Pastore I, Marasso R, Madon E: Stem cell therapy <strong>in</strong> amyotrophic<br />

lateral sclerosis: A methodological approach <strong>in</strong> humans. Amyotroph<br />

Lateral Scler Other Motor Neuron Disord (2003) 4(3):158-161.<br />

78. Silani V, Cova L, Corbo M, Ciammola A, Polli E: Stem-cell therapy for<br />

amyotrophic lateral sclerosis. Lancet (2004) 364(9429):200-202.<br />

79. Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, Chang<br />

CC, Kuan P: Comb<strong>in</strong>ed cord blood stem cells and gene therapy<br />

enhances angiogenesis and improves cardiac performance <strong>in</strong><br />

mouse after acute myocardial <strong>in</strong>farction. Eur J Cl<strong>in</strong> Invest (2005)<br />

35(11):677-686.<br />

80. Wood JD, Beaujeux TP, Shaw PJ: Prote<strong>in</strong> aggregation <strong>in</strong> motor<br />

neuron disorders. Neuropathol Appl Neurobiol (2003) 29(6):529-545.<br />

81. Yang SP, Kwon BO, Gho YS, Chae CB: Specific <strong>in</strong>teraction of<br />

VEGF165 with β-amyloid, and its protective effect on β-amyloid<strong>in</strong>duced<br />

neurotoxicity. J Neurochem (2005) 93(1):118-127.<br />

82. Cleveland JL: A new piece of the ALS puzzle. Nat Genet (2003)<br />

34(4):357-358.


60<br />

Ispronicl<strong>in</strong>e Targacept<br />

Hugo Geerts<br />

Address<br />

In Silico Biosciences Inc<br />

3741 Walnut Street #609<br />

Philadelphia<br />

PA 19104<br />

USA<br />

Email: Hugo-Geerts@In-Silico-Biosciences.com<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):60-69<br />

© The Thomson Corporation ISSN 1472-4472<br />

Targacept (formerly a subsidiary of RJ Reynolds) is develop<strong>in</strong>g<br />

ispronicl<strong>in</strong>e, the lead <strong>in</strong> a series of nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

(nACh) ligands, as a potential oral treatment for cognitive<br />

impairment, <strong>in</strong>clud<strong>in</strong>g a variety of non-Alzheimer's dementias.<br />

In July 2005, Targacept was prepar<strong>in</strong>g for a phase II study <strong>in</strong><br />

patients with mild-to-moderate Alzheimer's disease.<br />

Introduction<br />

With the observation that a nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor<br />

(nAChR) deficit occurs <strong>in</strong> neurodegenerative conditions,<br />

such as Alzheimer's disease (AD), and <strong>in</strong> psychiatric<br />

conditions, such as schizophrenia, there came a considerable<br />

<strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g nicot<strong>in</strong>ic receptor modulators with a<br />

less addictive and toxic profile than nicot<strong>in</strong>e [624142],<br />

[624143]. Although different nAChR subtypes exist <strong>in</strong> the<br />

central nervous system (CNS) as hetero- or homomeric<br />

assemblies of α and β subunits, there is evidence that α7<br />

homomeric and β2-conta<strong>in</strong><strong>in</strong>g (β2*) receptor subunits<br />

predom<strong>in</strong>ate <strong>in</strong> the human bra<strong>in</strong>, as do α3β4 subunits to a<br />

lesser extent [638395], [638396], [638398]. The majority of the<br />

β2* subunits are of the α4β2 nAChR subtype and positron<br />

emission tomography (PET) imag<strong>in</strong>g data <strong>in</strong> humans have<br />

<strong>in</strong>dicated a high density of this subtype <strong>in</strong> the cortex and<br />

thalamus [638427]. Although the majority of data suggest<br />

that β2* nAChR subtypes are selectively affected <strong>in</strong> AD,<br />

other results suggest that α7 nAChR subtypes are also<br />

<strong>in</strong>volved. It is of particular <strong>in</strong>terest to note that <strong>in</strong><br />

schizophrenic patients, both genetic and neuropathological<br />

f<strong>in</strong>d<strong>in</strong>gs suggest that the cognitive deficit is sensitive to<br />

nicot<strong>in</strong>ic receptor modulation. The National Institutes of<br />

Health-sponsored MATRICS (Measurement And Treatment<br />

Research to Improve Cognition <strong>in</strong> Schizophrenia) project<br />

developed a standardized battery of cognitive tests and<br />

identified a number of pharmacological approaches,<br />

<strong>in</strong>clud<strong>in</strong>g nAChR modulation [624144], [624147]. The<br />

follow-up project, called TURNS (Treatment Units for<br />

Research on Neurocognition <strong>in</strong> Schizophrenia), selected<br />

ispronicl<strong>in</strong>e (TC-1734; Targacept Inc) for a pilot phase II<br />

study as an add-on medication with a neuroleptic agent<br />

[631107]. Ispronicl<strong>in</strong>e is currently undergo<strong>in</strong>g phase II<br />

trials by Targacept for the potential treatment of ageassociated<br />

memory impairment (AAMI) and mild<br />

cognitive impairment (MCI) [545766]. A phase II study <strong>in</strong><br />

AD has also commenced [611220]. Targacept is consider<strong>in</strong>g<br />

ispronicl<strong>in</strong>e for cl<strong>in</strong>ical development <strong>in</strong> <strong>in</strong>dications such as<br />

cognitive impairment (associated with schizophrenia and<br />

follow<strong>in</strong>g coronary artery bypass graft<strong>in</strong>g), attention<br />

deficit hyperactivity disorder (ADHD) and some forms of<br />

dementia [624033].<br />

Orig<strong>in</strong>ator Targacept Inc<br />

Status Phase II Cl<strong>in</strong>ical<br />

.<br />

Indication Cognitive disorder<br />

.<br />

Actions Neuroprotectant, Nicot<strong>in</strong>ic ACh agonist, Nootropic<br />

agent<br />

Synonyms & Analogs CLZ-52, CLZ-59, nicot<strong>in</strong>ic ACh<br />

ligands (cognitive disorder), nicot<strong>in</strong>ic ACh ligands (memory<br />

enhancers), RJR-1594, RJR-1595, RJR-1734, RJR-2559,<br />

TC-01695, TC-1698, TC-1707, TC-1709, TC-1734, TC-<br />

2248, TC-2258, TC-01706, TC-01707, TC-01714, TC-<br />

01893, TC-02116, TC-02123, TC-02248, TC-02258, TC-<br />

02531<br />

Registry No: 252870-53-4<br />

C<br />

H 3<br />

CH 3<br />

O<br />

N<br />

It has also been proposed that nicot<strong>in</strong>ic receptor stimulation can<br />

provide neuroprotection aga<strong>in</strong>st some aspects of AD (βamyloid<br />

and glutamate pathology) [622041]. The fact that<br />

galantam<strong>in</strong>e, a chol<strong>in</strong>ergic drug that also has an allosteric<br />

potentiat<strong>in</strong>g ligand effect on nAChRs, is used to treat AD<br />

patients, opens a w<strong>in</strong>dow onto the possible cl<strong>in</strong>ical potential of<br />

nicot<strong>in</strong>ic receptor modulation. As a consequence, the<br />

modulation of nicot<strong>in</strong>ic receptors is an <strong>in</strong>terest<strong>in</strong>g therapeutic<br />

approach that is be<strong>in</strong>g pursued by a number of laboratories<br />

because, <strong>in</strong> pr<strong>in</strong>ciple, it comb<strong>in</strong>es symptomatic treatment with<br />

neuroprotection [516203], [634638].<br />

Synthesis and SAR<br />

Compounds modulat<strong>in</strong>g nAChRs were identified us<strong>in</strong>g<br />

Targacept's proprietary Pentad <strong>in</strong> silico technology [430095],<br />

[512600]. A number of compounds with low nanomolar<br />

aff<strong>in</strong>ities for the nAChR were identified, but the <strong>in</strong> vivo halflives<br />

of these compounds were estimated to be too short. An αmethyl<br />

group was identified as be<strong>in</strong>g essential for <strong>in</strong>creas<strong>in</strong>g<br />

the half-life of these compounds from 0.5 to 1.4 h <strong>in</strong> rodents, as<br />

illustrated by the fact that RJR-2403 (Targacept Inc/Dr Falk<br />

Pharma GmbH), a neuronal nicot<strong>in</strong>ic receptor ligand <strong>in</strong><br />

development for the treatment of ulcerative colitis, was rapidly<br />

metabolized through N-demethylation and oxidation. As a<br />

result of a 'use-patent' problem, cl<strong>in</strong>ical development of RJR-<br />

2403 was suspended and the <strong>in</strong> vitro nicot<strong>in</strong>ic receptor α4β2<br />

specificity of ispronicl<strong>in</strong>e was <strong>in</strong>vestigated. Ispronicl<strong>in</strong>e is the 3isopropoxy-pyrid<strong>in</strong>e<br />

analog of RJR-2403 synthesized to prevent<br />

N-demethylation. It conferred potent neuroprotection and<br />

dopam<strong>in</strong>e release <strong>in</strong> rat striatum, without react<strong>in</strong>g with any<br />

other ganglionic or muscle receptors [345007], [557048].<br />

In order to prepare ispronicl<strong>in</strong>e, (S)-N-methyl-N-(tertbutoxycarbonyl)-4-penten-2-am<strong>in</strong>e<br />

and 3-bromo-5-isopropoxy-<br />

CH 3<br />

H<br />

N<br />

CH 3


pyrid<strong>in</strong>e were coupled via a palladium-catalyzed Heck<br />

coupl<strong>in</strong>g reaction. The result<strong>in</strong>g <strong>in</strong>termediate, (S)-(E)-Nmethyl-N-(tert-butoxycarbonyl)-5-[3-(5-isopropoxy-pyrid<strong>in</strong>)yl]-4-penten-2-am<strong>in</strong>e,<br />

was subsequently treated with 6 M<br />

hydrochloric acid <strong>in</strong> dimethylformamide to give the free<br />

base of ispronicl<strong>in</strong>e [559979].<br />

Precl<strong>in</strong>ical development<br />

Ispronicl<strong>in</strong>e is a high-aff<strong>in</strong>ity (Ki = 11 nM) agonist of nicot<strong>in</strong>ic<br />

receptors <strong>in</strong> rat bra<strong>in</strong> membrane preparations (nicot<strong>in</strong>e Ki = 4<br />

nM) [306443], [363337] and reportedly has specificity for α4β2<br />

nAChRs [306443]; <strong>in</strong> one study <strong>in</strong> rat hippocampal membranes,<br />

ispronicl<strong>in</strong>e was <strong>in</strong>effective at displac<strong>in</strong>g [ 125I]α-bungarotox<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g to α7 nAChRs (Ki > 50,000 nM) [559979]. No further<br />

data on the aff<strong>in</strong>ities for other bra<strong>in</strong> nAChR subtypes are<br />

available.<br />

Ispronicl<strong>in</strong>e did not b<strong>in</strong>d to muscle-type (α1β1δγ) or<br />

ganglion-type (α3β4) peripheral nAChRs at concentrations<br />

up to 100 µM, as determ<strong>in</strong>ed by isotopic ion efflux <strong>in</strong> the<br />

human TE671/RD and rat pheochromocytoma PC12 cell<br />

l<strong>in</strong>es, which express the respective receptors. Conversely,<br />

nicot<strong>in</strong>e activated nAChRs <strong>in</strong> the human and rat cells with<br />

EC50 values of 60 and 20 µM, respectively, suggest<strong>in</strong>g that<br />

ispronicl<strong>in</strong>e has considerable CNS/peripheral nervous<br />

system specificity [306443], [376757]. No other data were<br />

provided regard<strong>in</strong>g human nAChRs.<br />

Induction of dopam<strong>in</strong>e release <strong>in</strong> rat striatal synaptosomes<br />

showed that ispronicl<strong>in</strong>e had a profile comparable to that of<br />

nicot<strong>in</strong>e at these receptors (EC50 = 106 nM and Emax = 85%).<br />

In thalamic synaptosomes, ispronicl<strong>in</strong>e <strong>in</strong>creased ion <strong>in</strong>flux<br />

to an Emax of 58% with an EC50 value of 220 nM, compared<br />

with an Emax of 100% and an EC50 value of 590 nM for<br />

nicot<strong>in</strong>e [306443], [376757]. These data are <strong>in</strong> agreement with<br />

observations that striatal dopam<strong>in</strong>e release is regulated by<br />

β2* nAChRs [636359] and confirm the preference of<br />

ispronicl<strong>in</strong>e for the α4β2 nAChR subtype. Given the<br />

preferential localization of α4β2 nAChRs <strong>in</strong> the thalamus<br />

[638427], the effect of ispronicl<strong>in</strong>e on thalamic synaptosomes<br />

is also very likely mediated via these receptor subtypes.<br />

Ispronicl<strong>in</strong>e improved performance <strong>in</strong> a rat radial arm maze<br />

model <strong>in</strong> vivo, and significant improvements <strong>in</strong> cognition were<br />

observed follow<strong>in</strong>g oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e (0.1, 0.3,<br />

0.6, 3.0 and 6.0 µmol/kg) <strong>in</strong> both acute (presumed to be s<strong>in</strong>gledose)<br />

and chronic (daily for 6 days) schedules [306443]. The<br />

effects on short- and long-term memory <strong>in</strong> this model<br />

reportedly lasted for 18 to > 24 h [325629], [363337], [363536].<br />

In a mur<strong>in</strong>e behavioral despair model, ispronicl<strong>in</strong>e showed<br />

significant activity follow<strong>in</strong>g <strong>in</strong>traperitoneal adm<strong>in</strong>istration of 1<br />

and 3 µmol/kg, but not 10 µmol/kg, and was more effective<br />

than the dibenzazep<strong>in</strong>e antidepressant imipram<strong>in</strong>e (40<br />

µmol/kg ip), show<strong>in</strong>g its potential for additional beneficial<br />

effects as an antidepressant [559979].<br />

Ispronicl<strong>in</strong>e (0.6, 1.0 and 3.0 µmol/kg) [559979] reversed<br />

scopolam<strong>in</strong>e-<strong>in</strong>duced cognitive deficits <strong>in</strong> a rat passive<br />

avoidance model (ED50 = 0.89 µmol/kg) with an <strong>in</strong>verted Ushaped<br />

dose response. This result suggests a possible effect<br />

Ispronicl<strong>in</strong>e Geerts 61<br />

on pre-synaptic ACh release and the subsequent stimulation<br />

of post-synaptic muscar<strong>in</strong>ic receptors, because scopolam<strong>in</strong>e<br />

is not documented to have any effect on nicot<strong>in</strong>ic receptors.<br />

This f<strong>in</strong>d<strong>in</strong>g is corroborated by the observation that a<br />

synergistic effect was achieved <strong>in</strong> this model when a suboptimal<br />

dose of ispronicl<strong>in</strong>e (0.6 µmol/kg) was comb<strong>in</strong>ed<br />

with <strong>in</strong>effective doses of the acetyl chol<strong>in</strong>esterase (AChE)<br />

<strong>in</strong>hibitors tacr<strong>in</strong>e and donepezil. Ispronicl<strong>in</strong>e comb<strong>in</strong>ed with<br />

each <strong>in</strong>hibitor resulted <strong>in</strong> an enhanced step-through latency<br />

compared with sole ispronicl<strong>in</strong>e adm<strong>in</strong>istration. Stepthough<br />

latencies (as % of control) were as follows:<br />

unlesioned, 69%; scopolam<strong>in</strong>e lesioned, 8%; ispronicl<strong>in</strong>e (1.0<br />

µmol/kg), 55%; tacr<strong>in</strong>e (12 µmol/kg), 36%; donepezil (1.0<br />

µmol/kg), 53%; suboptimal ispronicl<strong>in</strong>e (0.6 µmol/kg),<br />

tacr<strong>in</strong>e (1.2 µmol/kg) or donepezil (0.1 µmol/kg), 21, 6 and<br />

21%, respectively; and suboptimal ispronicl<strong>in</strong>e plus tacr<strong>in</strong>e<br />

or donepezil: 37 and 39%, respectively [345774], [559979].<br />

Ispronicl<strong>in</strong>e (7 to 14 days at an unstated dose) reduced<br />

spontaneous locomotor activity <strong>in</strong> rats <strong>in</strong> a monophasic<br />

manner, unlike the biphasic activity of nicot<strong>in</strong>e, for the<br />

duration of the test (90 m<strong>in</strong>). Chronic adm<strong>in</strong>istration of the<br />

compound resulted <strong>in</strong> rapid tolerance [345791]. This<br />

property might necessitate <strong>in</strong>novative dosage schedul<strong>in</strong>g <strong>in</strong><br />

the cl<strong>in</strong>ic.<br />

Acute oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e dose-dependently<br />

<strong>in</strong>creased levels of free ACh <strong>in</strong> the cortex of rats [475601],<br />

[557048]. The lowest active dose was 5 mg/kg and the<br />

maximally effective dose was 10 mg/kg, and these yielded<br />

<strong>in</strong>creases of 36 and 70% over the basal ACh values,<br />

respectively. The maximal effect was observed at the 10mg/kg<br />

dose. A larger dose of ispronicl<strong>in</strong>e (20 mg/kg)<br />

<strong>in</strong>creased the duration of ACh release (to 4 h), but did not<br />

<strong>in</strong>crease the amplitude significantly (84%). With different<br />

doses of nicot<strong>in</strong>e (1.0, 2.5 and 5.0 mg/kg po), the amplitude<br />

of the stimulated ACh response did not change, and the<br />

maximal <strong>in</strong>creases over the basal levels of ACh were 47, 44<br />

and 56%, respectively, 40 to 80 m<strong>in</strong> after treatment. The nonselective<br />

nAChR antagonist mecamylam<strong>in</strong>e (Targacept Inc),<br />

which is <strong>in</strong> development for the potential treatment of<br />

various neuropsychiatric disorders, <strong>in</strong>hibited the ACh<br />

release <strong>in</strong>duced by ispronicl<strong>in</strong>e and nicot<strong>in</strong>e (maximal<br />

effective doses) at a dose of 1 mg/kg when adm<strong>in</strong>istered<br />

subcutaneously 40 m<strong>in</strong> before dos<strong>in</strong>g with ispronicl<strong>in</strong>e and<br />

nicot<strong>in</strong>e. Oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e improved object<br />

recognition <strong>in</strong> mice after 24 h. The recognition <strong>in</strong>dex (RI) <strong>in</strong><br />

mice treated with the vehicle was 72 ± 5 after 3 h and 45 ± 2<br />

after 24 h; however, after treatment with 0.5 and 1 mg/kg<br />

ispronicl<strong>in</strong>e, the RI at 24 h improved to 72 ± 3 and 55 ± 3,<br />

respectively. Both these effects, the <strong>in</strong>creases <strong>in</strong> ACh<br />

concentration and improved object recognition, were also<br />

countered by mecamylam<strong>in</strong>e [475601]. After a repeated<br />

treatment of 4 days with ispronicl<strong>in</strong>e (10 mg/kg) or nicot<strong>in</strong>e<br />

(1 mg/kg), no tolerance was observed regard<strong>in</strong>g ACh<br />

release [376757].<br />

Ispronicl<strong>in</strong>e was neuroprotective <strong>in</strong> an N-methyl-D-aspartate<br />

(NMDA)-<strong>in</strong>duced cell-death paradigm and may be<br />

synergistic with current AD therapies [325629]. In a<br />

hippocampal slice model (a mature culture of fetal rat<br />

neurons) subjected to a 15-m<strong>in</strong> hypoxia/glucose deprivation


62 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

episode, ispronicl<strong>in</strong>e prevented the loss of synaptic<br />

transmission <strong>in</strong> a concentration-dependent manner, with a<br />

maximal effect of > 70% protection at 10 µM. The effect was<br />

mediated through nAChRs because mecamylam<strong>in</strong>e, blocked<br />

the neuroprotective effect [583306]. This effect is somewhat<br />

unexpected given the proposed l<strong>in</strong>k between specific α7<br />

nAChR activation and neuroprotection. Neurotoxicity<br />

stimulated by glutamate is prevented by nicot<strong>in</strong>e <strong>in</strong> primary<br />

cultures of cerebellar neurons and is generally thought to be<br />

mediated by α7 nAChR activation. However <strong>in</strong> acutely<br />

dissociated slices, neuroprotection by nicot<strong>in</strong>e can be mediated<br />

by activation of α4β2 nAChRs and <strong>in</strong>hibition of α7 nAChRs<br />

[638430]. Therefore, neuroprotection by ispronicl<strong>in</strong>e can be<br />

expla<strong>in</strong>ed by its preferential activation of the α4β2 nAChR.<br />

The mechanism of ispronicl<strong>in</strong>e neuroprotection reportedly<br />

utilizes a signal transduction pathway <strong>in</strong>volv<strong>in</strong>g JAK2, PI3<br />

k<strong>in</strong>ase, Akt and Bcl-2 [467878]. Ispronicl<strong>in</strong>e (unstated dosage)<br />

was orally active <strong>in</strong> vivo and <strong>in</strong>duced susta<strong>in</strong>ed ACh release<br />

from the cortex, show<strong>in</strong>g potency <strong>in</strong> animal models of cognition<br />

and attention, and additivity/synergy with AChE <strong>in</strong>hibitors. It<br />

demonstrated neuroprotective effects <strong>in</strong> chemically <strong>in</strong>duced<br />

neuronal excitotoxicity models and <strong>in</strong> hypoxia/glucose<br />

deprivation models. Additionally, ispronicl<strong>in</strong>e showed<br />

antidepressant activity; however, no details were provided for<br />

these studies [513286].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

Metabolism studies conducted <strong>in</strong> vitro with liver microsome<br />

preparations from mice, rats, gu<strong>in</strong>ea pigs, dogs, monkeys<br />

and humans identified five metabolites; the O-dealkyl<br />

derivative endogenous conjugate was the primary<br />

metabolite <strong>in</strong> humans and monkeys, while the N-oxide<br />

metabolite was present <strong>in</strong> all other species [559979]. The<br />

aff<strong>in</strong>ities of the 3-alkylcarbonate and N-desalkylated<br />

metabolites for α4β2 nAChRs were approximately 20- and<br />

40-fold higher than for ispronicl<strong>in</strong>e; other metabolites had<br />

aff<strong>in</strong>ities > 100-fold over ispronicl<strong>in</strong>e. In Sprague Dawley<br />

rats that were adm<strong>in</strong>istered 20 mg/kg of ispronicl<strong>in</strong>e, mass<br />

spectroscopy identified 12 metabolites <strong>in</strong> the plasma, the Odealkyl<br />

derivative be<strong>in</strong>g the major metabolite. No<br />

metabolites were detected <strong>in</strong> fecal extracts, although a small<br />

amount of the parent compound was present [559979].<br />

Ispronicl<strong>in</strong>e had a half-life of 1 to 2 h <strong>in</strong> rodents [557048],<br />

[634416]; however, given that the beneficial effect of a s<strong>in</strong>gle<br />

oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e on cognition <strong>in</strong> precl<strong>in</strong>ical<br />

models persisted for 18 to 48 h [363337], [634416], this halflife<br />

does not seem to present much of a problem for efficacy.<br />

This unexpected long-term potentiation effect might be<br />

because of a much higher retention of the compound <strong>in</strong> the<br />

bra<strong>in</strong>, an elaborate downstream effect lead<strong>in</strong>g to transient<br />

<strong>in</strong>tracellular plasticity changes, or both. In Sprague Dawley<br />

rats, oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e (10 mg/kg)<br />

produced high systemic levels, with a maximal plasma<br />

concentration (Cpmax) of 370 ng/ml and Tmax value of 0.25 h.<br />

The compound was cleared rapidly, with a term<strong>in</strong>ation halflife<br />

of 1.1 h. The bioavailability of ispronicl<strong>in</strong>e was 73.3%.<br />

Whole-bra<strong>in</strong> ispronicl<strong>in</strong>e levels at this dose were high<br />

(maximal bra<strong>in</strong> concentration (Cbmax) = 659 ng/g; Tmax = 0.5<br />

to 2 h), show<strong>in</strong>g that the drug readily penetrated the bra<strong>in</strong>.<br />

After <strong>in</strong>travenous adm<strong>in</strong>istration of 1 mg/kg, ispronicl<strong>in</strong>e had<br />

a half-life of 0.8 h and was cleared rapidly (7.1 l/h/kg<br />

compared with the hepatic plasma flow of 2 to 4 l/h/kg)<br />

[559979].<br />

In dogs, ispronicl<strong>in</strong>e had a half-life of 2 h follow<strong>in</strong>g a 1mg/kg<br />

<strong>in</strong>travenous dose. A high total plasma clearance of<br />

3.2 l/h/kg was achieved compared with the hepatic plasma<br />

flow of 1.2 to 2.4 l/h/kg. Follow<strong>in</strong>g oral adm<strong>in</strong>istration of 1<br />

mg/kg ispronicl<strong>in</strong>e, low systemic plasma levels were<br />

achieved (Cpmax = 35 ng/ml at 0.5 to 2 h). The elim<strong>in</strong>ation<br />

half-life of ispronicl<strong>in</strong>e was 1.3 h and its estimated<br />

bioavailability was 31.4% [559979].<br />

In a crossover study <strong>in</strong> six healthy male volunteers,<br />

ispronicl<strong>in</strong>e (2 to 320 mg po) had a Tmax at 2 h and an<br />

elim<strong>in</strong>ation half-life of 4 h; follow<strong>in</strong>g a 320-mg dose,<br />

ispronicl<strong>in</strong>e had a Cmax of 120 ng/ml, a plasma concentration<br />

5- to 10-fold greater than that expected to produce maximal<br />

cognitive effects [559979].<br />

In elderly AAMI patients (> 60 years of age), a 50-mg oral dose<br />

of ispronicl<strong>in</strong>e gave rise to a plasma Cmax range of 4 to 25 ng/ml<br />

[612281], and oral doses of 25 to 75 mg ispronicl<strong>in</strong>e produced<br />

plasma Cmax values <strong>in</strong> the range of 4 to 55 ng/ml [634952].<br />

These low Cmax values might be due to extensive metabolism,<br />

high plasma clearance or low bioavailability. A complete<br />

pharmacok<strong>in</strong>etic study of a s<strong>in</strong>gle 80-mg dose of ispronicl<strong>in</strong>e<br />

was performed <strong>in</strong> six elderly volunteers to assess its absorption,<br />

distribution, metabolism and excretion properties. Cognitive<br />

improvement was evident after 36 to 48 h, which was<br />

comparable to the long duration of action observed <strong>in</strong> animal<br />

models, thus <strong>in</strong>dicat<strong>in</strong>g the suitability of a once-daily dos<strong>in</strong>g<br />

schedule [615362]. The study showed that ispronicl<strong>in</strong>e had a<br />

half-life of 5 to 7 h <strong>in</strong> humans [634416]. Another study <strong>in</strong> six<br />

fed/fasted volunteers exam<strong>in</strong>ed food <strong>in</strong>teraction follow<strong>in</strong>g an<br />

80-mg dose of ispronicl<strong>in</strong>e, although the results from this study<br />

have apparently not yet been reported [615362].<br />

Toxicity<br />

The results of studies <strong>in</strong> rats, dogs and rabbits <strong>in</strong>dicated that<br />

ispronicl<strong>in</strong>e was free from toxic effects at the doses tested. In<br />

rats, no effect was observed on diaphragm contraction,<br />

respiratory function or gastric empty<strong>in</strong>g after oral<br />

adm<strong>in</strong>istration of up to 50, 250 and 500 mg/kg, respectively.<br />

In rats and dogs that were chronically adm<strong>in</strong>istered<br />

ispronicl<strong>in</strong>e for 13 weeks (50 and 30 mg/kg, respectively),<br />

the only side effect was slight and transient bradycardia <strong>in</strong><br />

dogs at the highest dose, possibly mediated by autonomic<br />

nerve stimulation [512176]. Overall, ispronicl<strong>in</strong>e was well<br />

tolerated <strong>in</strong> animals and there was no <strong>in</strong>dication of<br />

reproductive, cellular or genetic toxicity [513286].<br />

Other prelim<strong>in</strong>ary toxicology studies showed a low toxicity<br />

for ispronicl<strong>in</strong>e, with observable adverse effects occurr<strong>in</strong>g <strong>in</strong><br />

normal male and female rats at doses of 5 to 200 mg/kg,<br />

compared with cognitive enhancement at 0.034 mg/kg. At a<br />

dose of 1400 mg/kg, significant toxicity was produced<br />

without caus<strong>in</strong>g death <strong>in</strong> rats [325629]. Thus, the therapeutic<br />

effects of ispronicl<strong>in</strong>e <strong>in</strong> animals are dissociated from its side<br />

effects by four to five orders of magnitude [467878].


In a study conducted <strong>in</strong> rats tra<strong>in</strong>ed to discrim<strong>in</strong>ate nicot<strong>in</strong>e,<br />

ispronicl<strong>in</strong>e and the known addictive properties of nicot<strong>in</strong>e<br />

were compared. Nicot<strong>in</strong>e engaged appropriate respond<strong>in</strong>g <strong>in</strong><br />

70% of animals at a dose of 1.9 µmol/kg compared with<br />

ispronicl<strong>in</strong>e, which engaged an equivalent response only at a<br />

dose of 40 µmol/kg; this result <strong>in</strong>dicates an approximately 20fold-reduced<br />

propensity for dependence of ispronicl<strong>in</strong>e<br />

compared with nicot<strong>in</strong>e [559979].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

Four phase I trials of ispronicl<strong>in</strong>e, which assessed safety,<br />

pharmacok<strong>in</strong>etics and cognitive enhancement, have been<br />

completed. One study tested eight escalat<strong>in</strong>g s<strong>in</strong>gle oral doses<br />

of ispronicl<strong>in</strong>e (2, 4, 10, 20, 40, 80, 160 and 320 mg) <strong>in</strong> 48 healthy<br />

volunteers [559979], and a multiple escalat<strong>in</strong>g-dose trial (50, 100<br />

and 200 mg) was conducted <strong>in</strong> 24 healthy volunteers over a 10day<br />

period [511071], [615362]. A pharmacok<strong>in</strong>etic study that<br />

tested food <strong>in</strong>teraction <strong>in</strong> six elderly volunteers was also<br />

completed. The rapid absorption, dose proportionality and<br />

favorable plasma half-life of ispronicl<strong>in</strong>e <strong>in</strong> these trials<br />

suggested the suitability of a once-daily dos<strong>in</strong>g schedule. No<br />

safety issues were reportedly encountered and dose-specific<br />

enhancement of both direct and surrogate measures of memory<br />

and attention was observed. No differences <strong>in</strong> the quality of<br />

work<strong>in</strong>g memory factor were observed. Less pronounced<br />

improvements were observed <strong>in</strong> the 100-mg group, compared<br />

with all other doses, <strong>in</strong>dicative of a possible <strong>in</strong>verted U-shaped<br />

dose-response curve [615362].<br />

In the s<strong>in</strong>gle and multiple escalat<strong>in</strong>g-dose trials, ispronicl<strong>in</strong>e<br />

dose-dependently <strong>in</strong>duced electrical bra<strong>in</strong> activity characteristic<br />

of a nicot<strong>in</strong>e agonist, and electroencephalogram (EEG) analysis<br />

confirmed its CNS penetration and activity. In addition, dosespecific<br />

effects were observed on direct and surrogate measures<br />

of memory <strong>in</strong> a computerized cognitive test battery [615362]. In<br />

l<strong>in</strong>e with precl<strong>in</strong>ical observations, the compound <strong>in</strong>duced longlast<strong>in</strong>g<br />

cognitive enhancement for up to 48 h <strong>in</strong> elderly<br />

volunteers [592125]. In the s<strong>in</strong>gle and multiple escalat<strong>in</strong>g-dose<br />

trials, EEG analysis showed that orally adm<strong>in</strong>istered<br />

ispronicl<strong>in</strong>e caused a shift <strong>in</strong> relative and absolute power from<br />

lower to higher frequency bands. Specifically, power shifted<br />

from the α1 to the α2 band. The shift <strong>in</strong> dom<strong>in</strong>ant α suggested<br />

that the compound had entered the bra<strong>in</strong> and was typical of a<br />

nicot<strong>in</strong>e agonist. Similar effects were observed <strong>in</strong> both trials on<br />

day 1 and <strong>in</strong> the multiple escalat<strong>in</strong>g-dose trial on day 10. No<br />

tolerance to ispronicl<strong>in</strong>e occurred over the 10-day dos<strong>in</strong>g period<br />

[634416]. In the multiple escalat<strong>in</strong>g-dose trial <strong>in</strong> healthy<br />

volunteers, 10 days of dos<strong>in</strong>g with ispronicl<strong>in</strong>e produced<br />

efficacy <strong>in</strong> the 'power of attention' measure of the cognitive<br />

drug research (CDR) test battery [634952]. The 100-mg dose of<br />

ispronicl<strong>in</strong>e improved memory (notably immediate and<br />

delayed word recall) <strong>in</strong> volunteers, and a 200-mg dose<br />

improved picture and word recognition and enhanced<br />

vigilance [634416].<br />

In elderly volunteers, pharmaco-EEG changes resembled<br />

those seen <strong>in</strong> younger <strong>in</strong>dividuals; the changes were of an<br />

acceleration type, with power shift<strong>in</strong>g from low to high<br />

frequency bands. In CDR cognitive tests, significant<br />

Ispronicl<strong>in</strong>e Geerts 63<br />

differences between ispronicl<strong>in</strong>e and placebo on measures of<br />

immediate and delayed recall, picture recognition and<br />

quality of episodic memory were achieved. There was good<br />

correlation between plasma levels of the drug and<br />

pharmaco-EEG changes [634416]. Correlations of<br />

pharmacodynamic and pharmacok<strong>in</strong>etic data <strong>in</strong>dicated that<br />

plasma Cmax values <strong>in</strong> the range 4 to 55 ng/ml were<br />

associated with greatest cognitive improvement; Cmax values<br />

<strong>in</strong> this range would be achieved with oral doses of 25 to 75<br />

mg, levels at which ispronicl<strong>in</strong>e has tolerability equivalent to<br />

placebo [634952].<br />

Phase II<br />

In a randomized, double-bl<strong>in</strong>d, placebo-controlled, phase<br />

IIa/II study <strong>in</strong> an undisclosed number of AAMI patients<br />

(aged > 60 years), a s<strong>in</strong>gle dose of 80 mg ispronicl<strong>in</strong>e was<br />

superior to placebo <strong>in</strong> improv<strong>in</strong>g quality of episodic<br />

secondary memory factor score up to 48 h after dos<strong>in</strong>g. After 3<br />

weeks of treatment at 50 mg, significant improvements were<br />

observed <strong>in</strong> CDR measures of the power and cont<strong>in</strong>uity of<br />

attention, episodic memory and speed of th<strong>in</strong>k<strong>in</strong>g, compared<br />

with patients receiv<strong>in</strong>g placebo [612281], [634952].<br />

Targacept reports that a phase II trial with ispronicl<strong>in</strong>e has<br />

been completed <strong>in</strong> elderly <strong>in</strong>dividuals with AAMI (n = 76).<br />

Positive effects on various aspects of cognition were<br />

observed and the drug was well tolerated at doses up to 150<br />

mg [624033].<br />

Data were presented recently for the double-bl<strong>in</strong>d, placebocontrolled,<br />

crossover phase II study of ispronicl<strong>in</strong>e <strong>in</strong><br />

volunteers with MCI [641513]. Volunteers (aged > 60 years)<br />

with MCI (m<strong>in</strong>i-mental state exam<strong>in</strong>ation (MMSE) score ≥ 24<br />

and Wechsler memory scale-R, paired associate learn<strong>in</strong>g test<br />

score ≥ 1.5 standard deviations lower than age matched<br />

controls) were randomized <strong>in</strong>to cohorts of 20 to sequentially<br />

receive 3 weeks oral treatment with 50 and 100 mg of<br />

ispronicl<strong>in</strong>e or placebo, with a 2-week washout between<br />

treatments. Cognitive assessment was performed at 0, 2 and 4 h<br />

post-dos<strong>in</strong>g on the CDR test battery. No effect was observed<br />

with 50 mg of ispronicl<strong>in</strong>e (n = 19), at which placebo was<br />

superior to drug on measures of work<strong>in</strong>g memory and memory<br />

speed. The 100-mg dose of ispronicl<strong>in</strong>e (n = 17) was superior to<br />

placebo <strong>in</strong> the power of attention and episodic memory factors<br />

(p < 0.05), and on the work<strong>in</strong>g memory and speed of memory<br />

tests (p < 0.1). Analysis of data from both dose groups showed<br />

that ispronicl<strong>in</strong>e produced greater cognitive improvement <strong>in</strong><br />

more severely impaired (MMSE 23 to 27) volunteers than those<br />

with lesser impairment (MMSE = 28 to 30). Ispronicl<strong>in</strong>e was<br />

well tolerated and demonstrated a favorable safety profile at<br />

both doses [641513].<br />

A randomized, double-bl<strong>in</strong>d, placebo-controlled phase II<br />

cl<strong>in</strong>ical trial of ispronicl<strong>in</strong>e is ongo<strong>in</strong>g <strong>in</strong> elderly <strong>in</strong>dividuals<br />

(aged 50 to 80 years) with AAMI. Recruitment has been<br />

completed (174 participants were expected), and the study is<br />

scheduled for completion <strong>in</strong> February 2006<br />

[www.cl<strong>in</strong>icaltrials.gov]. A further phase II trial is planned for<br />

mid 2006, and is designed to evaluate ispronicl<strong>in</strong>e as a<br />

monotherapy treatment for mild AD or add-on therapy to<br />

approved medications for moderate AD. Cl<strong>in</strong>ical development


64 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

is also be<strong>in</strong>g considered for cognitive impairment associated<br />

with schizophrenia and follow<strong>in</strong>g coronary artery bypass<br />

graft<strong>in</strong>g, ADHD and certa<strong>in</strong> forms of dementia [624033]. In<br />

summary, ispronicl<strong>in</strong>e was well tolerated and demonstrated<br />

cognitive enhanc<strong>in</strong>g effects <strong>in</strong> the phase I and phase II cl<strong>in</strong>ical<br />

trials to date (n = 200) [611220].<br />

Side effects and contra<strong>in</strong>dications<br />

In phase I/II studies assess<strong>in</strong>g the effect of ispronicl<strong>in</strong>e on<br />

central activity and cognitive enhancement, adverse events<br />

were only detected at the maximum tolerated dose of<br />

ispronicl<strong>in</strong>e (150 mg <strong>in</strong> the elderly and 320 mg <strong>in</strong> the young).<br />

These <strong>in</strong>cluded headache, dizz<strong>in</strong>ess and light-headedness<br />

and occasional nausea/vomit<strong>in</strong>g. These side effects were<br />

attributed to the central pharmacology of ispronicl<strong>in</strong>e<br />

because they were not accompanied by changes <strong>in</strong><br />

cardiovascular variables as would be expected if peripheral<br />

nAChR <strong>in</strong>hibition were occurr<strong>in</strong>g [615362].<br />

In phase IIa/b trials, ispronicl<strong>in</strong>e had an effective dose of 50 to<br />

100 mg, and no toxic effects were observed at 320 mg,<br />

suggest<strong>in</strong>g a broad therapeutic w<strong>in</strong>dow [541084]. Ispronicl<strong>in</strong>e<br />

was well tolerated and demonstrated a favorable safety profile<br />

[612281].<br />

In a phase II study of 50 or 100 mg ispronicl<strong>in</strong>e <strong>in</strong> volunteers<br />

with MCI, the drug was well tolerated at both doses. The<br />

most common adverse event was light-headedness. No<br />

significant effects were recorded on biochemical,<br />

hematological or ur<strong>in</strong>ary measures, vital signs or cardiac<br />

monitor<strong>in</strong>g [641513].<br />

Patent summary<br />

In January 2002, Targacept and Aventis Pharma SA<br />

published WO-00205798, a PCT application that covered<br />

salts of ispronicl<strong>in</strong>e and their use <strong>in</strong> the prevention or<br />

treatment of CNS disorders.<br />

Four US patents (US-06432975, US-06624173, US-06440970<br />

and US-06525065) relate to composition of matter of the<br />

chemical family of the hetero-aryl azabicyclo alkanes. In the<br />

composition patents, a broad application doma<strong>in</strong> has been<br />

stated, <strong>in</strong>clud<strong>in</strong>g the treatment of other CNS conditions and<br />

disorders, such as schizophrenia, <strong>in</strong> provid<strong>in</strong>g neuroprotection,<br />

the management of stroke, and <strong>in</strong> treat<strong>in</strong>g patients<br />

susceptible to convulsions, depression, autism and certa<strong>in</strong><br />

neuroendocr<strong>in</strong>e disorders.<br />

WO-2005037832 was published by Targacept <strong>in</strong> April 2005,<br />

and claims the use of ispronicl<strong>in</strong>e for the treatment of<br />

Park<strong>in</strong>son's disease, Tourette's syndrome, ADHD,<br />

schizophrenia, drug/nicot<strong>in</strong>e addiction, pa<strong>in</strong> and obesity. In<br />

addition, appropriately radiolabeled compounds are<br />

claimed for use as selective probes for nAChR subtypes <strong>in</strong><br />

neuroimag<strong>in</strong>g applications <strong>in</strong> US-06432975.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

Specific stimulation of α4β2 versus α7 nAChRs will likely<br />

lead to different effects on cognitive scales because of the<br />

differential distribution of nAChR subtypes (preferentially<br />

striatal-thalamic versus cortical), and differential sensitivity<br />

to pathological conditions (eg, AD versus psychiatric<br />

diseases). In this regard, perhaps someth<strong>in</strong>g can be learned<br />

from the cl<strong>in</strong>ical expertise ga<strong>in</strong>ed from the study of ABT-418<br />

(an nAChR agonist that was discont<strong>in</strong>ued from<br />

development by Abbott Laboratories <strong>in</strong> 2002 because of<br />

safety concerns) <strong>in</strong> a number of medical conditions<br />

<strong>in</strong>volv<strong>in</strong>g lack of attention and cognitive deficits. The<br />

compounds have a similar profile <strong>in</strong> terms of their nAChR<br />

selectivity. Interest<strong>in</strong>gly, unlike ABT-418, ispronicl<strong>in</strong>e<br />

produces a susta<strong>in</strong>ed cognitive effect <strong>in</strong> both precl<strong>in</strong>ical and<br />

human models long after its clearance from the body. This<br />

prolonged action might be the result of changes <strong>in</strong><br />

<strong>in</strong>tracellular signal<strong>in</strong>g, the nature of which is still unclear. At<br />

the maximal cl<strong>in</strong>ical tolerable dose, ispronicl<strong>in</strong>e will most<br />

probably also stimulate the α7 nAChR. For α7 nAChRmediated<br />

neuroprotection aga<strong>in</strong>st β-amyloid, it has been<br />

shown that Janus k<strong>in</strong>ase/Akt pathways are <strong>in</strong>volved <strong>in</strong><br />

<strong>in</strong>tracellular activation [621830]. As a possible caveat,<br />

precl<strong>in</strong>ical data suggest that as well as possibly reduc<strong>in</strong>g βamyloid<br />

pathology [622041], long-term activation of<br />

nicot<strong>in</strong>ic receptors <strong>in</strong> transgenic animals can exacerbate tau<br />

pathology [621828]. Whether this is the case for ispronicl<strong>in</strong>e<br />

is currently unknown.<br />

The specific activation of neuronal nAChRs is advantageous<br />

because gastro<strong>in</strong>test<strong>in</strong>al side effects, such as vomit<strong>in</strong>g and<br />

diarrhea, currently occur <strong>in</strong> many AD patients dur<strong>in</strong>g the<br />

titration phase of their treatment with AChE <strong>in</strong>hibitors, and<br />

are assumed to be related to peripheral muscar<strong>in</strong>ic receptor<br />

activation. Nausea is a more typical nicot<strong>in</strong>ic-receptormediated<br />

side effect, and whether the effects are a<br />

consequence of central activity is still a matter for debate. In<br />

any case, no data have described the <strong>in</strong>cidence of nausea <strong>in</strong><br />

ispronicl<strong>in</strong>e-treated patients.<br />

The cl<strong>in</strong>ical experience with galantam<strong>in</strong>e <strong>in</strong> AD patients<br />

suggests a superior effect of nAChR modulators <strong>in</strong><br />

enhanc<strong>in</strong>g attention [516203] and work<strong>in</strong>g memory [622036]<br />

over and above that attributable to AChE <strong>in</strong>hibition alone. In<br />

addition, specific behavioral improvements can be expected<br />

<strong>in</strong> agitation/aggression, anxiety, dis<strong>in</strong>hibition and aberrant<br />

motor behaviors [622040]. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> l<strong>in</strong>e with the<br />

observed effects of ispronicl<strong>in</strong>e on CDR battery scales <strong>in</strong><br />

cognitively impaired elderly <strong>in</strong>dividuals. This cl<strong>in</strong>ical effect<br />

is probably because the stimulation of nicot<strong>in</strong>ic receptors,<br />

which diffusely project out of the nucleus basalis of Meynert<br />

and the pedunculopont<strong>in</strong>e nucleus, modulates their<br />

activation <strong>in</strong> a large part of the bra<strong>in</strong>. This is likely mediated<br />

by an <strong>in</strong>crease <strong>in</strong> dopam<strong>in</strong>e, seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e,<br />

acetylchol<strong>in</strong>e and even glutamate and γ-am<strong>in</strong>obutyric acid<br />

(GABA) levels. As a specific example, β2* nAChR<br />

stimulation <strong>in</strong>creases dopam<strong>in</strong>e release <strong>in</strong> the striatum<br />

[636359]. One could argue that <strong>in</strong>creased dopam<strong>in</strong>e release<br />

<strong>in</strong> a slightly deficient striatum could enhance the saliency of<br />

stimuli and positively <strong>in</strong>fluence reward stimuli. However,<br />

the specific nAChR subtype responsible for the other effects<br />

has not been identified <strong>in</strong> all cases, and specific questions<br />

rema<strong>in</strong> regard<strong>in</strong>g the k<strong>in</strong>etics of activation, desensitization<br />

and reactivation of the nAChRs responsible, result<strong>in</strong>g, for<br />

example, <strong>in</strong> spatial and temporal differences <strong>in</strong> excitatory


glutamatergic and <strong>in</strong>hibitory GABA modulation <strong>in</strong> complex<br />

<strong>in</strong>teract<strong>in</strong>g networks [621790], [621822].<br />

Whether this effect will be sufficient for pure nAChR<br />

agonists to improve cognitive scales such as the Alzheimer's<br />

disease assessment scale cognitive subscale (ADAS-Cog) or<br />

MMSE is at present unknown. Computer simulation of a<br />

virtual synaptic cleft suggests that suboptimal AChE<br />

<strong>in</strong>hibition can be synergistically amplified by nicot<strong>in</strong>ic<br />

receptor stimulation [621742]. This effect was illustrated <strong>in</strong> a<br />

number of <strong>in</strong> vivo precl<strong>in</strong>ical studies <strong>in</strong> which a dose of<br />

galantam<strong>in</strong>e had similar or superior effects on behavior or<br />

neurophysiology compared with an identical dose of<br />

donepezil, a pure AChE <strong>in</strong>hibitor [621831], [621833], despite<br />

the fact that donepezil produces a 3- to 4-fold higher bra<strong>in</strong><br />

AChE <strong>in</strong>hibition under these conditions [621785]. This<br />

f<strong>in</strong>d<strong>in</strong>g suggests that the activation of nAChR through the<br />

comb<strong>in</strong>ation of nAChR modulation with a low bra<strong>in</strong> AChE<br />

<strong>in</strong>hibition can actually lead to the same (or even superior)<br />

behavioral or neurochemical changes as direct stimulation <strong>in</strong><br />

the context of a much higher bra<strong>in</strong> AChE <strong>in</strong>hibition.<br />

There is a high probability that ispronicl<strong>in</strong>e will be tested <strong>in</strong><br />

comb<strong>in</strong>ation with an AChE <strong>in</strong>hibitor dur<strong>in</strong>g cl<strong>in</strong>ical<br />

development. Interest<strong>in</strong>gly, comb<strong>in</strong>ation with a suboptimal<br />

dose of an AChE <strong>in</strong>hibitor could lead to superior cl<strong>in</strong>ical<br />

efficacy on primary endpo<strong>in</strong>ts, such as ADAS-Cog, while<br />

simultaneously limit<strong>in</strong>g the development of tolerance ow<strong>in</strong>g to<br />

the upregulation of the AChE enzyme as a consequence of<br />

high-level cont<strong>in</strong>uous AChE <strong>in</strong>hibition [622031]. Furthermore,<br />

muscar<strong>in</strong>ic receptor stimulation result<strong>in</strong>g from limited AChE<br />

<strong>in</strong>hibition can provide additional benefits for a number of<br />

behavioral problems, as suggested by the cl<strong>in</strong>ical experience<br />

with muscar<strong>in</strong>ic M1 agonists (for a review, see reference<br />

[624153]). In addition, muscar<strong>in</strong>ic M1 receptor stimulation can<br />

provide neuroprotection aga<strong>in</strong>st both amyloid and tau<br />

pathology beyond nicot<strong>in</strong>e receptor activation (reviewed <strong>in</strong><br />

reference [621786]). Because the <strong>in</strong>tracellular pathways of both<br />

approaches differ, there may be the possibility of an additive or<br />

synergistic action.<br />

Ispronicl<strong>in</strong>e Geerts 65<br />

Ispronicl<strong>in</strong>e is also currently <strong>in</strong> development for the<br />

treatment of pre-Alzheimer's conditions such as MCI and<br />

AAMI. A reactive upregulation of ACh-synthesiz<strong>in</strong>g<br />

enzymes has been documented <strong>in</strong> this patient population,<br />

probably as a consequence of dysfunctional chol<strong>in</strong>ergic<br />

nerve term<strong>in</strong>als [622042]. This upregulation might reduce<br />

the beneficial effect of direct nAChR stimulation by<br />

modulators such as ispronicl<strong>in</strong>e. In this regard, it is<br />

<strong>in</strong>terest<strong>in</strong>g to note that <strong>in</strong> terms of delay<strong>in</strong>g the diagnosis<br />

of AD, the cl<strong>in</strong>ical benefits of AChE <strong>in</strong>hibition <strong>in</strong> MCI<br />

patients are, at best, limited [622044]. MCI and AAMI<br />

have not yet been recognized by the Food and Drug<br />

Adm<strong>in</strong>istration as medical conditions, but the regulatory<br />

landscape might change substantially over the next few<br />

years.<br />

An <strong>in</strong>terest<strong>in</strong>g development is the cl<strong>in</strong>ical proof-of-pr<strong>in</strong>ciple<br />

study of ispronicl<strong>in</strong>e as an add-on <strong>in</strong> the treatment of<br />

cognitive deficits <strong>in</strong> schizophrenia. This study was carried<br />

out by the TURNS project, as presented at the 2005<br />

International Conference on Schizophrenia Research<br />

[631107]. Although the neuropathology and genetics of<br />

schizophrenia suggest a specific α7 nAChR deficit <strong>in</strong> this<br />

case, a well-balanced modulation of both major bra<strong>in</strong><br />

nAChR subtypes, such as that provided by ispronicl<strong>in</strong>e,<br />

might be of great value.<br />

In summary, the pharmacological profile of available data<br />

for ispronicl<strong>in</strong>e <strong>in</strong>dicate that this compound may provide<br />

an <strong>in</strong>terest<strong>in</strong>g new mechanism for treat<strong>in</strong>g cognitive<br />

deficits <strong>in</strong> both schizophrenia and AD. Extrapolat<strong>in</strong>g from<br />

the precl<strong>in</strong>ical data for galantam<strong>in</strong>e, a compound with a<br />

similar pharmacology (reviewed <strong>in</strong> reference [634638]), <strong>in</strong><br />

theory we can expect that ispronicl<strong>in</strong>e will comb<strong>in</strong>e<br />

symptomatic cognitive improvement with general<br />

neuroprotection aga<strong>in</strong>st β-amyloid pathology. We believe<br />

that the best effects of the drug will be observed <strong>in</strong><br />

patients with AD and when it is comb<strong>in</strong>ed with a<br />

suboptimal dose of an AChE <strong>in</strong>hibitor.<br />

Development history<br />

Developer Country Status Indication Date Reference<br />

Targacept Inc UK Phase II Cognitive disorder 11-NOV-03 512600<br />

Targacept Inc US Phase II Cognitive disorder 06-JUL-05 611220<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

SAR. A number of compounds with low nanomolar aff<strong>in</strong>ity for nAChRs were identified, but were metabolized<br />

through N-demethylation and oxidation, result<strong>in</strong>g <strong>in</strong> a half-life of 30 m<strong>in</strong>. The 3-isopropoxy-pyrid<strong>in</strong>e analog<br />

of RJR-2403 had an improved half-life of 1.4 h <strong>in</strong> rodents, and was later named ispronicl<strong>in</strong>e. An α-methyl<br />

group was identified as be<strong>in</strong>g essential for <strong>in</strong>creas<strong>in</strong>g the half-life.<br />

557048<br />

Synthesis. Ispronicl<strong>in</strong>e was prepared by coupl<strong>in</strong>g (S)-N-methyl-N-(tert-butoxycarbonyl)-4-penten-2-am<strong>in</strong>e and 3bromo-5-isopropoxy-pyrid<strong>in</strong>e<br />

via a palladium-catalyzed Heck coupl<strong>in</strong>g reaction. The result<strong>in</strong>g <strong>in</strong>termediate,<br />

(S)-(E)-N-methyl-N-(tert-butoxycarbonyl)-5-[3-(5-isopropoxy-pyrid<strong>in</strong>)yl]-4-penten-2-am<strong>in</strong>e, was<br />

subsequently treated with 6 M hydrochloric acid <strong>in</strong> dimethylformamide to give the free base of ispronicl<strong>in</strong>e.<br />

559979


66 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vitro Activity. Rat bra<strong>in</strong> membrane preparations, Ispronicl<strong>in</strong>e was a high-aff<strong>in</strong>ity agonist of<br />

306443<br />

or muscle- or ganglion-type nicot<strong>in</strong>ic receptors <strong>in</strong> rat bra<strong>in</strong> membranes (Ki =<br />

nAChRs.<br />

11 nM; nicot<strong>in</strong>e Ki = 4 nM), and reportedly had<br />

specificity for nAChRs. Ispronicl<strong>in</strong>e did not b<strong>in</strong>d<br />

to the muscle-type (α1β1δγ) or ganglion-type<br />

(α3β4) peripheral nAChRs at concentrations up<br />

to 100 µM. Conversely, nicot<strong>in</strong>e activated<br />

nAChRs <strong>in</strong> human and rat cells, with EC50<br />

values of 60 and 20 µM, respectively, <strong>in</strong>dicat<strong>in</strong>g<br />

greater CNS/peripheral nervous system<br />

specificity for ispronicl<strong>in</strong>e.<br />

In vitro Efficacy. Rat striatal and thalamic<br />

In striatal synaptosomes, ispronicl<strong>in</strong>e had a 306443<br />

synaptosomes treated with<br />

dopam<strong>in</strong>e-release profile comparable to that of<br />

ispronicl<strong>in</strong>e or nicot<strong>in</strong>e (unstated nicot<strong>in</strong>e (EC50 = 106 nM and Emax = 85%). In<br />

concentrations).<br />

thalamic synaptosomes, ispronicl<strong>in</strong>e <strong>in</strong>creased<br />

ion <strong>in</strong>flux to an Emax of 58% with an EC50 value of<br />

220 nM, compared with an Emax of 100% and an<br />

EC50 value of 590 nM for nicot<strong>in</strong>e. Given the<br />

preferential localization of α4β2 nAChRs <strong>in</strong> the<br />

thalamus, this effect is likely mediated by this<br />

receptor subtype.<br />

In vivo Efficacy. Radial arm maze model. Rats were Both schedules of ispronicl<strong>in</strong>e significantly<br />

306443<br />

orally adm<strong>in</strong>istered ispronicl<strong>in</strong>e improved both work<strong>in</strong>g and reference memory<br />

(0.1, 0.3, 0.6, 3.0 and 6.0 µmol/kg)<br />

<strong>in</strong> both acute (presumed to be<br />

s<strong>in</strong>gle-dose) and chronic (daily for 6<br />

days) schedules.<br />

performance.<br />

In vivo Efficacy. Scopolam<strong>in</strong>e-<strong>in</strong>duced deficits <strong>in</strong> the Ispronicl<strong>in</strong>e improved performance both alone 345774<br />

passive avoidance task <strong>in</strong> rats. (ED50 = 0.89 µmol/kg) and at a suboptimal dose<br />

(0.6 µmol/kg) <strong>in</strong> comb<strong>in</strong>ation with tacr<strong>in</strong>e and<br />

donepezil.<br />

Ex vivo Activity. Synaptic transmission after Ispronicl<strong>in</strong>e prevented the loss of synaptic<br />

583306<br />

oxygen/glucose deprivation <strong>in</strong> a rat transmission <strong>in</strong> a concentration-dependent<br />

bra<strong>in</strong> hippocampal slice model manner, with a maximal effect of > 70%<br />

<strong>in</strong>cubated with ispronicl<strong>in</strong>e. protection at 10 µM. The effect was mediated by<br />

nAChRs because mecamylam<strong>in</strong>e, a nonselective<br />

antagonist, blocked the neuroprotective<br />

effect.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Sprague Dawley rats adm<strong>in</strong>istered Values for Cpmax and Tmax were 370 ng/ml and 559979<br />

a s<strong>in</strong>gle oral dose of ispronicl<strong>in</strong>e 0.25 h, respectively. The compound was<br />

(10 mg/kg).<br />

cleared rapidly, with a term<strong>in</strong>ation half-life of<br />

1.1 h. The bioavailability was 73.3%. Wholebra<strong>in</strong><br />

ispronicl<strong>in</strong>e levels were high (Cbmax =<br />

659 ng/g; Tmax = 0.5 to 2 h), <strong>in</strong>dicat<strong>in</strong>g ready<br />

bra<strong>in</strong> penetration. After <strong>in</strong>travenous<br />

adm<strong>in</strong>istration of 1 mg/kg, ispronicl<strong>in</strong>e had a<br />

half-life of 0.8 h and was cleared rapidly (7.1<br />

l/h/kg compared with the hepatic plasma flow<br />

of 2 to 4 l/h/kg).<br />

In vivo Pharmacok<strong>in</strong>etics. Dogs adm<strong>in</strong>istered a 1-mg/kg A high total plasma clearance of 3.2 l/h/kg 559979<br />

<strong>in</strong>travenous or oral dose of<br />

was achieved compared with the hepatic<br />

ispronicl<strong>in</strong>e.<br />

plasma flow of 1.2 to 2.4 l/h/kg. Follow<strong>in</strong>g oral<br />

adm<strong>in</strong>istration of 1 mg/kg, low systemic<br />

plasma levels were achieved (Cpmax = 35<br />

ng/ml at 0.5 to 2 h). The elim<strong>in</strong>ation half-life of<br />

ispronicl<strong>in</strong>e was 1.3 h and its estimated<br />

bioavailability was 31.4%.<br />

In vivo Pharmacok<strong>in</strong>etics. Elderly AAMI patients (aged > 60 Plasma Cmax values ranged from 4 to 25<br />

612281<br />

years) adm<strong>in</strong>istered 50 mg of oral<br />

ispronicl<strong>in</strong>e.<br />

ng/ml.<br />

In vivo Pharmacok<strong>in</strong>etics. Elderly volunteers (aged > 60 Plasma Cmax values ranged from 4 to 55<br />

634952<br />

years) orally adm<strong>in</strong>istered<br />

ng/ml. Ispronicl<strong>in</strong>e <strong>in</strong>duced long-last<strong>in</strong>g<br />

ispronicl<strong>in</strong>e (25 to 75 mg).<br />

cognitive enhancement for up to 48 h.


Metabolism (cont<strong>in</strong>ued)<br />

Ispronicl<strong>in</strong>e Geerts 67<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. A food-<strong>in</strong>teraction trial <strong>in</strong> six No food <strong>in</strong>teraction was observed. S<strong>in</strong>gle 615362<br />

fed/fasted elderly volunteers doses of ispronicl<strong>in</strong>e achieved CNS<br />

adm<strong>in</strong>istered an 80-mg oral dose of penetration. The rapid absorption, dose<br />

ispronicl<strong>in</strong>e.<br />

proportionality and favorable plasma half-life<br />

of ispronicl<strong>in</strong>e <strong>in</strong> this trial suggested the<br />

suitability of a once-daily dos<strong>in</strong>g schedule.<br />

Cl<strong>in</strong>ical<br />

Effect studied Model Result Reference<br />

Safety and efficacy. A phase I, 10-day multiple<br />

Ispronicl<strong>in</strong>e was well tolerated and no safety issues were 615362<br />

escalat<strong>in</strong>g-dose study of<br />

encountered up to 200 mg. Dose-specific enhancement of<br />

ispronicl<strong>in</strong>e (50, 100 and 200 mg) <strong>in</strong> both direct and surrogate measures of memory and<br />

young volunteers (n = 24).<br />

attention was observed. No differences were observed on<br />

the quality of work<strong>in</strong>g memory factor. Less pronounced<br />

improvements were seen <strong>in</strong> the 100-mg group, <strong>in</strong>dicative<br />

of an <strong>in</strong>verted U-shaped dose-response curve.<br />

Efficacy and tolerability. A phase I, s<strong>in</strong>gle and multiple Ispronicl<strong>in</strong>e dose-dependently <strong>in</strong>duced electrical bra<strong>in</strong> 634416<br />

escalat<strong>in</strong>g-dose trial of ispronicl<strong>in</strong>e activity on EEG, characteristic of a nicot<strong>in</strong>e agonist,<br />

<strong>in</strong> young volunteers (n = 48 and 24, caus<strong>in</strong>g a shift <strong>in</strong> relative and absolute power from<br />

respectively).<br />

lower to higher frequency bands. No tolerance to<br />

ispronicl<strong>in</strong>e occurred over the 10-day dos<strong>in</strong>g period.<br />

Efficacy and tolerability. A phase I trial of ispronicl<strong>in</strong>e <strong>in</strong> Pharmacodynamic and pharmacok<strong>in</strong>etic data<br />

634952<br />

elderly patients with AAMI (aged > suggested that Cmax values <strong>in</strong> the range of 4 to 55 ng/ml<br />

60 years).<br />

caused the greatest cognitive improvement. Oral doses<br />

of 25 to 75 mg of ispronicl<strong>in</strong>e gave rise to values <strong>in</strong> this<br />

range, at which ispronicl<strong>in</strong>e was tolerated <strong>in</strong> a similar<br />

manner to placebo.<br />

Efficacy. A phase II, randomized, double- A s<strong>in</strong>gle dose of 80 mg ispronicl<strong>in</strong>e was superior to 612281<br />

bl<strong>in</strong>d, placebo-controlled trial <strong>in</strong> placebo <strong>in</strong> improv<strong>in</strong>g quality of episodic secondary<br />

elderly AAMI patients (aged > 60 memory factor score up to 48 h after dos<strong>in</strong>g. Three<br />

years).<br />

weeks of treatment with 50 mg ispronicl<strong>in</strong>e improved<br />

CDR measures of the power and cont<strong>in</strong>uity of attention,<br />

episodic memory and speed of th<strong>in</strong>k<strong>in</strong>g, compared with<br />

patients receiv<strong>in</strong>g placebo.<br />

Efficacy and tolerability. Phase II trials <strong>in</strong> elderly AAMI Positive effects on various aspects of cognition were 624033<br />

patients (n = 76).<br />

observed, and the drug was well tolerated at doses up<br />

to 150 mg.<br />

Associated patent<br />

Title Pharmaceutical compositions and methods for use.<br />

Assignee Targacept Inc; Aventis Pharma SA<br />

Publication WO-00205798 24-JAN-02<br />

Priority US-20000616743 14-JUL-00<br />

Inventors Dull GM, Leconte J-P, Kabir H.<br />

Associated references<br />

306443 RJR-1734: A potent selective nicot<strong>in</strong>ic ligand that improves<br />

cognition acutely and chronically. Lippiello P, Gatto G, Bencherif M, Fowler<br />

K, Caldwell W ABSTR SOC NEUROSCI 1998 24 Pt 1 Abs 39.25<br />

325629 Nicot<strong>in</strong>ic Acetylchol<strong>in</strong>e Receptors - IBC's Second International<br />

Symposium; Advances <strong>in</strong> Molecular Pharmacology and Drug<br />

Development, Annapolis, MD, USA. IDDB MEETING REPORT 1999 May<br />

13-14<br />

345007 Society for Neuroscience 29th Annual Meet<strong>in</strong>g (Part V), Miami<br />

Beach, FL, USA. Kibble A, Nicholls R IDDB MEETING REPORT 1999<br />

October 23-28<br />

345774 Reversal of scopolam<strong>in</strong>e-<strong>in</strong>duced deficits <strong>in</strong> the passive<br />

avoidance task by Targacept (TI) nicot<strong>in</strong>ic agonists alone and <strong>in</strong><br />

comb<strong>in</strong>ation with tacr<strong>in</strong>e and donepezil. Ganto GJ, Lippiello PM, Caldwell<br />

WS, Bencherif M ABSTR SOC NEUROSCI 1999 25 Pt 2 Abs 786.11<br />

345791 Sensitization of locomotor responses can be discrim<strong>in</strong>ated from<br />

activation of striatal synaptosomes. Lippiello PM, Gatto GJ, Caldwell WS,<br />

Bencherif M ABSTR SOC NEUROSCI 1999 25 Pt 2 Abs 786.13<br />

363337 Advances <strong>in</strong> Alzheimer Therapy - Sixth International<br />

Stockholm/Spr<strong>in</strong>gfield Symposium (Part IV) Stockholm, Sweden. IDDB<br />

MEETING REPORT 2000 April 05-08<br />

363536 Advances <strong>in</strong> Alzheimer Therapy - Sixth International<br />

Stockholm/Spr<strong>in</strong>gfield Symposium (Part VI): Nicot<strong>in</strong>ic Receptors,<br />

Stockholm, Sweden. Hellstrom-L<strong>in</strong>dahl E IDDB MEETING REPORT 2000<br />

05-08 April<br />

376757 Bra<strong>in</strong> selective stimulation of nicot<strong>in</strong>ic receptors by RJR<br />

1734 enhances ACh transmission from frontoparietal cortex and<br />

enhances memory <strong>in</strong> rodents. Ob<strong>in</strong>u MC, Miquet JM, Reibaud M,<br />

Pasquet M, Rooney T, Imperato A INT J NEUROPSYCHOPHARMACOL<br />

2000 3 Suppl 1 S361<br />

430095 Stereo-specificity of human muscle-type nicot<strong>in</strong>ic receptor<br />

activation by pyrid<strong>in</strong>yl-substituted aza-adamantanes. Sadieve KS, Schmitt<br />

JD, Kiser M, Bhatti BS, Lippiello PM, Bencherif M ABSTR SOC NEUROSCI<br />

2001 27 1 Abs 486.1<br />

467878 Neurosensory Symposium - First Annual Meet<strong>in</strong>g, Develop<strong>in</strong>g<br />

Therapies for the Treatment of Neurosensory Diseases, Birm<strong>in</strong>gham,<br />

AL, USA. Ramabhadran R IDDB MEETING REPORT 2002 16-17<br />

September<br />

475601 Bra<strong>in</strong>-selective stimulation of nicot<strong>in</strong>ic receptors by TC-1734<br />

enhances ACh transmission from frontoparietal cortex and memory<br />

<strong>in</strong> rodents. Ob<strong>in</strong>u MC, Reibaud M, Miquet JM, Pasquet M, Rooney T<br />

PROG NEURO PSYCHOPHARMACOL BIOL PSYCHIATRY 2002 26 5<br />

913-918<br />

511071 Targacept announces positive cl<strong>in</strong>ical results for TC-1734.<br />

PRESS RELEASE 2003 October 30<br />

512176 Society for Neuroscience - 33rd Annual Meet<strong>in</strong>g (Part IV) -<br />

Overnight Report, New Orleans, LA, USA. IDDB MEETING REPORT 2003<br />

November 08-12


68 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

512600 Targacept presents data on multiple drug candidates at Society<br />

for Neuroscience 33rd Annual Meet<strong>in</strong>g. PRESS RELEASE 2003 November<br />

11<br />

513286 TC-1734: An orally active neuronal nicot<strong>in</strong>ic receptor modulator<br />

with long-last<strong>in</strong>g cognitive effects, anti-depressant effects, and<br />

neuroprotective activity. Letchworth SR, Gatto GJ, Tra<strong>in</strong>a VM, Bohme GA,<br />

Ob<strong>in</strong>u MC, Bencherif M ABSTR SOC NEUROSCI 2003 33 Abs 296.19<br />

516203 A long-term comparison of galantam<strong>in</strong>e and donepezil <strong>in</strong> the<br />

treatment of Alzheimer's disease. Wilcock G, Howe I, Coles H, Lilienfeld S,<br />

Truyen L, Zhu Y, Bullock R, Kershaw P DRUGS AGING 2003 20 10 777-789<br />

541084 Psychiatric Disorders - SMi conference, London, UK. Kibble A<br />

IDDB MEETING REPORT 2004 May 24-25<br />

545766 Form S-1 - Targacept Inc. FORM S-1 2004 May 14<br />

557048 Medic<strong>in</strong>al Chemistry - XVIIIth International Symposium (Part V),<br />

Copenhagen, Denmark and Malmo, Sweden. IDDB MEETING REPORT<br />

2004 August 15-19<br />

559979 TC-1734: An orally active neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor modulator with antidepressant, neuroprotective and longlast<strong>in</strong>g<br />

cognitive effects. Gatto GJ, Bohme GA, Caldwell WS, Letchworth<br />

SR, Tra<strong>in</strong>a VM, Ob<strong>in</strong>u MC, Laville M, Reibaud M, Pradier L, Dunbar G,<br />

Bencherif M CNS DRUG REV 2004 10 2 147-166<br />

583306 TC-1734, a neuronal nicot<strong>in</strong>ic receptor-selective ligand, protects<br />

hippocampal neurons from hypoxia and glucose deprivation. Bencherif M,<br />

Bohme GA, Pradier L, Laville M ABSTR SOC NEUROSCI 2001 31 Abs 488.5<br />

592125 Targacept presents promis<strong>in</strong>g results at the 7th International<br />

conference on Alzheimer's and Park<strong>in</strong>son's disease. PRESS RELEASE<br />

2005 March 29<br />

611220 Targacept reports positive phase 2 data on ispronicl<strong>in</strong>e, a novel<br />

small molecule be<strong>in</strong>g developed for treatment of Alzheimer's disease<br />

and age associated memory impairment. PRESS RELEASE 2005 July 06<br />

612281 Biological Psychiatry (Part II) - Eighth World Congress, Vienna,<br />

Austria. IDDB MEETING REPORT 2005 June 28 - July 03<br />

615362 TC-1734: A neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor partial<br />

agonist that demonstrated an excellent safety/tolerabililty profile and<br />

cognitive enhancement <strong>in</strong> early studies <strong>in</strong> humans. Dunbar GC<br />

NEUROPSYCHOPHARMACOLOGY 2004 29 Suppl 1 S127<br />

621742 Nicot<strong>in</strong>ic receptor modulation: Advantages for successful<br />

Alzheimer's disease therapy. Geerts H, F<strong>in</strong>kel L, Carr R, Spiros A J<br />

NEURAL TRANSM SUPPL 2002 62 203-216<br />

621785 Bra<strong>in</strong> levels and acetylchol<strong>in</strong>esterase <strong>in</strong>hibition with galantam<strong>in</strong>e<br />

and donepezil <strong>in</strong> rats, mice and rabbits. Geerts H, Guillaumat PO,<br />

Grantham C, Bode W, Anciaux K, Sachak S BRAIN RES 2005 1033 2 186-<br />

193<br />

621786 M1 muscar<strong>in</strong>ic agonists can modulate some of the hallmarks <strong>in</strong><br />

Alzheimer's disease: Implications <strong>in</strong> future therapy. Fisher A, Pittel Z,<br />

Har<strong>in</strong>g R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch<br />

I, Brandeis R J MOL NEUROSCI 2003 20 3 349-356<br />

621790 Synaptic mechanisms underlie nicot<strong>in</strong>e-<strong>in</strong>duced excitability of<br />

bra<strong>in</strong> reward areas. Mansvelder HD, Keath JR, McGehee DS NEURON<br />

2002 33 6 905-919<br />

621822 Nicot<strong>in</strong>ic chol<strong>in</strong>ergic synaptic mechanisms <strong>in</strong> the ventral<br />

tegmental area contribute to nicot<strong>in</strong>e addiction. Pidoplichko VI, Noguchi J,<br />

Areola OO, Liang Y, Peterson J, Zhang T, Dani JA LEARN MEM 2004 11 1<br />

60-69<br />

621828 Chronic nicot<strong>in</strong>e adm<strong>in</strong>istration exacerbates tau pathology <strong>in</strong> a<br />

transgenic model of Alzheimer's disease. Oddo S, Caccamo A, Green KN,<br />

Liang K, Tran L, Chen Y, Leslie FM, LaFerla FM PROC NATL ACAD SCI USA<br />

2005 102 8 3046-3051<br />

621830 Janus k<strong>in</strong>ase 2, an early target of α7 nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor-mediated neuroprotection aga<strong>in</strong>st Aβ-(1-42) amyloid. Shaw S,<br />

Bencherif M, Marrero MB J BIOL CHEM 2002 277 47 44920-44924<br />

621831 Acetylchol<strong>in</strong>e enhancement <strong>in</strong> the nucleus accumbens prevents<br />

addictive behaviors of coca<strong>in</strong>e and morph<strong>in</strong>e. Hikida T, Kitabatake Y,<br />

Pastan I, Nakanishi S PROC NATL ACAD SCI USA 2003 100 10 6169-6173<br />

621833 Mecamylam<strong>in</strong>e <strong>in</strong>teractions with galantam<strong>in</strong>e and donepezil:<br />

Effects on learn<strong>in</strong>g, acetylchol<strong>in</strong>esterase, and nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptors. Woodruff-Pak DS, Vogel RW 3rd, Wenk GL NEUROSCIENCE<br />

2003 117 2 439-447<br />

622031 Differential <strong>in</strong>crease <strong>in</strong> cerebrosp<strong>in</strong>al fluid-acetylchol<strong>in</strong>esterase<br />

after treatment with acetylchol<strong>in</strong>esterase <strong>in</strong>hibitors <strong>in</strong> patients with<br />

Alzheimer's disease. Davidsson P, Blennow K, Andreasen N, Eriksson B,<br />

M<strong>in</strong>thon L, Hesse C NEUROSCI LETT 2001 300 3 157-160<br />

622036 Challeng<strong>in</strong>g the chol<strong>in</strong>ergic system <strong>in</strong> mild cognitive impairment:<br />

A pharmacological fMRI study. Goekoop R, Rombouts SA, Jonker C, Hibbel<br />

A, Knol DL, Truyen L, Barkhof F, Scheltens P NEUROIMAGE 2004 23 4<br />

1450-1459<br />

622040 Galantam<strong>in</strong>e treatment of problematic behavior <strong>in</strong> Alzheimer's<br />

disease: Post-hoc analysis of pooled data from three large trials.<br />

Herrmann N, Rabheru K, Wang J, B<strong>in</strong>der C AM J GERIATR PSYCHIAT 2005<br />

13 6 527-534<br />

622041 Reduced levels of Aβ 40 and Aβ 42 <strong>in</strong> bra<strong>in</strong>s of smok<strong>in</strong>g controls<br />

and Alzheimer's patients. Hellstrom-L<strong>in</strong>dahl E, Mousavi M, Ravid R,<br />

Nordberg A NEUROBIOL DIS 2004 15 2 351-360<br />

622042 Chol<strong>in</strong>ergic plasticity <strong>in</strong> hippocampus of <strong>in</strong>dividuals with mild<br />

cognitive impairment: Correlation with Alzheimer's neuropathology.<br />

Ikonomovic MD, Mufson EJ, Wuu J, Cochran EJ, Bennett DA, DeKosky ST J<br />

ALZHEIMER DIS 2003 5 1 39-48<br />

622044 Vitam<strong>in</strong> E and donepezil for the treatment of mild cognitive<br />

impairment. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R,<br />

Ferris S, Galasko D, J<strong>in</strong> S, Kaye J, Levey A, Pfeiffer E et al N ENGL J MED<br />

2005 352 23 2379-2388<br />

624033 Product Pipel<strong>in</strong>e. Ispronicl<strong>in</strong>e - Cognitive impairement <strong>in</strong> the<br />

elderly. Targacept Inc COMPANY WORLD WIDE WEB SITE 2005<br />

September 20<br />

624142 Nicot<strong>in</strong>ic receptor abnormalities <strong>in</strong> Alzheimer's disease. Court J,<br />

Mart<strong>in</strong>-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E BIOL PSYCHIATRY<br />

2001 49 3 175-184<br />

624143 Dementia rat<strong>in</strong>g and nicot<strong>in</strong>ic receptor expression <strong>in</strong> the<br />

prefrontal cortex <strong>in</strong> schizophrenia. Mart<strong>in</strong>-Ruiz CM, Haroutunian VH, Long<br />

P, Young AH, Davis KL, Perry EK, Court JA BIOL PSYCHIATRY 2003 54 11<br />

1222-1223<br />

624144 Measurement and treatment research to improve cognition <strong>in</strong><br />

schizophrenia: NIMH MATRICS <strong>in</strong>itiative to support the development of<br />

agents for improv<strong>in</strong>g cognition <strong>in</strong> schizophrenia. Marder SR, Fenton W<br />

SCHIZOPHR RES 2004 72 1 5-9<br />

624147 Alpha-7 nicot<strong>in</strong>ic receptor agonists: Potential new candidates for<br />

the treatment of schizophrenia. Mart<strong>in</strong> LF, Kem WR, Freedman R<br />

PSYCHOPHARMACOLOGY 2005 174 1 54-64<br />

624153 The utility of muscar<strong>in</strong>ic agonists <strong>in</strong> the treatment of Alzheimer's<br />

disease. Messer WS Jr J MOL NEUROSCI 2002 19 1-2 187-193<br />

631107 Cognition <strong>in</strong> schizophrenia: The MATRICS <strong>in</strong>itiative. White RF,<br />

Compton M INT CONGR SCHIZOPH RES 2005 April 4-6 Symposium 4-6<br />

634416 Cognitive enhancement <strong>in</strong> man with ispronicl<strong>in</strong>e a nicot<strong>in</strong>ic<br />

partial agonist us<strong>in</strong>g surrogate markers. Dunbar GC, Kuchibhatla R INT<br />

SYMP CHOLINERGIC MECH 2005 October 01-05 SO33<br />

634638 Indicators of neuroprotection with galantam<strong>in</strong>e. Geerts H BRAIN<br />

RES BULL 2005 64 6 519-524<br />

634952 Cognitive enhancement <strong>in</strong> early studies with TC-1734, a<br />

partial agonist at the NNR receptor. Dunbar GC, Kuchibhatla R,<br />

Wamsley JK INT CONF ALZHEIMER PARKINSONS DIS, Sorrento, Italy<br />

2005 March 9-13<br />

636359 Endogenous nicot<strong>in</strong>ic chol<strong>in</strong>ergic activity regulates dopam<strong>in</strong>e<br />

release <strong>in</strong> the striatum. Zhou FM, Liang Y, Dani JA NAT NEUROSCI 2001 4<br />

12 1224-1229<br />

638395 Nicot<strong>in</strong>ic receptors and schizophrenia. Ripoll N, Bronnec M, Bour<strong>in</strong><br />

M CURR MED RES OPIN 2004 20 7 1057-1074<br />

638396 Nicot<strong>in</strong>ic receptors and Alzheimer's disease. Bour<strong>in</strong> M, Ripoll N,<br />

Dailly E CURR MED RES OPIN 2003 19 3 169-177


638398 The nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor subtypes and their function<br />

<strong>in</strong> the hippocampus and cerebral cortex. Alkondon M, Albuquerque EX<br />

PROG BRAIN RES 2004 145 109-120<br />

638427 In vivo imag<strong>in</strong>g of human cerebral nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptors with 2-18F-fluoro-A-85380 and PET. Gallezot JD, Bottlaender M,<br />

Gregoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dolle F,<br />

Syrota A, Valette H J NUCL MED 2005 46 2 240-247<br />

Ispronicl<strong>in</strong>e Geerts 69<br />

638430 Nicot<strong>in</strong>ic receptors differentially regulate N-methyl-D-aspartate<br />

damage <strong>in</strong> acute hippocampal slices. Ferchm<strong>in</strong> PA, Perez D, Eterovic VA,<br />

de Vellis J J PHARMACOL EXP THER 2003 305 3 1071-1078<br />

641513 Ispronicl<strong>in</strong>e, a neuronal nicot<strong>in</strong>ic receptor partial agonist <strong>in</strong> the<br />

treatment of subjects with mild cognitive impairment (MCI). Dunbar GC,<br />

Kuchibhatla R CONG INT PSYCHOGERIATR ASSOC Stockholm, Sweden<br />

2005 September 21 Abs 105


70<br />

AEOL-10150 Aeolus<br />

Richard W Orrell<br />

Address<br />

Department of Cl<strong>in</strong>ical Neurosciences<br />

Royal Free and University College Medical School<br />

University College London<br />

Rowland Hill Street<br />

London<br />

NW3 2PF<br />

UK<br />

Email: r.orrell@medsch.ucl.ac.uk<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):70-80<br />

© The Thomson Corporation ISSN 1472-4472<br />

AEOL-10150, a small-molecule antioxidant analogous to the<br />

catalytic site of superoxide dismutase, is under development by<br />

Aeolus (formerly Incara) as a potential subcutaneous treatment<br />

for amyotrophic lateral sclerosis (ALS), stroke, sp<strong>in</strong>al cord<br />

<strong>in</strong>jury, lung <strong>in</strong>flammation and mucositis. The compound is<br />

currently undergo<strong>in</strong>g a phase I cl<strong>in</strong>ical trial for ALS. In<br />

October 2005, the company had applied for Fast Track status,<br />

and planned to submit a special protocol assessment for a<br />

pivotal phase II/III trial.<br />

Introduction<br />

AEOL-10150 is a manganese metalloporphyr<strong>in</strong> catalytic<br />

oxidant, a small-molecule antioxidant that has structural and<br />

functional similarities to the catalytic site of superoxide<br />

dismutase (SOD). Metalloporphyr<strong>in</strong>s are a novel class of<br />

antioxidants that 'scavenge' a wide range of oxidative species,<br />

<strong>in</strong>clud<strong>in</strong>g superoxide, peroxide, peroxynitrite and lipid peroxyl<br />

radicals [449960], [625113]. AEOL-10150 is under development<br />

by Aeolus Pharmaceuticals Inc (formerly Incara<br />

Pharmaceuticals) as a potential subcutaneous treatment,<br />

primarily for amyotrophic lateral sclerosis (ALS) [505222], but is<br />

also under <strong>in</strong>vestigation for a range of conditions, <strong>in</strong>clud<strong>in</strong>g<br />

stroke [428437], sp<strong>in</strong>al cord <strong>in</strong>jury [616364], lung <strong>in</strong>flammation<br />

[616377] and mucositis [432294].<br />

ALS is a neurodegenerative disorder affect<strong>in</strong>g men and<br />

women of all ages and ethnic orig<strong>in</strong>s worldwide. ALS may<br />

also be called motor neuron disease. This disorder has an<br />

annual <strong>in</strong>cidence rate of approximately two per 100,000 of<br />

the population, and a prevalence of six per 100,000. The<br />

<strong>in</strong>cidence <strong>in</strong>creases with age, with the mean age of onset<br />

be<strong>in</strong>g approximately 60 years, although it can affect<br />

<strong>in</strong>dividuals from early adulthood (from approximately 20<br />

years) onwards. Men are slightly more likely to be affected<br />

than women (1.4:1) [478835], [638196], [638197]. The<br />

progression of the disease is typically rapid, with the earliest<br />

symptom often be<strong>in</strong>g a muscle weakness <strong>in</strong> the arms or legs<br />

of a patient, co<strong>in</strong>cid<strong>in</strong>g with an <strong>in</strong>creased tendency to drop<br />

objects, stumble, twitch or experience abnormal fatigue <strong>in</strong><br />

the limbs. Further weaken<strong>in</strong>g and paralysis can spread to<br />

the muscles <strong>in</strong>volved <strong>in</strong> breath<strong>in</strong>g, swallow<strong>in</strong>g and speech,<br />

lead<strong>in</strong>g to immobility, an <strong>in</strong>ability to eat, dr<strong>in</strong>k and speak,<br />

and respiratory failure. Early respiratory or bulbar<br />

symptoms are adverse prognostic <strong>in</strong>dicators of the disease.<br />

Respiratory failure is the most common cause of death <strong>in</strong><br />

ALS, and usually occurs with<strong>in</strong> three to five years of onset<br />

[478835], [638197], [638203]. Follow<strong>in</strong>g the onset of<br />

symptoms, over 50% of ALS sufferers will die with<strong>in</strong> three<br />

Orig<strong>in</strong>ator Aeolus Pharmaceuticals Inc<br />

Status Phase I Cl<strong>in</strong>ical<br />

.<br />

Indications Cerebrovascular ischemia, Lung <strong>in</strong>flammation,<br />

Motor neuron disease (amytrophic lateral sclerosis),<br />

Mucositis,.Sp<strong>in</strong>al cord <strong>in</strong>jury.<br />

.<br />

Actions Antioxidant agent, Neuroprotectant<br />

.<br />

Technology Subcutaneous formulation<br />

Registry No: 286475-30-7<br />

C<br />

H 3<br />

C<br />

H 3<br />

N +<br />

N +<br />

N<br />

N<br />

CH 3<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

CH 3<br />

Mn 3+<br />

CH 3<br />

CH 3<br />

N +<br />

N +<br />

Cl Cl Cl Cl Cl<br />

years, with < 10% liv<strong>in</strong>g beyond five years. Disease<br />

progression can be either more rapid or greatly reduced <strong>in</strong><br />

some cases, with around 10% of patients liv<strong>in</strong>g for > 10 years<br />

[634304].<br />

The cause of ALS rema<strong>in</strong>s unknown, although free-radicalmediated<br />

neurotoxicity is one proposed mechanism<br />

[638229], [638230]. Free-radical-mediated toxicity has been<br />

implicated <strong>in</strong> a wide range of diseases, <strong>in</strong>clud<strong>in</strong>g<br />

neurodegenerative diseases, stroke, acute myocardial<br />

<strong>in</strong>farction, <strong>in</strong>flammatory disorders and carc<strong>in</strong>ogenesis<br />

[449960], [638218]. In addition, a proportion of patients with<br />

ALS (approximately 2%) have mutations of the gene<br />

encod<strong>in</strong>g the copper/z<strong>in</strong>c SOD1 enzyme [400330], [638203],<br />

[638220], [638223]. <strong>Current</strong> evidence suggests that <strong>in</strong> patients<br />

with SOD1 mutations, the disease is not related to deficiency<br />

of SOD activity, but is caused by a toxic ga<strong>in</strong> of function,<br />

possibly related to prote<strong>in</strong> accumulation or other<br />

mechanisms [638223], [638233].<br />

<strong>Current</strong> treatment for ALS is largely supportive, and only<br />

one medication has been licensed. Riluzole is orally<br />

adm<strong>in</strong>istered, and is proposed to <strong>in</strong>hibit glutamate release.<br />

Although well tolerated, the drug has limited efficacy.<br />

Glutamate-<strong>in</strong>duced neuronal excitotoxicity is one<br />

hypothesized cause of ALS, hence the <strong>in</strong>itial study of<br />

riluzole. The therapeutic mechanism of action rema<strong>in</strong>s<br />

uncerta<strong>in</strong>, however, and other possibilities <strong>in</strong>clude an effect<br />

on modulation of sodium, potassium or AMPA/ka<strong>in</strong>ate<br />

channels [262608]. Evidence from cl<strong>in</strong>ical trials <strong>in</strong>dicates a<br />

CH 3<br />

CH 3


prolongation of survival of approximately 2 months, after 12<br />

months of riluzole treatment. This represents a 9% ga<strong>in</strong> <strong>in</strong><br />

the probability of surviv<strong>in</strong>g for one year (57% <strong>in</strong> the placebo<br />

and 66% <strong>in</strong> the riluzole group) [625097]. Despite the<br />

prolongation of survival, there is no clear cl<strong>in</strong>ical evidence of<br />

slow<strong>in</strong>g of functional decl<strong>in</strong>e, and the basis of the prolonged<br />

survival is uncerta<strong>in</strong>. Riluzole has not been demonstrated to<br />

alter the rate of disease progression or preserve muscle<br />

strength [636040].<br />

AEOL-10150 has progressed through a series of precl<strong>in</strong>ical<br />

studies <strong>in</strong> models represent<strong>in</strong>g a range of diseases, <strong>in</strong>clud<strong>in</strong>g<br />

ALS, sp<strong>in</strong>al cord <strong>in</strong>jury, islet-cell transplantation for<br />

diabetes, cancer and stroke. The demonstration of a<br />

beneficial effect of AEOL-10150 on survival and delayed<br />

disease progression <strong>in</strong> the SOD1 mutant mouse model of<br />

ALS led to phase I studies <strong>in</strong> patients with ALS, and phase<br />

II/III studies <strong>in</strong> ALS have also been proposed, together with<br />

plans for cl<strong>in</strong>ical studies <strong>in</strong> stroke and radiation-<strong>in</strong>duced<br />

mucositis.<br />

Synthesis and SAR<br />

Metalloporphyr<strong>in</strong>s are low-molecular-weight complexes<br />

that have antioxidant scaveng<strong>in</strong>g properties for superoxide,<br />

peroxynitrite and lipid peroxyl radicals. They are water<br />

soluble, manganese meso-porphyr<strong>in</strong>s that are stable and nontoxic<br />

[616369]. Aeolus synthesized AEOL-10150 as a cationic<br />

manganese porphyr<strong>in</strong>, manganese(III) mesotetrakis(N,N'diethylimidazolium-2-yl)porphyr<strong>in</strong><br />

[625100], which can be<br />

abbreviated as Mn IIITDE-2-ImP 5+ [554429]. Accord<strong>in</strong>g to<br />

Bat<strong>in</strong>ic-Haberle et al [625100], AEOL-10150 has been<br />

erroneously referred to <strong>in</strong> a number of publications as<br />

[5,10,l5,20-tetrakis(1,3-diethylimidazolium-2-yl)porphyr<strong>in</strong>ato]<br />

manganese(III) pentachloride [616156], manganese(III)<br />

mesotetrakis (di-N-ethylimidazole) porphyr<strong>in</strong> [616360], and<br />

manganese(III)meso-tetrakis(N,N'-diethyl-1,3-imidazolium-<br />

2-yl) porphyr<strong>in</strong> [616370]. In these cases the '1' and '3'<br />

<strong>in</strong>dicated the imidazolyl nitrogens, rather than position 2<br />

where the imidazolyl is attached to the porphyr<strong>in</strong> r<strong>in</strong>g<br />

[625100].<br />

AEOL-10150 was produced alongside AEOL-10113, the<br />

other lead compound from Aeolus' catalytic antioxidants<br />

pipel<strong>in</strong>e [465629]. AEOL-10113 (manganese (III) tetrakis (Nethylpyrid<strong>in</strong>ium-2-yl)<br />

porphyr<strong>in</strong> or MnTE-2-PyP 5+) is<br />

composed of several stereoisomers, mak<strong>in</strong>g a pharmaceutically<br />

acceptable formulation difficult to achieve and limit<strong>in</strong>g the<br />

ability to analyze tissue levels and perform pharmacok<strong>in</strong>etic<br />

studies. AEOL-10113 and related compounds were<br />

synthesized through β-chlor<strong>in</strong>ation of 5,10,15,20-tetrakis (2pyridyl)<br />

porphyr<strong>in</strong> (H2T-2-PyP) followed by N-ethylation<br />

and metallation [625109]. In contrast, AEOL-10150 is a<br />

structurally different metalloporphyr<strong>in</strong> catalytic antioxidant,<br />

with imidazole side cha<strong>in</strong> substitutions. AEOL-10150 does<br />

not exist as a stereoisomer, is relatively easy to synthesize,<br />

and can be readily analyzed <strong>in</strong> tissues [465629].<br />

AEOL-10150 was synthesized on the basis of the structureactivity<br />

relationships of AEOL-10113. The metal-centered<br />

redox potential and electrostatics of these compounds have a<br />

key effect on the ability to dismutase superoxides [625100].<br />

AEOL-10150 Orrell 71<br />

AEOL-10150 had a metal-centered redox potential (E1/2)<br />

value of +346 mV, and a catalytic rate constant (log kcat) of<br />

7.83. AEOL-10113 has cationic ortho-N-ethylpyridyl groups<br />

on the meth<strong>in</strong>e bridge carbons of the porphyr<strong>in</strong> r<strong>in</strong>g system<br />

that provides electrostatic guidance for superoxide. The nonplanarity<br />

dim<strong>in</strong>ishes the <strong>in</strong>teraction of AEOL-10113 with<br />

DNA and hence reduces the <strong>in</strong> vivo toxicity of the compound<br />

[413580]. AEOL-10150 has ethyl cha<strong>in</strong>s <strong>in</strong> substitution for<br />

both the ortho-imidazolyl nitrogens of AEOL-10113. This<br />

delocalizes the positive charge over both nitrogens,<br />

provid<strong>in</strong>g greater proximity to the mesoporphyr<strong>in</strong> carbons,<br />

and creates a stronger electron-withdraw<strong>in</strong>g effect than the<br />

positively charged ortho-pyridyl nitrogens [625100].<br />

Separation and detection of these compounds has been<br />

described by high-performance liquid chromatography, with<br />

electrochemical detection apparently offer<strong>in</strong>g greater<br />

quantitative sensitivity than spectrophotometric detection,<br />

although less specificity for <strong>in</strong> vivo applications [625112].<br />

Precl<strong>in</strong>ical development<br />

Mechanism<br />

AEOL-10150 can catalytically decompose biological<br />

oxidants, such as peroxynitrite, by its ability to cycle<br />

between Mn(II) and Mn(IV) states [616156]. The compound<br />

has a +5 charge, with SOD activity between 5000 and 8500<br />

units/g and catalase activity equivalent to approximately<br />

1% of purified bov<strong>in</strong>e catalase (weight/<br />

weight basis) [616360], [616369].<br />

Alternative mechanisms of action have been proposed for<br />

the metallophorphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g neuroprotective effects<br />

mediated by suppression of oxygen-glucose deprivation<br />

(OGD) or N-methyl-D-aspartate (NMDA)-<strong>in</strong>duced rises <strong>in</strong><br />

<strong>in</strong>tracellular Ca 2+ concentration [634340], <strong>in</strong>duction of antiapoptotic<br />

prote<strong>in</strong> synthesis [634341], and <strong>in</strong>hibition of lipid<br />

peroxidation [634325]. However, to date, studies of<br />

AEOL-10150 have focused on antioxidant mechanisms, and<br />

the possibility of other mechanisms rema<strong>in</strong>s undef<strong>in</strong>ed.<br />

ALS<br />

The effects of AEOL-10150 were demonstrated <strong>in</strong> mice that<br />

overexpress the human Cu/Zn SOD1 mutant G93A, which<br />

develop a progressive motor neuron disease; this is<br />

currently considered the best animal model of ALS [505222],<br />

[616156]. Three studies were performed and described <strong>in</strong> a<br />

s<strong>in</strong>gle paper [616156]. In the first study, AEOL-10150 (5<br />

mg/kg) was adm<strong>in</strong>istered <strong>in</strong>traperitoneally as a load<strong>in</strong>g<br />

dose after the first day of symptom onset, followed by daily<br />

ma<strong>in</strong>tenance doses of 2.5 mg/kg. A second study<br />

used a similar regime and adm<strong>in</strong>istered <strong>in</strong>traperitoneal<br />

AEOL-10150 (2.5 mg/kg) every day follow<strong>in</strong>g the onset of<br />

symptoms; <strong>in</strong> addition, creat<strong>in</strong>e and the selective COX-2<br />

<strong>in</strong>hibitor rofecoxib were also adm<strong>in</strong>istered (at 2 and 0.005%<br />

<strong>in</strong> the diet, respectively). The third experiment tested the<br />

same dose of AEOL-10150 (2.5 mg/kg/day) via<br />

subcutaneous adm<strong>in</strong>istration. The survival <strong>in</strong>terval was<br />

calculated from the onset of symptoms (typically around 90<br />

days of age) until sacrifice at a predeterm<strong>in</strong>ed late stage of<br />

disease. After calculat<strong>in</strong>g the survival <strong>in</strong>terval of treated<br />

mice relative to sal<strong>in</strong>e-treated controls (the <strong>in</strong>creased<br />

survival result<strong>in</strong>g from treatment), a survival <strong>in</strong>terval ratio


72 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

was determ<strong>in</strong>ed. The mean survival <strong>in</strong>tervals for G93A mice<br />

treated with <strong>in</strong>traperitoneal AEOL-10150 (2.5 mg/kg/day)<br />

<strong>in</strong>traperitoneal AEOL-10150 (2.5 mg/kg/day) plus<br />

creat<strong>in</strong>e and rofecoxib, and subcutaneous AEOL-10150<br />

(2.5 mg/kg/day) were 40.0, 38.8 and 40.5 days, respectively,<br />

<strong>in</strong> the first study; survival ratios <strong>in</strong> the same groups were<br />

2.96, 2.87 and 2.43, respectively [616156].<br />

Specific deficits were absent <strong>in</strong> the AEOL-10150-treated<br />

mice, with an absence of h<strong>in</strong>d-limb paralysis until a late<br />

stage compared with control mice. The relative <strong>in</strong>frequency<br />

of h<strong>in</strong>d-limb paralysis <strong>in</strong> AEOL-10150-treated mice<br />

compared with complete h<strong>in</strong>d-limb paralysis <strong>in</strong> almost all<br />

control mice suggests that AEOL-10150 alters the course of<br />

the disease and helps to ma<strong>in</strong>ta<strong>in</strong> overall motor function<br />

dur<strong>in</strong>g the period of extended survival [616156]. These<br />

effects correlate with the preservation of sp<strong>in</strong>al motor<br />

neurons. Neuron counts <strong>in</strong> the sp<strong>in</strong>al cord demonstrated<br />

<strong>in</strong>creased cellular survival, with 53% of sp<strong>in</strong>al cord neurons<br />

surviv<strong>in</strong>g at 100 days <strong>in</strong> AEOL-10150-treated mice compared<br />

with 38% <strong>in</strong> untreated mice. Immunosta<strong>in</strong><strong>in</strong>g for glial<br />

fibrillary acidic prote<strong>in</strong> was reduced <strong>in</strong> treated mice,<br />

suggest<strong>in</strong>g that gliosis or neuronal <strong>in</strong>jury is reduced. Levels<br />

of prote<strong>in</strong>-bound nitrotyros<strong>in</strong>e (a marker of oxidative <strong>in</strong>jury)<br />

and malondialdehyde (a marker of lipid oxidation) were<br />

reduced <strong>in</strong> AEOL-10150-treated G93A mice [616156].<br />

In a follow-up study, AEOL-10150 was tested both as a<br />

s<strong>in</strong>gle agent and <strong>in</strong> comb<strong>in</strong>ation with the histone deacetylase<br />

<strong>in</strong>hibitor phenylbutyrone <strong>in</strong> a mur<strong>in</strong>e G93A SOD1<br />

transgenic model [633859]. The neurodegenerative effects of<br />

phenylbutyrate (400 mg/kg/day) and phenylbutyrate (400<br />

mg/kg/day) comb<strong>in</strong>ed with AEOL-10150 (2.5 mg/kg/day)<br />

were compared with a control. Treatments were<br />

adm<strong>in</strong>istered <strong>in</strong>traperitoneally, commenc<strong>in</strong>g at disease onset<br />

(between 85 and 92 days of age). In mice treated with<br />

AEOL-10150 alone there was a significant <strong>in</strong>crease <strong>in</strong><br />

survival, from 132 ± 5 to 146 ± 15 days (11%). Mice<br />

adm<strong>in</strong>istered with phenylbutyrone alone showed an<br />

<strong>in</strong>crease <strong>in</strong> survival from 126 ± 4 to 143 ± 9 days (13%).<br />

When AEOL-10150 was adm<strong>in</strong>istered together with<br />

phenylbutyrone, survival <strong>in</strong>creased to 150 ± 13 days (19%).<br />

The comb<strong>in</strong>ation therapy was significantly more effective<br />

than phenylbutyrone alone (p < 0.05). Motor performance <strong>in</strong><br />

mice treated with AEOL-10150 alone was not significantly<br />

<strong>in</strong>creased, whereas mice treated with phenylbutyrone, both<br />

alone and <strong>in</strong> comb<strong>in</strong>ation with AEOL-10150, showed a<br />

significantly improved motor performance compared with<br />

control. Loss of motor neurons <strong>in</strong> the lumbar sp<strong>in</strong>al cord<br />

was assessed histologically and was significantly reduced<br />

with all treatment comb<strong>in</strong>ations. Immunohistochemical<br />

analysis of malondialdehyde and 3-nitrotyros<strong>in</strong>e, thought to<br />

be relatively specific markers of oxidative damage, showed<br />

<strong>in</strong>creased expression <strong>in</strong> control mice, and a marked<br />

reduction at 115 days <strong>in</strong> all other treatment groups [633859].<br />

The mechanism of action of AEOL-10150 <strong>in</strong> G93A mice is<br />

unlikely to be due to SOD-like activity, as these mice<br />

overexpress SOD. Prevention of the formation of prote<strong>in</strong>bound<br />

nitrotyros<strong>in</strong>e and malondialdehyde suggests an<br />

antioxidant effect on the preservation of sp<strong>in</strong>al motor<br />

neurons [616156]. As it is currently unknown whether the<br />

best possible survival effects have been achieved, further<br />

studies to rigorously exam<strong>in</strong>e dose, route and frequency of<br />

adm<strong>in</strong>istration of AEOL-10150 <strong>in</strong> ALS models are ongo<strong>in</strong>g.<br />

Sp<strong>in</strong>al cord <strong>in</strong>jury<br />

C57BL/6J mice were subjected to sp<strong>in</strong>al cord compression<br />

for 60 m<strong>in</strong> at the T11 vertebral level. In the first experiment<br />

of a two-part study, AEOL-10150 was adm<strong>in</strong>istered as a 0.5mg/kg<br />

bolus dose, followed by a 1.0 mg/kg <strong>in</strong>travenous<br />

<strong>in</strong>fusion every hour for 24 h, beg<strong>in</strong>n<strong>in</strong>g 5 m<strong>in</strong> after onset of<br />

sp<strong>in</strong>al cord compression (n = 25). In the second experiment,<br />

AEOL-10150 was adm<strong>in</strong>istered as an <strong>in</strong>trathecal <strong>in</strong>jection<br />

(2.5 or 5.0 µg/kg; total n = 18). Rotarod performance<br />

demonstrated that <strong>in</strong>trathecal adm<strong>in</strong>istration of 5 µg of<br />

AEOL-10150 was associated with an approximately 30%<br />

improvement <strong>in</strong> neurological behavior (p < 0.05), and a<br />

reduction was observed <strong>in</strong> histological total damage score<br />

(19 ± 8; p = 0.03) compared with controls (26 ± 10).<br />

Intravenous adm<strong>in</strong>istration of AEOL-10150 produced no<br />

significant changes <strong>in</strong> these tests compared with controls<br />

[554429], [616364].<br />

Stroke<br />

AEOL-10150 was adm<strong>in</strong>istered <strong>in</strong> a C57BL/6J mouse model<br />

of stroke [616369]. Mice were subjected to transient (60 m<strong>in</strong>)<br />

middle cerebral artery occlusion (MCAO; n = 6) or sham<br />

surgery (n = 6), and were then treated with AEOL-10150 5<br />

m<strong>in</strong> after reperfusion. A bolus dose of AEOL-10150 (0.5<br />

mg/kg) was followed by cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion of<br />

1.0 mg/kg/h for 6 h. At this time, the bra<strong>in</strong>s were studied<br />

and mRNA expression was analyzed us<strong>in</strong>g an Affymetrix<br />

mur<strong>in</strong>e microarray. AEOL-10150 attenuated the <strong>in</strong>jury<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> expression of pro-<strong>in</strong>flammatory cytok<strong>in</strong>e<br />

genes. For example, MCAO caused a 12-fold upregulation <strong>in</strong><br />

macrophage <strong>in</strong>flammatory prote<strong>in</strong> (MIP)-2 <strong>in</strong> untreated<br />

animals, compared with a 6-fold <strong>in</strong>crease follow<strong>in</strong>g<br />

AEOL-10150 treatment. However, AEOL-10150 had no<br />

apparent effect on the expression of stress response genes,<br />

suggest<strong>in</strong>g that the protective effect of the drug may be<br />

<strong>in</strong>dependent of any stress response pathways. A possible<br />

explanation is that AEOL-10150 is compartmentalized to the<br />

extracellular space because of its +5 charge, and therefore<br />

produces no effect on the stress response genes, which are<br />

regulated by <strong>in</strong>tracellular events. However, studies with a<br />

range of manganese porphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g AEOL-10113<br />

(which also has a +5 charge), <strong>in</strong>dicated that they penetrated<br />

mitochondrial and cytosolic fractions of cortical cells <strong>in</strong><br />

concentrations sufficient for antioxidant activity [634343].<br />

Slight changes were observed <strong>in</strong> the expression of<br />

antioxidant genes, <strong>in</strong>clud<strong>in</strong>g glutathion<strong>in</strong>e transferase,<br />

neuronal nitric oxide synthase, Cu/Zn SOD, extracellular<br />

SOD and mitochondrial SOD. No significant changes were<br />

recorded <strong>in</strong> the expression of apoptosis and growth factor<br />

genes, suggest<strong>in</strong>g that AEOL-10150 has no effect on these<br />

pathways [616369].<br />

In a study <strong>in</strong> rats, AEOL-10150 and AEOL-10113 were<br />

adm<strong>in</strong>istered <strong>in</strong>tracerebroventricularly 90 m<strong>in</strong> after a 90-m<strong>in</strong><br />

MCAO [465629]. Dose escalation was performed, <strong>in</strong> which<br />

the <strong>in</strong>itial 300-ng dose of AEOL-10150 was doubled until


side effects were observed. The maximal dose of<br />

AEOL-10150 <strong>in</strong> rats that was clearly devoid of adverse<br />

behavioral effects was 4500 ng. AEOL-10113 caused<br />

behavioral side effects at twice the neuroprotective dose, but<br />

AEOL-10150 caused similar changes at 15-fold the<br />

neuroprotective dose [413580]. AEOL-10150 and<br />

AEOL-10113 reduced <strong>in</strong>farct size by 35% when adm<strong>in</strong>istered<br />

90 m<strong>in</strong> after occlusion. When AEOL-10150 was adm<strong>in</strong>istered<br />

6 h after occlusion, <strong>in</strong>farct size was reduced by 43% [465629].<br />

In a similar study, AEOL-10150 reduced <strong>in</strong>farct size by 40%,<br />

but with no associated functional improvement [468211].<br />

AEOL-10113 was not reported at 6 h, but <strong>in</strong> previous<br />

experiments a 54% reduction <strong>in</strong> <strong>in</strong>farct volume was<br />

reported, together with a reduction <strong>in</strong> neurological deficit<br />

[413580]. In another study, us<strong>in</strong>g the same dos<strong>in</strong>g schedule<br />

<strong>in</strong> mice, neuroprotective effects were observed <strong>in</strong> bra<strong>in</strong><br />

parenchymal prote<strong>in</strong> expression where AEOL-10150<br />

<strong>in</strong>hibited changes <strong>in</strong> prote<strong>in</strong> expression that were<br />

attributable to MCAO [428437].<br />

A comparable study of <strong>in</strong>travenous AEOL-10150 was<br />

conducted <strong>in</strong> a mur<strong>in</strong>e model [465629]. A similar doseescalation<br />

design was implemented <strong>in</strong> two cohorts,<br />

follow<strong>in</strong>g either MCAO or sham surgery, followed by an<br />

<strong>in</strong>travenous bolus dose of 0.5 mg/kg AEOL-10150 and a<br />

cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion at 1.0 mg/kg/h for 24 h<br />

(n = 6/group). A 25% reduction <strong>in</strong> <strong>in</strong>farct size and a<br />

reduction <strong>in</strong> neurological deficit were demonstrated<br />

[465629]. Uptake of AEOL-10150 <strong>in</strong>to the bra<strong>in</strong> was slow,<br />

dose- and time-dependent and greater <strong>in</strong> the ischemic<br />

hemisphere. AEOL-10150 had direct effects on bra<strong>in</strong><br />

parenchymal prote<strong>in</strong> expression, support<strong>in</strong>g the hypothesis<br />

that a potent catalytic antioxidant can <strong>in</strong>dependently cause<br />

diverse changes <strong>in</strong> prote<strong>in</strong> expression and ameliorate<br />

changes <strong>in</strong>duced by ischemic <strong>in</strong>sult [465629].<br />

One further <strong>in</strong> vitro study by Sheng et al exam<strong>in</strong>ed the ability of<br />

AEOL-10150 to reduce cell death <strong>in</strong> conditions of oxidative<br />

stress [465629]. Neuronal and glial cell cultures were prepared<br />

from embryonic (day 18) rat cerebral hemispheres, and<br />

AEOL-10150 was applied to the assays 30 m<strong>in</strong> prior to<br />

placement <strong>in</strong> oxygen/glucose deprivation (OGD). AEOL-10150<br />

<strong>in</strong>hibited cell death <strong>in</strong> a concentration-dependent manner (p <<br />

0.0001) follow<strong>in</strong>g OGD. The optimal effect of the drug occurred<br />

at 10 µM, at which 48% of the OGD-<strong>in</strong>duced lactate<br />

dehydrogenase release was <strong>in</strong>hibited. AEOL-10150 selectively<br />

<strong>in</strong>hibited aconitase <strong>in</strong>activation (measured 8 h after OGD)<br />

[465629]. The preservation of aconitase activity is used as a<br />

marker of specific <strong>in</strong>hibition of superoxide-mediated <strong>in</strong>jury<br />

[638331].<br />

Transplantation<br />

In human pancreatic islet-cell allotransplantation, a<br />

treatment be<strong>in</strong>g developed for diabetes mellitus, the<br />

mechanical and chemical <strong>in</strong>sults caused to transplanted cells<br />

by oxidative stresses significantly reduce their viability and<br />

function. In an experiment by Bott<strong>in</strong>o et al, AEOL-10150 was<br />

added to the culture medium of purified human islet cells,<br />

and also at the isolation phase [463528]. After 24 h, there was<br />

a 3-fold <strong>in</strong>crease <strong>in</strong> the mass of AEOL-10150-treated cells<br />

compared with untreated control cells. When transplanted<br />

AEOL-10150 Orrell 73<br />

to diabetic mice, glucose levels were normalized <strong>in</strong> n<strong>in</strong>e of<br />

n<strong>in</strong>e mice receiv<strong>in</strong>g AEOL-10150-treated islet cell cultures,<br />

but only five of eight animals receiv<strong>in</strong>g untreated cells. The<br />

<strong>in</strong> vitro glucose responsiveness and <strong>in</strong> vivo function of the<br />

cells that survived demonstrated that AEOL-10150 does not<br />

impair islet functional performance. AEOL-10150 seemed to<br />

protect the human islets from oxidative and free radical<br />

stresses, improv<strong>in</strong>g the preservation of the isolated tissue,<br />

suggest<strong>in</strong>g that the drug may be usefully applied to the<br />

procurement solution dur<strong>in</strong>g organ perfusion to obta<strong>in</strong> a<br />

more successful protective effect before transplant [463528].<br />

Pancreatic islet β-cells are reported to be highly susceptible<br />

to oxidative stress because of reduced endogenous<br />

antioxidant levels [632736]. Under conditions of extreme<br />

stress, for example, islet-cell isolation procedures follow<strong>in</strong>g<br />

cl<strong>in</strong>ical transplantation, the antioxidant defenses of the βcells<br />

may be overwhelmed, which may lead to a state of<br />

redox imbalance and the production of reactive oxygen<br />

species (ROS). A potential ROS-dependent target is nuclear<br />

factor (NF)κB. In a second study, Bott<strong>in</strong>o et al demonstrated<br />

that AEOL-10150 reduced the level of NFκB <strong>in</strong> treated islet<br />

β-cells, correlat<strong>in</strong>g with reduced production of cytok<strong>in</strong>es<br />

and chemok<strong>in</strong>es, and reduced activation of apoptosis and<br />

necrosis, further support<strong>in</strong>g the use of AEOL-10150 <strong>in</strong> the<br />

protection of pancreatic islet cells used for transplantation<br />

treatment of diabetes [632736].<br />

Hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury<br />

The effect of hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury was studied<br />

<strong>in</strong> extracellular (EC)-SOD knockout mice, with and without<br />

pre-treatment with a s<strong>in</strong>gle subcutaneous dose of<br />

AEOL-10150 (24 mg/kg) [616360]. Compared with wild-type<br />

mice, EC-SOD-deficient mice had <strong>in</strong>creased lung neutrophil<br />

accumulation, a 3.9-fold <strong>in</strong>crease <strong>in</strong> myeloperoxidase<br />

activity, a 1.5-fold <strong>in</strong>crease <strong>in</strong> NFκB activation, and a 1.5-fold<br />

<strong>in</strong>crease <strong>in</strong> lipid peroxidation 1 h after hemorrhage. Pretreatment<br />

with AEOL-10150 did not attenuate neutrophil<br />

accumulation <strong>in</strong> the lungs, but reduced NFκB activation and<br />

isoprostane formation <strong>in</strong> both wild-type and EC-SODdeficient<br />

mice. However, the beneficial effects of<br />

AEOL-10150 were moderate and no reduction <strong>in</strong> neutrophil<br />

recruitment to the lungs was observed, suggest<strong>in</strong>g that<br />

AEOL-10150 can attenuate markers of oxidative stress, but<br />

may not reduce lung <strong>in</strong>jury as measured by neutrophil<br />

accumulation [616360].<br />

Radiation-<strong>in</strong>duced lung <strong>in</strong>jury<br />

The effects of radiation-<strong>in</strong>duced <strong>in</strong>jury were exam<strong>in</strong>ed <strong>in</strong> 344<br />

Fisher rats. Follow<strong>in</strong>g the adm<strong>in</strong>istration of a s<strong>in</strong>gle<br />

irradiation dose (26 Gy) to the right hemithorax, rats were<br />

treated with AEOL-10150 (1, 10 or 30 mg/kg/day) for 10<br />

weeks, via a subcutaneous osmotic pump. Follow-up<br />

exam<strong>in</strong>ations at 20 weeks showed significantly improved<br />

breath<strong>in</strong>g rates <strong>in</strong> both the 10 and 30 mg/kg/day groups. In<br />

the same two groups, a reduction <strong>in</strong> oxidative stress (as<br />

measured by levels of 8-hydroxydeoxyguanos<strong>in</strong>e; 8OHdG),<br />

a reduction <strong>in</strong> macrophage levels and a significant decrease<br />

<strong>in</strong> structural disease were observed, compared with the<br />

control and 1-mg/kg/day groups. The doses and route of<br />

adm<strong>in</strong>istration used <strong>in</strong> this study were implemented <strong>in</strong>to a


74 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

phase I study of AEOL-10150 <strong>in</strong> ALS patients [629090],<br />

[638411].<br />

Tobacco-smoke-<strong>in</strong>duced lung <strong>in</strong>flammation<br />

Cigarette smokers experience airway <strong>in</strong>flammation and<br />

epithelial damage, which is thought to be caused by the<br />

formation of free radicals by chemicals <strong>in</strong> the smoke, lead<strong>in</strong>g<br />

to oxidative stress. AEOL-10150 (either 5 mg/kg<br />

adm<strong>in</strong>istered approximately 2 h before a 2-day toxicity<br />

study, or as eight weekly doses of 2 mg/kg <strong>in</strong> a long-term<br />

toxicity model) was adm<strong>in</strong>istered by <strong>in</strong>tratracheal<br />

<strong>in</strong>stillation to rats exposed to filtered air or tobacco smoke<br />

[616370], [616377]. A lower dose was used for the 8-week<br />

study <strong>in</strong> order to m<strong>in</strong>imize potential long-term toxicity.<br />

AEOL-10150 significantly reduced bronchoalveolar lavage<br />

cell numbers <strong>in</strong> tobacco-smoke-treated rats, with reductions<br />

<strong>in</strong> counts of neutrophils, macrophages and lymphocytes at<br />

different time po<strong>in</strong>ts. Squamous cell metaplasia was reduced<br />

from 12% of total airway epithelial area to 2% after 8 weeks<br />

of treatment with AEOL-10150. AEOL-10150 was also<br />

observed to attenuate decreases <strong>in</strong> levels of MIP-2 and<br />

<strong>in</strong>tracellular adhesion molecule-1, important prote<strong>in</strong>s <strong>in</strong> the<br />

migration and presentation of neutrophils and<br />

macrophages. The expression of these two prote<strong>in</strong>s is<br />

mediated by NFκB and, therefore, it was suggested<br />

that AEOL-10150 decreases tobacco-smoke-<strong>in</strong>duced<br />

<strong>in</strong>flammation <strong>in</strong> the lungs of rats by reduc<strong>in</strong>g oxidative<br />

stress and the resultant activation of NFκB [616370].<br />

Autoimmune disease<br />

The effect of AEOL-10150 (and AEOL-10113) on<br />

lipopolysaccharide-stimulated macrophages was studied to<br />

determ<strong>in</strong>e the role of oxidation-reduction reactions <strong>in</strong> the<br />

activation of the immune system. In the presence of<br />

AEOL-10150, the cells failed to elicit a pro-<strong>in</strong>flammatory<br />

response, and levels of the pro-<strong>in</strong>flammatory cytok<strong>in</strong>es tumor<br />

necrosis factor α and <strong>in</strong>terleuk<strong>in</strong>-1β were decreased. There was<br />

also a reduced ability to generate reactive oxygen species, with<br />

decreased superoxide and peroxynitrite production. These<br />

effects led to the <strong>in</strong>hibition of the NFκB pathway at the DNA<br />

b<strong>in</strong>d<strong>in</strong>g level, which, if mediated by the catalytic antioxidant<br />

<strong>in</strong>hibition, suggests that this pathway is dependent on the<br />

redox state with<strong>in</strong> the cell. This f<strong>in</strong>d<strong>in</strong>g implies that immune<br />

activation might not be an on/off response, but one that is<br />

mediated to some degree by free-radical signal<strong>in</strong>g. The<br />

potential of AEOL-10150 to suppress this immune response<br />

suggests long-term applications <strong>in</strong> prevent<strong>in</strong>g the activation of<br />

the adaptive immune response <strong>in</strong> organ-specific autoimmune<br />

diseases <strong>in</strong> which chronic <strong>in</strong>flammation causes delayed-type<br />

hypersensitivity and tissue destruction [616358].<br />

Mucositis<br />

AEOL-10150 was reported to reduce the <strong>in</strong>cidence and<br />

duration of radiation-<strong>in</strong>duced oral mucositis <strong>in</strong> a hamster<br />

model [432294]. Intraperitoneal (0.05, 0.2 and 0.3 mg/ml) or<br />

topical (0.05, 0.2, 0.3 and 1.0 mg/ml) AEOL-10150 was<br />

adm<strong>in</strong>istered three-times daily for 20 days, commenc<strong>in</strong>g a<br />

day before a s<strong>in</strong>gle 40 Gy dose of radiation. Relative to<br />

vehicle-treated control animals, <strong>in</strong>traperitoneal AEOL-10150<br />

reduced the number of days of severe mucositis (ulceration)<br />

by 35 to 59% at all doses, and topical adm<strong>in</strong>istration (of 1.0<br />

mg/ml) reduced the number of days by 36%. The drug also<br />

protected aga<strong>in</strong>st conditions that commonly arise <strong>in</strong> association<br />

with oxidative free radical damage, reduc<strong>in</strong>g mitochondrial<br />

aconitase <strong>in</strong>activation (by 4-fold with topical adm<strong>in</strong>istration<br />

and 2.5-fold with <strong>in</strong>traperitoneal adm<strong>in</strong>istration) and 8OHdG<br />

formation (by 1.5-fold follow<strong>in</strong>g either topical or <strong>in</strong>traperitoneal<br />

adm<strong>in</strong>istration) [432294]. These data have been presented <strong>in</strong><br />

abstract form only, with no <strong>in</strong>dication of dos<strong>in</strong>g based on<br />

weight. Total daily doses were equivalent to 0.03, 0.12, 0.18 and<br />

0.6 mg/day [432294].<br />

Cancer<br />

A more recent study exam<strong>in</strong>ed the effect of AEOL-10150 on<br />

the efficacy and toxicity of anticancer radiation therapy<br />

[595706]. Male C57BL/6 mice were <strong>in</strong>jected subcutaneously<br />

with RM9 prostate tumor cells before be<strong>in</strong>g treated with<br />

<strong>in</strong>traperitoneal AEOL-10150 (6 mg/kg) for 16 days.<br />

Radiation (10 Gy) was delivered on day 8. Three days after<br />

the application of irradiation, hematological analysis<br />

showed that radiation alone significantly slowed tumor<br />

progression (p ≤ 0.05) and that a slight antitumor response<br />

was observed with AEOL-10150 treatment alone. The most<br />

potent effect was observed when AEOL-10150 was<br />

comb<strong>in</strong>ed with radiation, after which tumor volumes were<br />

significantly reduced on days 8 and 10 to 14, compared with<br />

untreated controls. It was also suggested that AEOL-10150<br />

<strong>in</strong>creased the efficacy of radiation because smaller tumor<br />

volumes were recorded on days 10, 13 and 16 <strong>in</strong> the<br />

AEOL-10150 plus radiation group than <strong>in</strong> animals receiv<strong>in</strong>g<br />

radiation alone (p ≤ 0.05). Record<strong>in</strong>gs of body mass were<br />

similar among all groups dur<strong>in</strong>g the majority of the study.<br />

These f<strong>in</strong>d<strong>in</strong>gs support the utilization of AEOL-10150 as a<br />

possible therapy <strong>in</strong> slow<strong>in</strong>g tumor progression and suggest<br />

that greater tumor control may be possible when the<br />

compound is comb<strong>in</strong>ed with radiation [595706].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

Pharmacok<strong>in</strong>etic parameters were determ<strong>in</strong>ed <strong>in</strong> a rat study<br />

of AEOL-10150 (300 ng) <strong>in</strong>jected <strong>in</strong>tracerebroventricularly 90<br />

m<strong>in</strong> after reperfusion from MCAO [465629]. No compound<br />

was detected <strong>in</strong> the liver. Plasma concentrations were<br />

generally negligible, but reached levels of 4.6 and 3.2 ng/ml<br />

<strong>in</strong> two rats. Bra<strong>in</strong> parenchymal AEOL-10150 peaked with<strong>in</strong> 1<br />

h of <strong>in</strong>jection, and the tissue half-life was calculated to be<br />

approximately 10 h [465629].<br />

In a mouse model of MCAO and reperfusion, AEOL-10150<br />

was adm<strong>in</strong>istered as an <strong>in</strong>travenous bolus of 2.5 mg/kg,<br />

followed by <strong>in</strong>fusion of 1 mg/kg/h. The plasma<br />

concentration of AEOL-10150 was stable at 3 to 4 µg/ml. The<br />

drug concentration <strong>in</strong> both ipsilateral and contralateral bra<strong>in</strong><br />

regions <strong>in</strong>creased with time, but was 2- to 4-fold greater <strong>in</strong><br />

the ischemic hemisphere [468211].<br />

Model<strong>in</strong>g based on animal and human data predicted the<br />

efficacious dose of AEOL-10150 <strong>in</strong> humans with ALS to be<br />

approximately 12 mg daily. It therefore appears that a wide<br />

therapeutic w<strong>in</strong>dow exists for AEOL-10150, accord<strong>in</strong>g to<br />

current safety data and dose-l<strong>in</strong>ear pharmacok<strong>in</strong>etics <strong>in</strong> animals<br />

and humans [616116].<br />

A multicenter, double-bl<strong>in</strong>d, randomized, placebo-controlled,<br />

escalat<strong>in</strong>g-dose study of subcutaneously adm<strong>in</strong>istered s<strong>in</strong>gle<br />

doses of AEOL-10150 (3, 12, 30, 45, 60 and 75 mg) to 25 patients


(n = 3 or 4 per cohort) has been conducted [621716].<br />

Pharmacok<strong>in</strong>etic data from the study showed that responses<br />

were dose-dependent, AUC values rang<strong>in</strong>g from 354 to 12,167<br />

ng.h/ml (follow<strong>in</strong>g 3- and 75-mg doses). Cmax values ranged<br />

from 114.8 to 1584 ng/ml, Tmax values ranged from 1 to 2 h and<br />

mean half-life values from 2.6 to 6.4 h (3 and 75 mg) [621716].<br />

Toxicity<br />

A study <strong>in</strong> rats compared the relative behavioral neurotoxicity<br />

of AEOL-10113 and AEOL-10150 [465629]. Animals were<br />

exam<strong>in</strong>ed for 2 h after <strong>in</strong>jection, and if no adverse behavioral<br />

responses were observed the dose was doubled <strong>in</strong> a new set of<br />

rats. In animals treated with AEOL-10113, a behavioral<br />

syndrome with susta<strong>in</strong>ed proptosis (a protuberance of the<br />

eyeball out of its socket), ataxia (impaired muscle function or<br />

movement) and hypersensitivity to sound was observed. For<br />

AEOL-10113, an <strong>in</strong>tracerebroventricular dose of 600 ng was<br />

reached before m<strong>in</strong>or behavioral side effects became noticeable<br />

compared with 9 µg for AEOL-10150, a 15-fold reduction <strong>in</strong><br />

toxicity. No effect of the drugs on body temperature was<br />

detected [465629].<br />

When adm<strong>in</strong>istered to mice for 16 days, alone or <strong>in</strong><br />

comb<strong>in</strong>ation with radiation, AEOL-10150 (6 mg/kg/day)<br />

did not produce any detectable toxicities affect<strong>in</strong>g body<br />

mass, behavior or hematological analyses [595706].<br />

In male Wistar rats, <strong>in</strong>travenous AEOL-10150 <strong>in</strong> doses of<br />

> 0.1 mg/kg produced a reduction of mean arterial pressure<br />

of > 20%. The duration of hypotension was dose dependent,<br />

with 0.5 mg/kg caus<strong>in</strong>g irreversible profound hypotension,<br />

but smaller doses produc<strong>in</strong>g only transient effects. No<br />

change <strong>in</strong> mean arterial pressure was observed when an<br />

<strong>in</strong>tracerebroventricular route was used [465629].<br />

In a mur<strong>in</strong>e prostate cancer model, animals treated with<br />

AEOL-10150 (6 mg/kg) for 16 days had a significantly elevated<br />

white blood cell count due to granulocytosis (p ≤ 0.05) [595706].<br />

Levels of red blood cells and platelets, hemoglob<strong>in</strong> and<br />

hematocrit were similar among groups tested. A trend of<br />

elevated white blood cells was observed <strong>in</strong> the spleens of mice<br />

treated with AEOL-10150 (p < 0.1), with <strong>in</strong>creases <strong>in</strong> both<br />

granulocytes and macrophages (p < 0.05). Additional studies<br />

are needed to understand the biological significance, if any, of<br />

the <strong>in</strong>creased white blood cell counts [595706].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

A multicenter, double-bl<strong>in</strong>d, randomized, placebo-controlled<br />

study evaluated escalat<strong>in</strong>g, subcutaneous s<strong>in</strong>gle doses of<br />

AEOL-10150 (3, 12, 30, 45, 60 and 75 mg) <strong>in</strong> 25 ALS patients<br />

[592224], [621716]. Recently reported pharmacok<strong>in</strong>etic data<br />

from the trial are detailed above, and side effects/<br />

tolerability detailed <strong>in</strong> the side effects and contra<strong>in</strong>dications<br />

section below.<br />

A second multicenter, multiple-dose study was expected to<br />

enroll 18 ALS patients to receive subcutaneous <strong>in</strong>jections of<br />

40, 60 or 75 mg of AEOL-10150 (n = 4/dose) or placebo<br />

(n = 6), twice daily for 6 days, with a s<strong>in</strong>gle <strong>in</strong>jection on the<br />

seventh day. The trial was to collect efficacy, safety and<br />

AEOL-10150 Orrell 75<br />

pharmacok<strong>in</strong>etic data, and was expected to be completed by<br />

the end of 2005 or early <strong>in</strong> 2006 [629382].<br />

Aeolus has announced plans to <strong>in</strong>itiate trials <strong>in</strong> other<br />

<strong>in</strong>dications. In February 2005, the company was to file an<br />

<strong>in</strong>vestigational new drug application prior to <strong>in</strong>itiat<strong>in</strong>g a<br />

phase I study of AEOL-10150 <strong>in</strong> radiation-<strong>in</strong>duced mucositis<br />

[583926].<br />

The company had announced <strong>in</strong> April 2004 that, depend<strong>in</strong>g<br />

on the results of phase I trials <strong>in</strong> ALS, a pivotal phase II/III<br />

trial <strong>in</strong> this <strong>in</strong>dication could be <strong>in</strong>itiated by the first half of<br />

2005 [533629]. In February 2005, the company stated its<br />

<strong>in</strong>tention to <strong>in</strong>itiate an efficacy study of AEOL-10150 <strong>in</strong><br />

stroke patients [583926]. At the time of publication, however,<br />

no further details of these studies were available.<br />

Side effects and contra<strong>in</strong>dications<br />

The most common side effects that have been reported<br />

from phase I trials of ALS patients were <strong>in</strong>jection-site<br />

reactions, dizz<strong>in</strong>ess and headache [592224]. The adverse<br />

events were considered mild <strong>in</strong> severity, and<br />

approximately 50% of these events were possibly related<br />

to the study medication. No serious adverse events,<br />

laboratory abnormalities or cardiovascular issues were<br />

observed [621716]. Initial observations from the multipledose<br />

study <strong>in</strong> ALS patients have demonstrated no serious<br />

adverse events [629382].<br />

S<strong>in</strong>gle doses of AEOL-10150 rang<strong>in</strong>g from 3 to 30 mg were<br />

well tolerated [592224], and no serious adverse events were<br />

reported. No cl<strong>in</strong>ically mean<strong>in</strong>gful abnormalities were noted<br />

<strong>in</strong> safety laboratory tests, vital signs, unified Park<strong>in</strong>son's<br />

disease rat<strong>in</strong>g scale, functional ALS assessments or<br />

electrocardiogram data. Further studies of up to 75 mg of<br />

AEOL-10150 <strong>in</strong> humans revealed no serious adverse events<br />

or laboratory abnormalities [616116].<br />

Patent summary<br />

WO-09510185, published <strong>in</strong> April 1995 by Duke University and<br />

the University of Melbourne Research Foundation, describes<br />

novel mimetics of SOD and <strong>in</strong>hibitors of xanth<strong>in</strong>e. Claims are<br />

made for various manganic derivatives of meth<strong>in</strong>e-substituted<br />

porphyr<strong>in</strong>s, prepared by conventional methods, <strong>in</strong>clud<strong>in</strong>g the<br />

products AEOL-10113 and AEOL-10150. In December 1996, the<br />

University of Alabama Research Foundation and Duke<br />

University published WO-09640223, describ<strong>in</strong>g the modulation<br />

of <strong>in</strong>tra- or extracellular levels of oxidants, such as superoxide<br />

radicals, hydrogen peroxides and peroxynitrite; potential was<br />

claimed <strong>in</strong> the therapy of ischemia, myocardial <strong>in</strong>farction,<br />

reperfusion <strong>in</strong>jury, and <strong>in</strong>flammatory disorders, such as asthma<br />

and rheumatoid arthritis.<br />

In July 2000, AEOL-10150 was first claimed <strong>in</strong> WO-00043395,<br />

which is expected to be granted as EP-01155019 <strong>in</strong> December<br />

2005, describ<strong>in</strong>g the modulation of cellular levels of oxidants<br />

us<strong>in</strong>g substituted porphyr<strong>in</strong>s. AEOL-10150 is specifically<br />

claimed <strong>in</strong> US-06544975. Both the European and US cases are <strong>in</strong><br />

the name of the National Jewish Medical & Research Center,<br />

Aeolus Pharmaceuticals Inc and Duke University. AEOL-10150<br />

should have solid patent protection at least until January 2020.


76 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Further patents associated with the drug <strong>in</strong>clude WO-02060383<br />

(published <strong>in</strong> August 2002), which claims the use of a list of<br />

SOD mimetics, <strong>in</strong>clud<strong>in</strong>g AEOL-10150, for treat<strong>in</strong>g cancer, and<br />

WO-02098431 (published <strong>in</strong> December 2002), which specifically<br />

claims AEOL-10150 for the treatment of diabetes.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

Oxidative stress and free-radical-mediated damage have<br />

been implicated <strong>in</strong> a broad range of diseases. Many of these<br />

diseases, namely stroke, myocardial <strong>in</strong>farction, cancer, and<br />

neurodegenerative and <strong>in</strong>flammatory diseases, are common,<br />

especially <strong>in</strong> later life, and cause significant disability as a<br />

result of the tissue damage. In particular, if free-radicalmediated<br />

damage can be dim<strong>in</strong>ished or halted after the<br />

immediate <strong>in</strong>sult, for example, <strong>in</strong> stroke or myocardial<br />

<strong>in</strong>farction, there is the prospect of significantly improv<strong>in</strong>g<br />

survival and reduc<strong>in</strong>g disability. Nevertheless, to date, the<br />

results of cl<strong>in</strong>ical studies of other antioxidant (eg, vitam<strong>in</strong>s C<br />

and E, selegil<strong>in</strong>e and N-acetylcyste<strong>in</strong>e) and neuroprotective<br />

compounds (eg, β-lactam antibiotics and m<strong>in</strong>ocycl<strong>in</strong>e) have<br />

been largely disappo<strong>in</strong>t<strong>in</strong>g [625121], [638229]. This may be a<br />

consequence of the animal and tissue models used, and the<br />

difficulty <strong>in</strong> apply<strong>in</strong>g the therapeutic <strong>in</strong>terventions<br />

sufficiently early <strong>in</strong> cl<strong>in</strong>ical practice. The lack of efficacy may<br />

also relate to the compounds be<strong>in</strong>g <strong>in</strong>appropriate.<br />

Questions rema<strong>in</strong> as to the mechanism of action of<br />

metalloporphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g AEOL-10150. The therapeutic<br />

mechanism may not be their antioxidant properties, and more<br />

studies should be conducted <strong>in</strong> precl<strong>in</strong>ical models to determ<strong>in</strong>e<br />

alternative mechanisms, study<strong>in</strong>g markers other than those of<br />

oxidative stress. For example, heat shock prote<strong>in</strong>s are also<br />

implicated <strong>in</strong> the pathogenesis of ALS, and their modulation<br />

has produced some benefit <strong>in</strong> precl<strong>in</strong>ical studies [634318],<br />

[634320]. This f<strong>in</strong>d<strong>in</strong>g may have significant implications for<br />

target<strong>in</strong>g diseases, and determ<strong>in</strong><strong>in</strong>g the most effective<br />

compound for further studies. Also, the free-radical-scaveng<strong>in</strong>g<br />

ability of the metalloporphyr<strong>in</strong>s may be reduced or abolished<br />

by structural modifications. Includ<strong>in</strong>g such modified<br />

compounds as controls <strong>in</strong> studies of AEOL-10150 is important<br />

to clarify the therapeutic mechanisms.<br />

SOD mimetics and similar compounds that affect free radicals<br />

and oxidative stress have the potential for cl<strong>in</strong>ical efficacy.<br />

AEOL-10150 was apparently tolerated <strong>in</strong> phase I studies, and<br />

has the advantage of be<strong>in</strong>g subcutaneously adm<strong>in</strong>istered. For<br />

treatment of a chronic disease process, such as ALS, where<br />

oxidative damage is presumed to be ongo<strong>in</strong>g throughout the<br />

disease, treatment would presumably require regular<br />

adm<strong>in</strong>istration of the compound and access to the central<br />

nervous system. ALS would appear to be a sensible choice of<br />

disease <strong>in</strong> which to study the cl<strong>in</strong>ical effects of AEOL-10150<br />

because of the presumption of oxidative stress as a component<br />

of the pathology, and also because the rapid progression of the<br />

disease allows cl<strong>in</strong>ical efficacy to be studied <strong>in</strong> a relatively short<br />

time period. ALS is a serious and fatal disease <strong>in</strong> urgent need of<br />

effective treatment. A range of antioxidants have been<br />

evaluated <strong>in</strong> the treatment of this disorder, with no proven<br />

efficacy [625121], but these have usually been of low potency<br />

and specificity, and evaluated <strong>in</strong> poorly designed studies. The<br />

only current licensed medication for ALS, riluzole, has only<br />

slight efficacy [625097], [625122], and there is the expectation<br />

that other medications will have a more significant effect <strong>in</strong> the<br />

future, either alone or <strong>in</strong> comb<strong>in</strong>ation with riluzole and other<br />

compounds. The observation of an additive therapeutic effect of<br />

AEOL-10150 when comb<strong>in</strong>ed with sodium phenylbutyrate<br />

supports this view [633859], and is important when design<strong>in</strong>g<br />

precl<strong>in</strong>ical and cl<strong>in</strong>ical studies, and determ<strong>in</strong><strong>in</strong>g the eventual<br />

utility of the compound.<br />

Some caution is needed <strong>in</strong> the <strong>in</strong>terpretation of therapeutic<br />

studies <strong>in</strong> SOD1 transgenic mice, as a range of compounds have<br />

been demonstrated to have efficacy on survival, but this efficacy<br />

has not been translated to effects <strong>in</strong> humans [638229]. Also, a<br />

range of different SOD1 transgenic mouse models exist, with<br />

different mutations, different expression loads and different<br />

background survival, mak<strong>in</strong>g comparison of survival times or<br />

efficacy difficult. An important study <strong>in</strong> a mouse model would<br />

be to exam<strong>in</strong>e a comb<strong>in</strong>ation of riluzole and AEOL-10150,<br />

compar<strong>in</strong>g the comb<strong>in</strong>ation with the effects on animals treated<br />

with the <strong>in</strong>dividual agents and placebo. It is probable that any<br />

cl<strong>in</strong>ical trial <strong>in</strong> humans with ALS will require the patients to be<br />

tak<strong>in</strong>g riluzole as well as AEOL-10150, for ethical reasons. A<br />

criticism that may be raised concern<strong>in</strong>g the treatment of<br />

degenerative conditions, such as ALS (and other conditions<br />

such as cancer, stroke and heart disease), is that <strong>in</strong> prolong<strong>in</strong>g<br />

survival, suffer<strong>in</strong>g or disability may also be prolonged. Hence,<br />

the observation that mice treated with AEOL-10150 reta<strong>in</strong>ed<br />

their ability to walk on all four limbs and perform other normal<br />

activities throughout the extended period of survival, rather<br />

than experience a gradual deterioration or prolongation of<br />

lifespan <strong>in</strong> significant physical disability, is potentially<br />

important [616116], [616156].<br />

More effective antioxidants are also be<strong>in</strong>g synthesized, for<br />

example, through the modification of AEOL-10150 by <strong>in</strong>clud<strong>in</strong>g<br />

oxygen atoms [625100]. Three new Mn(III) porphyr<strong>in</strong> SOD-like<br />

catalysts, with ether oxygen atoms <strong>in</strong> the side cha<strong>in</strong>s, have been<br />

synthesized and characterized by the same laboratory [625100].<br />

When compared with AEOL-10113 and AEOL-10150,<br />

MnTDMOE-2-ImP 5+ (where all eight ethyl groups are replaced<br />

by methoxyethyl groups) was the most effective catalyst of<br />

SOD, while AEOL-10150 was stated to be of low efficacy<br />

[625100]. Comparative studies of these antioxidants <strong>in</strong> the G93A<br />

SOD1 mutant mouse would be of <strong>in</strong>terest because it is the best<br />

available ALS model. In one study, the synthetic superoxide<br />

dismutase/catalase mimetics (salen manganese complexes),<br />

EUK-8 and EUK-134 (Proteome Systems Ltd) were<br />

adm<strong>in</strong>istered <strong>in</strong>traperitoneally to low-express<strong>in</strong>g G93A mice,<br />

110 days before onset. Disease onset occurs later <strong>in</strong> these mice<br />

(170 days), and prolongation of up to 6 days occurs <strong>in</strong> the<br />

EUK-8-treated group, a 1.1-fold <strong>in</strong>crease <strong>in</strong> total life span. Us<strong>in</strong>g<br />

the survival <strong>in</strong>terval ratio, values of 1.2-fold for EUK-8 and<br />

1.6-fold for EUK-134 were calculated [625120]. In another<br />

study, iron porphyr<strong>in</strong> (FeTCPP) 5,10,15,20-tetrakis-4carboxyphenylporphyr<strong>in</strong><br />

was adm<strong>in</strong>istered to G93A SOD1<br />

mutant mice. The mean survival time was <strong>in</strong>creased by 7 days<br />

<strong>in</strong> treated mice compared with controls [625101].<br />

If cl<strong>in</strong>ical efficacy of AEOL-10150 is demonstrated <strong>in</strong> any one<br />

of the proposed treatment <strong>in</strong>dications, the possibilities of<br />

efficacy <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>dications would appear to be good.


Although subcutaneous adm<strong>in</strong>istration is of benefit for chronic<br />

conditions, <strong>in</strong>travenous adm<strong>in</strong>istration with access to<br />

appropriate tissues, especially bra<strong>in</strong> <strong>in</strong> stroke and sp<strong>in</strong>al cord <strong>in</strong><br />

trauma, is important. The recurrent problem <strong>in</strong> treat<strong>in</strong>g these<br />

acute conditions is diagnos<strong>in</strong>g and adm<strong>in</strong>ister<strong>in</strong>g the<br />

medication with<strong>in</strong> the first few hours of the <strong>in</strong>sult.<br />

Development history<br />

AEOL-10150 Orrell 77<br />

Precl<strong>in</strong>ical trials of AEOL-10150 have shown promise of<br />

efficacy <strong>in</strong> a range of diseases that cause significant<br />

mortality, disability and suffer<strong>in</strong>g. However, the<br />

mechanisms of action and relative efficacy of<br />

AEOL-10150 and other metalloporphyr<strong>in</strong>s require further<br />

study.<br />

Developer Country Status Indication Date Reference<br />

Aeolus Pharmaceuticals Inc US Phase I Motor neuron disease 31-OCT-04 583926<br />

Aeolus Pharmaceuticals Inc US Discovery Cerebrovascular ischemia 24-NOV-00 391004<br />

Aeolus Pharmaceuticals Inc US Discovery Lung <strong>in</strong>flammation 01-AUG-01 616377<br />

Aeolus Pharmaceuticals Inc US Discovery Mucositis 01-OCT-01 432294<br />

Aeolus Pharmaceuticals Inc US Discovery Sp<strong>in</strong>al cord <strong>in</strong>jury 04-MAR-04 554429<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

SAR. A number of related manganese (III) compounds were studied and compared. AEOL-10150, a stable<br />

and non-toxic manganese mesoporphyr<strong>in</strong>, was selected on the basis of its redox potentials (E1/2 value<br />

of +346 mV and log kcat value of 7.83).<br />

625100<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vitro Efficacy. AEOL-10150 was added dur<strong>in</strong>g the After 24 h, there was a 3-fold <strong>in</strong>crease <strong>in</strong> 463528<br />

isolation and culture of purified human the mass of AEOL-10150-treated cells<br />

pancreatic islet cells.<br />

compared with untreated cells. When<br />

transplanted to diabetic mice, glucose<br />

levels were normalized <strong>in</strong> n<strong>in</strong>e out of n<strong>in</strong>e<br />

mice receiv<strong>in</strong>g AEOL-10150-treated isletcell<br />

cultures but <strong>in</strong> only five out of eight<br />

animals receiv<strong>in</strong>g untreated cells.<br />

In vivo Efficacy. SOD1-overexpress<strong>in</strong>g G93A mice Compared with placebo, the mean<br />

616156<br />

adm<strong>in</strong>istered one of three schedules <strong>in</strong>creases <strong>in</strong> survival for mice treated with<br />

(5 mg/kg AEOL-10150<br />

<strong>in</strong>traperitoneal AEOL-10150,<br />

<strong>in</strong>traperitoneally as a load<strong>in</strong>g dose <strong>in</strong>traperitoneal AEOL-10150 plus creat<strong>in</strong>e<br />

followed by daily ma<strong>in</strong>tenance doses and rofecoxib, and subcutaneous<br />

of 2.5 mg/kg; 2.5 mg/kg AEOL-10150 AEOL-10150 were 40.0, 38.8 and 40.5<br />

<strong>in</strong>traperitoneally with creat<strong>in</strong>e and days, respectively; survival ratios <strong>in</strong> the<br />

rofecoxib (2 and 0.005% <strong>in</strong> diet, same groups were 2.96, 2.87 and 2.43,<br />

respectively); or 2.5 mg/kg/day<br />

AEOL-10150 via subcutaneous<br />

adm<strong>in</strong>istration) were treated from the<br />

first day of symptom onset<br />

(~ 90 days of age).<br />

respectively.<br />

In vivo Efficacy. SOD1-overexpress<strong>in</strong>g G93A mice Compared with placebo, the mean<br />

633859<br />

adm<strong>in</strong>istered one of three dos<strong>in</strong>g survival of mice treated with AEOL-10150<br />

schedules <strong>in</strong>traperitoneally<br />

alone, with phenylbutyrate alone, and with<br />

(AEOL-10150 (2.5 mg/kg/day), the comb<strong>in</strong>ation of AEOL-10150 and<br />

phenylbutyrate (400 mg/kg/day), and phenylbutyrate <strong>in</strong>creased by 11, 13 and<br />

a comb<strong>in</strong>ation of AEOL-10150<br />

and phenylbutyrate at the same<br />

doses). Animals were treated from the<br />

first day of symptom onset (~ 90 days<br />

of age).<br />

19%, respectively.<br />

In vivo Efficacy. C57BL/6J mice (n = 18) subjected to Rotarod performance demonstrated that 554429<br />

sp<strong>in</strong>al cord compression for 60 m<strong>in</strong>, <strong>in</strong>trathecal adm<strong>in</strong>istration of AEOL-10150<br />

with AEOL-10150 or placebo<br />

was associated with ~ 30% improvement<br />

adm<strong>in</strong>istered 5 m<strong>in</strong> later. In two <strong>in</strong> neurological behavior (p < 0.05), and a<br />

studies, AEOL-10150 was<br />

reduction was seen <strong>in</strong> histological total<br />

adm<strong>in</strong>istered as a 0.5-mg/kg bolus damage score (19 ± 8; p = 0.03)<br />

dose followed by a 1.0-mg/kg<br />

<strong>in</strong>travenous <strong>in</strong>fusion every hour for 24<br />

compared with controls (26 ± 10).<br />

Intravenous adm<strong>in</strong>istration of<br />

h (n = 25), or as an <strong>in</strong>trathecal<br />

<strong>in</strong>jection (2.5 or 5.0 µg/kg).<br />

AEOL-10150 showed no significant<br />

changes compared with the control group.


78 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Biology (cont<strong>in</strong>ued)<br />

Study type Effect studied Model Result Reference<br />

In vivo Efficacy. MCAO or sham surgery <strong>in</strong> mice A 25% reduction <strong>in</strong> <strong>in</strong>farct size and a<br />

465629<br />

(n = 6/group) followed by an<br />

reduction <strong>in</strong> neurological deficit were<br />

<strong>in</strong>travenous bolus dose of<br />

AEOL-10150 (0.5 mg/kg) and a<br />

cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion at<br />

1.0 mg/kg/h for 24 h (n = 6/group).<br />

demonstrated.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. AEOL-10150 (300 ng)<br />

The drug was not detected <strong>in</strong> the liver.<br />

465629<br />

adm<strong>in</strong>istered<br />

Plasma concentrations were generally<br />

<strong>in</strong>tracerebroventricularly 90 m<strong>in</strong> negligible, but reached 4.6 and 3.2 ng/ml <strong>in</strong><br />

after MCAO <strong>in</strong> rats.<br />

two rats. Bra<strong>in</strong> parenchymal AEOL-10150<br />

peaked with<strong>in</strong> 1 h of <strong>in</strong>jection, and the<br />

tissue half-life was calculated to be ~ 10 h.<br />

In vivo Pharmacok<strong>in</strong>etics. Post MCAO or sham surgery, mice<br />

received an <strong>in</strong>travenous bolus<br />

dose of AEOL-10150 (0.5 mg/kg)<br />

and a cont<strong>in</strong>uous <strong>in</strong>travenous<br />

<strong>in</strong>fusion of AEOL-10150 at 1.0<br />

mg/kg/h for 24 h.<br />

In vivo Pharmacok<strong>in</strong>etics. A phase I, double-bl<strong>in</strong>d,<br />

randomized, placebo-controlled,<br />

s<strong>in</strong>gle escalat<strong>in</strong>g-dose study of<br />

subcutaneous AEOL-10150 (3, 12,<br />

30, 45, 60 and 75 mg) <strong>in</strong> 25 ALS<br />

patients.<br />

Cl<strong>in</strong>ical<br />

Uptake of the drug <strong>in</strong>to the bra<strong>in</strong> was slow,<br />

dose- and time- dependent, and greater <strong>in</strong><br />

the ischemic hemisphere.<br />

Responses were dose dependent, with AUC<br />

values rang<strong>in</strong>g from 354 to 12,167 ng.h/ml<br />

(follow<strong>in</strong>g 3- and 75-mg doses, respectively).<br />

Cmax values ranged from 114.8 to 1584 ng/ml,<br />

Tmax ranged from 1 to 2 h, and mean half-lives<br />

from 2.6 to 6.4 h (follow<strong>in</strong>g doses of 3 and 75<br />

mg, respectively).<br />

465629<br />

621716<br />

Effect studied Model Result Reference<br />

Safety. A phase I, multicenter, double-bl<strong>in</strong>d, randomized, No serious adverse effects, laboratory<br />

621716<br />

placebo-controlled, s<strong>in</strong>gle escalat<strong>in</strong>g-dose study of abnormalities or cardiovascular issues were<br />

subcutaneous AEOL-10150 (3, 12, 30, 45, 60 and recorded. The most common adverse effects were<br />

75 mg) <strong>in</strong> 25 ALS patients.<br />

<strong>in</strong>jection-site reactions, dizz<strong>in</strong>ess and headache.<br />

Associated patent<br />

Title Substituted porphyr<strong>in</strong>s.<br />

Assignee National Jewish Medical and Research Center<br />

Publication WO-00043395 27-JUL-00<br />

Priority US-19990117010 25-JAN-99<br />

Inventors Crapo JD, Day BJ, Trova MP, Gauuan PJF, Kitchen DB.<br />

Associated references<br />

262608 Riluzole. A review of its pharmacodynamic and pharmacok<strong>in</strong>etic<br />

properties and therapeutic potential <strong>in</strong> amyotrophic lateral sclerosis.<br />

Bryson HM, Fulton B, Benfield P DRUGS 1996 52 4 549-563<br />

391004 Antioxidant small molecule program. Incara Pharmaceuticals Corp<br />

COMPANY WORLD WIDE WEB SITE 2000 November 23<br />

400330 Mutations <strong>in</strong> Cu/Zn superoxide dismutase gene are associated<br />

with familial amyotrophic lateral sclerosis. Rosen DR, Siddique T,<br />

Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan<br />

JP, Deng HX, Rahmani Z et al NATURE 1993 362 6415 59-62<br />

413580 Neuroprotection from delayed postischemic adm<strong>in</strong>istration of a<br />

metalloporphyr<strong>in</strong> catalytic antioxidant. Mackensen GB, Patel P, Sheng H,<br />

Calvi CL, Bat<strong>in</strong>ic Haberle I, Day BJ, Liang LP, Fridovich I, Crapo JD,<br />

Pearlste<strong>in</strong> RD, Warner DS J NEUROSCI 2001 21 13 4582-4592<br />

428437 Effects of metalloporphyr<strong>in</strong> catalytic antioxidants on rodent focal<br />

ischemic bra<strong>in</strong> damage. Sheng H, Bowler R, Enghild J, Patel M, Kim K,<br />

Crapo JD, Pearlste<strong>in</strong> RD, Warner DS ABSTR SOC NEUROSCI 2001 27 2<br />

Abs 762.15<br />

432294 AEOL 10150, a catalytic antioxidant, reduces the <strong>in</strong>cidence and<br />

duration of radiation-<strong>in</strong>duced oral mucositis <strong>in</strong> a hamster. Soris S, Patel<br />

M, Gammans R EUR J CANCER 2001 37 Suppl 6 S361<br />

449960 Metalloporphyr<strong>in</strong> class of therapeutic catalytic antioxidants.<br />

Patel M, Day BJ TRENDS PHARMACOL SCI 1999 20 9 359-364<br />

463528 Preservation of human islet cell functional mass by antioxidative<br />

action of a novel SOD mimic compound. Bott<strong>in</strong>o R,<br />

Balamurugan AN, Bertera S, Pietropaolo M, Trucco M, Piganelli JD<br />

DIABETES 2002 51 8 2561- 2567<br />

465629 Effects of metalloporphyr<strong>in</strong> catalytic antioxidants <strong>in</strong><br />

experimental bra<strong>in</strong> ischemia. Sheng H, Enghild JJ, Bowler R, Patel M,<br />

Bat<strong>in</strong>i-Haberle I, Calvi CL, Day BJ, Pearlste<strong>in</strong> RD, Crapo JD, Warner DS<br />

FREE RADIC BIOL MED 2002 33 7 947-961<br />

468211 Intravenous adm<strong>in</strong>istration of the Mn metalloporphyr<strong>in</strong> catalytic<br />

antioxidant AEOL 10150 protects aga<strong>in</strong>st ischemic bra<strong>in</strong> <strong>in</strong>jury <strong>in</strong> mice.<br />

Warner DS, Homi H, Crapo JD, Pearlste<strong>in</strong> RD, Sheng H ABSTR SOC<br />

NEUROSCI 2002 28 Abs 201.18<br />

478835 The natural history of amyotrophic lateral sclerosis. R<strong>in</strong>gel SP,<br />

Murphy JR, Alderson MK, Bryan W, England JD, Miller RG, Petajan JH, Smith<br />

SA, Roelofs RI, Ziter F NEUROLOGY 1993 43 7 1316-1322<br />

505222 Organometallics adm<strong>in</strong>istered at onset of disease enhance<br />

survival and preserve motor function of ALS transgenic mice. Crow JP,<br />

Hill JL, Jones P ACS 2003 226 INOR 615<br />

533629 Incara Pharmaceuticals closes on $10.26 million f<strong>in</strong>anc<strong>in</strong>g. Incara<br />

Pharmaceuticals Inc PRESS RELEASE 2004 April 19<br />

554429 Mouse sp<strong>in</strong>al cord compression <strong>in</strong>jury is ameliorated by<br />

<strong>in</strong>trathecal cationic manganese (III) porphyr<strong>in</strong> catalytic antioxidant<br />

therapy. Sheng H, Spasojevic I, Warner DS, Haberle IB NEUROSCI LETT<br />

2004 366 2 220-225


583926 Aeolus Pharmaceuticals announces first quarter f<strong>in</strong>ancial<br />

results. Aeolus Pharmaceuticals Inc PRESS RELEASE 2005 February 08<br />

592224 Aeolus Pharmaceuticals Inc announces optimistic AEOL 10150<br />

phase 1 cl<strong>in</strong>ical trial <strong>in</strong>terim results <strong>in</strong> patients with Lou Gehrig's<br />

disease. Aeolus Pharmaceuticals Inc PRESS RELEASE 2005 March 29<br />

595706 Effect of AEOL 10150 on prostate tumor response to radiation.<br />

Mak<strong>in</strong>de AY, Rizvi A, Luo X, Andres ML, Archambeau JO, Pearlste<strong>in</strong> RD,<br />

Slater JM, Gridley DS PROC AM ASSOC CANCER RES 2005 46 Abs 1991<br />

616116 Aeolus Pharmaceuticals Inc announces publication of results of<br />

AEOL 10150 studies <strong>in</strong> Annals of Neurology. Aeolus Pharmaceuticals Inc<br />

PRESS RELEASE 2005 August 04<br />

616156 Manganese porphyr<strong>in</strong> given at symptom onset markedly extends<br />

survival of ALS mice. Crow JP, Cal<strong>in</strong>gasan NY, Chen J, Hill J, Beal MF ANN<br />

NEUROL 2005 58 2 258-265<br />

616358 Mechanistic analysis of the immunomodulatory effects of a<br />

catalytic antioxidant on antigen-present<strong>in</strong>g cells: Implication for their<br />

use <strong>in</strong> target<strong>in</strong>g oxidation-reduction reactions <strong>in</strong> <strong>in</strong>nate immunity. Tse<br />

HM, Milton MJ, Piganelli JD FREE RADIC BIOL MED 2004 36 2 233-247<br />

616360 Evidence for extracellular superoxide dismutase as a mediator of<br />

hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury. Bowler RP, Aracoli J, Abraham E, Patel<br />

M, Chang LY, Crapo JD AM J PHYSIOL - LUNG CELL MOL PHYSIOL 2003<br />

284 4 L680-L687<br />

616364 Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl)porphyr<strong>in</strong><br />

(AEOL-10150) offers protection <strong>in</strong> mouse model of sp<strong>in</strong>al cord <strong>in</strong>jury.<br />

Sheng H, Spasojevic I, Warner DS, Bat<strong>in</strong>ic-Haberle I FREE RADIC BIOL<br />

MED 2003 35 Suppl 1 S154<br />

616369 A catalytic antioxidant (AEOL 10150) attenuates expression of<br />

<strong>in</strong>flammatory genes <strong>in</strong> stroke. Bowler RP, Sheng H, Enghild JJ, Pearlste<strong>in</strong><br />

RD, Warner AS, Crapo JD FREE RADIC BIOL MED 2002 33 8 1141-1152<br />

616370 Inhibition of tobacco smoke-<strong>in</strong>duced lung <strong>in</strong>flammation by a<br />

catalytic antioxidant. Smith KR, Uyem<strong>in</strong>ami DL, Kodavanti UP, Chang LY,<br />

Crapo JD, P<strong>in</strong>kerton KE FREE RADIC BIOL MED 2002 33 8 1106-1114<br />

616377 Attenuation of cigarette smoke-<strong>in</strong>duced lung <strong>in</strong>flammation and<br />

remodel<strong>in</strong>g by treatment with the metalloporphyr<strong>in</strong> (AEOL 10150).<br />

P<strong>in</strong>kerton KE, Smith KR, Kodavanti U, Chang LY, Crapo JD FREE RADIC<br />

BIOL MED 2001 31 10 S49<br />

621716 Aeolus Pharmaceuticals reports positive safety results from<br />

completed phase I s<strong>in</strong>gle dose study of AEOL 10150 <strong>in</strong> 25 patients with<br />

ALS (Lou Gehrig's disease). Aeolus Pharmaceuticals Inc PRESS RELEASE<br />

2005 September 07<br />

625097 Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron<br />

disease (MND). Miller RG, Mitchell JD, Lyon M, Moore DH COCHRANE<br />

DATABASE SYST REV 2001 4 CD001447<br />

625100 New class of potent catalysts of O2 dismutation. Mn(III) orthomethoxyethylpyridyl-<br />

and di-ortho-methoxyethylimidazolylporphyr<strong>in</strong>s.<br />

Bat<strong>in</strong>ic-Haberle I, Spasojevic I, Stevens RD, Hambright P, Neta P, Okado-<br />

Matsumoto A, Fridovich I DALTON TRANS 2004 11 1696-1702.<br />

625101 Wu AS, Kiaei M, Aguirre N, Crow JP, Cal<strong>in</strong>gasan NY, Browne SE,<br />

Beal MF Iron porphyr<strong>in</strong> treatment extends survival <strong>in</strong> a transgenic animal<br />

model of amyotrophic lateral sclerosis. J NEUROCHEM 2003 85 1 142-<br />

150<br />

625109 Syntheses and superoxide dismut<strong>in</strong>g activities of partially (1-4)<br />

β-chlor<strong>in</strong>ated derivatives of manganese (III) meso-tetrakis (-ethylpyrid<strong>in</strong>ium-2-yl)<br />

porphyr<strong>in</strong>. Kachadourian R, Bat<strong>in</strong>ic-Haberle I, Fridovich I<br />

INORG CHEM 1999 38 2 391-396<br />

625112 High-performance liquid chromatography with<br />

spectrophotometric and electrochemical detection of a series of<br />

manganese (III) cationic porphyr<strong>in</strong>s. Kachadourian R, Menzeleev R, Agha<br />

B, Bocck<strong>in</strong>o SB, Day BJ J CHROMATOGR B ANAL TECHNOL BIOMED LIFE<br />

SCI 2002 767 1 61-67<br />

625113 Peroxynitrite scaveng<strong>in</strong>g by metalloporphyr<strong>in</strong>s and thiolates.<br />

Crow JP FREE RADIC BIOL MED 2000 28 10 1487-1494.<br />

625120 Synthetic superoxide dismutase/catalase mimetics reduce<br />

oxidative stress and prolong surival <strong>in</strong> a mouse amyotrophic lateral<br />

sclerosis model. Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z<br />

NEUROSCI LETT 2001 304 3 157-160<br />

AEOL-10150 Orrell 79<br />

625121 Antioxidant treatment for amyotrophic lateral sclerosis/motor<br />

neuron disease. Orrell RW, Lane JM, Ross M COCHRANE DATABASE<br />

SYST REV 2004 18 4 CD002829<br />

625122 Dose-rang<strong>in</strong>g study of riluzole <strong>in</strong> amyotrophic lateral sclerosis.<br />

Lacomblez L, Bensimon G, Leigh PN, Guillet P, Me<strong>in</strong><strong>in</strong>ger V LANCET 1996<br />

347 9013 1425-1431<br />

629090 Protection of normal tissue from radiation-<strong>in</strong>duced <strong>in</strong>jury us<strong>in</strong>g<br />

AEOL 10150 presented at the annual meet<strong>in</strong>g of the American Society<br />

for Therapeutic Radiology and Oncology. Aeolus Pharmaceuticals Inc<br />

PRESS RELEASE 2005 October 18<br />

629382 Aeolus Pharmaceuticals announces <strong>in</strong>itiation of multiple dose<br />

study of AEOL 10150 <strong>in</strong> patients with Lou Gehrig's disease. Aeolus<br />

Pharmaceuticals Inc PRESS RELEASE 2005 October 19<br />

632736 Response of human islets to isolation stress and the effect of<br />

antioxidant treatment. Bott<strong>in</strong>o R, Balamurugan AN, Tse H,<br />

Thirunavvukarasu C, Ge X, Profozich J, Milton M, Ziegenfuss A, Trucco M,<br />

Piganeli JD DIABETES 2004 53 10 2559-2568<br />

633859 Additive neuroprotective effects of a histone deacetylase<br />

<strong>in</strong>hibitor and a catalytic antioxidant <strong>in</strong> a transgenic mouse model of<br />

amyotrophic lateral sclerosis. Petri S, Kiaei M, Kipiani K, Chen J,<br />

Cal<strong>in</strong>gasan NY, Damiano M, Manfredi G, Crow JP, Beal MF ABSTR SOC<br />

NEUROSCI 2005 35 Abs 213.15<br />

634304 Management of motor neuron disease. Howard RS, Orrell RW<br />

POSTGRAD MED J 2002 78 926 736-741<br />

634318 Mutant Cu/Zn superoxide dismutase prote<strong>in</strong>s have altered<br />

solubility and <strong>in</strong>teract with heat shock/stress prote<strong>in</strong>s <strong>in</strong> models of<br />

amyotrophic lateral sclerosis. Sh<strong>in</strong>der GA, Lacourse MC, M<strong>in</strong>otti S, Durham<br />

HD J BIOL CHEM 2001 276 16 12791-12796<br />

634320 Treatment with arimoclomol, a co<strong>in</strong>ducer of heat shock prote<strong>in</strong>s,<br />

delays disease progression <strong>in</strong> ALS mice. Kieran D, Kalmar B, Dick JR,<br />

Riddoch-Contreras J, Burnstock G, Greensmith L NAT MED 2004 10 4 402-<br />

405<br />

634325 Flav<strong>in</strong>-dependent antioxidant properties of a new series of meso-<br />

N,N'-dialkyl-imidazolium substituted manganese(III) porphyr<strong>in</strong>s.<br />

Kachadourian R, Johnson CA, M<strong>in</strong> E, Spasojevic I, Day BJ BIOCHEM<br />

PHARMACOL 2004 67 1 77-85<br />

634340 An alternative Ca 2+ -dependent mechanism of neuroprotection by<br />

the metalloporphyr<strong>in</strong> class of superoxide dismutase mimetics. Tauskela<br />

JS, Brunette E, O'Reilly N, Meal<strong>in</strong>g G, Comas T, Gendron TF, Monette R,<br />

Morley P FASEB J 2005 19 12 1734-1736<br />

634341 Paradoxical effects of metalloporphyr<strong>in</strong>s on doxorubic<strong>in</strong>-<strong>in</strong>duced<br />

apoptosis: Scaveng<strong>in</strong>g of reactive oxygen species versus <strong>in</strong>duction of<br />

heme oxygenase-1. Konorev EA, Kotamraju S, Zhao H, Kalivendi S, Joseph<br />

J, Kalyanaraman B FREE RADIC BIOL MED 2002 33 7 988-997<br />

634343 Dependence of excitotoxic neurodegeneration on mitochondrial<br />

aconitase <strong>in</strong>activation. Li Q-Y, Pedersen C, Day BJ, Patel M J<br />

NEUROCHEM 2001 78 47 746-755<br />

636040 Therapeutic developments <strong>in</strong> the treatment of amyotrophic<br />

lateral sclerosis. Jackson M, Llado J, Rothste<strong>in</strong> JD EXPERT OPIN INVEST<br />

DRUGS 2002 11 10 1343-1364<br />

638196 Natural history of amyotrophic lateral sclerosis <strong>in</strong> a database<br />

population. Validation of a scor<strong>in</strong>g system and a model for survival<br />

prediction. Haverkamp LJ, Appel V, Appel SH BRAIN 1995 118 3 707-719<br />

638197 Prognostic <strong>in</strong>dicators of survival <strong>in</strong> ALS. Stambler N, Charatan M,<br />

Cedarbaum JM NEUROLOGY 1998 50 1 66-72<br />

638203 Orrell RW, Habgood JJ, Gard<strong>in</strong>er I, K<strong>in</strong>g AW, Bowe FA, Hallewell RA,<br />

Marklund SL, Greenwood J, Lane RJ, deBelleroche J Cl<strong>in</strong>ical and functional<br />

<strong>in</strong>vestigation of 10 missense mutations and a novel frameshift <strong>in</strong>sertion<br />

mutation of the gene for copper-z<strong>in</strong>c superoxide dismutase <strong>in</strong> UK<br />

families with amyotrophic lateral sclerosis. NEUROLOGY 1997 48 3 746-<br />

751<br />

638218 Catalytic antioxidants: A radical approach to new therapeutics.<br />

Day BJ DRUG DISC TODAY 2004 9 13 557-566<br />

638220 Amyotrophic lateral sclerosis: Copper/z<strong>in</strong>c superoxide<br />

dismutase (SOD1) gene mutations. Orrell RW NEUROMUSCULAR<br />

DISORD 2000 10 1 63-68


80 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

638223 The genetics of motor neuron disease. Figlewicz DA, Orrell RW<br />

AMYOTROPHIC LATERAL SCLEROSIS OTHER MOTOR NEURON<br />

DISORD 2003 4 4 225-231<br />

638229 Amyotrophic lateral sclerosis: Recent advances and future<br />

therapies. Nirmalananthan N, Greensmith L CURR OPIN NEUROL 2005 18<br />

6 712-719<br />

638230 Oxidatively modified prote<strong>in</strong>s <strong>in</strong> ag<strong>in</strong>g and disease. Beal MF<br />

FREE RADIC BIOL MED 2002 32 9 797-803<br />

638233 Unravel<strong>in</strong>g the mechanisms <strong>in</strong>volved <strong>in</strong> motor neuron<br />

degeneration <strong>in</strong> ALS. Bruijn LJ, Miller TM, Cleveland DW ANNU REV<br />

NEUROSCI 2004 27 723-749<br />

638331 Inactivation-reactivation of aconitase <strong>in</strong> Escherichia coli. A<br />

sensitive measure of superoxide radical. Gardner PR, Fridovich I J BIOL<br />

CHEM 1992 267 13 8757-8763<br />

638411 Long term adm<strong>in</strong>istration of a small molecular weight catalytic<br />

metalloporphyr<strong>in</strong> antioxidant AEOL 10150 protects lungs from radiation<strong>in</strong>duced<br />

<strong>in</strong>jury. Aeolus Pharmaceuticals Inc COMPANY PRESENTATION<br />

2005 October 16-20


Vivitrex Alkermes/Cephalon<br />

Christ<strong>in</strong>e E Head<strong>in</strong>g<br />

Address<br />

Faculty of Science<br />

The Open University <strong>in</strong> the North<br />

Eldon House<br />

Regent Centre<br />

Gosforth<br />

Newcastle-upon-Tyne<br />

NE3 3PW<br />

UK<br />

Email: moore11@globalnet.co.uk<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):81-88<br />

© The Thomson Corporation ISSN 1472-4472<br />

Vivitrex, an <strong>in</strong>jectable, susta<strong>in</strong>ed-release formulation of the<br />

opioid antagonist naltrexone, is be<strong>in</strong>g developed by Alkermes<br />

and Cephalon for the potential once-monthly treatment of<br />

alcoholism and opiate use disorder. Alkermes and Cephalon are<br />

currently await<strong>in</strong>g Food and Drug Adm<strong>in</strong>istration review of<br />

the Vivitrex new drug application, which was granted Priority<br />

Review <strong>in</strong> May 2005.<br />

Introduction<br />

Vivitrex is an <strong>in</strong>jectable, extended-release naltrexone<br />

product that is currently <strong>in</strong> development by Alkermes Inc<br />

and licensee Cephalon Inc for alcohol and opiate<br />

dependence. Pharmacotherapies for substance-dependent<br />

conditions have traditionally focused on the substance itself;<br />

substitutes for the substance of abuse, plus receptor<br />

antagonists and agents that <strong>in</strong>terfere with the<br />

pharmacok<strong>in</strong>etics of the substance (eg, methadone and<br />

naltrexone for opiate dependence and disulfiram for alcohol<br />

dependence) have all proved useful <strong>in</strong> treat<strong>in</strong>g these<br />

conditions, and cont<strong>in</strong>ue to be developed. However, there is<br />

reliable evidence to suggest that certa<strong>in</strong> loci <strong>in</strong> the bra<strong>in</strong><br />

function abnormally <strong>in</strong> all dependencies, regardless of their<br />

cause [636843]. With<strong>in</strong> the mesolimbic dopam<strong>in</strong>e system<br />

(MLDS) is the nucleus accumbens (NA), which is associated<br />

with reward and drug-seek<strong>in</strong>g behavior caused by the<br />

elevation of dopam<strong>in</strong>e levels at the site. Both alcohol and<br />

opiates can raise levels of dopam<strong>in</strong>e <strong>in</strong> the NA, and the<br />

available evidence suggests that alcohol causes this by<br />

<strong>in</strong>creas<strong>in</strong>g the release of endogenous opioids [631895].<br />

Therefore, <strong>in</strong>hibition of opioid receptors by naltrexone is a<br />

rational way of reduc<strong>in</strong>g the rewards that both ethanol and<br />

opiates <strong>in</strong>duce.<br />

In 1984, the opioid receptor antagonist naltrexone was<br />

approved for the treatment of opiate dependence <strong>in</strong> the US;<br />

a decade later naltrexone was approved for the treatment of<br />

alcohol dependence [631898]. The drug has also been<br />

<strong>in</strong>vestigated for a variety of other dependencies. Naltrexone<br />

acts at µ-, δ- and κ-opioid receptors, each of which are<br />

implicated <strong>in</strong> one or more aspects of alcohol and opiate<br />

dependence. Of the three receptors, the µ-opioid receptor is<br />

believed to be the most significant regard<strong>in</strong>g alcohol and<br />

opioid self adm<strong>in</strong>istration, and its absence or blockade tends<br />

to be l<strong>in</strong>ked with dim<strong>in</strong>ished dependence [638453]. The<br />

general evidence support<strong>in</strong>g the use of naltrexone for<br />

alcohol dependence, as well as the relationship between<br />

Orig<strong>in</strong>ator Alkermes Inc<br />

Licensee Cephalon Inc<br />

Status Pre-registration<br />

.<br />

Indications Alcoholism, Opiate dependence.<br />

.<br />

Action Opioid antagonist<br />

.<br />

Technologies Controlled release formulation, Intramuscular<br />

formulation<br />

Synonym naltrexone (once-monthly controlled-release,<br />

Medisorb)<br />

Registry No: 16590-41-3<br />

N<br />

OH<br />

HO O H O<br />

81<br />

opioid receptors and alcoholism, can be found <strong>in</strong> a<br />

comprehensive review by Oswald and Wand [631895], and a<br />

broad overview of the actions of naltrexone and its use <strong>in</strong><br />

the treatment of opiate dependence can be found <strong>in</strong> a review<br />

by Kreek et al [638453].<br />

Several factors make the worldwide extent of abuse of<br />

and/or dependence on alcohol or opiates hard to quantify<br />

accurately. The dist<strong>in</strong>ction between heavy use and<br />

dependence is regularly blurred and the quoted figures are<br />

often outdated, but it has been claimed that around 10 to 14<br />

million <strong>in</strong>dividuals <strong>in</strong> the US are alcohol dependent<br />

[631992], [637673]. Several gender-l<strong>in</strong>ked differences are<br />

associated with alcohol use and dependence. One example<br />

of such a difference is <strong>in</strong> <strong>in</strong>cidence: an estimated 14% of men<br />

and 5% of women <strong>in</strong> the US will experience symptoms of<br />

alcohol abuse or dependence dur<strong>in</strong>g their lifetime [637682].<br />

Naltrexone is one of several therapeutic options for treat<strong>in</strong>g<br />

opiate or alcohol dependence. Despite its oral<br />

adm<strong>in</strong>istration, a major limitation with this treatment is poor<br />

patient compliance [593795]. One of several contributors to<br />

this poor compliance may be the high plasma levels of the<br />

metabolite 6β-naltrexol that result from first-pass<br />

metabolism [638460]. The presence of this metabolite has<br />

been correlated with both treatment dropout [638459] and<br />

an <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>cidence of side effects [631898]. In a study by<br />

K<strong>in</strong>g et al, <strong>in</strong>dividuals who experienced more side effects<br />

had significantly higher ur<strong>in</strong>ary levels of 6β-naltrexol<br />

follow<strong>in</strong>g oral naltrexone treatment [638460]. In contrast,<br />

there is some evidence that the metabolite could be valuable<br />

<strong>in</strong> the treatment of opiate addicts; a reduction of the<br />

withdrawal effects associated with µ-opioid receptor


82 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

antagonism by 6β-naltrexol may offer an advantage <strong>in</strong><br />

treat<strong>in</strong>g opioid overdose and addiction [638466]. More<br />

certa<strong>in</strong> contributors to poor patient compliance with oral<br />

naltrexone <strong>in</strong>clude fluctuat<strong>in</strong>g levels of naltrexone <strong>in</strong> the<br />

body and a lack of susta<strong>in</strong>ed motivation for overcom<strong>in</strong>g the<br />

addiction [616446], [636722].<br />

Because of the problems with side effects and patient<br />

compliance, several long-act<strong>in</strong>g naltrexone preparations<br />

have been explored by various research laboratories and<br />

cl<strong>in</strong>ics s<strong>in</strong>ce the early 1970s [441894], [616446], [637696],<br />

[637699], but many rema<strong>in</strong>ed experimental and lack product<br />

licenses [636732]. Reported reasons for the failure to<br />

commercialize these products <strong>in</strong>clude a paucity of evidence<br />

of clear success, naltrexone-release problems and <strong>in</strong>jectionsite<br />

reactions [616446], but a lack of <strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g<br />

these products also seems to have played a role [636732].<br />

Despite these hurdles, the development of Vivitrex, a depotrelease<br />

naltrexone product, is almost complete, and the<br />

product is near<strong>in</strong>g approval <strong>in</strong> the US [624146]. Similar<br />

products <strong>in</strong> development <strong>in</strong>clude a susta<strong>in</strong>ed-release,<br />

<strong>in</strong>jectable depot formulation of naltrexone from DrugAbuse<br />

Sciences Inc, which had reached phase III cl<strong>in</strong>ical trials for<br />

opiate dependence by 2002 [455296], and an implant for<br />

opiate dependence (naltrexone-poly(DL-lactide)) which has<br />

been used experimentally for several years <strong>in</strong> Australia. By<br />

2003, the DrugAbuse Sciences product had successfully<br />

completed one phase III cl<strong>in</strong>ical trial for alcoholism [475512],<br />

[638704] and the Food and Drug Adm<strong>in</strong>istration has agreed<br />

on the protocol for a second, pivotal phase III cl<strong>in</strong>ical trial <strong>in</strong><br />

alcohol-dependent patients. If this trial is successful,<br />

DrugAbuse Sciences expects that the product could be<br />

approved <strong>in</strong> the US and <strong>in</strong> Europe <strong>in</strong> 2008 [638704]. The<br />

naltrexone implant product is <strong>in</strong> development by Go<br />

Medical Industries Pty Ltd and is currently undergo<strong>in</strong>g<br />

cl<strong>in</strong>ical trials [631995].<br />

To date, Vivitrex has only reached phase II cl<strong>in</strong>ical trials for<br />

opiate dependence and, because of a lack of results for this<br />

<strong>in</strong>dication, this review will concentrate primarily on alcohol<br />

dependence. Successful phase III cl<strong>in</strong>ical trial results have<br />

lead Alkermes to predict a 2006 launch of Vivitrex for<br />

alcohol dependence [632485], and the FDA was scheduled to<br />

rule on US approval for this <strong>in</strong>dication by the end of 2005<br />

[624146].<br />

Synthesis and SAR<br />

Vivitrex is an extended-release depot <strong>in</strong>jection of naltrexone<br />

<strong>in</strong> which the active <strong>in</strong>gredient is encapsulated <strong>in</strong>to<br />

biodegradable polymer microspheres. These are fabricated<br />

from poly-lactide co-glycolide (PLG), a common medical<br />

polymer used <strong>in</strong> absorbance and extended-release<br />

pharmaceuticals, to form microspheres approximately 100<br />

µm <strong>in</strong> diameter [616446]. Alkermes's proprietary Medisorb<br />

technology is used to produce microspheres that, follow<strong>in</strong>g<br />

subcutaneous or <strong>in</strong>tramuscular adm<strong>in</strong>istration, can ma<strong>in</strong>ta<strong>in</strong><br />

a steady release rate of naltrexone <strong>in</strong>to the bloodstream for<br />

up to 1 month [593795], [616446].<br />

Follow<strong>in</strong>g <strong>in</strong>jection <strong>in</strong>to the body, PLG hydrolyzes to lactic<br />

and glycolic acids. These naturally occurr<strong>in</strong>g metabolic<br />

<strong>in</strong>termediates are further metabolized <strong>in</strong>to carbon dioxide<br />

and water. The ratio of lactide to glycolide <strong>in</strong> the polymer,<br />

the molecular weight of the polymer, and other<br />

manufactur<strong>in</strong>g conditions all <strong>in</strong>fluence the rate of release of<br />

the drug from the microsphere [616443].<br />

Precl<strong>in</strong>ical development<br />

Studies conducted <strong>in</strong> animals confirmed that a s<strong>in</strong>gle dose of<br />

Vivitrex can antagonize the effects of morph<strong>in</strong>e over a<br />

period of at least 4 weeks [616446]. In the rat hot plate test,<br />

the effect of placebo or Vivitrex on morph<strong>in</strong>e-<strong>in</strong>duced<br />

analgesia was assessed over a period of up to 70 days.<br />

Basel<strong>in</strong>e test<strong>in</strong>g was conducted prior to rats be<strong>in</strong>g assigned<br />

to a treatment group. Every 5 days, analgesia was <strong>in</strong>duced<br />

with an <strong>in</strong>traperitoneal <strong>in</strong>jection of morph<strong>in</strong>e (1 mg/kg) and<br />

the latency of hot plate response was detected 30 m<strong>in</strong> later.<br />

Rats pre-dosed with Vivitrex (50 mg/kg) adm<strong>in</strong>istered<br />

subcutaneously or <strong>in</strong>tramuscularly showed a reduced<br />

latency from day 1 to day 28 follow<strong>in</strong>g <strong>in</strong>jection (40 ± 0.54 s<br />

and 36 ± 0.40 s follow<strong>in</strong>g subcutaneous and <strong>in</strong>tramuscular<br />

<strong>in</strong>jection, respectively) compared with placebo-treated rats<br />

(57 ± 0.60 s), suggest<strong>in</strong>g a substantial block of morph<strong>in</strong>e<br />

analgesia. Studies <strong>in</strong>volv<strong>in</strong>g a second <strong>in</strong>tramuscular<br />

<strong>in</strong>jection of Vivitrex (50 mg/kg), adm<strong>in</strong>istered on day 34,<br />

were conducted <strong>in</strong> the same model; an <strong>in</strong>tramuscular<br />

<strong>in</strong>jection was used because it was thought to be the best<br />

route for Vivitrex adm<strong>in</strong>istration to humans. This <strong>in</strong>jection<br />

produced a similar effect to the <strong>in</strong>itial treatment and<br />

suppressed morph<strong>in</strong>e-<strong>in</strong>duced analgesia up to day 68 of the<br />

study [616446].<br />

Vivitrex-<strong>in</strong>duced changes <strong>in</strong> µ-opioid receptor density and<br />

immunoreactivity were assessed <strong>in</strong> rats from the same<br />

experimental groups. As mentioned previously, the µ-opioid<br />

receptor appears to be the opioid receptor that is most<br />

strongly l<strong>in</strong>ked to alcohol and opiate dependencies [638453].<br />

Rats were sacrificed over a range of days (from day 3 to day<br />

40) and µ-opioid receptor density was exam<strong>in</strong>ed <strong>in</strong> saturation<br />

b<strong>in</strong>d<strong>in</strong>g assays us<strong>in</strong>g [ 3H]DAMGO (D-ala 2, N-methyl-phe 4,<br />

glycol 5-enkephal<strong>in</strong>) and us<strong>in</strong>g autoradiography and<br />

immunoreactivity [616446]. Receptor density <strong>in</strong>creased up to<br />

2-fold follow<strong>in</strong>g a s<strong>in</strong>gle <strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex<br />

(50 mg/kg). Receptor density <strong>in</strong> the midbra<strong>in</strong> and striatum<br />

<strong>in</strong>creased with<strong>in</strong> 7 days by 100 and 110%, respectively,<br />

compared with placebo treatment, whereas density <strong>in</strong> the<br />

cortex <strong>in</strong>creased by 120% between days 32 and 40 [616446].<br />

No specific reason is known for these regional differences,<br />

but the distribution, b<strong>in</strong>d<strong>in</strong>g and elim<strong>in</strong>ation characteristics<br />

of naltrexone <strong>in</strong> bra<strong>in</strong> tissue may be relevant <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

which regions of this organ are most closely l<strong>in</strong>ked to<br />

dependency [616446].<br />

Similar results were obta<strong>in</strong>ed us<strong>in</strong>g radioligand b<strong>in</strong>d<strong>in</strong>g<br />

autoradiography <strong>in</strong> rats receiv<strong>in</strong>g one or two <strong>in</strong>tramuscular<br />

<strong>in</strong>jections of Vivitrex (50 mg/kg) 34 days apart, monitored 1<br />

or 2 months after the <strong>in</strong>itial <strong>in</strong>jection [616446]. Radioligand<br />

b<strong>in</strong>d<strong>in</strong>g was significantly <strong>in</strong>creased <strong>in</strong> all bra<strong>in</strong> regions<br />

studied, rang<strong>in</strong>g from 90% <strong>in</strong> the habenular nucleus to 160%<br />

<strong>in</strong> the dorsal raphe nucleus after 1 month. In the majority of<br />

regions, density <strong>in</strong>creased further <strong>in</strong> the follow<strong>in</strong>g month,<br />

reach<strong>in</strong>g 120% <strong>in</strong> the habenular nucleus and 220% <strong>in</strong> the


dorsal raphe nucleus. Immunohistochemistry at adjacent<br />

bra<strong>in</strong> sections revealed <strong>in</strong>creased µ-opioid receptor<br />

immunoreactivity at both 1 and 2 months after Vivitrex<br />

<strong>in</strong>jection; however, the effect was less than <strong>in</strong> the<br />

autoradiography studies, with only two of the 15 bra<strong>in</strong><br />

regions exam<strong>in</strong>ed show<strong>in</strong>g significant <strong>in</strong>creases over control<br />

after 1 month. The <strong>in</strong>vestigators of the report <strong>in</strong>terpreted the<br />

large <strong>in</strong>crease <strong>in</strong> µ-opioid receptor density, but small<br />

<strong>in</strong>crease <strong>in</strong> µ-opioid receptor immunoreactivity, as evidence<br />

of recruitment of active µ-opioid receptors from a pool of<br />

receptors, rather than an <strong>in</strong>crease <strong>in</strong> µ-opioid receptor<br />

prote<strong>in</strong> expression [616446].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

A s<strong>in</strong>gle <strong>in</strong>tramuscular or subcutaneous <strong>in</strong>jection of Vivitrex (50<br />

mg/kg) produced stable, pharmacologically relevant plasma<br />

concentrations <strong>in</strong> rats for approximately 1 month. AUC values<br />

of 332 and 360 ng.day/ml were observed follow<strong>in</strong>g<br />

<strong>in</strong>tramuscular and subcutaneous adm<strong>in</strong>istration, respectively.<br />

Maximum naltrexone plasma levels (15 ± 1.4 and 19 ± 3.6<br />

ng/ml follow<strong>in</strong>g subcutaneous and <strong>in</strong>tramuscular<br />

adm<strong>in</strong>istration of Vivitrex, respectively) were produced with<strong>in</strong><br />

3 days, with half-maximum levels reached with<strong>in</strong> 24 h. By 35<br />

days, naltrexone plasma concentrations were approach<strong>in</strong>g<br />

undetectable levels (< 1 ng/ml), and a similar pattern was<br />

observed follow<strong>in</strong>g a second Vivitrex <strong>in</strong>jection [616446].<br />

Naltrexone is primarily metabolized by the liver, produc<strong>in</strong>g the<br />

major metabolite 6β-naltrexol. This metabolite can be detected<br />

<strong>in</strong> both conjugated and non-conjugated form <strong>in</strong> plasma.<br />

Follow<strong>in</strong>g oral adm<strong>in</strong>istration, 1% of unchanged naltrexone is<br />

excreted <strong>in</strong> ur<strong>in</strong>e [631898]. The half-life of oral naltrexone <strong>in</strong><br />

humans is 4 to 9 h, compared with 12 to 18 h for 6β-naltrexol<br />

[631895], but us<strong>in</strong>g the Vivitrex formulation, the half-lives of<br />

naltrexone and 6β-naltrexol are greatly extended, and are<br />

quoted as 5 to 8 days [636722]. The pharmacok<strong>in</strong>etic benefits of<br />

the extended-release <strong>in</strong>jection compared with oral dos<strong>in</strong>g<br />

<strong>in</strong>clude an absence of high peak plasma concentrations, a<br />

decrease <strong>in</strong> gastro<strong>in</strong>test<strong>in</strong>al exposure, and avoidance of firstpass<br />

hepatic metabolism [616446]. Compared with oral<br />

naltrexone, Vivitrex reduces the ratio of 6β-naltrexol to the<br />

parent compound <strong>in</strong> the body [593795], [616443], which is<br />

consistent with f<strong>in</strong>d<strong>in</strong>gs of studies with other extended-release<br />

preparations. This reduction is thought to result from<br />

avoidance of the first-pass effect [631898].<br />

In a phase I, double-bl<strong>in</strong>d cl<strong>in</strong>ical trial, 42 healthy volunteers<br />

were randomized to receive placebo or Vivitrex as a s<strong>in</strong>gle<br />

<strong>in</strong>tramuscular (150, 300, 600 or 900 mg) or subcutaneous<br />

(150, 300 or 600 mg) <strong>in</strong>jection [390669]. Prelim<strong>in</strong>ary data<br />

regard<strong>in</strong>g plasma levels of naltrexone showed that the AUC<br />

and Cmax values were dose proportional, with slightly higher<br />

values observed follow<strong>in</strong>g <strong>in</strong>tramuscular dos<strong>in</strong>g (at 150, 300<br />

and 600 mg; <strong>in</strong>tramuscular AUC values of 49 ± 9, 84 ± 12 and<br />

189 ± 27 ng.day/ml were observed compared with<br />

subcutaneous AUC values of 31 ± 11, 65 ± 13 and 145 ± 28<br />

ng.day/ml, respectively). The <strong>in</strong>itial drug 'burst' (with<strong>in</strong> 48<br />

h) demonstrated a peak concentration that was only<br />

approximately 3-fold higher than steady-state levels, which<br />

were dose proportional, with<strong>in</strong> expected therapeutic levels,<br />

and ma<strong>in</strong>ta<strong>in</strong>ed for a full month [390669].<br />

Vivitrex Head<strong>in</strong>g 83<br />

Results from a phase II cl<strong>in</strong>ical trial <strong>in</strong> 30 alcohol-dependent<br />

patients adm<strong>in</strong>istered <strong>in</strong>tramuscular Vivitrex (400 mg)<br />

showed that mean trough serum naltrexone concentrations<br />

rema<strong>in</strong>ed relatively constant throughout the study (1.23<br />

ng/ml). Mean serum trough levels of 6β-naltrexol (2.91<br />

ng/ml) were slightly higher than naltrexone, but<br />

substantially lower than those observed follow<strong>in</strong>g oral<br />

naltrexone adm<strong>in</strong>istration. As outl<strong>in</strong>ed above, lower levels<br />

of 6β-naltrexol are thought to reduce the chances of adverse<br />

events and improve patient compliance [616443].<br />

Because <strong>in</strong>dividuals who consume large quantities of<br />

alcohol often suffer from liver damage, the<br />

pharmacok<strong>in</strong>etics of Vivitrex were exam<strong>in</strong>ed <strong>in</strong> patients<br />

with mild-to-moderate hepatic impairment [636722]. Six<br />

<strong>in</strong>dividuals with mild (Child-Pugh grade A) or moderate<br />

(Child-Pugh grade B) hepatic impairment and 13 healthy<br />

<strong>in</strong>dividuals each received a s<strong>in</strong>gle <strong>in</strong>tramuscular dose of<br />

Vivitrex (190 mg). The total exposure (AUC0-∞) of naltrexone<br />

and 6β-naltrexol was similar across all groups over 63 days<br />

(treatment comparison ratios were 0.97 and 1.08 for mild<br />

and moderate hepatic impairment, respectively, compared<br />

with control), <strong>in</strong>dicat<strong>in</strong>g that no dosage adjustment would<br />

be needed for alcohol users with impaired liver function<br />

[636722].<br />

Toxicity<br />

No toxic effects have been reported <strong>in</strong> animal studies,<br />

although the <strong>in</strong>creased density of µ-opioid receptors<br />

observed <strong>in</strong> rats poses a theoretical risk <strong>in</strong> the context of<br />

opiate abuse. Similar, long-last<strong>in</strong>g receptor changes have<br />

been observed with other naltrexone formulations and can<br />

potentially enhance hypersensitivity to opiates. The effects<br />

have also been observed with other opiate antagonists, and<br />

it has been suggested that the change results from the<br />

recruitment of receptors from a pool of receptors <strong>in</strong> response<br />

to the presence of antagonists [616446]. From <strong>in</strong>direct<br />

evidence, it has been suggested that the enhanced<br />

hypersensitivity <strong>in</strong>duced by Vivitrex is unlikely to <strong>in</strong>crease<br />

the euphoria, respiratory depression and tolerance that can<br />

result from the <strong>in</strong>take of opiates [616446]. In contrast, there<br />

is long-stand<strong>in</strong>g experimental evidence that hypersensitivity<br />

to the analgesic effects of opiates can occur after naltrexone<br />

exposure [638481], [638482].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

In the phase I, randomized, double-bl<strong>in</strong>d, placebo-controlled<br />

study <strong>in</strong> which 42 healthy volunteers received either placebo<br />

or s<strong>in</strong>gle doses of Vivitrex <strong>in</strong> an escalat<strong>in</strong>g-dose paradigm<br />

(<strong>in</strong>tramuscular <strong>in</strong>jections of 150, 300, 600 or 900 mg, or<br />

subcutaneous <strong>in</strong>jections of 150, 300 or 600 mg), therapeutic<br />

levels of naltrexone were susta<strong>in</strong>ed for 1 month. In order for<br />

equivalent plasma levels to be achieved over this period<br />

us<strong>in</strong>g oral naltrexone, the total naltrexone dose would need<br />

to be 5-fold higher [393208].<br />

Phase II<br />

A multicenter, randomized, double-bl<strong>in</strong>d, placebocontrolled<br />

pilot study was conducted with 30 patients with a<br />

DSM-IV diagnosis of alcohol-dependence. Vivitrex (400 mg)


84 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

was adm<strong>in</strong>istered <strong>in</strong>tramuscularly once a month for 4 months<br />

to 25 patients, and the rema<strong>in</strong><strong>in</strong>g patients were given placebo;<br />

both groups were offered psychosocial support [494451],<br />

[616443]. At the end of this period, the mean percentage of<br />

heavy dr<strong>in</strong>k<strong>in</strong>g days <strong>in</strong> the Vivitrex group was reduced to half<br />

that of the placebo group (11.7% compared with 25.3%).<br />

Patients treated with Vivitrex also showed an <strong>in</strong>crease <strong>in</strong> the<br />

mean percentage of days abst<strong>in</strong>ent from alcohol (69.4%<br />

compared with 39.2% pre-treatment) and a reduction <strong>in</strong> the<br />

number of dr<strong>in</strong>ks consumed per dr<strong>in</strong>k<strong>in</strong>g day (3.8 compared<br />

with 7.4 pre-treatment) [616443].<br />

A trial designed to determ<strong>in</strong>e the pharmacok<strong>in</strong>etics and<br />

safety of a range of Vivitrex doses <strong>in</strong> opiate-dependent<br />

<strong>in</strong>dividuals was <strong>in</strong>itiated <strong>in</strong> 2002 [445176], but by November<br />

2005, no results were apparently available.<br />

Phase III<br />

A 6-month, double-bl<strong>in</strong>d, placebo-controlled, randomized<br />

study was conducted at 24 centers <strong>in</strong> 624 patients (423 men<br />

and 201 women) with DSM-IV-diagnosed alcohol<br />

dependence [593795]. All study groups were matched for<br />

men and women and patients received monthly<br />

<strong>in</strong>tramuscular <strong>in</strong>jections of Vivitrex (190 or 380 mg; n = 210<br />

and 205, respectively) or placebo (n = 209). All groups also<br />

received low-<strong>in</strong>tensity counsel<strong>in</strong>g. Patients receiv<strong>in</strong>g 380 mg<br />

Vivitrex showed a 25% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g (def<strong>in</strong>ed<br />

as five or more dr<strong>in</strong>ks per day for men and four dr<strong>in</strong>ks per<br />

day for women) compared with the placebo group (p =<br />

0.02). In patients receiv<strong>in</strong>g 190 mg Vivitrex, heavy dr<strong>in</strong>k<strong>in</strong>g<br />

was reduced by 17% compared with patients receiv<strong>in</strong>g<br />

placebo (p = 0.07). Overall, the median number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days <strong>in</strong> the group receiv<strong>in</strong>g 380 mg Vivitrex was<br />

reduced from 19 to 3 days a month [593795].<br />

Consider<strong>in</strong>g each gender separately, the number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days for males receiv<strong>in</strong>g the high dose of Vivitrex fell<br />

by 48% compared with males given placebo (p < 0.0001),<br />

whereas the results from females treated with Vivitrex did not<br />

differ from those given placebo. Similarly, males adm<strong>in</strong>istered<br />

low-dose Vivitrex showed a 25% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g<br />

days compared with placebo (p < 0.03), but there was no<br />

difference between the results from females treated with either<br />

Vivitrex or placebo [516479], [593795].<br />

Results of an open-label, 12-month extension trial that enrolled<br />

85% of <strong>in</strong>dividuals who completed the <strong>in</strong>itial phase III trial<br />

were presented <strong>in</strong> May 2005 [603348]. The results confirmed the<br />

susta<strong>in</strong>ed efficacy of Vivitrex. The trial recruited 115 of the 380mg<br />

dose patients, 102 of the 190-mg group and 60 patients from<br />

the placebo group. Gender was not a recruitment criterion.<br />

Patients from the placebo group were randomized to receive<br />

either 380 or 190 mg Vivitrex by monthly <strong>in</strong>tramuscular<br />

<strong>in</strong>jection. Patients <strong>in</strong> the high-dose group showed a reduction<br />

(not claimed as significant) <strong>in</strong> the median number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days per month from 2.6 to 1.6 days. Patients switched<br />

from placebo to 380 mg Vivitrex showed a reduction <strong>in</strong> heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days from 5.2 to 1.8 days per month [603348].<br />

There was evidence of a physiological improvement<br />

secondary to the reduction of alcohol <strong>in</strong>take from both the<br />

phase II and III trials, as <strong>in</strong>dicated by a reduction <strong>in</strong> the level<br />

of the hepatic enzyme γ-glutamyl transferase (GGT; a liver<br />

enzyme raised <strong>in</strong> ~ 70% of alcohol abusers that is frequently<br />

used as a marker of reduced alcohol <strong>in</strong>take) [638730]. A<br />

mean reduction <strong>in</strong> serum activity of GGT was observed <strong>in</strong><br />

both the phase II cl<strong>in</strong>ical trial [616443] and <strong>in</strong> the phase III<br />

cl<strong>in</strong>ical trial [593795].<br />

Side effects and contra<strong>in</strong>dications<br />

As discussed, Vivitrex is designed to reduce a number of<br />

problems associated with other naltrexone formulations,<br />

<strong>in</strong>clud<strong>in</strong>g the high concentration of its primary metabolite,<br />

which may contribute significantly to the side effects<br />

observed with oral naltrexone. In studies with other<br />

naltrexone formulations, 6β-naltrexol was l<strong>in</strong>ked with<br />

subjective reports of headache, nausea and anxiety [631898].<br />

Prelim<strong>in</strong>ary analysis of the results from cl<strong>in</strong>ical trials<br />

<strong>in</strong>dicated that Vivitrex was well tolerated and demonstrated<br />

no serious adverse events <strong>in</strong> healthy volunteers [390669],<br />

f<strong>in</strong>d<strong>in</strong>gs that were subsequently confirmed <strong>in</strong> patient trials.<br />

However, the side effects of substance dependence<br />

treatments often depend on the substance be<strong>in</strong>g abused.<br />

Substance abusers often fail to adhere to the planned<br />

therapeutic program so that the treatment drug may at some<br />

po<strong>in</strong>t be used alongside the abused substance. Thus, the<br />

risks associated with the use of Vivitrex for alcohol<br />

dependence differ from those that arise when the product is<br />

used for opiate dependence. It is also noteworthy that<br />

abusers might <strong>in</strong>crease their level of usage <strong>in</strong> order to<br />

surmount a blockade of effect produced by Vivitrex.<br />

In a phase II trial of 30 patients with alcohol dependence, an<br />

<strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex (400 mg) was generally safe<br />

and well tolerated, and reported adverse effects were mild to<br />

moderate. Nausea and headache were the most common<br />

adverse events, and both occurred equally <strong>in</strong> the placebo- and<br />

Vivitrex-treated groups [432929]. However, two patients<br />

discont<strong>in</strong>ued participation <strong>in</strong> the study because of adverse<br />

events (<strong>in</strong>jection site <strong>in</strong>duration and angioedema). Both events<br />

occurred after the second, monthly dose of Vivitrex and were<br />

moderate <strong>in</strong> severity [616443].<br />

In the 6-month, 624-patient phase III trial <strong>in</strong>volv<strong>in</strong>g alcoholdependent,<br />

active dr<strong>in</strong>kers, trial discont<strong>in</strong>uation ow<strong>in</strong>g to<br />

adverse events occurred <strong>in</strong> 14.1% of the 380-mg naltrexone<br />

group, 6.7% of the 190-mg group, and 6.7% of the placebo<br />

group [593795]. At least 10% of patients experienced some<br />

form of adverse event follow<strong>in</strong>g Vivitrex treatment, but less<br />

than 2% of patients discont<strong>in</strong>ued treatment because of<br />

<strong>in</strong>jection-site reaction [534413]. The most common adverse<br />

effects <strong>in</strong> the ma<strong>in</strong> trial were nausea, headache and fatigue,<br />

all of which have been observed with oral naltrexone<br />

formulations [593795]. Nausea was mild or moderate <strong>in</strong> 95%<br />

of cases, and usually occurred dur<strong>in</strong>g the first month. As<br />

well as loss of appetite, this was the most common adverse<br />

event <strong>in</strong> the 380-mg dose group. The frequency of serious<br />

adverse effects dur<strong>in</strong>g the trial was similar <strong>in</strong> all treatment<br />

groups, the most common be<strong>in</strong>g hospitalization for alcohol<br />

<strong>in</strong>toxication. However, two cases of pneumonia occurred <strong>in</strong><br />

the 380-mg group and, although not observed with<br />

naltrexone or microsphere medications previously, may


have been related to Vivitrex. Mean levels of alan<strong>in</strong>e<br />

am<strong>in</strong>otransferase and aspartate am<strong>in</strong>otransferase did not<br />

change significantly, <strong>in</strong>dicat<strong>in</strong>g a lack of hepatotoxicity<br />

[593795]. The most common adverse effects <strong>in</strong> the 12-month<br />

extension trial were headache, nasopharyngitis and<br />

respiratory tract <strong>in</strong>fections [603348].<br />

Patent summary<br />

Naltrexone was orig<strong>in</strong>ally claimed by Endo Laboratories Inc<br />

<strong>in</strong> 1967 (US-03332950). This patent expired <strong>in</strong> 1984, and by<br />

the late 1980s, any basic product protection elsewhere had<br />

also expired. The Medisorb extended-release technology was<br />

first claimed <strong>in</strong> WO-09742940 and granted as US-05817343<br />

and EP-00914095 <strong>in</strong> July 2002. Orig<strong>in</strong>ally developed by<br />

Medisorb Technologies International LP, the method was<br />

acquired by Alkermes <strong>in</strong> 1996.<br />

The patent status for Vivitrex will be resolved when it has been<br />

granted FDA approval (which was expected <strong>in</strong> December 2005)<br />

and a selection of relevant patents is subsequently published <strong>in</strong><br />

the Orange Book. Alkermes has claims to various patents<br />

cover<strong>in</strong>g areas such as the <strong>in</strong>jectable, extended-release of<br />

naltrexone compositions (WO-2004103342) and amorphous and<br />

polymorphic forms of naltrexone, which are reported to be<br />

advantageous <strong>in</strong> extended-release formulations (WO-<br />

2004108084). Moreover, two further patent applications (WO-<br />

2005089449 and WO-2005089486) cover comb<strong>in</strong>ations of<br />

naltrexone with an anticonvulsant or a dopam<strong>in</strong>e D2 partial<br />

agonist for treat<strong>in</strong>g alcoholism.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

A full understand<strong>in</strong>g of how opioids <strong>in</strong>fluence reward<br />

pathways is not yet available, but occupancy of opioid<br />

receptors by endogenous peptides or opiate drugs is known<br />

to <strong>in</strong>fluence the MLDS [631895]. Most experts <strong>in</strong> the field of<br />

neuroscience consider that this pathway plays a major role<br />

<strong>in</strong> reward mechanisms and drug-seek<strong>in</strong>g behavior, and<br />

believe that the sensitization of the MLDS observed <strong>in</strong><br />

dependence reflects a form of learnt or conditioned<br />

behavior. The various behavioral hypotheses that attempt to<br />

expla<strong>in</strong> dependence generally share the view that the effect<br />

experienced after substance <strong>in</strong>take re<strong>in</strong>forces the substanceseek<strong>in</strong>g<br />

behavior [636843]. If the l<strong>in</strong>k between <strong>in</strong>take and<br />

effect is broken (eg, by pharmacotherapeutic means) the<br />

learnt behavior can be overcome [631895], [636843].<br />

Pharmacotherapy alone rarely succeeds <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g<br />

dependence, but where patients have the correct motivation<br />

and psychosocial support, reductions <strong>in</strong> dependence can be<br />

achieved. It is therefore reasonable for cl<strong>in</strong>ical trials to<br />

<strong>in</strong>corporate both pharmacological and psychological<br />

elements. However, when <strong>in</strong>terpret<strong>in</strong>g the results of the<br />

phase II and phase III cl<strong>in</strong>ical trials of Vivitrex to date, it<br />

should be noted that they are placebo-controlled trials and<br />

do not compare psychosocial therapy alone with<br />

psychosocial therapy plus Vivitrex. It is perfectly possible<br />

that psychological elements of a placebo effect contributed<br />

to the improvements <strong>in</strong> the placebo-treated groups, and the<br />

design of the studies has wisely avoided the need to<br />

establish whether this is the case. It is also possible that<br />

genders respond differently to the psychological elements of<br />

treatment and much here rema<strong>in</strong>s to be elucidated.<br />

Vivitrex Head<strong>in</strong>g 85<br />

As discussed previously, the value of oral naltrexone <strong>in</strong> the<br />

long-term treatment of alcohol or opiate dependence has been<br />

greatly underm<strong>in</strong>ed by the failure of the substance abusers to<br />

adhere to the daily dos<strong>in</strong>g schedule [593795]. A reliable<br />

extended-release preparation that uses the <strong>in</strong>tramuscular route<br />

should provide an answer to the fluctuat<strong>in</strong>g plasma levels of<br />

naltrexone and high plasma levels of the naltrexone metabolite,<br />

and circumvent the changeable motivation seen <strong>in</strong> the users.<br />

Vivitrex is therefore likely to be welcomed as a new treatment<br />

for alcohol dependence that can be <strong>in</strong>itiated <strong>in</strong> active dr<strong>in</strong>kers,<br />

especially when consider<strong>in</strong>g the current absence of any truly<br />

satisfactory alternative products. Disulfiram and acamprosate<br />

are options for therapeutic <strong>in</strong>tervention <strong>in</strong> alcohol abuse, but<br />

both have limitations and, <strong>in</strong> contrast to Vivitrex, are not<br />

considered suitable for <strong>in</strong>itiation <strong>in</strong> active alcohol users<br />

[631992], [638487]. Disulfiram relies on an aversive effect<br />

produced by altered metabolism of ethyl alcohol, but the<br />

adverse side effects associated with this drug can be severe and<br />

even fatal [631992], [638487]. Acamprosate is thought to act on<br />

γ-am<strong>in</strong>obutyric acid and glutam<strong>in</strong>ergic receptors, with at least<br />

some of its actions be<strong>in</strong>g focused on the NA [631992].<br />

To date, the efficacy of Vivitrex has been confirmed for<br />

alcohol dependence only and, specifically, only <strong>in</strong> men. The<br />

trial report suggests that the difference <strong>in</strong> efficacy may be a<br />

consequence of different patient characteristics (eg, weight,<br />

smok<strong>in</strong>g and use of antidepressants) rather than a<br />

fundamental gender difference, but establish<strong>in</strong>g widespread<br />

efficacy <strong>in</strong> women may be difficult. Cl<strong>in</strong>icians may also be<br />

reluctant to use depot preparations <strong>in</strong> women who might<br />

become pregnant because of the universal pr<strong>in</strong>cipal of<br />

m<strong>in</strong>imiz<strong>in</strong>g medication dur<strong>in</strong>g the first trimester. A nonchemical<br />

treatment or one that can be halted abruptly might<br />

be preferred for women of childbear<strong>in</strong>g age.<br />

Should Vivitrex be developed further for opiate dependence,<br />

the safety issues will be different to those for alcohol<br />

dependence. Naltrexone is currently prescribed only for<br />

opiate addicts who are not active users because this agent<br />

can precipitate opiate withdrawal effects <strong>in</strong> active opiate<br />

users [631992]. Thus, to combat opiate abuse, Vivitrex might<br />

be more suited to use <strong>in</strong> an <strong>in</strong>-patient, rather than<br />

community, environment, where it would be harder for<br />

users to <strong>in</strong>crease their opiate <strong>in</strong>take <strong>in</strong> an attempt to<br />

surmount the naltrexone-<strong>in</strong>duced opioid antagonism.<br />

F<strong>in</strong>ally, it should be acknowledged that a great deal rema<strong>in</strong>s<br />

to be understood regard<strong>in</strong>g dependence on opiates and<br />

alcohol as well as appropriate treatments. For example, µopioid<br />

receptors have been researched and implicated <strong>in</strong><br />

dependence far more than δ- and κ-opioid receptors, which<br />

may also be <strong>in</strong>volved. At the receptor level, adaptive<br />

responses to alcohol or opiates are known to occur, and<br />

adaptive responses to antagonists are also observed. These<br />

responses have been observed with Vivitrex treatment, and<br />

the implications of such responses are not yet clear. In<br />

addition, from the behavioral po<strong>in</strong>t of view, the possible<br />

beneficial action of Vivitrex on crav<strong>in</strong>g has not yet been<br />

explored. Overall, it seems probable that Vivitrex has the<br />

capacity to make a significant contribution to the treatment<br />

of dependence long before its detailed mode of action has<br />

been elucidated.


86 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Commercial op<strong>in</strong>ion<br />

In November 2005, an analyst from SunTrust Rob<strong>in</strong>son<br />

Humphrey stated that they believed that it would take some<br />

time to build the market for Vivitrex for alcoholism, and that<br />

peak sales could reach US $250 million <strong>in</strong> the future.<br />

Predicted sales of Vivitrex <strong>in</strong> fiscal 2007 (beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong><br />

the second quarter of 2006) were estimated at<br />

US $65 million, lead<strong>in</strong>g to sales of US $110 million <strong>in</strong><br />

fiscal 2008, ris<strong>in</strong>g to US $175 million <strong>in</strong> fiscal 2010<br />

[638339].<br />

Licens<strong>in</strong>g<br />

Cephalon Inc<br />

In June 2005, Cephalon agreed to jo<strong>in</strong>tly develop and commercialize Vivitrex <strong>in</strong> the US. Alkermes was to receive an <strong>in</strong>itial<br />

payment of US $160 million from Cephalon and will receive an additional US $110 million if Vivitrex is approved, and could<br />

also receive up to US $220 million <strong>in</strong> milestone payments based on sales. The responsibility for develop<strong>in</strong>g the commercial<br />

strategy for the product will be shared by a jo<strong>in</strong>t commercialization team formed from both companies. Alkermes will be<br />

responsible for manufactur<strong>in</strong>g Vivitrex and seek<strong>in</strong>g market<strong>in</strong>g approval and Cephalon will conduct the market<strong>in</strong>g and sales<br />

of the product. Alkermes will be responsible for any cumulative losses of up to US $120 million until December 31 2007, or<br />

for 18 months after FDA approval. Dur<strong>in</strong>g this period, Cephalon will be liable for cumulative losses exceed<strong>in</strong>g US $120<br />

million. After that time, any pretax profit or loss will be shared equally by both companies [609280].<br />

Development history<br />

Developer Country Status Indication Date Reference<br />

Alkermes Inc US Pre-registration Alcoholism 01-APR-05 592847<br />

Cephalon Inc US Pre-registration Alcoholism 24-JUN-05 609507<br />

Alkermes Inc US Phase II Opiate dependence 22-JAN-02 435928<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

Preparation. Naltrexone is encapsulated <strong>in</strong>to biodegradable polymer microspheres (100 µm diameter) fabricated<br />

from PLG. Follow<strong>in</strong>g subcutaneous or <strong>in</strong>tramuscular adm<strong>in</strong>istration, the microspheres can ma<strong>in</strong>ta<strong>in</strong> a<br />

steady release rate of naltrexone <strong>in</strong>to the bloodstream for up to 1 month.<br />

616446<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vivo Efficacy. The latency of response <strong>in</strong> a hot plate test Reduced latency from day 1 to 28 616446<br />

was measured <strong>in</strong> rats 30 m<strong>in</strong> after a was observed <strong>in</strong> rats pre-dosed with<br />

1.0-mg/kg <strong>in</strong>traperitoneal morph<strong>in</strong>e Vivitrex (40 ± 0.54 s and 36 ± 0.40 s<br />

<strong>in</strong>jection (adm<strong>in</strong>istered every 5 days). follow<strong>in</strong>g subcutaneous and<br />

Rats were adm<strong>in</strong>istered a s<strong>in</strong>gle 50- <strong>in</strong>tramuscular <strong>in</strong>jection, respectively)<br />

mg/kg dose of Vivitrex either<br />

compared with placebo-treated rats<br />

subcutaneously or <strong>in</strong>tramuscularly prior to<br />

test<strong>in</strong>g.<br />

(57 ± 0.60 s).<br />

In vivo Efficacy. Post-sacrifice radioligand b<strong>in</strong>d<strong>in</strong>g<br />

autoradiography assays us<strong>in</strong>g<br />

[ 3 Increased radioligand b<strong>in</strong>d<strong>in</strong>g was 616446<br />

observed <strong>in</strong> all bra<strong>in</strong> regions<br />

H]DAMGO were used to measure exam<strong>in</strong>ed, reach<strong>in</strong>g 120% <strong>in</strong> the<br />

receptor density <strong>in</strong> rats for up to 2 months habenular nucleus and 220% <strong>in</strong> the<br />

follow<strong>in</strong>g a 50-mg/kg <strong>in</strong>tramuscular<br />

<strong>in</strong>jection of Vivitrex.<br />

dorsal raphe nucleus.<br />

In vivo Efficacy. Post-sacrifice immunohistochemistry The <strong>in</strong>crease <strong>in</strong> receptor<br />

616446<br />

us<strong>in</strong>g receptor-target<strong>in</strong>g antibodies <strong>in</strong> rats immunoreactivity was less than <strong>in</strong><br />

1 or 2 months follow<strong>in</strong>g a 50-mg/kg the autoradiography studies, with<br />

<strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex.<br />

only two of the 15 bra<strong>in</strong> regions<br />

exam<strong>in</strong>ed show<strong>in</strong>g significant<br />

<strong>in</strong>creases after 1 month compared<br />

with control.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Circulat<strong>in</strong>g levels of naltrexone <strong>in</strong> AUC = 332 and 360 ng.day/ml and Cmax = 616446<br />

rats measured 1 to 35 days 15 ± 1.4 and 19 ± 3.6 ng/ml after<br />

follow<strong>in</strong>g subcutaneous or<br />

subcutaneous and <strong>in</strong>tramuscular<br />

<strong>in</strong>tramuscular adm<strong>in</strong>istration of adm<strong>in</strong>istration of Vivitrex, respectively. By<br />

Vivitrex (50 mg/kg).<br />

day 35, drug levels were almost<br />

undetectable (< 1 ng/ml).


Metabolism (cont<strong>in</strong>ued)<br />

Vivitrex Head<strong>in</strong>g 87<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Phase I, double-bl<strong>in</strong>d study of 42 AUC and Cmax were dose proportional, with 390669<br />

healthy volunteers randomized to slightly higher values observed follow<strong>in</strong>g<br />

receive placebo or Vivitrex as a <strong>in</strong>tramuscular adm<strong>in</strong>istration (AUC = 49 ±<br />

s<strong>in</strong>gle <strong>in</strong>tramuscular (150, 300, 9, 84 ± 12 and 189 ± 27 ng.day/ml at 150,<br />

600 or 900 mg) or subcutaneous 300 and 600 mg, respectively) compared<br />

(150, 300 or 600 mg) <strong>in</strong>jection. with subcutaneous adm<strong>in</strong>istration (AUC =<br />

31 ± 11, 65 ± 13 and 145 ± 28 ng.day/ml at<br />

150, 300 and 600 mg, respectively).<br />

In vivo Pharmacok<strong>in</strong>etics. Phase I, double-bl<strong>in</strong>d study of 42 Therapeutic naltrexone levels were<br />

393208<br />

healthy volunteers randomized to susta<strong>in</strong>able for a full month. Sufficient<br />

receive placebo or Vivitrex as a doses were 5-fold less than the equivalent<br />

s<strong>in</strong>gle <strong>in</strong>tramuscular (150, 300, dose required through oral naltrexone<br />

600 or 900 mg) or subcutaneous<br />

(150, 300 or 600 mg) <strong>in</strong>jection.<br />

adm<strong>in</strong>istration.<br />

In vivo Pharmacok<strong>in</strong>etics. Phase II, double-bl<strong>in</strong>d study of 30 The mean trough serum naltrexone<br />

616443<br />

healthy volunteers randomized to concentration rema<strong>in</strong>ed relatively constant<br />

receive <strong>in</strong>tramuscular Vivitrex (400 throughout the study. Serum levels of 6β-<br />

mg) or placebo once a month for 4 naltrexol were substantially lower than<br />

months.<br />

those observed follow<strong>in</strong>g oral naltrexone<br />

adm<strong>in</strong>istration.<br />

In vivo Pharmacok<strong>in</strong>etics. Control-matched study <strong>in</strong><br />

<strong>in</strong>dividuals with mild or moderate<br />

Total exposure (AUC0-∞) of naltrexone and<br />

6β-naltrexol was similar across all groups<br />

636722<br />

hepatic impairment. Six <strong>in</strong>dividuals over 63 days (treatment comparison ratios<br />

from each test group and 13 were 0.97 and 1.08 for mild and moderate<br />

healthy volunteers each received a hepatic impairment, respectively,<br />

s<strong>in</strong>gle 190-mg <strong>in</strong>tramuscular dose compared with control) <strong>in</strong>dicat<strong>in</strong>g that no<br />

of Vivitrex.<br />

dosage adjustment would be needed for<br />

alcohol users with impaired liver function.<br />

Cl<strong>in</strong>ical<br />

Effect studied Model Result Reference<br />

Efficacy. Phase II, multicenter, randomized, The mean percentage of heavy dr<strong>in</strong>k<strong>in</strong>g days was<br />

616443<br />

double-bl<strong>in</strong>d pilot study conducted with 30 reduced to 11.7% <strong>in</strong> the Vivitrex group compared with<br />

alcohol-dependent patients who received 25.3% <strong>in</strong> the placebo group. An <strong>in</strong>crease <strong>in</strong> the mean<br />

a 400-mg <strong>in</strong>tramuscular <strong>in</strong>jection of percentage of days abst<strong>in</strong>ent from alcohol (69.4%<br />

Vivitrex (n = 25) or placebo (n = 5) once a compared with 39.2% pre-treatment) and a reduction <strong>in</strong><br />

month for 4 months. Both treatment the number of dr<strong>in</strong>ks consumed per dr<strong>in</strong>k<strong>in</strong>g day (3.8<br />

groups received counsel<strong>in</strong>g.<br />

compared with 7.4 pre-treatment) was seen with Vivitrex<br />

treatment.<br />

Safety and Phase II, multicenter, randomized, Vivitrex was well tolerated and adverse effects were 616443<br />

tolerability. double-bl<strong>in</strong>d study conducted with 30 mild to moderate. Nausea and headache occurred<br />

alcohol-dependent patients who received<br />

<strong>in</strong>tramuscular <strong>in</strong>jections of 400 mg<br />

Vivitrex (n = 25) or placebo (n = 5) once a<br />

month for 4 months.<br />

similarly <strong>in</strong> both patient groups.<br />

Efficacy. Phase III, double-bl<strong>in</strong>d, placebo-<br />

There was a 48% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g days for 516479<br />

controlled, randomized cl<strong>in</strong>ical trial <strong>in</strong> 624 males adm<strong>in</strong>istered the 380-mg dose compared with<br />

alcohol-dependent patients. Patients were placebo (p < 0.0001), whereas <strong>in</strong> females the results did<br />

enrolled to receive Vivitrex (190 or 380 not differ from placebo. Similarly, males adm<strong>in</strong>istered<br />

mg) or placebo once a month for 6 190 mg Vivitrex showed a 25% reduction <strong>in</strong> heavy<br />

months. All patients received counsel<strong>in</strong>g. dr<strong>in</strong>k<strong>in</strong>g days compared with placebo (p < 0.03), but<br />

there was no difference <strong>in</strong> the results from females<br />

treated with either Vivitrex or placebo.<br />

Efficacy and A 12-month, open-label extension of a Patients who cont<strong>in</strong>ued on the 380-mg dose showed a 603348<br />

tolerability. phase III cl<strong>in</strong>ical trial <strong>in</strong> 277 patients susta<strong>in</strong>ed reduction <strong>in</strong> the median number of heavy<br />

adm<strong>in</strong>istered monthly <strong>in</strong>tramuscular dr<strong>in</strong>k<strong>in</strong>g days per month (2.6 to 1.6 days). Patients<br />

<strong>in</strong>jections of Vivitrex (380 or 190 mg). switched from placebo to the 380-mg drug dose showed<br />

Patients formerly on placebo were a reduction <strong>in</strong> the median number of heavy dr<strong>in</strong>k<strong>in</strong>g<br />

switched randomly to either the 380- or days from 5.2 to 1.8 days per month. Vivitrex was well<br />

190-mg Vivitrex groups.<br />

tolerated over the total 18-month period.<br />

Associated patent<br />

Title Method for fabricat<strong>in</strong>g polymer-based controlled-release devices.<br />

Assignee Alkermes Inc<br />

Publication WO-09742940 20-NOV-97<br />

Priority US-19960649128 14-MAY-96<br />

Inventor Burke PA.<br />

Associated references<br />

390669 Alkermes releases abstract regard<strong>in</strong>g cl<strong>in</strong>ical data for Medisorb<br />

naltrexone - data from first cl<strong>in</strong>ical trial of <strong>in</strong>jectable susta<strong>in</strong>ed release<br />

formulation of alcoholism drug to be presented at December 2000<br />

scientific meet<strong>in</strong>g. Alkermes Inc PRESS RELEASE 2000 November 21<br />

393208 Alkermes presents phase I results of Medisorb (naltrexone).<br />

Alkermes Inc PRESS RELEASE 2000 December 11


88 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

432929 Alkermes reports positive results of phase II cl<strong>in</strong>ical trial of Vivitrex<br />

for alcohol dependency at Annual Meet<strong>in</strong>g of the American College of<br />

Neuropsychopharmacology. Alkermes Inc PRESS RELEASE 2001 December<br />

10<br />

435928 Product pipel<strong>in</strong>e. Alkermes Inc COMPANY WORLD WIDE WEB SITE<br />

2002 January 15<br />

441894 Susta<strong>in</strong>ed-release naltrexone for alcoholism treatment: A prelim<strong>in</strong>ary<br />

study. Kranzler HR, Modesto-Lowe V, Neuwayser ES ALCOHOL CLIN EXP RES<br />

1998 22 5 1074-1079<br />

445176 Alkermes beg<strong>in</strong>s phase III trial of Vivitrex. Alkermes Inc PRESS<br />

RELEASE 2002 April 01<br />

455296 DrugAbuse Sciences Inc. INT BIOTECHNOL CONV & EXHIB 2002<br />

Suppl June 09-12<br />

475512 Phase III study shows DrugAbuse Sciences naltrexone depot<br />

beneficial <strong>in</strong> treat<strong>in</strong>g alcoholism. DrugAbuse Sciences Inc PRESS RELEASE<br />

2003 January 06<br />

494451 Alkermes's Vivitrex reduces heavy dr<strong>in</strong>k<strong>in</strong>g days by 50%. Alkermes<br />

Inc PRESS RELEASE 2003 June 23<br />

534413 Alkermes completes enrollment <strong>in</strong> long-term safety study of Vivitrex,<br />

naltrexone, long-act<strong>in</strong>g <strong>in</strong>jection for the treatment of alcohol dependence.<br />

Alkermes Inc PRESS RELEASE 2004 April 22<br />

592847 Alkermes announces submission of new drug application for Vivitrex<br />

for treatment of alcohol dependence. Alkermes Inc PRESS RELEASE 2005<br />

April 01<br />

593795 Efficacy and tolerability of long-act<strong>in</strong>g <strong>in</strong>jectable naltrexone for<br />

alcohol dependence: A randomized controlled trial. Garbutt JC, Kranzler HR,<br />

O'Malley SO, Gastfriend DR, Pett<strong>in</strong>ati HM, Silverman BL, Loewy JW, Ehrich EW J<br />

AM MED ASSOC 2005 293 13 1617-1625<br />

•• A full report of the multicenter phase III trial of Vivitrex, cover<strong>in</strong>g efficacy,<br />

tolerability and safety.<br />

603348 Alkermes's Vivitrex gives long-term benefit to alcoholics. Alkermes Inc<br />

PRESS RELEASE 2005 May 23<br />

609280 Cephalon and Alkermes announce agreement for the<br />

commercialization of Vivitrex for the treatment of alcohol dependence.<br />

Cephalon Inc, Alkermes Inc PRESS RELEASE 2005 June 24<br />

609507 Cephalon - announces agreement with ALKS to market Vivitrex for<br />

alcohol dependence. Geller M, Holley B, Kassum T CIBC WORLD MARKETS<br />

CORP 2005 June 24 1-11<br />

616443 A pilot evaluation of the safety and tolerability of repeat dose<br />

adm<strong>in</strong>istration of long-act<strong>in</strong>g <strong>in</strong>jectable naltrexone (Vivitrex) <strong>in</strong> patients with<br />

alcohol dependence. Johnson BA, Ait-Daoud N, Aub<strong>in</strong> HJ, Van Den Br<strong>in</strong>k W,<br />

Guzzetta R, Loewy J, Silverman B, Ehrich E ALCOHOL CLIN EXP RES 2004 28 9<br />

1356-1361<br />

616446 Vivitrex, an <strong>in</strong>jectable, extended-release formulation of naltrexone,<br />

provides pharmacok<strong>in</strong>etic and pharmacodynamic evidence of efficacy for 1<br />

month <strong>in</strong> rats. Bartus RT, Emerich DF, Hotz J, Blauste<strong>in</strong> M, Dean RL, Perdomo B,<br />

Basile AS NEUROPSYCHOPHARMACOLOGY 2003 28 11 1973-1982<br />

•• This is a comprehensive report of animal studies with Vivitrex.<br />

624146 FDA extends PDUFA date for Vivitrex to December 30, 2005;<br />

Cephalon and Alkermes cont<strong>in</strong>ue to anticipate Vivitrex launch <strong>in</strong> first half of<br />

2006. Celphalon Inc, Alkermes Inc PRESS RELEASE 2005 September 20<br />

631895 Opioids and alcoholism. Oswald LM, Wand GS PHYSIOL BEHAV 2004<br />

81 2 339-358<br />

•• A major review of experimental evidence and theory relat<strong>in</strong>g to the relationship<br />

between opioids and alcohol abuse.<br />

631898 Pharmacok<strong>in</strong>etics, safety, and tolerability of a depot formulation of<br />

naltrexone <strong>in</strong> alcoholics: An open-label trial. Galloway GP, Koch M, Cello R,<br />

Smith DE BMC PSYCHIATRY 2005 5 1 18<br />

631992 Acamprosate for the treatment of alcohol dependence. Boothby LA,<br />

Doer<strong>in</strong>g PL CLIN THER 2005 27 6 695-714<br />

• A review of current treatment options for alcohol dependence <strong>in</strong>clud<strong>in</strong>g<br />

experiences of naltrexone use.<br />

631995 Histological changes over time around the site of susta<strong>in</strong>ed release<br />

naltrexone-poly(DL-lactide) implants <strong>in</strong> humans. Hulse GK, Stalenberg V,<br />

McCallum D, Smit W, O'Neil G, Morris N, Tait RJ J CONTROL RELEASE 2005<br />

108 1 43-55<br />

632485 Alkermes reports second quarter fiscal 2006 f<strong>in</strong>ancial results;<br />

company reports profitable quarter; f<strong>in</strong>ancial expectations for fiscal 2006<br />

improve. Alkermes Inc PRESS RELEASE 2005 November 03<br />

636722 Pharmacok<strong>in</strong>etics of long-act<strong>in</strong>g naltrexone <strong>in</strong> subjects with mild to<br />

moderate hepatic impairment. Turncliff RZ, Dunbar JL, Dong Q, Silverman BL,<br />

Ehrich EW, Dilzer SC, Lasseter KC J CLIN PHARMACOL 2005 45 11 1259-1267<br />

636732 Naltrexone implants for opiate addiction: New life for a middle-aged<br />

drug. Brewer C PHARM J 2001 267 7162 260<br />

636738 DrugAbuse Sciences Product Portfolio. DrugAbuse Sciences Inc<br />

COMPANY COMMUNICATION 2005 November 17<br />

636843 Drug addiction: Bad habits add up. Robb<strong>in</strong>s TW, Everitt BJ NATURE<br />

1999 398 6728 567-570<br />

• A comprehensive overview of biological and psychological theories concern<strong>in</strong>g<br />

the basis of substance dependence.<br />

637673 Prevalence and correlates of alcohol use and DSM-IV alcohol<br />

dependence <strong>in</strong> the United States: Results of the National Longitud<strong>in</strong>al<br />

Alcohol Epidemiologic Survey. Grant BF J STUD ALCOHOL 1997 58 5 464-473<br />

637682 Alcohol consumption, alcohol abuse and alcohol dependence. The<br />

United States as an example. Grant BF ADDICTION 1994 89 11 1357-1365<br />

637696 Naltrexone implants can completely prevent early (1-month) relapse<br />

after opiate detoxification: A pilot study of two cohorts totall<strong>in</strong>g 101 patients<br />

with a note on naltrexone blood levels. Foster J, Brewer C, Steele T ADDICT<br />

BIOL 2003 8 2 211-217<br />

637699 Effects of naltrexone adm<strong>in</strong>istered repeatedly across 30 or 60 days<br />

on ethanol consumption us<strong>in</strong>g a limited access procedure <strong>in</strong> the rat.<br />

Stromberg MF, Volpicelli JR, O'Brien CP ALCOHOL CLIN EXP RES 1998 22 9<br />

2186-2191<br />

637953 DSM-IV Classification. DSM-IV: Dianostic and statistical manual of<br />

mental disorders. Fourth Edition. Barnes A, American Psychiatric Association,<br />

Wash<strong>in</strong>gton, DC, USA 1994 1-208<br />

638339 Alkermes Inc. Hazlett R SUNTRUST ROBINSON HUMPRHEY CAPITAL<br />

MARKETS 2005 November 04 1-5<br />

638453 Pharmacotherapy of addictions. Kreek MJ, LaForge KS, Butelman E<br />

NAT REV DRUG DISCOV 2002 1 9 710-726<br />

• An overview of the products currently <strong>in</strong> use and <strong>in</strong> development for<br />

dependencies, <strong>in</strong>clud<strong>in</strong>g a useful summary of the relevance of different opioid<br />

receptors <strong>in</strong> dependency.<br />

638459 A multicentre, randomized, double-bl<strong>in</strong>d, placebo-controlled trial of<br />

naltrexone <strong>in</strong> the treatment of alcohol dependence or abuse. Chick J, Anton R,<br />

Chec<strong>in</strong>ski K, Croop R, Drummond DC, Farmer R, Labriola D, Marshall J, Moncrieff<br />

J, Morgan MY, Peters T, Ritson B ALCOHOL ALCOHOL 2000 35 6 587-593<br />

638460 Naltrexone biotransformation and <strong>in</strong>cidence of subjective side<br />

effects: A prelim<strong>in</strong>ary study. K<strong>in</strong>g AC, Volpicelli JR, Gunduz M, O'Brien CP,<br />

Kreek MJ ALCOHOL CLIN EXP RES 1997 21 5 906-909<br />

638466 In vivo characterization of 6β-naltrexol, an opioid ligand with less<br />

<strong>in</strong>verse agonist activity compared with naltrexone and naloxone <strong>in</strong> opioiddependent<br />

mice. Raehal KM, Lowery JJ, Bhamidipati CM, Paol<strong>in</strong>o RM, Blair JR,<br />

Wang D, Sadee W, Bilsky EJ J PHARMACOL EXP THER 2005 313 3 1150-1162<br />

638481 Supersensitivity to opioid analgesics follow<strong>in</strong>g chronic opioid<br />

antagonist treatment: Relationship to receptor selectivity. Yoburn BC, Shah S,<br />

Chan K, Duttaroy A, Davis T PHARMACOL BIOCHEM BEHAV 1995 51 2-3 535-<br />

539<br />

638482 Naltrexone-<strong>in</strong>duced opiate receptor supersensitivity. Zuk<strong>in</strong> RS,<br />

Sugarman JR, Fitz-Syage ML, Gardner EL, Zuk<strong>in</strong> SR, G<strong>in</strong>tzler AR BRAIN RES<br />

1982 245 2 285-292<br />

638487 Pharmacological treatment of alcohol dependence: A review of the<br />

evidence. Garbutt JC, West SL, Carey TS, Lohr KN, Crews FT J AM MED<br />

ASSOC 1999 281 14 1318-1325<br />

638704 Product portfolio: Naltrexone depot. DrugAbuse Sciences Inc<br />

COMPANY WORLD WIDE WEB SITE December 2005<br />

638730 The abuse of alcohol and drugs. In: The Oxford Textbook of Psychiatry,<br />

Third Edition. Gelder M, Mayou R, Cowen P (Eds). Oxford University Press,<br />

Oxford, UK 1995 14 456-481


Erratum<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> (2005) 6(7):686-689.<br />

Mario di Napoli & BethAnn McLaughl<strong>in</strong><br />

In the legend to Figure 1, PPi is an abbreviation of <strong>in</strong>organic pyrophosphate.<br />

89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!