05.01.2013 Views

Absolute values of transport mean free path of light in non-absorbing ...

Absolute values of transport mean free path of light in non-absorbing ...

Absolute values of transport mean free path of light in non-absorbing ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

264 J. GALVAN-MIYOSHI AND R. CASTILLO<br />

If P (q) and S(q) are known, l ∗ can be determ<strong>in</strong>ed us<strong>in</strong>g<br />

Eq. (B.1). To give an estimate, we calculated P (q) with Mie<br />

theory for a <strong>non</strong>-absorb<strong>in</strong>g spherical particle immersed <strong>in</strong> a<br />

<strong>non</strong>-absorb<strong>in</strong>g medium us<strong>in</strong>g:<br />

with<br />

P (θ) = k 2 �<br />

oσdiff (θ) = π |S1 (θ)| 2 + |S2 (θ)| 2�<br />

,<br />

S1 (θ) =<br />

S2 (θ) =<br />

∞�<br />

n=1<br />

∞�<br />

n=1<br />

(2n + 1)<br />

n (n + 1)<br />

× [anπn (cos θ) + bnτn (cos θ)] , (B.2)<br />

(2n + 1)<br />

n (n + 1)<br />

× [anτn (cos θ) + bnπn (cos θ)] . (B.3)<br />

Here, τn (cos θ) = (d/dθ)P 1 n (cos θ) and<br />

πn (cos θ) = P 1 n (cos θ)<br />

,<br />

s<strong>in</strong> θ<br />

with P 1 n (cos θ) the Legendre polynomials, and an and bn coefficients<br />

determ<strong>in</strong>ed by the boundary conditions.<br />

S(q) can be calculated for a system <strong>of</strong> hard spheres us<strong>in</strong>g<br />

Percus-Yevick closure [16], which gives:<br />

∗. Author to whom correspondence should be addressed: e-mail:<br />

rolandoc@fisica.unam.mx<br />

1. D.A. Weitz, D.J. P<strong>in</strong>e <strong>in</strong>: Dynamic Light Scatter<strong>in</strong>g, W. Brown<br />

(Ed.). (Oxford University Press, New York, 1993) Chap. 16, p.<br />

652.<br />

2. J.L. Harden and V. Viasn<strong>of</strong>f, Curr. Op<strong>in</strong>. Colloid. Interface Sci.<br />

6 (2001) 438.<br />

3. D.J. P<strong>in</strong>e, D.A. Weitz, P.M. Chaik<strong>in</strong>, and E. Herbolzheimer,<br />

Phys. Rev. Lett. 60 (1988) 1134.<br />

4. F. Scheffold, J. Dispersion Sci. and Technol. 23 (2002) 591.<br />

5. L.F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and<br />

F. Scheffold, J. Opt. Soc. Am.A. 21 (2004) 1799.<br />

6. S. Mitani, K. Sakai, and K. Takagi, Jpn. J. Appl. Phys. 39<br />

(2000) 146.<br />

7. N. Garcia, A.Z. Genack, and A.A. Lisyansky, Phys. Rev. B. 46<br />

(1992) 14475.<br />

1<br />

S(q)<br />

p1<br />

= 1 + s<strong>in</strong> (2q) − 2q cos(2q)<br />

q3 − p2<br />

q3 �� �<br />

1<br />

− 2 q cos(2q) + 2 s<strong>in</strong>(2q) −<br />

q2 1<br />

�<br />

q<br />

�<br />

3<br />

+ φp1<br />

2q 3<br />

− φp1<br />

2q 3<br />

�<br />

2<br />

+ 4<br />

q3 �<br />

where p1 = 3φ(1+2φ)2<br />

(1−φ) 4<br />

Rev. Mex. Fís. 54 (3) (2008) 257–264<br />

�<br />

1 − 3<br />

2q 2<br />

1 − 3 3<br />

+<br />

q2 2q4 and p2 = (3φ)2<br />

2<br />

Appendix C. Estimation <strong>of</strong> α ∗<br />

� �<br />

s<strong>in</strong>(2q)<br />

� �<br />

q cos(2q) , (B.4)<br />

(2+φ) 2<br />

(1−φ) 4 .<br />

α ∗ = zo/l ∗ can be estimated us<strong>in</strong>g a DWS experiment by fitt<strong>in</strong>g<br />

the <strong>in</strong>tensity autocorrelation function for the back scattered<br />

<strong>light</strong> from a colloidal suspension made <strong>of</strong> particles <strong>of</strong><br />

the same size as those to be used <strong>in</strong> the fluid to be <strong>in</strong>vesti-<br />

gated [4], us<strong>in</strong>g the expression:<br />

�<br />

(g2(t) − 1) pol = β exp<br />

−2γpol<br />

� �<br />

6t<br />

. (C.1)<br />

τ<br />

Here, the subscript pol is used to <strong>in</strong>dicate the polarization detection<br />

used <strong>in</strong> the experiment, V V for parallel and V H for<br />

cross polarization. Here, τ = � k2 oD �−1 is the relaxation time<br />

and D is the diffusion coefficient, and γpol = α∗ pol + 2/3. As<br />

D is known, α∗ ≡ 〈α∗ 〉 = (α∗ V V + α∗ V H ) /2 can be determ<strong>in</strong>ed<br />

from a fitt<strong>in</strong>g.<br />

8. J.W. Picker<strong>in</strong>g, C.J.M. Moes, H.J.C.M. Sterenborg, S.A. Prahl,<br />

and M.J.C. van Gemert, J. Opt. Soc. Am. A 9 (1992) 621.<br />

9. J.W. Picker<strong>in</strong>g, S.A. Prahl, N. van Wier<strong>in</strong>gen, J.F. Beek,<br />

H.J.C.M. Sterenborg, and M.J.C. van Gemert, App. Opt. 32<br />

(1993) 399.<br />

10. P.D. Kaplan, M.H. Kao, A.G. Yodh, and D.J. P<strong>in</strong>e, Appl. Opt.<br />

32 (1993) 3828.<br />

11. A. Ishimaru, Wave Propagation and Scatter<strong>in</strong>g <strong>in</strong> Random Media<br />

(Academic Press, New York, 1978).<br />

12. H.C. van de Hulst. Light Scatter<strong>in</strong>g by Small Particles (Dover,<br />

New York, 1981).<br />

13. G.K. Batchelor, J. Fluid Mech. 74 (1976) 1.<br />

14. J.X. Zhu, D.J. P<strong>in</strong>e, D.A. Weitz, Phys. Rev. A 44 (1991) 3948.<br />

15. L.F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger,<br />

Phys. Rev. E. 65 (2002) 051403.<br />

16. M.S. Wertheim, Phys. Rev. Lett. 10 (1963) 321.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!