06.01.2013 Views

A handbbok on Weed Control in Rice.pdf

A handbbok on Weed Control in Rice.pdf

A handbbok on Weed Control in Rice.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1991<br />

P.O. Box 933, 1099 Manila, Philipp<strong>in</strong>es


The Internati<strong>on</strong>al <strong>Rice</strong> Research Institute (IRRI) was established <strong>in</strong> 1960 by the Ford<br />

and Rockefeller Foundati<strong>on</strong>s with the help and approval of the Government of the<br />

Philipp<strong>in</strong>es. Today IRRI is <strong>on</strong>e of the 13 n<strong>on</strong>profit <strong>in</strong>ternati<strong>on</strong>al research and<br />

tra<strong>in</strong><strong>in</strong>g centers supported by the C<strong>on</strong>sultative Group <strong>on</strong> Internati<strong>on</strong>al Agricultural<br />

Research (CGIAR). The CGIAR is sp<strong>on</strong>sored by the Food and Agriculture Organi-<br />

zati<strong>on</strong> of the United Nati<strong>on</strong>s, the Internati<strong>on</strong>al Bank for Rec<strong>on</strong>structi<strong>on</strong> and Devel-<br />

opment (World Bank), and the United Nati<strong>on</strong>s Development Programme (UNDP).<br />

The CGIAR c<strong>on</strong>sists of 50 d<strong>on</strong>or countries, <strong>in</strong>ternati<strong>on</strong>al and regi<strong>on</strong>al organizati<strong>on</strong>s,<br />

and private foundati<strong>on</strong>s.<br />

IRRI receives support, through the CGIAR, from a number of d<strong>on</strong>ors <strong>in</strong>clud-<br />

<strong>in</strong>g the Asian Development Bank, the European Ec<strong>on</strong>omic Community, the Ford<br />

Foundati<strong>on</strong>, the Internati<strong>on</strong>al Development Research Centre, the Internati<strong>on</strong>al<br />

Fund for Agricultural Development, the OPEC Special Fund, the Rockefeller<br />

Foundati<strong>on</strong>, UNDP, the World Bank, and the <strong>in</strong>ternati<strong>on</strong>al aid agencies of the<br />

follow<strong>in</strong>g governments: Australia, Belgium, Brazil, Canada, Ch<strong>in</strong>a, Denmark, F<strong>in</strong>-<br />

land, France, Germany, India, Iran, Italy, Japan, Republic of Korea, Mexico, The<br />

Netherlands, New Zealand, Norway, the Philipp<strong>in</strong>es, Saudi Arabia, Spa<strong>in</strong>, Sweden,<br />

Switzerland, United K<strong>in</strong>gdom, and United States.<br />

The resp<strong>on</strong>sibility for this publicati<strong>on</strong> rests with the Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute.<br />

Copyright © Internati<strong>on</strong>al <strong>Rice</strong> Research Institute 1991<br />

All rights reserved. Except for quotati<strong>on</strong>s of short passages for the purpose<br />

of criticism and review, no part of this publicati<strong>on</strong> may be reproduced, stored <strong>in</strong><br />

retrieval systems, or transmitted <strong>in</strong> any form or by any means, electr<strong>on</strong>ic, mechani-<br />

cal, photocopy<strong>in</strong>g, record<strong>in</strong>g, or otherwise, without prior permissi<strong>on</strong> of IRRI. This<br />

permissi<strong>on</strong> will not be unreas<strong>on</strong>ably withheld for use for n<strong>on</strong>commercial purposes.<br />

IRRI does not require payment for the n<strong>on</strong>commercial use of its published works,<br />

and hopes that this copyright declarati<strong>on</strong> will not dim<strong>in</strong>ish the b<strong>on</strong>a fide use of its<br />

research f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> agricultural research and development.<br />

The designati<strong>on</strong>s employed <strong>in</strong> the presentati<strong>on</strong> of the material <strong>in</strong> this publi-<br />

cati<strong>on</strong> do not imply the expressi<strong>on</strong> of any op<strong>in</strong>i<strong>on</strong> whatsoever <strong>on</strong> the part of IRRI<br />

c<strong>on</strong>cern<strong>in</strong>g the legal status of any country, territory, city, or area, or of its authorities,<br />

or the delimitati<strong>on</strong> of its fr<strong>on</strong>tiers or boundaries.<br />

ISBN 971-22-0020-5


Foreword<br />

Farmers everywhere search for ways to widen the narrow marg<strong>in</strong> of profit<br />

between producti<strong>on</strong> costs and crop returns. <strong>Weed</strong>s cause more yield losses <strong>in</strong><br />

ricefields than any other pest. Cost-effective methods for c<strong>on</strong>troll<strong>in</strong>g weeds<br />

could help preserve profits and <strong>in</strong>crease yields.<br />

The authors have designed this book to provide practical <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> the many different rice cultural systems, us<strong>in</strong>g an <strong>in</strong>te-<br />

grated management approach. It is excepti<strong>on</strong>ally comprehensive, and can be<br />

used as a textbook, as a field guide, and as a manual for mak<strong>in</strong>g decisi<strong>on</strong>s <strong>in</strong><br />

crop management.<br />

The handbook has been especially designed to facilitate <strong>in</strong>expensive trans-<br />

lati<strong>on</strong> and copublicati<strong>on</strong>. C<strong>on</strong>tact Communicati<strong>on</strong> and Publicati<strong>on</strong>s Services,<br />

IRRI Informati<strong>on</strong> Center, for permissi<strong>on</strong> and assistance, at no charge, <strong>in</strong> any<br />

activities to extend its benefits to rice workers who read languages other than<br />

English.<br />

Klaus Lampe<br />

Director General


Preface<br />

<strong>Weed</strong>s are an important c<strong>on</strong>stra<strong>in</strong>t to <strong>in</strong>creas<strong>in</strong>g yields wherever rice is grown,<br />

and rice researchers have created a great amount of useful scientific <strong>in</strong>formati<strong>on</strong><br />

<strong>on</strong> weed c<strong>on</strong>trol. That <strong>in</strong>formati<strong>on</strong>, however, is scattered am<strong>on</strong>g many<br />

journals, books, and reports that are not always accessible <strong>in</strong> tropical<br />

countries. The result is no readily-available source of practical <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

weed c<strong>on</strong>trol for many nati<strong>on</strong>al agricultural development program workers.<br />

This handbook summarizes important <strong>in</strong>formati<strong>on</strong> <strong>on</strong> weed c<strong>on</strong>trol <strong>in</strong> rice.<br />

Our <strong>in</strong>tent was to provide essential, practical, up-to-date <strong>in</strong>formati<strong>on</strong> for use<br />

by rice researchers, extensi<strong>on</strong> workers, farmers, teachers, and students.<br />

Publicati<strong>on</strong> of this handbook would have been impossible without the<br />

assistance and susta<strong>in</strong><strong>in</strong>g <strong>in</strong>terest of so many people, it is impossible to<br />

menti<strong>on</strong> them all here. It is with profound gratitude that we acknowledge<br />

those who helped us compile the material and those who c<strong>on</strong>tributed to<br />

improv<strong>in</strong>g the presentati<strong>on</strong>.<br />

We specifically thank Dr. James E. Hill, extensi<strong>on</strong> agr<strong>on</strong>omist, University of<br />

California at Davis, USA; Dr. Shooichi Matsunaka, professor of pesticide<br />

science, Kobe University, Japan; Dr. Marcos R. Vega, visit<strong>in</strong>g professor <strong>in</strong><br />

weed science, University of the Philipp<strong>in</strong>es at Los Baños (UPLB); Dr. Aurora<br />

M. Baltazar, affiliate assistant professor <strong>in</strong> weed science, UPLB; and Dr. D. H.<br />

Drennan, Department of Agricultural Botany, University of Read<strong>in</strong>g, U. K., for<br />

extensive reviews of the manuscript and for their valuable suggesti<strong>on</strong>s for its<br />

improvement.<br />

We thank Dr. Keith Moody, Ms. Marian Llagas, Mr. Paul Bernaso, and<br />

Mr. Teodoro Migo of the Internati<strong>on</strong>al <strong>Rice</strong> Research Institute (IRRI) for their<br />

assistance <strong>in</strong> compil<strong>in</strong>g the material.<br />

We are greatly appreciative of Bill B. Fischer, farm advisor, Fresno, California,<br />

USA, author of Growers <strong>Weed</strong> Identificati<strong>on</strong> Handbook, and Dr. Hill for their<br />

help <strong>in</strong> secur<strong>in</strong>g photographs of important weeds.<br />

Our s<strong>in</strong>cere appreciati<strong>on</strong> goes to Mr. Walter Rockwood for the f<strong>in</strong>al edit<strong>in</strong>g<br />

of the manuscript and for <strong>in</strong>sightful suggesti<strong>on</strong>s that made the handbook<br />

more readable.<br />

We also acknowledge the help of Gemma Q. Lucero for <strong>in</strong>itial edit<strong>in</strong>g and<br />

proofread<strong>in</strong>g; Coraz<strong>on</strong> Bambase and Rosal<strong>in</strong>a Gabriel for careful typ<strong>in</strong>g<br />

through several drafts; and Ram<strong>on</strong> Quiz<strong>on</strong> for prepar<strong>in</strong>g the illustrati<strong>on</strong>s.<br />

F<strong>in</strong>ally, our thanks to the staff of the Informati<strong>on</strong> Center, IRRI, for<br />

produc<strong>in</strong>g this book.<br />

Kwesi Amp<strong>on</strong>g-Nyarko<br />

S. K. De Datta<br />

IRRI July 1990


C<strong>on</strong>tents<br />

FOREWORD<br />

PREFACE<br />

1 S IGNIFICANCE OF WEEDS IN RICE FARMING 1<br />

Effects of weeds 1<br />

<strong>Rice</strong>-weed competiti<strong>on</strong> 2<br />

Growth requirements of rice 3<br />

Factors of weed competiti<strong>on</strong> 3<br />

Characteristics of successful weeds 4<br />

2 RICE WEEDS OF WORLD IMPORTANCE 7<br />

Life cycles 7<br />

Morphology 7<br />

Habitat 8<br />

Approved computer codes for weeds 8<br />

Lowland rice weeds 9<br />

Upland rice weeds 25<br />

Deepwater rice weeds 38<br />

3 WEED CONTROL<br />

Plann<strong>in</strong>g effective c<strong>on</strong>trol 41<br />

C<strong>on</strong>trol methods 41<br />

Ec<strong>on</strong>omics of c<strong>on</strong>trol 46<br />

Integrated weed management 46<br />

4 PRINCIPLES OF HERBICIDE USE 49<br />

Types of herbicides 49<br />

Herbicide selectivity 49<br />

Herbicide movement <strong>in</strong> plants 50<br />

Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> 50<br />

Behavior of herbicides <strong>in</strong> soil 51<br />

Effect of envir<strong>on</strong>ment <strong>on</strong> herbicidal activity 52<br />

Properties of herbicides 52<br />

Herbicide formulati<strong>on</strong>s 53<br />

Herbicide labels 54<br />

Herbicide applicators 55<br />

Operati<strong>on</strong> of the knapsack sprayer 56<br />

Field techniques for us<strong>in</strong>g herbicides 60<br />

Safe use of herbicides 62<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

PRINCIPAL RICE HERBICIDES 65<br />

Herbicide mixtures, rotati<strong>on</strong>s, and sequences 65<br />

Herbicide classificati<strong>on</strong> and uses 65<br />

Differences <strong>in</strong> herbicide tolerance<br />

am<strong>on</strong>g rice cultivars 72<br />

WEED CONTROL IN IRRIGATED RICE 73<br />

Transplanted <strong>in</strong> puddled soil 73<br />

Direct seeded <strong>on</strong> puddled soil 76<br />

Direct seeded <strong>on</strong> dry soil 78<br />

Water seeded 80<br />

WEED CONTROL IN RAINFED LOWLAND RICE 83<br />

Transplanted <strong>in</strong> puddled soil 83<br />

Direct seeded <strong>on</strong> puddled soil 85<br />

Direct seeded <strong>on</strong> dry soil 87<br />

WEED CONTROL IN UPLAND RICE 91<br />

WEED CONTROL IN DEEPWATER AND<br />

FLOATING RICE 95<br />

Deepwater and float<strong>in</strong>g rice cultures 95<br />

<strong>Weed</strong> c<strong>on</strong>trol before flood<strong>in</strong>g 95<br />

<strong>Weed</strong> c<strong>on</strong>trol after flood<strong>in</strong>g 98<br />

MANAGEMENT OF SOME DIFFICULT WEEDS<br />

IN RICE 99<br />

Scirpus maritimus 99<br />

Paspalum distichum 100<br />

Ech<strong>in</strong>ochloa species 100<br />

Wild rice 101<br />

Cyperus rotundus 102<br />

Imperata cyl<strong>in</strong>drica 102<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis 103<br />

REFERENCES CITED 104<br />

APPENDICES 107<br />

INDEX 110


Chapter 1<br />

Significance of weeds<br />

<strong>in</strong> rice farm<strong>in</strong>g<br />

<strong>Weed</strong>s are plants grow<strong>in</strong>g where<br />

they are not wanted. A weed <strong>in</strong> <strong>on</strong>e<br />

place may be a useful food, feed, or<br />

medic<strong>in</strong>e <strong>in</strong> another. Thus, a plant<br />

species cannot be classified as a weed<br />

under all c<strong>on</strong>diti<strong>on</strong>s. Many plants,<br />

however, are classified as weeds<br />

everywhere they occur, because they<br />

comm<strong>on</strong>ly grow <strong>on</strong> regularly tilled<br />

areas such as ricefields.<br />

Many weeds co-evolved with<br />

crops and, <strong>in</strong> some cases, were<br />

ancestors of cultivated plant species.<br />

For example, the wild rices Oryza<br />

barthii and O. l<strong>on</strong>gistam<strong>in</strong>ata are<br />

ancestors of cultivated O. glaberrima<br />

<strong>in</strong> Africa. The wild rices O. rufipog<strong>on</strong><br />

and O. nivara are ancestors of<br />

cultivated O. sativa <strong>in</strong> Asia<br />

(Table 1.1).<br />

The prevalent weeds <strong>in</strong> ricefields<br />

are often legacies of previous years’<br />

crops—seeds, rhizomes, tubers, and<br />

bulbs surviv<strong>in</strong>g <strong>in</strong> the soil. The weed<br />

flora <strong>in</strong> a ricefield is greatly <strong>in</strong>flu-<br />

enced by the rice culture practiced.<br />

C<strong>on</strong>t<strong>in</strong>uous rice with an unchanged<br />

cultural system encourages the<br />

buildup of weeds adapted to that<br />

system. In c<strong>on</strong>trast, where crop<br />

rotati<strong>on</strong> is practiced, a diverse weed<br />

flora will result. Perennial weeds<br />

<strong>in</strong>crease <strong>in</strong> n<strong>on</strong>tilled ricefields.<br />

Table 1.1. Cultivated species of rice evolved from weedy wild species (adapted from Chang<br />

1976).<br />

South and Southeast Asia Tropical Africa<br />

Wild perennial O. rufipog<strong>on</strong> Griff.<br />

Wild annual O. nivara Sharma & Shastry<br />

Cultivated annual O. sativa<br />

Table 1.2. Yield losses due to unc<strong>on</strong>trolled<br />

weed growth <strong>in</strong> different types of rice culture <strong>in</strong><br />

the Philipp<strong>in</strong>es (sources: IRRI 1977 to 1988).<br />

Yield Experi-<br />

Type of rice culture loss ments<br />

(mean %) (no.)<br />

lrrigated<br />

Transplanted 48 42<br />

Water seeded 44 1<br />

Direct seeded<br />

Ra<strong>in</strong>fed lowland<br />

55 28<br />

Direct seeded (dry seeds) 74 11<br />

Direct seeded <strong>on</strong><br />

puddled soil<br />

61 7<br />

Transplanted <strong>in</strong> puddled<br />

soil<br />

Ra<strong>in</strong>fed upland<br />

51 9<br />

Broadcast or drilled 96 16<br />

Effects of weeds<br />

<strong>Weed</strong> <strong>in</strong>festati<strong>on</strong>s primarily c<strong>on</strong>stra<strong>in</strong><br />

rice producti<strong>on</strong> by reduc<strong>in</strong>g gra<strong>in</strong><br />

yield. Yield reducti<strong>on</strong>s caused by<br />

unc<strong>on</strong>trolled weed growth through-<br />

out a crop seas<strong>on</strong> have been esti-<br />

mated to be from 44 to 96%, depend-<br />

<strong>in</strong>g <strong>on</strong> the rice culture (Table 1.2). In<br />

practice, almost all farmers c<strong>on</strong>trol<br />

weeds <strong>in</strong> their ricefields. Worldwide,<br />

some 10% loss of rice yield can be<br />

attributed just to weeds that grow<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata A. Chev. & Roehr.<br />

O. barthii A. Chev.<br />

O. glaberrima<br />

after weed c<strong>on</strong>trol. These losses can<br />

amount to 46 milli<strong>on</strong> t (based <strong>on</strong> 1987<br />

world rough rice producti<strong>on</strong>). There<br />

is c<strong>on</strong>siderable variati<strong>on</strong> <strong>in</strong> yield loss<br />

to weeds am<strong>on</strong>g countries.<br />

There is a need to improve farm-<br />

ers’ weed c<strong>on</strong>trol practices. Improved<br />

weed management will c<strong>on</strong>tribute<br />

significantly to future ga<strong>in</strong>s <strong>in</strong> rice<br />

yield <strong>in</strong> many countries.<br />

Increase <strong>in</strong> rice producti<strong>on</strong> costs<br />

The cost of rice weed c<strong>on</strong>trol, <strong>in</strong>clud-<br />

<strong>in</strong>g herbicides, cultural and mechani-<br />

cal practices, and hand weed<strong>in</strong>g, is<br />

estimated to be about 5% of world<br />

rice producti<strong>on</strong> and amount to<br />

US$3.5 billi<strong>on</strong> annually. When the<br />

10% loss of rough rice gra<strong>in</strong> yield is<br />

added to this cost, the world’s total<br />

estimated cost for rice weeds and<br />

their c<strong>on</strong>trol amounts to 15% of total<br />

annual producti<strong>on</strong>—valued at<br />

US$10.5 billi<strong>on</strong> (based <strong>on</strong> 1987<br />

average export prices at Bangkok,<br />

Thailand, for 5% brokens white rice<br />

US$230/t, IRRI 1988b).<br />

Significance of weeds 1


Table 1.3. <strong>Weed</strong>s as sec<strong>on</strong>dary hosts for diseases, <strong>in</strong>sects, and nematodes of rice.<br />

Disease/<strong>in</strong>sect Host weeds Reference<br />

<strong>Rice</strong> dwarf disease (vlrus) Ech<strong>in</strong>ochloa crus-galli Ou (1985)<br />

<strong>Rice</strong> stripe disease (virus) E. crus-gall;<br />

Cynod<strong>on</strong> dactyl<strong>on</strong><br />

Setaria v<strong>in</strong>dis<br />

Digitaria adscendens<br />

Ou (1985)<br />

<strong>Rice</strong> yellow dwarf (virus) Paspalum distichum<br />

Leptochloa ch<strong>in</strong>ensis<br />

Leersia hexandra<br />

lmperata cyl<strong>in</strong>drica<br />

Ou (1985)<br />

<strong>Rice</strong> hoja blanca (virus)<br />

Leptochloa spp.<br />

Digitaria spp.<br />

Ou (1985)<br />

Bacterial leaf blight<br />

(Xanthom<strong>on</strong>as campestris pv. oryzae)<br />

L. ch<strong>in</strong>ensis Ou (1985)<br />

Brown spot C. dactyl<strong>on</strong><br />

(Cochliobolus miyabeanus) L. hexandra<br />

Digitaria sangu<strong>in</strong>alis<br />

Ou (1985)<br />

Whlte tip<br />

S. viridis Ou (1985)<br />

(Aphelenchoides oryzae) Cyperus iria<br />

I. cyl<strong>in</strong>drica<br />

Meloidogyne (nematodes) Fimbristylis miliacea<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a<br />

Ou (1985)<br />

Rlce grassy stunt virus L. hexandra IRRI (1988a)<br />

(transmltted by brown C. dactyl<strong>on</strong><br />

planthopper Nilaparvata lugens) Cyperus rotundus<br />

E. col<strong>on</strong>a<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

<strong>Rice</strong> tungro assoclated viruses C. rotundus<br />

F. miliacea<br />

Oryza l<strong>on</strong>gistam<strong>in</strong>ata<br />

Oryza barthii<br />

IRRI (1988a)<br />

Nymphula depunctalis (Avenee) L. ch<strong>in</strong>ensis IRRI (1986)<br />

(caseworm)<br />

L. hexandra<br />

lschaemum rugosum<br />

<strong>Weed</strong>s as sec<strong>on</strong>dary<br />

hosts for pests<br />

<strong>Weed</strong>s <strong>in</strong>directly limit producti<strong>on</strong> by<br />

serv<strong>in</strong>g as hosts for organisms that<br />

adversely affect rice. <strong>Weed</strong>s provide<br />

food, shelter, and reproducti<strong>on</strong> sites<br />

for <strong>in</strong>sects, nematodes, pathogens,<br />

and rodents. Table 1.3 lists weeds<br />

that serve as alternate hosts to rice<br />

pests. This <strong>in</strong>dicates the importance<br />

of recogniz<strong>in</strong>g weeds as sec<strong>on</strong>dary<br />

hosts for pests and of remov<strong>in</strong>g<br />

weeds from the marg<strong>in</strong>s of ricefields<br />

to prevent c<strong>on</strong>t<strong>in</strong>ued <strong>in</strong>fecti<strong>on</strong> of the<br />

rice crop.<br />

2 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Effects <strong>on</strong> harvest<strong>in</strong>g and<br />

gra<strong>in</strong> quality<br />

<strong>Weed</strong>s hamper rice harvest<strong>in</strong>g and<br />

<strong>in</strong>crease harvest costs through direct<br />

<strong>in</strong>terference with the harvest<strong>in</strong>g<br />

operati<strong>on</strong> and by caus<strong>in</strong>g lodg<strong>in</strong>g.<br />

<strong>Weed</strong> seeds c<strong>on</strong>tam<strong>in</strong>ate rough rice,<br />

thus reduc<strong>in</strong>g gra<strong>in</strong> quality and<br />

market value. For example, the weed<br />

red rice has a pigmented layer that<br />

shatters easily and readily<br />

c<strong>on</strong>tam<strong>in</strong>ates rough rice. Remov<strong>in</strong>g<br />

all traces of the pigmented layer<br />

requires <strong>in</strong>tense mill<strong>in</strong>g and results <strong>in</strong><br />

decreased gra<strong>in</strong> quality and lower<br />

mill<strong>in</strong>g rates.<br />

Social costs of weed c<strong>on</strong>trol<br />

The drudgery of weed<strong>in</strong>g and labor<br />

shortages have made rice farm<strong>in</strong>g<br />

unattractive. In most tropical coun-<br />

tries, farmers spend more time <strong>on</strong><br />

~~<br />

weed<strong>in</strong>g, by hand or with simple<br />

tools, than <strong>on</strong> any other farm<strong>in</strong>g task.<br />

Hand weed<strong>in</strong>g 1 ha of rice requires<br />

from 100 to 780 labor-hours per crop,<br />

depend<strong>in</strong>g <strong>on</strong> the rice culture.<br />

Aquatic weed problems<br />

Nutrient availability and favorable<br />

temperatures throughout the year,<br />

especially <strong>in</strong> the tropics, allow luxuri-<br />

ant aquatic weed growth <strong>in</strong> flooded<br />

ricefields. Noxious aquatic weeds<br />

have <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong>fested<br />

impounded water <strong>in</strong> the tropics.<br />

Heavy aquatic weed <strong>in</strong>festati<strong>on</strong><br />

causes excessive water loss through<br />

evaporati<strong>on</strong> and impedes water flow<br />

<strong>in</strong> irrigati<strong>on</strong> canals. In some cases,<br />

aquatic weeds may be a health<br />

hazard to pers<strong>on</strong>s liv<strong>in</strong>g near<br />

impounded water. For example, the<br />

associati<strong>on</strong> of the weed Ceratophyllum<br />

demersum with the <strong>in</strong>termediate host<br />

snail of schistosomiasis (bilharzia)<br />

Bul<strong>in</strong>us sp. is well documented.<br />

<strong>Rice</strong>-weed competiti<strong>on</strong><br />

<strong>Weed</strong>s <strong>in</strong>terfere with rice growth by<br />

compet<strong>in</strong>g for <strong>on</strong>e or more growth-<br />

limit<strong>in</strong>g resources, such as light,<br />

nutrients, and water. Allelopathy<br />

(chemical producti<strong>on</strong> by liv<strong>in</strong>g or<br />

decay<strong>in</strong>g weed plant tissues) may<br />

also adversely affect the growth of a<br />

neighbor<strong>in</strong>g rice plant.<br />

<strong>Rice</strong> and rice weeds have similar<br />

requirements for growth and devel-<br />

opment. Competiti<strong>on</strong> occurs when<br />

<strong>on</strong>e of the limit<strong>in</strong>g resources falls<br />

short of the comb<strong>in</strong>ed requirements<br />

of both. The degree of rice-weed<br />

competiti<strong>on</strong> depends <strong>on</strong> ra<strong>in</strong>fall, rice<br />

variety, soil factors, weed density,<br />

durati<strong>on</strong> of rice and weed growth,<br />

crop age when weeds started to<br />

compete, and nutrient resources,<br />

am<strong>on</strong>g other variables.


Cultural practices greatly alter the<br />

competitive relati<strong>on</strong>ship between rice<br />

and weeds. Thus, different cultures<br />

(irrigated, ra<strong>in</strong>fed lowland, upland,<br />

and deepwater) will be subjected to<br />

different k<strong>in</strong>ds and degrees of weed<br />

competiti<strong>on</strong>. To understand this<br />

competiti<strong>on</strong>, it is essential to know<br />

the growth requirements of rice and<br />

helpful to know the growth require-<br />

ments of weeds.<br />

Growth requirements<br />

of rice<br />

<strong>Rice</strong> growth varies with climatic and<br />

cultural c<strong>on</strong>diti<strong>on</strong>s. Growth dur<strong>in</strong>g<br />

the first 6 wk is slow. Depend<strong>in</strong>g <strong>on</strong><br />

moisture availability and tempera-<br />

ture, a seed may take 5-20 d to<br />

germ<strong>in</strong>ate and 14-22 additi<strong>on</strong>al days<br />

to reach the 4-leaf seedl<strong>in</strong>g stage. The<br />

total leaf area of a stand<strong>in</strong>g rice crop<br />

at flower<strong>in</strong>g determ<strong>in</strong>es its photo-<br />

synthetic capacity for spikelet fill<strong>in</strong>g,<br />

and thus determ<strong>in</strong>es the gra<strong>in</strong> yield.<br />

Tiller<strong>in</strong>g capacity is also important<br />

because number of panicles is a<br />

pr<strong>in</strong>cipal comp<strong>on</strong>ent <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

gra<strong>in</strong> yield.<br />

Light<br />

The light requirement of rice varies<br />

with crop growth stage. Shad<strong>in</strong>g<br />

dur<strong>in</strong>g the seedl<strong>in</strong>g stage greatly<br />

decreases rice growth. Low light from<br />

10 d before to 20 d after full bloom<br />

<strong>in</strong>duces high spikelet sterility, result-<br />

<strong>in</strong>g <strong>in</strong> poor gra<strong>in</strong> yield. Low light<br />

after flower<strong>in</strong>g reduces rice dry<br />

matter because of decreased photo-<br />

synthesis—75-80% of gra<strong>in</strong> carbohy-<br />

drate is photosynthesized after<br />

flower<strong>in</strong>g.<br />

Water<br />

The water requirement of rice<br />

depends <strong>on</strong> the soil, climate, variety,<br />

growth stage, and durati<strong>on</strong> of plant<br />

growth. Plant stress from water<br />

shortage at any stage reduces yield,<br />

more so if the water shortage occurs<br />

dur<strong>in</strong>g the reproductive phase.<br />

Drought stress symptoms <strong>in</strong>clude leaf<br />

roll<strong>in</strong>g, leaf scorch<strong>in</strong>g, reduced<br />

tiller<strong>in</strong>g, stunted growth, delayed<br />

flower<strong>in</strong>g, and spikelet sterility.<br />

C 3 and C 4 photosynthetic pathways<br />

S<strong>in</strong>ce its discovery <strong>in</strong> the late 1960s,<br />

<strong>in</strong>terest <strong>in</strong> the C 4 photosynthetic<br />

pathway has been high. The C 4<br />

photosynthetic pathway is a mecha-<br />

nism for c<strong>on</strong>centrat<strong>in</strong>g atmospheric<br />

CO 2 at the ultimate site of fixati<strong>on</strong><br />

with<strong>in</strong> the leaf before enter<strong>in</strong>g the C 3<br />

photosynthetic pathway (Patters<strong>on</strong><br />

1985). Some plants are C 4 types,<br />

others C 3 . <strong>Rice</strong> is a C 3 plant, as are the<br />

weeds M<strong>on</strong>ochoria vag<strong>in</strong>alis, Cyperus<br />

difformis, Eichhornia crassipes, Ipomoea<br />

spp., and Ageratum c<strong>on</strong>yzoides.<br />

Examples of C 4 plants are maize,<br />

sugarcane, Sorghum bicolor,<br />

Amaranthus spp., Brachiaria spp.,<br />

Cynod<strong>on</strong> dactyl<strong>on</strong>, Cyperus rotundus,<br />

Digitaria spp., Ech<strong>in</strong>ochloa spp.,<br />

Eleus<strong>in</strong>e <strong>in</strong>dica, Leptochloa ch<strong>in</strong>ensis,<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis, and<br />

lmperata cyl<strong>in</strong>drica.<br />

It has been suggested that the C 4<br />

photosynthetic pathway provides its<br />

greatest advantage under hot, arid,<br />

high light c<strong>on</strong>diti<strong>on</strong>s. C 4 plants have<br />

higher water-use efficiency than C 3<br />

plants, and their nitrogen use effi-<br />

ciency may also be greater.<br />

Competiti<strong>on</strong> between C 3 and C 4<br />

weeds has been exam<strong>in</strong>ed <strong>in</strong> relati<strong>on</strong><br />

to soil moisture regime (Matsunaka<br />

1983). C 3 plants were dom<strong>in</strong>ant <strong>in</strong><br />

submerged soils; C 4 plants were<br />

dom<strong>in</strong>ant <strong>in</strong> dryland soils. This<br />

expla<strong>in</strong>s why submergence protects<br />

rice plants from severe competiti<strong>on</strong><br />

with C 4 weeds. On the other hand,<br />

upland rice and ra<strong>in</strong>fed lowland rice<br />

with limited precipitati<strong>on</strong> face severe<br />

competiti<strong>on</strong> with C 4 weeds.<br />

Nutrients<br />

Nitrogen (N) is the most important<br />

nutrient for rice, and N deficiency<br />

occurs almost everywhere. Deficien-<br />

cies of phosphorus (P) and potassium<br />

(K) that may also occur greatly<br />

reduce rice plant tiller<strong>in</strong>g. In the<br />

tropics, the harvest of a t<strong>on</strong> of rice<br />

straw and gra<strong>in</strong> removes an average<br />

16 kg N, 3 kg P, and 17 kg K/ha.<br />

Factors of weed<br />

competiti<strong>on</strong><br />

The availability of light, water, and<br />

nutrients affects the growth and<br />

competitiveness of plants. In theory,<br />

the amount of these resources <strong>in</strong> a<br />

given rice envir<strong>on</strong>ment is fixed-<br />

whatever is used by <strong>on</strong>e plant species<br />

is not available for another. This<br />

means that resources taken by weeds<br />

are lost to rice, and vice versa. In<br />

general, rice dry matter yield will be<br />

reduced by 1 kg for every kilogram of<br />

weeds produced <strong>in</strong> the same area.<br />

Light<br />

Competiti<strong>on</strong> for light can occur<br />

throughout rice growth. Most weeds<br />

and rice have maximum photosyn-<br />

thesis and growth <strong>in</strong> full sunlight.<br />

Competiti<strong>on</strong> for light occurs when<br />

<strong>on</strong>e leaf shades another. <strong>Weed</strong>s<br />

compete with rice by grow<strong>in</strong>g faster<br />

and by shad<strong>in</strong>g rice with large,<br />

Significance of weeds 3


horiz<strong>on</strong>tal leaves. Tall plants have<br />

an advantage over short plants.<br />

For example, when Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis was allowed to grow<br />

with rice, R. coch<strong>in</strong>ch<strong>in</strong>ensis was 150<br />

cm tall and rice was 50 cm tall at 8 wk<br />

after seed<strong>in</strong>g. The amount of light<br />

received at 25 cm with<strong>in</strong> the rice<br />

canopy was <strong>on</strong>ly 3% of the light at<br />

the top of the weed canopy. In this<br />

situati<strong>on</strong>, the weed clearly had an<br />

advantage.<br />

Water<br />

<strong>Rice</strong> yield losses from water deficit<br />

depend <strong>on</strong> the severity and durati<strong>on</strong><br />

of the deficit, envir<strong>on</strong>mental c<strong>on</strong>di-<br />

ti<strong>on</strong>s, cultivar, and growth stage<br />

when drought stress occurs. Drought<br />

stress reduces photosynthesis by<br />

reduc<strong>in</strong>g leaf expansi<strong>on</strong> and caus<strong>in</strong>g<br />

loss of leaf turgor, which leads to<br />

stomatal closure. Transpirati<strong>on</strong> and<br />

photosynthesis by leaves are greatly<br />

reduced when stomata close.<br />

Resp<strong>on</strong>ses to drought stress <strong>in</strong>clude<br />

wilt<strong>in</strong>g and <strong>in</strong>creased leaf mortality.<br />

<strong>Rice</strong> and weeds differ <strong>in</strong> their<br />

tolerance for drought because of<br />

differences <strong>in</strong> their root distributi<strong>on</strong>,<br />

root el<strong>on</strong>gati<strong>on</strong> rate, genetic tolerance<br />

for low water availability <strong>in</strong> plant<br />

tissue, and c<strong>on</strong>trol of water loss<br />

through transpirati<strong>on</strong>. C 4 weeds have<br />

lower water requirements than those<br />

of C 3 rice and are able to tolerate<br />

more drought stress than rice.<br />

4 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Nutrients<br />

The three most comm<strong>on</strong> yield-<br />

limit<strong>in</strong>g nutrients are N, P, and K.<br />

Competiti<strong>on</strong>, however, may occur for<br />

any nutrient required for plant<br />

growth. Many weed species have a<br />

nutrient uptake similar to that of rice,<br />

but have higher nutrient-use<br />

efficiency than rice. In general, factors<br />

that give a plant a competitive<br />

advantage <strong>in</strong> water uptake also give<br />

the plant a competitive advantage <strong>in</strong><br />

nutrient uptake.<br />

Critical period of weed competiti<strong>on</strong><br />

Competiti<strong>on</strong> between weed seedl<strong>in</strong>gs<br />

and direct seeded rice seedl<strong>in</strong>gs<br />

usually beg<strong>in</strong>s as competiti<strong>on</strong> for<br />

light. The effect of shad<strong>in</strong>g <strong>on</strong> rice<br />

growth is most severe dur<strong>in</strong>g the<br />

seedl<strong>in</strong>g stage, but rice can recover<br />

from weed competiti<strong>on</strong> if weeds are<br />

elim<strong>in</strong>ated early <strong>in</strong> the seas<strong>on</strong>. <strong>Weed</strong>s<br />

will not further reduce the gra<strong>in</strong> yield<br />

of a mature rice crop ready for har-<br />

vest<strong>in</strong>g.<br />

The so-called critical period lies<br />

between the seedl<strong>in</strong>g and harvest<br />

stages, the 30-45 d when weed<br />

competiti<strong>on</strong> is most damag<strong>in</strong>g to rice.<br />

To avoid gra<strong>in</strong> yield losses, it is<br />

important to c<strong>on</strong>troI weeds through-<br />

out this critical period. At 45- to<br />

60-d-old, well-established, weed-free<br />

rice plants are able to suppress later<br />

germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs. When<br />

herbicides are used, their persistence<br />

should be l<strong>on</strong>g enough to cover the<br />

critical period of competiti<strong>on</strong>.<br />

Characteristics of<br />

successful weeds<br />

<strong>Weed</strong>s and crops may have comm<strong>on</strong><br />

orig<strong>in</strong>s, and hence, may have similar<br />

characteristics. <strong>Weed</strong>s often have<br />

evolved adaptive traits that <strong>in</strong>crease<br />

their persistence or competitiveness,<br />

or both. Traits c<strong>on</strong>tribut<strong>in</strong>g to<br />

successful weeds fall under three<br />

categories: 1) weed competitiveness<br />

and growth, 2) weed reproducti<strong>on</strong><br />

and dispersal, and 3) similarities<br />

between weed and rice.<br />

<strong>Weed</strong> competitiveness and growth<br />

Some weeds have large seeds which<br />

allow for rapid seedl<strong>in</strong>g growth.<br />

Some weeds are climbers; others are<br />

tall. Some weeds have higher rates of<br />

photosynthesis, faster growth, larger<br />

leaves, and deeper root systems than<br />

rice and other crops. Deep root<br />

systems enable a weed to exploit<br />

nutrients essential for crop growth.<br />

<strong>Weed</strong>s are highly adaptable to<br />

chang<strong>in</strong>g envir<strong>on</strong>ments (phenotypic<br />

plasticity). Under favorable c<strong>on</strong>di-<br />

ti<strong>on</strong>s, weeds become large and<br />

produce many seeds. Under unfavor-<br />

able c<strong>on</strong>diti<strong>on</strong>s, weeds rema<strong>in</strong> small<br />

and produce <strong>on</strong>ly a few seeds.<br />

Reproducti<strong>on</strong> and dispersal<br />

Many weeds produce large quantities<br />

of seed <strong>in</strong> favorable envir<strong>on</strong>ments.<br />

For example, Eck<strong>in</strong>ochloa col<strong>on</strong>a may<br />

produce 100,000 seeds/plant; Eleus<strong>in</strong>e<br />

<strong>in</strong>dica, 50,000 seeds/plant; Commel<strong>in</strong>a<br />

benghalensis, 1,600 seeds/plant;<br />

Trianthema portulacastrum, 52,000<br />

seeds/plant; and Amaranthus spp.,<br />

196,000 seeds/plant. Producti<strong>on</strong> of a<br />

large number of seeds ensure species


survival even <strong>in</strong> adverse envir<strong>on</strong>ments.<br />

<strong>Weed</strong> seeds ripen n<strong>on</strong>synchr<strong>on</strong>ously—viable<br />

seeds are<br />

produced and shatter before the rice<br />

crop matures.<br />

Some annual weeds have short life<br />

cycles and may produce several<br />

generati<strong>on</strong>s a year when moisture is<br />

not limit<strong>in</strong>g, particularly <strong>in</strong> the<br />

tropics.<br />

Perennial weeds reproduce both<br />

sexually and vegetatively. Vegetative<br />

reproducti<strong>on</strong> <strong>in</strong>cludes rhizomes,<br />

tubers, corms, bulbs, and stol<strong>on</strong>s.<br />

Such weeds are highly adaptive.<br />

Vegetative organs depend <strong>on</strong> the<br />

parent plant for their supply of<br />

nutrients and water dur<strong>in</strong>g development<br />

and use stored reserves to<br />

support later establishment. Vegetative<br />

structures, which are normally<br />

larger and c<strong>on</strong>ta<strong>in</strong> more stored food<br />

than seeds, grow fast and emerge<br />

from greater soil depths than seeds.<br />

Examples of these weeds are Cynod<strong>on</strong><br />

dactyl<strong>on</strong>, lmperata cycl<strong>in</strong>drica, Cyperus<br />

rotundus, and Commel<strong>in</strong>a benghalensis.<br />

Many viable weed seeds<br />

rema<strong>in</strong> dormant even under favor-<br />

able c<strong>on</strong>diti<strong>on</strong>s, and dormancy pre-<br />

vents weed seeds from germ<strong>in</strong>at<strong>in</strong>g<br />

under unfavorable c<strong>on</strong>diti<strong>on</strong>s. Seed<br />

dormancy may be genetic or arise<br />

from envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s such<br />

as deep burial, unfavorable tempera-<br />

tures, low oxygen supply, or water-<br />

logg<strong>in</strong>g. <strong>Weed</strong> seeds <strong>in</strong> the soil may<br />

be <strong>in</strong> different states of dormancy<br />

and may germ<strong>in</strong>ate at different<br />

times, mak<strong>in</strong>g weed eradicati<strong>on</strong><br />

through weed c<strong>on</strong>trol practices<br />

difficult. The high seed producti<strong>on</strong><br />

ability and l<strong>on</strong>g dormancy periods<br />

result <strong>in</strong> large reserves of viable weed<br />

seeds <strong>in</strong> the soil, <strong>in</strong>clud<strong>in</strong>g many<br />

seeds that can survive for several<br />

years.<br />

<strong>Weed</strong> seed dispersal also c<strong>on</strong>trib-<br />

utes to the survival of weed species.<br />

Mature seeds and fruits of weeds are<br />

dispersed by w<strong>in</strong>d and water, and by<br />

animals and man. Mov<strong>in</strong>g water is an<br />

important pathway <strong>in</strong> the spread of<br />

weed seeds, particularly <strong>in</strong> the<br />

<strong>in</strong>terc<strong>on</strong>nected canals of irrigated and<br />

ra<strong>in</strong>fed lowland ricefields.<br />

Similarities between weeds and rice<br />

The growth requirements and habits<br />

of many weeds resemble those of rice.<br />

These adaptati<strong>on</strong>s <strong>in</strong>clude similarities<br />

<strong>in</strong> seed size, seed maturity, morphol-<br />

ogy, and physiology. Wild rice<br />

species, for example, are very similar<br />

to cultivated rice species. A classic<br />

example is the rice mimic Ech<strong>in</strong>ochloa<br />

oryzoides (Ard.) Fritsch; hundreds of<br />

years of hand weed<strong>in</strong>g is thought to<br />

be the selective agent resp<strong>on</strong>sible for<br />

its vegetative mimicry. It is rarely<br />

found outside the rice envir<strong>on</strong>ment.<br />

Significance of weeds 5


Chapter 2<br />

<strong>Rice</strong> weeds of worldwide<br />

importance<br />

Nati<strong>on</strong>al and regi<strong>on</strong>al methods of<br />

classify<strong>in</strong>g rice cultures can vary<br />

widely, depend<strong>in</strong>g <strong>on</strong> rice-grow<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s and purposes of the classi-<br />

ficati<strong>on</strong> system. A classificati<strong>on</strong><br />

system may be based <strong>on</strong> general<br />

surface hydrology, source of water,<br />

landform and soil units, ecological<br />

factors, or crop seas<strong>on</strong>. For weed<br />

c<strong>on</strong>trol, general surface hydrology<br />

and rice seed<strong>in</strong>g method are more<br />

important than other factors (De Datta<br />

1981).<br />

A classificati<strong>on</strong> based <strong>on</strong> surface<br />

hydrology and seed<strong>in</strong>g method is<br />

used here to discuss weed problems<br />

and the <strong>in</strong>tegrated methods available<br />

for weed c<strong>on</strong>trol <strong>in</strong> each type of rice<br />

culture. <strong>Rice</strong> culture is classified <strong>on</strong><br />

the basis of water management as<br />

lowland, upland, or deepwater; it may<br />

be irrigated or ra<strong>in</strong>fed. This is further<br />

subdivided <strong>on</strong> the basis of rice estab-<br />

lishment method.<br />

This chapter covers weeds of<br />

worldwide importance <strong>in</strong> lowland,<br />

upland, and deepwater ricefields. The<br />

weeds <strong>in</strong> each ecosystem are arranged<br />

alphabetically <strong>on</strong> the basis of family.<br />

Photographs show seed, seedl<strong>in</strong>g,<br />

mature plant, and flower for each<br />

weed, and each weed’s characteristics<br />

and agricultural importance are<br />

described. Local names of weeds <strong>in</strong><br />

the countries where they are of major<br />

c<strong>on</strong>cern are provided to compliment<br />

the photographs for weed identifica-<br />

ti<strong>on</strong>. (We know the list of local names<br />

is not complete, and the spell<strong>in</strong>g used<br />

for the local names may not be the <strong>on</strong>e<br />

preferred. Readers are <strong>in</strong>vited to send<br />

the authors the correct local names.)<br />

<strong>Weed</strong>s <strong>in</strong> rice are classified by their<br />

life cycle, habitat, and morphological<br />

characteristics.<br />

Life cycles<br />

<strong>Weed</strong>s are classified as annual or<br />

perennial, or both. Where moisture or<br />

temperature is not limit<strong>in</strong>g and life<br />

cycle is short, an annual weed may<br />

complete more than <strong>on</strong>e life cycle <strong>in</strong> a<br />

year. Annuals produce many seeds,<br />

some of which rema<strong>in</strong> dormant and<br />

buffer a species aga<strong>in</strong>st weed c<strong>on</strong>trol<br />

measures.<br />

Perennial weeds propagate by<br />

vegetative structures such as bulbs,<br />

corms, rhizomes, stol<strong>on</strong>s, and tubers.<br />

A bulb is an underground bud.<br />

Rhizomes are underground shoots<br />

with short, thick <strong>in</strong>ternodes buried <strong>in</strong><br />

the soil. They have specialized buds<br />

that can rema<strong>in</strong> dormant. These<br />

shoots are rich <strong>in</strong> stored food and<br />

enable plants to survive from year to<br />

year. Imperata cyl<strong>in</strong>drica and Cynod<strong>on</strong><br />

dactyl<strong>on</strong> are rhizomatous weeds.<br />

Stol<strong>on</strong>s are horiz<strong>on</strong>tally grow<strong>in</strong>g<br />

stems with l<strong>on</strong>g slender <strong>in</strong>ternodes;<br />

adventitious roots form at the nodes<br />

when <strong>in</strong> c<strong>on</strong>tact with soil. Paspalum<br />

distichum is a weed with stol<strong>on</strong>s.<br />

A tuber is a specialized structure<br />

that results from the swell<strong>in</strong>g of the<br />

term<strong>in</strong>al porti<strong>on</strong> of an underground<br />

stem or root; it c<strong>on</strong>ta<strong>in</strong>s stored food.<br />

Cyperus rotundus produces tubers.<br />

Morphology<br />

<strong>Weed</strong>s are also classified as m<strong>on</strong>o-<br />

cotyled<strong>on</strong>ous or dicotyled<strong>on</strong>ous.<br />

M<strong>on</strong>ocotyled<strong>on</strong>s<br />

The seeds of m<strong>on</strong>ocotyled<strong>on</strong>ous<br />

weeds have a s<strong>in</strong>gle cotyled<strong>on</strong> (seed<br />

leaf). A m<strong>on</strong>ocotyled<strong>on</strong>’s mature<br />

leaves are l<strong>on</strong>g and narrow with<br />

parallel ve<strong>in</strong>s. The stem or culm is<br />

cyl<strong>in</strong>drical and the grow<strong>in</strong>g po<strong>in</strong>t is<br />

protected by a sheath. The root<br />

systems arise adventitiously and are<br />

usually fibrous. Examples of families<br />

of m<strong>on</strong>ocotyled<strong>on</strong>eae are<br />

Potamoget<strong>on</strong>aceae, P<strong>on</strong>tederiaceae,<br />

Cyperaceae, Poaceae, and<br />

Commel<strong>in</strong>aceae. Sedges (Cyperaceae)<br />

resemble grasses but differ from<br />

grasses <strong>in</strong> that their stems are<br />

unjo<strong>in</strong>ted, solid, and often triangular<br />

<strong>in</strong> cross secti<strong>on</strong>.<br />

<strong>Weed</strong>s worldwide 7


Dicotyled<strong>on</strong>s<br />

The seeds of dicotyled<strong>on</strong>ous weeds<br />

have two cotyled<strong>on</strong>s. Mature leaves<br />

are broad and usually net-ve<strong>in</strong>ed. The<br />

root systems have tap roots. The<br />

dicotyled<strong>on</strong>s have a branched growth<br />

form. Not all broadleaf weeds how-<br />

ever, are dicotyled<strong>on</strong>ous. Commel<strong>in</strong>a<br />

benghalensis, M<strong>on</strong>ochoria vag<strong>in</strong>alis, and<br />

Eichhornia crassipes have broad leaves<br />

but are m<strong>on</strong>ocotyled<strong>on</strong>ous weeds.<br />

Habitat<br />

<strong>Weed</strong>s <strong>in</strong> rice can be grouped <strong>on</strong> the<br />

basis of their adaptati<strong>on</strong> to submerged<br />

c<strong>on</strong>diti<strong>on</strong>s as lowland or upland<br />

weeds. Lowland weeds may be<br />

semiaquatic or aquatic; upland weeds<br />

are adapted to dry sites.<br />

Informati<strong>on</strong> <strong>on</strong> yield loss from<br />

unc<strong>on</strong>trolled weeds from different<br />

experiments around the world is<br />

given when available to <strong>in</strong>dicate the<br />

weed's potential competitive ability.<br />

The losses will differ from <strong>on</strong>e locality<br />

to another because they are affected<br />

by envir<strong>on</strong>mental factors such as nu-<br />

trient, moisture, temperature, time of<br />

weed emergence, and density. The<br />

yield loss <strong>in</strong>formati<strong>on</strong> is not meant to<br />

show the relative competitiveness<br />

am<strong>on</strong>g the different weeds, and the<br />

yield loss figures should not be used<br />

to target particular weeds for c<strong>on</strong>trol,<br />

leav<strong>in</strong>g others to compete with the<br />

crop.<br />

8 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

For further <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the<br />

biology of the weeds listed <strong>in</strong> this<br />

chapter, and <strong>on</strong> other weeds that may<br />

be of <strong>in</strong>terest, readers can refer to the<br />

book The world's worst weeds - distribu-<br />

ti<strong>on</strong> and biology (1977) by L.G. Holm<br />

and colleagues. Other references<br />

<strong>in</strong>clude Krantz et al (1977), Moody<br />

(1981), and Moody et al (1984).<br />

Approved computer<br />

codes for weeds<br />

Computer codes for weeds now<br />

available (Bayer Agrochemicals<br />

Divisi<strong>on</strong> 1986) are useful for univer-<br />

sal identificati<strong>on</strong> <strong>in</strong> bibliographies<br />

and data bases. An approved com-<br />

puter code is a five-letter abbrevia-<br />

ti<strong>on</strong> based <strong>on</strong> the scientific name of<br />

each plant. In general, the first three<br />

letters refer to the genus and the last<br />

two denote the species, the subspe-<br />

cies, or the variety. For example, the<br />

code for Ech<strong>in</strong>ochloa col<strong>on</strong>a is ECHCO;<br />

for Ech<strong>in</strong>ochloa crus-galli, ECHCG;<br />

and for Ech<strong>in</strong>ochloa crus-galli P.B. var.<br />

kasaharae Ohwi, ECHCK.


Lowland rice weeds<br />

ASTERACEAE (Compositae, sunflower family)<br />

<strong>Weed</strong> name: Eclipta prostrata (L.) L.<br />

Syn<strong>on</strong>yms: Eclipta alba (L.) Hassk.,<br />

Eclipta erecta L., Verbes<strong>in</strong>a alba,<br />

Verbes<strong>in</strong>a prostrata L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a yerba de tago (Spanish)<br />

Bangladesh keshuti (Bengali)<br />

France eclipte blanche<br />

India bhangra, kesadura, ghuzi<br />

Ind<strong>on</strong>esia urang-ar<strong>in</strong>g (Javanese)<br />

Japan takasaburo<br />

Malaysia ar<strong>in</strong>g-ar<strong>in</strong>g<br />

Mexico hierba-prieta (Spanish)<br />

Myanmar kyeik-hman<br />

Pakistan daryai buti<br />

Peru florcita (Spanish)<br />

Philipp<strong>in</strong>es higis manok (Tagalog)<br />

Sri Lanka s<strong>in</strong>du kir<strong>in</strong>di (S<strong>in</strong>halese)<br />

kaikechi (Tamil)<br />

Sudan tamar el ghanam<br />

Thailand ka-meng (Thai)<br />

USA eclipta<br />

Vietnam co muc<br />

Life cycle: An annual or perennial<br />

broadleaf weed that can grow as tall as<br />

90 cm. Propagates by seeds, which<br />

show no dormancy. In the tropics, the<br />

seed germ<strong>in</strong>ates throughout the year.<br />

Habitat: Thrives <strong>in</strong> c<strong>on</strong>t<strong>in</strong>uously wet<br />

soils but can grow at dry sites. Also<br />

found <strong>in</strong> poorly dra<strong>in</strong>ed wet areas.<br />

<strong>Weed</strong>y nature: An adaptable weed<br />

with fast vegetative growth.<br />

Agricultural c<strong>on</strong>cern: Prevalent <strong>in</strong><br />

lowland and upland ricefields. <strong>Rice</strong><br />

yield losses of 25% have been<br />

recorded <strong>in</strong> the Philipp<strong>in</strong>es.<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Seed, magnified<br />

Flower<br />

<strong>Weed</strong>s worldwide 9


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus difformis L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia dirty dora<br />

France souchet a petites fleurs<br />

Japan tamagayatsuri<br />

Korea albang d<strong>on</strong>g sani<br />

Malaysia rumput air<br />

Nigeria imeremere (Yoruba)<br />

Philipp<strong>in</strong>es baki-baki (Il<strong>on</strong>go)<br />

ballayang (Tagalog)<br />

Sierra Le<strong>on</strong>e a-kek-a-pot<br />

Thailand kok ka-narg<br />

USA smallflower, umbrella<br />

sedge<br />

Life cycle: An annual sedge that can<br />

grow as tall as 75 cm. Normally propa-<br />

gates by seeds.<br />

Habitat: Adapted to moist lowland<br />

soils or flooded areas.<br />

<strong>Weed</strong>y nature: A heavy seed<br />

producer. Can complete <strong>on</strong>e life cycle<br />

<strong>in</strong> about 30 d. Through high seed<br />

producti<strong>on</strong> and short life cycle, can<br />

spread rapidly to become a dom<strong>in</strong>ant<br />

weed <strong>in</strong> a ricefield.<br />

Agricultural c<strong>on</strong>cern: Produces a<br />

dense stand with<strong>in</strong> a short time, thus<br />

compet<strong>in</strong>g with rice for moisture and<br />

nutrients. Has caused rice yield reduc-<br />

ti<strong>on</strong>s of 12-50%.<br />

10 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus iria L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh barachucha (Bengali)<br />

Brazil tiririca-do-brejo<br />

(Portuguese)<br />

Cambodia kak kangkep (Khmer)<br />

India morphula (Assamese)<br />

Ind<strong>on</strong>esia djekeng (Javanese)<br />

Japan<br />

Korea<br />

Pakistan<br />

kogomegayatsuri<br />

chambang-d<strong>on</strong>sani<br />

khana<br />

Philipp<strong>in</strong>es al<strong>in</strong>ang (Bicolano)<br />

paiung-paiung (Tagalog)<br />

Thailand kok huadaeng<br />

USA rice flatsedge<br />

Life cycle: An annual sedge that<br />

grows as tall as 60 cm. Propagates by<br />

seeds, which may be dormant but can<br />

germ<strong>in</strong>ate about 75 d after shedd<strong>in</strong>g.<br />

Habitat: Grows well <strong>in</strong> moist to wet<br />

soil.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer and spreads quickly.<br />

Agricultural c<strong>on</strong>cern: Can be very<br />

competitive for nutrients and reduce<br />

rice yields 40%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 11


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Fimbristylis miliacea (L.)<br />

Vahl<br />

Syn<strong>on</strong>ym: Fimbristylis littoralis Gaud.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh bara javani (Bengali)<br />

Brazil com<strong>in</strong>ho (Portuguese)<br />

Cambodia kâk phenk kdam (Khmer)<br />

Ind<strong>on</strong>esia adas-adawan (Javanese)<br />

Japan hideriko<br />

Korea barambaneulgiji<br />

Malaysia rumput tahiker bau<br />

Myanmar m<strong>on</strong>hny<strong>in</strong><br />

Philipp<strong>in</strong>es ubod-ubod (Tagalog)<br />

Thailand agor<br />

USA globe f<strong>in</strong>gerush<br />

Life cycle: An annual sedge that<br />

grows as tall as 60 cm. Propagates by<br />

seeds. Large proporti<strong>on</strong> of seeds have<br />

no dormancy and can germ<strong>in</strong>ate<br />

immediately after reach<strong>in</strong>g maturity.<br />

Seed requires light for germ<strong>in</strong>ati<strong>on</strong>.<br />

Habitat: Adapted to moist soils and<br />

areas of occasi<strong>on</strong>al flood<strong>in</strong>g. Does not<br />

establish <strong>in</strong> submerged soils.<br />

<strong>Weed</strong>y nature: Produces many<br />

seeds, which germ<strong>in</strong>ate throughout the<br />

year. Thus, some weeds escape the<br />

weed c<strong>on</strong>trol measures. Can become a<br />

dom<strong>in</strong>ant weed with<strong>in</strong> a short time.<br />

Agricultural c<strong>on</strong>cern: Competiti<strong>on</strong><br />

is ma<strong>in</strong>ly for nutrients and water. Can<br />

reduce rice gra<strong>in</strong> yields 50%.<br />

12 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence


Lowland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Scirpus maritimus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

County Comm<strong>on</strong> name<br />

France scirpe maritime<br />

Peru coco grande (Spanish)<br />

Philipp<strong>in</strong>es apulid (Tagalog)<br />

Life cycle: A perennial sedge that<br />

spreads by tubers.<br />

Habitat: Grows <strong>in</strong> wet and flooded<br />

soils.<br />

<strong>Weed</strong>y nature: Tubers have<br />

dormancy. Stems grow rapidly dur<strong>in</strong>g<br />

early rice growth and may severely<br />

shade semidwarf rice cultivars dur<strong>in</strong>g<br />

the first 40 d. Difficult to c<strong>on</strong>trol<br />

because of apical bud dormancy and<br />

capacity to produce numerous tubers.<br />

Establishes, spreads, and becomes a<br />

dom<strong>in</strong>ant weed with<strong>in</strong> a short time.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive <strong>in</strong> lowland rice. <strong>Rice</strong> yield losses of<br />

60-80% can occur. Difficult to eradi-<br />

cate because of dormant tubers and<br />

buds.<br />

Mature plants <strong>in</strong> the field<br />

Mature plant<br />

Tubers and rhizomes<br />

Vegetative shoot<br />

<strong>Weed</strong>s worldwide 13


Lowland rice weeds /MARSILEACEAE<br />

<strong>Weed</strong> name: Marsilea m<strong>in</strong>uta L.<br />

Syn<strong>on</strong>ym: Marsilea crenata Presl.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

France marsilea a quatre feuilles<br />

Japan denjiso<br />

Malaysia tapak itek (Malay)<br />

Philipp<strong>in</strong>es kaya-kayapuan (Tagalog)<br />

Thailand phakwaen<br />

USA airy pepperwort<br />

Life cycle: An aquatic fern that<br />

reproduces by rhizomes and spores.<br />

Habitat: Grows well <strong>in</strong> lowland fields<br />

and al<strong>on</strong>g irrigati<strong>on</strong> canals.<br />

Agricultural c<strong>on</strong>cern: Persistent<br />

and very competitive <strong>in</strong> rice. Yield<br />

reducti<strong>on</strong> of 70% has been recorded.<br />

14 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Mature plant


Lowland rice weeds / ONAGRACEAE (even<strong>in</strong>g-primrose family)<br />

<strong>Weed</strong> name: Ludwigia octovalvis<br />

(Jacq.) Raven<br />

Syn<strong>on</strong>ym: Jussiaea suffruticosa L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil cruz-de-malta (Portuguese)<br />

Malaysia j<strong>in</strong>aleh<br />

Philipp<strong>in</strong>es balakbak, malapako<br />

(Tagalog)<br />

Thailand phak phaeng phuai<br />

USA l<strong>on</strong>g fruited primrosewillow<br />

Life cycle: An annual aquatic broadleaf<br />

weed that can grow as tall as<br />

100 cm. Propagates by seeds, some<br />

of which will germ<strong>in</strong>ate immediately <strong>in</strong><br />

wet or flooded soils.<br />

Habitat: Adapted to wet and aquatic<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: Very competitive<br />

with rice.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 50-80%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Flower<br />

<strong>Weed</strong>s worldwide 15


Lowland rice weeds /POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa crus-galli (L.)<br />

Beauv. E. crus-galli species is c<strong>on</strong>sid-<br />

ered to <strong>in</strong>clude two subspecies, each<br />

with two varieties (Michael 1983):<br />

E. crus-galli ssp. crus-galli var.<br />

crus-galli,<br />

E. crus-galli ssp. crus-galli var.<br />

praticola,<br />

E. crus-galli ssp. hispidula var.<br />

hispidula, and<br />

E. crus-galli sp. hispidula var.<br />

austro-jap<strong>on</strong>ensis<br />

E. crus-galli var. crus-galli is<br />

abundant <strong>in</strong> the more temperate rice-<br />

grow<strong>in</strong>g areas such as the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent, Ch<strong>in</strong>a, Japan, Southern<br />

Europe, North and South America, and<br />

Australia.<br />

E. crus-galli var. praticola is an<br />

upland rice weed <strong>in</strong> eastern Asia.<br />

E. crus-galli var. hispidula is an<br />

abundant rice weed throughout<br />

Southeast Asia, parts of the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent, and Sri Lanka.<br />

16 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

E. crus-galli var. austro-jap<strong>on</strong>ensis<br />

is essentially found <strong>in</strong> eastern Asia,<br />

extend<strong>in</strong>g south from Taiwan, Ch<strong>in</strong>a,<br />

and adjacent parts of ma<strong>in</strong>land Asia to<br />

the high, cool areas of Southeast Asia.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh shama<br />

Brazil capimp-da-col<strong>on</strong>ia<br />

(Portuguese)<br />

France panic, pied-de-coq<br />

India kauada, sawant<br />

(Malayalam)<br />

Ind<strong>on</strong>esia djawan (Javanese)<br />

Korea pi<br />

Malaysia<br />

sambau<br />

Peru mijo jap<strong>on</strong>es<br />

Philipp<strong>in</strong>es daua-daua (Tagalog)<br />

Sri Lanka martu<br />

Thailand ya-pl<strong>on</strong>g<br />

USA comm<strong>on</strong> barnyard grass<br />

Life cycle: An annual grass that can<br />

grow as tall as 150 cm. Propagates by<br />

seeds, which may rema<strong>in</strong> dormant<br />

3-4 mo.<br />

Habitat: Adapted to wet soils.<br />

Grows best at soil moisture of 80%<br />

water-hold<strong>in</strong>g capacity. Optimum<br />

germ<strong>in</strong>ati<strong>on</strong> occurs at 70-90% of water-<br />

hold<strong>in</strong>g capacity. Seeds can also<br />

germ<strong>in</strong>ate under water. Growth<br />

becomes <strong>in</strong>creas<strong>in</strong>gly poor with<br />

<strong>in</strong>creased depth of submergence.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer; <strong>on</strong>e plant may produce<br />

40,000 seeds. Tillers profusely and<br />

germ<strong>in</strong>ates throughout the year.<br />

Ecologically similar to rice. Dur<strong>in</strong>g early<br />

vegetative phase, almost <strong>in</strong>dist<strong>in</strong>guish-<br />

able from rice plants.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive with rice. Can reduce rice yields<br />

100%.<br />

Seedl<strong>in</strong>g


Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 17


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa glabrescens<br />

Munro ex Hook.f.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Japan <strong>in</strong>ubie<br />

Philipp<strong>in</strong>es bayakibok, daua-daua<br />

(Tagalog)<br />

Life cycle: An annual grass that<br />

grows 0.5-1.0 m tall. Propagates by<br />

seeds.<br />

Habitat: Adapted to wet soils.<br />

Distributi<strong>on</strong> extends from the Indian<br />

subc<strong>on</strong>t<strong>in</strong>ent through ma<strong>in</strong>land<br />

Southeast Asia and Ch<strong>in</strong>a to Korea,<br />

southern Japan, and the Philipp<strong>in</strong>es<br />

(Michael 1983).<br />

<strong>Weed</strong>y nature: Ecologically similar<br />

to rice.<br />

Agricultural c<strong>on</strong>cern: Very competi-<br />

tive with rice. When E. glabrescens<br />

seedl<strong>in</strong>gs were transplanted with rice,<br />

yield losses ranged from 7% when 5%<br />

of the rice hills were <strong>in</strong>fested to 87%<br />

when 50% of the rice hills were<br />

<strong>in</strong>fested (IRRI 1987).<br />

18 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence


Lowland rice weeds/POACEAE (grass family)<br />

<strong>Weed</strong> name: Ischaemurn rugosum<br />

Salisb.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh moran (Bengali)<br />

Brazil cap<strong>in</strong> macho (Portuguese)<br />

Colombia trigillo (Spanish)<br />

Dom<strong>in</strong>ican<br />

Republic yerba de papo (Spanish)<br />

Fiji<br />

comura<strong>in</strong>a<br />

India mararo (Bengali)<br />

Ind<strong>on</strong>esia blemben (Javanese)<br />

Malaysia rumput ekor jawi (Malay)<br />

Myanmar ka-gyi-the-myet<br />

Peru mozorquilla (Spanish)<br />

Philipp<strong>in</strong>es t<strong>in</strong>itrigo (Tagalog)<br />

Sri Lanka kudukedu (S<strong>in</strong>halese)<br />

Thailand yah daeng<br />

USA saramollagrass<br />

Life cycle: An annual grass that<br />

grows to 120 cm tall. Propagates by<br />

seeds, which may rema<strong>in</strong> dormant.<br />

Habitat: Prefers wet soils and<br />

swampy areas.<br />

<strong>Weed</strong>y nature: A vigorous, aggressive<br />

weed. Seeds shatter easily, so<br />

that there is a c<strong>on</strong>stant source of<br />

<strong>in</strong>festati<strong>on</strong>. Dur<strong>in</strong>g vegetative growth,<br />

resembles the rice plant, mak<strong>in</strong>g it<br />

difficult to recognize as a weed.<br />

I. rugosum, however, has deep reddish-brown<br />

to purple leaf sheaths, a<br />

color <strong>on</strong>ly weakly developed <strong>in</strong> rice.<br />

Agricultural c<strong>on</strong>cern: Very competitive:<br />

5 plants/m 2 reduced rice yields<br />

15% and 80 plants/m 2 reduced yields<br />

82% <strong>in</strong> IRRl trials (IRRI 1987).<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 19


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Leersia hexandra Sw.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia swamp ricegrass<br />

Bangladesh araila (Bengali)<br />

Brazil arroz-bravo (Portuguese)<br />

Ind<strong>on</strong>esia kalamenta<br />

Malaysia rumput lidah<br />

(Malay)<br />

riman<br />

Myanmar thaman-myet<br />

Philipp<strong>in</strong>es<br />

Sur<strong>in</strong>am<br />

barit (Tagalog)<br />

alesi grasie<br />

Thailand yah-sai<br />

USA southern cutgrass<br />

Venezuela lamedora<br />

Vietnam có bac<br />

Life cycle: An aquatic perennial<br />

grass that can grow as tall as 100 cm.<br />

Propagates by seeds, rhizomes, and<br />

stol<strong>on</strong>s.<br />

Habitat: Grows <strong>in</strong> c<strong>on</strong>stantly<br />

flooded or marshy habitats.<br />

Agricultural c<strong>on</strong>cern: In some<br />

habitats, resembles rice plants.<br />

Because it propagates by both seeds<br />

and vegetatively, has a tremendous<br />

ability to survive and proliferate. Can<br />

cause 60% rice yield losses.<br />

20 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plant<br />

Seed, magnified<br />

Mature plants <strong>in</strong> the field<br />

Inflorescence


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Leptochloa ch<strong>in</strong>ensis (L.)<br />

Nees<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Colombia plumilla (Spanish)<br />

El Salvador cola de buey (Spanish)<br />

Ind<strong>on</strong>esia beb<strong>on</strong>tengan (Javanese)<br />

Japan azegaya<br />

Philipp<strong>in</strong>es palay-maya (Tagalog)<br />

Thailand yoa y<strong>on</strong> hun<br />

USA Ch<strong>in</strong>ese sprangle top<br />

Vietnam có duöi phung<br />

Life cycle: An annual or perennial<br />

grass that can grow as tall as 120 cm.<br />

Propagates by seeds.<br />

Habitat: Grows well <strong>in</strong> marshy fields<br />

but will not survive c<strong>on</strong>t<strong>in</strong>uous flood-<br />

<strong>in</strong>g. Can also grow <strong>in</strong> upland fields.<br />

<strong>Weed</strong>y nature: Propagates from<br />

cutt<strong>in</strong>gs of the culm or rootstocks,<br />

therefore establishes and spreads<br />

easily under tillage.<br />

Agricultural c<strong>on</strong>cern: A serious<br />

weed <strong>in</strong> rice. Competes with rice for<br />

nutrients and light and can reduce<br />

yields more than 40%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

Inflorescence<br />

<strong>Weed</strong>s worldwide 21


Lowland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name : Paspalurn distichurn L.<br />

Syn<strong>on</strong>ym: Paspalurn paspalodes<br />

(Michx.) Scribn.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia water couch<br />

Ind<strong>on</strong>esia lamhani (Sundanese)<br />

Japan kishusuzuuenchie<br />

Malaysia rumput mas<strong>in</strong><br />

Philipp<strong>in</strong>es luya-luyang dagat,<br />

pagetpet (Tagalog)<br />

USA knotgrass<br />

Life cycle: A perennial grass that<br />

can grow as tall as 30-60 cm.<br />

Propagates ma<strong>in</strong>ly by creep<strong>in</strong>g stol<strong>on</strong>s<br />

and, to some extent, by seeds (flowers<br />

but produces few viable seeds).<br />

Habitat: Grows well <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: Spreads aggres-<br />

sively by means of stol<strong>on</strong>s. Difficult to<br />

c<strong>on</strong>trol because detached stol<strong>on</strong><br />

fragments regenerate easily. Tolerant<br />

of many herbicides.<br />

Agricultural c<strong>on</strong>cern: Can be very<br />

competitive <strong>in</strong> rice, reduc<strong>in</strong>gyields up<br />

to 85%.<br />

22 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plants <strong>in</strong> the field<br />

Mature plant<br />

Inflorescence


Lowland rice weeds / PONTEDERIACEAE (pickerel-weed family)<br />

<strong>Weed</strong> name: M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

(Burm. f.) Presl<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh panee kachu<br />

Cambodia chrach (Khmer)<br />

India neerthomarai (Tamil)<br />

Ind<strong>on</strong>esia et jeng padi<br />

Korea mooldalgebi<br />

Malaysia keladi agas (Malay)<br />

Philipp<strong>in</strong>es biga-bigaan (Tagalog)<br />

Thailand n<strong>in</strong>lab<strong>on</strong><br />

USA m<strong>on</strong>ochoria<br />

Vietnam rau mác lá th<strong>on</strong><br />

Life cycle: A perennial aquatic<br />

m<strong>on</strong>ocotyled<strong>on</strong>ous plant. May behave<br />

like an annual <strong>in</strong> flooded ricefields,<br />

where it grows as tall as 50 cm.<br />

Propagates by seeds.<br />

Habitat: A lowland weed that grows<br />

well <strong>in</strong> subaquatic to aquatic c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: In saturated soils,<br />

seeds germ<strong>in</strong>ate throughout the<br />

grow<strong>in</strong>g seas<strong>on</strong>, enabl<strong>in</strong>g seedl<strong>in</strong>gs to<br />

emerge and establish after earlyseas<strong>on</strong><br />

weed c<strong>on</strong>trol. A very aggressive<br />

weed <strong>in</strong> soils with high N levels.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 85%.<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 23


Lowland rice weeds / SPHENOCLEACEAE (sphenoclea family)<br />

<strong>Weed</strong> name: Sphenoclea zeylanica<br />

Gaertn.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Ind<strong>on</strong>esia goenda<br />

Malaysia cabaikera<br />

Pakistan mirch booti<br />

Philipp<strong>in</strong>es silisilihan (Tagalog)<br />

Thailand phak-pot<br />

USA gooseweed<br />

Vietnam xa bông<br />

Life cycle: An annual broadleaf that<br />

grows as tall as 150 cm. Propagates<br />

by seeds.<br />

Habitat: Grows <strong>in</strong> wet soils; prefers<br />

stagnant water.<br />

<strong>Weed</strong>y nature: Grows and flowers<br />

throughout the year.<br />

Agricultural c<strong>on</strong>cern: In dense<br />

populati<strong>on</strong>s, competes with rice for<br />

light and nutrients and can cause 45%<br />

yield loss.<br />

24 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Mature plant<br />

Seed, magnified


Upland rice weeds<br />

AIZOACEAE (carpet-weed family)<br />

<strong>Weed</strong> name: Trianthema<br />

portulacastrum L.<br />

Syn<strong>on</strong>ym: Trianthema m<strong>on</strong>ogyna L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia giant pigweed<br />

Cambodia pti thmâr (Khmer)<br />

France pourpier courant<br />

Ghana adwera-akoa (Twi)<br />

India pasalikeera (Malayalam)<br />

saranai (Tamil)<br />

verrugoligeru (Telegu)<br />

Mexico verdolaga de hoja ancha<br />

Nigeria dáabur<strong>in</strong> sa aniyaá<br />

(Hausa)<br />

Philipp<strong>in</strong>es tost<strong>on</strong> (Tagalog)<br />

Thailand phak bia h<strong>in</strong><br />

USA horse purslane<br />

Life cycle: An annual broadleaf<br />

weed that can grow 40 cm tall. Propa-<br />

gates by seeds, which may be dormant<br />

for as l<strong>on</strong>g as 4 mo.<br />

Habitat: Grows well <strong>in</strong> dry to moist<br />

soils.<br />

<strong>Weed</strong>y nature: A prolific seed pro-<br />

ducer with a short life cycle.<br />

Completes several life cycles with<strong>in</strong> a<br />

year. Early vegetative growth is very<br />

rapid, especially <strong>in</strong> fertile soils.<br />

Agricultural c<strong>on</strong>cern: If c<strong>on</strong>trol <strong>in</strong><br />

upland rice is delayed, can smother<br />

rice seedl<strong>in</strong>gs with<strong>in</strong> 2-3 wk. Normally<br />

succumbs to <strong>in</strong>sects after about 5 wk<br />

but can reduce rice yields 30%.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Inflorescence<br />

Mature plants <strong>in</strong> the field<br />

<strong>Weed</strong>s worldwide 25


Upland rice weed / AMARANTHACEAE (amaranth family)<br />

<strong>Weed</strong> name: Amaranthus sp<strong>in</strong>osus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a atato esp<strong>in</strong>ado<br />

Australia needle burr<br />

Bangladesh katanata (Bengali)<br />

Brazil caruru-de-es p<strong>in</strong>ho<br />

(Portuguese)<br />

Cambodia pti banla (Khmer)<br />

El Salvador huisquilite<br />

France amarante epi neuse, blette<br />

ep<strong>in</strong>euse<br />

Ghana sraha nsoe (Twi)<br />

India kataili chauli<br />

(Gujrati)<br />

kantaneutia (Orya)<br />

Ind<strong>on</strong>esia<br />

Mexico<br />

bajem duri (Javanese)<br />

quelite esp<strong>in</strong>osa (Spanish)<br />

Myanmar tsu-gyi<br />

Nigeria tete elegun (Yoruba)<br />

Philipp<strong>in</strong>es<br />

USA<br />

oray, kulitis (Tagalog)<br />

sp<strong>in</strong>y amaranth, sp<strong>in</strong>y<br />

pigweed<br />

Zimbabwe imbowa<br />

Life cycle: An annual broad leaf with<br />

red stems and sp<strong>in</strong>y leaves. Can grow<br />

as tall as 120 cm. Propagates by<br />

glossy, dark-brown seeds, which are<br />

dispersed by w<strong>in</strong>d and water. Germ<strong>in</strong>ati<strong>on</strong><br />

may occur from a few days after<br />

harvest to about 5 mo. Germ<strong>in</strong>ates<br />

throughout the year when moisture is<br />

available.<br />

Habitat: Grows best <strong>in</strong> soils with no<br />

stand<strong>in</strong>g water.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer.<br />

Agricultural c<strong>on</strong>cern: Very competitive<br />

<strong>in</strong> rice, can cause 80% yield loss.<br />

26 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / ASTERACEAE (sunflower family)<br />

<strong>Weed</strong> name: Ageratum c<strong>on</strong>yzoides L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia billygoat weed<br />

Brazil erva-de-sao-joao<br />

Colombia hierba de chivo<br />

France agerate a feuilles<br />

de c<strong>on</strong>yza<br />

Ghana efoe momoe (Fanti)<br />

India gundhuab<strong>on</strong>, mahakaua<br />

Ind<strong>on</strong>esia ban do tan<br />

Malaysia ruptahi-ayam<br />

Nigeria imiesu (Yoruba)<br />

Philipp<strong>in</strong>es bulak-manok (Tagalog)<br />

Sri Lanka hulantala<br />

Thailand ya-tabsua<br />

USA tropic ageratum<br />

Zambia kabalakila (Chit<strong>on</strong>ga)<br />

Life cycle: An annual broadleaf that<br />

can grow as tall as 120 cm at flower-<br />

<strong>in</strong>g. Propagates by seeds. Seed germi-<br />

nates throughout the year. In some<br />

areas, 50% of the seeds germ<strong>in</strong>ate<br />

with<strong>in</strong> 2 wk after shedd<strong>in</strong>g; <strong>in</strong> other<br />

areas, the seed has a pr<strong>on</strong>ounced<br />

dormancy with about 1% of the seeds<br />

germ<strong>in</strong>at<strong>in</strong>g after some m<strong>on</strong>ths.<br />

Habitat: Grows <strong>in</strong> dry to moist soils.<br />

<strong>Weed</strong>y nature: Am<strong>on</strong>g the most<br />

comm<strong>on</strong> weeds found <strong>in</strong> rice. Rapidly<br />

col<strong>on</strong>izes cultivated areas. Has a short<br />

life cycle and completes several cycles<br />

<strong>in</strong> a year. Produces enormous amounts<br />

of seeds, which are dispersed by w<strong>in</strong>d<br />

and water. Seeds germ<strong>in</strong>ate <strong>in</strong> a wide<br />

range of envir<strong>on</strong>ments. As so<strong>on</strong> as the<br />

first stand is destroyed, another flush<br />

of seedl<strong>in</strong>gs grows.<br />

Agricultural c<strong>on</strong>cern: Can achieve a<br />

dense growth and compete with rice<br />

for nutrients and moisture. Can reduce<br />

rice yields 40%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

<strong>Weed</strong>s worldwide 27


Upland rice weeds / COMMELINACEAE (spiderwort family)<br />

<strong>Weed</strong> name: Commel<strong>in</strong>a<br />

benghalensis L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Angola ndakala<br />

Bangladesh kanaibashi (Bengali)<br />

Ghana nyame-bowu-an amewu<br />

(Fanti)<br />

India k<strong>on</strong>a simolu (Assamese)<br />

kena (Marathi)<br />

kanchara kankaua (Orya)<br />

Ind<strong>on</strong>esia gewor<br />

Mauritius herbe aux coch<strong>on</strong>s<br />

Myanmar myet-cho<br />

Philipp<strong>in</strong>es alikbang<strong>on</strong> (Tagalog)<br />

Samoa Mauutoga<br />

Thailand phak plaap<br />

USA tropical spider wort<br />

Zambia nkumbaile<br />

Life cycle: A creep<strong>in</strong>g annual or<br />

perennial broadleaf that grows as tall<br />

as 40 cm. Propagates by seeds and<br />

stol<strong>on</strong>s.<br />

Habitat: Grows best <strong>in</strong> wet soil.<br />

<strong>Weed</strong>y nature: Able to grow rapidly<br />

from stem cutt<strong>in</strong>gs. Shows rapid<br />

vegetative growth under favorable<br />

c<strong>on</strong>diti<strong>on</strong>s and forms dense pure<br />

stands, smother<strong>in</strong>g low-grow<strong>in</strong>g rice<br />

crop. Difficult to c<strong>on</strong>trol because<br />

vegetative fragments regenerate easily<br />

and because it is resistant to many<br />

soil-applied herbicides.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

50% yield loss.<br />

28 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / CYPERACEAE (sedge family)<br />

<strong>Weed</strong> name: Cyperus rotundus L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a cebollita<br />

Bangladesh motha (Bengali)<br />

Brazil tiririca-comum<br />

(Portuguese)<br />

Cambodia smav kravanh chrouk<br />

(Khmer)<br />

France souchet r<strong>on</strong>d<br />

Ghana hyia-me-n<strong>on</strong>um (Fanti)<br />

India nagar, motha (Orya)<br />

korai (Tamil)<br />

dila (Telegu)<br />

Ind<strong>on</strong>esia teki<br />

Malaysia rumput haliyahitan<br />

(Malay)<br />

Mexico coquillo (Spanish)<br />

Pakistan deela (Urdu)<br />

Philipp<strong>in</strong>es mutha (Tagalog)<br />

Senegal ndidan (Wolof)<br />

Sri Lanka kalanthi (S<strong>in</strong>halese)<br />

Thailand haew moo (Thai)<br />

USA purple nutsedge<br />

Life cycle: A perennial sedge that<br />

can grow as tall as 75 cm. Propagates<br />

ma<strong>in</strong>ly by tubers and produces few<br />

seeds.<br />

Habitat: Grows well <strong>in</strong> moist soils.<br />

<strong>Weed</strong>y nature: Persistent and<br />

difficult to c<strong>on</strong>trol. Enormous amounts<br />

of tubers may be produced. Tubers,<br />

which have dormancy, can survive l<strong>on</strong>g<br />

periods of envir<strong>on</strong>mental stress.<br />

Difficult to c<strong>on</strong>trol by cultivati<strong>on</strong><br />

because cultivati<strong>on</strong> breaks the<br />

dormancy <strong>in</strong> the <strong>in</strong>terc<strong>on</strong>nected tuber<br />

lead<strong>in</strong>g to more vigorous sprout<strong>in</strong>g.<br />

Agricultural c<strong>on</strong>cern: Limits rice<br />

producti<strong>on</strong> by compet<strong>in</strong>g for water and<br />

nutrients. Can reduce rice yields 50%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant<br />

Rhizomes and tubers<br />

<strong>Weed</strong>s worldwide 29


Upland rice weeds / EUPHORBIACEAE (spurge family)<br />

<strong>Weed</strong> name: Euphorbia hirta L.<br />

Syn<strong>on</strong>yms: Chamesyce hirta (L.)<br />

Millsp., Euphorbia pilulifera L.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh bara dudhia (Bengali)<br />

Brazil erva-de-Santa-Luzia<br />

(Portuguese)<br />

France euphorbe poilue<br />

Ghana ah<strong>in</strong>kogye (Twi)<br />

India dudhi (Marathi)<br />

baridhudhi (Orya)<br />

amman paccharisi (Tamil)<br />

Ind<strong>on</strong>esia gend<strong>on</strong>g anak (Javanese)<br />

Malaysia ara tanah (Malay)<br />

Mexico hierba dela gol<strong>on</strong> dr<strong>in</strong>a<br />

(Spanish)<br />

Myanmar majo<br />

Nigeria buje (Yoruba)<br />

Philipp<strong>in</strong>es gatas-gatas, botobot<strong>on</strong>is<br />

(Tagalog)<br />

Thailand namnom raatchasee<br />

(Thai)<br />

USA garden spurge<br />

Vietnam cô sua lông<br />

Life cycle: An annual broadleaf that<br />

grows as tall as 30 cm. Propagates by<br />

seeds.<br />

Habitat: Grows <strong>in</strong> dry or moist soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer with a life cycle of about<br />

1 mo. Flowers throughout the year.<br />

Dense stands develop easily with<strong>in</strong> a<br />

short time.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields 30%.<br />

30 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Cynod<strong>on</strong> dactyl<strong>on</strong> (L.)<br />

Pers.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Angola usila<br />

Argent<strong>in</strong>a chepica (Spanish)<br />

Brazil capim deburro<br />

(Portuguese)<br />

Cambodia smav anchien (Khmer)<br />

Chile pasto gall<strong>in</strong>a (Spanish)<br />

France herbe des bemu das<br />

India arugampulu, doob (Tamil)<br />

garika (Telugu)<br />

Ind<strong>on</strong>esia<br />

Mauritius<br />

gigir<strong>in</strong>t<strong>in</strong>g<br />

chiendent<br />

Pakistan dub<br />

Philipp<strong>in</strong>es kotatai, kawad-kawad<br />

(Tagalog)<br />

Sudan nagil<br />

USA bermudagrass<br />

Vietnam co chi<br />

Zambia kap<strong>in</strong>ga<br />

Life cycle: A creep<strong>in</strong>g perennial<br />

grass. Can grow as tall as 40 cm.<br />

Propagates almost exclusively by<br />

stol<strong>on</strong>s and rhizomes and produces<br />

few seeds. Seeds are very small but<br />

can survive about 50 d submergence.<br />

As l<strong>on</strong>g as moisture is present, seeds<br />

can germ<strong>in</strong>ate throughout the year.<br />

Habitat: Adapted to dry or moist<br />

well-dra<strong>in</strong>ed soils.<br />

<strong>Weed</strong>y nature: Rhizomes and<br />

stol<strong>on</strong>s root easily at the nodes and<br />

reestablish immediately after cutt<strong>in</strong>g.<br />

Rhizomes grow deeply <strong>in</strong> the soil,<br />

enabl<strong>in</strong>g the weed to withstand<br />

extreme envir<strong>on</strong>ments. A comm<strong>on</strong> and<br />

persistent weed, very competitive, with<br />

rapid shoot growth. Difficult to c<strong>on</strong>trol<br />

because detached fragments regener-<br />

ate easily.<br />

Agricultural c<strong>on</strong>cern: Can reduce<br />

rice yields by 55%.<br />

Inflorescence<br />

Seedl<strong>in</strong>g<br />

Mature plant <strong>in</strong> the field<br />

<strong>Weed</strong>s worldwide 31


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Digitaria sangu<strong>in</strong>alis (L.)<br />

Scop.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil milha-de-pendao<br />

(Portuguese)<br />

Colombia c<strong>on</strong>ejo<br />

France digitaire sun gu<strong>in</strong>e, panic<br />

sangu<strong>in</strong><br />

Ind<strong>on</strong>esia suket djrempak<br />

Myanmar myet-naya<br />

Nicaragua manga larga (Spanish)<br />

Peru digitaria (Spanish)<br />

Philipp<strong>in</strong>es pagpagai (B<strong>on</strong>toc)<br />

Thailand yaa teenka<br />

USA large crabgrass<br />

Venezuela pendejuelo (Spanish)<br />

Life cycle: An annual grass that can<br />

grow as tall as 70 cm. Propagates by<br />

seeds, which have a short dormancy<br />

after shedd<strong>in</strong>g.<br />

Habitat: Grows <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer with enormous tiller<strong>in</strong>g<br />

ability. A few plants can spread to<br />

occupy a large area. An elaborate root<br />

system gives it an advantage <strong>in</strong> belowground<br />

competiti<strong>on</strong>. Regrowth after<br />

weed<strong>in</strong>g is rapid.<br />

Agricultural c<strong>on</strong>cern: Very competitive<br />

<strong>in</strong> rice; can reduce yield 70%.<br />

32 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Seed, magnified<br />

Mature plant


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Ech<strong>in</strong>ochloa col<strong>on</strong>a (L.)<br />

L<strong>in</strong>k<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a grama p<strong>in</strong>tada (Spanish)<br />

Australia awnless barn yardgrass<br />

Egypt<br />

France<br />

abu-rokba (Arabic)<br />

ble de dekkan<br />

India kauada, sawank<br />

(Malayalarn)<br />

Ind<strong>on</strong>esia roernpoet bebek<br />

Iraq dahnan<br />

Malaysia padi bur<strong>on</strong>g, rumput<br />

kusa-kusa<br />

Philipp<strong>in</strong>es<br />

Sri Lanka<br />

Sudan<br />

pulang puit (Tagalog)<br />

gira-taro (S<strong>in</strong>halese)<br />

difera<br />

Thailand<br />

USA<br />

Zambia<br />

ya-pl<strong>on</strong>g<br />

junglerice<br />

zibaila (Chit<strong>on</strong>ga)<br />

Life cycle: An annual grass that can<br />

grow as tall as 90 cm. Propagates by<br />

oval, tan to brownish seeds. In the<br />

tropics, seed has little or no dormancy<br />

and germ<strong>in</strong>ates throughout the year<br />

when moisture is available.<br />

Habitat: Normally grows under<br />

dryland c<strong>on</strong>diti<strong>on</strong>s: does not thrive <strong>in</strong><br />

c<strong>on</strong>t<strong>in</strong>uously flooded soils.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer; has a short life cycle and can<br />

complete several life cycles <strong>in</strong> a year.<br />

Easily adapts to the envir<strong>on</strong>ment-for<br />

example, grows erect when <strong>in</strong> competiti<strong>on</strong><br />

with rice and prostrate when not <strong>in</strong><br />

competiti<strong>on</strong>. Young plants resemble<br />

rice, which makes hand weed<strong>in</strong>g<br />

difficult at early weed stages.<br />

Agricultural c<strong>on</strong>cern: Competitive<br />

<strong>in</strong> rice; can reduce yields 85%.<br />

Mature plant<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 33


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Eleus<strong>in</strong>e <strong>in</strong>dica (L.)<br />

Gaertn.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Australia crowsfootgrass<br />

Brazil capim-pe-de-gal<strong>in</strong>ha<br />

Cambodia smav choeung kras<br />

(Khmer)<br />

France eleus<strong>in</strong>e des <strong>in</strong>des<br />

India kodai, mandla<br />

Ind<strong>on</strong>esia god<strong>on</strong>g ula (Javanese)<br />

Malaysia rumput sambou (Malay)<br />

Mexico pata de gallo (Spanish)<br />

Myanmar s<strong>in</strong>-ngo-let-kya<br />

Nigeria gbegi (Yoruba)<br />

Philipp<strong>in</strong>es sabung-sabungan<br />

(Tagalog)<br />

Sri Lanka bela-tana (S<strong>in</strong>ghala)<br />

Thailand yah teenka<br />

Uganda kasibanti<br />

USA<br />

Zambia<br />

goosegrass<br />

lukata (Chit<strong>on</strong>ga)<br />

Zimbabwe rapoko<br />

Life cycle: An annual grass that<br />

grows as tall as 60 cm. Propagates by<br />

brownish-black seeds that germ<strong>in</strong>ate<br />

throughout the year when moisture is<br />

available.<br />

Habitat: Grows best <strong>in</strong> moist to wet<br />

soils.<br />

<strong>Weed</strong>y nature: Produces enormous<br />

amounts of seeds—40,000 seeds per<br />

plant have been recorded. Flowers<br />

after 30 d and can complete several<br />

life cycles <strong>in</strong> a year, which leads to<br />

heavy populati<strong>on</strong> buildup. Develops an<br />

extensive root system.<br />

Agricultural c<strong>on</strong>cern: Competitive<br />

<strong>in</strong> rice; can reduce yields 80%.<br />

34 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Inflorescence<br />

Mature plant<br />

Seed,<br />

magnified


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: lmperata cyl<strong>in</strong>drica (L.)<br />

Raeuschel<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Argent<strong>in</strong>a carrizo marciego (Spanish)<br />

Cambodia sbauv (Khmer)<br />

Camero<strong>on</strong> baya<br />

Fiji pi<br />

France imperate<br />

Ghana segogro (Twi)<br />

India dabh<br />

Ind<strong>on</strong>esia alang-alang<br />

Ivory Coast nse<br />

Kenya nyeki<br />

Madagascar tena<br />

Mauritius lalang<br />

Nigeria ekan (Yoruba)<br />

Philipp<strong>in</strong>es kog<strong>on</strong> (Tagalog)<br />

Tanzania motomoto<br />

Thailand yoa khaa<br />

USA cog<strong>on</strong>grass<br />

Zimbabwe ibamba<br />

Llfe cycle: A perennial grass that<br />

grows as tall as 120 cm. Propagates<br />

by seeds and creep<strong>in</strong>g rhizomes.<br />

Seeds have little or no dormancy.<br />

Habitat: Adapted to dry and moist<br />

soils.<br />

<strong>Weed</strong>y nature: Produces large<br />

amounts of seeds and a tremendous<br />

mass of rhizomes, which make weed<br />

c<strong>on</strong>trol by any means difficult.<br />

Agricultural c<strong>on</strong>cern: A serious<br />

weed <strong>in</strong> upland areas. Many <strong>in</strong>fested<br />

ricefields are aband<strong>on</strong>ed.<br />

Rhizomes<br />

Mature plant<br />

Inflorescence<br />

Seed, magnified<br />

<strong>Weed</strong>s worldwide 35


Upland rice weeds / POACEAE (grass family)<br />

<strong>Weed</strong> name: Rottboellia coch<strong>in</strong>ch<strong>in</strong>en-<br />

sis (Lour.) W.D. Clayt<strong>on</strong><br />

Syn<strong>on</strong>ym: Rottboellia exaltata L.f.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

France herbe bettle-elise<br />

Ghana nkyenkyemma (Twi)<br />

Ind<strong>on</strong>esia bandjangan<br />

Philipp<strong>in</strong>es agu<strong>in</strong>gay (Tagalog)<br />

Spa<strong>in</strong> cam<strong>in</strong>adora<br />

Thailand yaa pr<strong>on</strong>g khaai<br />

USA itchgrass<br />

Zambia mulungwe<br />

Zimbabwe shamvagrass<br />

Life cycle: An annual grass that can<br />

grow as tall as 3 m. Propagates by<br />

seeds, which have a dormancy of<br />

1-4 mo.<br />

Habitat: Prefers well-dra<strong>in</strong>ed soils.<br />

<strong>Weed</strong>y nature: Produces many<br />

seeds, which shatter easily. Grows and<br />

flowers throughout the year. These<br />

characteristics, comb<strong>in</strong>ed with rapid<br />

growth and sharp irritat<strong>in</strong>g hairs, make<br />

it very competitive.<br />

Agricultural c<strong>on</strong>cern: Very aggres-<br />

sive <strong>in</strong> upland areas, where it can<br />

completely shade out rice. Total yield<br />

loss is normal.<br />

36 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Mature plant<br />

<strong>in</strong>florescence


Upland rice weeds / PORTULACACEAE (purslane family)<br />

<strong>Weed</strong> name: Portulaca oleracea L.<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Brazil beldroega<br />

Cambodia kbetchoun (Khmer)<br />

France comun pourpier<br />

Ghana adwera (Twi)<br />

India baralunia, kufa (Orya)<br />

karie, keerai (Tamil)<br />

Ind<strong>on</strong>esia gelang<br />

Malaysia gelang pasir<br />

Mauritius pourpier<br />

Mexico verdolaga comun (Spanish)<br />

Myanmar mya-byit<br />

Nigeria esan omode (Yoruba)<br />

Pakistan kulfa, lunak<br />

Philipp<strong>in</strong>es ulasiman (Tagalog)<br />

Thailand phak bia yai<br />

Vietnam rausam<br />

Zambia yelele (Chit<strong>on</strong>ga)<br />

Life cycle: An annual broadleaf with<br />

succulent and fleshy stems that are<br />

sometimes reddish brown. Grows as<br />

tall as 50 cm. Propagates by seeds<br />

and stem cutt<strong>in</strong>gs. Produces<br />

numerous black seeds that normally<br />

are not dormant.<br />

Habitat Grows <strong>in</strong> upland fields.<br />

<strong>Weed</strong>y nature: A prolific seed<br />

producer that grows quickly and<br />

flowers and produces seeds throughout<br />

the year. Difficult to c<strong>on</strong>trol by<br />

cultivati<strong>on</strong> because plants with flower<br />

buds have enough water stored <strong>in</strong> the<br />

stems and leaves to complete seed<br />

producti<strong>on</strong> after they have been cut.<br />

Cut fleshy stems root easily up<strong>on</strong><br />

c<strong>on</strong>tact with soil. Under drought<br />

stress, sheds its leaves and survives<br />

until water becomes available. Can<br />

complete its life cycle with<strong>in</strong> 6 wk.<br />

Seeds can rema<strong>in</strong> viable for a l<strong>on</strong>g<br />

time.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

30% yield loss.<br />

Seedl<strong>in</strong>g<br />

Seed, magnified<br />

Inflorescence<br />

Mature plant<br />

<strong>Weed</strong>s worldwide 37


Deepwater rice weeds<br />

PONTEDERIACEAE (pickerel-weed family)<br />

<strong>Weed</strong> name: Eichhornia crassipes<br />

(Mart.) Solms<br />

Syn<strong>on</strong>yms: N<strong>on</strong>e<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Bangladesh kachuripana<br />

Brazil aquapede-flor-roxa<br />

Cambodia kamphlok (Khmer)<br />

France eichhornie, jac<strong>in</strong>the d’eau<br />

India jalkumbhi, kulauoli<br />

(Malayalam)<br />

akasa-thamarai, neithama<br />

rai (Tamil)<br />

Ind<strong>on</strong>esia etjeng padi<br />

Malaysia keladi bunt<strong>in</strong>g<br />

Myanmar<br />

beda-b<strong>in</strong><br />

Thailand phak top chawaa<br />

USA water hyac<strong>in</strong>th<br />

Vietnam luc-b<strong>in</strong>h<br />

Life cycle: A perennial, flower<strong>in</strong>g,<br />

aquatic, m<strong>on</strong>ocotyled<strong>on</strong>ous, broadleaf<br />

plant. It spreads by produc<strong>in</strong>g vegetative<br />

offshoots and seeds.<br />

Habitat: Adapted to fresh water; .<br />

found <strong>in</strong> rivers, canals, and reservoirs.<br />

Moves <strong>in</strong>to deepwater rice with water<br />

currents or str<strong>on</strong>g w<strong>in</strong>ds.<br />

<strong>Weed</strong>y nature: Grows quickly and<br />

crowds out rice through shad<strong>in</strong>g.<br />

Impedes water flow <strong>in</strong> irrigati<strong>on</strong> canals<br />

and causes large amount of water loss<br />

through evapotranspirati<strong>on</strong>.<br />

Agricultural c<strong>on</strong>cern: Can<br />

completely destroy deepwater rice by<br />

crowd<strong>in</strong>g the rice plants.<br />

38 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Mature plant<br />

Inflorescence


Deepwater weeds / CONVOLVULACEAE (morn<strong>in</strong>g glory family)<br />

<strong>Weed</strong> name: lpomoea aquatica<br />

Forssk.<br />

Syn<strong>on</strong>ym: lpomoea reptans (L.) Poir.<br />

Local names:<br />

Country Comm<strong>on</strong> name<br />

Cambodia trâku<strong>on</strong> (Khmer)<br />

India vellai keerai, kaladana,<br />

nilkalami (Tamil)<br />

tooti koora (Telugu)<br />

Peru camotillo<br />

Philipp<strong>in</strong>es kangk<strong>on</strong>g (Tagalog)<br />

USA swamp morn<strong>in</strong>g glory<br />

Life cycle: A perennial broadleaf<br />

v<strong>in</strong>e that propagate by seeds and<br />

stem cutt<strong>in</strong>gs.<br />

Habitat: Requires aquatic or wet<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

<strong>Weed</strong>y nature: Fast-grow<strong>in</strong>g and<br />

wide-spread<strong>in</strong>g. Roots at the nodes.<br />

Also floats <strong>on</strong> water.<br />

Agricultural c<strong>on</strong>cern: Can cause<br />

30% yield loss. Mature plant<br />

Flower<br />

<strong>Weed</strong>s worldwide 39


Chapter 3<br />

<strong>Weed</strong> c<strong>on</strong>trol<br />

<strong>Weed</strong>s have always reduced rice<br />

yields. As a result, many different<br />

weed c<strong>on</strong>trol methods have evolved.<br />

Farmers c<strong>on</strong>sider f<strong>in</strong>ancial resources<br />

and availability of labor <strong>in</strong> decid<strong>in</strong>g<br />

what weed c<strong>on</strong>trol method to use.<br />

Problems of <strong>in</strong>put availability, avail-<br />

ability of new technologies, specific<br />

weed problems, farm size, and<br />

availability of family labor are basic<br />

management factors they take <strong>in</strong>to<br />

account <strong>in</strong> mak<strong>in</strong>g weed c<strong>on</strong>trol<br />

decisi<strong>on</strong>s.<br />

Plann<strong>in</strong>g effective<br />

c<strong>on</strong>trol<br />

Plann<strong>in</strong>g is important <strong>in</strong> mak<strong>in</strong>g<br />

appropriate decisi<strong>on</strong>s <strong>on</strong> weed<br />

c<strong>on</strong>trol. Unfortunately, weed c<strong>on</strong>trol<br />

often is not planned. The decisi<strong>on</strong> to<br />

c<strong>on</strong>trol is not made until the problem<br />

has become serious, when c<strong>on</strong>trol<br />

may be unec<strong>on</strong>omical, <strong>in</strong>effective, or<br />

even impossible.<br />

Advance knowledge of weed<br />

problems can be obta<strong>in</strong>ed by survey-<br />

<strong>in</strong>g and record<strong>in</strong>g the weed species <strong>in</strong><br />

a ricefield after rice emergence, at<br />

midseas<strong>on</strong>, and at harvest. This<br />

record is useful <strong>in</strong> plann<strong>in</strong>g weed<br />

c<strong>on</strong>trol and crop rotati<strong>on</strong> programs.<br />

C<strong>on</strong>trol methods<br />

<strong>Weed</strong> c<strong>on</strong>trol methods can be<br />

grouped <strong>in</strong>to cultural, manual,<br />

mechanical, chemical, and biological<br />

techniques. Each c<strong>on</strong>trol method has<br />

advantages and disadvantages, and a<br />

s<strong>in</strong>gle method is rarely adequate for<br />

effective and ec<strong>on</strong>omical c<strong>on</strong>trol.<br />

Cultural methods<br />

A basic pr<strong>in</strong>ciple of cultural c<strong>on</strong>trol is<br />

to <strong>in</strong>crease the competitive ability of<br />

rice and enable it to suppress weed<br />

growth. A vigorous rice crop com-<br />

petes more effectively with weeds<br />

than does a less vigorous crop.<br />

Cultural c<strong>on</strong>trol methods <strong>in</strong>clude<br />

preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>,<br />

land preparati<strong>on</strong>, crop rotati<strong>on</strong>,<br />

cultivar selecti<strong>on</strong>, time of seed<strong>in</strong>g,<br />

plant<strong>in</strong>g method, plant populati<strong>on</strong>,<br />

fertilizati<strong>on</strong>, and water management.<br />

Preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>.<br />

Although weed seeds may be <strong>in</strong>tro-<br />

duced <strong>in</strong> ways bey<strong>on</strong>d a farmer's<br />

c<strong>on</strong>trol, many aspects of weed disper-<br />

sal are c<strong>on</strong>trollable. C<strong>on</strong>trol <strong>in</strong>volves<br />

prevent<strong>in</strong>g the <strong>in</strong>troducti<strong>on</strong>, estab-<br />

lishment, and spread of weeds, seeds,<br />

tubers, and rhizomes <strong>in</strong> a crop or<br />

between two crops. In rice, this is best<br />

achieved by plant<strong>in</strong>g rice seeds free<br />

of weed seeds <strong>in</strong> weed-free seedbeds<br />

and by seed<strong>in</strong>g rice or transplant<strong>in</strong>g<br />

seedl<strong>in</strong>gs <strong>in</strong> weed-free fields. Field<br />

borders not cropped or not kept clean<br />

are a c<strong>on</strong>stant source of weed seeds.<br />

Levees and irrigati<strong>on</strong> canals also<br />

must be kept weed free. <strong>Weed</strong> seeds<br />

can be <strong>in</strong>troduced <strong>in</strong>to a clean area by<br />

mach<strong>in</strong>ery or tillage equipment that<br />

are carry<strong>in</strong>g weed seed-c<strong>on</strong>tam<strong>in</strong>ated<br />

soil.<br />

Land preprati<strong>on</strong>. Land preparati<strong>on</strong><br />

<strong>in</strong>cludes plow<strong>in</strong>g, disk<strong>in</strong>g, harrow<strong>in</strong>g,<br />

soil puddl<strong>in</strong>g, and land level<strong>in</strong>g.<br />

A well-prepared field allows the rice<br />

crop optimal early growth. Careful<br />

land preparati<strong>on</strong> primarily provides<br />

weed-free c<strong>on</strong>diti<strong>on</strong>s at plant<strong>in</strong>g.<br />

In general, tillage practices most<br />

affect plant growth dur<strong>in</strong>g germ<strong>in</strong>ati<strong>on</strong>,<br />

seedl<strong>in</strong>g emergence, and stand<br />

establishment stages. Plow<strong>in</strong>g buries<br />

weed seeds to depths from which<br />

they cannot emerge, but it also br<strong>in</strong>gs<br />

some weed seeds to the soil surface<br />

where c<strong>on</strong>diti<strong>on</strong>s favor germ<strong>in</strong>ati<strong>on</strong>.<br />

Thus, a new flush of weed seedl<strong>in</strong>gs<br />

occurs after each cultivati<strong>on</strong>.<br />

To destroy as many weeds as<br />

possible, the <strong>in</strong>terval between successive<br />

cultivati<strong>on</strong>s should be l<strong>on</strong>g<br />

enough to allow many weed seeds to<br />

germ<strong>in</strong>ate and be killed by later<br />

harrow<strong>in</strong>gs. This can reduce a weed<br />

seed populati<strong>on</strong> about 50%. Tillage<br />

dur<strong>in</strong>g the dry seas<strong>on</strong> is a practical<br />

method of c<strong>on</strong>troll<strong>in</strong>g perennial<br />

grasses such as Paspalum distichum,<br />

Cynod<strong>on</strong> dactyl<strong>on</strong>, Oryza l<strong>on</strong>gistam<strong>in</strong>ata,<br />

and Imperata cyl<strong>in</strong>drica; it<br />

desiccates the perennial structures. In<br />

temperate areas, tubers and rhizomes<br />

brought to the soil surface are killed<br />

dur<strong>in</strong>g cold, dry periods.<br />

The type of land preparati<strong>on</strong><br />

needed for rice depends <strong>on</strong> the water<br />

management system. Land prepara-<br />

ti<strong>on</strong> can be classified broadly as<br />

wetland tillage, dryland tillage, and<br />

limited tillage.<br />

<strong>Weed</strong> c<strong>on</strong>trol 41


Wetland tillage is comm<strong>on</strong> <strong>in</strong><br />

most tropical Asian countries. Tradi-<br />

ti<strong>on</strong>ally, it <strong>in</strong>volves plow<strong>in</strong>g and pud-<br />

dl<strong>in</strong>g the soil. The processes <strong>in</strong>volved<br />

are<br />

flood<strong>in</strong>g the field for about 7 d.<br />

plow<strong>in</strong>g the soil to 10- to 20-cm<br />

depth, to bury the weed seeds and<br />

weed and rice stubble.<br />

harrow<strong>in</strong>g to break up big clods <strong>in</strong><br />

the soil. Two to three harrow<strong>in</strong>gs<br />

are d<strong>on</strong>e at 7- to 10-d <strong>in</strong>tervals.<br />

level<strong>in</strong>g the field.<br />

Puddl<strong>in</strong>g hastens crop establish-<br />

ment and tiller<strong>in</strong>g of transplanted<br />

rice seedl<strong>in</strong>gs. This results <strong>in</strong> vigor-<br />

ous rice growth and <strong>in</strong>creases the<br />

crop’s competitive ability aga<strong>in</strong>st<br />

weeds. Dur<strong>in</strong>g transplant<strong>in</strong>g, weed<br />

seedl<strong>in</strong>gs also are trampled and<br />

<strong>in</strong>corporated <strong>in</strong>to the soil.<br />

Dryland tillage is the basis of<br />

many rice culture systems. Almost all<br />

rice-grow<strong>in</strong>g areas <strong>in</strong> the United<br />

States and southern Australia, most<br />

of Lat<strong>in</strong> America and West Africa,<br />

and parts of tropical Asia and Europe<br />

use dryland tillage. In dryland prepa-<br />

rati<strong>on</strong>, soil clods are broken up so<br />

they do not <strong>in</strong>terfere with seed<strong>in</strong>g<br />

and seedl<strong>in</strong>g emergence. The seedbed<br />

is left rough because germ<strong>in</strong>ati<strong>on</strong> of<br />

weed seeds, which are usually much<br />

smaller than rice, is encouraged by<br />

f<strong>in</strong>e tilth. <strong>Rice</strong> is seeded immediately<br />

follow<strong>in</strong>g the last tillage operati<strong>on</strong>, to<br />

give rice an even start with weeds.<br />

Limited tiIlage covers a range of<br />

land preparati<strong>on</strong> techniques, from<br />

zero tillage to elim<strong>in</strong>ati<strong>on</strong> of <strong>on</strong>e<br />

preseed<strong>in</strong>g cultivati<strong>on</strong>. Herbicides<br />

replace the omitted tillage operati<strong>on</strong>s.<br />

Limited tillage has soil c<strong>on</strong>servati<strong>on</strong><br />

advantages.<br />

Smallholders who use slash-and-<br />

burn land preparati<strong>on</strong> are practic<strong>in</strong>g<br />

limited tillage. <strong>Rice</strong> is planted <strong>in</strong> a<br />

dead mulch with <strong>on</strong>ly enough soil<br />

disturbance to cover the seed.<br />

M<strong>in</strong>imum and zero tillage techniques<br />

can result <strong>in</strong> timely land preparati<strong>on</strong><br />

and sav<strong>in</strong>gs <strong>in</strong> labor, water, power,<br />

and capital.<br />

42 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Under limited tillage, perennial<br />

weed problems <strong>in</strong>crease over time.<br />

Where perennial weeds are c<strong>on</strong>trolled,<br />

limited tillage can be used for<br />

both upland and lowland rice culture.<br />

Herbicide use is an <strong>in</strong>tegral part of<br />

a limited tillage system. However, if<br />

<strong>in</strong>appropriate herbicides are used,<br />

perennial broadleaf weeds and<br />

grasses comm<strong>on</strong> <strong>in</strong> fallow <strong>in</strong> the<br />

tropics are not c<strong>on</strong>trolled and significant<br />

yield losses can occur. Plow<strong>in</strong>g<br />

and harrow<strong>in</strong>g more often does not<br />

elim<strong>in</strong>ate the need for direct weed<br />

c<strong>on</strong>trol. Farmers still must follow<br />

land preparati<strong>on</strong> with other weed<br />

c<strong>on</strong>trol methods. It is more costeffective<br />

to reduce preplant<strong>in</strong>g<br />

harrow<strong>in</strong>gs and comb<strong>in</strong>e those with<br />

direct weed c<strong>on</strong>trol methods.<br />

Crop rotati<strong>on</strong>. <strong>Weed</strong>s adapt to the<br />

grow<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s of rice. A ricefield<br />

that is tilled regularly has more<br />

annual weeds than many undisturbed<br />

habitats, which have more<br />

perennial weeds. C<strong>on</strong>t<strong>in</strong>uous cropp<strong>in</strong>g<br />

encourages the buildup of<br />

difficult weeds.<br />

Each rice culture is associated with<br />

a characteristic weed problem,<br />

<strong>in</strong>fluenced by the cultural practices<br />

used. Lowland rice has predomi-<br />

nantly water-tolerant weeds, upland<br />

rice has mostly dryland weeds.<br />

Rotati<strong>on</strong> of lowland rice with an<br />

upland crop reduces <strong>in</strong>festati<strong>on</strong> by<br />

water-tolerant weeds <strong>in</strong> the rice and<br />

by upland weeds <strong>in</strong> the upland crop.<br />

Grow<strong>in</strong>g a broadleaf crop <strong>in</strong> rotati<strong>on</strong><br />

with rice allows the use of herbicides<br />

effective aga<strong>in</strong>st grassy weeds, which<br />

are difficult to c<strong>on</strong>trol <strong>in</strong> rice.<br />

Varietal selecti<strong>on</strong>. Improved rice<br />

cultivars resistant to diseases and<br />

<strong>in</strong>sects are more competitive aga<strong>in</strong>st<br />

weeds than are traditi<strong>on</strong>al rices.<br />

Traditi<strong>on</strong>al, tall varieties with droopy<br />

leaves are thought to be more com-<br />

petitive aga<strong>in</strong>st weeds, but research<br />

has failed to measure competitive<br />

differences that are due to cultivar.<br />

The height advantage of traditi<strong>on</strong>al<br />

varieties is offset by the high-tiller<strong>in</strong>g<br />

capacity of modern high-yield<strong>in</strong>g<br />

cultivars. Traditi<strong>on</strong>al varieties also<br />

have other attributes, such as susceptibility<br />

to lodg<strong>in</strong>g, that make them<br />

undesirable.<br />

Modern rice cultivars, although<br />

competitive aga<strong>in</strong>st weeds, can have<br />

more weed problems than traditi<strong>on</strong>al<br />

rice cultivars. The erect leaves and<br />

short stature of modern rices allow<br />

light to reach the soil and stimulate<br />

weed seed germ<strong>in</strong>ati<strong>on</strong>. With<strong>in</strong> the<br />

crop canopy, small differences <strong>in</strong><br />

crop height affect the quantity and<br />

quality of light received by weeds.<br />

The high nitrogen rates used <strong>on</strong><br />

modern cultivars also aggravate<br />

weed problems. This makes competitiveness<br />

with weeds a breed<strong>in</strong>g<br />

objective for modern rices. When<br />

available, such cultivars should be<br />

used.<br />

Time of seed<strong>in</strong>g. When soil moisture<br />

is not limit<strong>in</strong>g, allow<strong>in</strong>g weeds to<br />

germ<strong>in</strong>ate before till<strong>in</strong>g and seed<strong>in</strong>g<br />

rice reduces weed populati<strong>on</strong>s. <strong>Rice</strong><br />

seed<strong>in</strong>g, however, should not be<br />

delayed bey<strong>on</strong>d the optimum time of<br />

plant<strong>in</strong>g.<br />

In ra<strong>in</strong>fed rice crops, time of<br />

seed<strong>in</strong>g is critical. <strong>Rice</strong> plants affected<br />

by drought become stunted and<br />

cannot compete effectively with<br />

weeds that are more tolerant of<br />

drought. Dry weather after sow<strong>in</strong>g<br />

can reduce the number of weeds that<br />

germ<strong>in</strong>ate near the soil surface, but<br />

rice seed germ<strong>in</strong>ati<strong>on</strong> will also be<br />

delayed. Perennial and large weed<br />

seeds from deeper soil depths are still<br />

able to germ<strong>in</strong>ate and compete<br />

str<strong>on</strong>gly with the rice crop.<br />

Plant<strong>in</strong>g method. Plant<strong>in</strong>g method<br />

affects the ability of rice to compete<br />

with weeds. <strong>Rice</strong> may be transplanted<br />

or drill seeded <strong>in</strong> straight<br />

rows, or broadcast seeded. Straightrow<br />

plant<strong>in</strong>g is necessary for hand<br />

weed<strong>in</strong>g and for us<strong>in</strong>g mechanical<br />

weeders. In a broadcast crop,<br />

mechanical and hand weed<strong>in</strong>g<br />

damage the rice plants.


Transplant<strong>in</strong>g rice <strong>in</strong> a weed-free<br />

field gives seedl<strong>in</strong>gs a head start<br />

aga<strong>in</strong>st weeds. If water management<br />

is adequate, this competitive advan-<br />

tage is ma<strong>in</strong>ta<strong>in</strong>ed throughout most<br />

of the transplanted rice’s growth. Age<br />

of seedl<strong>in</strong>gs at transplant<strong>in</strong>g, how-<br />

ever, affects the crop’s competitive<br />

ability. The older the seedl<strong>in</strong>gs, the<br />

more competitive they are. With<br />

<strong>in</strong>adequate weed c<strong>on</strong>trol, older<br />

seedl<strong>in</strong>gs (20- to 30-d-old) are more<br />

desirable than younger seedl<strong>in</strong>gs.<br />

With young seedl<strong>in</strong>gs, flood<strong>in</strong>g the<br />

crop to c<strong>on</strong>trol weeds risks drown<strong>in</strong>g<br />

the seedl<strong>in</strong>gs.<br />

Deep drill<strong>in</strong>g rice seed, which<br />

delays seedl<strong>in</strong>g emergence, enables<br />

weed seeds near the soil surface to<br />

germ<strong>in</strong>ate earlier than the rice,<br />

mak<strong>in</strong>g the weeds more competitive.<br />

Plant populati<strong>on</strong>. <strong>Rice</strong> plant spac<strong>in</strong>g<br />

is an important producti<strong>on</strong> factor.<br />

Density per unit area determ<strong>in</strong>es the<br />

amount of shade created to help rice<br />

compete with weeds. Light penetrati<strong>on</strong><br />

<strong>in</strong>to the rice canopy <strong>in</strong>creases as<br />

row spac<strong>in</strong>g <strong>in</strong>creases. That stimulates<br />

weed growth and reduces rice<br />

gra<strong>in</strong> yields.<br />

The optimum spac<strong>in</strong>g essential for<br />

proper rice crop development and<br />

high gra<strong>in</strong> yields depends <strong>on</strong> culti-<br />

var, soil fertility, and seas<strong>on</strong>. In the<br />

Philipp<strong>in</strong>es, the maximum return<br />

(above variable costs) has been<br />

obta<strong>in</strong>ed with manual transplant<strong>in</strong>g<br />

at 20- x 20-cm spac<strong>in</strong>g.<br />

In broadcast seeded flooded rice,<br />

high seed<strong>in</strong>g rates are usually used to<br />

help c<strong>on</strong>trol weeds, but high seed<strong>in</strong>g<br />

rates cannot substitute for direct<br />

3.1 Recommended times to apply N<br />

fertilizer <strong>in</strong> different rice cultures.<br />

Fertilizer is applied basally and<br />

<strong>in</strong>corporated, or placed 10-cm deep <strong>in</strong> the<br />

soil (deep placement) at transplant<strong>in</strong>g or,<br />

for direct seeded rice, before seed<strong>in</strong>g.<br />

Fertilizer is topdressed 3-9 d before<br />

panicle <strong>in</strong>itiati<strong>on</strong> (48-57 d after sow<strong>in</strong>g<br />

[DAS] for 110- to 115-d durati<strong>on</strong> varieties,<br />

or 11-14 d before panicle <strong>in</strong>itiati<strong>on</strong> [56-64<br />

DAS] for 125 to 130-d durati<strong>on</strong> varieties).<br />

c<strong>on</strong>trol methods. No weed c<strong>on</strong>trol<br />

benefit is obta<strong>in</strong>ed when seed<strong>in</strong>g rate<br />

is <strong>in</strong>creased bey<strong>on</strong>d the optimum 100<br />

kg/ha that will give adequate crop<br />

stand establishment.<br />

Fertilizati<strong>on</strong>. Nitrogen (N), phos-<br />

phorus (P), potassium (K), and z<strong>in</strong>c<br />

(Zn) are the nutrients most commoly<br />

applied by rice farmers. Nitrogen<br />

encourages rapid vegetative growth<br />

(<strong>in</strong>creased height, tiller number, and<br />

<strong>Weed</strong> c<strong>on</strong>trol 43


leaf size), with the resultant shade<br />

help<strong>in</strong>g to suppress late-germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Phosphorus encourages rice<br />

root development and <strong>in</strong>creases<br />

tiller<strong>in</strong>g. Vigorous rice root growth is<br />

advantageous <strong>in</strong> below-ground<br />

competiti<strong>on</strong> with weeds for moisture<br />

and nutrients.<br />

<strong>Weed</strong>s take up nutrients <strong>in</strong> large<br />

quantities, however, and sometimes<br />

absorb fertilizer faster than rice.<br />

When weeds are not c<strong>on</strong>trolled<br />

effectively, however, fertilizati<strong>on</strong> is of<br />

little significance. There is little or no<br />

resp<strong>on</strong>se to N by rice <strong>in</strong> shade, and P<br />

and N left <strong>on</strong> the soil surface will<br />

stimulate growth of shallow weed<br />

seeds. At high fertilizati<strong>on</strong> levels, it is<br />

not possible to produce high rice<br />

yields without weed<strong>in</strong>g.<br />

Early- to midseas<strong>on</strong> N applicati<strong>on</strong>s<br />

are beneficial to rice, but weeds must<br />

be c<strong>on</strong>trolled to maximize the effect<br />

of N <strong>on</strong> gra<strong>in</strong> yield. Figure 3.1 shows<br />

the best time to apply N <strong>in</strong> various<br />

rice cultures.<br />

Water management. S<strong>in</strong>ce ancient<br />

times, water has been used to manage<br />

weeds <strong>in</strong> ricefields. Many n<strong>on</strong>aquatic<br />

weeds do not survive <strong>in</strong> submerged<br />

envir<strong>on</strong>ments and many aquatic<br />

weeds do not survive <strong>in</strong> upland<br />

envir<strong>on</strong>ments.<br />

Water c<strong>on</strong>trol dur<strong>in</strong>g the early rice<br />

growth stages has a major effect <strong>on</strong><br />

weed c<strong>on</strong>trol. As weeds become<br />

established, c<strong>on</strong>troll<strong>in</strong>g them through<br />

water management is more difficult.<br />

Grassy weeds can be largely elimi-<br />

nated by c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g to<br />

15-cm depth ma<strong>in</strong>ta<strong>in</strong>ed throughout<br />

crop growth. The resp<strong>on</strong>se of broad-<br />

leaf weeds and sedges to different<br />

water depths varies. After c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g, C3 weeds (see page 3) will<br />

be dom<strong>in</strong>ant.<br />

44 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

<strong>Weed</strong> problems <strong>in</strong>tensify <strong>in</strong><br />

irrigated and ra<strong>in</strong>fed lowland rice<br />

when water supply is <strong>in</strong>adequate.<br />

Increased weed c<strong>on</strong>trol benefits are<br />

obta<strong>in</strong>ed with improved water<br />

supply and c<strong>on</strong>trol, high levels of<br />

fertilizer, and improved cultivars<br />

used <strong>in</strong> c<strong>on</strong>cert.<br />

Increas<strong>in</strong>g water depth to c<strong>on</strong>trol<br />

weeds as part of <strong>in</strong>tegrated weed<br />

management is cost effective. When<br />

comb<strong>in</strong>ed with other direct weed<br />

c<strong>on</strong>trol methods, <strong>in</strong>creased water<br />

depth can give c<strong>on</strong>siderable sav<strong>in</strong>gs<br />

<strong>in</strong> producti<strong>on</strong> costs.<br />

Timely and thorough dra<strong>in</strong>age of<br />

flooded fields reduces aquatic weed<br />

problems.<br />

Manual methods<br />

Manual weed c<strong>on</strong>trol <strong>in</strong>cludes<br />

burn<strong>in</strong>g, hand pull<strong>in</strong>g, and mechani-<br />

cal hand weed<strong>in</strong>g. These labor-<br />

<strong>in</strong>tensive methods are the oldest and,<br />

<strong>in</strong> many cases, the farmer’s <strong>on</strong>ly<br />

means of c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> rice,<br />

and are highly effective.<br />

Several hand tools are still the<br />

pr<strong>in</strong>cipal means of rice weed c<strong>on</strong>trol<br />

<strong>in</strong> many develop<strong>in</strong>g countries. But<br />

manual methods are slow,<br />

unattractive, and tedious, and are<br />

often carried out after the rice crop<br />

has been severely damaged by<br />

weeds. Hand weed<strong>in</strong>g is often<br />

<strong>in</strong>effective <strong>on</strong> weeds with special<br />

survival mechanisms such as the rice<br />

mimics (e.g., I. rugosum ) and deep-<br />

rooted perennial weeds. <strong>Rice</strong> mimics<br />

are difficult to dist<strong>in</strong>guish from rice<br />

at the early growth stage. Repeated<br />

hand weed<strong>in</strong>gs are necessary to<br />

effectively c<strong>on</strong>trol all weeds.<br />

Burn<strong>in</strong>g. Burn<strong>in</strong>g, comm<strong>on</strong> under<br />

the slash-and-burn system of land<br />

preparati<strong>on</strong>, kills weed seeds and<br />

weed seedl<strong>in</strong>gs, gets rid of unwanted<br />

vegetati<strong>on</strong>, and reduces the amount<br />

of weed seeds returned to the soil. It<br />

also encourages germ<strong>in</strong>ati<strong>on</strong> of weed<br />

seeds near the soil surface. Thorough<br />

burn<strong>in</strong>g can keep the ricefield free of<br />

weeds for the first 2-3 wk.<br />

Burn<strong>in</strong>g saves labor, is low cost,<br />

and adds neutraliz<strong>in</strong>g ash to low-pH<br />

soils. On the other hand, widespread<br />

unc<strong>on</strong>trolled burn<strong>in</strong>g leaves the soil<br />

bare, <strong>in</strong>creas<strong>in</strong>g soil erosi<strong>on</strong> and loss<br />

of N and other nutrients. Careful<br />

plann<strong>in</strong>g and rati<strong>on</strong>al use can<br />

m<strong>in</strong>imize the adverse effects of<br />

burn<strong>in</strong>g. Local regulati<strong>on</strong>s <strong>on</strong><br />

burn<strong>in</strong>g should be followed.<br />

Hand pull<strong>in</strong>g. Hand pull<strong>in</strong>g<br />

c<strong>on</strong>trols weed seedl<strong>in</strong>gs grow<strong>in</strong>g<br />

near and between rice plants where<br />

implements are difficult to use. Hand<br />

pull<strong>in</strong>g is not effective <strong>in</strong> dry soil,<br />

where weed seedl<strong>in</strong>gs break and<br />

resprout easily. Frequent hand<br />

pull<strong>in</strong>g is necessary for effective<br />

weed c<strong>on</strong>trol because very small<br />

weed seedl<strong>in</strong>gs that are not removed<br />

grow quickly to re<strong>in</strong>fest the ricefield.<br />

This method is the most labor <strong>in</strong>tensive<br />

of all weed c<strong>on</strong>trol measures,<br />

and is best suited to small farms.<br />

In some places, lowland rice<br />

farmers trample weeds <strong>in</strong>stead of<br />

hand pull<strong>in</strong>g.<br />

Mechanical weed<strong>in</strong>g. <strong>Weed</strong><strong>in</strong>g us<strong>in</strong>g<br />

hand tools is comm<strong>on</strong> <strong>in</strong> almost all<br />

tropical rice-grow<strong>in</strong>g areas. But the<br />

degree of weed<strong>in</strong>g and the problems<br />

associated with it largely depend <strong>on</strong><br />

the type of rice culture. In many<br />

countries, hand tools such as the hoe,<br />

narrow spade, Swiss hoe, knife,<br />

machete, and po<strong>in</strong>ted sticks are<br />

primarily used to remove weeds <strong>in</strong><br />

upland rice. <strong>Weed</strong>s with<strong>in</strong> rows must<br />

be removed by hand. The amount of<br />

labor required to weed 1 ha ranges<br />

from 10 to 30 d.


<strong>Weed</strong><strong>in</strong>g by mach<strong>in</strong>e <strong>in</strong>volves the<br />

use of hand-pushed or powered<br />

weeders, and is feasible <strong>on</strong>ly where<br />

rice is planted <strong>in</strong> straight rows.<br />

C<strong>on</strong>venti<strong>on</strong>al s<strong>in</strong>gle-row rotary<br />

weeders require 80-90 labor h to<br />

weed 1 ha, and are difficult to use<br />

because they must be moved back<br />

and forth. The IRRI-developed c<strong>on</strong>o<br />

weeder uses a c<strong>on</strong>ical-shaped rotor to<br />

uproot and bury weeds. It smothers<br />

weeds satisfactorily <strong>in</strong> a s<strong>in</strong>gle pass.<br />

The s<strong>in</strong>gle-row c<strong>on</strong>o weeder is about<br />

2 times faster (40-50 labor-hours/ha)<br />

and the two-row c<strong>on</strong>o weeder 3-4<br />

times faster (25-35 labor-h/ha) than<br />

the c<strong>on</strong>venti<strong>on</strong>al push-pull rotary<br />

weeder.<br />

<strong>Weed</strong>s with<strong>in</strong> the crop rows are<br />

difficult to remove with a c<strong>on</strong>o<br />

weeder. If the soil is too dry, the<br />

weeder rolls over the soil surface<br />

without bury<strong>in</strong>g the weeds. The c<strong>on</strong>o<br />

weeder is also <strong>in</strong>effective <strong>in</strong> stand<strong>in</strong>g<br />

water. To achieve the best results <strong>in</strong><br />

transplanted rice, a weeder should be<br />

run <strong>in</strong> two directi<strong>on</strong>s, at right angles<br />

to each other. Mechanical weed<strong>in</strong>g<br />

should be supplemented by hand<br />

pull<strong>in</strong>g the weeds that are close to the<br />

rice plants. The time required for<br />

weed<strong>in</strong>g by this comb<strong>in</strong>ati<strong>on</strong> is less<br />

than for hand pull<strong>in</strong>g al<strong>on</strong>e.<br />

Biological methods<br />

Several biological agents, such as<br />

<strong>in</strong>sects, mites, and fungi, have been<br />

used successfully to c<strong>on</strong>trol rice<br />

weeds. Biological agents are selective<br />

<strong>in</strong> their c<strong>on</strong>trol acti<strong>on</strong> and their<br />

activity may be restricted to a s<strong>in</strong>gle<br />

weed.<br />

Biological c<strong>on</strong>trol programs may<br />

be applicable to an <strong>in</strong>troduced<br />

perennial weed grow<strong>in</strong>g <strong>in</strong> areas that<br />

are seldom disturbed, such as<br />

pastures, forests, and water bodies. In<br />

a rice cropp<strong>in</strong>g situati<strong>on</strong> with a<br />

mixed weed flora, the selective<br />

c<strong>on</strong>trol of a s<strong>in</strong>gle weed will not solve<br />

the weed problem. The biological<br />

agents also work slowly and may<br />

take from 30 d to 10 yr to c<strong>on</strong>trol the<br />

weeds. For these reas<strong>on</strong>s, biological<br />

weed c<strong>on</strong>trol usually is not used by<br />

rice farmers.<br />

The possibility of us<strong>in</strong>g tadpole<br />

shrimp ( Triopus l<strong>on</strong>gicaudatus,<br />

T. granaris, and T. cancriformis) for<br />

n<strong>on</strong>selective weed c<strong>on</strong>trol <strong>in</strong> trans-<br />

planted rice has been dem<strong>on</strong>strated<br />

<strong>in</strong> Japan. The small crustaceans feed<br />

<strong>on</strong> weed seedl<strong>in</strong>gs and disturb their<br />

roots by mechanical agitati<strong>on</strong> of the<br />

soil. Labor for hand weed<strong>in</strong>g <strong>in</strong> farm-<br />

ers’ fields was reduced 70-80% <strong>in</strong><br />

<strong>in</strong>itial field trials with tadpole<br />

shrimp. Unfortunately, the shrimp is<br />

n<strong>on</strong>selective and becomes a pest <strong>in</strong><br />

areas where rice is direct seeded<br />

(Matsunaka 1975).<br />

The ability of a thick Azolla mat to<br />

suppress weed development has l<strong>on</strong>g<br />

been observed. In rice, a 79% reduc-<br />

ti<strong>on</strong> <strong>in</strong> total weed weight at 50 d after<br />

transplant<strong>in</strong>g has been measured.<br />

Growth of Azolla reduced the<br />

amount of light and oxygen c<strong>on</strong>tent<br />

of water; this has been suggested as<br />

an explanati<strong>on</strong> of how Azolla<br />

suppresses weeds (IRRI 1987). Some<br />

weeds can push through an Azolla<br />

mat, however, and weeds grow<strong>in</strong>g<br />

above the water surface are not<br />

affected.<br />

Chemical methods<br />

Herbicide use is <strong>on</strong>e of the most<br />

labor-sav<strong>in</strong>g <strong>in</strong>novati<strong>on</strong>s that have<br />

been <strong>in</strong>troduced <strong>in</strong> rice farm<strong>in</strong>g. For<br />

successful and ec<strong>on</strong>omical use, it is<br />

important to understand how these<br />

chemicals work and their limitati<strong>on</strong>s.<br />

These aspects of herbicide use are<br />

discussed <strong>in</strong> detail <strong>in</strong> later chapters.<br />

Herbicides, like other comp<strong>on</strong>ents<br />

of an <strong>in</strong>tegrated approach to weed<br />

c<strong>on</strong>trol, have advantages and disadvantages.<br />

Herbicides applied before<br />

rice germ<strong>in</strong>ates provide good weed<br />

c<strong>on</strong>trol dur<strong>in</strong>g the early rice growth<br />

stages when rice is most susceptible<br />

to weed competiti<strong>on</strong>. Herbicides can<br />

also be applied over large areas <strong>in</strong> a<br />

short time, mak<strong>in</strong>g them suitable for<br />

large farms. Apply<strong>in</strong>g herbicides<br />

avoids much of the drudgery of<br />

weed<strong>in</strong>g and makes farm<strong>in</strong>g more<br />

attractive. Appropriate herbicide<br />

applicati<strong>on</strong> to fallow vegetati<strong>on</strong> also<br />

can replace the need to plow and<br />

harrow.<br />

In <strong>in</strong>dustrialized countries, herbi-<br />

cides are often essential <strong>in</strong>puts <strong>in</strong> rice<br />

farm<strong>in</strong>g. Their adopti<strong>on</strong> <strong>in</strong>creases<br />

with <strong>in</strong>creases <strong>in</strong> labor cost and<br />

profits. Profits <strong>in</strong>crease when farmers<br />

adopt improved technological<br />

packages.<br />

On the other hand, herbicides have<br />

several disadvantages. First, most<br />

develop<strong>in</strong>g countries import<br />

herbicides. With mount<strong>in</strong>g debt<br />

problems and foreign exchange<br />

shortages, sufficient quantities of the<br />

more effective herbicides often are<br />

not available to meet the grow<strong>in</strong>g<br />

demand. Herbicide applicati<strong>on</strong><br />

requires appropriate equipment, such<br />

as a knapsack sprayer. The <strong>in</strong>itial<br />

capital expenditure maybe bey<strong>on</strong>d a<br />

small farmer’s f<strong>in</strong>ancial resources.<br />

Another disadvantage is that herbi-<br />

cide use, unlike the use of hoes and<br />

sticks, requires skill. Careless herbi-<br />

cide applicati<strong>on</strong>, sometimes due to<br />

ignorance, may result <strong>in</strong> <strong>in</strong>adequate<br />

weed c<strong>on</strong>trol and damage or<br />

completely kill the crop, or may<br />

adversely affect the envir<strong>on</strong>ment.<br />

Improper applicati<strong>on</strong> of herbicides<br />

can create health hazards for humans<br />

and animals.<br />

<strong>Weed</strong> c<strong>on</strong>trol 45


Ec<strong>on</strong>omics of c<strong>on</strong>trol<br />

The ec<strong>on</strong>omic benefit of weed c<strong>on</strong>trol<br />

must exceed the cost. The primary<br />

aim of a rati<strong>on</strong>al farmer is to optimize<br />

profits. One way to achieve that is to<br />

reduce weed c<strong>on</strong>trol costs. It is<br />

logical, therefore, that where <strong>on</strong>e or a<br />

comb<strong>in</strong>ati<strong>on</strong> of methods exists, and<br />

both are equally effective, the farmer<br />

will choose the least costly.<br />

<strong>Weed</strong> c<strong>on</strong>trol costs <strong>in</strong>clude direct<br />

costs (labor, herbicides, sprayers, etc.)<br />

and hidden costs. Management time<br />

wasted dur<strong>in</strong>g frequent visits to the<br />

field to take weed <strong>in</strong>ventories to use<br />

<strong>in</strong> weed c<strong>on</strong>trol plann<strong>in</strong>g is a hidden<br />

cost. A farmer who cleans weed seeds<br />

from c<strong>on</strong>tam<strong>in</strong>ated rice seeds before<br />

plant<strong>in</strong>g will <strong>in</strong>cur hidden costs but<br />

will avoid future additi<strong>on</strong>al weed<br />

c<strong>on</strong>trol costs.<br />

Select<strong>in</strong>g the weed c<strong>on</strong>trol<br />

methods to comb<strong>in</strong>e <strong>in</strong> an <strong>in</strong>tegrated<br />

system will depend <strong>on</strong> the effective-<br />

ness and cost of each method. In<br />

some situati<strong>on</strong>s, hand weed<strong>in</strong>g is<br />

more expensive than apply<strong>in</strong>g<br />

herbicides; <strong>in</strong> other situati<strong>on</strong>s, hand<br />

weed<strong>in</strong>g costs less than herbicide<br />

applicati<strong>on</strong>. Sometimes a comb<strong>in</strong>a-<br />

ti<strong>on</strong> of herbicides, or herbicides<br />

supplemented by hand weed<strong>in</strong>g, is<br />

more ec<strong>on</strong>omical than hand weed<strong>in</strong>g<br />

or use of herbicide al<strong>on</strong>e (Tables 3.1<br />

and 3.2).<br />

Integrated weed<br />

management<br />

The resilience of weed populati<strong>on</strong>s<br />

under <strong>in</strong>tensive herbicide use,<br />

buildup of weed species tolerant of<br />

the c<strong>on</strong>trol methods used, and<br />

<strong>in</strong>creas<strong>in</strong>g public c<strong>on</strong>cern about<br />

<strong>in</strong>discrim<strong>in</strong>ate pesticide use and its<br />

effects <strong>on</strong> the envir<strong>on</strong>ment and<br />

human health have led to widespread<br />

appreciati<strong>on</strong> of the <strong>in</strong>tegrated weed<br />

management c<strong>on</strong>cept (Fryer and<br />

Matsunaka 1977, Fryer 1983).<br />

46 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 3.1. Ec<strong>on</strong>omic acceptability a of direct weed c<strong>on</strong>trol methods <strong>in</strong> irrigated transplanted rice<br />

<strong>in</strong> the Philipp<strong>in</strong>es (data for analysis obta<strong>in</strong>ed from Moody et al 1983).<br />

C<strong>on</strong>trol method<br />

No weed<strong>in</strong>g<br />

One hand weed<strong>in</strong>g<br />

Two hand weed<strong>in</strong>gs<br />

Two rotary weed<strong>in</strong>gs<br />

2,4-D (0.8 kg/ha)<br />

Thiobencarb/2,4-D<br />

(1.0 + 0.5 kg/ha)<br />

Gra<strong>in</strong><br />

yield<br />

(t/ha)<br />

1.5<br />

3.6<br />

3.7<br />

2.9<br />

3.1<br />

3.3<br />

Total<br />

variable<br />

cost (US$)<br />

0<br />

50<br />

90<br />

44<br />

10.3<br />

19.0<br />

Total Return above Marg<strong>in</strong>al<br />

return variable cost benefit-<br />

(US$) (US$) cost ratio<br />

263 263<br />

630 580 6.3<br />

648 558<br />

3.3<br />

508 463<br />

4.5<br />

543<br />

532 26<br />

578 559 16.0<br />

a Assumpti<strong>on</strong>s: Labor = US$2.09/d; First hand weed<strong>in</strong>g = 24 d/ha: Sec<strong>on</strong>d hand weed<strong>in</strong>g = 19 d/ha: First rotary<br />

weed<strong>in</strong>g = 11 d/ha; Sec<strong>on</strong>d rotary weed<strong>in</strong>g = 10 d/ha: Herbicide = 2,4-D (0.8 kg/ha) = US$10.30. Thiobencarb/<br />

2,4-D = US$19.<br />

Table 3.2. Ec<strong>on</strong>omic acceptability a of direct weed c<strong>on</strong>trol methods <strong>in</strong> broadcast seeded flooded<br />

rice (De Datta and Amp<strong>on</strong>g-Nyarko 1988).<br />

(US$)<br />

Rate <strong>Weed</strong> Gra<strong>in</strong> Marg<strong>in</strong>al<br />

C<strong>on</strong>trol method (kg ai/ha) biomass yield Total Total Return benefit-<br />

(g/m 2 ) (t/ha) variable return above cost<br />

cost variable ratio<br />

cost<br />

No weed<strong>in</strong>g 287<br />

Butachlor 1.0 238<br />

Butachlor + 1 0.5 21<br />

hand weed<strong>in</strong>g<br />

2.1 0<br />

2.7 18.4<br />

4.2 110<br />

350 350<br />

473 455<br />

735 625<br />

a<br />

Assumpti<strong>on</strong>s: Labor = US$2.09/d, One hand weed<strong>in</strong>g = 48 d/ha. Herbicide = butachlor (1.0 kg ai/ha) =<br />

US$18.40.<br />

Integrated weed management is<br />

the rati<strong>on</strong>al use of direct and <strong>in</strong>direct<br />

c<strong>on</strong>trol methods to provide cost-<br />

effective weed c<strong>on</strong>trol. A further<br />

ref<strong>in</strong>ement, implied <strong>in</strong> the terms<br />

<strong>in</strong>tegrated weed management and<br />

<strong>in</strong>tegrated pest management (IPM), is<br />

that, whenever possible, weed c<strong>on</strong>trol<br />

should be <strong>in</strong>tegrated with measures<br />

that further protect crops from<br />

<strong>in</strong>sects, diseases, nematodes, and<br />

other <strong>in</strong>jurious organisms, and<br />

should be practiced with an under-<br />

stand<strong>in</strong>g of the <strong>in</strong>terrelati<strong>on</strong>ships<br />

between weed populati<strong>on</strong>s and those<br />

organisms. An illustrated guide to<br />

<strong>in</strong>tegrated pest management (Reissig<br />

et al 1985) is available from IRRI.<br />

–<br />

5.7<br />

2.5<br />

Several cultural methods have<br />

been suggested to complement direct<br />

methods <strong>in</strong> an <strong>in</strong>tegrated approach.<br />

However, researchers often do not<br />

provide an ec<strong>on</strong>omic assessment of<br />

these <strong>in</strong>direct methods. As a result,<br />

farmers and their agents frequently<br />

misjudge the ec<strong>on</strong>omic significance of<br />

the new methods whose adopti<strong>on</strong><br />

they are c<strong>on</strong>sider<strong>in</strong>g. Am<strong>on</strong>g the<br />

comm<strong>on</strong>ly suggested <strong>in</strong>direct meth-<br />

ods for rice are land preparati<strong>on</strong>,<br />

water management, plant spac<strong>in</strong>g,<br />

seed rate, cultivar use, and fertilizer<br />

applicati<strong>on</strong>. Direct methods <strong>in</strong>clude<br />

hand weed<strong>in</strong>g and use of herbicides.


The essential factor <strong>in</strong> any<br />

<strong>in</strong>tegrated weed management<br />

program is the number of <strong>in</strong>direct<br />

and direct methods that can be<br />

comb<strong>in</strong>ed ec<strong>on</strong>omically <strong>in</strong> a given<br />

situati<strong>on</strong>. Farmers are <strong>in</strong>terested <strong>in</strong><br />

net benefits and <strong>in</strong> protect<strong>in</strong>g them-<br />

selves aga<strong>in</strong>st risks. A critical assess-<br />

ment of the <strong>in</strong>direct weed c<strong>on</strong>trol<br />

methods suggested for use <strong>in</strong><br />

<strong>in</strong>tegrated weed management—their<br />

cost-benefit ratio and their relative<br />

c<strong>on</strong>tributi<strong>on</strong> to l<strong>on</strong>g- and short-term<br />

weed c<strong>on</strong>trol—should be provided to<br />

put the <strong>in</strong>tegrated weed management<br />

c<strong>on</strong>cept <strong>in</strong> perspective. For example,<br />

<strong>in</strong>creased frequency of plow<strong>in</strong>g and<br />

harrow<strong>in</strong>gs does not elim<strong>in</strong>ate the<br />

need for direct weed c<strong>on</strong>trol. Farmers<br />

still have to follow land preparati<strong>on</strong><br />

with direct weed c<strong>on</strong>trol. It is, there-<br />

fore, more cost-effective to use fewer<br />

pre-plant<strong>in</strong>g harrow<strong>in</strong>gs and<br />

comb<strong>in</strong>e them with direct weed<br />

c<strong>on</strong>trol methods than to carry out<br />

more harrow<strong>in</strong>gs, with or without<br />

direct c<strong>on</strong>trol measures. A high<br />

seed<strong>in</strong>g rate cannot substitute for<br />

direct c<strong>on</strong>trol. No benefit is obta<strong>in</strong>ed<br />

when seed<strong>in</strong>g rate is <strong>in</strong>creased<br />

bey<strong>on</strong>d the optimum needed to give<br />

adequate stand establishment. It is<br />

also not ec<strong>on</strong>omical to produce high<br />

rice yields by substitut<strong>in</strong>g high<br />

fertilizati<strong>on</strong> for weed<strong>in</strong>g. Fertilizer<br />

efficiency is maximized when weeds<br />

are c<strong>on</strong>trolled.<br />

Maximum rice yields at m<strong>in</strong>imum<br />

cost should determ<strong>in</strong>e the relative<br />

mixture of <strong>in</strong>direct and direct<br />

measures <strong>in</strong> an <strong>in</strong>tegrated weed<br />

management system. Agr<strong>on</strong>omic<br />

practices such as water management,<br />

which <strong>in</strong>directly suppresses weeds,<br />

and fertilizer applicati<strong>on</strong>, which<br />

<strong>in</strong>creases the competitive ability of<br />

rice, are highly ec<strong>on</strong>omical.<br />

Comb<strong>in</strong>ed with any of the direct<br />

weed c<strong>on</strong>trol methods, these<br />

practices can c<strong>on</strong>stitute an ec<strong>on</strong>omi-<br />

cally viable producti<strong>on</strong> system.<br />

Indirect weed c<strong>on</strong>trol methods, if<br />

proven to be biologically feasible,<br />

should be subjected to partial budget-<br />

<strong>in</strong>g us<strong>in</strong>g relevant prices of major<br />

<strong>in</strong>puts. Farm-level resources,<br />

c<strong>on</strong>stra<strong>in</strong>ts, and other limitati<strong>on</strong>s<br />

should also be recognized. Cost-<br />

effective <strong>in</strong>tegrated weed manage-<br />

ment practices should be c<strong>on</strong>sistent<br />

and compatible with other rice<br />

producti<strong>on</strong> practices. That can be<br />

designated <strong>in</strong>tegrated crop<br />

management.<br />

<strong>Weed</strong> c<strong>on</strong>trol 47


Chapter 4<br />

Pr<strong>in</strong>ciples of herbicide use<br />

Herbicides are chemical substances or<br />

cultured biological organisms that kill<br />

or suppress plant growth by affect<strong>in</strong>g<br />

<strong>on</strong>e or more of the processes—cell<br />

divisi<strong>on</strong>, tissue development,<br />

chlorophyll formati<strong>on</strong>, photosynthesis,<br />

respirati<strong>on</strong>, nitrogen metabolism,<br />

enzyme activity—that are vital to plant<br />

survival. In general, herbicides applied<br />

at high rates kill all plants. At low rates,<br />

some herbicides kill some plants<br />

without damag<strong>in</strong>g other plants.<br />

Herbicides with such an ability are said<br />

to be selective. Use of selective<br />

herbicides for weed c<strong>on</strong>trol has be-<br />

come popular am<strong>on</strong>g rice farmers<br />

because of <strong>in</strong>creas<strong>in</strong>g labor costs for<br />

hand or mechanical weed<strong>in</strong>g.<br />

Types of herbicides<br />

Herbicides are comm<strong>on</strong>ly referred to as<br />

c<strong>on</strong>tact or translocated.<br />

C<strong>on</strong>tact herbicides<br />

C<strong>on</strong>tact herbicides c<strong>on</strong>trol weeds by<br />

kill<strong>in</strong>g the tissues <strong>in</strong> direct c<strong>on</strong>tact with<br />

the herbicide. They are normally<br />

applied to leaves and stems. Because<br />

they affect <strong>on</strong>ly the plant parts they<br />

come <strong>in</strong>to c<strong>on</strong>tact with, they are less<br />

effective <strong>on</strong> perennial weeds than <strong>on</strong><br />

annual weeds. Thorough coverage of<br />

the plant is essential for c<strong>on</strong>tact herbi-<br />

cides to be effective. A c<strong>on</strong>tact herbi-<br />

cide may be selective, such as oxyfluor-<br />

fen and propanil, or n<strong>on</strong>selective, such<br />

as paraquat.<br />

Translocated herbicides<br />

Translocated (systemic) herbicides<br />

move from the po<strong>in</strong>t where the<br />

herbicide comes <strong>in</strong>to c<strong>on</strong>tact with the<br />

plant to other plant parts. Systemic<br />

herbicides may be applied to stems and<br />

leaves or to the soil (those applied to<br />

soil are known as residual herbicides).<br />

Butachlor, 2,4-D, and glyphosate are<br />

examples of translocated herbicides.<br />

Glyphosate is a systemic herbicide<br />

when applied to stems and leaves, but<br />

it has no activity when applied to the<br />

soil. Translocated herbicides may be<br />

either selective or n<strong>on</strong>selective.<br />

Herbicide selectivity<br />

Herbicide selectivity is very important<br />

<strong>in</strong> crop producti<strong>on</strong>. Through selectiv-<br />

ity, it is possible to use a herbicide to<br />

kill a grassy weed, such as Ech<strong>in</strong>ochloa<br />

crus-galli, <strong>in</strong> a grassy crop such as rice.<br />

In practice, to avoid kill<strong>in</strong>g the rice<br />

plants and for good weed c<strong>on</strong>trol,<br />

selective herbicides should be used at<br />

recommended rates. Reduced rates<br />

result <strong>in</strong> poor weed c<strong>on</strong>trol. N<strong>on</strong>selec-<br />

tive herbicides, such as paraquat, are<br />

harmful to rice even at low rates.<br />

Herbicide selectivity can also be<br />

achieved dur<strong>in</strong>g applicati<strong>on</strong>, by<br />

direct<strong>in</strong>g the spray away from the crop<br />

or by us<strong>in</strong>g protective shields. Chemi-<br />

cal antidotes may be used to prevent<br />

the herbicide from kill<strong>in</strong>g a susceptible<br />

plant. For example, pretilachlor can<br />

<strong>on</strong>ly be used <strong>in</strong> direct seeded rice <strong>in</strong><br />

c<strong>on</strong>juncti<strong>on</strong> with an antidote (e.g.,<br />

fenclorim).<br />

Physical factors of selectivity<br />

To be effective, herbicides must come<br />

<strong>in</strong>to c<strong>on</strong>tact with the target plant and<br />

be reta<strong>in</strong>ed <strong>on</strong> its surfaces (root or<br />

shoot) l<strong>on</strong>g enough and <strong>in</strong> amounts<br />

large enough to kill the plant. The<br />

physical factors of selectivity are those<br />

that affect c<strong>on</strong>tact between the herbicide<br />

applied and the plant surfaces and<br />

the retenti<strong>on</strong> of the herbicides. Plants<br />

absorb soil-applied herbicides through<br />

roots and shoots of seedl<strong>in</strong>gs push<strong>in</strong>g<br />

upward through the soil. Selectivity is<br />

affected by herbicide dosage, formulati<strong>on</strong>,<br />

and placement and by the plant<br />

growth stage.<br />

Herbicide dosage. The amount of a<br />

herbicide absorbed by rice is critical for<br />

selectivity. Most herbicides are<br />

n<strong>on</strong>selective at high applicati<strong>on</strong> rates.<br />

Herbicide formulati<strong>on</strong>. Selectivity may<br />

be achieved through applicati<strong>on</strong> of<br />

herbicides as granular formulati<strong>on</strong>s.<br />

The granules that would be harmful to<br />

rice if reta<strong>in</strong>ed <strong>on</strong> its leaves bounce off<br />

and fall to the soil.<br />

Herbicide placement. To be effective,<br />

herbicides must first enter the plant.<br />

Selectivity based <strong>on</strong> placement is<br />

achieved by prevent<strong>in</strong>g herbicides<br />

from com<strong>in</strong>g <strong>in</strong>to c<strong>on</strong>tact with sites of<br />

entry <strong>in</strong>to the rice plant. This is<br />

Herbicide use 49


achieved by apply<strong>in</strong>g herbicides to the<br />

soil surface, by band applicati<strong>on</strong>, or by<br />

us<strong>in</strong>g shields. Selectivity of soilapplied<br />

herbicides may be lost if the<br />

herbicides leach through the soil and<br />

come <strong>in</strong>to c<strong>on</strong>tact with rice roots and<br />

shoots.<br />

Plant growth stage. In general, plants<br />

are most susceptible to herbicides at<br />

the seedl<strong>in</strong>g stage. As plants grow,<br />

they become less susceptible. In direct<br />

seeded rice, there is no difference <strong>in</strong><br />

growth stage between rice and weeds,<br />

and selectivity cannot be achieved<br />

through plant growth stage. In trans-<br />

planted rice, however, differences <strong>in</strong><br />

growth stage and positi<strong>on</strong> of grow<strong>in</strong>g<br />

po<strong>in</strong>ts of rice and weeds can be used to<br />

achieve selectivity. Plants grow<strong>in</strong>g<br />

under drought c<strong>on</strong>diti<strong>on</strong>s are less<br />

affected by herbicides than plants<br />

grow<strong>in</strong>g with normal soil moisture.<br />

Biological factors of selectivity<br />

Biological factors of herbicide selectiv-<br />

ity <strong>in</strong>clude differences <strong>in</strong> morphology,<br />

physiology, and metabolism am<strong>on</strong>g<br />

plant species. Leaf surfaces that are<br />

waxy, smooth, or densely hairy are<br />

wetted less readily by aqueous sprays<br />

than are surfaces that are less waxy or<br />

moderately hairy. Vertical leaves reta<strong>in</strong><br />

less spray than do horiz<strong>on</strong>tal leaves.<br />

Once absorbed by a plant cell, the<br />

herbicide may be immobilized with<strong>in</strong><br />

the cell; that also c<strong>on</strong>tributes to herbi-<br />

cide selectivity. Selectivity am<strong>on</strong>g<br />

plant species may be achieved when<br />

some plant species are able to detoxify<br />

a particular herbicide, while others are<br />

unable to do so and are killed. For<br />

example, rice plants are 40 times more<br />

tolerant of propanil than Ech<strong>in</strong>ochloa<br />

50 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

crus-galli. This is due to differences <strong>in</strong><br />

plant enzyme levels. <strong>Rice</strong> plants have a<br />

high level of aryl acylamidase, an<br />

enzyme that hydrolyzes propanil to<br />

n<strong>on</strong>phytotoxic 3,4-dichloroanil<strong>in</strong>e and<br />

propi<strong>on</strong>ic acid. E. crus-galli has a low<br />

level of this enzyme and is unable to<br />

hydrolyze propanil; therefore it is<br />

easily killed. This detoxificati<strong>on</strong><br />

process can be <strong>in</strong>hibited by organo-<br />

phosphorus and carbamate <strong>in</strong>secti-<br />

cides.<br />

Herbicide movement<br />

<strong>in</strong> plants<br />

Herbicides must enter the plant before<br />

their toxic effect can be <strong>in</strong>duced.<br />

Herbicides applied to leaf surfaces and<br />

buds penetrate the plant by diffusi<strong>on</strong>.<br />

Higher temperatures <strong>in</strong>crease the rate<br />

of penetrati<strong>on</strong>. Herbicide absorpti<strong>on</strong><br />

takes place <strong>in</strong> the guard cells of the<br />

stomata and through the cuticle.<br />

In the soil, herbicides move <strong>in</strong> the<br />

soil soluti<strong>on</strong> to the seed and roots, or<br />

are <strong>in</strong>tercepted by the root tips. Herbi-<br />

cides may penetrate the walls of root<br />

epidermal cells by mass flow.<br />

Once <strong>in</strong> plants, herbicides move via<br />

the phloem and the xylem systems to<br />

cells and tissues remote from the site of<br />

uptake. The phloem c<strong>on</strong>veys sugar<br />

from the green tissues of the plant<br />

(where sugar is manufactured) to<br />

storage tissues. Very young leaves do<br />

not export sugar, so herbicides applied<br />

to them rema<strong>in</strong> there. If the transport of<br />

sugar is restricted, as when plants are<br />

under low light <strong>in</strong>tensity, redistribu-<br />

ti<strong>on</strong> of herbicides will not occur. As a<br />

result, the general recommendati<strong>on</strong> for<br />

many translocated herbicides is that<br />

the weeds should be <strong>in</strong> active growth.<br />

Glyphosate and MCPA are examples<br />

of herbicides translocated <strong>in</strong> the<br />

phloem.<br />

The xylem is the plant system<br />

through which water and dissolved<br />

m<strong>in</strong>eral nutrients pass to the leaves.<br />

Herbicides taken up by the root move<br />

al<strong>on</strong>g this stream. Herbicide uptake is<br />

therefore affected by factors affect<strong>in</strong>g<br />

transpirati<strong>on</strong> rate, such as light, temperature,<br />

w<strong>in</strong>d speed, humidity, and<br />

soil moisture. The triaz<strong>in</strong>e herbicides<br />

are good examples of herbicides transported<br />

up <strong>in</strong> the system.<br />

For a more detailed discussi<strong>on</strong> of the<br />

pr<strong>in</strong>ciples of herbicide acti<strong>on</strong>, refer to<br />

<strong>Weed</strong> science pr<strong>in</strong>ciples by W.P. Ander-<br />

s<strong>on</strong> (1983).<br />

Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong><br />

<strong>Weed</strong>s should be removed from rice as<br />

early as possible. Thus, herbicides<br />

should be applied dur<strong>in</strong>g early crop<br />

growth stages. The time to apply a<br />

herbicide depends <strong>on</strong> the properties of<br />

the herbicide and the target weeds,<br />

weather, and cultural practices. Herbi-<br />

cides can be applied at several periods<br />

before and dur<strong>in</strong>g the crop grow<strong>in</strong>g<br />

period. In general, herbicides are<br />

applied at preplant<strong>in</strong>g, preemergence,<br />

or postemergence.<br />

Preplant<strong>in</strong>g herbicide applicati<strong>on</strong><br />

A preplant<strong>in</strong>g herbicide applicati<strong>on</strong> is<br />

made before the rice crop is sown. This<br />

applicati<strong>on</strong> helps <strong>in</strong> land preparati<strong>on</strong><br />

<strong>in</strong> a m<strong>in</strong>imum tillage cropp<strong>in</strong>g system.<br />

Translocated foliar herbicides (such as<br />

glyphosate) kill perennial broadleaf<br />

weeds and grasses found <strong>in</strong> the fallow<br />

vegetati<strong>on</strong>. Where annual weeds<br />

predom<strong>in</strong>ate, paraquat is adequate.<br />

Where volatile preplant<strong>in</strong>g herbicides<br />

are used, they must be <strong>in</strong>corporated<br />

<strong>in</strong>to the soil before plant<strong>in</strong>g, to avoid<br />

damage to the rice crop.


Preemergence herbicide applicati<strong>on</strong><br />

Preemergence herbicides are applied to<br />

the soil surface after plant<strong>in</strong>g but<br />

before rice and weeds emerge for direct<br />

seeded rice, and before weeds emerge<br />

for transplanted rice. These are also<br />

known as residual herbicides. Selective<br />

systemic herbicides are normally used<br />

this way. N<strong>on</strong>selective c<strong>on</strong>tact herbi-<br />

cides, such as paraquat, can be used to<br />

kill germ<strong>in</strong>ated weeds, but they must<br />

be applied before rice germ<strong>in</strong>ates.<br />

Residual herbicides form a th<strong>in</strong>,<br />

protective, c<strong>on</strong>t<strong>in</strong>uous layer 2 cm or so<br />

deep <strong>on</strong> the soil surface. Roots of weed<br />

seedl<strong>in</strong>gs or emerg<strong>in</strong>g shoots take up<br />

the herbicide when they pass through<br />

this layer and are killed <strong>in</strong> the process.<br />

Moisture is necessary to carry the<br />

herbicide to weeds germ<strong>in</strong>at<strong>in</strong>g below<br />

the soil surface. Good weed c<strong>on</strong>trol<br />

cannot be achieved when a residual<br />

herbicide is applied to dry soil and the<br />

weather rema<strong>in</strong>s dry. Residual herbi-<br />

cides for dry seeded rice cultures<br />

should, therefore, be applied to moist<br />

soil or dur<strong>in</strong>g light ra<strong>in</strong>, or irrigati<strong>on</strong><br />

should follow a few days after herbi-<br />

cide spray<strong>in</strong>g.<br />

Postemergence herbicide applicati<strong>on</strong><br />

Postemergence herbicides are applied<br />

after rice and weeds have germ<strong>in</strong>ated<br />

or after rice has been transplanted. The<br />

herbicide must, therefore, be selective<br />

or rice seedl<strong>in</strong>gs will be killed. If the<br />

herbicide is selective, it can be applied<br />

over the foliage to kill the weeds<br />

without harm<strong>in</strong>g the rice. Examples<br />

are 2,4-D, propanil, and bentaz<strong>on</strong>. Se-<br />

lectivity also can be achieved by direct-<br />

<strong>in</strong>g applicati<strong>on</strong> away from the crop to<br />

prevent the herbicides from com<strong>in</strong>g<br />

<strong>in</strong>to c<strong>on</strong>tact with the rice foliage.<br />

Behavior of herbicides<br />

<strong>in</strong> soil<br />

The envir<strong>on</strong>ment of a flooded ricefield<br />

differs from that of an upland ricefield<br />

<strong>in</strong> physical, chemical, and biological<br />

properties of soil, as well as <strong>in</strong> prevail-<br />

<strong>in</strong>g aquatic c<strong>on</strong>diti<strong>on</strong>s and the k<strong>in</strong>ds<br />

and ecology of animals and plants<br />

found, <strong>in</strong>clud<strong>in</strong>g weeds. Soils <strong>in</strong><br />

flooded fields differ from upland soils<br />

<strong>in</strong> aerobic and redox c<strong>on</strong>diti<strong>on</strong>s and<br />

soil pH. Because of these differences,<br />

the degradati<strong>on</strong> rate of herbicides<br />

differs between upland and flooded<br />

soils.<br />

A large amount of the herbicides<br />

applied to floodwater enters the soil<br />

layer with the percolat<strong>in</strong>g water. Many<br />

herbicides are reta<strong>in</strong>ed <strong>in</strong> the soil<br />

surface layer, where they are mostly<br />

degraded by soil microorganisms. The<br />

degradati<strong>on</strong> rate depends <strong>on</strong> the<br />

properties of the soil and the herbicide.<br />

Microorganisms <strong>in</strong> a submerged soil<br />

deplete oxygen. The soil is, therefore,<br />

reduced (redox) except for the 0.5-1 cm<br />

surface layer, which is kept <strong>in</strong> an<br />

oxidized state by oxygen that diffuses<br />

from the floodwater to the soil surface.<br />

Thus, <strong>in</strong> flooded soils, except for the<br />

uppermost layer, ferric ir<strong>on</strong> is reduced<br />

to ferrous ir<strong>on</strong>, soil pH reaches 6-7,<br />

aerobic organisms are <strong>in</strong>active, and<br />

anaerobes are abundant. These result<br />

<strong>in</strong> differences <strong>in</strong> herbicide degradati<strong>on</strong><br />

between the oxidative and reductive<br />

layers of the soil, and between upland<br />

and flooded soils.<br />

Adsorpti<strong>on</strong><br />

When herbicides reach the soil surface,<br />

some herbicide is taken up and b<strong>on</strong>ded<br />

to the surface of soil colloids (ad-<br />

sorbed) due to electrical attracti<strong>on</strong><br />

between the herbicide and the colloids.<br />

Adsorpti<strong>on</strong> occurs <strong>in</strong> the clay and<br />

organic matter fracti<strong>on</strong> of the soil.<br />

Weakly adsorbed herbicides rema<strong>in</strong><br />

active aga<strong>in</strong>st germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs<br />

and buds pass<strong>in</strong>g through the<br />

herbicide layer. Weak adsorpti<strong>on</strong><br />

prevents the herbicide from leach<strong>in</strong>g<br />

<strong>in</strong>to layers where the grow<strong>in</strong>g po<strong>in</strong>t of<br />

rice is located. This is an example of<br />

selectivity by physical separati<strong>on</strong>.<br />

In practice, herbicides are applied at<br />

a higher rate to soils high <strong>in</strong> clay and<br />

organic matter than to sandy soils,<br />

because more herbicide is adsorbed <strong>in</strong><br />

clayey than <strong>in</strong> sandy soils.<br />

Leach<strong>in</strong>g<br />

Leach<strong>in</strong>g causes movement of herbi-<br />

cides through soil with the flow of<br />

water. The extent of leach<strong>in</strong>g varies<br />

with the water solubility of the herbi-<br />

cide and with soil texture. When a<br />

residual herbicide is applied to the soil<br />

surface, it must move evenly 2-5 cm<br />

<strong>in</strong>to the soil, to the area where most<br />

weed seeds germ<strong>in</strong>ate. Hence, soil<br />

moisture after herbicide applicati<strong>on</strong> is<br />

important. As was po<strong>in</strong>ted out earlier,<br />

preemergence residual herbicides<br />

applied to dry soil will not be effective.<br />

However, too much water or leach<strong>in</strong>g<br />

will carry the herbicide too deeply <strong>in</strong>to<br />

the soil, below the z<strong>on</strong>e where weed<br />

seeds are found. This also reduces the<br />

effectiveness of the herbicide.<br />

Herbicides <strong>in</strong> flooded ricefields are<br />

c<strong>on</strong>t<strong>in</strong>uously leached with percolat<strong>in</strong>g<br />

water. Fortunately, many rice herbi-<br />

cides are readily adsorbed to the soil<br />

comp<strong>on</strong>ents. Such herbicides are<br />

reta<strong>in</strong>ed <strong>in</strong> the soil l<strong>on</strong>g enough for<br />

residual activity to c<strong>on</strong>trol weeds.<br />

Herbicide use 51


Runoff<br />

Runoff is <strong>on</strong>e of the ma<strong>in</strong> pathways of<br />

herbicide loss from flooded ricefields.<br />

Herbicides are usually transported as<br />

solutes <strong>in</strong> soil water; their movement<br />

will depend <strong>on</strong> solubility and adsorp-<br />

tive capacity. In runoff water, however,<br />

herbicides are transported both as<br />

solutes and <strong>on</strong> soil sediment particles.<br />

An irrigati<strong>on</strong> system needs to be well-<br />

regulated to reta<strong>in</strong> herbicides with<strong>in</strong><br />

the system. Irrigati<strong>on</strong> dra<strong>in</strong>age and<br />

overflow should be avoided, to reduce<br />

herbicide losses and to protect down-<br />

stream water from polluti<strong>on</strong>.<br />

Volatilizati<strong>on</strong><br />

All herbicides are volatile (have a<br />

tendency to change from a solid or<br />

liquid to a gaseous state). Volatility,<br />

however, varies am<strong>on</strong>g herbicides and<br />

<strong>in</strong>creases with higher temperature.<br />

Volatile herbicides should be mechani-<br />

cally <strong>in</strong>corporated <strong>in</strong>to the soil to avoid<br />

excessive chemical loss.<br />

Volatilizati<strong>on</strong> from the floodwater<br />

<strong>in</strong>to the atmosphere is an important<br />

route of herbicide loss from lowland<br />

ricefields. The volatilizati<strong>on</strong> rate<br />

depends <strong>on</strong> water evaporati<strong>on</strong> rate,<br />

water depth, water solubility, and<br />

vapor pressure of the herbicide.<br />

Volatilizati<strong>on</strong> loss of herbicides from a<br />

shallow, warm water flooded field can<br />

be highly significant. Volatilizati<strong>on</strong><br />

from the soil surface of upland rice<br />

may be much greater than that from<br />

the floodwater of lowland rice.<br />

Thiocarbamate herbicides are volatile<br />

<strong>in</strong> floodwater.<br />

52 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Photodegradati<strong>on</strong><br />

Photochemical and biochemical<br />

degradati<strong>on</strong> of herbicides govern their<br />

fate <strong>in</strong> a flooded envir<strong>on</strong>ment. For<br />

example, the high pH of the water<br />

<strong>in</strong>duces hydrolysis of carboxylic esters.<br />

Some herbicides adsorb ultraviolet<br />

radiati<strong>on</strong>. The presence of humic acids<br />

<strong>in</strong> floodwater may also <strong>in</strong>duce photo-<br />

chemical degradati<strong>on</strong> of herbicides<br />

that do not adsorb ultraviolet radiati<strong>on</strong><br />

(Yar<strong>on</strong> et al 1985).<br />

Persistence<br />

Herbicide persistence is the length of<br />

time a herbicide rema<strong>in</strong>s active <strong>in</strong> the<br />

soil. Persistence depends <strong>on</strong> the<br />

amount of herbicide applied, the rate at<br />

which it is broken down, properties of<br />

the particular herbicide, and leach<strong>in</strong>g.<br />

Herbicides with l<strong>on</strong>g persistence keep<br />

a crop weed-free for a l<strong>on</strong>ger time than<br />

do herbicides with short persistence.<br />

Persistence of a herbicide bey<strong>on</strong>d the<br />

rice-grow<strong>in</strong>g seas<strong>on</strong>, however, is<br />

undesirable because other crops<br />

sensitive to that herbicide cannot be<br />

grown <strong>on</strong> the same land for some time.<br />

Effect of envir<strong>on</strong>ment <strong>on</strong><br />

herbicidal activity<br />

Several envir<strong>on</strong>mental factors affect<br />

the success of weed c<strong>on</strong>trol by soil or<br />

foliar-applied herbicides. Temperature,<br />

relative humidity, soil moisture, and<br />

w<strong>in</strong>d are important.<br />

Temperature<br />

Absorpti<strong>on</strong> and translocati<strong>on</strong> of herbi-<br />

cides <strong>in</strong>crease as temperature<br />

<strong>in</strong>creases, and selectivity can be<br />

changed by differences <strong>in</strong> absorpti<strong>on</strong><br />

and translocati<strong>on</strong>. For example, if<br />

propanil is applied to rice when the<br />

temperature is above 38 °C, phytotoxic-<br />

ity may occur. At high temperatures,<br />

simetryn will cause <strong>in</strong>jury, even <strong>in</strong><br />

jap<strong>on</strong>ica rice, as a result of higher<br />

absorpti<strong>on</strong> through the roots. In<br />

general, the rate at which herbicide<br />

degrades <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g<br />

temperature.<br />

Relative humidity<br />

At high relative humidity, leaf stomata<br />

are open, which <strong>in</strong>creases absorpti<strong>on</strong> of<br />

herbicide <strong>in</strong>to the leaf. Evaporati<strong>on</strong> of<br />

herbicides from leaf surfaces is slowed<br />

at high relative humidity. Slow evapo-<br />

rati<strong>on</strong> lengthens the time the herbicide<br />

can enter the plant.<br />

Soil moisture<br />

Soil moisture affects herbicide effec-<br />

tiveness by <strong>in</strong>fluenc<strong>in</strong>g the amount of<br />

herbicide <strong>in</strong> the soil soluti<strong>on</strong> and the<br />

depth of herbicide movement <strong>in</strong> the<br />

soil profile. When a residual herbicide<br />

is applied to a dry soil, it relies <strong>on</strong> soil<br />

moisture (from ra<strong>in</strong> or from irrigati<strong>on</strong>)<br />

to move it to the root z<strong>on</strong>e. Inadequate<br />

movement is a comm<strong>on</strong> cause of the<br />

failure of herbicides <strong>in</strong> upland fields.<br />

W<strong>in</strong>d<br />

W<strong>in</strong>d adversely affects the absorpti<strong>on</strong><br />

of foliar-applied herbicides by <strong>in</strong>creas-<br />

<strong>in</strong>g the evaporati<strong>on</strong> of spray droplets<br />

and the volatilizati<strong>on</strong> of herbicide<br />

residue from the leaf surfaces.<br />

Properties of herbicides<br />

When the probable behavior of a<br />

herbicide can be predicted from its<br />

properties, that <strong>in</strong>formati<strong>on</strong> can be<br />

used to design safer and more effective<br />

applicati<strong>on</strong>. Some properties of herbi-<br />

cides that affect their biological activity


and behavior <strong>in</strong> the crop envir<strong>on</strong>ment<br />

<strong>in</strong>clude partiti<strong>on</strong> coefficient, vapor<br />

pressure, and water solubility. Parti-<br />

ti<strong>on</strong> coefficient describes the relative<br />

distributi<strong>on</strong> of a compound between a<br />

fatlike layer and water when shaken<br />

together. Compounds that accumulate<br />

<strong>in</strong> the fatlike layer are likely to be<br />

stored <strong>in</strong> the fat of animals.<br />

Vapor pressure<br />

Most organic chemicals tend to change<br />

to vapor. This tendency is measured as<br />

vapor pressure and is affected by<br />

temperature. As temperature <strong>in</strong>-<br />

creases, vapor pressure also <strong>in</strong>creases.<br />

A liquid with a high vapor pressure is<br />

recognized as a volatile compound,<br />

<strong>on</strong>e that evaporates rapidly. In c<strong>on</strong>-<br />

trast, herbicides with high boil<strong>in</strong>g<br />

po<strong>in</strong>ts have lower vapor pressures, and<br />

thus are less volatile (Davies et al 1988).<br />

Thiocarbamate herbicides have a high<br />

vapor pressure.<br />

When herbicides with high vapor<br />

pressure are applied to the soil surface,<br />

they can evaporate so rapidly they are<br />

<strong>in</strong>effective. Such herbicides should be<br />

<strong>in</strong>corporated <strong>in</strong> the soil. It has been<br />

frequently observed that more herbi-<br />

cide is lost from a moist soil than from<br />

a dry soil.<br />

Water solubility<br />

Practically all herbicides have a meas-<br />

urable solubility <strong>in</strong> water. Water<br />

solubility is important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

leach<strong>in</strong>g, degree of adsorpti<strong>on</strong>, and<br />

mobility <strong>in</strong> the envir<strong>on</strong>ment. Herbi-<br />

cides that are water soluble leach<br />

readily. Where a herbicide is less<br />

soluble, sorpti<strong>on</strong> <strong>on</strong>to suspended<br />

matter <strong>in</strong> the water tends to take the<br />

chemical out of most of the water.<br />

Herbicide formulati<strong>on</strong>s<br />

Herbicides are not sold as 100% active<br />

<strong>in</strong>gredient. Powders, solvents, stickers,<br />

or wett<strong>in</strong>g agents usually are added to<br />

help disperse the active <strong>in</strong>gredient<br />

throughout a carrier. The f<strong>in</strong>al product<br />

is a formulated herbicide that may<br />

have a number of names and may<br />

c<strong>on</strong>ta<strong>in</strong> different proporti<strong>on</strong>s of active<br />

<strong>in</strong>gredient.<br />

A small amount of herbicide (about<br />

2.0 kg) mixed with about 200 liters of<br />

water carrier is sufficient to cover a<br />

hectare. It is essential that the herbicide<br />

be uniformly distributed <strong>in</strong> the spray<br />

water.<br />

Some of the types of formulati<strong>on</strong>s<br />

are expla<strong>in</strong>ed below.<br />

Water-soluble c<strong>on</strong>centrate (S). The<br />

active <strong>in</strong>gredient <strong>in</strong> a water-soluble<br />

c<strong>on</strong>centrate dissolves readily <strong>in</strong> water.<br />

Wettable powder (WP or W). When an<br />

active <strong>in</strong>gredient does not dissolve<br />

readily <strong>in</strong> standard solvents, a wettable<br />

powder is prepared. The formulati<strong>on</strong><br />

c<strong>on</strong>sists of the dry herbicide plus<br />

another <strong>in</strong>ert solid, such as clay,<br />

together with agents that allow disper-<br />

sal and suspensi<strong>on</strong> of f<strong>in</strong>e particles <strong>in</strong><br />

liquid. Wettable powders mix readily<br />

with water, but tend to settle at the<br />

bottom of the spray tank. Wettable<br />

powders are be<strong>in</strong>g replaced by flow-<br />

ables and water-dispersible granules<br />

that overcome many of the storage and<br />

spray<strong>in</strong>g problems that have occurred<br />

<strong>in</strong> wettable powder.<br />

Emulsifiable c<strong>on</strong>centrate (EC or E). An<br />

emulsifiable c<strong>on</strong>centrate is used for<br />

herbicides that are not water soluble<br />

but are soluble <strong>in</strong> organic solvents. An<br />

emulsifier is added to form a stable oil-<br />

<strong>in</strong>-water emulsi<strong>on</strong> when the herbicide<br />

is mixed with water.<br />

Flowables (F). In flowable herbicides,<br />

the active <strong>in</strong>gredient is not readily<br />

soluble <strong>in</strong> water or an organic solvent.<br />

The flowable c<strong>on</strong>sists of a f<strong>in</strong>ely<br />

ground wettable powder suspended <strong>in</strong><br />

a small amount of liquid and mixed<br />

with emulsifiers.<br />

Granules (G or g). Granules are a<br />

ready-to-use, dry formulated product<br />

with a carrier, usually clay. Granules,<br />

which may c<strong>on</strong>ta<strong>in</strong> 2-20% active<br />

<strong>in</strong>gredient, can be broadcast <strong>on</strong> flood-<br />

water to c<strong>on</strong>trol weeds grow<strong>in</strong>g <strong>in</strong> the<br />

water (submerged weeds). Granules<br />

are usually designed to improve<br />

handl<strong>in</strong>g and applicati<strong>on</strong> properties<br />

(e.g., selectivity). An advantage of<br />

granules is that there is less drift than<br />

with f<strong>in</strong>e sprays under w<strong>in</strong>dy c<strong>on</strong>di-<br />

ti<strong>on</strong>s. Granules, however, are bulky<br />

and often have higher handl<strong>in</strong>g costs.<br />

Adjuvant. Adjuvants are materials<br />

that facilitate the acti<strong>on</strong> of herbicides or<br />

modify characteristics of the herbicide<br />

formulati<strong>on</strong>. Examples of adjuvants<br />

are surfactants and wett<strong>in</strong>g agents, oils,<br />

stickers, thicken<strong>in</strong>g agents, emulsifiers,<br />

and stabiliz<strong>in</strong>g agents.<br />

Surfactants are comm<strong>on</strong>ly used to<br />

improve the emulsify<strong>in</strong>g, dispers<strong>in</strong>g,<br />

spread<strong>in</strong>g, or wett<strong>in</strong>g ability of the<br />

herbicide formulati<strong>on</strong> by modify<strong>in</strong>g its<br />

surface characteristics. A surfactant<br />

<strong>in</strong>creases retenti<strong>on</strong> of the herbicide <strong>on</strong><br />

the leaf surface after spray<strong>in</strong>g. It also<br />

helps entry of the herbicide <strong>in</strong>to leaves<br />

and stems.<br />

Herbicide use 53


Surfactants are often added to<br />

herbicide formulati<strong>on</strong>s by the manu-<br />

facturer, but additi<strong>on</strong>al surfactants<br />

may be needed for some postemer-<br />

gence herbicides or <strong>in</strong> some envir<strong>on</strong>-<br />

mental c<strong>on</strong>diti<strong>on</strong>s (e.g., bentaz<strong>on</strong><br />

under low temperatures). The herbi-<br />

cide label <strong>in</strong>dicates how much<br />

surfactant to use when an additi<strong>on</strong>al<br />

surfactant is required. When surfac-<br />

tants are not recommended, their use<br />

with foliage-applied herbicides can<br />

result <strong>in</strong> loss of selectivity.<br />

Herbicide labels<br />

The best source of <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>-<br />

cern<strong>in</strong>g safe and effective herbicide use<br />

is the product label (Fig. 4.1) pr<strong>in</strong>ted<br />

<strong>on</strong> or attached to the herbicide c<strong>on</strong>-<br />

ta<strong>in</strong>er. It gives directi<strong>on</strong>s <strong>on</strong> effective,<br />

safe use of the herbicide. The label<br />

should be read carefully and under-<br />

stood before any herbicide is used. The<br />

herbicide label is a legal document that<br />

<strong>in</strong> many countries has government<br />

approval. Every herbicide product<br />

label should c<strong>on</strong>ta<strong>in</strong> the follow<strong>in</strong>g<br />

<strong>in</strong>formati<strong>on</strong>:<br />

Trade or brand name. The trade or<br />

brand name identifies a herbicide of<br />

<strong>on</strong>e company and differentiates it from<br />

those of other companies. Like com-<br />

m<strong>on</strong> weed names, trade names of<br />

herbicides may change from country to<br />

country. Thus, the trade name is not<br />

always adequate for identify<strong>in</strong>g a<br />

herbicide or determ<strong>in</strong><strong>in</strong>g correct rates<br />

of applicati<strong>on</strong>. When an applicati<strong>on</strong><br />

rate is recommended with a trade<br />

name, the rate normally refers to the<br />

amount of formulated product, and<br />

not the rate of active <strong>in</strong>gredient or the<br />

acid equivalent.<br />

Chemical and comm<strong>on</strong> names. Herbi-<br />

cides have complex chemical names.<br />

Rules for select<strong>in</strong>g suitable chemical<br />

names are given by appropriate<br />

chemical associati<strong>on</strong>s (e.g., the Interna-<br />

54 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

ti<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied<br />

Chemistry [IUPAC]). The chemical<br />

name refers to the active <strong>in</strong>gredient. In<br />

additi<strong>on</strong> to the chemical name, each<br />

herbicide is given a comm<strong>on</strong> name<br />

which also applies to the active <strong>in</strong>gre-<br />

dient. The comm<strong>on</strong> name is not the<br />

same as the trade name of the same<br />

herbicide. Comm<strong>on</strong> names for herbi-<br />

cides are approved by appropriate pro-<br />

fessi<strong>on</strong>al bodies, such as the Interna-<br />

ti<strong>on</strong>al Standardizati<strong>on</strong> Organizati<strong>on</strong><br />

4.1 All herbicide labels are required to<br />

provide important <strong>in</strong>formati<strong>on</strong>. Users should<br />

read and understand the label before open<strong>in</strong>g<br />

any herbicide c<strong>on</strong>ta<strong>in</strong>er.


Table 4.1. Mean<strong>in</strong>gs of signal words found <strong>on</strong> herbicide formulati<strong>on</strong> labels, to state danger to<br />

humans.<br />

Lethal oral dose<br />

Approximate lethal (LD 50 ) for rats<br />

Signal word Acute toxicity oral dose for an (mg/kg body<br />

adult human weight) (See p. 62<br />

for discussi<strong>on</strong> <strong>on</strong><br />

Danger/Pois<strong>on</strong><br />

Warn<strong>in</strong>g<br />

Cauti<strong>on</strong><br />

No signal word<br />

Highly toxic<br />

Moderately toxic<br />

Low to relatively<br />

n<strong>on</strong>toxic<br />

Relatively n<strong>on</strong>toxic<br />

(ISO). A herbicide may be produced or<br />

formulated by more than <strong>on</strong>e company<br />

and thus be sold under several brand<br />

names, but the comm<strong>on</strong> name or<br />

chemical name should always be the<br />

same <strong>on</strong> all products. For example:<br />

Trade or brand names: Machete,<br />

Butanex, Lambast<br />

Chemical name: N-(buthoxymethyl)-2-<br />

chloro-N-(2,6diethylphenyl)<br />

acetamide<br />

Comm<strong>on</strong> name: butachlor<br />

Active <strong>in</strong>gredient. Each label specifi-<br />

cally names the active <strong>in</strong>gredient<br />

present <strong>in</strong> the herbicide. The amount of<br />

active <strong>in</strong>gredient may be given <strong>in</strong><br />

percentage by weight or <strong>in</strong> grams per<br />

liter, and may be listed by its comm<strong>on</strong><br />

name or by its chemical name. The<br />

<strong>in</strong>ert <strong>in</strong>gredients need not be named,<br />

but the label should specify their per-<br />

centage of c<strong>on</strong>tent.<br />

Formulati<strong>on</strong>. Some labels spell out<br />

the formulati<strong>on</strong>, others use abbrevia-<br />

ti<strong>on</strong>s, such as EC or E for emulsifiable<br />

c<strong>on</strong>centrates; WP or W for wettable<br />

powder; FW, F, or L for flowables; G<br />

for granules; and S for solubles.<br />

C<strong>on</strong>tent. Each label gives the total<br />

amount of herbicide <strong>in</strong> the c<strong>on</strong>ta<strong>in</strong>er<br />

(eg, <strong>in</strong> liters [L] or kilograms [kg]).<br />

A taste to <strong>on</strong>e<br />

teaspo<strong>on</strong>ful (5 ml)<br />

One teaspo<strong>on</strong>ful to 2<br />

tablespo<strong>on</strong>fuls (30 ml)<br />

30-450 ml<br />

LD 50 )<br />

5-50<br />

50-500<br />

500-5,000<br />

Signal words and symbols. Herbicide<br />

labels state how pois<strong>on</strong>ous the<br />

product is, us<strong>in</strong>g specific signal words<br />

and symbols. Examples are shown <strong>in</strong><br />

Table 4.1.<br />

Labels of all highly toxic products<br />

have, <strong>in</strong> additi<strong>on</strong> to the word pois<strong>on</strong>,<br />

the skull and cross-b<strong>on</strong>es symbol.<br />

Pictograms-graphically def<strong>in</strong>itive<br />

symbols-are also recommended for<br />

<strong>in</strong>clusi<strong>on</strong> <strong>on</strong> agrochemical labels (Info<br />

Letter 1988). Examples of pictograms<br />

are draw<strong>in</strong>gs of a pair of pants <strong>in</strong> boots<br />

and a pair of hands <strong>in</strong> gloves, to c<strong>on</strong>vey<br />

the need to wear footwear and gloves<br />

for safe handl<strong>in</strong>g of chemicals. These<br />

labels also <strong>in</strong>clude the statement Keep<br />

out of reach of children.<br />

Directi<strong>on</strong>s for use. Directi<strong>on</strong>s for use<br />

provide <strong>in</strong>structi<strong>on</strong>s <strong>on</strong> how to use the<br />

herbicide. This <strong>in</strong>cludes <strong>in</strong>formati<strong>on</strong> <strong>on</strong><br />

weeds that the herbicide c<strong>on</strong>trols,<br />

crops <strong>on</strong> which applicati<strong>on</strong> of the<br />

herbicide is safe, applicati<strong>on</strong> rates,<br />

applicati<strong>on</strong> time, and applicati<strong>on</strong><br />

method. All directi<strong>on</strong>s for use must be<br />

followed.<br />

Name of manufacturer. The name and<br />

address of the manufacturer or<br />

distributor of the product often is<br />

required by law to be <strong>on</strong> the label.<br />

Hazards to humans and domestic<br />

animals. The hazards porti<strong>on</strong> of a label<br />

<strong>in</strong>dicates how the herbicide may be<br />

harmful to man and domestic animals.<br />

It gives <strong>in</strong>formati<strong>on</strong> <strong>on</strong> how to avoid<br />

pois<strong>on</strong><strong>in</strong>g or c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, such as<br />

the type of protective cloth<strong>in</strong>g re-<br />

quired.<br />

Envir<strong>on</strong>mental hazards. To help<br />

reduce undesirable effects <strong>on</strong> the<br />

envir<strong>on</strong>ment, the label also provides<br />

envir<strong>on</strong>mental precauti<strong>on</strong>s. It may<br />

<strong>in</strong>clude warn<strong>in</strong>gs that it is harmful to<br />

birds, fish, and wildlife, and advice <strong>on</strong><br />

how to avoid c<strong>on</strong>tam<strong>in</strong>at<strong>in</strong>g water<br />

bodies.<br />

Harvest<strong>in</strong>g statement. A harvest<strong>in</strong>g<br />

statement is pr<strong>in</strong>ted <strong>on</strong> labels when<br />

there is a chance that the treated crop<br />

may be fed to animals or handled by<br />

humans. Because residues of a herbi-<br />

cide require a m<strong>in</strong>imum number of<br />

days to degrade, a harvest<strong>in</strong>g state-<br />

ment specifies the number of days<br />

between the last herbicide applicati<strong>on</strong><br />

and the time when the crop can be<br />

safely cut, threshed, or eaten.<br />

Herbicide applicators<br />

A herbicide applicator is any device<br />

used to apply herbicides <strong>on</strong> plant and<br />

soil surfaces. Applicators distribute an<br />

exact quantity of a herbicide uniformly<br />

over a given area. They can be classi-<br />

fied as n<strong>on</strong>pressurized or pressurized.<br />

N<strong>on</strong>pressurized applicators <strong>in</strong>clude<br />

the water can, granular applicator,<br />

c<strong>on</strong>trolled-droplet applicator, and<br />

direct-c<strong>on</strong>tact applicators such as rope<br />

wicks and wipers.<br />

Hydraulic (pressurized) applicators<br />

usually need water to work. A pressur-<br />

ized applicator may be manually<br />

operated (such as the lever-operated<br />

knapsack sprayer), motorized, or<br />

ground-driven (Fig 4.2).<br />

Herbicide use 55


C<strong>on</strong>trolled-droplet applicator<br />

A c<strong>on</strong>trolled-droplet applicator (CDA)<br />

produces uniform-sized droplets of<br />

spray. <strong>Weed</strong>s may be effectively<br />

c<strong>on</strong>trolled with as little as 18 liters<br />

water/ha. Droplet size is c<strong>on</strong>trolled<br />

with<strong>in</strong> narrow limits by sp<strong>in</strong>n<strong>in</strong>g discs<br />

<strong>in</strong>side the applicator. C<strong>on</strong>trolled-<br />

droplet applicators are lightweight.<br />

They have a plastic spray head, a small<br />

motor that drives the rotat<strong>in</strong>g disc, a<br />

liquid reservoir, a handle, and a power<br />

supply (e.g., <strong>on</strong>e to eight 1.5-volt dry-<br />

cell batteries). Models that use a<br />

manually operated air pump (Fig. 4.3)<br />

(e.g., Birky sprayer) have been <strong>in</strong>tro-<br />

duced. This elim<strong>in</strong>ates the cost of<br />

batteries for the first-generati<strong>on</strong> CDA.<br />

Granular applicator<br />

Herbicides sold as granules are applied<br />

us<strong>in</strong>g granular applicators. Whatever<br />

its size, a granular applicator c<strong>on</strong>sists<br />

of a hopper to c<strong>on</strong>ta<strong>in</strong> the granules, a<br />

meter<strong>in</strong>g device to c<strong>on</strong>trol flow rate,<br />

and a distributi<strong>on</strong> mechanism. Granu-<br />

lar herbicides that are soluble <strong>in</strong> water<br />

may not require the same uniformity of<br />

distributi<strong>on</strong> as those that are not<br />

soluble <strong>in</strong> water.<br />

Granules are often applied by hand,<br />

especially <strong>in</strong> the tropics. Because<br />

broadcast<strong>in</strong>g granules by hand is not<br />

precise, the quantity of herbicide used<br />

will be higher than with other<br />

applicati<strong>on</strong> techniques. More uniform<br />

applicati<strong>on</strong> can be achieved <strong>on</strong> small<br />

areas by shak<strong>in</strong>g the granules from a<br />

c<strong>on</strong>ta<strong>in</strong>er with a perforated lid.<br />

Hydraulic applicator (pressurized)<br />

Hydraulic applicators comm<strong>on</strong>ly<br />

c<strong>on</strong>sist of a tank, pump, and nozzle.<br />

Other comp<strong>on</strong>ents <strong>in</strong>clude an agitator,<br />

pressure gauge, pressure regulator,<br />

hose, and boom. The tank that holds<br />

the spray soluti<strong>on</strong> is made of a<br />

56 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

corrosi<strong>on</strong>-resistant material, such as<br />

sta<strong>in</strong>less steel, polyv<strong>in</strong>yl material, or<br />

fiber glass. The tank has a special lid<br />

through which it is filled. The lid<br />

c<strong>on</strong>ta<strong>in</strong>s a stra<strong>in</strong>er to remove debris<br />

that might clog the nozzle. The pump<br />

drives the soluti<strong>on</strong> through the pres-<br />

sure chamber to the nozzle. The most<br />

widely used small hydraulic applicator<br />

is the lever-operated knapsack sprayer<br />

(Fig. 4.4). For a detailed discussi<strong>on</strong>, see<br />

Pesticide applicati<strong>on</strong> methods (Matthews<br />

1979).<br />

4.2 Top, a leverage-operated<br />

knapsack sprayer; bottom, a<br />

c<strong>on</strong>trolled-droplet applicator.<br />

Operati<strong>on</strong> of the<br />

knapsack sprayer<br />

Herbicide and water are poured <strong>in</strong>to<br />

the sprayer tank. The lever is moved<br />

up and down, caus<strong>in</strong>g the pump to<br />

draw spray liquid from the tank <strong>in</strong>to a<br />

special chamber <strong>in</strong>side the tank called<br />

the pressure chamber. Air trapped <strong>in</strong>


4.3 C<strong>on</strong>trolled-droplet applicators that<br />

use a manually operated air pump are<br />

available.<br />

4.4 Simplified draw<strong>in</strong>g of a lever-operated<br />

knapsack sprayer.<br />

the pressure chamber is compressed as<br />

the liquid is forced <strong>in</strong>. On <strong>on</strong>e side of<br />

the pressure chamber is the hose,<br />

which is c<strong>on</strong>nected to the trigger<br />

handle, and the <strong>on</strong>-and-off switch<br />

known as the cutoff valve. Compressed<br />

air forces the liquid from the pressure<br />

chamber through the hose to the<br />

nozzle. The nozzle turns the liquid <strong>in</strong>to<br />

droplets, which aid <strong>in</strong> uniform cover-<br />

age of the weed or soil.<br />

The faster the lever is moved, the<br />

higher the pressure becomes. High<br />

pressure makes the herbicide droplets<br />

smaller and <strong>in</strong>creases the speed with<br />

which the soluti<strong>on</strong> comes out of the<br />

nozzle (flow rate). For herbicide<br />

spray<strong>in</strong>g, where coarse spray droplets<br />

are desired, 5-6 lever strokes per<br />

m<strong>in</strong>ute are adequate.<br />

Select<strong>in</strong>g the nozzle<br />

The flow rate through a nozzle de-<br />

pends <strong>on</strong> the size of the nozzle open<strong>in</strong>g<br />

and the spray pressure. Increas<strong>in</strong>g the<br />

nozzle size (diameter of open<strong>in</strong>g) and<br />

<strong>in</strong>creas<strong>in</strong>g the pressure will <strong>in</strong>crease<br />

the flow rate. A pressure of 70-275 kPa<br />

(see Appendix A) is recommended for<br />

herbicide applicati<strong>on</strong>. The best way to<br />

regulate the flow rate is to change<br />

nozzle tips and to <strong>in</strong>crease or decrease<br />

walk<strong>in</strong>g speed.<br />

Herbicide use 57


58 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

It is important to select the proper<br />

type of nozzle for each activity<br />

(Fig. 4.5). For residual herbicides<br />

applied to the soil, impact nozzles (e.g.,<br />

Polijet) should be used because they<br />

cause less drift problems. For systemic,<br />

translocated herbicides, where thor-<br />

ough wett<strong>in</strong>g of stems and leaves is<br />

not required, an impact nozzle or fan<br />

nozzle is recommended. For c<strong>on</strong>tact<br />

herbicides, use a hollow c<strong>on</strong>e nozzle,<br />

an impact nozzle, or a fan nozzle<br />

operated at 275 kPa.<br />

Sprayer calibrati<strong>on</strong><br />

Sprayer calibrati<strong>on</strong> determ<strong>in</strong>es the<br />

volume of water that will be applied <strong>on</strong><br />

a given area by a given applicator<br />

under given c<strong>on</strong>diti<strong>on</strong>s. The volume of<br />

water applied by a sprayer depends <strong>on</strong><br />

walk<strong>in</strong>g speed, sprayer pressure, and<br />

nozzle size.<br />

Walk<strong>in</strong>g speed. An <strong>in</strong>crease <strong>in</strong> walk-<br />

<strong>in</strong>g speed results <strong>in</strong> less spray mixture<br />

applied to a given area. C<strong>on</strong>versely, a<br />

decrease <strong>in</strong> walk<strong>in</strong>g speed results <strong>in</strong><br />

applicati<strong>on</strong> of a greater volume applied<br />

per unit area.<br />

Sprayer pressure. Increas<strong>in</strong>g sprayer<br />

pressure results <strong>in</strong> a greater volume of<br />

spray mixture applied to a given area.<br />

C<strong>on</strong>versely, a lower spray pressure<br />

results <strong>in</strong> less spray mixture applied.<br />

The sprayer should be operated to give<br />

as steady a pressure as possible. A<br />

pressure gauge may be fitted to the<br />

sprayer.<br />

Nozzle size. The use of a large nozzle<br />

open<strong>in</strong>g <strong>in</strong>creases the volume of spray<br />

mixture applied to a given area.<br />

Smaller open<strong>in</strong>gs deliver a smaller<br />

spray volume.<br />

4.5 Select<strong>in</strong>g the appropriate nozzle for<br />

each spray<strong>in</strong>g task is important. Types<br />

<strong>in</strong>clude top, hydraulic nozzle (shown <strong>in</strong><br />

the nozzle body, left, and <strong>in</strong> parts, right)<br />

and, bottom, a fan nozzle, left, and<br />

impact nozzle, right.<br />

There are several ways to f<strong>in</strong>d out<br />

how much spray is applied to a given<br />

area for a given time. A well-tested<br />

technique for calibrat<strong>in</strong>g a sprayer<br />

(Fraser and Burrill 1979) is as follows:<br />

Step 1. Make sure the sprayer is <strong>in</strong><br />

good work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong> (no leaks, no<br />

blocked nozzles, etc.). Calibrati<strong>on</strong><br />

should be d<strong>on</strong>e <strong>on</strong> a surface similar to<br />

the field to be sprayed. Measure and<br />

mark out an area of 100 m 2 (10 m x<br />

10 m). Trace with a stick the rows <strong>on</strong><br />

which rice normally would be sown <strong>in</strong><br />

the field. The row width should be the<br />

<strong>on</strong>e you will use <strong>in</strong> plant<strong>in</strong>g rice.<br />

Step 2. Place the sprayer <strong>on</strong> level<br />

ground and put <strong>in</strong> 10 liters of clean<br />

water. Mark the outl<strong>in</strong>e of the sprayer<br />

<strong>on</strong> the ground so the same spot can be<br />

found later. Put the sprayer <strong>on</strong> your<br />

back. Positi<strong>on</strong> the nozzle above the first<br />

seed row mark. Pump the sprayer to<br />

develop pressure. Beg<strong>in</strong> spray<strong>in</strong>g the<br />

plot you have marked, adjust<strong>in</strong>g the<br />

height of the nozzle to cover whatever<br />

swath width you desire. Ma<strong>in</strong>ta<strong>in</strong> a<br />

c<strong>on</strong>stant nozzle height. Walk at a<br />

comfortable pace, which you must<br />

ma<strong>in</strong>ta<strong>in</strong> throughout the calibrati<strong>on</strong>,<br />

and later <strong>in</strong> actually spray<strong>in</strong>g the field.<br />

Spray the 100-m 2 plot <strong>on</strong>ce. When you<br />

have completed spray<strong>in</strong>g the plot,<br />

place the sprayer back <strong>on</strong> the ground <strong>in</strong><br />

its outl<strong>in</strong>ed positi<strong>on</strong> and measure the<br />

water level.<br />

Step 3. Determ<strong>in</strong>e the applicati<strong>on</strong><br />

rate by subtract<strong>in</strong>g the volume of water<br />

rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the sprayer from the<br />

amount you started with. For example,<br />

if the amount of water <strong>in</strong> the tank<br />

before spray<strong>in</strong>g was 10 liters and the


amount after spray<strong>in</strong>g is 8 liters, then<br />

the amount of water used was 2 liters.<br />

The sprayer output per hectare<br />

(10,000 m 2 ) is then calculated as<br />

A simpler calculati<strong>on</strong> is to multiply the<br />

number of liters you sprayed <strong>on</strong> the<br />

10-m x 10-m plot by 100, to get applica-<br />

ti<strong>on</strong> rate <strong>in</strong> liters per hectare.<br />

Step 4. Make sure your walk<strong>in</strong>g pace<br />

is uniform by repeat<strong>in</strong>g Step 2 a few<br />

times, until you are putt<strong>in</strong>g exactly<br />

2 liters of water <strong>on</strong> the calibrati<strong>on</strong> plot<br />

every time you spray it. If you use<br />

more than 2 liters, you should <strong>in</strong>crease<br />

your walk<strong>in</strong>g pace while spray<strong>in</strong>g. If<br />

you use less than 2 liters, you should<br />

walk more slowly. If the rate rema<strong>in</strong>s<br />

<strong>on</strong> the 2-liter mark, your walk<strong>in</strong>g pace<br />

is uniform. Remember: sprayer output<br />

for a given area may be adjusted by<br />

chang<strong>in</strong>g walk<strong>in</strong>g pace or nozzle size,<br />

or pressure, or any comb<strong>in</strong>ati<strong>on</strong> of<br />

these.<br />

Amount of water to use<br />

Mix<strong>in</strong>g a herbicide with water enables<br />

spread<strong>in</strong>g the herbicide evenly over a<br />

large area. The amount of water used<br />

affects the herbicide's effectiveness and<br />

the ease of applicati<strong>on</strong>. Usually a<br />

medium volume of water—200-300<br />

liters/ha—is adequate for bare soil or<br />

small weeds. More water is needed for<br />

c<strong>on</strong>tact herbicide applicati<strong>on</strong> because<br />

the weeds must be wetted thoroughly<br />

for effective treatment. Whatever<br />

volume of water is used, the amount of<br />

active <strong>in</strong>gredient (ai) per hectare<br />

should always be the same (i.e., 2.0 kg<br />

of butachlor/ ha can be applied <strong>in</strong><br />

200 liters or 300 liters water/ha,<br />

depend<strong>in</strong>g <strong>on</strong> the sprayer calibrati<strong>on</strong>).<br />

C<strong>on</strong>trolled-droplet applicators and<br />

certa<strong>in</strong> very low-volume nozzles fitted<br />

to the knapsack sprayers can use as<br />

low as 10-40 liters water/ha. When <strong>in</strong><br />

doubt, check the herbicide label. Most<br />

manufacturers <strong>in</strong>dicate the volume<br />

rate to be used under certa<strong>in</strong> c<strong>on</strong>di-<br />

ti<strong>on</strong>s.<br />

Herbicide dosage calculati<strong>on</strong><br />

Before calculat<strong>in</strong>g herbicide dosage, a<br />

herbicide or herbicide comb<strong>in</strong>ati<strong>on</strong><br />

should be chosen for the best results<br />

under the particular set of c<strong>on</strong>diti<strong>on</strong>s.<br />

To calculate the amount of herbicide to<br />

be applied to a given area, the follow-<br />

<strong>in</strong>g <strong>in</strong>formati<strong>on</strong> is needed:<br />

Recommended dosage of the<br />

herbicide to be used.<br />

Amount of herbicide (ai) <strong>in</strong> a given<br />

quantity of the commercial product<br />

(formulati<strong>on</strong>) to be used.<br />

The product label shows the<br />

amount, <strong>in</strong> ai, present <strong>in</strong> the formula-<br />

ti<strong>on</strong>. The percentage ai for liquid<br />

formulati<strong>on</strong>s may be given <strong>in</strong> weight<br />

per volume (e.g., g/liter), or as a<br />

weight:weight ratio (percentage).<br />

C<strong>on</strong>versi<strong>on</strong> factors can be used to<br />

calculate the correct percent ai <strong>in</strong> a<br />

liquid herbicide formulati<strong>on</strong> from the<br />

weight per volume c<strong>on</strong>centrati<strong>on</strong>, as<br />

follows:<br />

Divide a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

grams per liter (g/liter) by 10.<br />

Example: 600 grams of 100% bu-<br />

tachlor per liter<br />

Multiply a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

imperial pounds (lb) per imperial<br />

gall<strong>on</strong> by 10.<br />

Example: 2 Ib/imperial gall<strong>on</strong><br />

Multiply a c<strong>on</strong>centrati<strong>on</strong> given <strong>in</strong><br />

pounds (lb) per US gal by 12.<br />

Example: 2 lb/US gall<strong>on</strong><br />

The follow<strong>in</strong>g general formula may<br />

be used to calculate most herbicide<br />

dosage determ<strong>in</strong>ati<strong>on</strong>s:<br />

Example: Apply 2.0 kg ai/ ha of Ma-<br />

chete, which has 60% ai as butachlor.<br />

Under many c<strong>on</strong>diti<strong>on</strong>s, the area to<br />

be sprayed will not be exactly 1 ha.<br />

Also, the sprayer tank may not be big<br />

enough to hold all the herbicide and<br />

water required for 1 ha. This makes it<br />

necessary to calculate the amount of<br />

herbicide and water required for an<br />

Herbicide use 59


area less than 1 ha or for a tankful. The<br />

amount of water needed to spray a<br />

given area can be calculated as<br />

If the area to be sprayed is 1,000 m 2 and<br />

the sprayer output is 200 liters/ha<br />

(from the calibrati<strong>on</strong> described earlier),<br />

then the amount of water required to<br />

spray this area is :<br />

When the area to be sprayed is de-<br />

term<strong>in</strong>ed <strong>on</strong> the basis of sprayer<br />

capacity, area can be calculated as<br />

If a knapsack sprayer has a capacity<br />

of 15 liters and the sprayer output is<br />

200 liters/ha, then the area covered by<br />

<strong>on</strong>e full tank (15 liters) is<br />

The total amount of formulated<br />

product to be used <strong>in</strong> the examples<br />

above can be calculated as<br />

60 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

To summarize, the steps required to<br />

arrive at the amount of herbicide and<br />

water to be sprayed <strong>on</strong> a given area are<br />

1. Determ<strong>in</strong>e sprayer output per<br />

hectare (calibrate the sprayer).<br />

2. Determ<strong>in</strong>e the quantity of formu-<br />

lated product required per hectare<br />

(from label or other recommendati<strong>on</strong>s).<br />

3. Use the size of the area to be<br />

sprayed or the sprayer capacity<br />

(whichever is smaller) to determ<strong>in</strong>e the<br />

amount of water needed.<br />

4. Calculate the formulated product<br />

needed for the quantity of water.<br />

Appendix B gives calculated dosage<br />

rates per hectare for different formula-<br />

ti<strong>on</strong>s, so that you can cross check your<br />

own calculati<strong>on</strong>s.<br />

Calculati<strong>on</strong> of dosage <strong>in</strong> acid<br />

equivalents of salts and esters<br />

Herbicide dosage recommendati<strong>on</strong>s<br />

computed <strong>in</strong> kilograms of active<br />

<strong>in</strong>gredient per hectare refer to the<br />

unaltered chemical molecule. But <strong>in</strong><br />

herbicide molecules that are acids, the<br />

acidic porti<strong>on</strong> is normally transformed<br />

to a salt or ester, to improve such<br />

characteristics as solubility <strong>in</strong> water or<br />

oil and foliar penetrati<strong>on</strong>. In general,<br />

the parent acid porti<strong>on</strong> of the herbicide<br />

molecule rema<strong>in</strong>s as the herbicidally<br />

active porti<strong>on</strong>, while the ester or salt<br />

attached to the parent acid satisfies the<br />

functi<strong>on</strong>s for <strong>in</strong>creased solubility or<br />

<strong>in</strong>creased penetrati<strong>on</strong>. The acid equiva-<br />

lent of a salt or ester form of a herbi-<br />

cide, therefore, is that porti<strong>on</strong> of the<br />

molecule represent<strong>in</strong>g the orig<strong>in</strong>al acid<br />

form of the molecule. The dosage rec-<br />

ommendati<strong>on</strong> for such herbicides is<br />

given as kilograms of acid equivalent<br />

of the active <strong>in</strong>gredient per hectare.<br />

The recommended dosage of herbi-<br />

cides applied as salts or esters is often<br />

based <strong>on</strong> the herbicidal porti<strong>on</strong> of the<br />

salt or ester molecule, and excludes the<br />

herbicidally <strong>in</strong>active porti<strong>on</strong><br />

(Anders<strong>on</strong> 1983).<br />

The product labels of most commercial<br />

herbicide formulati<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />

salts and esters specify the amount of<br />

acid equivalent present <strong>in</strong> the formulati<strong>on</strong>.<br />

The acid equivalent is equal to the<br />

difference <strong>in</strong> weight, expressed as percent,<br />

between the parent acid molecule<br />

(m<strong>in</strong>us a value of 1, represent<strong>in</strong>g the<br />

loss of the H + ) and that of the salt or<br />

ester molecule. It is always less than<br />

l00%, and is calculated by the<br />

follow<strong>in</strong>g formula:<br />

Molecular weight (mol/wt) of<br />

acid<br />

Example: The molecular weight of<br />

2,4-D is 221. The molecular weight of<br />

its isopropyl ester is 263. The acid<br />

equivalent of the isopropyl ester of<br />

2,4-D is determ<strong>in</strong>ed as<br />

Field techniques for<br />

us<strong>in</strong>g herbicides<br />

Proper field techniques are important<br />

to get good weed c<strong>on</strong>trol from herbi-<br />

cides. Read all labels before us<strong>in</strong>g a<br />

herbicide, and follow the directi<strong>on</strong>s. To<br />

kill the weeds and not the rice, us<strong>in</strong>g<br />

the correct dosage is essential. C<strong>on</strong>tact<br />

herbicides work best when they are<br />

applied <strong>in</strong> a high volume of water.


The decisi<strong>on</strong> to spray should be<br />

made after c<strong>on</strong>sider<strong>in</strong>g<br />

the degree of weed species and<br />

weed growth,<br />

the recommendati<strong>on</strong> for weed<br />

c<strong>on</strong>trol,<br />

the c<strong>on</strong>trol measures available,<br />

the correct tim<strong>in</strong>g of herbicide applicati<strong>on</strong>,<br />

the previous experience <strong>in</strong> spray<strong>in</strong>g,<br />

the probable cost-benefit of apply<strong>in</strong>g<br />

the herbicide, and<br />

safety.<br />

Always follow the chemical<br />

manufacturer’s <strong>in</strong>structi<strong>on</strong>s <strong>on</strong> safety<br />

precauti<strong>on</strong>s.<br />

A few days before spray<strong>in</strong>g, ensure<br />

that<br />

chemical supplies <strong>on</strong> the farm are<br />

adequate for the job at hand,<br />

a readily accessible water supply for<br />

fill<strong>in</strong>g the sprayer is available, and<br />

the sprayer is clean and <strong>in</strong> good<br />

work<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>.<br />

On the day of spray<strong>in</strong>g, check to see<br />

that<br />

appropriate protective cloth<strong>in</strong>g is<br />

worn,<br />

the calibrati<strong>on</strong> used is correct,<br />

weeds are <strong>in</strong> suitable c<strong>on</strong>diti<strong>on</strong> for<br />

treatment,<br />

ground c<strong>on</strong>diti<strong>on</strong>s are satisfactory,<br />

weather c<strong>on</strong>diti<strong>on</strong>s and forecasts are<br />

satisfactory, and<br />

the pers<strong>on</strong> to do the spray<strong>in</strong>g is<br />

healthy and fit.<br />

Mix<strong>in</strong>g<br />

The c<strong>on</strong>centrated active <strong>in</strong>gredient of a<br />

herbicide must be mixed thoroughly<br />

with water (the carrier). When us<strong>in</strong>g a<br />

wettable powder, agitate the soluti<strong>on</strong><br />

to prevent the herbicide from settl<strong>in</strong>g<br />

out. That would plug nozzles and give<br />

n<strong>on</strong>-uniform applicati<strong>on</strong> rates. The<br />

water used should be clean and free<br />

from clay, mud, organic matter, and<br />

dissolved salts.<br />

Do not guess the amount of herbi-<br />

cide to use. Always measure or weigh<br />

the exact calculated amount. Fill the<br />

sprayer tank about half-full with water.<br />

Add the measured herbicide to the<br />

tank, then fill the tank completely with<br />

water. Be sure both herbicide and<br />

water pass through the stra<strong>in</strong>er <strong>in</strong> the<br />

tank. Mix the c<strong>on</strong>tents of a knapsack<br />

sprayer tank by shak<strong>in</strong>g it.<br />

Herbicide selecti<strong>on</strong><br />

Most herbicides are suitable for use<br />

<strong>on</strong>ly <strong>in</strong> selected crops; they would kill<br />

other crops. To assure the safety of the<br />

rice crop, use <strong>on</strong>ly herbicides recom-<br />

mended for rice. Some herbicide<br />

groups tend to c<strong>on</strong>trol certa<strong>in</strong> families<br />

of weeds better than others. C<strong>on</strong>sider<br />

the weeds <strong>on</strong> your farm and select the<br />

herbicide that will c<strong>on</strong>trol those weeds.<br />

Nozzles<br />

Select the most suitable nozzle size and<br />

type. In general, use<br />

a c<strong>on</strong>e nozzle for applicati<strong>on</strong>s where<br />

it is important to cover the crop<br />

foliage (e.g., for foliar herbicides),<br />

and<br />

a low-pressure fan nozzle for<br />

residual herbicides.<br />

Spray<strong>in</strong>g<br />

Do not spray when the w<strong>in</strong>d is too<br />

str<strong>on</strong>g. If you must spray when it is<br />

w<strong>in</strong>dy, hold the nozzle close to the<br />

ground to prevent the droplets from<br />

be<strong>in</strong>g blown away dur<strong>in</strong>g calibrati<strong>on</strong><br />

of the sprayer and dur<strong>in</strong>g actual field<br />

spray<strong>in</strong>g. Always walk downw<strong>in</strong>d, so<br />

that any spray blown off the crop is<br />

carried away from you.<br />

Always carry a spare nozzle. Check<br />

the sprayer nozzle often for possible<br />

blockage (this would be <strong>in</strong>dicated by a<br />

poor spray pattern) and clean it when<br />

necessary. A faulty nozzle delivers the<br />

wr<strong>on</strong>g dosage. If a faulty nozzle<br />

develops, attend to it at the end of the<br />

field. Use a soft material to clean<br />

blocked nozzles. Never clean a nozzle<br />

with a wire or p<strong>in</strong>.<br />

Ma<strong>in</strong>ta<strong>in</strong> a c<strong>on</strong>stant nozzle height<br />

above the target weeds <strong>in</strong> the field. A<br />

nozzle height of about 50 cm from the<br />

target to the ground is ideal.<br />

Avoid miss<strong>in</strong>g strips or overlapp<strong>in</strong>g<br />

spray swaths.<br />

Use rice rows as a measure (spac<strong>in</strong>g<br />

from 25 to 30 cm). Walk over every<br />

third or fourth row to give a 1-m<br />

spray width.<br />

Place sticks or sight<strong>in</strong>g poles at<br />

swath width <strong>in</strong>tervals before<br />

start<strong>in</strong>g to spray.<br />

While spray<strong>in</strong>g, ma<strong>in</strong>ta<strong>in</strong> a c<strong>on</strong>stant<br />

walk<strong>in</strong>g speed. When you slow your<br />

pace, the amount of herbicide applied<br />

<strong>in</strong>creases. When you walk faster, the<br />

amount decreases. Underapplicati<strong>on</strong><br />

results <strong>in</strong> unsatisfactory weed c<strong>on</strong>trol;<br />

apply<strong>in</strong>g more than the recommended<br />

amount may result <strong>in</strong> <strong>in</strong>jury or death to<br />

the rice crop. Overapplicati<strong>on</strong> also<br />

wastes a costly <strong>in</strong>put.<br />

Clean<strong>in</strong>g the sprayer<br />

Do not leave herbicide soluti<strong>on</strong>s <strong>in</strong> the<br />

sprayer overnight. Whether spray<strong>in</strong>g<br />

research plots or large areas, it is<br />

important to thoroughly clean the<br />

sprayer before us<strong>in</strong>g a different herbi-<br />

cide. Herbicides reta<strong>in</strong>ed <strong>in</strong> the pump,<br />

hose, boom, or sprayer tank, if sprayed<br />

later <strong>on</strong> sensitive plants, will cause<br />

crop <strong>in</strong>jury. To clean the sprayer,<br />

1. R<strong>in</strong>se the sprayer with clean water<br />

to remove most of the chemical. A<br />

household detergent can be added to<br />

water used for clean<strong>in</strong>g. Pour this out<br />

and add clean water aga<strong>in</strong>.<br />

2. Operate the pump for at least 10<br />

strokes and pour out the rema<strong>in</strong><strong>in</strong>g<br />

water.<br />

3. Repeat these procedures two more<br />

times.<br />

Herbicide use 61


Granular herbicide applicati<strong>on</strong><br />

Most farmers apply granular herbicides<br />

by broadcast<strong>in</strong>g. Whatever the method<br />

used, safety and uniformity of applicati<strong>on</strong><br />

are important. Unlike liquid formulati<strong>on</strong>s,<br />

where the amount of water used<br />

is not critical as l<strong>on</strong>g as the sprayer has<br />

been calibrated to deliver a certa<strong>in</strong> rate,<br />

granular formulati<strong>on</strong>s are not further<br />

diluted with a carrier. Thus the formulated<br />

product is c<strong>on</strong>stant and the<br />

amount applied is determ<strong>in</strong>ed by the<br />

recommended applicati<strong>on</strong> rate per<br />

hectare. It is important to follow this<br />

calibrati<strong>on</strong> method:<br />

1. Determ<strong>in</strong>e the amount of formulated<br />

product per hectare us<strong>in</strong>g the formula<br />

<strong>on</strong> page 59.<br />

Example: To apply 2.0 kg ai/ha of<br />

Machete with 5% ai, multiply 2 kg by<br />

100, then divide by 5 = 40 kg/ha.<br />

2. Measure and mark out a 5-m × 5-m<br />

area and determ<strong>in</strong>e the amount of<br />

granules required for the area. The<br />

amount of butachlor required for<br />

25 m2 is<br />

25<br />

× 40 kg = 0.1 kg = 100 g<br />

10,000<br />

3. Walk at a comfortable pace and<br />

practice apply<strong>in</strong>g the herbicide several<br />

times, until you achieve a 100 g/25 m2 applicati<strong>on</strong> rate.<br />

When the granules are to be mixed <strong>in</strong><br />

a carrier such as sand, use a different<br />

calibrati<strong>on</strong> method, as follows:<br />

1. Measure and mark out a length of 100<br />

m.<br />

2. Weigh enough herbicide to cover this<br />

area. Walk at a comfortable pace and<br />

practice apply<strong>in</strong>g herbicide uniformly<br />

over this area.<br />

3. Reweigh the herbicide rema<strong>in</strong><strong>in</strong>g.<br />

The difference will give the amount of<br />

herbicide applied.<br />

4. Measure the swath width.<br />

62 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

To calculate the applicati<strong>on</strong> rate, use<br />

the follow<strong>in</strong>g formula:<br />

Granules applied<br />

Applicati<strong>on</strong> rate<br />

<strong>in</strong> kg/ha =<br />

<strong>in</strong> g per 100 m<br />

Swath width<br />

<strong>in</strong> cm<br />

× 10<br />

Example: If the weight of granules<br />

used over a 100-m length with a swath<br />

diameter of 40 cm is 120 g, then the<br />

applicati<strong>on</strong> rate is<br />

120 × 10<br />

40<br />

= 30 kg/ha<br />

Granular herbicides, although about<br />

twice as costly as n<strong>on</strong>granular <strong>on</strong>es,<br />

can be applied <strong>on</strong>ce by hand, <strong>in</strong> asso-<br />

ciati<strong>on</strong> with fertilizer. They can also be<br />

applied us<strong>in</strong>g any <strong>on</strong>e of a number of<br />

mechanical spreaders. In small plots,<br />

granules can be applied by shak<strong>in</strong>g<br />

them from a bottle with perforated lid<br />

(IRRI, unpublished circular).<br />

Safe use of herbicides<br />

Improper herbicide use can harm<br />

crops, humans, wildlife, domestic<br />

animals, and the envir<strong>on</strong>ment. There<br />

are two types of herbicide toxicity:<br />

acute (a s<strong>in</strong>gle oral dose) and chr<strong>on</strong>ic<br />

(a sublethal dose repeated over time).<br />

LD 50 and LC 50<br />

LD 50 is the expressi<strong>on</strong> for a s<strong>in</strong>gle dose<br />

that, when taken orally, kills 50% of a<br />

group of test animal. It is usually<br />

expressed <strong>in</strong> milligrams of herbicide<br />

per kilogram of body weight of test<br />

animal. The higher the herbicide toxi-<br />

city, the lower the LD 50 . For example,<br />

the LD 50 of paraquat is 150 mg/kg; that<br />

of butachlor is 2,000 mg/kg.<br />

We emphasize that the LD 50 is NOT<br />

the safe dose level—50% of test ani-<br />

mals die at that dose.<br />

LC 50 is the c<strong>on</strong>centrati<strong>on</strong> required to<br />

kill 50% of the test organisms <strong>in</strong> an<br />

envir<strong>on</strong>ment (usually water). The LC 50<br />

[96 h] for carp is 0.32 mg/liter.<br />

Indiscrim<strong>in</strong>ate herbicide use <strong>in</strong><br />

irrigated rice can adversely affect wild-<br />

life, humans, and the envir<strong>on</strong>ment.<br />

Improper herbicide use will c<strong>on</strong>tami-<br />

nate local water bodies. Inappropriate<br />

herbicide use or use of herbicides<br />

highly toxic to fish will kill or c<strong>on</strong>tami-<br />

nate the fish <strong>in</strong> that water, which will<br />

affect the fish c<strong>on</strong>sumers.<br />

Safe handl<strong>in</strong>g of herbicides<br />

Handl<strong>in</strong>g an undiluted herbicide is<br />

more dangerous than handl<strong>in</strong>g the<br />

diluted product. Herbicides can enter<br />

the human body through the sk<strong>in</strong>,<br />

mouth, nose, and eyes. Absorpti<strong>on</strong><br />

through sk<strong>in</strong> is comm<strong>on</strong> and can occur<br />

from chemical spill<strong>in</strong>g and splash<strong>in</strong>g,<br />

and from drift<strong>in</strong>g of spray. Absorpti<strong>on</strong><br />

through the nose and mouth can occur<br />

from <strong>in</strong>hal<strong>in</strong>g spray droplets, vapors,<br />

or chemical dust. Safety tips for herbi-<br />

cide use are as follows:<br />

Mix herbicides or other pesticides <strong>in</strong><br />

the open air, never <strong>in</strong> enclosed<br />

places with <strong>in</strong>adequate ventilati<strong>on</strong>.<br />

Read the label <strong>on</strong> the herbicide<br />

c<strong>on</strong>ta<strong>in</strong>er and make sure any special<br />

<strong>in</strong>structi<strong>on</strong>s are understood.<br />

Leaks from a badly ma<strong>in</strong>ta<strong>in</strong>ed<br />

sprayer may <strong>in</strong>crease c<strong>on</strong>tact<br />

between the herbicide and the sk<strong>in</strong>,<br />

permitt<strong>in</strong>g the herbicide to enter the<br />

body. Tighten leak<strong>in</strong>g sprayer parts<br />

and check seals and washers to<br />

avoid leakage.<br />

Wear protective cloth<strong>in</strong>g. Special<br />

protective cloth<strong>in</strong>g is heavy and<br />

expensive, and uncomfortable when<br />

used <strong>in</strong> the tropics. For small-scale<br />

farmers who use herbicides occa-<br />

si<strong>on</strong>ally, a complete set of protective<br />

cloth<strong>in</strong>g may not be necessary. All


farmers, however, should wear<br />

cloth<strong>in</strong>g and footwear that will<br />

m<strong>in</strong>imize any sk<strong>in</strong> c<strong>on</strong>tact with<br />

herbicide. For operators who spray<br />

regularly, protective cloth<strong>in</strong>g is re-<br />

quired. Basic protective cloth<strong>in</strong>g <strong>in</strong>-<br />

cludes rubber boots, l<strong>on</strong>g trousers,<br />

l<strong>on</strong>g-sleeved shirt, and rubber<br />

gloves. When open<strong>in</strong>g herbicide<br />

c<strong>on</strong>ta<strong>in</strong>ers, or pour<strong>in</strong>g and mix<strong>in</strong>g<br />

herbicides, goggles should also be<br />

worn. When spray<strong>in</strong>g tall weeds, a<br />

waterproof hat and face shield<br />

should be worn.<br />

Wash yourself and your clothes<br />

after spray<strong>in</strong>g is d<strong>on</strong>e and all<br />

spray<strong>in</strong>g equipment has been<br />

cleaned.<br />

Herbicide drift<br />

Herbicide drift occurs when the<br />

smaller drops <strong>in</strong> the spray are carried<br />

away from the target by w<strong>in</strong>d, or when<br />

vapor from a volatile herbicide is<br />

carried away dur<strong>in</strong>g or after spray<strong>in</strong>g.<br />

Growth regulator herbicides (such as<br />

2,4-D or MCPA) cause the greatest drift<br />

damage. Crops such as tomato, cott<strong>on</strong>,<br />

lettuce, and tree fruits are particularly<br />

sensitive to them. Herbicide drift can<br />

be avoided by<br />

Spray<strong>in</strong>g <strong>on</strong>ly when a light w<strong>in</strong>d is<br />

blow<strong>in</strong>g away from susceptible<br />

crops.<br />

Us<strong>in</strong>g large nozzle tips, thus apply<strong>in</strong>g<br />

larger size droplets and larger<br />

spray volumes (more than 100<br />

liters/ha).<br />

Us<strong>in</strong>g the m<strong>in</strong>imum pressure<br />

required for the nozzles to operate<br />

properly.<br />

Hold<strong>in</strong>g sprayer nozzles close to<br />

the target.<br />

Leav<strong>in</strong>g a 10-m-wide strip<br />

unsprayed between the rice and any<br />

field where sensitive crops are<br />

grow<strong>in</strong>g. Other weed c<strong>on</strong>trol<br />

methods can be applied to the<br />

unsprayed strip.<br />

Storage of herbicides<br />

Herbicides should be stored <strong>in</strong> a safe<br />

place, preferably <strong>in</strong> a separate build<strong>in</strong>g<br />

or <strong>in</strong> a place that can be locked at all<br />

times, to prevent unauthorized per-<br />

s<strong>on</strong>s-especially children-from<br />

enter<strong>in</strong>g. A complete <strong>in</strong>ventory of all<br />

herbicides <strong>in</strong> the storage area is essen-<br />

tial.<br />

Herbicides should not be stored<br />

near food, animal feed, or other items<br />

that could be c<strong>on</strong>tam<strong>in</strong>ated by spilled<br />

or volatile herbicides. Always store all<br />

herbicides, however small the quan-<br />

tity, <strong>in</strong> the orig<strong>in</strong>al, labeled c<strong>on</strong>ta<strong>in</strong>er.<br />

Herbicides must never be stored <strong>in</strong> any<br />

other c<strong>on</strong>ta<strong>in</strong>ers, especially not <strong>in</strong> old<br />

bottles or other c<strong>on</strong>ta<strong>in</strong>ers where they<br />

could be mistaken for food, beverage,<br />

or drugs for humans or animals.<br />

Liquid herbicide products, espe-<br />

cially those c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g organic solvents<br />

with low temperature flash po<strong>in</strong>ts,<br />

present special hazards because of<br />

their flammability. Highly flammable<br />

products will readily ignite and burn,<br />

or explode when overheated. Some dry<br />

powder formulati<strong>on</strong>s may also present<br />

fire or explosi<strong>on</strong> hazards. These<br />

dangers are important c<strong>on</strong>siderati<strong>on</strong>s<br />

<strong>in</strong> select<strong>in</strong>g and us<strong>in</strong>g storage areas for<br />

herbicides.<br />

Disposal of empty herbicide c<strong>on</strong>ta<strong>in</strong>ers<br />

Empty herbicide c<strong>on</strong>ta<strong>in</strong>ers pose a<br />

health hazard to the general public,<br />

especially to children. No matter how<br />

well empty c<strong>on</strong>ta<strong>in</strong>ers are cleaned, the<br />

chemicals can never be removed<br />

completely. All empty herbicide<br />

c<strong>on</strong>ta<strong>in</strong>ers should be destroyed. Bury<br />

them <strong>in</strong> a pit away from p<strong>on</strong>ds and<br />

other water bodies. Bottles and t<strong>in</strong>s<br />

should be crushed or broken before<br />

bury<strong>in</strong>g.<br />

Pois<strong>on</strong><strong>in</strong>g by herbicides<br />

Pois<strong>on</strong><strong>in</strong>g may result from absorpti<strong>on</strong><br />

of herbicides through the sk<strong>in</strong> and<br />

eyes, through the gastro-<strong>in</strong>test<strong>in</strong>al tract<br />

by swallow<strong>in</strong>g, and by the lungs<br />

through <strong>in</strong>hal<strong>in</strong>g vapor, spray, or<br />

dusts. In case of pois<strong>on</strong><strong>in</strong>g accidents,<br />

take the follow<strong>in</strong>g first aid measures:<br />

1. Remove the affected pers<strong>on</strong> from<br />

the sprayed area.<br />

2. Keep the patient at rest and warm,<br />

but avoid overheat<strong>in</strong>g.<br />

3. Remove all protective cloth<strong>in</strong>g and<br />

other wet or c<strong>on</strong>tam<strong>in</strong>ated cloth<strong>in</strong>g.<br />

Wash any affected body parts thoroughly<br />

with soap and water. When the<br />

eyes are c<strong>on</strong>tam<strong>in</strong>ated, wash them<br />

with plenty of clean water, normal<br />

sal<strong>in</strong>e, or phosphate buffer for about<br />

15 m<strong>in</strong> and cover them with<br />

sterilized pads.<br />

4. Make sure the patient is breath<strong>in</strong>g<br />

and be prepared to give artificial<br />

respirati<strong>on</strong>.<br />

5. If a herbicide has been swallowed,<br />

and the patient is awake, <strong>in</strong>duce vomit<strong>in</strong>g<br />

by tickl<strong>in</strong>g the back of the pers<strong>on</strong>’s<br />

throat with a clean f<strong>in</strong>ger or by giv<strong>in</strong>g<br />

warm salty water (2 tablespo<strong>on</strong>s of salt<br />

<strong>in</strong> a glass of water). Vomit<strong>in</strong>g can be<br />

<strong>in</strong>duced <strong>on</strong>ly <strong>in</strong> a c<strong>on</strong>scious pers<strong>on</strong>.<br />

Reta<strong>in</strong> samples of vomit for analysis <strong>in</strong><br />

the hospital.<br />

6. Do not attempt to adm<strong>in</strong>ister<br />

anyth<strong>in</strong>g by mouth to an unc<strong>on</strong>scious<br />

patient.<br />

7. If the patient is c<strong>on</strong>vuls<strong>in</strong>g, ensure<br />

that cloth<strong>in</strong>g is loose around the neck<br />

and that air passages are free. Place<br />

someth<strong>in</strong>g str<strong>on</strong>g between the teeth to<br />

prevent bit<strong>in</strong>g the t<strong>on</strong>gue.<br />

8. Obta<strong>in</strong> medical help as so<strong>on</strong> as<br />

possible. Depend<strong>in</strong>g <strong>on</strong> the severity of<br />

exposure, the patient should either be<br />

exam<strong>in</strong>ed by a doctor immediately or<br />

taken to hospital. In most cases of<br />

pois<strong>on</strong><strong>in</strong>g or overexposure to chemicals<br />

<strong>in</strong> the field, it is most practical to<br />

take the patient to the nearest casualty<br />

or emergency unit. In all cases, the<br />

chemical <strong>in</strong>volved should be<br />

identified.<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> agropesti-<br />

cides and their management, refer to<br />

Agro-pesticides: their management and<br />

applicati<strong>on</strong> by Oudejans (1982).<br />

Herbicide use 63


Chapter 5<br />

Pr<strong>in</strong>cipal rice herbicides<br />

Herbicides play an important role <strong>in</strong><br />

<strong>in</strong>tegrated weed management <strong>in</strong> rice.<br />

Early-seas<strong>on</strong> weed competiti<strong>on</strong><br />

significantly reduces rice gra<strong>in</strong> yield,<br />

and preemergence herbicide treat-<br />

ments are widely used. But most weed<br />

seeds germ<strong>in</strong>ate over a l<strong>on</strong>g time, and<br />

preemergence herbicides, with their<br />

relatively short residual life, may not<br />

c<strong>on</strong>trol weeds l<strong>on</strong>g enough to opti-<br />

mize rice yields. Then, postemergence<br />

herbicides may be needed al<strong>on</strong>g with<br />

other c<strong>on</strong>trol measures. Moreover, any<br />

<strong>on</strong>e herbicide may not c<strong>on</strong>trol all the<br />

weeds present <strong>in</strong> a ricefield. Herbicide<br />

mixtures are used to obta<strong>in</strong> a wider<br />

range of weed c<strong>on</strong>trol.<br />

Herbicide mixtures,<br />

rotati<strong>on</strong>s, and<br />

sequences<br />

Mix<strong>in</strong>g herbicides and spray<strong>in</strong>g them<br />

simultaneously <strong>in</strong>creases the range of<br />

weed c<strong>on</strong>trol. Us<strong>in</strong>g herbicide mix-<br />

tures can also save time and reduce<br />

applicati<strong>on</strong> costs. A broadleaf herbi-<br />

cide and a grass herbicide are often<br />

mixed together (e.g., bensulfur<strong>on</strong> +<br />

butachlor). Residual and foliar c<strong>on</strong>tact<br />

herbicides may be comb<strong>in</strong>ed (e.g.,<br />

thiobencarb + 2,4-D).<br />

Herbicides that may be comb<strong>in</strong>ed<br />

often are sold as formulated products.<br />

When these are not available, two or<br />

more herbicides may be mixed <strong>in</strong> the<br />

spray tank at the time of applicati<strong>on</strong>-<br />

a tank-mix comb<strong>in</strong>ati<strong>on</strong>. Comb<strong>in</strong>a-<br />

ti<strong>on</strong>s must be selected carefully and<br />

comply with manufacturers’ recom-<br />

mendati<strong>on</strong>s to avoid product<br />

<strong>in</strong>compatibility.<br />

Herbicide classificati<strong>on</strong><br />

and uses<br />

The herbicides comm<strong>on</strong>ly used for<br />

weed c<strong>on</strong>trol <strong>in</strong> rice are described<br />

here. Table 5.1 lists the weeds c<strong>on</strong>-<br />

trolled by the herbicides. Details <strong>on</strong><br />

their use are discussed <strong>in</strong> Chapters 6-9.<br />

Every effort has been made to ensure<br />

that the <strong>in</strong>formati<strong>on</strong> presented is<br />

correct (Roberts 1982, Swarbrick 1984,<br />

Attwood 1985, Chemical and Pharma-<br />

ceutical Press 1986, Thoms<strong>on</strong> 1986,<br />

Worth<strong>in</strong>g 1987). But because herbicide<br />

activity varies from locality to locality,<br />

<strong>on</strong>ly general recommendati<strong>on</strong>s are<br />

given. Specific recommendati<strong>on</strong>s<br />

should be obta<strong>in</strong>ed from weed special-<br />

ists <strong>in</strong> the reader’s locality.<br />

Most herbicides are organic com-<br />

pounds. Herbicides are c<strong>on</strong>sidered<br />

ideal if they are toxicologically safe,<br />

selective to rice, cost-effective, effective<br />

<strong>on</strong> weeds, and have no last<strong>in</strong>g adverse<br />

effects <strong>on</strong> the envir<strong>on</strong>ment. Herbicides<br />

may be classified, for c<strong>on</strong>venience, by<br />

method and tim<strong>in</strong>g of applicati<strong>on</strong>. Or<br />

they may be classified by chemical<br />

group, which also gives an <strong>in</strong>dicati<strong>on</strong><br />

about how the herbicide may be used.<br />

Anilides<br />

Anilides are used to c<strong>on</strong>trol germ<strong>in</strong>at-<br />

<strong>in</strong>g annual weeds, especially grasses.<br />

They often are most active as surface<br />

preemergence treatments. The primary<br />

mechanism of acti<strong>on</strong> is through <strong>in</strong>ter-<br />

ference with nucleic acid and prote<strong>in</strong><br />

synthesis. Butachlor, pretilachlor, and<br />

propanil are examples of this group.<br />

Butuchlor. Butachlor is absorbed<br />

primarily through germ<strong>in</strong>at<strong>in</strong>g shoots<br />

and sec<strong>on</strong>darily through roots. Its<br />

mode of acti<strong>on</strong> is <strong>in</strong>hibiti<strong>on</strong> of prote<strong>in</strong><br />

synthesis. It is used at 2-3 kg ai/ha for<br />

preemergence c<strong>on</strong>trol of most annual<br />

grasses at the 1- to 2-leaf stages and of<br />

certa<strong>in</strong> broadleaf weeds, and can be<br />

applied postemergence. For trans-<br />

planted rice, it is applied 3-7 d after<br />

transplant<strong>in</strong>g. For direct seeded rice, it<br />

is applied 10-12 d after emergence.<br />

Pr<strong>in</strong>cipal herbicides 65


Table 5.1. Susceptibilitles a of important rice weeds to comm<strong>on</strong> rice herbicides (treatment at recommended doses and applicati<strong>on</strong> times).<br />

Herbicide<br />

<strong>Weed</strong><br />

Acanthospennum hispidum<br />

Aeschynomene vig<strong>in</strong>ica<br />

Ageratum c<strong>on</strong>yzoides<br />

Altemanthera sessilis<br />

Amaranthus sp<strong>in</strong>osus<br />

Ammannia cocc<strong>in</strong>ea<br />

Bidens pilosa<br />

Brachiaria mutica<br />

Commel<strong>in</strong>a benghalensis<br />

Cynod<strong>on</strong> dactyl<strong>on</strong><br />

Cyperus difformis<br />

Cyperus esculentus<br />

Cyperus iria<br />

Dactyloctenium aegyptium<br />

Digitaria sangu<strong>in</strong>alis<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a<br />

Ech<strong>in</strong>ochloa crus-galli<br />

Ech<strong>in</strong>ochloa glabrescens<br />

Eclipta alba<br />

Eichhornia crassipes<br />

Eleus<strong>in</strong>e <strong>in</strong>dica<br />

Eleocharis acicularis<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

lmperata cyl<strong>in</strong>drica<br />

Ipomoea aquatica<br />

Ischaemum rugosum<br />

Leersia hexandra<br />

Leptochloa ch<strong>in</strong>ensis<br />

Ludwigia octovalvis<br />

Marsilea m<strong>in</strong>uta<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis<br />

Nymphaea stellata<br />

Cyperus rotundus<br />

S<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

MR<br />

MR<br />

MR<br />

MS<br />

S<br />

R<br />

S<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

s<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

MS<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

S<br />

MS<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MS<br />

S<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

R<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

MR<br />

MR<br />

MR<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

MS<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

MS<br />

S<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MS<br />

MR<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

R<br />

R<br />

S<br />

MR<br />

MS<br />

S<br />

S<br />

S<br />

MR<br />

R<br />

MR<br />

R<br />

MS<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

MR<br />

R<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

MS<br />

S<br />

S<br />

S<br />

S<br />

R<br />

MR<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

S<br />

S<br />

R<br />

R<br />

S<br />

R<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

S<br />

R<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

S<br />

S<br />

MR<br />

MS<br />

S<br />

S<br />

R<br />

S<br />

MR<br />

S<br />

S<br />

MS<br />

MS<br />

MR<br />

MR<br />

MR<br />

S<br />

S<br />

S<br />

MR<br />

MS<br />

R<br />

MS<br />

R<br />

R<br />

R<br />

MR<br />

MR<br />

R<br />

S<br />

R<br />

S<br />

R<br />

R<br />

S<br />

S<br />

S<br />

S<br />

MR<br />

S<br />

S<br />

R<br />

S<br />

R<br />

MS<br />

MR<br />

S<br />

MS<br />

MS<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S


Butachlor <strong>in</strong> soil is broken down by<br />

microbial activity. In soil or water, it is<br />

rapidly c<strong>on</strong>verted to water-soluble<br />

derivatives. It may persist for 6-10 wk.<br />

Formulati<strong>on</strong>s available <strong>in</strong>clude<br />

granules and emulsifiable c<strong>on</strong>centrate.<br />

When applied postemergence, it can<br />

be tank-mixed with propanil.<br />

Water solubility is 20 mg/liter at<br />

20 °C. LD 50 for rats is 2,000 mg/kg.<br />

C<strong>on</strong>tact causes irritati<strong>on</strong> to sk<strong>in</strong> and<br />

eyes. It has high fish toxicity-LC 50<br />

(96 h) for carp is 0.32 mg/liter.<br />

Pretilachlor. Pretilachlor is a selective<br />

chloroacetamide rice herbicide<br />

that can be applied before transplant<strong>in</strong>g<br />

or any time between transplant<strong>in</strong>g<br />

and weed emergence. Pretilachlor at<br />

0.6 kg ai/ha is well-tolerated by transplanted<br />

rice, but it cannot be used for<br />

direct seeded rice without an antidote.<br />

<strong>Rice</strong> can be protected aga<strong>in</strong>st <strong>in</strong>jury by<br />

apply<strong>in</strong>g fenclorim <strong>on</strong>e day before, at<br />

the same time as, or up to 3 d after,<br />

pretilachlor applicati<strong>on</strong> (Christ 1985).<br />

Fenclorim is also effective <strong>in</strong> protect<strong>in</strong>g<br />

water seeded rice, but is not<br />

suitable for use <strong>on</strong> upland rice.<br />

Water solubility is 50 mg/liter at<br />

20 °C. LD 50 is 6,099 mg/kg. It has high<br />

fish toxicity-LC<br />

50 (96 h) for ra<strong>in</strong>bow<br />

trout is 0.9 mg/liter.<br />

Propanil. Propanil is a c<strong>on</strong>tact<br />

herbicide that can be applied post-<br />

emergence. It is effective aga<strong>in</strong>st<br />

several grassy and broadleaf weeds at<br />

the 2- to 3-leaf stages, and has no<br />

residual effects. Its effectiveness<br />

decreases <strong>on</strong> grasses to negligible at<br />

the tiller<strong>in</strong>g stage. <strong>Rice</strong> is extremely<br />

tolerant of propanil because rice plants<br />

have high levels of the hydrolyz<strong>in</strong>g<br />

enzyme aryl acylamidase, which<br />

detoxifies propanil.<br />

Pr<strong>in</strong>cipal herbicides 67


Propanil can be used at 3-4 kg ai/ha<br />

<strong>in</strong> irrigated and ra<strong>in</strong>fed rice. It should<br />

be applied when most weeds have<br />

emerged. The water level <strong>in</strong> a flooded<br />

ricefield should be lowered to expose<br />

weeds about 24 h before propanil<br />

applicati<strong>on</strong>. Raise the water level aga<strong>in</strong><br />

1-3 d after treatment, before any new<br />

weeds emerge. A slight leaf burn may<br />

occur <strong>on</strong> rice after applicati<strong>on</strong>, but the<br />

rice plant normally recovers quickly.<br />

Propanil should not be applied if<br />

ra<strong>in</strong> threatens to fall with<strong>in</strong> 5-6 h after<br />

applicati<strong>on</strong>. It should not be applied to<br />

rice at the late tiller<strong>in</strong>g stage, about<br />

60 d after plant<strong>in</strong>g. Propanil-treated<br />

rice crops should not be treated with<br />

organophosphorus or carbamate <strong>in</strong>-<br />

secticides with<strong>in</strong> 14 d before or after<br />

treatment because those <strong>in</strong>secticides<br />

<strong>in</strong>hibit the detoxificati<strong>on</strong> of propanil<br />

by rice. Commercial mixtures <strong>in</strong>clude<br />

propanil + mol<strong>in</strong>ate, propanil +<br />

bentaz<strong>on</strong>, and propanil + bifenox.<br />

Water solubility is 0.2 g/liter at<br />

25 °C. LD 50 is 1,400 mg/kg. It has high<br />

fish toxicity-LC<br />

50 (96 h) is<br />

13 mg/liter, <strong>in</strong>dicat<strong>in</strong>g that streams<br />

and lakes should be protected from<br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>.<br />

Bipyridyliums<br />

Herbicides from this group are<br />

primarily postemergence, foliar-act<strong>in</strong>g<br />

compounds with no soil activity.<br />

Paraquat and diquat are generally<br />

n<strong>on</strong>selective. On treated plants,<br />

toxicity symptoms are a characteristic<br />

rapid scorch and desiccati<strong>on</strong>. Light,<br />

oxygen, and chlorophyll are required<br />

for maximum manifestati<strong>on</strong> of<br />

phytotoxicity.<br />

68 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Paraquat. Paraquat is n<strong>on</strong>selective,<br />

with fast c<strong>on</strong>tact acti<strong>on</strong> when applied<br />

postemergence. It kills most annual<br />

weeds and grasses, <strong>in</strong>clud<strong>in</strong>g rice. It<br />

can be used <strong>in</strong> zero tillage or m<strong>in</strong>i-<br />

mum tillage systems and <strong>in</strong> stale<br />

seedbed land preparati<strong>on</strong>, at applica-<br />

ti<strong>on</strong> rates of 140 to 840 g ai/ha. It is<br />

rapidly <strong>in</strong>activated <strong>on</strong> c<strong>on</strong>tact with soil<br />

by str<strong>on</strong>g adsorpti<strong>on</strong> to clay.<br />

Water solubility is 70 g/liter at<br />

20 °C. LD 50 for rats is 150 mg<br />

paraquat/kg. It has medium fish<br />

toxicity, depend<strong>in</strong>g <strong>on</strong> the formulati<strong>on</strong><br />

used-LC<br />

50 (96 h) for ra<strong>in</strong>bow trout is<br />

32 mg/liter.<br />

D<strong>in</strong>itroanil<strong>in</strong>es<br />

Butral<strong>in</strong> and pendimethal<strong>in</strong> are<br />

examples of d<strong>in</strong>itroanil<strong>in</strong>es. Members<br />

of this family are active when applied<br />

to the soil and must be applied before<br />

weed seed germ<strong>in</strong>ati<strong>on</strong>. In general,<br />

d<strong>in</strong>itroanil<strong>in</strong>e herbicides do not<br />

c<strong>on</strong>trol established weeds. Their mode<br />

of acti<strong>on</strong> is <strong>in</strong>hibiti<strong>on</strong> of both root and<br />

shoot development (mitotic pois<strong>on</strong>).<br />

Butral<strong>in</strong>. Butral<strong>in</strong> is a preemergence<br />

herbicide. It is selective to upland rice<br />

when applied pre-emergence and to<br />

pregerm<strong>in</strong>ated rice at the 1- to 4-leaf<br />

stages (4-6 d after seed<strong>in</strong>g). It is active<br />

aga<strong>in</strong>st many broadleaf weeds.<br />

Water solubility is 1 mg/liter at<br />

24 °C. LD 50 for alb<strong>in</strong>o rats is 12,600<br />

mg/kg. It has high fish toxicity-LC<br />

50<br />

(48 h) for ra<strong>in</strong>bow trout is 3.4 mg/liter.<br />

Pendimethal<strong>in</strong>. Pendimethal<strong>in</strong> used<br />

as a preemergence herbicide <strong>in</strong>hibits<br />

germ<strong>in</strong>ati<strong>on</strong> and seedl<strong>in</strong>g develop-<br />

ment of susceptible weeds. Where<br />

grasses are expected to be a problem, it<br />

should be applied after plant<strong>in</strong>g and<br />

before emergence of rice and weeds. It<br />

can also be applied as a postemer-<br />

gence treatment with propanil, which<br />

comb<strong>in</strong>es the direct c<strong>on</strong>tact acti<strong>on</strong> of<br />

propanil and the residual activity of<br />

pendimethal<strong>in</strong>. Because soil and<br />

weeds must be completely exposed to<br />

spray coverage, no floodwater should<br />

be <strong>on</strong> the field at the time of applica-<br />

ti<strong>on</strong>. The residual activity of<br />

pendimethal<strong>in</strong> is activated by mois-<br />

ture. It is most effective when ade-<br />

quate ra<strong>in</strong>fall or irrigati<strong>on</strong> is received<br />

with<strong>in</strong> 7 d after applicati<strong>on</strong>.<br />

Water solubility is 0.3 mg/liter at<br />

20 ºC. LD 50 for alb<strong>in</strong>o rats is 1,050-1,250<br />

mg/kg. It has high fish toxicity-<br />

LC 50 (96 h) for channel catfish is<br />

0.42 mg/liter.<br />

Diphenyl ethers<br />

This group <strong>in</strong>cludes bifenox,<br />

fluorodifen, oxyfluorfen, and<br />

chlomethoxynil. Diphenyl ether<br />

herbicides are classified as c<strong>on</strong>tact<br />

herbicides. When applied preemer-<br />

gence, they <strong>in</strong>hibit seed germ<strong>in</strong>ati<strong>on</strong><br />

and early seedl<strong>in</strong>g growth. They are<br />

relatively <strong>in</strong>soluble <strong>in</strong> water, and do<br />

not readily leach. They are used<br />

pr<strong>in</strong>cipally preemergence or early pos-<br />

temergence to c<strong>on</strong>trol broadleaf weeds<br />

and grassy weed seedl<strong>in</strong>gs. In general,<br />

these herbicides more effectively<br />

c<strong>on</strong>trol broadleaf seedl<strong>in</strong>gs than<br />

grassy seedl<strong>in</strong>gs.<br />

Bifenox. Bifenox is primarily a<br />

broadleaf herbicide. It can be applied<br />

at 2 kg ai/ha as preemergence or<br />

postemergence up to the 2-leaf stage of<br />

rice. Bifenox has been found to be<br />

highly toxic to direct seeded flooded<br />

rice, result<strong>in</strong>g <strong>in</strong> low gra<strong>in</strong> yields (IRRI<br />

1974). Mixtures <strong>in</strong>clude bifenox +<br />

2,4-D and bifenox + propanil.


LD 50 for rats is more than 6,400 mg/<br />

kg. It has high fish toxicity-LC 50<br />

(96 h) for ra<strong>in</strong>bow trout is 27 mg/liter.<br />

Glyphosate is absorbed through the<br />

foliage and translocated throughout<br />

the plant. The additi<strong>on</strong> of certa<strong>in</strong> salts<br />

Fluorodifen. Fluorodifen is a<br />

to glyphosate formulati<strong>on</strong>s can<br />

preemergence and postemergence substantially <strong>in</strong>crease phytotoxicity <strong>in</strong><br />

c<strong>on</strong>tact herbicide. It can be used at some cases. Amm<strong>on</strong>ium salts are<br />

3-4 kg ai/ha to c<strong>on</strong>trol some broadleaf c<strong>on</strong>sistently effective <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

weeds and grasses.<br />

performance. Glyphosate is <strong>in</strong>acti-<br />

LD 50 for rats is 9,000 mg/kg. It has<br />

high fish toxicity-LC 50 (96 h) for<br />

ra<strong>in</strong>bow trout is 0.18 mg/liter.<br />

vated <strong>on</strong> c<strong>on</strong>tact with soil (Duke 1988).<br />

Translocati<strong>on</strong> to underground organs<br />

of perennials prevents regrowth from<br />

Oxyfluorfen. Oxyfluorfen is used these sites and results <strong>in</strong> their subseeither<br />

preemergence or postemer- quent destructi<strong>on</strong>. For best c<strong>on</strong>trol of<br />

gence. It is a c<strong>on</strong>tact herbicide<br />

perennial weeds, the plant should not<br />

requir<strong>in</strong>g light for activity. It is be disturbed by tillage until translocaabsorbed<br />

more readily by shoots than ti<strong>on</strong> is completed-about 2 wk.<br />

by roots. Most annual broadleaf weeds Visible effects of glyphosate<br />

and grasses are c<strong>on</strong>trolled at relatively normally occur <strong>in</strong> 2-4 d <strong>in</strong> annual<br />

low rates of 0.15-2.25 kg ai/ha. It is species and <strong>in</strong> 7-20 d <strong>in</strong> perennial<br />

more effective <strong>on</strong> broadleaf weeds species. Ra<strong>in</strong>fall occurr<strong>in</strong>g with<strong>in</strong> 6 h<br />

than <strong>on</strong> grasses, and is most active as a after treatment may reduce effectivepostemergence<br />

treatment when weeds ness.<br />

are small.<br />

Glyphosate can be used <strong>in</strong> zero-<br />

Water solubility is 0.1 mg/liter at tillage or m<strong>in</strong>imum-tillage system of<br />

20 °C. LD 50 for dogs is at least 5,000 rice producti<strong>on</strong>, especially where<br />

mg/kg. It is highly toxic to aquatic perennial weeds are a problem. It<br />

<strong>in</strong>vertebrates and fish.<br />

should not be applied to grow<strong>in</strong>g rice.<br />

Water solubility is 10 g/liter at<br />

25°C. LD 50 for rats is 5,000 mg/kg.<br />

Fish toxicity-LC 50 (96 h) for trout is<br />

86 mg/liter.<br />

Organophosphorus compounds<br />

Organophosphorus herbicides are<br />

primarily foliar act<strong>in</strong>g; they have no<br />

activity through the soil. A major<br />

example is glyphosate.<br />

Glyphosate. Glyphosate is a broad-<br />

spectrum, postemergence, n<strong>on</strong>selec-<br />

tive, translocated herbicide. It is<br />

effective <strong>in</strong> deep-rooted perennial<br />

weeds and annual grasses, sedges, and<br />

broadleaf weeds. Applicati<strong>on</strong> rates<br />

range from 0.5 to 4.0 kg ai/ha, with<br />

most perennials requir<strong>in</strong>g<br />

1.5-2.5 kg ai/ha.<br />

Phenoxy acetic acids<br />

Phenoxys are a type of growth<br />

horm<strong>on</strong>e, generally used as foliar-<br />

applied, translocated herbicides.<br />

Phenoxy acetic acid herbicides tend to<br />

accumulate <strong>in</strong> the grow<strong>in</strong>g po<strong>in</strong>ts of<br />

plants. Result<strong>in</strong>g abnormal cell divi-<br />

si<strong>on</strong> and growth <strong>in</strong>terfere with nucleic<br />

acid metabolism and disrupt the trans-<br />

locati<strong>on</strong> system. Most phenoxy herbi-<br />

cides are formulated as salts and esters<br />

of their parent acids. Members of the<br />

group <strong>in</strong>clude 2,4-D, fenoprop (silvex),<br />

MCPA, and 2,4,5-T. Phenoxys are used<br />

selectively to c<strong>on</strong>trol annual and<br />

perennial broadleaf weeds. Grass<br />

seedl<strong>in</strong>gs also may be c<strong>on</strong>trolled, but<br />

there is little or no c<strong>on</strong>trol of estab-<br />

lished grassy weeds.<br />

2,4-D. 2,4-D is a systemic herbicide.<br />

Postemergence applicati<strong>on</strong> of 2,4-D<br />

c<strong>on</strong>trols sedges and broadleaf and<br />

aquatic weeds. It normally does not<br />

c<strong>on</strong>trol grasses. It can be applied <strong>in</strong><br />

rice at 0.4-0.8 kg ai/ha 3-4 wk after<br />

weeds have emerged. It can also be<br />

applied 4 d after transplant<strong>in</strong>g at<br />

0.8 kg ai/ha to c<strong>on</strong>trol some annual<br />

grasses <strong>in</strong> additi<strong>on</strong> to sedges and<br />

broadleaf weeds. 2,4-D mixtures with<br />

bifenox, piperophos, butachlor, and<br />

thiobencarb are available for use <strong>in</strong><br />

rice. Butachlor + 2,4-D mixture has<br />

been found extremely toxic to irrigated<br />

wet seeded rice (IRRI 1985). <strong>Rice</strong> is<br />

susceptible to 2,4-D at emergence,<br />

<strong>in</strong>cipient tiller<strong>in</strong>g, boot<strong>in</strong>g, and<br />

head<strong>in</strong>g.<br />

Water solubility is 620 mg/liter at<br />

20 °C. LD 50 for rats is 375 mg/kg. 2,4-D<br />

is not toxic to fish. LC 50 (24 h) of the<br />

sodium salt for ra<strong>in</strong>bow trout is<br />

1,160 mg/liter.<br />

MCPA. MCPA is a postemergence,<br />

selective, translocated broadleaf<br />

herbicide. In rice, it is similar to 2,4-D<br />

but is more selective at the same<br />

applicati<strong>on</strong> rate. It is normally applied<br />

at 0.2-1.2 kg ai/ha. Mixtures available<br />

<strong>in</strong>clude MCPA + bentaz<strong>on</strong>. MCPA<br />

should be applied to rice from<br />

midtiller<strong>in</strong>g to maximum tiller<strong>in</strong>g<br />

stages. It should not be sprayed at the<br />

boot<strong>in</strong>g stage.<br />

Water solubility is 825 mg/liter at<br />

20 °C. LD 50 for rats is 700 mg/kg.<br />

LC 50 (96 h) for ra<strong>in</strong>bow trout is<br />

232 mg/liter.<br />

Pr<strong>in</strong>cipal herbicides 69


Thiocarbamates<br />

Thiocarbamates are active when<br />

applied to the soil. Some are highly<br />

volatile, which makes soil <strong>in</strong>corpora-<br />

ti<strong>on</strong> necessary. Thiocarbamate herbi-<br />

cides c<strong>on</strong>trol germ<strong>in</strong>at<strong>in</strong>g annual<br />

grassy and broadleaf weeds. The<br />

process of lipid biosynthesis appears<br />

to be the most sensitive to thiocar-<br />

bamates. Examples of this group are<br />

thiobencarb and mol<strong>in</strong>ate. Most<br />

thiocarbamate herbicides have a<br />

relatively short soil persistence. Recent<br />

evidence (Roeth 1986) has shown<br />

<strong>in</strong>creased breakdown of some thiocar-<br />

bamate herbicides <strong>in</strong> soils with a<br />

history of thiocarbamates applicati<strong>on</strong>.<br />

Mol<strong>in</strong>ate. Mol<strong>in</strong>ate is a herbicide for<br />

selective weed c<strong>on</strong>trol <strong>in</strong> rice at<br />

2-4 kg ai/ha. It is particularly effective<br />

for c<strong>on</strong>troll<strong>in</strong>g Ech<strong>in</strong>ochloa weed<br />

species. It can be applied as a granular<br />

formulati<strong>on</strong> to the water <strong>in</strong> flooded<br />

rice. Emulsifiable c<strong>on</strong>centrates<br />

applied to the soil surface are<br />

extremely volatile and must be<br />

<strong>in</strong>corporated immediately. Mol<strong>in</strong>ate<br />

can be applied before sow<strong>in</strong>g rice, at<br />

postemergence preflood, at flood<strong>in</strong>g,<br />

or postflood. Moisture is required to<br />

activate mol<strong>in</strong>ate. In pre-flood treat-<br />

ment, the area should be flooded as<br />

so<strong>on</strong> as possible. Once applied, a<br />

c<strong>on</strong>t<strong>in</strong>uous water cover must be ma<strong>in</strong>-<br />

ta<strong>in</strong>ed. <strong>Rice</strong> is extremely tolerant of<br />

this herbicide. Cool temperatures will<br />

cause less than optimal weed c<strong>on</strong>trol.<br />

Commercial mixtures <strong>in</strong>clude<br />

mol<strong>in</strong>ate + propanil.<br />

Water solubility is 880 mg/liter at<br />

20 ºC. LD 50 for male rats is 369 mg/kg.<br />

LC 50 (96 h) for goldfish is 30 mg/liter.<br />

At recommended rates, mol<strong>in</strong>ate had<br />

no detectable effects <strong>on</strong> fish <strong>in</strong> ditches<br />

dra<strong>in</strong><strong>in</strong>g water from treated ricefields<br />

<strong>in</strong> California.<br />

70 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Thiobencarb. Thiobencarb is more<br />

effective <strong>on</strong> grasses and sedges than<br />

<strong>on</strong> broadleaf weeds. Thiobencarb<br />

<strong>in</strong>terferes with prote<strong>in</strong> synthesis and<br />

<strong>in</strong>hibits photosynthesis. Prote<strong>in</strong><br />

synthesis and amylase biosynthesis are<br />

<strong>in</strong>hibited more <strong>in</strong> susceptible grass<br />

species than <strong>in</strong> rice.<br />

In transplanted rice, thiobencarb<br />

shows maximum herbicidal selectivity<br />

by tak<strong>in</strong>g advantage of differences <strong>in</strong><br />

growth between rice seedl<strong>in</strong>gs at the<br />

3- to 6-leaf stages and germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Thiobencarb (2-3 kg ai/ha) is<br />

distributed <strong>in</strong> the top soil after applica-<br />

ti<strong>on</strong> and is readily leached from the<br />

soil. <strong>Rice</strong> plant <strong>in</strong>jury symptoms<br />

<strong>in</strong>clude dwarf malformati<strong>on</strong> and deep<br />

green<strong>in</strong>g. In some cases, leaf scorch<strong>in</strong>g<br />

appears.<br />

Thiobencarb should be applied<br />

between preemergence and the 2-leaf<br />

stage of Ech<strong>in</strong>ochloa spp. because<br />

herbicidal activity decreases after this<br />

stage. For post-emergence applicati<strong>on</strong>,<br />

thiobencarb should be applied after<br />

the 1.5-leaf stage of rice to the 2- to<br />

3-leaf stage of Ech<strong>in</strong>ochloa spp. to<br />

obta<strong>in</strong> the best weed kill without<br />

damag<strong>in</strong>g the rice. Cool temperatures<br />

may delay <strong>on</strong>set of herbicidal activity.<br />

Commercial mixtures available<br />

<strong>in</strong>clude thiobencarb + propanil and<br />

thiobencarb + simetryn.<br />

Water solubility is 30 mg/liter at<br />

20 °C. LD 50 for rats is 1,300 mg/kg.<br />

LC 50 (48 h) is 3.6 mg/liter for carp.<br />

Triaz<strong>in</strong>es<br />

The triaz<strong>in</strong>es are a large group of<br />

herbicides. They are applied preemer-<br />

gence and postemergence to c<strong>on</strong>trol<br />

seedl<strong>in</strong>g grasses and broadleaf weeds.<br />

They c<strong>on</strong>trol broadleaf weeds better<br />

than grasses and do not c<strong>on</strong>trol estab-<br />

lished annual or perennial weeds.<br />

Their mode of acti<strong>on</strong> is through<br />

<strong>in</strong>hibiti<strong>on</strong> of photosynthesis <strong>in</strong> plants.<br />

Simetryn and dimethametryn are<br />

triaz<strong>in</strong>es.<br />

Simetryn. Simetryn is used as a<br />

mixture with thiobencarb to c<strong>on</strong>trol<br />

broadleaf weeds <strong>in</strong> rice. LD 50 for rats is<br />

1,830 mg/kg.<br />

Dimethametryn. Dimethametryn is a<br />

triaz<strong>in</strong>e compound used as a selective,<br />

preemergence, and postemergence<br />

herbicide. It c<strong>on</strong>trols annual broadleaf<br />

weeds and grasses.<br />

Sulf<strong>on</strong>ylureas<br />

Sulf<strong>on</strong>ylureas have very high biolgical<br />

activity, and rates as low as<br />

0.002 kg ai/ha have been used.<br />

Although weed seed germ<strong>in</strong>ati<strong>on</strong> is<br />

not usually affected, subsequent root<br />

and shoot growth are severely <strong>in</strong>hib-<br />

ited <strong>in</strong> sensitive seedl<strong>in</strong>gs. <strong>Weed</strong><br />

growth <strong>in</strong>hibiti<strong>on</strong> is rapid, with visual<br />

symptoms with<strong>in</strong> 1-2 d <strong>in</strong> rapidly<br />

grow<strong>in</strong>g plants. The site of acti<strong>on</strong> of<br />

the sulf<strong>on</strong>ylureas is the enzyme<br />

acetolactate synthase. Inhibiti<strong>on</strong> of this<br />

enzyme, which is needed for the<br />

producti<strong>on</strong> of the essential am<strong>in</strong>o acid<br />

build<strong>in</strong>g blocks val<strong>in</strong>e and isoleuc<strong>in</strong>e,<br />

results <strong>in</strong> rapid cessati<strong>on</strong> of growth<br />

and eventual plant death. All plants<br />

c<strong>on</strong>ta<strong>in</strong> this target enzyme, but the<br />

ability of some plants to rapidly<br />

c<strong>on</strong>vert the herbicide to an <strong>in</strong>active<br />

product is the basis for selectivity<br />

(Beyer et al 1988).<br />

Bensulfur<strong>on</strong>. Bensulfur<strong>on</strong> (0.05 kg<br />

ai/ha) is a sulf<strong>on</strong>ylurea herbicide used<br />

<strong>in</strong> direct seeded and transplanted rice.<br />

It has good crop safety <strong>on</strong> <strong>in</strong>dica rice<br />

varieties, but less crop safety <strong>on</strong><br />

jap<strong>on</strong>ica types. Indica rices metabolize<br />

the herbicide more rapidly than<br />

jap<strong>on</strong>ica rices. Thiocarbamates<br />

herbicides, except mol<strong>in</strong>ate, show an<br />

antidote effect <strong>on</strong> bensulfur<strong>on</strong> through<br />

the accelerati<strong>on</strong> of detoxificati<strong>on</strong> by<br />

rice.


Bensulfur<strong>on</strong> c<strong>on</strong>trols many broadleaf<br />

weeds and sedges. It can be<br />

applied as preemergence or early<br />

postemergence treatment. When used<br />

<strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with a grass herbicide<br />

such as thiobencarb, mol<strong>in</strong>ate, or<br />

butachlor, bensulfur<strong>on</strong> provides<br />

excellent weed c<strong>on</strong>trol. Applicati<strong>on</strong><br />

can be made up to the 3-leaf stage of<br />

the weeds. Bensulfur<strong>on</strong> provides good<br />

c<strong>on</strong>trol of S. maritimus when applied<br />

6-12 d after emergence of the weed<br />

(Bernasor and De Datta 1986).<br />

Water solubility at 25 °C is<br />

120 mg/liter. LD 50 <strong>in</strong> rats is<br />

75,000 mg/kg. LC 50 (96 h) for ra<strong>in</strong>bow<br />

trout is >150 mg/liter.<br />

Polycyclic alkanoic acids<br />

Polycyclic alkanoic acids c<strong>on</strong>trol grass<br />

weeds. In general, polycyclic alkanoic<br />

acids are lost from the soil through<br />

biodegradati<strong>on</strong>, rather than through<br />

leach<strong>in</strong>g or volatilizati<strong>on</strong>. Ra<strong>in</strong>fall after<br />

foliar applicati<strong>on</strong> can greatly reduce<br />

herbicide absorpti<strong>on</strong> because of a<br />

reduced amount of herbicide <strong>in</strong><br />

c<strong>on</strong>tact with the plant. One example of<br />

the group is fenoxaprop. Herbicides<br />

such as MCPA, 2,4-D, and bentaz<strong>on</strong><br />

antag<strong>on</strong>ize polycyclic alkanoic acids.<br />

Fenoxaprop. Fenoxaprop<br />

(0.03-0.05 kg ai/ha) is a postemergence,<br />

selective herbicide for c<strong>on</strong>trol<br />

of annual and perennial grassy weeds.<br />

It is a c<strong>on</strong>tact herbicide that is partly<br />

systemic. <strong>Rice</strong> is tolerant from the<br />

3-leaf stage to early tiller<strong>in</strong>g.<br />

Fenoxaprop has no soil activity. It<br />

should not be applied with phenoxy<br />

compounds.<br />

Water solubility at 25 °C is<br />

0.8 mg/liter. LD 50 is 2,357 mg/kg.<br />

Miscellaneous herbicides<br />

Several herbicides do not clearly fall<br />

<strong>in</strong>to any of the group<strong>in</strong>gs. These<br />

herbicides differ <strong>in</strong> chemistry, selectivity,<br />

and mode of acti<strong>on</strong>. Bentaz<strong>on</strong>,<br />

chlomethoxynil, c<strong>in</strong>methyl<strong>in</strong>,<br />

oxadiaz<strong>on</strong>, and qu<strong>in</strong>clorac are<br />

examples.<br />

Bentaz<strong>on</strong>. Bentaz<strong>on</strong> (1-2 kg ai/ha)<br />

selectively c<strong>on</strong>trols a number of broadleaf<br />

weeds and sedges, primarily by<br />

c<strong>on</strong>tact acti<strong>on</strong>. Broadleaf weeds at the<br />

2- to 10-leaf stage are c<strong>on</strong>trolled most<br />

readily. Delay <strong>in</strong> applicati<strong>on</strong> will result<br />

<strong>in</strong> <strong>in</strong>adequate c<strong>on</strong>trol. In irrigated rice,<br />

bentaz<strong>on</strong> should be applied <strong>on</strong>ly to<br />

weeds that have emerged above the<br />

water level. Bentaz<strong>on</strong> does not c<strong>on</strong>trol<br />

grasses and has no known preemergence<br />

activity. Available commercial<br />

mixtures <strong>in</strong>clude bentaz<strong>on</strong> + MCPA<br />

and bentaz<strong>on</strong> + propanil.<br />

Water solubility is 500 mg/liter.<br />

LD 50 for rats is about 1,100 mg/kg. It<br />

has low fish toxicity. LC 50 (96 h) for<br />

ra<strong>in</strong>bow trout is 510 mg/liter.<br />

Chlomethoxynil (chlometoxyfen).<br />

Chlomethoxynil is used at<br />

1.5-2.5 kg ai/ha <strong>in</strong> transplanted and<br />

upland rice. It is applied 3-8 d after<br />

transplant<strong>in</strong>g rice.<br />

Water solubility is 0.3 mg/liter at<br />

15 °C. LD 50 for mice is 3,300 mg/kg.<br />

LC 50 (40 h) for carp is 237 mg/liter.<br />

C<strong>in</strong>methyl<strong>in</strong>. C<strong>in</strong>methyl<strong>in</strong> provides<br />

excellent c<strong>on</strong>trol of grasses and<br />

moderate suppressi<strong>on</strong> of broadleaf<br />

weeds and sedges. It has been tested at<br />

100-200 g ai/ha for transplanted rice<br />

4-9 d after transplant<strong>in</strong>g and at<br />

100 g ai/ha for direct seeded rice<br />

7-9 d after seed<strong>in</strong>g.<br />

Water solubility is 61 mg/liter.<br />

LD 50 is 3,900 mg/kg.<br />

Oxadiaz<strong>on</strong>. Oxadiaz<strong>on</strong> is a preemergence<br />

herbicide applied at<br />

0.5-0.75 kg ai/ha. Uptake by weed<br />

seedl<strong>in</strong>g shoots causes plant death<br />

because root uptake is low. Its<br />

postemergence activity aga<strong>in</strong>st grasses<br />

is limited. Because it has low water<br />

solubility and high adsorpti<strong>on</strong>,<br />

oxadiaz<strong>on</strong> is not leached and has good<br />

persistence. It can be used <strong>in</strong> transplanted<br />

and direct seeded rice.<br />

Commercial mixed formulati<strong>on</strong>s<br />

<strong>in</strong>clude oxadiaz<strong>on</strong> + 2,4-D and<br />

oxadiaz<strong>on</strong> + propanil.<br />

Oxadiaz<strong>on</strong> can be specifically<br />

formulated to be applied directly <strong>on</strong>to<br />

the surface of the ricefield floodwater.<br />

A shaker bottle with a calibrated<br />

stopper is used to spread oxadiaz<strong>on</strong><br />

directly <strong>on</strong>to the water without any<br />

diluti<strong>on</strong>. The field should be flooded<br />

3-5 cm at applicati<strong>on</strong> and water should<br />

not be disturbed for 2-5 d after<br />

applicati<strong>on</strong>.<br />

Water solubility is 0.7 mg/liter at<br />

20 °C. LD 50 for rats is more than<br />

8,000 mg/kg. LC 50 (96 h) for ra<strong>in</strong>bow<br />

trout is 1-9 mg/liter; for catfish,<br />

³15.4 mg/liter.<br />

Piperophos. Piperophos is a<br />

piperid<strong>in</strong>e compound used as a<br />

preemergence and postemergence<br />

herbicide. It c<strong>on</strong>trols annual grasses<br />

and sedges. The commercial product<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g piperophos + dimethame-<br />

tryn <strong>in</strong> the ratio 4:l is used <strong>in</strong> rice to<br />

c<strong>on</strong>trol most annual weeds. It is<br />

applied at 1-2 kg ai/ha at the 2- to<br />

4-leaf stage of weed. It has good selec-<br />

tivity <strong>in</strong> transplanted and upland rice.<br />

Pr<strong>in</strong>cipal herbicides 71


Qu<strong>in</strong>clorac. Qu<strong>in</strong>clorac is a ch<strong>in</strong>o-<br />

l<strong>in</strong>e-carboxylic acid compound used as<br />

a selective preplant, preemergence,<br />

and postemergence herbicide. It has<br />

been experimentally tested <strong>in</strong> rice at<br />

125-300 g ai/ha for grass weed c<strong>on</strong>trol.<br />

Organic matter <strong>in</strong> the soil will decrease<br />

herbicidal activity. Early postemer-<br />

gence applicati<strong>on</strong> when grass weeds<br />

are at the 1- to 3-leaf stage will give the<br />

best results. Although results are best<br />

when qu<strong>in</strong>clorac is applied <strong>on</strong>to<br />

saturated soil, it can also be applied<br />

<strong>on</strong>to dry soil or <strong>in</strong>to stand<strong>in</strong>g water<br />

not deeper than 5 cm. Qu<strong>in</strong>clorac can<br />

be safely used <strong>in</strong> dry seeded and water<br />

seeded rice when applicati<strong>on</strong> is made<br />

postemergence, from the 1- to 2-leaf<br />

stage <strong>on</strong>ward. It may be tank-mixed<br />

with other rice herbicides.<br />

Oral LD 50 , is 2,610 mg/kg.<br />

Differences <strong>in</strong> herbicide<br />

tolerance am<strong>on</strong>g rice<br />

cultivars<br />

<strong>Rice</strong> cultivars may vary <strong>in</strong> their<br />

tolerance for or susceptibility to<br />

herbicides. Broadleaf herbicides are<br />

expected to have little effect <strong>on</strong> rice.<br />

The differences <strong>in</strong> sensitivity to 2,4-D<br />

and MCPA (phenoxy acetic acid<br />

herbicides) that has been observed is<br />

due to differences <strong>in</strong> the growth stage<br />

of the cultivars at the time of herbicide<br />

applicati<strong>on</strong>.<br />

72 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Susceptibility of rice cultivars to<br />

grass herbicides has been observed<br />

with propanil, butachlor, thiobencarb,<br />

pendimethal<strong>in</strong>, mol<strong>in</strong>ate, and<br />

piperophos-dimethametryn. For<br />

example, IR5, IR28, and IR46 are<br />

susceptible to thiobencarb (Sh<strong>in</strong> et a1<br />

1989). Indica varieties are usually more<br />

susceptible to simetryn than are jap<strong>on</strong>-<br />

ica varieties. On the other hand, ben-<br />

sulfur<strong>on</strong> has good crop safety <strong>on</strong><br />

<strong>in</strong>dica rice varieties but less crop safety<br />

<strong>on</strong> jap<strong>on</strong>ica types. Cultivar tolerance<br />

may be due to differences <strong>in</strong> growth<br />

rate, growth stage, morphology, physi-<br />

ology, and biochemistry.<br />

Herbicide selectivity is relative and<br />

can be overcome by <strong>in</strong>creas<strong>in</strong>g dosage<br />

and by changes <strong>in</strong> envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s. Herbicide label <strong>in</strong>forma-<br />

ti<strong>on</strong> should be followed at all times to<br />

prevent severe damage to the rice<br />

crop.


Chapter 6<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> irrigated rice<br />

About 77 milli<strong>on</strong> ha of rice (53% of the<br />

world’s rice area) are partially or fully<br />

irrigated throughout the grow<strong>in</strong>g<br />

seas<strong>on</strong> (IRRI 1988b). In South and<br />

Southeast Asia, irrigated rice com-<br />

prises 33% of the rice-grow<strong>in</strong>g area; <strong>in</strong><br />

temperate Asia, most ricelands are<br />

irrigated. In Europe, Australia, Egypt,<br />

Pakistan, and USA, ricelands are<br />

entirely irrigated.<br />

Irrigated rice is classified <strong>in</strong>to four<br />

culture groups accord<strong>in</strong>g to the crop<br />

establishment technique used.<br />

Transplanted <strong>in</strong> puddled soil.<br />

Direct seeded <strong>on</strong> puddled soil<br />

(broadcast or drill seeded us<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seed).<br />

Direct seeded <strong>on</strong> dry soil (broadcast<br />

or drill seeded us<strong>in</strong>g n<strong>on</strong>germi-<br />

nated seed.<br />

Water seeded.<br />

Transplanted <strong>in</strong><br />

puddled soil<br />

Am<strong>on</strong>g irrigated rice cultures, trans-<br />

planted rice has the lowest potential<br />

loss to weeds, because of the head start<br />

rice seedl<strong>in</strong>gs have over weeds and<br />

because of the weed c<strong>on</strong>trol effects of<br />

floodwater. Despite these advantages,<br />

unc<strong>on</strong>trolled weeds can reduce rice<br />

yields by an average 48%, through<br />

competiti<strong>on</strong> for light and nutrients.<br />

<strong>Weed</strong> problems<br />

The weeds comm<strong>on</strong> <strong>in</strong> transplanted<br />

rice (M<strong>on</strong>ochoria vag<strong>in</strong>alis, Ech<strong>in</strong>ochloa<br />

crus-galli, Cyperus difformis, Cyperus<br />

iria, and Scirpus maritimus) are <strong>in</strong><br />

general highly competitive. They have<br />

disc<strong>on</strong>t<strong>in</strong>uous germ<strong>in</strong>ati<strong>on</strong> and rapid<br />

growth and are adapted to aquatic<br />

c<strong>on</strong>diti<strong>on</strong>s. <strong>Weed</strong>s grow and <strong>in</strong>fest an<br />

irrigated field if optimum water depth<br />

is not ma<strong>in</strong>ta<strong>in</strong>ed. In poorly flooded<br />

ricefields, most semiaquatic lowland<br />

rice weeds can germ<strong>in</strong>ate and survive.<br />

Stand establishment method<br />

Twenty- to 30-d-old rice seedl<strong>in</strong>gs are<br />

normally transplanted <strong>in</strong>to a puddled<br />

soil. In the irrigated rice-grow<strong>in</strong>g areas<br />

of Asia, seedl<strong>in</strong>gs are raised <strong>in</strong> wet<br />

bed, dapog, or dry bed nurseries. In<br />

the wet bed method, pregerm<strong>in</strong>ated<br />

seeds are broadcast uniformly <strong>on</strong> a<br />

raised bed of puddled soil. Seedl<strong>in</strong>gs<br />

are ready for transplant<strong>in</strong>g 20-25 d<br />

after sow<strong>in</strong>g. In the dry bed method,<br />

seedl<strong>in</strong>gs are grown similarly, but the<br />

soil is not puddled and dra<strong>in</strong>age is<br />

provided.<br />

<strong>Weed</strong>s <strong>in</strong> rice seedl<strong>in</strong>g nurseries can<br />

cause the complete failure of the<br />

nursery. Nurseries used to raise rice<br />

seedl<strong>in</strong>gs should be kept weed free to<br />

prevent transplant<strong>in</strong>g grassy look-<br />

alike weeds al<strong>on</strong>g with the rice seed-<br />

l<strong>in</strong>gs. Transplanted weeds are highly<br />

competitive and extremely difficult to<br />

c<strong>on</strong>trol by hand weed<strong>in</strong>g or by<br />

selective herbicides.<br />

Because nursery areas are small<br />

(about 21 × 21 m will provide enough<br />

seedl<strong>in</strong>gs for 1 ha rice) and seedl<strong>in</strong>g<br />

establishment takes <strong>on</strong>ly 20-25 d,<br />

c<strong>on</strong>troll<strong>in</strong>g weeds is easy. Propanil,<br />

thiobencarb, butachlor, qu<strong>in</strong>clorac,<br />

bensulfur<strong>on</strong>, pretilachlor + fenclorim,<br />

and pendimethal<strong>in</strong> give good weed<br />

c<strong>on</strong>trol <strong>in</strong> rice seedl<strong>in</strong>g nurseries.<br />

Doubl<strong>in</strong>g the seed rate, hand<br />

weed<strong>in</strong>g, or remov<strong>in</strong>g large weed<br />

seedl<strong>in</strong>gs from rice seedl<strong>in</strong>g bundles<br />

resulted <strong>in</strong> less than 50% c<strong>on</strong>trol of<br />

weeds. Careful exam<strong>in</strong>ati<strong>on</strong> of each<br />

plant to ensure that most weeds are<br />

removed from the seedl<strong>in</strong>g bundles is<br />

laborious, time-c<strong>on</strong>sum<strong>in</strong>g, and more<br />

expensive than herbicide treatment<br />

(Moody et al 1988).<br />

Land preparati<strong>on</strong><br />

Mechanical land preparati<strong>on</strong> should<br />

provide a weed-free field to allow<br />

optimal early rice growth. The <strong>in</strong>itial<br />

plow<strong>in</strong>g buries weeds and crop<br />

stubble from the previous crop.<br />

Puddl<strong>in</strong>g uproots weeds that grow<br />

after plow<strong>in</strong>g and buries them <strong>in</strong> the<br />

layers of mud. The field is leveled after<br />

puddl<strong>in</strong>g to elim<strong>in</strong>ate <strong>in</strong>adequately<br />

flooded areas that are ideal for the<br />

growth and development of difficult-<br />

to-kill semiaquatic weeds.<br />

Irrigated rice 73


Plant<strong>in</strong>g method<br />

Transplant<strong>in</strong>g <strong>in</strong>to well-puddled soil<br />

helps rice seedl<strong>in</strong>gs to establish<br />

quickly. Healthy 20- to 30-d-old rice<br />

seedl<strong>in</strong>gs transplanted <strong>in</strong> rows <strong>in</strong> a<br />

well-prepared weed-free field will<br />

have a head start over weeds. Small<br />

rice seedl<strong>in</strong>gs are not competitive<br />

aga<strong>in</strong>st weeds.<br />

Plant populati<strong>on</strong><br />

Most modern early-matur<strong>in</strong>g rices,<br />

which have a short vegetative period<br />

that limits tiller<strong>in</strong>g, do best when<br />

transplanted at close spac<strong>in</strong>g. No<br />

s<strong>in</strong>gle spac<strong>in</strong>g recommendati<strong>on</strong>,<br />

however, is best for all rice cultivars.<br />

In the absence of lodg<strong>in</strong>g and weeds,<br />

yields of most varieties do not change<br />

much with plant<strong>in</strong>g distances between<br />

25 and 10 cm <strong>in</strong> rows or hills. Dense<br />

plant<strong>in</strong>g <strong>in</strong>creases the competitiveness<br />

of rice aga<strong>in</strong>st weeds by reduc<strong>in</strong>g later<br />

germ<strong>in</strong>at<strong>in</strong>g weed seedl<strong>in</strong>gs through<br />

shad<strong>in</strong>g. <strong>Rice</strong> should be transplanted<br />

<strong>in</strong> straight rows, to allow mechanical<br />

weeders to be used for weed<strong>in</strong>g.<br />

Water management<br />

Good water management will elimi-<br />

nate all normal upland weeds <strong>in</strong> trans-<br />

planted irrigated rice. The anaerobic<br />

c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g <strong>in</strong> soil under<br />

5 cm of water <strong>in</strong>hibit most weed<br />

growth. Reducti<strong>on</strong>s <strong>in</strong> water level<br />

expose the soil surface, which leads to<br />

aerobic c<strong>on</strong>diti<strong>on</strong>s that allow weed<br />

seed germ<strong>in</strong>ati<strong>on</strong>. A field should be<br />

flooded 2-3 d after transplant<strong>in</strong>g and a<br />

5-cm water depth should be ma<strong>in</strong>-<br />

ta<strong>in</strong>ed throughout the grow<strong>in</strong>g seas<strong>on</strong>.<br />

Fertilizer<br />

<strong>Rice</strong> resp<strong>on</strong>se to fertilizer nitrogen is<br />

markedly <strong>in</strong>creased by good weed<br />

c<strong>on</strong>trol, with maximum yields when<br />

weeds are c<strong>on</strong>trolled before fertilizer is<br />

applied.<br />

74 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

6.1 S<strong>in</strong>gle and 2-row c<strong>on</strong>o weeders.<br />

Draw<strong>in</strong>gs, design <strong>in</strong>formati<strong>on</strong>, and limited<br />

technical supported are provided free to<br />

manufacturers who want to produce IRRI<br />

designs <strong>on</strong> a commercial basis. IRRI reta<strong>in</strong>s<br />

worldwide distributi<strong>on</strong> and patent rights for<br />

all designs developed by the Institute, and<br />

does not grant exclusive manufactur<strong>in</strong>g<br />

rights or licenses <strong>in</strong> any country or regi<strong>on</strong>.<br />

6.2 <strong>Rice</strong> growth stages<br />

when herbicides can be<br />

applied <strong>in</strong> transplanted<br />

irrigated rice. Bars (-) show<br />

periods dur<strong>in</strong>g which a<br />

particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage<br />

with<strong>in</strong> the rice growth stage.


Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most comm<strong>on</strong><br />

weed c<strong>on</strong>trol method <strong>in</strong> irrigated<br />

transplanted rice. The first 6 wk after<br />

transplant<strong>in</strong>g is the critical time of<br />

weed competiti<strong>on</strong>. Two or three timely<br />

weed<strong>in</strong>gs will provide adequate weed<br />

c<strong>on</strong>trol.<br />

<strong>Weed</strong><strong>in</strong>g by mach<strong>in</strong>e is possible<br />

when irrigated rice is transplanted <strong>in</strong><br />

rows. Hand weed<strong>in</strong>g requires about<br />

120 labor-hours per ha. That is<br />

reduced to 30-90 labor-hours when<br />

mechanical weeders are used. The<br />

c<strong>on</strong>venti<strong>on</strong>al s<strong>in</strong>gle-row rotary<br />

weeders require 80-90 labor-hours, but<br />

they are difficult to push and must be<br />

moved back and forth for proper<br />

operati<strong>on</strong>.<br />

The IRRI c<strong>on</strong>o weeder (Fig. 6.1)<br />

uproots and buries weeds with c<strong>on</strong>ical<br />

shaped rotors. Forward movement of<br />

the weeder creates a horiz<strong>on</strong>tal back-<br />

and-forth soil movement <strong>in</strong> the top<br />

3-cm layer, and the c<strong>on</strong>o weeder<br />

weeds satisfactorily <strong>in</strong> a s<strong>in</strong>gle pass.<br />

Power requirements are low because<br />

<strong>on</strong>ly a small quantity of soil is moved.<br />

IRRI’s two-row c<strong>on</strong>o weeder can weed<br />

three to four times faster than c<strong>on</strong>ven-<br />

ti<strong>on</strong>al s<strong>in</strong>gle-row rotary weeders.<br />

<strong>Weed</strong>s with<strong>in</strong> or close to rice hills<br />

must be hand-pulled.<br />

Herbicides<br />

In fields where heavy weed <strong>in</strong>festati<strong>on</strong>s<br />

are expected, weed competiti<strong>on</strong><br />

can be prevented by a wide range of<br />

herbicides. <strong>Rice</strong> herbicides show<br />

maximum selectivity <strong>in</strong> transplanted<br />

rice because of differences <strong>in</strong> growth<br />

between rice seedl<strong>in</strong>gs transplanted at<br />

the 3- to 6-leaf stage and the germ<strong>in</strong>at<strong>in</strong>g<br />

weeds. Several herbicides and<br />

herbicide comb<strong>in</strong>ati<strong>on</strong>s can be used <strong>in</strong><br />

transplanted rice. Apply<strong>in</strong>g a preemergence<br />

herbicide together with<br />

effective water management will<br />

provide seas<strong>on</strong>-l<strong>on</strong>g weed c<strong>on</strong>trol.<br />

Some important rice herbicides and<br />

their times of applicati<strong>on</strong> <strong>in</strong> irrigated<br />

rice are given <strong>in</strong> Table 6.1 and<br />

Figure 6.2.<br />

Table 6.1. Herbicides suitable for use <strong>in</strong> transplanted irrigated rice.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox + 2,4-D<br />

Butachlor<br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

1.0-2.0<br />

2.0 + 0.5<br />

1.0-2.0<br />

0.8-1.0<br />

2.0-4.0<br />

0.5-0.75<br />

0.15-0.25<br />

0.75<br />

0.5<br />

0.3 + 0.2<br />

3.0-4.0<br />

0.3<br />

1.5-4.0<br />

1.0 + 0.5<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 3-5 d after transplant<strong>in</strong>g (DT)<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges<br />

(IRRI 1979). Dra<strong>in</strong> before applicati<strong>on</strong>,<br />

if necessary to expose weeds.<br />

Apply preemergence to weeds 4 DT<br />

(IRRI 1981).<br />

Apply 3-6 DT. Water depth of 5-10 cm<br />

at applicati<strong>on</strong> and for 3-5 d after<br />

(IRRI 1974).<br />

Apply 3-4 wk after weeds have emerged<br />

to c<strong>on</strong>trol sedges, broadleaf weeds,<br />

and aquatic weeds. Dra<strong>in</strong> before<br />

applicati<strong>on</strong> to expose weeds. Reflood<br />

with<strong>in</strong> 2-3 d after applicati<strong>on</strong>. Can also<br />

be applied at 4-5 DT, before weeds<br />

emerge. Granular herbicides can be<br />

broadcast directly <strong>in</strong>to floodwater<br />

(IRRI 1973, 1981).<br />

For preflood appllcati<strong>on</strong>, flood as<br />

so<strong>on</strong> as possible. For postflood<br />

applicati<strong>on</strong>, deepen water at<br />

applicati<strong>on</strong> to cover weed foliage,<br />

then lower water after 4-6 d. No need to<br />

<strong>in</strong>corporate granular formulati<strong>on</strong><br />

(COPR 1976).<br />

Apply 2-8 DT to c<strong>on</strong>trol annual grasses<br />

and broadleaf weeds. Field should be<br />

flooded 3-5 cm and ma<strong>in</strong>ta<strong>in</strong>ed at that<br />

level for 2-5 d after treatment<br />

(COPR 1976).<br />

Apply 4 DT (IRRI 1979, 1983).<br />

Apply 4 DT to c<strong>on</strong>trol annual grasses<br />

(IRRI 1979, 1983).<br />

Apply 2-5 DT to c<strong>on</strong>trol annual<br />

grasses, sedges, and broadleaf weeds<br />

(IRRI 1977).<br />

Apply 2-8 DT to c<strong>on</strong>trol annual grasses,<br />

sedges, and broadleaf weeds<br />

(IRRI 1986).<br />

Apply as postemergence spray to<br />

c<strong>on</strong>trol several annual grasses and<br />

broadleaf weeds at the 2- to 3-leaf<br />

stages. Draln flooded fields 24 h<br />

before applicati<strong>on</strong> and reflood 3-5 d<br />

after treatment. Do not spray organophosphorus<br />

and carbamate<br />

<strong>in</strong>secticides with<strong>in</strong> 14 d after<br />

appllcati<strong>on</strong> (COPR 1976).<br />

Apply 3-5 DT (IRRI 1986).<br />

Apply 4-8 DT at the 1- to 2-leaf stages of<br />

weeds. Water should not be dra<strong>in</strong>ed<br />

or overflowed for 3-5 d after<br />

appltcati<strong>on</strong> (IRRI 1971).<br />

Apply 4-5 DT (IRRI 1971).<br />

Irrigated rice 75


Direct seeded <strong>on</strong><br />

puddled soil<br />

In direct seeded irrigated rice culture,<br />

the field is leveled after puddl<strong>in</strong>g and<br />

pregerm<strong>in</strong>ated seeds are broadcast or<br />

mach<strong>in</strong>e-drilled <strong>on</strong>to the puddled soil.<br />

Direct seed<strong>in</strong>g, also known as wet<br />

seed<strong>in</strong>g, is practiced <strong>in</strong> parts of India,<br />

Bangladesh, and Sri Lanka and has<br />

become an <strong>in</strong>creas<strong>in</strong>gly important rice<br />

crop establishment method <strong>in</strong> South-<br />

east Asia. Broadcast seeded flooded<br />

rice is also practiced <strong>in</strong> several ra<strong>in</strong>fed<br />

areas <strong>in</strong> South and Southeast Asia<br />

(De Datta and Fl<strong>in</strong>n 1986).<br />

Direct seed<strong>in</strong>g has become an<br />

acceptable alternative to transplant<strong>in</strong>g<br />

as labor costs have <strong>in</strong>creased, less<br />

expensive herbicides have become<br />

available, and irrigated area has<br />

<strong>in</strong>creased. However, root anchorage is<br />

poor, and lodg<strong>in</strong>g can be more serious<br />

<strong>in</strong> direct seeded than <strong>in</strong> transplanted<br />

rice.<br />

<strong>Weed</strong> problems<br />

Unc<strong>on</strong>trolled weeds <strong>in</strong> direct seeded<br />

flooded rice can reduce yields about<br />

53%. The culture requires shallow<br />

flood<strong>in</strong>g, which results <strong>in</strong> more<br />

exposed soil areas and aerobic c<strong>on</strong>diti<strong>on</strong>s.<br />

Because rice and weeds germ<strong>in</strong>ate<br />

and emerge together, competiti<strong>on</strong><br />

is more <strong>in</strong>tense than <strong>in</strong> transplanted<br />

rice. The range of herbicides that can<br />

be used safely is also limited, because<br />

rice and the weeds are at the same<br />

development stages.<br />

Lowland weeds such as E. crus-gall,<br />

Ischaemum rugosum, Leptochloa<br />

ch<strong>in</strong>ensis, Cyperus difformis, Fimbristylis<br />

miliacea, and Scirpus maritimus are<br />

adapted to the wet c<strong>on</strong>diti<strong>on</strong>s of direct<br />

seeded flooded rice.<br />

76 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Land preparati<strong>on</strong><br />

Thorough land preparati<strong>on</strong> is essential<br />

<strong>in</strong> direct seeded flooded rice. Land<br />

preparati<strong>on</strong> is similar to that for trans-<br />

planted flooded rice. However, the<br />

f<strong>in</strong>al level<strong>in</strong>g of the field is even more<br />

critical than for transplanted rice<br />

because the water level <strong>in</strong> direct<br />

seeded fields is kept shallow. An<br />

uneven land surface results <strong>in</strong> areas<br />

where the soil surface is exposed to air.<br />

That creates an ideal c<strong>on</strong>diti<strong>on</strong> for<br />

weed germ<strong>in</strong>ati<strong>on</strong> and growth. <strong>Rice</strong><br />

stands <strong>in</strong> areas that have deeper<br />

flood<strong>in</strong>g will be reduced.<br />

Plant<strong>in</strong>g method<br />

<strong>Rice</strong> seeds are pregerm<strong>in</strong>ated (soaked<br />

<strong>in</strong> water for 24 h, then <strong>in</strong>cubated for<br />

48 h) before they are sown <strong>in</strong> the field.<br />

This assures a quick and even stand.<br />

Pregerm<strong>in</strong>ated rice seeds may be<br />

broadcast or mach<strong>in</strong>e drilled. Mechan-<br />

ical weed<strong>in</strong>g is possible when seeds<br />

are drilled <strong>in</strong> rows.<br />

Cultivar<br />

The cultivar used should have excel-<br />

lent seedl<strong>in</strong>g vigor and good tiller<strong>in</strong>g<br />

capacity. IRRI and nati<strong>on</strong>al programs<br />

have released several such rices.<br />

Plant populati<strong>on</strong><br />

Close spac<strong>in</strong>g is essential to reduce<br />

weed <strong>in</strong>festati<strong>on</strong> and for high gra<strong>in</strong><br />

yields. In wet seeded rice, less weed<br />

competiti<strong>on</strong> has been observed with<br />

seed<strong>in</strong>g rates of 100 kg/ha and higher.<br />

Where weeds are not a problem, no<br />

rice gra<strong>in</strong> yield advantage has been<br />

observed at these seed<strong>in</strong>g rates.<br />

Water management<br />

Good water management is an important<br />

factor <strong>in</strong> weed c<strong>on</strong>trol <strong>in</strong> direct<br />

seeded flooded rice. Seeds are broadcast<br />

<strong>on</strong>to puddled soil with little or no<br />

stand<strong>in</strong>g water. The water level is<br />

<strong>in</strong>creased gradually as the rice grows.<br />

Because the field cannot be flooded<br />

until seedl<strong>in</strong>gs are established, some<br />

weeds will grow al<strong>on</strong>g with the rice.<br />

After rice establishment, the water<br />

level should be raised as rapidly as<br />

possible without damag<strong>in</strong>g the young<br />

rice seedl<strong>in</strong>gs, then kept uniform and<br />

c<strong>on</strong>t<strong>in</strong>uous. <strong>Weed</strong> emergence and the<br />

type of weeds that emerge are closely<br />

related to floodwater depth. Shallow<br />

(less than 2.5 cm), c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g<br />

facilitates weed growth.<br />

For preemergence herbicide applicati<strong>on</strong><br />

<strong>in</strong> direct seeded flooded rice,<br />

the follow<strong>in</strong>g water management is<br />

suggested.<br />

Keep the field saturated from<br />

sow<strong>in</strong>g to herbicide applicati<strong>on</strong>. If<br />

the soil dries with<strong>in</strong> this period, add<br />

enough water to resaturate the<br />

plots.<br />

Flood the field to 2-3 cm deep and<br />

apply herbicide directly <strong>in</strong>to the<br />

water.<br />

Raise water depth to 5 cm 1 wk<br />

after herbicide applicati<strong>on</strong> and<br />

ma<strong>in</strong>ta<strong>in</strong> that depth until 1 wk<br />

before harvest.<br />

Fertilizer<br />

High fertilizer applicati<strong>on</strong> to <strong>in</strong>crease<br />

yields of modern improved rice<br />

cultivars enhances weed growth.<br />

Incorporat<strong>in</strong>g N <strong>in</strong>to the seedbed at<br />

5-10 cm reduces N losses and at the<br />

same time reduces the availability of N<br />

to weed seedl<strong>in</strong>gs that germ<strong>in</strong>ate near<br />

the soil surface.


6.3 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> wet-<br />

seeded irrigated rice. Bars (—) show<br />

periods dur<strong>in</strong>g which a particular<br />

herbicide is applied. *Tim<strong>in</strong>g of<br />

herbicide applicati<strong>on</strong> is based <strong>on</strong><br />

weed emergence and growth stage<br />

with<strong>in</strong> the rice growth stage.<br />

Hand weed<strong>in</strong>g<br />

The first 6 wk after seed<strong>in</strong>g is the<br />

critical period of weed competiti<strong>on</strong> <strong>in</strong><br />

direct seeded flooded rice. Hand<br />

weed<strong>in</strong>g <strong>in</strong> drill seeded and hand<br />

pull<strong>in</strong>g <strong>in</strong> broadcast seeded rice<br />

should be d<strong>on</strong>e early, although it may<br />

be difficult to dist<strong>in</strong>guish grassy weed<br />

seedl<strong>in</strong>gs from rice seedl<strong>in</strong>gs at such<br />

an early stage. Two to three hand<br />

weed<strong>in</strong>gs are sufficient to prevent<br />

yield losses due to weeds. The first<br />

weed<strong>in</strong>g can be d<strong>on</strong>e with<strong>in</strong> 3 wk after<br />

seed<strong>in</strong>g. <strong>Weed</strong><strong>in</strong>g will take less time if<br />

rice seeds are sown <strong>in</strong> rows rather than<br />

broadcast. The use of row weeders <strong>in</strong><br />

broadcast seeded fields is limited<br />

because of the random distributi<strong>on</strong> of<br />

seedl<strong>in</strong>gs (see figure 6.1, p. 74 for<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> row weeders).<br />

Herbicides<br />

Because hand weed<strong>in</strong>g is difficult <strong>in</strong><br />

direct seeded flooded rice, chemical<br />

weed c<strong>on</strong>trol comb<strong>in</strong>ed with other<br />

cultural practices (such as water<br />

c<strong>on</strong>trol) is an alternative that may be<br />

practiced to reduce weed competiti<strong>on</strong>,<br />

crop losses, and labor costs. Several<br />

herbicides offer effective weed c<strong>on</strong>trol,<br />

but because weeds and rice germ<strong>in</strong>ate<br />

at the same time, the number of herbi-<br />

cides that can be used safely may be<br />

limited. In the tropics, butachlor,<br />

thiobencarb, butral<strong>in</strong>, and propanil<br />

effectively c<strong>on</strong>trol weeds and have<br />

been widely tested <strong>in</strong> direct seeded<br />

flooded rice.<br />

Irrigated rice 77


Table 6.2. Herbicides suitable for use <strong>in</strong> irrigated rice direct seeded <strong>on</strong> puddled soil.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox + 2,4-D<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

2.0<br />

2.0 + 0.6<br />

0.75<br />

2.0<br />

0.5-1.0<br />

3.0<br />

0.75-1.0<br />

Oxyfluorfen<br />

0.15-0.25<br />

Pendimethal<strong>in</strong><br />

0.75-2.0<br />

Piperophos + dimethame tryn 0.4 + 0.1<br />

Piperophos + 2,4-D<br />

0.3 + 0.2<br />

Pretilachlor + antidote<br />

0.3-0.4<br />

Propanil<br />

3.0-4.0<br />

78 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

0.3<br />

1.5-2.0<br />

1.0 + 0.5<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 6-8 d after seed<strong>in</strong>g (DAS)<br />

(IRRI 1985).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges,<br />

<strong>in</strong>clud<strong>in</strong>g S. maritimus. Water level<br />

must be lowered for good coverage.<br />

Annual weeds must be small—2- to<br />

7-leaf stages (IRRI 1984).<br />

Apply at early postemergence of<br />

weeds, about 4-6 DAS (IRRI 1981).<br />

Apply 6 DAS to c<strong>on</strong>trol annual grasses<br />

and sedges. Soil should be saturated<br />

at applicati<strong>on</strong> and rema<strong>in</strong> n<strong>on</strong>flooded<br />

for 3 d after applicati<strong>on</strong> (IRRI 1983).<br />

Granular butachlor applied 3 DAS<br />

gives better weed c<strong>on</strong>trol, less stand<br />

reducti<strong>on</strong>, and higher yields than when<br />

applied 6 DAS (IRRI 1986).<br />

Apply 2-3 DAS to c<strong>on</strong>trol annual<br />

grasses (COPR 1976).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges.<br />

Lower water level to expose weeds<br />

before spray<strong>in</strong>g and reflood with<strong>in</strong> a<br />

few days (COPR 1976).<br />

Apply 6-7 DAS. Raise water level after<br />

applicati<strong>on</strong> (IRRI 1977).<br />

Apply preemergence 4-6 DAS. Soil<br />

must rema<strong>in</strong> moist after applicati<strong>on</strong> to<br />

ma<strong>in</strong>ta<strong>in</strong> herbicide activity (IRRI 1985).<br />

Apply 3-6 DAS (IRRI 1978, 1982).<br />

Apply up to 6 DAS (IRRI 1975, 1982).<br />

Apply 4-6 DAS (IRRI 1977).<br />

Apply 6-8 DAS (IRRI 1987).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence to c<strong>on</strong>trol grass<br />

and broadleaf weeds at the 2- to 5-leaf<br />

stages (about 10 DAS). Water level<br />

should be lowered before applicati<strong>on</strong><br />

and the field reflooded as so<strong>on</strong> as<br />

possible (IRRI 1980).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Apply about 6 DAS, when grasses have<br />

1-2 leaves but before the 3-leaf stage of<br />

grasses and sedges. Keep water low<br />

enough to avoid submerg<strong>in</strong>g the rice<br />

plants (IRRI 1972).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Herbicides can be soil-<strong>in</strong>corporated<br />

before sow<strong>in</strong>g rice, applied preemer-<br />

gence to water a few days after sow-<br />

<strong>in</strong>g, or applied postemergence before<br />

weeds reach the 3- to 4-leaf stage.<br />

Table 6.2 and Figure 6.3 outl<strong>in</strong>e<br />

various herbicides and their applica-<br />

ti<strong>on</strong> times for this rice culture.<br />

Direct seeded <strong>on</strong><br />

dry soil<br />

Dry seeded irrigated rice culture is<br />

practiced <strong>in</strong> Africa, Australia, Europe,<br />

and the USA. N<strong>on</strong>germ<strong>in</strong>ated seeds<br />

are broadcast or drill seeded <strong>in</strong> dry or<br />

moist soil. Broadcast seeds are covered<br />

by harrow<strong>in</strong>g. More seeds are required<br />

for broadcast than for drill seed<strong>in</strong>g,<br />

and stand establishment is poorer with<br />

broadcast seed<strong>in</strong>g than with drill<br />

seed<strong>in</strong>g.<br />

<strong>Weed</strong> problems<br />

After broadcast or drill seed<strong>in</strong>g rice<br />

<strong>in</strong>to dry soil, the field is irrigated just<br />

enough to provide the soil moisture<br />

that allows the seeds to germ<strong>in</strong>ate.<br />

Flood<strong>in</strong>g the soil would prevent rice<br />

seedl<strong>in</strong>g emergence. Thus, aerobic<br />

c<strong>on</strong>diti<strong>on</strong>s rema<strong>in</strong> ideal for the germi-<br />

nati<strong>on</strong> of upland and aquatic weeds,<br />

and weed problems are much worse <strong>in</strong><br />

dry seeded irrigated than <strong>in</strong> wet<br />

seeded rice. Because the water level is<br />

<strong>in</strong>creased gradually, it is 2-6 wk before<br />

a c<strong>on</strong>t<strong>in</strong>uous flood at 5 cm depth can<br />

be achieved. Many well-established<br />

upland weeds will survive, mak<strong>in</strong>g<br />

weed competiti<strong>on</strong> more <strong>in</strong>tense <strong>in</strong><br />

this rice culture than <strong>in</strong> the cultures<br />

described earlier. The fact that rice and<br />

weeds germ<strong>in</strong>ate together restricts the<br />

number of herbicides that can be<br />

used safely.<br />

Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> should provide<br />

weed-free c<strong>on</strong>diti<strong>on</strong>s at plant<strong>in</strong>g and<br />

favorable c<strong>on</strong>diti<strong>on</strong>s for rice growth<br />

and development. Land preparati<strong>on</strong><br />

and level<strong>in</strong>g should be thorough<br />

because large soil clods will reduce<br />

germ<strong>in</strong>ati<strong>on</strong> of rice seedl<strong>in</strong>gs and<br />

cause irregularity <strong>in</strong> herbicidal<br />

efficacy. As clods melt down, the<br />

<strong>in</strong>ner, unexposed soil will allow weeds<br />

to germ<strong>in</strong>ate.


Reduc<strong>in</strong>g weeds <strong>in</strong> dry seeded rice<br />

culture is possible by practic<strong>in</strong>g a stale<br />

seedbed. After land preparati<strong>on</strong>,<br />

weeds are allowed to emerge follow-<br />

<strong>in</strong>g ra<strong>in</strong> or irrigati<strong>on</strong>, then destroyed<br />

by shallow cultivati<strong>on</strong> or applicati<strong>on</strong><br />

of a n<strong>on</strong>residual c<strong>on</strong>tact herbicide. The<br />

herbicide should be applied or cultiva-<br />

ti<strong>on</strong> d<strong>on</strong>e when most of the weeds<br />

have reached the 2- to 5-leaf stage. <strong>Rice</strong><br />

is then seeded <strong>in</strong>to the weed-free field.<br />

Plant<strong>in</strong>g method<br />

<strong>Rice</strong> seeds are broadcast seeded <strong>in</strong>to<br />

dry or moist soil and covered by<br />

harrow<strong>in</strong>g, or drilled 3-5 cm deep <strong>in</strong>to<br />

the soil. High seed<strong>in</strong>g rates can sup-<br />

press weeds, but the cost of seeds<br />

should be c<strong>on</strong>sidered aga<strong>in</strong>st other<br />

direct c<strong>on</strong>trol measures available<br />

because there is no yield advantage <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g seed rates above 100 kg/ha.<br />

Cultivar<br />

Both short- and <strong>in</strong>termediate-statured<br />

cultivars are used for rice broadcast or<br />

drilled <strong>in</strong>to dry soil. For broadcast<br />

seeded rice, the cultivar used should<br />

be stiff-strawed to avoid severe<br />

lodg<strong>in</strong>g.<br />

Water management<br />

Good water management is important<br />

<strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g weeds <strong>in</strong> broadcast or<br />

drill seeded flooded rice. After dry<br />

seed<strong>in</strong>g, the soil may be <strong>in</strong>termittently<br />

flooded and dra<strong>in</strong>ed to allow for rice<br />

emergence. The water level is then<br />

<strong>in</strong>creased gradually for a few weeks<br />

until a c<strong>on</strong>t<strong>in</strong>uous flood of 5-cm depth<br />

is ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Table 6.3 Herbicides suitable for use <strong>in</strong> broadcast or drill seeded, dry-sown irrigated rice.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha)<br />

2.0<br />

1.5-2.0<br />

2.0<br />

0.5-1.0<br />

3.0-5.0<br />

0.75-1.0<br />

2.0<br />

0.75-1.25<br />

3.0-4.0<br />

3.0<br />

Hand weed<strong>in</strong>g<br />

Interrow mechanical weed<strong>in</strong>g is not<br />

possible <strong>in</strong> broadcast seeded rice. Even<br />

when seeds are drilled, the <strong>in</strong>terrow<br />

spac<strong>in</strong>g is so narrow that <strong>on</strong>ly hand or<br />

hoe weed<strong>in</strong>g is possible. In this rice<br />

culture, two to three-timely hand<br />

weed<strong>in</strong>gs are sufficient to ensure<br />

optimum yields. The soil disturbance<br />

<strong>in</strong>volved, however, can cause as much<br />

damage to rice as to weeds. The first<br />

weed<strong>in</strong>g may be d<strong>on</strong>e between 14 and<br />

21 d, depend<strong>in</strong>g <strong>on</strong> weed growth,<br />

followed by subsequent weed<strong>in</strong>gs<br />

when necessary.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply as a postemergence herbicide<br />

to c<strong>on</strong>trol broadleaf weeds and<br />

sedges. Apply when weeds have<br />

germ<strong>in</strong>ated but are still small. Water<br />

level may be lowered to expose weeds<br />

24 h. Raise water level after treatment<br />

(COPR 1976).<br />

Apply as preemergence spray 0-3 d<br />

after sow<strong>in</strong>g (DAS) to c<strong>on</strong>trol annual<br />

grasses and sedges (IRRI 1977).<br />

Apply as preemergence spray 2-3 DAS<br />

to c<strong>on</strong>trol annual grasses (IRRI 1977).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges<br />

(COPR 1976).<br />

Apply from presow<strong>in</strong>g to early post-<br />

emergence to c<strong>on</strong>trol grassy weeds<br />

(Smith 1971).<br />

Preemergence applicati<strong>on</strong> should be<br />

2-3 DAS (IRRI 1977).<br />

Apply at preemergence of rice<br />

(IRRI 1977).<br />

Apply early postemergence to c<strong>on</strong>trol<br />

annual weeds (Green and Ebner<br />

1972).<br />

Apply postemergence at the 2- to 3-leaf<br />

stages to c<strong>on</strong>trol grasses and broad-<br />

leaf weeds (COPR 1976).<br />

Apply preemergence immediately<br />

after cover<strong>in</strong>g the seeds with soil but<br />

before the first irrigati<strong>on</strong> or ram.<br />

Irrigate 3-5 d after applicati<strong>on</strong><br />

(IRRI 1979).<br />

Herbicides<br />

The effects of herbicides are similar for<br />

broadcast seeded or drilled dry-sown<br />

rice and wet-sown flooded rice.<br />

Because of water management prob-<br />

lems and difficulties <strong>in</strong> hand weed<strong>in</strong>g,<br />

herbicides are particularly important<br />

<strong>in</strong> this rice culture. Cover<strong>in</strong>g the seeds<br />

with soil after drill or broadcast<br />

seed<strong>in</strong>g <strong>in</strong>creases the tolerance of rice<br />

for herbicides but decreases a rice<br />

seedl<strong>in</strong>g’s flood<strong>in</strong>g tolerance.<br />

Butachlor, mol<strong>in</strong>ate, oxadiaz<strong>on</strong>,<br />

propanil, and thiobencarb are used as<br />

Irrigated rice 79


6.4 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> dry-seeded<br />

irrigated rice. Bars (–) show periods<br />

dur<strong>in</strong>g which a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong><br />

the rice growth stage.<br />

preplant, preemergence, postemer-<br />

gence, or postflood treatment.<br />

Propanil is widely used as a<br />

postemergence herbicide, either <strong>in</strong><br />

additi<strong>on</strong> to or <strong>in</strong> place of a preemer-<br />

gence treatment. Preplant<strong>in</strong>g herbi-<br />

cidal treatments, such as with<br />

glyphosate, may also c<strong>on</strong>trol perennial<br />

weeds. Table 6.3 and Figure 6.4 outl<strong>in</strong>e<br />

the comm<strong>on</strong> herbicides and their times<br />

of applicati<strong>on</strong> for this culture.<br />

80 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Water seeded<br />

Water seed<strong>in</strong>g of rice is practiced <strong>in</strong><br />

several parts of Asia, <strong>in</strong>clud<strong>in</strong>g India,<br />

Sri Lanka, Malaysia, and Thailand.<br />

It is widely practiced <strong>in</strong> the USA,<br />

southern Europe, USSR, and Australia.<br />

Pregerm<strong>in</strong>ated rice is broadcast<br />

directly <strong>on</strong>to the flooded field. The<br />

rice, which is seeded <strong>in</strong>to water 7-10<br />

cm deep, s<strong>in</strong>ks to the soil, germ<strong>in</strong>ates,<br />

and emerges from the water. The field<br />

rema<strong>in</strong>s flooded at a depth of 7-10 cm<br />

until a few weeks before maturity. In<br />

the USA, seed<strong>in</strong>g <strong>in</strong>to c<strong>on</strong>t<strong>in</strong>uously<br />

flooded fields began <strong>in</strong> the 1930s as a<br />

cultural method to c<strong>on</strong>trol E. crus-galli<br />

and later as part of a program to<br />

c<strong>on</strong>trol red rice.<br />

<strong>Weed</strong> problems<br />

Many weeds and rice will germ<strong>in</strong>ate<br />

through either soil or water, but not<br />

through both. Water seed<strong>in</strong>g takes<br />

advantage of that by establish<strong>in</strong>g an<br />

early water cover<strong>in</strong>g to suppress<br />

weeds. C<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g <strong>in</strong> water<br />

seeded rice culture, however, encour-<br />

ages aquatic weeds. Where c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g is not ma<strong>in</strong>ta<strong>in</strong>ed, many<br />

semiaquatic weeds typical of<br />

disc<strong>on</strong>t<strong>in</strong>uously flooded, dry seeded<br />

fields can be found <strong>in</strong> water seeded<br />

ricefields. Under such c<strong>on</strong>diti<strong>on</strong>s.<br />

E. crus-galli, Lepfochloa sp.,<br />

Aeschynomene virg<strong>in</strong>ica, and Sesbania<br />

exaltata are weed problems.


Land preparati<strong>on</strong><br />

For better and more uniform stands of<br />

water seeded rice, the seedbed should<br />

be rough or grooved to help anchor<br />

rice seeds and seedl<strong>in</strong>gs. Large soil<br />

clods that rema<strong>in</strong> exposed above the<br />

water level allow the growth and sur-<br />

vival of grass weeds. Land level<strong>in</strong>g<br />

elim<strong>in</strong>ates the high spots <strong>on</strong> the<br />

seedbed that favor weed growth, and<br />

is especially important if a shallow<br />

water depth is to be ma<strong>in</strong>ta<strong>in</strong>ed for<br />

grow<strong>in</strong>g modern, semidwarf, rice<br />

cultivars.<br />

Plant populati<strong>on</strong><br />

To compete with weeds, a rice crop<br />

density of 150-200 plants/m 2 at<br />

the 3- to 4-leaf stage is desirable.<br />

Water management<br />

Appropriate water management is the<br />

most important factor <strong>in</strong> successful<br />

weed c<strong>on</strong>trol <strong>in</strong> water seeded rice. The<br />

management of floodwater affects the<br />

density, vigor, and uniformity of rice<br />

stands, the severity of weed competi-<br />

ti<strong>on</strong>, and the effectiveness of herbi-<br />

cides. <strong>Weed</strong>s are a problem when they<br />

germ<strong>in</strong>ate <strong>in</strong> moist soil after land<br />

preparati<strong>on</strong> and grow before flood<strong>in</strong>g<br />

and rice plant<strong>in</strong>g.<br />

Flood<strong>in</strong>g to 7-10 cm deep early <strong>in</strong><br />

the seas<strong>on</strong> will provide partial weed<br />

c<strong>on</strong>trol. Timely, rapid dra<strong>in</strong>age and<br />

reflood<strong>in</strong>g will encourage rice stands<br />

and help c<strong>on</strong>trol aquatic weeds with-<br />

out support<strong>in</strong>g the growth of<br />

semiaquatic weeds. It is important that<br />

some parts of the rice plant be above<br />

the water surface by at least the 4-leaf<br />

stage, and fields must be kept flooded<br />

through the head<strong>in</strong>g stage. The water<br />

should be dra<strong>in</strong>ed <strong>on</strong>ly when<br />

6.5 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>in</strong> water-<br />

seeded irrigated rice. Bars (—) show<br />

periods dur<strong>in</strong>g which a particular<br />

herbicide is applied. *Tim<strong>in</strong>g of herbicide<br />

applicati<strong>on</strong> is based <strong>on</strong> weed emergence<br />

and growth stage with<strong>in</strong> the rice growth<br />

stage.<br />

absolutely necessary, such as when<br />

weeds requir<strong>in</strong>g c<strong>on</strong>tact herbicides<br />

need to be treated.<br />

Exposure of the soil to air, if it lasts<br />

l<strong>on</strong>g enough to allow E. crus-galli<br />

seedl<strong>in</strong>gs to develop sec<strong>on</strong>dary roots,<br />

reduces the effectiveness of most<br />

herbicides. Sedges and broadleaf<br />

weeds are favored by shallow water or<br />

when the field is dra<strong>in</strong>ed.<br />

Irrigated rice 81


Fertilizer<br />

Incorporat<strong>in</strong>g N and P fertilizers to<br />

5- to 10-cm soil depth reduces their<br />

availability to weed seedl<strong>in</strong>gs that<br />

germ<strong>in</strong>ate near the soil surface. Fertil-<br />

izer so applied rema<strong>in</strong>s available to<br />

rice plants throughout the seas<strong>on</strong> if a<br />

7- to 10-cm flood is ma<strong>in</strong>ta<strong>in</strong>ed. If the<br />

field is dra<strong>in</strong>ed and air reaches the N,<br />

it will change form and be rapidly lost<br />

<strong>in</strong>to the air. If N is applied to flood<br />

water early <strong>in</strong> the seas<strong>on</strong>, 50% or more<br />

of it will be rapidly lost. Topdressed N<br />

and P applicati<strong>on</strong>s <strong>in</strong>to water also<br />

encourage weed growth. <strong>Weed</strong>s must<br />

be c<strong>on</strong>trolled before topdress<strong>in</strong>g with<br />

any fertilizer.<br />

Hand weed<strong>in</strong>g<br />

Avoid<strong>in</strong>g weed competiti<strong>on</strong> is impor-<br />

tant dur<strong>in</strong>g the first 30 d or so after<br />

water seed<strong>in</strong>g of rice. Early weed<br />

removal, when the rice is still at the<br />

early vegetative phase, is desirable to<br />

maximize yields. One to two hand<br />

weed<strong>in</strong>gs at 3 wk and at about 6-7 wk<br />

after seed<strong>in</strong>g will give adequate<br />

c<strong>on</strong>trol. Aga<strong>in</strong>, as <strong>in</strong> broadcast or dry<br />

seeded flooded rice, mechanical<br />

methods are difficult to use.<br />

Herbicides<br />

Use of herbicides is essential to<br />

<strong>in</strong>crease the efficiency of other crop<br />

management practices to c<strong>on</strong>trol<br />

weeds. Because water seeded rice is<br />

grown under c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g, the<br />

ideal times of herbicide applicati<strong>on</strong> are<br />

preflood, preplant<strong>in</strong>g; postplant<strong>in</strong>g<br />

<strong>in</strong>to the water; and postplant<strong>in</strong>g, post-<br />

emergence above the water.<br />

For foliar-applied herbicides such<br />

as MCPA, bentaz<strong>on</strong>, and propanil, the<br />

weed foliage must be exposed to the<br />

herbicide. The water level may have to<br />

be decreased for 24-48 h to avoid<br />

wash<strong>in</strong>g the herbicide off the leaf, to<br />

allow sufficient uptake of the herbi-<br />

cide. The water level should then be<br />

reestablished. Comm<strong>on</strong> herbicides of<br />

importance <strong>in</strong> water seeded rice are<br />

listed <strong>in</strong> Table 6.4. Time of applicati<strong>on</strong><br />

is <strong>in</strong>dicated <strong>in</strong> Figure 6.5.<br />

82 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 6.4. Herbicides suitable for use <strong>in</strong> water seeded irrigated rice.<br />

Herbicide<br />

Rate<br />

(kg ai/ha)<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Bentaz<strong>on</strong> 2.0 Apply as a postemergence. <strong>Weed</strong><br />

foliage must be exposed dur<strong>in</strong>g<br />

applicati<strong>on</strong>, but avoid dra<strong>in</strong><strong>in</strong>g field<br />

completely (UC 1983).<br />

2,4-D or MCPA 0.5-1.0 Apply as postemergence. Lower<br />

Endothal 1.0-6.0<br />

water level to expose foliage of small<br />

weeds, but do not allow soil to dry<br />

(UC 1983).<br />

Apply as postemergence 25-60 d after<br />

sow<strong>in</strong>g to c<strong>on</strong>trol water weeds. Do not<br />

apply before rice has emerged above<br />

water surface. Do not draw water for<br />

3-5 d after applicati<strong>on</strong>. Do not apply<br />

after rice starts head<strong>in</strong>g (UC 1983,<br />

California <strong>Weed</strong> C<strong>on</strong>ference 1985).<br />

Mol<strong>in</strong>ate 3.0-5.0 Incorporate preplant<strong>in</strong>g or preflood.<br />

Postflood applicati<strong>on</strong> can be preemergence<br />

or postemergence. For<br />

postflood applicatt<strong>on</strong>s, raise water<br />

depth to cover all weeds. Lower water<br />

level 4-6 d later (UC 1983).<br />

Propanil 3.0-4.0 Apply postemergence. Lower water<br />

level to expose weed foliage. Raise<br />

water level after applicati<strong>on</strong> (UC 1983).<br />

Thiobencarb 1.5 Apply postemergence at the 2-leaf<br />

stage of rice. Do not expose soil<br />

surface after applicati<strong>on</strong> (IRRI 1986).


Chapter 7<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong><br />

ra<strong>in</strong>fed lowland rice<br />

Ra<strong>in</strong>fed lowland rice is grown <strong>on</strong><br />

about 23% of the world’s rice area<br />

(IRRI 1988b). It accounts for about<br />

45% of the rice area <strong>in</strong> South and<br />

Southeast Asia, 22% <strong>in</strong> Africa, and<br />

6% <strong>in</strong> Lat<strong>in</strong> America (De Datta 1981).<br />

In South and Southeast Asia, ra<strong>in</strong>fed<br />

lowland rice dom<strong>in</strong>ates the area,<br />

although its importance differs<br />

am<strong>on</strong>g countries. For example, 76%<br />

of the rice area <strong>in</strong> Bhutan is ra<strong>in</strong>fed<br />

lowland, 69% <strong>in</strong> Thailand, 56% <strong>in</strong><br />

Bangladesh, 56% <strong>in</strong> Myanmar, 43% <strong>in</strong><br />

Philipp<strong>in</strong>es, 37% <strong>in</strong> India, and 17% <strong>in</strong><br />

Ind<strong>on</strong>esia (IRRI 1988b).<br />

Most of the ra<strong>in</strong>fed lowland rice<br />

area of Southeast Asia is <strong>in</strong> major rice<br />

deltas, such as the Mek<strong>on</strong>g <strong>in</strong> Vietnam,<br />

the Chao Phraya <strong>in</strong> Thailand,<br />

the Irrawaddy <strong>in</strong> Myanmar, and the<br />

Ganges-Brahmaputra <strong>in</strong> India and<br />

Bangladesh.<br />

Ra<strong>in</strong>fed lowland rice is not<br />

irrigated, but the soil is flooded to a<br />

maximum depth of less than 50 cm<br />

dur<strong>in</strong>g a porti<strong>on</strong> of the crop cycle.<br />

Water is supplied by frequent ra<strong>in</strong>s<br />

dur<strong>in</strong>g the grow<strong>in</strong>g seas<strong>on</strong>. Soil<br />

moisture is usually ma<strong>in</strong>ta<strong>in</strong>ed<br />

between field capacity and satura-<br />

ti<strong>on</strong>. When there is no ra<strong>in</strong>fall,<br />

however, moisture c<strong>on</strong>tent may drop<br />

below field capacity. With excessive<br />

ra<strong>in</strong>fall, deepwater c<strong>on</strong>diti<strong>on</strong>s may<br />

develop.<br />

Ra<strong>in</strong>fed lowland rice is classified<br />

<strong>in</strong>to three culture groups accord<strong>in</strong>g to<br />

the crop establishment technique<br />

used.<br />

Transplanted <strong>in</strong> puddled soil.<br />

Direct seeded <strong>on</strong> puddled soil<br />

(broadcast or drill seeded us<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seed).<br />

Direct seeded <strong>on</strong> dry soil (broad-<br />

cast or drill seeded us<strong>in</strong>g n<strong>on</strong>ger-<br />

m<strong>in</strong>ated seed).<br />

Transplanted <strong>in</strong><br />

puddled soil<br />

Transplant<strong>in</strong>g is the major crop estab-<br />

lishment method for ra<strong>in</strong>fed lowland<br />

rice <strong>in</strong> most of tropical Asia.<br />

Primarily grown as a m<strong>on</strong>so<strong>on</strong>al<br />

crop, ra<strong>in</strong>fed lowland rice is known<br />

as kharif <strong>in</strong> India and as aman <strong>in</strong><br />

northeastern India and Bangladesh.<br />

Seedl<strong>in</strong>gs raised by a wet bed, dapog,<br />

or dry bed technique are transplanted<br />

<strong>in</strong>to a puddled soil.<br />

<strong>Weed</strong> problems<br />

Because the amount and distributi<strong>on</strong><br />

of ra<strong>in</strong>fall for grow<strong>in</strong>g ra<strong>in</strong>fed low-<br />

land rice are uncerta<strong>in</strong>, fields may not<br />

rema<strong>in</strong> flooded from plant<strong>in</strong>g to<br />

maturity. In Asia, most ra<strong>in</strong>fed low-<br />

land ricefields change from upland to<br />

submerged c<strong>on</strong>diti<strong>on</strong>s dur<strong>in</strong>g the<br />

m<strong>on</strong>so<strong>on</strong> seas<strong>on</strong>. Lack of water<br />

c<strong>on</strong>trol reduces the effectiveness of<br />

us<strong>in</strong>g water as a tool <strong>in</strong> weed man-<br />

agement. Upland, semiaquatic, and<br />

aquatic weeds all present problems.<br />

C<strong>on</strong>diti<strong>on</strong>s favorable for weed germi-<br />

nati<strong>on</strong> and growth, such as exposure<br />

of the soil surface (aerobic c<strong>on</strong>diti<strong>on</strong>s)<br />

and high soil moisture, occur for<br />

extended periods. Once weeds<br />

become established, deeper flood<strong>in</strong>g<br />

is needed to reduce weed growth<br />

substantially (Moody et al 1986).<br />

Transplant<strong>in</strong>g gives rice a head start<br />

over weeds, but unc<strong>on</strong>trolled weeds<br />

can still reduce rice yields as much as<br />

50%.<br />

<strong>Weed</strong> species of importance <strong>in</strong> this<br />

rice culture <strong>in</strong>clude Ech<strong>in</strong>ochloa spp.,<br />

lschaemum rugosum, M<strong>on</strong>ochoria<br />

vag<strong>in</strong>alis, Sphenoclea zeylanica, Cyperus<br />

difformis, Cyperus iria, Fimbristylis<br />

miliacea, and Scirpus maritimus.<br />

Ra<strong>in</strong>fed lowland rice 83


Nurseries<br />

Seedl<strong>in</strong>g nurseries should be kept<br />

weed free to prevent transplant<strong>in</strong>g<br />

grassy weeds al<strong>on</strong>g with rice. <strong>Weed</strong>s<br />

<strong>in</strong> the nursery also compete with the<br />

rice seedl<strong>in</strong>gs and can cause complete<br />

nursery crop failure. Herbicide such<br />

as thiobencarb, propanil, oxadiaz<strong>on</strong>,<br />

and butachlor can be used to c<strong>on</strong>trol<br />

weeds <strong>in</strong> the nursery.<br />

Land preparati<strong>on</strong><br />

Mechanical land preparati<strong>on</strong> can<br />

provide a weed-free field that is<br />

optimal for early rice growth. The<br />

land should be leveled after puddl<strong>in</strong>g<br />

the soil. Unevenness <strong>in</strong> the field<br />

results <strong>in</strong> areas of <strong>in</strong>adequate flood-<br />

<strong>in</strong>g. Dikes, to c<strong>on</strong>ta<strong>in</strong> and c<strong>on</strong>trol an<br />

undependable water supply, are<br />

essential. In India, Sesbania aculeata<br />

grown dur<strong>in</strong>g the dry seas<strong>on</strong> as a<br />

green manure crop is plowed <strong>in</strong><br />

before transplant<strong>in</strong>g rice (Mukho-<br />

padhyay 1983). This practice results<br />

<strong>in</strong> less weed <strong>in</strong>festati<strong>on</strong> <strong>in</strong> the ma<strong>in</strong><br />

rice crop.<br />

Cultivar<br />

Water depths largely determ<strong>in</strong>e the<br />

type of rice grown. In general, mod-<br />

ern semidwarf cultivars are grown <strong>in</strong><br />

shallow ra<strong>in</strong>fed rice-grow<strong>in</strong>g areas.<br />

In medium-deep ra<strong>in</strong>fed rice-grow-<br />

<strong>in</strong>g areas, tall cultivars that are<br />

mostly photoperiod-sensitive are<br />

grown.<br />

Plant populati<strong>on</strong><br />

Close spac<strong>in</strong>g, between 10 and 25 cm<br />

<strong>in</strong> rows or hills, <strong>in</strong>creases the ability<br />

of rice plants to compete with weeds.<br />

<strong>Rice</strong> should be transplanted <strong>in</strong><br />

straight rows to allow the use of<br />

mechanical weeders.<br />

84 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.1. Herbicides suitable for use <strong>in</strong> transplanted ra<strong>in</strong>fed lowland rice.<br />

Herbicide<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Butachlor<br />

2,4-D or MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

0.05<br />

1.0-2.0<br />

1.0<br />

0.5-1.0<br />

2.5-3.0<br />

0.5-0.75<br />

0.25<br />

0.75<br />

0.5<br />

0.3 + 0.2<br />

3.0-4.0<br />

0.3<br />

3.0<br />

1.0 + 0.5<br />

Water management<br />

Keep<strong>in</strong>g the ra<strong>in</strong>fed lowland field<br />

flooded after transplant<strong>in</strong>g kills some<br />

weeds and reduces the growth of<br />

others. In most ricefields, c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g to a 5-cm depth is seldom<br />

achieved because of problems <strong>in</strong><br />

regulat<strong>in</strong>g water depth and dra<strong>in</strong>age.<br />

With good land preparati<strong>on</strong> and<br />

good water c<strong>on</strong>trol, weed problems<br />

will be m<strong>in</strong>imal. Other weed c<strong>on</strong>trol<br />

methods are necessary when ra<strong>in</strong>fall<br />

is not enough to provide c<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Apply 3-5 d after transplant<strong>in</strong>g (DT)<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges. <strong>Weed</strong><br />

foliage must be exposed at applicati<strong>on</strong><br />

(IRRI 1973).<br />

Apply 3-6 DT (IRRI 1987).<br />

Apply 3-4 wk after weed emergence to<br />

c<strong>on</strong>trol sedges, broadleaf, and aquatic<br />

weeds. Lower water level to expose<br />

foliage of small plants before spray<strong>in</strong>g.<br />

Also may be applied 4-5 DT<br />

(IRRI 1973).<br />

Apply 4-8 DT.<br />

Apply 2-6 DT to c<strong>on</strong>trol annual grasses<br />

and broadleaf weeds (IRRI 1980).<br />

Apply 4 DT (IRRI 1980, 1983, 1988a).<br />

Apply preemergence about 6 DT to<br />

c<strong>on</strong>trol grasses and broadleaf weeds<br />

(IRRI 1980).<br />

Apply 2-5 DT to c<strong>on</strong>trol annual grasses,<br />

sedges, and broadleaf weeds<br />

(COPR 1976).<br />

Apply 2-8 DT to c<strong>on</strong>trol grasses,<br />

sedges, and broadleaf weeds<br />

(IRRI 1986).<br />

Apply postemergence to c<strong>on</strong>trol<br />

several grasses and broadleaf weeds<br />

at the 2- to 3-leaf stage. Lower water<br />

level of flooded fields about 24 h before<br />

applicati<strong>on</strong> to expose weed foliage<br />

(COPR 1976).<br />

Apply 3-5 DT (IRRI 1986).<br />

Apply 5-8 DT. Water should be shallow<br />

at applicati<strong>on</strong>. Avoid dra<strong>in</strong><strong>in</strong>g or overflow<strong>in</strong>g<br />

for 3-5 d after herbicide applicati<strong>on</strong>,<br />

but do not expose soil surface<br />

after treatment.<br />

Apply about 5 DT (IRRI 1983).<br />

Fertilizer<br />

Nitrogen applicati<strong>on</strong> should be timed<br />

to provide the maximum benefit to<br />

rice but the least benefit to the weeds.<br />

Apply<strong>in</strong>g fertilizer to a rice crop with<br />

poor weed c<strong>on</strong>trol could be worse<br />

than apply<strong>in</strong>g no fertilizer.


7.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> ra<strong>in</strong>fed lowland rice<br />

transplanted <strong>on</strong> puddled soil. Bars (—)<br />

show periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> is<br />

based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stages.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most comm<strong>on</strong><br />

weed c<strong>on</strong>trol method <strong>in</strong> ra<strong>in</strong>fed<br />

lowland transplanted rice. The field<br />

should be weed free for 30 d after<br />

transplant<strong>in</strong>g (DT) to prevent yield<br />

losses caused by weeds. Two to three<br />

properly timed hand weed<strong>in</strong>gs, the<br />

first about 21 DT, comb<strong>in</strong>ed with<br />

good water management will ensure<br />

optimum rice yields. Mechanical<br />

weeders can be used <strong>in</strong> rice trans-<br />

planted <strong>in</strong> rows, but weeds with<strong>in</strong><br />

the rows still have to be removed by<br />

hand.<br />

Herbicides<br />

The efficiency of herbicides <strong>on</strong> trans-<br />

planted ra<strong>in</strong>fed lowland rice depends<br />

<strong>on</strong> water management. If the water<br />

depth <strong>in</strong> the field exceeds 10 cm<br />

dur<strong>in</strong>g the first week after herbicide<br />

applicati<strong>on</strong>, herbicidal efficacy will be<br />

reduced due to diluti<strong>on</strong> and leach<strong>in</strong>g.<br />

Despite water management limita-<br />

ti<strong>on</strong>s, however, weeds <strong>in</strong> ra<strong>in</strong>fed<br />

lowland rice can be adequately<br />

c<strong>on</strong>trolled by herbicides.<br />

Herbicides that can be used as an<br />

alternative or supplement to manual<br />

or mechanical weed<strong>in</strong>g <strong>in</strong>clude 2,4-D,<br />

MCPA, butachlor, thiobencarb,<br />

propanil, oxadiaz<strong>on</strong>, pendimethal<strong>in</strong>,<br />

piperophos, and oxyfluorfen. Table<br />

7.1 and Figure 7.1 provide <strong>in</strong>forma-<br />

ti<strong>on</strong> <strong>on</strong> available herbicides and<br />

tim<strong>in</strong>g of their applicati<strong>on</strong>.<br />

Direct seeded <strong>on</strong><br />

puddled soil<br />

Direct seed<strong>in</strong>g rice <strong>on</strong> puddled soils<br />

is comm<strong>on</strong> <strong>in</strong> some ra<strong>in</strong>fed areas of<br />

the Asian tropics (Sri Lanka, Bangla-<br />

desh, and Philipp<strong>in</strong>es). Pregermi-<br />

nated rice seeds are broadcast <strong>on</strong>to<br />

puddled fields without much<br />

stand<strong>in</strong>g water.<br />

<strong>Weed</strong> problems<br />

Direct seeded ra<strong>in</strong>fed rice is more<br />

susceptible to weed competiti<strong>on</strong> than<br />

is transplanted ra<strong>in</strong>fed rice. Although<br />

soil puddl<strong>in</strong>g reduces the weed<br />

problem, unc<strong>on</strong>trolled weeds still<br />

reduce rice yields about 60%. In some<br />

cases, a puddled lowland field may<br />

be saturated but without any stand-<br />

<strong>in</strong>g water, because of lack of water<br />

c<strong>on</strong>trol. The moist, warm, aerobic soil<br />

c<strong>on</strong>diti<strong>on</strong> created promotes germ<strong>in</strong>a-<br />

ti<strong>on</strong> and rapid growth of many<br />

upland, semiaquatic, and aquatic<br />

weeds which are little affected by<br />

later flood<strong>in</strong>g. Deeper-than-normal<br />

flood<strong>in</strong>g is often required to signifi-<br />

cantly reduce weed growth. Because<br />

<strong>in</strong> this culture, rice and weeds germi-<br />

nate at the same time, competiti<strong>on</strong> by<br />

weeds is more <strong>in</strong>tense than it is <strong>in</strong><br />

transplanted rice.<br />

<strong>Weed</strong>s of importance <strong>in</strong> this<br />

culture <strong>in</strong>clude E. crus-galli and other<br />

Ech<strong>in</strong>ochloa spp., I. rugosum,<br />

M. vag<strong>in</strong>alis, S. zeylanica, C. difformis,<br />

C. iria, F. miliacea, and Scirpus spp.<br />

Ra<strong>in</strong>fed lowland rice 85


Land preparati<strong>on</strong><br />

Level<strong>in</strong>g the puddled soil is critical <strong>in</strong><br />

direct seeded rice; poor dra<strong>in</strong>age<br />

results <strong>in</strong> poor germ<strong>in</strong>ati<strong>on</strong> of rice<br />

seeds. An uneven land surface also<br />

results <strong>in</strong> exposed areas which are<br />

ideal for germ<strong>in</strong>ati<strong>on</strong> and growth of<br />

weeds.<br />

Plant<strong>in</strong>g method<br />

Pregerm<strong>in</strong>ated rice seeds are broad-<br />

cast or drilled <strong>on</strong>to puddled soil.<br />

Pregerm<strong>in</strong>ati<strong>on</strong> ensures quick growth<br />

and even, rapid crop establishment.<br />

Hand or mechanical weed<strong>in</strong>g is<br />

enhanced when pregerm<strong>in</strong>ated seeds<br />

are drilled <strong>in</strong> rows.<br />

Cultivar<br />

Traditi<strong>on</strong>ally, ra<strong>in</strong>fed lowland rice<br />

farmers <strong>in</strong> tropical Asia depend <strong>on</strong><br />

tall, vigorously tiller<strong>in</strong>g plants to<br />

provide weed competiti<strong>on</strong>. Early-<br />

matur<strong>in</strong>g semidwarf rices, such as<br />

IR28, IR30, and IR36, have been<br />

grown successfully when direct<br />

seeded.<br />

Plant populati<strong>on</strong><br />

As <strong>in</strong> other rice cultures, close spac-<br />

<strong>in</strong>g is essential to m<strong>in</strong>imize weed<br />

<strong>in</strong>festati<strong>on</strong>. Higher seed<strong>in</strong>g rates are<br />

beneficial when heavy weed <strong>in</strong>festa-<br />

ti<strong>on</strong>s are expected. Seed<strong>in</strong>g rates of<br />

100-200 kg/ha have been used. A<br />

higher seed<strong>in</strong>g rate helps c<strong>on</strong>trol<br />

weeds but does not necessarily<br />

<strong>in</strong>crease rice gra<strong>in</strong> yield.<br />

86 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.2. Herbicides suitable for use <strong>in</strong> rice direct seeded <strong>on</strong> puddled soil.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Bifenox + 2,J-D<br />

Butachlor<br />

Butachlor + 2,4-D<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Piperophos + 2,4-D<br />

Pretilachlor + antidote<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Thiobencarb + 2,4-D<br />

Rate<br />

(kg ai/ha)<br />

2.0<br />

2.0 + 0.66<br />

1.0<br />

0.75 + 0.6<br />

2.0<br />

0.5-1.0<br />

0.75-1.0<br />

0.10-0.25<br />

0.75-2.0<br />

0.4 + 0.1<br />

0.3 + 0.2<br />

0.3-0.4<br />

3.0-4.0<br />

0.3<br />

1.5-2.0<br />

1.0 + 0.5<br />

Water management<br />

Good water management often<br />

reduces weed competiti<strong>on</strong> and elim-<br />

<strong>in</strong>ates some weeds <strong>in</strong> direct seeded<br />

ra<strong>in</strong>fed lowland fields. C<strong>on</strong>t<strong>in</strong>uous<br />

flood<strong>in</strong>g at 5-cm depth is desirable<br />

but seldom achieved. Puddl<strong>in</strong>g<br />

enhances water-use efficiency. Water<br />

c<strong>on</strong>trol can be improved by the use<br />

of dikes.<br />

Comments and source of Informati<strong>on</strong><br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges at the<br />

2- to 10-leaf stages. <strong>Weed</strong> foliage must<br />

be exposed at applicati<strong>on</strong> (IRRI 1984).<br />

Apply at early postemergence of<br />

weeds (about 6 d after seed<strong>in</strong>g [DAS]).<br />

Apply 6-8 DAS to c<strong>on</strong>trol annual<br />

grasses and sedges. Soil should be<br />

saturated at applicati<strong>on</strong> (IRRI 1981).<br />

Apply 6-8 DAS (IRRI 1981).<br />

Apply 4-6 DAS pregerm<strong>in</strong>ated rice<br />

(1- to 4-leaf stages) (COPR 1976).<br />

Apply 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges.<br />

Expose weeds before spray<strong>in</strong>g.<br />

Apply preemergence 6-8 DAS. Slight<br />

phytotoxicity has been observed <strong>in</strong> rice<br />

seeded <strong>on</strong> puddled soil (IRRI 1975).<br />

Apply 5-10 DAS. May <strong>in</strong>itially be toxic<br />

to rice (IRRI 1981, 1983).<br />

Apply up to 6 DAS (IRRI 1982).<br />

Apply 4-6 DAS (IRRI 1977).<br />

Apply 6-8 DAS (IRRI 1977).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence to grassy and<br />

broadleaf weeds at the 2- to 3-leaf<br />

stages (IRRI 1980).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Can be used preemergence or early<br />

postemergence. Postemergence<br />

applicati<strong>on</strong> should be d<strong>on</strong>e after the<br />

1- to 2-leaf stage of rice but before the<br />

3-leaf stage of grasses and sedges,<br />

about 10 DAS (IRRI 1980).<br />

Apply 6 DAS (IRRI 1980).<br />

Fertilizer<br />

Modern improved cultivars resp<strong>on</strong>d<br />

better to nitrogen than do tall tradi-<br />

ti<strong>on</strong>al cultivars. Therefore, modern<br />

improved cultivars are normally<br />

grown with high fertilizer rates <strong>in</strong><br />

order to realize their full yield poten-<br />

tial. This high fertilizati<strong>on</strong>, however,<br />

enhances weed growth.


7.2 <strong>Rice</strong> growth stages when<br />

herbicides can be applied <strong>on</strong> wet-seeded<br />

ra<strong>in</strong>fed lowland rice. Bars (—) show<br />

periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong><br />

is based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stage.<br />

Hand weed<strong>in</strong>g<br />

Hand pull<strong>in</strong>g of weeds can be d<strong>on</strong>e<br />

<strong>in</strong> broadcast or drill seeded rice;<br />

mechanical weed<strong>in</strong>g is feasible <strong>on</strong>ly<br />

when rice is planted <strong>in</strong> rows. Two to<br />

three hand weed<strong>in</strong>gs at 2-3 wk after<br />

sow<strong>in</strong>g are usually sufficient to<br />

ensure optimum yields.<br />

Herbicides<br />

The use of herbicides for weed<br />

c<strong>on</strong>trol has proved effective and<br />

ec<strong>on</strong>omical <strong>in</strong> direct seeded ra<strong>in</strong>fed<br />

lowland rice. Because weeds and rice<br />

germ<strong>in</strong>ate together, the number of<br />

herbicides that can be used safely is<br />

limited. The efficacy of herbicides is<br />

dependent <strong>on</strong> soil moisture c<strong>on</strong>di-<br />

ti<strong>on</strong>s and is markedly reduced by dry<br />

or deep flood<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s immedi-<br />

ately after herbicide applicati<strong>on</strong>. In<br />

the tropics, butachlor, thiobencarb,<br />

butral<strong>in</strong>, and propanil have been<br />

used <strong>in</strong> direct seeded rice. Table 7.2<br />

and Figure 7.2 provide herbicide<br />

<strong>in</strong>formati<strong>on</strong> for this rice culture.<br />

Direct seeded<br />

<strong>on</strong> dry soil<br />

Direct seed<strong>in</strong>g <strong>on</strong> dry soil provides<br />

an opportunity to <strong>in</strong>crease cropp<strong>in</strong>g<br />

<strong>in</strong>tensity <strong>in</strong> ra<strong>in</strong>fed lowland rice.<br />

Elim<strong>in</strong>at<strong>in</strong>g puddl<strong>in</strong>g shortens land<br />

use time. In this culture, dry seed is<br />

sown directly <strong>in</strong>to moist, n<strong>on</strong>puddled<br />

soil at the beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y<br />

seas<strong>on</strong>. The field may be bunded to<br />

accumulate water as the ra<strong>in</strong>y seas<strong>on</strong><br />

progresses and the crop may end its<br />

cycle under flood<strong>in</strong>g.<br />

Direct seeded dry rice culture is<br />

practiced <strong>in</strong> Africa, South America,<br />

and <strong>in</strong> parts of tropical Asia. In<br />

Africa, direct seeded rice is grown <strong>in</strong><br />

valley bottoms and <strong>on</strong> hydromorphic<br />

soils—soils <strong>on</strong> transiti<strong>on</strong>al slopes<br />

between upland soils and valley-<br />

bottom soils, with the groundwater<br />

table <strong>in</strong> the root z<strong>on</strong>e for most of the<br />

grow<strong>in</strong>g period. Direct seeded<br />

ra<strong>in</strong>fed lowland rice is known as aus<br />

cropp<strong>in</strong>g <strong>in</strong> northeastern India and<br />

Bangladesh. In Ind<strong>on</strong>esia, it is called<br />

gogorantja (gogorancah).<br />

<strong>Weed</strong> problems<br />

Am<strong>on</strong>g ra<strong>in</strong>fed lowland rice cultures,<br />

weed problems <strong>in</strong> direct seeded rice<br />

are more <strong>in</strong>tense and wider <strong>in</strong> range<br />

than those <strong>in</strong> transplanted or broad-<br />

cast rice where puddl<strong>in</strong>g reduces<br />

weed problems. <strong>Rice</strong> yield losses<br />

from unc<strong>on</strong>trolled weeds can be as<br />

high as 74%. <strong>Rice</strong>-weed competiti<strong>on</strong><br />

for moisture is heavy dur<strong>in</strong>g the early<br />

growth stage, when there is no<br />

stand<strong>in</strong>g water. Dry rice seeds germ-<br />

<strong>in</strong>ate 3-5 d later than pregerm<strong>in</strong>ated<br />

rice seeds. <strong>Weed</strong>s germ<strong>in</strong>ate and<br />

establish faster than rice.<br />

The prevail<strong>in</strong>g moist, aerobic<br />

c<strong>on</strong>diti<strong>on</strong> for direct seeded rice<br />

encourages the growth of upland,<br />

semiaquatic, and aquatic weeds.<br />

Dom<strong>in</strong>ance of any of these weed<br />

communities depends <strong>on</strong> the availa-<br />

bility and depth of stand<strong>in</strong>g water.<br />

Many well-established upland weeds<br />

c<strong>on</strong>t<strong>in</strong>ue to survive under flood<strong>in</strong>g<br />

later <strong>in</strong> the crop cycle. Lowland<br />

weeds that are important <strong>in</strong>clude<br />

E. crus-galli, I. rugosum, L. ch<strong>in</strong>ensis,<br />

C. difformis, F. miliacea, and<br />

S. maritimus.<br />

Ra<strong>in</strong>fed lowland rice 87


Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> should be d<strong>on</strong>e to<br />

provide weed-free c<strong>on</strong>diti<strong>on</strong>s at<br />

plant<strong>in</strong>g. Land level<strong>in</strong>g is essential to<br />

improve water c<strong>on</strong>trol. Large soil<br />

clods must be broken up so that they<br />

do not <strong>in</strong>terfere with rice seedl<strong>in</strong>g<br />

emergence. A stale seedbed may be<br />

practiced, but it gives no advantage if<br />

plant<strong>in</strong>g is delayed until after the<br />

start of ra<strong>in</strong>s.<br />

Plant<strong>in</strong>g method<br />

For most direct seeded ra<strong>in</strong>fed<br />

lowland rice, comm<strong>on</strong> establishment<br />

methods <strong>in</strong>clude broadcast<strong>in</strong>g <strong>on</strong> a<br />

leveled field, broadcast<strong>in</strong>g over<br />

shallow furrows and pass<strong>in</strong>g a spike-<br />

toothed harrow at an angle to c<strong>on</strong>cen-<br />

trate seed <strong>in</strong> rows, drill<strong>in</strong>g, and<br />

dibbl<strong>in</strong>g seeds for uniformly spaced<br />

seedl<strong>in</strong>gs <strong>in</strong> hills. In all plant<strong>in</strong>g<br />

methods, close spac<strong>in</strong>g will <strong>in</strong>crease<br />

the competitive ability of rice aga<strong>in</strong>st<br />

weeds. Seed rates of 100-150 kg/ha<br />

are often used, with higher seed rates<br />

where weed problems are expected.<br />

Cultivar<br />

Early-matur<strong>in</strong>g, drought-tolerant rice<br />

cultivars are desirable.<br />

Water management<br />

There may be no stand<strong>in</strong>g water <strong>in</strong><br />

the early crop growth stages of direct<br />

seeded ra<strong>in</strong>fed lowland rice. Later,<br />

when water from ra<strong>in</strong>s has accumu-<br />

lated, water is an important tool <strong>in</strong><br />

suppress<strong>in</strong>g weed growth. However,<br />

c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g to a 5-cm depth<br />

is seldom achieved. If weeds establish<br />

because of lack of stand<strong>in</strong>g water<br />

early <strong>in</strong> the seas<strong>on</strong>, deep flood<strong>in</strong>g at<br />

10-20 cm is necessary to reduce weed<br />

growth. Where ra<strong>in</strong>fall is not enough<br />

to ma<strong>in</strong>ta<strong>in</strong> c<strong>on</strong>t<strong>in</strong>uous submergence,<br />

other weed c<strong>on</strong>trol methods are<br />

essential.<br />

88 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 7.3. Herbicides suitable for use <strong>in</strong> rice direct seeded <strong>on</strong> dry soil.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Pretilachlor + antidote<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha) Comments and source of <strong>in</strong>formati<strong>on</strong><br />

1.0-2.0<br />

2.0<br />

2.0<br />

0.5-1.0<br />

0.75-1.0<br />

0.14-0.20<br />

0.75-2.0<br />

0.3-0.4<br />

2.0-4.0<br />

0.3<br />

3.0<br />

Fertilizer<br />

Nitrogen applicati<strong>on</strong> should be timed<br />

to prevent weed proliferati<strong>on</strong> and to<br />

obta<strong>in</strong> maximum benefit from the<br />

fertilizer applied. In direct seeded<br />

ra<strong>in</strong>fed lowland rice, applicati<strong>on</strong> of<br />

fertilizer after thorough weed<strong>in</strong>g<br />

gives maximum benefits.<br />

Hand weed<strong>in</strong>g<br />

Two to three well-timed hand weed-<br />

<strong>in</strong>gs should provide adequate weed<br />

c<strong>on</strong>trol. An advantage of early hand<br />

weed<strong>in</strong>g is that it requires less time.<br />

Early-seas<strong>on</strong> hand weed<strong>in</strong>g, espe-<br />

cially where there is no stand<strong>in</strong>g<br />

water, reduces the competiti<strong>on</strong> of<br />

Apply postemergence to c<strong>on</strong>trol<br />

broadleaf weeds and sedges at the 2-<br />

to 10-leaf stages (IRRI 1984).<br />

Apply as preemergence spray 0-3 d<br />

after sow<strong>in</strong>g (DAS) to c<strong>on</strong>trol annual<br />

grasses and sedges (IRRI 1988).<br />

Apply preemergence 2-3 DAS to<br />

c<strong>on</strong>trol annual grasses (IRRI 1978).<br />

Spray 3-4 wk after seed<strong>in</strong>g to c<strong>on</strong>trol<br />

annual broadleaf weeds and sedges<br />

(COPR 1976).<br />

Apply preemergence 6-8 DAS<br />

(IRRI 1978).<br />

Apply preemergence 3-5 DAS<br />

(IRRI 1982).<br />

Apply preemergence (IRRI 1982).<br />

Apply 3 DAS (IRRI 1987).<br />

Apply postemergence at the 2- to 3-leaf<br />

stages to c<strong>on</strong>trol grasses and broadleaf<br />

weeds. Decrease water level of<br />

flooded fields 24 h before applicati<strong>on</strong><br />

to expose weeds (IRRI 1982).<br />

Apply 6-8 DAS (IRRI 1986).<br />

Apply preemergence Immediately<br />

after cover<strong>in</strong>g rice seeds with soil,<br />

before ra<strong>in</strong>s (IRRI 1982).<br />

weeds for nutrients and moisture.<br />

The first weed<strong>in</strong>g should be d<strong>on</strong>e<br />

15-21 d after seed<strong>in</strong>g. Hand weed<strong>in</strong>g<br />

later than this will reduce rice yields.<br />

Mechanical weeders can be used if<br />

seed is drilled or dibbled <strong>in</strong> straight<br />

rows.<br />

Herbicides<br />

In fields with no stand<strong>in</strong>g water,<br />

ra<strong>in</strong>fall after herbicide applicati<strong>on</strong> is<br />

needed for preemergence herbicides<br />

to be effective. The persistence of<br />

residual preemergence herbicides<br />

under warm, moist, or flooded<br />

c<strong>on</strong>diti<strong>on</strong>s may be too low to provide<br />

a weed-free rice crop. Follow-up<br />

hand weed<strong>in</strong>g or postemergence<br />

herbicide applicati<strong>on</strong> may be<br />

necessary.


The use of herbicides has proved<br />

beneficial <strong>in</strong> direct seeded ra<strong>in</strong>fed<br />

lowland rice, c<strong>on</strong>sider<strong>in</strong>g the crop’s<br />

high labor requirements and<br />

unfavorable weather at weed<strong>in</strong>g<br />

time. Herbicide comb<strong>in</strong>ati<strong>on</strong>s,<br />

whether as tank mixtures or sequen-<br />

tial sprays, will improve weed<br />

c<strong>on</strong>trol where the weed spectrum is<br />

too diverse for any <strong>on</strong>e herbicide.<br />

Propanil plus butachlor, thiobencarb,<br />

or pendimethal<strong>in</strong> applied early pos-<br />

temergence provide good broad-<br />

spectrum c<strong>on</strong>trol of weeds.<br />

Sequential applicati<strong>on</strong>s of residual<br />

preemergence herbicides followed by<br />

2,4-D perform better than do residual<br />

herbicides al<strong>on</strong>e. Table 7.3 and<br />

Figure 7.3 provide <strong>in</strong>formati<strong>on</strong> <strong>on</strong> the<br />

comm<strong>on</strong> herbicides available for<br />

direct seeded ra<strong>in</strong>fed lowland rice.<br />

7.3 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> dry-seeded ra<strong>in</strong>fed<br />

lowland rice. Bars (—) show periods when<br />

a particular herbicide is applied. *Tim<strong>in</strong>g of<br />

herbicide applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong> the<br />

rice growth stage.<br />

Ra<strong>in</strong>fed lowland rice 89


Chapter 8<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> upland rice<br />

Upland rice, also known as dryland or<br />

pluvial rice, is grown <strong>on</strong> ra<strong>in</strong>fed,<br />

naturally well-dra<strong>in</strong>ed soils. Strictly<br />

def<strong>in</strong>ed, upland ricefields are not<br />

bunded and no surface water accumulates.<br />

About 13% (18.8 milli<strong>on</strong> ha) of the<br />

world's rice area is upland (IRRI<br />

1988b). About 11.9 milli<strong>on</strong> ha is <strong>in</strong><br />

Asia, 4.5 milli<strong>on</strong> ha <strong>in</strong> Lat<strong>in</strong> America,<br />

and 2.2 milli<strong>on</strong> ha <strong>in</strong> Africa. It is the<br />

dom<strong>in</strong>ant rice culture <strong>in</strong> Lat<strong>in</strong> America<br />

and West Africa.<br />

Upland rice is grown under a wide<br />

range of management practices that<br />

vary from shift<strong>in</strong>g cultivati<strong>on</strong>-as<br />

practiced <strong>in</strong> Malaysia, Philipp<strong>in</strong>es,<br />

Peru, and West Africa-to the mechanized<br />

cultivati<strong>on</strong> practiced <strong>in</strong> Brazil.<br />

Most of the world’s upland rice is<br />

grown <strong>on</strong> poor soils <strong>in</strong> areas with<br />

uncerta<strong>in</strong> ra<strong>in</strong>fall by small farmers<br />

us<strong>in</strong>g traditi<strong>on</strong>al, low-<strong>in</strong>put technology.<br />

<strong>Weed</strong> problems<br />

<strong>Weed</strong>s rank sec<strong>on</strong>d to drought stress<br />

<strong>in</strong> reduc<strong>in</strong>g upland rice gra<strong>in</strong> yields<br />

and quality (Sankaran and De Datta<br />

1985). Yield losses caused by unc<strong>on</strong>-<br />

trolled weeds <strong>in</strong> upland rice are about<br />

96%.<br />

Upland rice, like all upland crops, is<br />

planted <strong>in</strong> moist soil, that, <strong>in</strong> general,<br />

does not reta<strong>in</strong> moisture bey<strong>on</strong>d field<br />

capacity. Water is supplied by ra<strong>in</strong>s<br />

dur<strong>in</strong>g the grow<strong>in</strong>g seas<strong>on</strong>. Optimum<br />

temperature, sufficient aerati<strong>on</strong>, and<br />

ideal moisture for weed germ<strong>in</strong>ati<strong>on</strong><br />

and growth exist at plant<strong>in</strong>g time. This<br />

enables weeds to germ<strong>in</strong>ate earlier and<br />

grow more vigorously than the rice<br />

crop.<br />

<strong>Weed</strong> competiti<strong>on</strong> is more <strong>in</strong>tense<br />

<strong>in</strong> upland rice than <strong>in</strong> irrigated and<br />

ra<strong>in</strong>fed lowland rice because upland<br />

fields do not have stand<strong>in</strong>g water to<br />

suppress weed growth. Some weeds <strong>in</strong><br />

upland rice can withstand drought<br />

better than rice because their roots<br />

penetrate deeper <strong>in</strong>to the soil to tap<br />

moisture. Poor rice germ<strong>in</strong>ati<strong>on</strong> due to<br />

drought results <strong>in</strong> excessive weed<br />

growth, especially if semidwarf<br />

varieties are grown.<br />

Because weeds <strong>in</strong> upland rice<br />

germ<strong>in</strong>ate throughout the seas<strong>on</strong>,<br />

dense weed growth may reoccur after<br />

hand weed<strong>in</strong>g or after the residual<br />

effects of herbicides have worn off.<br />

A mixture of annuals and peren-<br />

nials, and grasses and broadleaf<br />

weeds, <strong>in</strong>tensifies the competitive<br />

effects of weeds <strong>in</strong> upland rice. C4<br />

weeds, which have higher water-use<br />

efficiency than rice, prevail (Amp<strong>on</strong>g-<br />

Nyarko and De Datta 1989). Comm<strong>on</strong><br />

upland weeds <strong>in</strong>clude Cyperus rotun-<br />

dus, Ech<strong>in</strong>ochloa col<strong>on</strong>a, Eleus<strong>in</strong>e <strong>in</strong>dica,<br />

Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis, Cynod<strong>on</strong> dactyl<strong>on</strong>,<br />

Digitaria sangu<strong>in</strong>alis, Imperata cyl<strong>in</strong>drica,<br />

Amaranthus sp<strong>in</strong>osus, Commel<strong>in</strong>a<br />

benghalensis, Trianthema portulacastrum,<br />

Ageratum c<strong>on</strong>yzoides, Portulaca oleracea,<br />

and Euphorbia hirta.<br />

Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> for upland rice<br />

varies greatly am<strong>on</strong>g regi<strong>on</strong>s. In West<br />

Africa, where shift<strong>in</strong>g cultivati<strong>on</strong> is<br />

comm<strong>on</strong>, slash-and-burn is practiced<br />

with hand tools. In South Asia, upland<br />

fields are plowed by bullocks and <strong>in</strong><br />

Southeast Asia, by water buffalo.<br />

Deep plow<strong>in</strong>g (25 cm or deeper)<br />

moist soil at the end of the ra<strong>in</strong>y<br />

seas<strong>on</strong> is recommended for upland<br />

rice grown <strong>in</strong> the West African savan-<br />

nahs (FAO 1976). Deep plow<strong>in</strong>g and<br />

subsoil<strong>in</strong>g c<strong>on</strong>serve soil moisture <strong>in</strong><br />

the ra<strong>in</strong>y seas<strong>on</strong> and enhance root<br />

growth and extracti<strong>on</strong> of soil moisture<br />

from deeper soil layers. It also will<br />

bury weed seeds deep enough to pre-<br />

vent them from emerg<strong>in</strong>g. Subsequent<br />

tillage operati<strong>on</strong>s must be shallow.<br />

Upland rice 91


An upland field should be<br />

harrowed to break up soil clods, but<br />

field level<strong>in</strong>g is not critical. <strong>Rice</strong><br />

should be planted as so<strong>on</strong> as possible<br />

follow<strong>in</strong>g the last harrow<strong>in</strong>g to pro-<br />

vide rice an even start with the weeds.<br />

The stale seedbed technique can<br />

reduce weed problems <strong>in</strong> upland rice.<br />

After land preparati<strong>on</strong>, weeds that<br />

grow are killed at the 2- to 5-leaf stage<br />

by herbicides or us<strong>in</strong>g mechanical<br />

methods. Germ<strong>in</strong>ati<strong>on</strong> of most of the<br />

viable weed seeds is essential to the<br />

success of the stale seedbed technique.<br />

Under unfavorable c<strong>on</strong>diti<strong>on</strong>s for<br />

weed seed germ<strong>in</strong>ati<strong>on</strong> (e.g., dry<br />

soils), no weed c<strong>on</strong>trol advantage may<br />

be achieved.<br />

Use of the stale seedbed technique<br />

should not delay rice seed<strong>in</strong>g bey<strong>on</strong>d<br />

the optimum time. Plant<strong>in</strong>g at the<br />

optimum time assures more ra<strong>in</strong>fall<br />

from seed<strong>in</strong>g through spikelet fill<strong>in</strong>g;<br />

late-planted rice is likely to suffer<br />

drought and reduced solar radiati<strong>on</strong><br />

dur<strong>in</strong>g the reproductive stage, which<br />

can substantially reduce yields.<br />

Zero tillage can be used to establish<br />

an upland rice crop where no difficult-<br />

to-c<strong>on</strong>trol perennial weeds are found<br />

<strong>in</strong> the fallow vegetati<strong>on</strong> or when<br />

appropriate herbicides are available.<br />

But zero tillage may not be successful<br />

under all soil c<strong>on</strong>diti<strong>on</strong>s; restricted<br />

root development and reduced gra<strong>in</strong><br />

yield have been observed (St<strong>on</strong>e et a1<br />

1980).<br />

Plant<strong>in</strong>g methods<br />

Broadcast<strong>in</strong>g, dibbl<strong>in</strong>g, and drill<strong>in</strong>g<br />

are the comm<strong>on</strong> seed<strong>in</strong>g practices for<br />

upland rice. Broadcast<strong>in</strong>g is comm<strong>on</strong><br />

<strong>in</strong> many countries <strong>in</strong> Asia, Africa, and<br />

92 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Lat<strong>in</strong> America. Dibbl<strong>in</strong>g, or hill<strong>in</strong>g, is<br />

practiced <strong>in</strong> Africa and Asia by farmers<br />

us<strong>in</strong>g slash-and-burn systems. A<br />

po<strong>in</strong>ted stick is used to make holes <strong>in</strong><br />

the soils; 4-8 unsprouted seeds are<br />

dropped <strong>in</strong> and covered with soil. In<br />

Lat<strong>in</strong> America, mechanized drill<strong>in</strong>g is<br />

becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly popular.<br />

Row drill<strong>in</strong>g or dibbl<strong>in</strong>g <strong>in</strong> rows<br />

makes weed<strong>in</strong>g and other management<br />

practices easier. Timely sow<strong>in</strong>g<br />

and rapid canopy closure m<strong>in</strong>imize<br />

weed growth and ensure good stand<br />

establishment.<br />

<strong>Weed</strong> problems <strong>in</strong> broadcast seeded<br />

fields are higher because mechanical<br />

hand weed<strong>in</strong>g cannot be d<strong>on</strong>e, and<br />

weed<strong>in</strong>g must be delayed because it is<br />

difficult to tell grassy weeds from rice<br />

at early growth stages.<br />

Cultivar<br />

Upland rice cultivars with drought<br />

avoidance (through deep root sys-<br />

tems) and drought recovery abilities<br />

are preferred. Intermediate-statured<br />

cultivars with moderate tiller<strong>in</strong>g, big<br />

panicles, blast resistance, and tolerance<br />

for ir<strong>on</strong> deficiency and alum<strong>in</strong>um<br />

toxicity are also desirable.<br />

Plant populati<strong>on</strong><br />

Seed<strong>in</strong>g rate and spac<strong>in</strong>g for upland<br />

rice vary with plant<strong>in</strong>g method and<br />

the rice cultivar used. A high plant<br />

populati<strong>on</strong> is important for upland<br />

rice to quickly develop a canopy that<br />

will suppress weed growth. Seed<strong>in</strong>g<br />

rates vary from 80 to 150 kg/ha,<br />

depend<strong>in</strong>g <strong>on</strong> the seed<strong>in</strong>g method.<br />

Row spac<strong>in</strong>g also varies between 20<br />

and 30 cm. Broadcast seed<strong>in</strong>g requires<br />

more seeds than drill<strong>in</strong>g or dibbl<strong>in</strong>g.<br />

Tall leafy cultivars should be planted<br />

at wider spac<strong>in</strong>g than semidwarf culti-<br />

vars. Grow<strong>in</strong>g tall cultivars at narrow<br />

spac<strong>in</strong>g <strong>in</strong>creases lodg<strong>in</strong>g.<br />

Crop rotati<strong>on</strong> is practiced to pre-<br />

vent the buildup of weeds adapted to<br />

upland ricefields, but easy to c<strong>on</strong>trol <strong>in</strong><br />

other crops. Herbicides that c<strong>on</strong>trol<br />

problem weeds but are toxic to rice<br />

also can be used <strong>on</strong> a tolerant crop <strong>in</strong><br />

the rotati<strong>on</strong>. That will reduce the rice<br />

weed problem.<br />

Fertilizer<br />

Nitrogen resp<strong>on</strong>se is high for modern<br />

short- to medium-statured upland rice<br />

cultivars that are resistant to lodg<strong>in</strong>g.<br />

In most soils, split applicati<strong>on</strong> of N<br />

gives higher gra<strong>in</strong> yield than does<br />

s<strong>in</strong>gle basal applicati<strong>on</strong>.<br />

Apply<strong>in</strong>g fertilizer to upland rice,<br />

however, will reduce gra<strong>in</strong> yield if the<br />

field is not weeded. The first applica-<br />

ti<strong>on</strong> should be delayed until after<br />

weed<strong>in</strong>g. Subsequent topdress<strong>in</strong>gs of<br />

N after weed<strong>in</strong>g will maximize fertil-<br />

izer-use efficiency. The N applicati<strong>on</strong><br />

rate should be reduced <strong>in</strong> drought-<br />

pr<strong>on</strong>e areas.<br />

Phosphorus deficiency is comm<strong>on</strong><br />

<strong>in</strong> upland rice, especially <strong>in</strong> Oxisols<br />

and Ultisols <strong>in</strong> Brazil, West Africa, and<br />

some parts of South and Southeast<br />

Asia (Gupta and O'Toole 1986). In the<br />

Philipp<strong>in</strong>es, 18 kg P/ha is recom-<br />

mended for upland rice (PCARR<br />

1977). Some coarse-textured soils <strong>in</strong><br />

high-ra<strong>in</strong>fall areas are affected by<br />

potassium deficiency. Apply<strong>in</strong>g<br />

33 kg K/ha has been adequate <strong>in</strong> some<br />

African countries (IRCN 1982). Z<strong>in</strong>c,<br />

ir<strong>on</strong>, and sulfur deficiencies also occur<br />

<strong>in</strong> upland rice. Deficiency of any of<br />

these nutrients will reduce the vigor of<br />

rice and, hence, its competitiveness<br />

aga<strong>in</strong>st weeds.


Hand weed<strong>in</strong>g<br />

The weed-free period required by<br />

upland rice is from 10 to 60 d after<br />

seed<strong>in</strong>g (DAS). By and large, keep<strong>in</strong>g<br />

the crop weed free for the first 60 DAS<br />

will give optimum yields. <strong>Weed</strong>s<br />

germ<strong>in</strong>ate earlier and grow more<br />

vigorously than upland rice dur<strong>in</strong>g the<br />

first 5 wk after plant<strong>in</strong>g. <strong>Weed</strong>s should<br />

be removed 15-25 d after plant<strong>in</strong>g to<br />

obta<strong>in</strong> good rice yields.<br />

Two or three well-timed weed<strong>in</strong>gs<br />

are enough to meet the weed-free<br />

requirement. <strong>Weed</strong><strong>in</strong>g dur<strong>in</strong>g early<br />

weed growth stages requires less labor<br />

than weed<strong>in</strong>g after weeds have<br />

matured. Wet soil may reduce the<br />

effectiveness of hoe weed<strong>in</strong>g because<br />

most weeds will be merely trans-<br />

planted. Improved mechanical meth-<br />

ods such as push-type and motorized<br />

weeders may be as effective as hand<br />

weed<strong>in</strong>g <strong>in</strong> a row-seeded rice crop.<br />

When comb<strong>in</strong>ed with hand removal of<br />

weeds with<strong>in</strong> the row, these methods<br />

can also save time.<br />

8.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> upland rice. Bars (—)<br />

show periods when a particular herbicide is<br />

applied. *Tim<strong>in</strong>g of herbicide applicati<strong>on</strong> is<br />

based <strong>on</strong> weed emergence and growth<br />

stage with<strong>in</strong> the rice growth stage.<br />

Upland rice 93


Herbicides<br />

Chemical weed c<strong>on</strong>trol <strong>in</strong> upland rice<br />

is ec<strong>on</strong>omical and effective under<br />

certa<strong>in</strong> c<strong>on</strong>diti<strong>on</strong>s. It may be the <strong>on</strong>ly<br />

weed c<strong>on</strong>trol method feasible for<br />

large-scale rice farms. Herbicides can<br />

complement other weed c<strong>on</strong>trol<br />

methods or can be used <strong>in</strong> comb<strong>in</strong>a-<br />

ti<strong>on</strong> with hand weed<strong>in</strong>g to give<br />

acceptable weed c<strong>on</strong>trol.<br />

For optimum effectiveness of pre-<br />

emergence herbicides, which require<br />

moist or wet soil, timely ra<strong>in</strong>s after<br />

applicati<strong>on</strong> are essential. When resid-<br />

ual herbicides are applied to soils that<br />

have rema<strong>in</strong>ed dry for a l<strong>on</strong>g time,<br />

they give variable results. The persis-<br />

tence of many preemergence herbi-<br />

cides is so short, they cannot c<strong>on</strong>trol<br />

successive flushes of weed seedl<strong>in</strong>gs.<br />

This makes follow-up hand weed<strong>in</strong>g<br />

or applicati<strong>on</strong> of a postemergence<br />

herbicide necessary.<br />

Am<strong>on</strong>g the preemergence<br />

herbicides, butachlor, oxadiaz<strong>on</strong>,<br />

d<strong>in</strong>itram<strong>in</strong>e, pendimethal<strong>in</strong>,<br />

thiobencarb, fluorodifen, and<br />

piperophos-dimethametryn have been<br />

widely tested. Postemergence herbi-<br />

cides such as propanil and MCPA are<br />

also effective. Herbicide comb<strong>in</strong>ati<strong>on</strong>s<br />

are often more effective than a s<strong>in</strong>gle<br />

herbicide. Apply<strong>in</strong>g a preemergence<br />

herbicide such as oxadiaz<strong>on</strong>,<br />

butachlor, or thiobencarb, followed by<br />

propanil 15-25 d later will provide<br />

better weed c<strong>on</strong>trol than will any of<br />

these herbicides applied al<strong>on</strong>e. Early<br />

postemergence applicati<strong>on</strong> of a poste-<br />

mergence herbicide (eg, propanil)<br />

comb<strong>in</strong>ed with a residual herbicide,<br />

d<strong>on</strong>e at the time the postemergence<br />

herbicide is most effective, has the<br />

advantages of provid<strong>in</strong>g seas<strong>on</strong>-l<strong>on</strong>g<br />

c<strong>on</strong>trol and sav<strong>in</strong>g time and labor by<br />

comb<strong>in</strong><strong>in</strong>g two spray<strong>in</strong>g operati<strong>on</strong>s.<br />

Table 8.1 and Figure 8.1 provide<br />

<strong>in</strong>formati<strong>on</strong> <strong>on</strong> comm<strong>on</strong> herbicides<br />

that may be used <strong>in</strong> upland rice.<br />

94 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 8.1. Herbicides suitable for use <strong>in</strong> upland rice.<br />

Herbicide<br />

Bentaz<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

D<strong>in</strong>itram<strong>in</strong>e<br />

Fluorodifen<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Pendimethal<strong>in</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

Rate<br />

(kg ai/ha)<br />

1.0-2.0<br />

2.0<br />

2.0<br />

2.0<br />

0.5<br />

1.5<br />

2.5-4.0<br />

0.75-1.5<br />

0.35<br />

2.0<br />

1.0-2.0<br />

3.0-6.0<br />

3.0<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Selective postemergence c<strong>on</strong>trol of<br />

certa<strong>in</strong> broadleaf weeds and sedges<br />

(IRRI 1982). Does not c<strong>on</strong>trol grasses.<br />

Apply postemergence when weeds are<br />

at the 4- to 10-leaf stages. Delayed<br />

applicati<strong>on</strong> allows the weeds to exceed<br />

maximum size, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>adequate<br />

c<strong>on</strong>trol.<br />

Apply preemergence from seed<strong>in</strong>g to<br />

early spikelet stage. Apply to moist<br />

soils for best results. Bifenox +<br />

propanil can be applied post-<br />

emergence when rice has 2-3 leaves<br />

and weeds are 2.5 cm high (Akobundu<br />

1987).<br />

Effective aga<strong>in</strong>st grasses and broad-<br />

leaf weeds; less effective aga<strong>in</strong>st<br />

perennial sedges (IRRI 1975).<br />

Apply preemergence to c<strong>on</strong>trol annual<br />

grasses (IRRI 1976).<br />

Apply as postemergence spray after<br />

tiller <strong>in</strong>itiati<strong>on</strong>, about 21-30 d after<br />

seed<strong>in</strong>g (DAS) (Dixit and S<strong>in</strong>gh 1981).<br />

Apply preemergence (IRRI 1978).<br />

Apply 0-3 DAS for residual pre-<br />

emergence c<strong>on</strong>trol of annual grasses<br />

(De Datta 1972).<br />

Apply preemergence 0-2 DAS. <strong>Rice</strong><br />

growth depressi<strong>on</strong> has been observed<br />

15-20 d after emergence (IRRI 1975).<br />

Apply preemergence. May be<br />

moderately toxic to rice (IRRI 1983).<br />

Apply preemergence or early post-<br />

emergence,<br />

comb<strong>in</strong>ed with propanil (IRRI 1975).<br />

Excellent for c<strong>on</strong>trol of Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis.<br />

Apply 4-6 DAS (Dubey et al 1980).<br />

Apply at 2- to 3-leaf stages of grass.<br />

High temperatures <strong>in</strong>crease c<strong>on</strong>tact<br />

burn and may <strong>in</strong>jure rice (IRRI 1980).<br />

Apply before 2-leaf stage of weeds<br />

and after 1-leaf stage of rice<br />

(IRRI 1988a).


Chapter 9<br />

<strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice<br />

Deepwater and float<strong>in</strong>g rice c<strong>on</strong>stitute<br />

about 11% of the world’s rice area<br />

(IRRI 1988b). They are grown <strong>in</strong> the<br />

deltas, estuaries, and river valleys of<br />

Bangladesh, Cambodia, India,<br />

Ind<strong>on</strong>esia, Myanmar, Thailand, and<br />

Vietnam. In Africa, deepwater and<br />

float<strong>in</strong>g rice-grow<strong>in</strong>g areas are found<br />

<strong>in</strong> the <strong>in</strong>land Niger River delta <strong>in</strong> Mali,<br />

<strong>in</strong> the Niger River delta, Nigeria, and<br />

<strong>in</strong> <strong>in</strong>land swamps.<br />

Deepwater and float<strong>in</strong>g<br />

rice cultures<br />

Deepwater rice is grown <strong>in</strong> areas<br />

where the maximum depth of stand-<br />

<strong>in</strong>g water exceeds 50 cm for a signifi-<br />

cant period of rice growth. Where<br />

water depth is greater than 100 cm, the<br />

culture is referred to as float<strong>in</strong>g rice or<br />

very deep water rice. Fields are not<br />

bunded and flood<strong>in</strong>g usually occurs<br />

<strong>on</strong>ly dur<strong>in</strong>g the later part of the grow-<br />

<strong>in</strong>g seas<strong>on</strong>. <strong>Rice</strong> may grow under<br />

drought c<strong>on</strong>diti<strong>on</strong>s for 40-60 d before<br />

flood<strong>in</strong>g occurs.<br />

<strong>Weed</strong> problems<br />

<strong>Weed</strong>s are a major problem <strong>in</strong> deep-<br />

water and float<strong>in</strong>g rice because rice<br />

normally is seeded <strong>in</strong>to soils that may<br />

rema<strong>in</strong> dry for 6-12 wk. Fields may<br />

also be flash flooded. The dry soil and<br />

<strong>in</strong>termittent flash flood<strong>in</strong>g result <strong>in</strong> a<br />

broad spectrum of weeds-from<br />

upland to semiaquatic and aquatic-<br />

that successively compete with the rice<br />

crop. <strong>Weed</strong>s adapted to dryland<br />

compete at early crop stages, die up<strong>on</strong><br />

flood<strong>in</strong>g, and are succeeded by aquatic<br />

weeds.<br />

Before flood<strong>in</strong>g, deepwater and<br />

float<strong>in</strong>g rice may be <strong>in</strong>fested by<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a, Eleus<strong>in</strong>e <strong>in</strong>dica,<br />

Cyperus rotundus, C. iria, and<br />

C. difformis. These weeds also may<br />

compete with rice dur<strong>in</strong>g the early<br />

stages of flood<strong>in</strong>g.<br />

Deepwater and float<strong>in</strong>g rice may<br />

suffer severe weed <strong>in</strong>festati<strong>on</strong>s dur<strong>in</strong>g<br />

the preflood period. <strong>Weed</strong> problems<br />

are often aggravated by poor stand<br />

establishment due to drought. At the<br />

preflood stage, weeds reduce growth<br />

and tiller<strong>in</strong>g of rice plants and can<br />

reduce gra<strong>in</strong> yield as much as 33% (De<br />

Datta and Hoque 1982). Total crop loss<br />

can occur if flood<strong>in</strong>g is below normal.<br />

M<strong>in</strong>imiz<strong>in</strong>g competiti<strong>on</strong> from<br />

weeds at early rice growth stages<br />

largely determ<strong>in</strong>es how well deep-<br />

water and float<strong>in</strong>g rice will tolerate<br />

stresses caused by flood<strong>in</strong>g at later<br />

stages. Aquatic weeds that occur up<strong>on</strong><br />

flood<strong>in</strong>g are less a problem when<br />

stand establishment is good and rice<br />

tiller<strong>in</strong>g is adequate than when early<br />

weed competiti<strong>on</strong> is severe. In small<br />

cropp<strong>in</strong>g areas where farmers wet<br />

seed or transplant deepwater rice,<br />

puddl<strong>in</strong>g reduces weed <strong>in</strong>festati<strong>on</strong>.<br />

Amphibious weeds, such as the<br />

wild rices, Scirpus sp., Sesbania sp., and<br />

Leersia hexandra, can compete with rice<br />

under dryland or flooded c<strong>on</strong>diti<strong>on</strong>s.<br />

Eichhornia crassipes, Ipomoea aquatica,<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis, and Pistia<br />

stratiotes are found <strong>in</strong> deepwater rice<br />

after flood<strong>in</strong>g has occurred.<br />

<strong>Weed</strong>s such as the wild rices<br />

possess flood tolerance and el<strong>on</strong>gati<strong>on</strong><br />

ability, and grow with rice <strong>in</strong> ris<strong>in</strong>g<br />

floodwater. Therefore, they are able to<br />

cause c<strong>on</strong>siderable yield losses. Masses<br />

of E. crassipes are usually <strong>in</strong>troduced to<br />

the ricefield by water currents or<br />

str<strong>on</strong>g w<strong>in</strong>ds. When this occurs, E.<br />

crassipes can completely smother the<br />

rice crop with<strong>in</strong> a few days. In West<br />

Africa, the most troublesome weeds<br />

<strong>in</strong>clude E. stagn<strong>in</strong>a and E. pyramidalis,<br />

and the wild rices Oryza l<strong>on</strong>gistam<strong>in</strong>ata<br />

and O. barthii.<br />

<strong>Weed</strong> c<strong>on</strong>trol before<br />

flood<strong>in</strong>g<br />

The deepwater rice cycle has two<br />

dist<strong>in</strong>ct phases—before flood<strong>in</strong>g and<br />

after flood<strong>in</strong>g. <strong>Weed</strong> c<strong>on</strong>trol methods<br />

can be described best with<strong>in</strong> these<br />

phases. Deepwater rice before flood<strong>in</strong>g<br />

is treated either as ra<strong>in</strong>fed lowland rice<br />

or as upland rice, us<strong>in</strong>g the same weed<br />

c<strong>on</strong>trol methods.<br />

Deepwater and float<strong>in</strong>g rice 95


Land preparati<strong>on</strong><br />

Land preparati<strong>on</strong> for dry seeded deep-<br />

water and float<strong>in</strong>g rice is similar to<br />

that for upland rice. At plant<strong>in</strong>g, the<br />

seed bed should be weed free. Deep<br />

plow<strong>in</strong>g and harrow<strong>in</strong>g are recom-<br />

mended <strong>in</strong> the dry seas<strong>on</strong> if rhizo-<br />

matous perennials are a problem.<br />

Many deepwater and float<strong>in</strong>g rice soils<br />

have a high clay c<strong>on</strong>tent, and, the <strong>on</strong>ly<br />

time to plow them is often when they<br />

are dry and very hard. Cultivati<strong>on</strong><br />

must start early because the crop,<br />

which draws first <strong>on</strong> residual moisture<br />

and moisture from occasi<strong>on</strong>al show-<br />

ers, must reach the stage where it can<br />

el<strong>on</strong>gate before flood<strong>in</strong>g starts. The<br />

stale seedbed technique can be used to<br />

reduce weed problems, particularly<br />

<strong>in</strong>festati<strong>on</strong> by wild rices.<br />

Plant<strong>in</strong>g method<br />

Broadcast seed<strong>in</strong>g rice <strong>in</strong>to dry soil is<br />

comm<strong>on</strong> <strong>in</strong> deepwater and float<strong>in</strong>g<br />

rices. Transplant<strong>in</strong>g or broadcast<strong>in</strong>g<br />

pregerm<strong>in</strong>ated seeds <strong>in</strong>to puddled soil<br />

is also practiced <strong>in</strong> some areas. If early<br />

flash floods occur, however, trans-<br />

plant<strong>in</strong>g <strong>in</strong>volves a greater risk of crop<br />

failure than does broadcast seed<strong>in</strong>g.<br />

The rice seedl<strong>in</strong>g grows as an upland<br />

crop for 4-20 wk before flood<strong>in</strong>g<br />

occurs. As the floodwaters rise, deep-<br />

water rice plants el<strong>on</strong>gate to as tall as<br />

6 m and form a dense mat <strong>on</strong> the<br />

water surface.<br />

Cultivar<br />

<strong>Rice</strong> cultivars with el<strong>on</strong>gati<strong>on</strong> ability,<br />

photoperiod sensitivity, drought toler-<br />

ance at the seedl<strong>in</strong>g stage, and<br />

tolerance for stagnant water c<strong>on</strong>diti<strong>on</strong>s<br />

at later growth stages are ideal for<br />

deepwater and float<strong>in</strong>g rice.<br />

96 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Table 9.1. Herbicides suitable for use <strong>in</strong> deepwater and float<strong>in</strong>g rice.<br />

Herbicide<br />

Rate<br />

(kg ai/ha)<br />

Bentaz<strong>on</strong> 2.0<br />

Butachlor<br />

Butral<strong>in</strong><br />

2,4-D or MCPA<br />

Fluorodifen<br />

Oxadiaz<strong>on</strong><br />

Piperophos +<br />

dimethametryn<br />

Propanil<br />

Thiobencarb<br />

1.0-2.0<br />

2.0<br />

0.5<br />

2.5-4.0<br />

0.75-1.0<br />

1.0-2.0<br />

3.0<br />

2.0-4.0<br />

Plant populati<strong>on</strong><br />

Because of poor stand establishment,<br />

seed<strong>in</strong>g rates tend to be high-<br />

80-200 kg/ha. The crop produces<br />

nodal tillers at low plant densities,<br />

however, and a high seed<strong>in</strong>g rate does<br />

not necessarily <strong>in</strong>crease f<strong>in</strong>al gra<strong>in</strong><br />

yield. Nevertheless, the high seed<strong>in</strong>g<br />

rate is a good agr<strong>on</strong>omic practice<br />

because a high plant populati<strong>on</strong><br />

allows rice to develop a canopy that<br />

suppresses weed growth.<br />

Crop rotati<strong>on</strong>s can help c<strong>on</strong>trol or<br />

prevent the buildup of difficult-to-<br />

c<strong>on</strong>trol weeds. In Bangladesh, farmers<br />

<strong>on</strong> the higher ridges of deepwater rice<br />

areas grow a crop of jute after <strong>on</strong>e or<br />

more deepwater rice crops. The jute<br />

crop suppresses wild rice and other<br />

weeds.<br />

Comments and source of <strong>in</strong>formati<strong>on</strong><br />

Selective c<strong>on</strong>trol of certa<strong>in</strong> broadleaf<br />

weeds and sedges. Does not c<strong>on</strong>trol<br />

grasses. Apply postemergence early,<br />

when weeds are at the 4- to 10-leaf<br />

stages. Delayed applicati<strong>on</strong> allows<br />

weeds to exceed maximum size and<br />

results <strong>in</strong> <strong>in</strong>adequate c<strong>on</strong>trol (COPR<br />

1976).<br />

Effective aga<strong>in</strong>st grasses and broad-<br />

leaf weeds. Less effective aga<strong>in</strong>st<br />

perennial sedges (COPR 1976).<br />

Apply preemergence to c<strong>on</strong>trol annual<br />

grasses (COPR 1976).<br />

Apply as postemergence spray after<br />

rice tiller<strong>in</strong>g, 21-30 d after seed<strong>in</strong>g<br />

(DAS) (COPR 1976).<br />

Apply preemergence 0-3 DAS to<br />

c<strong>on</strong>trol residual annual grasses<br />

(COPR 1976).<br />

Apply 6-8 d after applicati<strong>on</strong><br />

(COPR 1976).<br />

Apply 4-6 DAS (COPR 1976).<br />

Apply at 2- to 3-leaf stages of grass<br />

(IRRI 1980).<br />

Apply before 2-leaf stage of weeds and<br />

after 1-leaf stage of rice (COPR 1976).<br />

Fertilizer<br />

Deposits of the silt carried by rivers<br />

dur<strong>in</strong>g their annual floods provide<br />

high fertility for most deepwater and<br />

float<strong>in</strong>g rice soils. The high soil fertility<br />

improves stand establishment and<br />

el<strong>on</strong>gati<strong>on</strong> ability of rice, but weeds<br />

also grow quickly and compete<br />

aggressively for nutrients, moisture,<br />

and light. <strong>Weed</strong>s must be c<strong>on</strong>trolled to<br />

maximize the nutrient uptake<br />

efficiency of the rice crop.


Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is the most effective<br />

weed c<strong>on</strong>trol method <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice. <strong>Weed</strong><strong>in</strong>g should be<br />

d<strong>on</strong>e 15-25 d after plant<strong>in</strong>g. Two to<br />

three hand weed<strong>in</strong>gs may be neces-<br />

sary, depend<strong>in</strong>g <strong>on</strong> the time of flood-<br />

<strong>in</strong>g. <strong>Weed</strong>s germ<strong>in</strong>ate earlier and grow<br />

more vigorously than rice dur<strong>in</strong>g the<br />

preflood period. Mechanical weed<strong>in</strong>g,<br />

comb<strong>in</strong>ed with hand weed<strong>in</strong>g for<br />

weed removal with<strong>in</strong> the rows, may<br />

be effective when rice is row-seeded.<br />

Herbicides<br />

Most comm<strong>on</strong> weeds present before<br />

flood<strong>in</strong>g can be c<strong>on</strong>trolled by the<br />

herbicides recommended for upland<br />

rice. Butachlor, oxadiaz<strong>on</strong>,<br />

pendimethal<strong>in</strong>, thiobencarb, pipero-<br />

phos-dimethametryn, and oxyfluorfen<br />

are effective when applied preemer-<br />

gence. Postemergence herbicides such<br />

as propanil, 2-4D, and MCPA are also<br />

effective <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g weeds such as<br />

I. aquatica. Residual herbicides give<br />

variable results when applied to dry<br />

soils or when flash floods occur so<strong>on</strong><br />

after applicati<strong>on</strong>. Glyphosate can be<br />

9.1 <strong>Rice</strong> growth stages when herbicides<br />

can be applied <strong>on</strong> deepwater and float<strong>in</strong>g<br />

rice. Bars (—) show periods when a<br />

particular herbicide can be applied. *Tim<strong>in</strong>g<br />

of herbicide applicati<strong>on</strong> is based <strong>on</strong> weed<br />

emergence and growth stage with<strong>in</strong> the<br />

rice growth stage.<br />

used to c<strong>on</strong>trol O. l<strong>on</strong>gistam<strong>in</strong>ata<br />

dur<strong>in</strong>g fallow. Table 9.1 and Figure 9.1<br />

provide <strong>in</strong>formati<strong>on</strong> <strong>on</strong> herbicides and<br />

their appropriate times of applicati<strong>on</strong>.<br />

Deepwater and float<strong>in</strong>g rice 97


<strong>Weed</strong> c<strong>on</strong>trol after<br />

flood<strong>in</strong>g<br />

<strong>Weed</strong> c<strong>on</strong>trol after flood<strong>in</strong>g <strong>in</strong> deep<br />

water and float<strong>in</strong>g rice is ma<strong>in</strong>ly d<strong>on</strong>e<br />

by hand. Farmers <strong>in</strong> some areas grow<br />

a strip of Sesbania aculeata or<br />

Aeschynomene aspera al<strong>on</strong>g the borders<br />

of deepwater and float<strong>in</strong>g ricefields to<br />

provide a barrier aga<strong>in</strong>st the entry of<br />

E. crassipes and other weeds <strong>in</strong>to the<br />

fields. Barricades of bamboo poles and<br />

bars are sometimes <strong>in</strong>stalled.<br />

Hand weed<strong>in</strong>g<br />

Attempts to weed deepwater and<br />

float<strong>in</strong>g rice from boats-a difficult<br />

task-have been made <strong>in</strong> cases of<br />

severe weed <strong>in</strong>festati<strong>on</strong>. In Mali,<br />

farmers hand weed after flood<strong>in</strong>g to<br />

m<strong>in</strong>imize competiti<strong>on</strong> from<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata and O. barthii.<br />

Perennial E. stagn<strong>in</strong>a is also removed<br />

by hand.<br />

Herbicides<br />

Herbicides are effective <strong>in</strong> deepwater<br />

and float<strong>in</strong>g rice <strong>on</strong>ly before flood<strong>in</strong>g.<br />

98 <strong>Weed</strong> c<strong>on</strong>trol handbook


Chapter 10<br />

Management of some<br />

difficult weeds <strong>in</strong> rice<br />

Many weeds can be c<strong>on</strong>trolled effec-<br />

tively <strong>on</strong>ly by us<strong>in</strong>g a comb<strong>in</strong>ati<strong>on</strong> of<br />

methods. Us<strong>in</strong>g <strong>on</strong>ly <strong>on</strong>e weed c<strong>on</strong>trol<br />

method leads to a buildup of weed<br />

problems. This chapter gives <strong>in</strong>forma-<br />

ti<strong>on</strong> <strong>on</strong> how <strong>in</strong>tractable rice weeds can<br />

be managed through an <strong>in</strong>tegrated<br />

approach.<br />

Scirpus maritimus<br />

Scirpus maritimus, a perennial sedge<br />

that spreads by tubers, is widespread<br />

<strong>in</strong> lowland rice <strong>in</strong> several countries <strong>in</strong><br />

Asia, Europe, and temperate climate<br />

USA (see page 000). S. maritimus is a<br />

very competitive weed: it produces<br />

numerous tubers, has fast shoot<br />

growth, is able to emerge through<br />

fields with stand<strong>in</strong>g water, and has<br />

rapid nutrient uptake. Seas<strong>on</strong>-l<strong>on</strong>g<br />

competiti<strong>on</strong> from S. maritimus can<br />

reduce rice yields 60-100%. Its tubers<br />

and buds can rema<strong>in</strong> dormant <strong>in</strong> the<br />

soil, mak<strong>in</strong>g this weed difficult to<br />

eradicate. S. maritimus is most<br />

competitive from its early growth<br />

stages to 80 d after germ<strong>in</strong>ati<strong>on</strong>. The<br />

S. maritimus -free period required <strong>in</strong><br />

rice is the first 4 wk.<br />

Cultural c<strong>on</strong>trol<br />

Cultural c<strong>on</strong>trol of S. maritimus<br />

<strong>in</strong>volves tillage, crop rotati<strong>on</strong>, and<br />

water management.<br />

Depth and type of primary cultiva-<br />

ti<strong>on</strong> greatly affect the S. maritimus<br />

populati<strong>on</strong>. Shallow cultivati<strong>on</strong> and<br />

zero tillage encourage emergence of<br />

tubers reta<strong>in</strong>ed <strong>on</strong> the soil surface,<br />

result<strong>in</strong>g <strong>in</strong> rapid populati<strong>on</strong> buildup.<br />

Deep plow<strong>in</strong>g buries the tubers and<br />

results <strong>in</strong> growth of fewer seedl<strong>in</strong>gs.<br />

The practice of zero tillage leads to<br />

the buildup of a S. maritimus popula-<br />

ti<strong>on</strong>, but m<strong>in</strong>imum tillage can be as<br />

effective as c<strong>on</strong>venti<strong>on</strong>al tillage <strong>in</strong><br />

limit<strong>in</strong>g its growth. The weed persists<br />

under c<strong>on</strong>t<strong>in</strong>uously wet c<strong>on</strong>diti<strong>on</strong>s but<br />

dim<strong>in</strong>ishes dramatically with time<br />

under c<strong>on</strong>t<strong>in</strong>uously dry c<strong>on</strong>diti<strong>on</strong>s. A<br />

year of rotati<strong>on</strong> of an upland crop with<br />

lowland rice will reduce the preva-<br />

lence of S. maritimus.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is effective <strong>in</strong> c<strong>on</strong>trol-<br />

l<strong>in</strong>g S. maritimus. The rice crop should<br />

be kept weed-free for at least the first<br />

4 wk. This makes several hand weed-<br />

<strong>in</strong>gs necessary, because S. maritimus<br />

tubers germ<strong>in</strong>ate with<strong>in</strong> 5 d after<br />

harrow<strong>in</strong>g and grow rapidly.<br />

Herbicides<br />

Herbicides effective aga<strong>in</strong>st<br />

S. maritimus <strong>in</strong> transplanted and direct<br />

seeded flooded rice <strong>in</strong>clude bentaz<strong>on</strong>,<br />

fenoxaprop, propanil, 2,4-D, and<br />

bensulfur<strong>on</strong>. 2,4-D at 0.5 kg ai/ha is<br />

best applied when S. maritimus has<br />

6-8 leaves. 2,4-D applied preemergence<br />

does not c<strong>on</strong>trol the weed, although it<br />

may reduce the stand of annual<br />

grasses. Bentaz<strong>on</strong> at 1-2 kg ai/ha<br />

should be applied at the 6- to 8-leaf<br />

stage (about 25 d after sow<strong>in</strong>g [DASI).<br />

Bensulfur<strong>on</strong> at 50 g ai/ ha applied at<br />

6-8 DAS or DT (2- to 3-leaf stage of the<br />

weed) effectively c<strong>on</strong>trols S. maritimus<br />

and annual weeds.<br />

Integrated c<strong>on</strong>trol<br />

Integrati<strong>on</strong> of all workable weed<br />

c<strong>on</strong>trol practices can provide effective<br />

and ec<strong>on</strong>omical c<strong>on</strong>trol of S. maritimus.<br />

Such <strong>in</strong>tegrati<strong>on</strong> should beg<strong>in</strong> by<br />

creat<strong>in</strong>g an envir<strong>on</strong>ment favorable to<br />

rice growth but unfavorable to weed<br />

growth. This <strong>in</strong>cludes us<strong>in</strong>g well-<br />

adapted, high-yield<strong>in</strong>g rice cultivars;<br />

appropriate fertilizers; good manage-<br />

ment; and crop rotati<strong>on</strong>. <strong>Weed</strong> c<strong>on</strong>trol<br />

efficiency is improved by <strong>in</strong>tegrat<strong>in</strong>g<br />

the use of herbicides and hand weed-<br />

<strong>in</strong>g. The rotati<strong>on</strong>al crops used depend<br />

<strong>on</strong> the regi<strong>on</strong>; maize, sorghum, and<br />

soybean are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly<br />

important.<br />

Difficult weeds 99


Paspalum distichum<br />

Paspalum distichum is a creep<strong>in</strong>g peren-<br />

nial grass found <strong>in</strong> lowland ricefields<br />

(see page 22). Its underground growth<br />

system c<strong>on</strong>sists of adventitious roots<br />

and rhizomes. It tends to resist c<strong>on</strong>-<br />

venti<strong>on</strong>al weed c<strong>on</strong>trol measures,<br />

<strong>in</strong>clud<strong>in</strong>g the use of herbicides, but is<br />

sensitive to shad<strong>in</strong>g.<br />

Cultural c<strong>on</strong>trol<br />

Thorough land preparati<strong>on</strong> is <strong>on</strong>e way<br />

of c<strong>on</strong>troll<strong>in</strong>g P. distichum. Frequent<br />

tillage reduces P. distichum problems.<br />

Cutt<strong>in</strong>g up rhizomes by tillage encour-<br />

ages dormant buds to sprout, deplet-<br />

<strong>in</strong>g the weeds food reserves. For l<strong>on</strong>g-<br />

term c<strong>on</strong>trol, its rhizome must be<br />

killed.<br />

Because P. distichum is sensitive to<br />

shade, closely spaced, vigorous rice<br />

plants offer better competiti<strong>on</strong> aga<strong>in</strong>st<br />

this weed than do widely spaced<br />

plants.<br />

Herbicides<br />

P. distichum is resistant to many pre-<br />

emergence herbicides used <strong>on</strong> rice. It<br />

is, however, susceptible to glyphosate<br />

applied at 2.0 kg ai/ha and moder-<br />

ately susceptible to paraquat. A pre-<br />

plant herbicide, such as glyphosate,<br />

used <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with land prepa-<br />

rati<strong>on</strong>, improves c<strong>on</strong>trol. Translocati<strong>on</strong><br />

of glyphosate <strong>in</strong>to the rhizomes is best<br />

achieved when the glyphosate is<br />

applied <strong>on</strong> actively grow<strong>in</strong>g<br />

P. distichum with maximum leaf area.<br />

Integrated c<strong>on</strong>trol<br />

Integrati<strong>on</strong> of cultural c<strong>on</strong>trol and<br />

herbicides will give good c<strong>on</strong>trol of<br />

P. distichum.<br />

100 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Ech<strong>in</strong>ochloa species<br />

The genus Ech<strong>in</strong>ochloa, which <strong>in</strong>cludes<br />

about 50 weed species, <strong>in</strong>cludes some<br />

of the most important rice weeds. The<br />

most comm<strong>on</strong> are E. crus-galli,<br />

E. glabrescens, E. oryzoides,<br />

E. pyramidalis, and E. col<strong>on</strong>a.<br />

E. crus-galli grows widely <strong>in</strong> both<br />

temperate and tropical regi<strong>on</strong>s (see<br />

page 16). Its world distributi<strong>on</strong> ranges<br />

from 50° N to 40º S latitude. E. col<strong>on</strong>a<br />

(see page 33) occurs <strong>in</strong> tropical and<br />

subtropical regi<strong>on</strong>s. E. glabrescens is<br />

found <strong>in</strong> the Indian subc<strong>on</strong>t<strong>in</strong>ent,<br />

Southeast Asia, Ch<strong>in</strong>a, and southern<br />

Japan. E. pyramidalis is abundant <strong>in</strong> the<br />

float<strong>in</strong>g rice areas of West Africa.<br />

E. crus-galli prefers moist c<strong>on</strong>diti<strong>on</strong>s<br />

and c<strong>on</strong>t<strong>in</strong>ues to grow when<br />

submerged; E. col<strong>on</strong>a ceases to grow<br />

when submerged.<br />

<strong>Rice</strong> yield losses from seas<strong>on</strong>-l<strong>on</strong>g<br />

competiti<strong>on</strong> with Ech<strong>in</strong>ochloa spp. can<br />

be as high as 90%. Ech<strong>in</strong>ochloa spp. are<br />

troublesome <strong>in</strong> rice because their<br />

ecological requirements are similar: at<br />

early growth stages, they resemble<br />

rice, and they accumulate c<strong>on</strong>siderable<br />

amounts of nutrients, to the disadvantage<br />

of rice. Moreover, these weeds<br />

compete with rice for light and<br />

moisture.<br />

Ech<strong>in</strong>ochloa spp. germ<strong>in</strong>ate earlier<br />

than direct seeded rice. Dur<strong>in</strong>g the<br />

first 3 wk of weed growth, profuse<br />

emergence of new leaves and vegeta-<br />

tive growth of tillers and adventitious<br />

roots occur. Ech<strong>in</strong>ochloa spp. produce<br />

extremely large numbers of seeds,<br />

which ensure the weeds dispersal and<br />

reestablishment.<br />

Cultural c<strong>on</strong>trol<br />

Crop rotati<strong>on</strong> can effectively reduce<br />

Ech<strong>in</strong>ochloa spp. populati<strong>on</strong>s.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g is effective if d<strong>on</strong>e<br />

repeatedly, to remove succeed<strong>in</strong>g<br />

flushes of weeds and weeds over-<br />

looked earlier due to their similarity to<br />

rice.<br />

Herbicides<br />

Several herbicides can selectively<br />

c<strong>on</strong>trol Ech<strong>in</strong>ochloa spp. This <strong>in</strong>clude<br />

butachlor, oxadiaz<strong>on</strong>, oxyfluorfen,<br />

pendimethal<strong>in</strong>, thiobencarb, simetryn,<br />

mol<strong>in</strong>ate, propanil, chlomethoxynil,<br />

pretilachlor, and qu<strong>in</strong>clorac. Preemergence<br />

and early postemergence applicati<strong>on</strong>s<br />

are most effective because the<br />

weeds are most susceptible at the<br />

seedl<strong>in</strong>g stage. <strong>Weed</strong> resistance to<br />

herbicides <strong>in</strong>creases with age.<br />

Butachlor applied preemergence<br />

<strong>in</strong>hibits the enzyme activity of<br />

Ech<strong>in</strong>ochloa spp., delays radicle<br />

emergence, and <strong>in</strong>hibits emergence of<br />

the root and primary leaf. Selectivity<br />

for propanil depends <strong>on</strong> the different<br />

levels of the hydrolyz<strong>in</strong>g enzyme,<br />

which is high <strong>in</strong> rice but low <strong>in</strong><br />

Ech<strong>in</strong>ochloa spp.<br />

Integrated c<strong>on</strong>trol<br />

Ech<strong>in</strong>ochloa spp. can be managed<br />

effectively through an <strong>in</strong>tegrated<br />

approach. Because the weed is sensi-<br />

tive to shade, a vigorous rice stand<br />

(achieved with high plant<strong>in</strong>g density<br />

and high fertilizer applicati<strong>on</strong>),<br />

comb<strong>in</strong>ed with hand weed<strong>in</strong>g or with<br />

preemergence or early postemergence<br />

herbicide, will lead to early rice<br />

canopy closure. Late-germ<strong>in</strong>at<strong>in</strong>g<br />

Ech<strong>in</strong>ochloa spp. can be c<strong>on</strong>trolled by<br />

herbicides. A 10-20 cm water depth<br />

will generally suppress Ech<strong>in</strong>ochloa<br />

spp. weeds.


Wild rices<br />

The important wild rices are Oryza<br />

rufipog<strong>on</strong> Griff., O. nivara Sharma &<br />

Shastry, O. l<strong>on</strong>gistam<strong>in</strong>ata A. Chev. &<br />

Roehr., O. barthii A. Chev., O. punctata<br />

Kotschy ex Steud., and O. offic<strong>in</strong>alis<br />

Wall. ex Watt. These wild rices<br />

resemble cultivated rice O. sativa. They<br />

are adapted to the envir<strong>on</strong>ment of<br />

cultivated rice, are competitive, and<br />

have gra<strong>in</strong>s that are highly dormant<br />

and shatter easily.<br />

O. rufipog<strong>on</strong> is a problem <strong>in</strong> areas <strong>in</strong><br />

Bangladesh, Brazil, Colombia,<br />

Guyana, India, Ind<strong>on</strong>esia, Malaysia,<br />

Sur<strong>in</strong>am, Thailand, southern USA,<br />

Venezuela, and West Indies. A peren-<br />

nial weed, its mature seed has a l<strong>on</strong>g<br />

dormancy, shatters easily, and has a<br />

pigmented aleur<strong>on</strong>e layer.<br />

O. nivara is an annual weed that<br />

occurs <strong>in</strong> dra<strong>in</strong>age ditches and shallow<br />

p<strong>on</strong>ds. Its seeds are highly dormant<br />

and shatter easily.<br />

O. l<strong>on</strong>gistam<strong>in</strong>ata (syn<strong>on</strong>ym: Oryza<br />

perennis Moench) is a serious weed <strong>in</strong><br />

most of West Africa. As a rhizomatous<br />

perennial grass, it propagates almost<br />

exclusively by vegetative multiplica-<br />

ti<strong>on</strong> of rhizomes, which are produced<br />

prolifically. It thrives <strong>in</strong> medium to<br />

deep parts of flooded ricefields and <strong>in</strong><br />

deep parts of poorly irrigated fields. It<br />

is very competitive and can reduce rice<br />

yields as much as 90%.<br />

O. barthii is widely distributed <strong>in</strong><br />

Africa. It is an annual weed that<br />

closely resembles O. glaberrima.<br />

Characteristics such as early maturity,<br />

shatter<strong>in</strong>g before rice maturity, and<br />

seed dormancy make it difficult to<br />

c<strong>on</strong>trol.<br />

O. punctata and O. offic<strong>in</strong>alis are<br />

both annual weeds. O. punctata is<br />

native to Africa, O. offic<strong>in</strong>alis origi-<br />

nated <strong>in</strong> Asia. Both have small gra<strong>in</strong>s.<br />

Some of the wild rices are photo-<br />

period sensitive. This <strong>in</strong>fluences their<br />

growth durati<strong>on</strong>, with later emerg<strong>in</strong>g<br />

plants tak<strong>in</strong>g less time. Wild rice stalks<br />

are generally weak, result<strong>in</strong>g <strong>in</strong><br />

lodg<strong>in</strong>g not <strong>on</strong>ly of the weeds but also<br />

of the rice around them.<br />

Cultural c<strong>on</strong>trol<br />

Us<strong>in</strong>g clean rice seed, free of wild rice<br />

seeds, will prevent the <strong>in</strong>troducti<strong>on</strong> or<br />

re<strong>in</strong>troducti<strong>on</strong> of wild rices to n<strong>on</strong>-<br />

<strong>in</strong>fested areas. After rice harvest, fields<br />

should be managed to kill wild rice<br />

seeds (e.g., straw burn<strong>in</strong>g). Early-<br />

seas<strong>on</strong> cultivati<strong>on</strong> and harrow<strong>in</strong>g<br />

stimulate red rice germ<strong>in</strong>ati<strong>on</strong> and<br />

may allow the mechanical destructi<strong>on</strong><br />

of several flushes of wild rice growth<br />

before rice or rotati<strong>on</strong>al crops are<br />

planted.<br />

High seed<strong>in</strong>g rates of rice reduce<br />

tiller<strong>in</strong>g of wild rice. When rice is<br />

seeded or transplanted <strong>in</strong> rows, it is<br />

easy to differentiate wild rice grow<strong>in</strong>g<br />

between the rows.<br />

Crop rotati<strong>on</strong> may reduce <strong>in</strong>festa-<br />

ti<strong>on</strong>s of wild rices. Wild rice is easy to<br />

c<strong>on</strong>trol <strong>in</strong> upland crops. The length of<br />

rotati<strong>on</strong> depends <strong>on</strong> how severely the<br />

field is <strong>in</strong>fested with wild rice. Typical<br />

rotati<strong>on</strong>al crops for red rice <strong>in</strong> south-<br />

ern USA are maize, gra<strong>in</strong> sorghum,<br />

and soybean. Depend<strong>in</strong>g <strong>on</strong> the<br />

rotati<strong>on</strong>al crop, herbicides comm<strong>on</strong>ly<br />

used <strong>in</strong>clude propaz<strong>in</strong>e, alachlor,<br />

metolachlor, triflural<strong>in</strong>, pendi-<br />

methal<strong>in</strong>, metribuz<strong>in</strong>, bentaz<strong>on</strong>, and<br />

atraz<strong>in</strong>e.<br />

Buried seeds of wild rice do not<br />

germ<strong>in</strong>ate when the soil is flooded or<br />

water-saturated. However, the peren-<br />

nial wild rices O. l<strong>on</strong>gistam<strong>in</strong>ata and<br />

O. rufipog<strong>on</strong> propagate through bud<br />

germ<strong>in</strong>ati<strong>on</strong> of stem cutt<strong>in</strong>gs or<br />

rhizomes under such c<strong>on</strong>diti<strong>on</strong>s. Dry<br />

seed<strong>in</strong>g with delayed flood<strong>in</strong>g results<br />

<strong>in</strong> a much higher <strong>in</strong>festati<strong>on</strong> of wild<br />

rice than does seed<strong>in</strong>g <strong>on</strong> a puddled<br />

field and keep<strong>in</strong>g the soil saturated.<br />

C<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g effectively<br />

c<strong>on</strong>trols wild rice.<br />

Hand weed<strong>in</strong>g<br />

When crops are planted <strong>in</strong> rows, the<br />

wild rice between the rows can be<br />

weeded out easily. In some areas, wild<br />

rice is eaten. This not <strong>on</strong>ly augments<br />

the food supply but also helps reduce<br />

the spread of the weed. Wild rice<br />

mostly shatters before cultivated rice<br />

matures, and gra<strong>in</strong>s of wild rice must<br />

be harvested before they shatter. Its<br />

growth for food should be discour-<br />

aged, however.<br />

The perennial rhizomatous deep<br />

water wild rice O. l<strong>on</strong>gistam<strong>in</strong>ata is<br />

c<strong>on</strong>trolled by underwater mow<strong>in</strong>g of<br />

rhizomes twice dur<strong>in</strong>g the grow<strong>in</strong>g<br />

seas<strong>on</strong>.<br />

Herbicides<br />

Herbicides comm<strong>on</strong>ly used <strong>in</strong> rice do<br />

not selectively c<strong>on</strong>trol wild rice<br />

because of the similar growth systems.<br />

Mol<strong>in</strong>ate at 1-2 kg ai/ha applied pre-<br />

plant<strong>in</strong>g and <strong>in</strong>corporated selectively<br />

c<strong>on</strong>trols the annual wild rices. For best<br />

c<strong>on</strong>trol, mol<strong>in</strong>ate should be comb<strong>in</strong>ed<br />

with c<strong>on</strong>t<strong>in</strong>uous flood<strong>in</strong>g. Preplant<strong>in</strong>g<br />

applicati<strong>on</strong> of glyphosate at 2-3 kg<br />

ai/ha also effectively c<strong>on</strong>trols wild<br />

rices. For red rice c<strong>on</strong>trol, thiobencarb<br />

is surface-applied preplant<strong>in</strong>g, just<br />

before br<strong>in</strong>g<strong>in</strong>g <strong>on</strong> the flood (<strong>Rice</strong><br />

Journal 1988).<br />

Integrated c<strong>on</strong>trol<br />

Wild rices are best c<strong>on</strong>trolled through<br />

an <strong>in</strong>tegrated approach that <strong>in</strong>cludes<br />

germ<strong>in</strong>ati<strong>on</strong> preventi<strong>on</strong>, crop rotati<strong>on</strong>,<br />

water management, herbicides, and<br />

other cultural methods.<br />

Difficult weeds 101


Cyperus rotundus<br />

C. rotundus, a perennial sedge, is a<br />

persistent, aggressive weed wherever<br />

upland rice is grown. It has been<br />

reported to <strong>in</strong>fest fields <strong>in</strong> tropical<br />

areas of Africa, Asia, and Lat<strong>in</strong> Amer-<br />

ica (see page 29). Under <strong>in</strong>tensive<br />

cultivati<strong>on</strong>, it becomes a serious weed.<br />

C. rotundus has an extensive under-<br />

ground system of basal bulbs, roots,<br />

rhizomes, and tubers, which permit<br />

rapid and vigorous vegetative propa-<br />

gati<strong>on</strong>. Buds <strong>in</strong> a tuber and tubers<br />

with<strong>in</strong> a cha<strong>in</strong> exhibit apical domi-<br />

nance. That apical dom<strong>in</strong>ance can be<br />

broken dur<strong>in</strong>g cultivati<strong>on</strong> by sever<strong>in</strong>g<br />

any tuber from the cha<strong>in</strong>. This stimu-<br />

lates dormant tubers to sprout.<br />

C. rotundus germ<strong>in</strong>ates before, or<br />

simultaneously with, upland rice and<br />

competes for nutrients and moisture,<br />

caus<strong>in</strong>g yield reducti<strong>on</strong>s as high as<br />

50%.<br />

Cultural c<strong>on</strong>trol<br />

Adequate fertilizer, optimum plant<br />

density, and optimum time of plant<strong>in</strong>g<br />

are good cultural practices for<br />

manag<strong>in</strong>g C. rotundus.<br />

Hand weed<strong>in</strong>g<br />

C. rotundus emerges with the rice crop<br />

and outgrows it dur<strong>in</strong>g the early<br />

growth stages. Because of the rapid<br />

regenerati<strong>on</strong> of C. rotundus, hand<br />

weed<strong>in</strong>g has to be d<strong>on</strong>e at frequent<br />

<strong>in</strong>tervals to effectively prevent the<br />

smother<strong>in</strong>g of rice by the weed. Hand<br />

weed<strong>in</strong>g should c<strong>on</strong>t<strong>in</strong>ue until the rice<br />

canopy closes-when shade will<br />

suppress C. rotundus growth.<br />

102 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Herbicides<br />

Glyphosate applied preplant<strong>in</strong>g is best<br />

to c<strong>on</strong>trol C. rotundus. Other herbicides<br />

that can be used are bentaz<strong>on</strong> at 2.0-<br />

3.0 kg ai/ha and 2,4-D at 0.5 kg ai/ha<br />

applied postemergence, 3 wk after<br />

seed<strong>in</strong>g. These selectively kill<br />

C. rotundus, but c<strong>on</strong>trol is temporary.<br />

Integrated c<strong>on</strong>trol<br />

Management practices, such as apply-<br />

<strong>in</strong>g adequate fertilizer after weed<br />

c<strong>on</strong>trol, optimum plant density, and<br />

optimum time of plant<strong>in</strong>g to avoid<br />

drought, comb<strong>in</strong>ed with hand<br />

weed<strong>in</strong>g or herbicides, will reduce<br />

C. rotundus and maximize upland rice<br />

yields.<br />

Comb<strong>in</strong>ati<strong>on</strong>s of tillage and<br />

chemical methods have proven more<br />

effective <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g C. rotundus<br />

than tillage or herbicides al<strong>on</strong>e. In an<br />

<strong>in</strong>tegrated c<strong>on</strong>trol scheme, C. rotundus<br />

is allowed to grow as l<strong>on</strong>g as possible<br />

(at least 3-4 wk) after plow<strong>in</strong>g and<br />

harrow<strong>in</strong>g have stimulated dormant<br />

buds to sprout. Then, systemic<br />

herbicides, such as glyphosate, that<br />

have no residual soil activity are<br />

applied. <strong>Rice</strong> is planted with<strong>in</strong> a week<br />

without further land preparati<strong>on</strong>. This<br />

will provide seas<strong>on</strong>-l<strong>on</strong>g c<strong>on</strong>trol of<br />

C. rotundus and, if c<strong>on</strong>t<strong>in</strong>ued over<br />

several seas<strong>on</strong>s, may elim<strong>in</strong>ate the<br />

weed altogether.<br />

lmperata cyl<strong>in</strong>drica<br />

Imperata cyl<strong>in</strong>drica, a perennial<br />

rhizomatous grass, is a major weed <strong>in</strong><br />

tropical Africa, Australia, South Asia,<br />

South America, and the Pacific islands<br />

(see page 35). It grows under a wide<br />

range of ecological c<strong>on</strong>diti<strong>on</strong>s rang<strong>in</strong>g<br />

from l<strong>on</strong>g dry spells to waterlogg<strong>in</strong>g.<br />

I. cyl<strong>in</strong>drica produces extensive<br />

rhizomes, which readily regenerate. It<br />

has a high tiller<strong>in</strong>g capacity and<br />

establishes quickly to cover a large<br />

area. Tiller<strong>in</strong>g is encouraged by<br />

burn<strong>in</strong>g, cutt<strong>in</strong>g, or graz<strong>in</strong>g.<br />

Apart from compet<strong>in</strong>g directly with<br />

upland rice for nutrients, moisture,<br />

and light, I. cyl<strong>in</strong>drica limits upland<br />

rice producti<strong>on</strong> by reduc<strong>in</strong>g the total<br />

land area available for cropp<strong>in</strong>g; lands<br />

badly <strong>in</strong>fested by the weed are<br />

aband<strong>on</strong>ed.<br />

Cultural c<strong>on</strong>trol<br />

Rhizomes of I. cyl<strong>in</strong>drica are suscep-<br />

tible to partial desiccati<strong>on</strong> even <strong>in</strong> the<br />

wet seas<strong>on</strong>. Effective c<strong>on</strong>trol is<br />

obta<strong>in</strong>ed when the weed is frag-<br />

mented by plow<strong>in</strong>g to depths of<br />

15-20 cm at the beg<strong>in</strong>n<strong>in</strong>g of the dry<br />

seas<strong>on</strong>, when the fragments have time<br />

to dry before the <strong>on</strong>set of ra<strong>in</strong>. This<br />

dry seas<strong>on</strong> plow<strong>in</strong>g should be<br />

repeated every year until I. cyl<strong>in</strong>drica is<br />

c<strong>on</strong>trolled. Tractor-drawn implements<br />

are needed for adequate plow<strong>in</strong>g. The<br />

ec<strong>on</strong>omics of repeated plow<strong>in</strong>g need<br />

to be exam<strong>in</strong>ed.<br />

Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g has to be d<strong>on</strong>e at<br />

frequent <strong>in</strong>tervals for good c<strong>on</strong>trol of<br />

I. cyl<strong>in</strong>drica.


Herbicides<br />

For effective c<strong>on</strong>trol of I. cyl<strong>in</strong>drica, a<br />

herbicide that is translocated to the<br />

underground rhizomes to destroy all<br />

viable buds is best. Applicati<strong>on</strong> of<br />

glyphosate preplant<strong>in</strong>g gives good<br />

c<strong>on</strong>trol. A mixture of glufos<strong>in</strong>ate at<br />

1.0 kg ai/ha and imazapyr at<br />

0.25 kg ai/ha has been reported to give<br />

better and more last<strong>in</strong>g c<strong>on</strong>trol than<br />

glyphosate <strong>in</strong> plantati<strong>on</strong> crops. Both<br />

should be applied to actively grow<strong>in</strong>g<br />

plants with mature leaves. Glyphosate<br />

has no residual activity.<br />

Integrated c<strong>on</strong>trol<br />

A comb<strong>in</strong>ati<strong>on</strong> of cultural and herbi-<br />

cide methods will effectively c<strong>on</strong>trol<br />

I. cyl<strong>in</strong>drica.<br />

Rottboellia<br />

coch<strong>in</strong>ch<strong>in</strong>ensis<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis is an annual<br />

grass that reproduces by seeds. It is<br />

very competitive <strong>in</strong> upland rice (see<br />

page 36) because it grows taller than<br />

the rice and completely shades it.<br />

Complete rice yield loss is comm<strong>on</strong>.<br />

Although R. coch<strong>in</strong>ch<strong>in</strong>ensis prefers<br />

moist, well-dra<strong>in</strong>ed soil, it possesses<br />

c<strong>on</strong>siderable drought tolerance. It<br />

cannot tolerate submergence.<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis has <strong>in</strong>creased <strong>in</strong> im-<br />

portance because it is tolerant of many<br />

herbicides. Most rice herbicides that<br />

selectively c<strong>on</strong>trol this weed do not<br />

have l<strong>on</strong>g enough persistence to<br />

prevent succeed<strong>in</strong>g flushes from<br />

germ<strong>in</strong>at<strong>in</strong>g.<br />

Cultural c<strong>on</strong>trol<br />

Rotate upland rice with broadleaf<br />

crops <strong>in</strong> which R. c<strong>on</strong>ch<strong>in</strong>ch<strong>in</strong>ensis is<br />

easy to c<strong>on</strong>trol. This prevents buildup<br />

of the weed.<br />

Hand weed<strong>in</strong>g<br />

Two to three well-timed hand weed-<br />

<strong>in</strong>gs of R. coch<strong>in</strong>ch<strong>in</strong>ensis will give<br />

maximum rice yield.<br />

Herbicides<br />

Many residual herbicides that c<strong>on</strong>trol<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis are not selective <strong>in</strong><br />

rice. Pendimethal<strong>in</strong> at 1.5-2.0 kg ai/ha<br />

is the best herbicide for c<strong>on</strong>trol <strong>in</strong><br />

upland rice. Pendimethal<strong>in</strong> will not<br />

c<strong>on</strong>trol weeds that have germ<strong>in</strong>ated<br />

before herbicide applicati<strong>on</strong>.<br />

Integrated c<strong>on</strong>trol<br />

R. coch<strong>in</strong>ch<strong>in</strong>ensis is shade-<strong>in</strong>tolerant<br />

and susceptible to competiti<strong>on</strong> by the<br />

rice crop. Use of N fertilizer; high rice<br />

plant density; and tall, fast-grow<strong>in</strong>g<br />

rice cultivars will give early canopy<br />

closure and suppress weed emergence.<br />

Crop rotati<strong>on</strong> comb<strong>in</strong>ed with herbi-<br />

cides and hand rogu<strong>in</strong>g reduces weed<br />

populati<strong>on</strong>s and gives maximum rice<br />

yields.<br />

Difficult weeds 103


References cited<br />

Akobundu I O (1987) <strong>Weed</strong> science <strong>in</strong> the<br />

tropics: pr<strong>in</strong>ciples and practices. John<br />

Wiley & S<strong>on</strong>s, New York. 522 p.<br />

Amp<strong>on</strong>g-Nyarko K, De Datta S K (1989)<br />

Ecophysiological studies <strong>in</strong> relati<strong>on</strong> to<br />

weed management strategies <strong>in</strong> rice.<br />

Pages 31 -45 <strong>in</strong> Proceed<strong>in</strong>gs of the 12th<br />

Asian-Pacific <strong>Weed</strong> Science Society<br />

C<strong>on</strong>ference, Seoul, Republic of Korea.<br />

Anders<strong>on</strong> W P (1983) <strong>Weed</strong> science<br />

pr<strong>in</strong>ciples. 2d ed. West Publish<strong>in</strong>g<br />

Company, St. Paul, M<strong>in</strong>nesota. 655 p.<br />

Attwood P J (1985) Crop protecti<strong>on</strong><br />

handbook-cereals. British Crop Protec-<br />

ti<strong>on</strong> Council. The Lavenham Press Ltd.,<br />

Lavenham, Sutfolk, Great Brita<strong>in</strong>.<br />

Bayer Agrochemicals Divisi<strong>on</strong> (1986)<br />

Important crops of the world and their<br />

weeds (Scientific and comm<strong>on</strong> names,<br />

syn<strong>on</strong>yms, and WSSA and WSSJ<br />

approved computer codes). Lever<br />

kusen Federal Republic of Germany.<br />

1465 p.<br />

Bernasor P C, De Datta S K (1986) Chemi-<br />

cal and cultural c<strong>on</strong>trol of bulrush<br />

( Scirpus maritimus L.) and annual weeds<br />

<strong>in</strong> lowland rice ( Oryza sativa L.). <strong>Weed</strong><br />

Res.26:233-244.<br />

Beyer E M Jr., Duffy M J, Hay J V, Schlueter<br />

D D (1988) Sulf<strong>on</strong>ylureas. Pages<br />

117-189 <strong>in</strong> Herbicides: chemistry, degradati<strong>on</strong><br />

and mode of acti<strong>on</strong>. Vol. 3. P. C.<br />

Kearney and D. D. Kaufman, eds.<br />

Mercel Dekker Inc., New York and<br />

Basel.<br />

California <strong>Weed</strong> C<strong>on</strong>ference (1985)<br />

Pr<strong>in</strong>ciples of weed c<strong>on</strong>trol <strong>in</strong> California.<br />

Thoms<strong>on</strong> Publicati<strong>on</strong>s, Fresno, Califor-<br />

nia, USA.<br />

COPR—Center for Overseas Pest Research<br />

(1976) Pest c<strong>on</strong>trol <strong>in</strong> rice. PANS<br />

Manual No. 3. L<strong>on</strong>d<strong>on</strong>.<br />

Chang T T (1976) The orig<strong>in</strong>, evoluti<strong>on</strong>,<br />

cultivati<strong>on</strong>, dissem<strong>in</strong>ati<strong>on</strong> and diversifi-<br />

cati<strong>on</strong> of Asian and African rices.<br />

Euphytica 25:425-441.<br />

Chemical and Pharmaceutical Press (1986)<br />

Crop protecti<strong>on</strong> chemicals reference. 2d<br />

ed. John Wiley & S<strong>on</strong>s, New York,<br />

Chichester, Brisbane, Tor<strong>on</strong>to, S<strong>in</strong>-<br />

gapore.<br />

104 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Christ R A (1985) Effect of CGA 123407 as a<br />

safener for pretilachlor <strong>in</strong> rice ( Oryza<br />

sativa L.). Record<strong>in</strong>gs of el<strong>on</strong>gati<strong>on</strong> rates<br />

of s<strong>in</strong>gle rice leaves. <strong>Weed</strong> Res. 25:193-<br />

200.<br />

Davies J E, Freed V H, Whittemore F W<br />

(1988) An agromedical approach to<br />

pesticide management - some health<br />

and envir<strong>on</strong>mental c<strong>on</strong>siderati<strong>on</strong>s.<br />

C<strong>on</strong>sortium for Internati<strong>on</strong>al Crop<br />

Protecti<strong>on</strong>, University of Miami, School<br />

of Medic<strong>in</strong>e, Miami, Florida. 320 p.<br />

De Datta S K (1972) Chemical weed c<strong>on</strong>trol<br />

<strong>in</strong> tropical rice <strong>in</strong> Asia. PANS 18(4):433-<br />

440.<br />

De Datta S K (1981) Pr<strong>in</strong>ciples and practices<br />

of rice producti<strong>on</strong>. John Wiley &<br />

S<strong>on</strong>s, New York, Chichester, Brisbane,<br />

Tor<strong>on</strong>to. 618 p.<br />

De Datta S K, Zahidul Hoque M (1982)<br />

<strong>Weed</strong>s, weed problems, and weed<br />

c<strong>on</strong>trol <strong>in</strong> deepwater rice areas. Pages<br />

427-442 <strong>in</strong> Proceed<strong>in</strong>gs of the 1981<br />

<strong>in</strong>ternati<strong>on</strong>al deepwater rice workshop.<br />

Internati<strong>on</strong>al <strong>Rice</strong> Research Institute,<br />

P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

De Datta S K, Fl<strong>in</strong>n J C (1986) Technology<br />

and ec<strong>on</strong>omics of weed c<strong>on</strong>trol <strong>in</strong><br />

broadcast-seeded flooded tropical rice.<br />

Pages 51-74 <strong>in</strong> <strong>Weed</strong>s and the envir<strong>on</strong>ment<br />

<strong>in</strong> the tropics. Proceed<strong>in</strong>gs of the<br />

10th C<strong>on</strong>ference of Asian-Pacific <strong>Weed</strong><br />

Science Society, Chiang Mai, Thailand,<br />

Nov 1985. K. Noda and B.L. Mercado,<br />

eds. Asian-Pacific <strong>Weed</strong> Science Society.<br />

De Datta S K, Amp<strong>on</strong>g-Nyarko K (1988)<br />

Cost-effective <strong>in</strong>tegrated weed manage-<br />

ment practices for irrigated rice.<br />

Proceed<strong>in</strong>gs of the Plenary Sessi<strong>on</strong> of<br />

the 19th Annual C<strong>on</strong>venti<strong>on</strong> of Pest<br />

C<strong>on</strong>trol Council of the Philipp<strong>in</strong>es, 3-7<br />

May 1988, Sacred Heart Center, Cebu<br />

City, Philipp<strong>in</strong>es.<br />

Dixit A N, S<strong>in</strong>gh M M (1981) Studies <strong>on</strong><br />

different weed c<strong>on</strong>trol measures <strong>in</strong><br />

direct seeded upland ra<strong>in</strong>fed paddy.<br />

Int. <strong>Rice</strong> Comm. Newsl. 30(1):38-42.<br />

Dubey A N, Manna G B, Rao M V (1980)<br />

Selectivity of some new herbicides for<br />

direct seeded rice. Riso 29(1):53-59.<br />

Duke S O (1988) Glyphosate. Pages 1-70 <strong>in</strong><br />

Herbicidal chemistry, degradati<strong>on</strong>, and<br />

mode of acti<strong>on</strong>. Vol. 3. P. C. Kearney<br />

and D. D. Kaufman, eds. Mercel Dekker<br />

Inc., New York and Basel.<br />

FAO-Food and Agriculture Organizati<strong>on</strong><br />

of the United Nati<strong>on</strong>s (1976) Mechanizati<strong>on</strong><br />

of rice producti<strong>on</strong>; India-Nigeria-<br />

Senegal, an Internati<strong>on</strong>al Coord<strong>in</strong>ated<br />

Research Project: 1970-1 976. Rome.<br />

152 p.<br />

Fraser F, Burrill L C (1979) Knapsack<br />

sprayers: use, ma<strong>in</strong>tenance, accessories.<br />

Internati<strong>on</strong>al Plant Protecti<strong>on</strong> Center,<br />

Oreg<strong>on</strong> State University, Corvallis,<br />

Oreg<strong>on</strong>, USA.<br />

Fryer J D (1983) Recent research <strong>on</strong> weed<br />

management: new light <strong>on</strong> old practice.<br />

Pages 180-198 <strong>in</strong> Recent advances <strong>in</strong><br />

weed research. W. W. Fletcher, ed.<br />

Comm<strong>on</strong>wealth Agricultural Bureaux.<br />

The Gresham Press, Old Work<strong>in</strong>g<br />

Survey, England.<br />

Fryer J D, Matsunaka S (1977) Integrated<br />

c<strong>on</strong>trol of weeds. University of Tokyo<br />

Press, Japan. 262 p.<br />

Green D H, Ebner L (1972) A new selective<br />

herbicide for rice S-(2-methyl-lpiperidyl-carb<strong>on</strong>ylmethyl)-0,0-di-Npropyl<br />

dithiophosphate, for use al<strong>on</strong>e<br />

or <strong>in</strong> mixtures. Pages 822-829 <strong>in</strong><br />

Proceed<strong>in</strong>gs of the 11th British <strong>Weed</strong><br />

C<strong>on</strong>trol C<strong>on</strong>ference, England.<br />

Gupta P C, O'Toole J C (1986) Upland rice:<br />

a global perspective. Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute, P.O. Box 933, Manila,<br />

Philipp<strong>in</strong>es. 360 p.<br />

Holm L G, Plucknett D L, Pancho J V,<br />

Herberger J P (1977) The world’s worst<br />

weeds-distributi<strong>on</strong> and biology. University<br />

of Hawaii Press, Hawaii. 609 p.<br />

Info Letter (1988) Pictograms urged for<br />

agrochemical labels. Info Letter Bull.<br />

No. 68 (August). Internati<strong>on</strong>al Plant<br />

Protecti<strong>on</strong> Center, Oreg<strong>on</strong> State<br />

University, Corvallis, Oreg<strong>on</strong>, USA.<br />

Internati<strong>on</strong>al Plant Protecti<strong>on</strong> Center (1986)<br />

Instructors’ manual for weed management.<br />

FAO Tra<strong>in</strong><strong>in</strong>g Series No. 12. Food<br />

and Agriculture Organizati<strong>on</strong> of the<br />

United Nati<strong>on</strong>s, Rome.<br />

IRCN—Internati<strong>on</strong>al <strong>Rice</strong> Commissi<strong>on</strong><br />

Newsletter (1982) Technology for<br />

ra<strong>in</strong>fed rice producti<strong>on</strong> <strong>in</strong> Africa. Vol.<br />

2:l-14.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1971) Annual report for 1970. Los<br />

Baños, Philipp<strong>in</strong>es.


IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1972) Annual report for 1971. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1973) Annual report for 1972. Los<br />

Baños, Philipp<strong>in</strong>es. 246 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1974) Annual report for 1973. Los<br />

Baños, Philipp<strong>in</strong>es. 266 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1975) Annual report for 1974. Los<br />

Baños, Philipp<strong>in</strong>es. 384 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1976) Annual report for 1975. Los<br />

Baños, Philipp<strong>in</strong>es. 479 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1977) Annual report for 1976. Los<br />

Baños, Philipp<strong>in</strong>es. 418 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1978) Annual report for 1977. Los<br />

Baños, Philipp<strong>in</strong>es. 548 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1979) Annual report for 1978. Los<br />

Baños, Philipp<strong>in</strong>es. 478 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1980) Annual report for 1979. Los<br />

Baños, Philipp<strong>in</strong>es. 538 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1981) Annual report for 1980. Los<br />

Baños, Philipp<strong>in</strong>es. 467 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1982) Annual report for 1981. Los<br />

Baños, Philipp<strong>in</strong>es. 585 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1983) Annual report for 1982. Los<br />

Baños, Philipp<strong>in</strong>es. 532 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1984) Annual report for 1983. Los<br />

Baños, Philipp<strong>in</strong>es. 497 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1985) Annual report for 1984. Los<br />

Baños, Philipp<strong>in</strong>es. 504 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1986) Annual report for 1985. Los<br />

Baños, Philipp<strong>in</strong>es. 555 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1987) Annual report for 1986. Los<br />

Baños, Philipp<strong>in</strong>es. 639 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1988a) Annual report for 1987. Los<br />

Baños, Philipp<strong>in</strong>es. 640 p.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1988b) World rice statistics 1987. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

IRRI-Internati<strong>on</strong>al <strong>Rice</strong> Research Institute<br />

(1989) Annual report for 1988. Los<br />

Baños, Philipp<strong>in</strong>es.<br />

Kranz J, Schmutterer H, Koch W (1977)<br />

Diseases, pests and weeds <strong>in</strong> tropical<br />

crops. Verlag Paul Parey, Berl<strong>in</strong> and<br />

Hamburg. 666 p.<br />

Matthews G A (1979) Pesticide applicati<strong>on</strong><br />

methods. L<strong>on</strong>d<strong>on</strong>. L<strong>on</strong>gman.<br />

Matsunaka S (1983) Evoluti<strong>on</strong> of rice weed<br />

c<strong>on</strong>trol practices and research: World<br />

perspective. Pages 5-18 <strong>in</strong> <strong>Weed</strong> c<strong>on</strong>trol<br />

<strong>in</strong> rice. Internati<strong>on</strong>al <strong>Rice</strong> Research<br />

Institute, P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

Matsunaka S (1975) Tadpole shrimp: a<br />

biological tool of weed c<strong>on</strong>trol <strong>in</strong><br />

transplanted rice fields. Pages 439-443<br />

<strong>in</strong> Proceed<strong>in</strong>gs of the 5th Asian-Pacific<br />

<strong>Weed</strong> Science Society C<strong>on</strong>ference,<br />

Tokyo, Japan.<br />

Michael P W (1983) Tax<strong>on</strong>omy and<br />

distributi<strong>on</strong> of Ech<strong>in</strong>ochloa species with<br />

special reference to their occurrence as<br />

weeds of rice. Pages 291-306 <strong>in</strong> <strong>Weed</strong><br />

c<strong>on</strong>trol <strong>in</strong> rice. Internati<strong>on</strong>al <strong>Rice</strong><br />

Research Institute, P.O. Box 933, Manila,<br />

Philipp<strong>in</strong>es.<br />

Moody K (1981) Major weeds of rice <strong>in</strong><br />

South and Southeast Asia. Internati<strong>on</strong>al<br />

<strong>Rice</strong> Research Institute, P.O. Box 933,<br />

Manila, Philipp<strong>in</strong>es. 79 p.<br />

Moody K, Estorn<strong>in</strong>os Jr. L E, Navarez D C,<br />

Roa L L (1983) Effect of weed c<strong>on</strong>trol<br />

practices applied to transplanted rice<br />

( Oryza sativa ) <strong>on</strong> succeed<strong>in</strong>g crops.<br />

Philipp. J. <strong>Weed</strong> Sci. 10:65-76.<br />

Moody K, Munroe C E, Lubigan R T, Paller<br />

Jr. E C (1984) Major weeds of the<br />

Philipp<strong>in</strong>es. <strong>Weed</strong> Science Society of the<br />

Philipp<strong>in</strong>es, College, Laguna, Philip-<br />

p<strong>in</strong>es.<br />

Moody K, De Datta S K, Bhan V M, Manna<br />

G B (1986) <strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> ra<strong>in</strong>fed<br />

lowland rice. Pages 371-383 <strong>in</strong> Progress<br />

<strong>in</strong> ra<strong>in</strong>fed lowland rice. Internati<strong>on</strong>al<br />

<strong>Rice</strong> Research Institute, P.O. Box 933,<br />

Manila, Philipp<strong>in</strong>es.<br />

Moody K, Elliot PC, Rao A N (1988) Cost-<br />

effective weed management <strong>in</strong> a rice-<br />

based cropp<strong>in</strong>g systems program.<br />

Proceed<strong>in</strong>gs of the 19th Pest C<strong>on</strong>trol<br />

Council of the Philipp<strong>in</strong>e C<strong>on</strong>venti<strong>on</strong>,<br />

3-7 May 1988, Sacred Heart Center,<br />

Cebu City, Philipp<strong>in</strong>es.<br />

Mukhopadhyay S (1983) <strong>Weed</strong> c<strong>on</strong>trol<br />

technology <strong>in</strong> ra<strong>in</strong>fed wetland rice.<br />

Pages 109-118 <strong>in</strong> <strong>Weed</strong> c<strong>on</strong>trol <strong>in</strong> rice.<br />

Internati<strong>on</strong>al <strong>Rice</strong> Research Institute,<br />

P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

Ou S H (1985) <strong>Rice</strong> diseases. Comm<strong>on</strong>-<br />

wealth Agricultural Bureaux, The<br />

Cambrian News (Aberystwyth) Ltd.,<br />

Great Brita<strong>in</strong>. 380 p.<br />

Oudejans J H (1982) Agro-pesticides: Their<br />

management and applicati<strong>on</strong>. United<br />

Nati<strong>on</strong>s Ec<strong>on</strong>omic and Social Commis-<br />

si<strong>on</strong> for Asia and the Pacific, Bangkok,<br />

Thailand. 205 p.<br />

Patters<strong>on</strong> D T (1985) Comparative eco-<br />

physiology of weeds. Pages 101-132 <strong>in</strong><br />

<strong>Weed</strong> physiology: reproducti<strong>on</strong> and<br />

ecophysiology. S. O. Duke, ed. CRC<br />

Press, Inc., Boca Rat<strong>on</strong>, Florida.<br />

PCARR—Philipp<strong>in</strong>e Council for Agriculture<br />

and Resources Research (1977) The<br />

Philipp<strong>in</strong>es recommends for rice. Los<br />

Baños, Philipp<strong>in</strong>es. 186 p.<br />

Reissig W H, He<strong>in</strong>richs E A, Lits<strong>in</strong>ger J A,<br />

Moody K, Fielder F, Mew T W, Barri<strong>on</strong><br />

A T (1985) Illustrated guide to <strong>in</strong>tegrated<br />

pest management <strong>in</strong> tropical<br />

Asia. Internati<strong>on</strong>al <strong>Rice</strong> Research<br />

Institute, P.O. Box 933, Manila, Philipp<strong>in</strong>es.<br />

411 p.<br />

<strong>Rice</strong> Journal (1988) Technical report: Red<br />

rice. Vol. 91(2):6-13.<br />

Roberts H A, ed. (1982) <strong>Weed</strong> c<strong>on</strong>trol<br />

handbook: Pr<strong>in</strong>ciples. British Crop<br />

Protecti<strong>on</strong> Council. Blackwell Scientific<br />

Publicati<strong>on</strong>s, Oxford. 533 p.<br />

Roeth F W (1986) Enhanced herbicide<br />

degradati<strong>on</strong> <strong>in</strong> soil with repeat applica-<br />

ti<strong>on</strong>. Reviews of weed science. Vol. 2.<br />

<strong>Weed</strong> Science Society of America, 309<br />

West Clark St., Champaign, Ill<strong>in</strong>ois.<br />

Sankaran S, De Datta S K (1985) <strong>Weed</strong>s<br />

and weed management <strong>in</strong> upland rice.<br />

Adv. Agr<strong>on</strong>. 38:283-337.<br />

Sh<strong>in</strong> D H, Moody K, Zapata F J, Kim K U<br />

(1989) Differences <strong>in</strong> resp<strong>on</strong>se of rice<br />

( Oryza sativa L.) cultivars to herbicides.<br />

Pages 393-403 <strong>in</strong> Proceed<strong>in</strong>gs of the 12th<br />

Asian-Pacific <strong>Weed</strong> Science Society<br />

C<strong>on</strong>ference, Seoul, Republic of Korea.<br />

Smith R J Jr. (1971) Red rice c<strong>on</strong>trol <strong>in</strong> rice.<br />

Proceed<strong>in</strong>gs of the 24th Annual Meet-<br />

<strong>in</strong>g of the Southern <strong>Weed</strong> Science<br />

Society, 19-21 Jan 1971, Memphis,<br />

Tennessee.<br />

St<strong>on</strong>e L F, Santos A B, Ste<strong>in</strong>metz S (1980)<br />

Upland rice affected by cultural<br />

practices. Preq. Agropec. Bros. 15(1):<br />

63-68.<br />

Swarbrick J T (1984) Australian weed<br />

c<strong>on</strong>trol handbook. Plant Press,<br />

Toowoomba, Australia. 418 p.<br />

Thoms<strong>on</strong> W T (1986) Agricultural chemicals.<br />

Book II. Herbicides. Thoms<strong>on</strong><br />

Publicati<strong>on</strong>s, Fresno, California, USA.<br />

301 p.<br />

UC—University of California (1983)<br />

Integrated pest management for rice.<br />

Statewide Integrated Pest Management<br />

Project. Divisi<strong>on</strong> of Agricultural<br />

Sciences Publicati<strong>on</strong> 3280, Berkeley,<br />

USA. 94 p.<br />

Worth<strong>in</strong>g C R (1987) The pesticide manual.<br />

A world compendium. British Crop<br />

Protecti<strong>on</strong> Council, ed. The Lavenham<br />

Press Ltd., Lavenham, Sutfolk, Great<br />

Brita<strong>in</strong>. 1081 p.<br />

Yar<strong>on</strong> B, Gerstl Z, Spencer W F (1985)<br />

Behavior of herbicides <strong>in</strong> irrigated soils.<br />

Pages 121-212 <strong>in</strong> Advances <strong>in</strong> soil<br />

science. Vol. 3. B. A. Stewart, ed.<br />

Spr<strong>in</strong>ger-Verlag, New York, USA.<br />

References 105


Appendices<br />

A. Useful c<strong>on</strong>versi<strong>on</strong>s<br />

Weights<br />

1 gram = 0.03527 ounces<br />

1 ounce = 28.4 grams<br />

1 kilogram = 2.2 pounds<br />

1 pound = 454 grams (0.454 kilogram)<br />

1 metric t<strong>on</strong> = 2,204.6 pounds (1,000 kilograms)<br />

Area<br />

1 acre = 4,840 sq yards = 43,560 sq feet = 0.405 hectare = 4,050 sq meters<br />

1 hectare = 2.41 acres<br />

Volume<br />

1 gall<strong>on</strong> (Imperial) = 4.546 liters<br />

1 gall<strong>on</strong> (Imperial) = 1.2 U.S. gall<strong>on</strong>s<br />

1 gall<strong>on</strong> (U.S.) = 3.785 liters<br />

1 fluid ounce = 28.4 milliliters<br />

1 liter = 0.22 gall<strong>on</strong>s = 1.76 p<strong>in</strong>ts<br />

Measurements<br />

1 <strong>in</strong>ch<br />

1 foot<br />

1 yard<br />

1 mile<br />

1 centimeter<br />

1 meter<br />

1 meter<br />

1 kilometer<br />

1 kilopascal (kpa)<br />

2.54 centimeters<br />

0.305 meter<br />

0.914 meter<br />

1.609 kilometers<br />

0.394 <strong>in</strong>ch<br />

3.281 feet<br />

1.094 yards<br />

0.621 mile<br />

0.145 pound per square <strong>in</strong>ch (psi)<br />

Quick c<strong>on</strong>versi<strong>on</strong>s<br />

1 liter/hectare = 0.089 gall<strong>on</strong>/acre<br />

1 kilogram/hectare = 0.892 pound/acre<br />

1 kilogram/liter = 8.33 pounds/gall<strong>on</strong><br />

B. C<strong>on</strong>versi<strong>on</strong> table for liquid formulati<strong>on</strong>s<br />

Desired Percent c<strong>on</strong>centrati<strong>on</strong> of active <strong>in</strong>gredient <strong>in</strong> formulati<strong>on</strong><br />

active<br />

<strong>in</strong>gredients 100 90 80 75 70 60 50 40 30 25<br />

(<strong>in</strong> kg/ha) (liters of formulati<strong>on</strong> needed to spray 1 ha)<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

3.0<br />

3.5<br />

4.0<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

=<br />

1.11<br />

1.66<br />

2.22<br />

2.78<br />

3.33<br />

3.89<br />

4.44<br />

5.0<br />

5.55<br />

6.11<br />

6.66<br />

1.25<br />

1.87<br />

2.5<br />

3.13<br />

3.75<br />

4.38<br />

5.0<br />

5.63<br />

6.25<br />

6.88<br />

7.5<br />

1.33<br />

2.0<br />

2.66<br />

3.33<br />

4.0<br />

4.66<br />

5.32<br />

6.0<br />

6.67<br />

7.32<br />

7.98<br />

1.45<br />

2.18<br />

2.9<br />

3.63<br />

4.35<br />

5.08<br />

5.80<br />

6.53<br />

7.14<br />

8.0<br />

8.7<br />

1.66<br />

2.49<br />

3.32<br />

4.15<br />

4.98<br />

5.81<br />

6.64<br />

7.5<br />

8.33<br />

9.13<br />

7.96<br />

2.0<br />

3.0<br />

4.0 a<br />

5.0<br />

6.0<br />

7.0<br />

8.0<br />

9.0<br />

10.0<br />

11.0<br />

12.0<br />

2.5<br />

3.75<br />

5.0<br />

6.25<br />

7.5<br />

8.75<br />

10.0<br />

11.25<br />

12.5<br />

13.75<br />

15.0<br />

3.33<br />

5.0<br />

6.60<br />

8.33<br />

9.99<br />

11.66<br />

13.32<br />

15.0<br />

16.67<br />

18.32<br />

10.0<br />

a For example, to apply 2.0 kg ai/ha us<strong>in</strong>g a formulati<strong>on</strong> c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 50% active <strong>in</strong>gredient, use 4.0 liters of the formulated product.<br />

4.0<br />

6.0<br />

8.0<br />

10.0<br />

12.0<br />

14.0<br />

16.0<br />

18.0<br />

20.0<br />

22.0<br />

24.0<br />

20<br />

5.0<br />

7.5<br />

10.0<br />

12.5<br />

15.0<br />

17.5<br />

20.0<br />

22.5<br />

25.0<br />

27.5<br />

30.0<br />

Appendices 107


B. C<strong>on</strong>versi<strong>on</strong> table for granular formulati<strong>on</strong>s<br />

Desired Percent c<strong>on</strong>centrati<strong>on</strong> of active <strong>in</strong>gredient <strong>in</strong> formulati<strong>on</strong><br />

active<br />

<strong>in</strong>gredients 20 15 10 7.5 5 4 3 2 1<br />

(<strong>in</strong> kg/ha) (kg of formulati<strong>on</strong> required to spray 1 ha)<br />

0.5 2.5 3.33 5.0<br />

1.0 5.0 6.67 10.0<br />

1.5 7.5 10.0 15.0<br />

2.0 10.0 13.3 20.0<br />

2.5 12.5 16.6 25.0<br />

3.0 15.0 20.0 30.0<br />

3.5 17.5 23.3 35.0<br />

4.0 20.0 26.6 40.0<br />

4.5 22.5 30.0 45.0<br />

5.0 25.0 33.3 50.0<br />

5.5 27.5 36.3 55.0<br />

6.0 30.0 40.0 60.0<br />

6.67 10.0 12.5 16.67<br />

13.3 20.0 25.0 33.3<br />

20.0 30.0 37.5 50.0<br />

26.6 40.0 a 50 66.7<br />

33.3 50 62.5 83.3<br />

40.0 60 75.0 100.0<br />

46.6 70 87.5 116.7<br />

53.3 80 100.0 133.3<br />

60.0 90 112.5 150.0<br />

66.6 100 125.0 166.7<br />

73.3 110 137.5 183.3<br />

80 120 150.0 200.0<br />

25.0 50.0<br />

50.0 100.0<br />

75.0 150.0<br />

100.0 200.0<br />

125.0 250.0<br />

150.0 300.0<br />

175.0 350.0<br />

200.0 400.0<br />

225.0 450.0<br />

250.0 500.0<br />

275.0 550.0<br />

300.0 600.0<br />

a<br />

For example, to apply 2.0 kg ai/ha us<strong>in</strong>g granules c <strong>on</strong>ta<strong>in</strong><strong>in</strong>g 5% active <strong>in</strong>gredient, use 40 kg of formulated product.<br />

C. Comm<strong>on</strong> and chemical names of herbicides<br />

Chemical names of herbicides vary, depend<strong>in</strong>g <strong>on</strong> the standard adopted. The comm<strong>on</strong> standards are<br />

CHEMICAL ABSTRACTS (CA) and Internati<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied Chemistry (IUPAC). When<br />

possible. this handbook used CA (which is also followed by the <strong>Weed</strong> Science Society of America).<br />

Comm<strong>on</strong> name Chemical name<br />

Bentaz<strong>on</strong><br />

Bensulfur<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

Chlometoxynil<br />

C<strong>in</strong>methyl<strong>in</strong><br />

2,4-D<br />

Dimethametryn<br />

Fenoxaprop<br />

Fluorodifen<br />

Glufos<strong>in</strong>ate<br />

Glyphosate<br />

MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Paraquat<br />

Pendimethal<strong>in</strong><br />

Piperophos<br />

Pretilachlor<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Simetryn<br />

Tiocarbazil<br />

Thiobencarb<br />

108 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

3- (1-methylethyl)-(l H )-2,1,3-benzothiadiaz<strong>in</strong>-4(3 H )-<strong>on</strong>e 2,2-dioxide<br />

(methyl 2-[[(4,6-dimethoxypyrimid<strong>in</strong>-2-yl) am<strong>in</strong>ocarb<strong>on</strong>yl]<br />

am<strong>in</strong>osulf<strong>on</strong>ylmethyl] benzoate)<br />

methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate<br />

N -(buthoxymethyl)-2-chloro- N -(2,6-diethylphenyl) acetamide<br />

4-(1,1-dimethylethyl)-N-(1-methyl propyl)-2, 6-d<strong>in</strong>itrobenzenam<strong>in</strong>e<br />

2,4-dichlorphenyl 3-methoxy-4-nitrophenyl-ether<br />

exo -1-methyl-4-(1-methylethyl)-2-[(2-methylphenyl)<br />

methoxy]-7-oxabicyclo [2.2.1] heptane<br />

(2,4-dichlorophenoxy) acetic acid<br />

2-(1,2-dimethylpropylam<strong>in</strong>o)-4-ethylam<strong>in</strong>o-6-methylthio- 1,3,5-triazlne<br />

(±)-2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoic acid<br />

4-nitrophenyl 2-nitro-4-trifluoromethylphenyl ether<br />

DL-homoalan<strong>in</strong>-4-yl (methyl)phosph<strong>in</strong>ic acid<br />

N-(phosph<strong>on</strong>omethyl)glyc<strong>in</strong>e<br />

(4-chloro-2-methylphenoxy) acetic acid<br />

S -ethyl hexahydro-1 H -azep<strong>in</strong>e-1-carbothioate<br />

3-[2,4-dichloro-5-(1-methylethoxy) phenyl]-5-(1,1-dimethylethyl)-<br />

1,3,4-oxadiaz<strong>on</strong>-2 (3 H )-<strong>on</strong>e<br />

2-chIoro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl) benzene<br />

1,1'-dimethyl-4,4'-bipyrid<strong>in</strong>ium i<strong>on</strong><br />

N -(1-ethylpropyl)-3,4-dimethyl-2,6-d<strong>in</strong>itrobenzenam<strong>in</strong>e<br />

S -2-methyl-1-piperidylcarb<strong>on</strong>ylmethyl 0,0 -di-n-propyl<br />

phosphorodithioate<br />

a-chloro-2,6-diethyl-N-(2-propoxyethyl) acetanilide<br />

N -(3,4-dichlorophenyI) propanamide<br />

3,7-dichlor-8-qu<strong>in</strong>ol<strong>in</strong>ecarboxylic acid<br />

4,6-bisethylam<strong>in</strong>o-2-methylthio-1,3,5-triaz<strong>in</strong>e<br />

S -benzyl N,N-di-sec-butylthiocarbamate<br />

S [(4-chlorophenyl)methyl]diethylcarbamothioate


D. Comm<strong>on</strong> names, trade names, and orig<strong>in</strong>al manufacturers of herbicides.<br />

Comm<strong>on</strong> name Trade names<br />

Bensulfur<strong>on</strong><br />

Bentaz<strong>on</strong><br />

Bifenox<br />

Butachlor<br />

Butral<strong>in</strong><br />

Chlomethoxynil<br />

C<strong>in</strong>methyl<strong>in</strong><br />

2,4-D<br />

Dimethametryn + piperophos<br />

Fenoxaprop<br />

Fluorodifen<br />

Glyphosate<br />

MCPA<br />

Mol<strong>in</strong>ate<br />

Oxadiaz<strong>on</strong><br />

Oxyfluorfen<br />

Paraquat<br />

Pendimethal<strong>in</strong><br />

Piperophos<br />

Pretilachlor<br />

Propanil<br />

Qu<strong>in</strong>clorac<br />

Thiobencarb<br />

L<strong>on</strong>dax<br />

Basagran<br />

Modown<br />

Machete, Butanex,<br />

Lambast, Pillarsete<br />

Amex, Tamex<br />

Ekkusug<strong>on</strong>i<br />

C<strong>in</strong>ch, Argold<br />

Aqua Kleen, Demise,<br />

Ester<strong>on</strong>, <strong>Weed</strong>-B-G<strong>on</strong>,<br />

<strong>Weed</strong><strong>on</strong>e<br />

Avirosan<br />

Whip<br />

Preforan<br />

Roundup, Rodeo,<br />

Shackle, Spas<strong>on</strong><br />

Agrox<strong>on</strong>e, Agritox,<br />

Zelan, Chiptox,<br />

Frasan, Vacate<br />

Ordram, Arrosolo<br />

R<strong>on</strong>star<br />

Goal, Koltar<br />

Gramox<strong>on</strong>e, Paracol,<br />

Cekuquat, Scythe,<br />

Sweep<br />

Prowl, Herbadox,<br />

Gogosan, Stomp<br />

Rilof<br />

Sofit, Rifit. Solnet<br />

Stam F-34, Surcopur,<br />

Riselect, Dipram,<br />

Stampede<br />

Facet<br />

Saturn, Tamariz,<br />

Bolero. Siacarb,<br />

Saturno<br />

Year Orig<strong>in</strong>al<br />

<strong>in</strong>troduced manufacturer<br />

1984<br />

1970<br />

1970<br />

1969<br />

1971<br />

1972<br />

1982<br />

1942<br />

1969<br />

1982<br />

1968<br />

1971<br />

1945<br />

1964<br />

1969<br />

1974<br />

1958<br />

1972<br />

1969<br />

1982<br />

1953<br />

1984<br />

1965<br />

DuP<strong>on</strong>t<br />

BASF<br />

Rh<strong>on</strong>e-Poulenc<br />

M<strong>on</strong>santo<br />

Uni<strong>on</strong> Carbide<br />

Nih<strong>on</strong> Nohyaku Co.<br />

DuP<strong>on</strong>t<br />

Amchem Products<br />

Inc.<br />

Ciba-Geigy<br />

Hoechst-Roussel<br />

Ciba-Geigy<br />

M<strong>on</strong>santo<br />

ICI<br />

Stauffer<br />

Rh<strong>on</strong>e-Poulenc<br />

Rohm & Haas<br />

ICI<br />

American<br />

Cyanamid<br />

Ciba-Geigy<br />

Ciba-Geigy<br />

Rohm & Haas<br />

BASF<br />

Kumiai Chemical<br />

Industry, Chevr<strong>on</strong><br />

Chemical<br />

Appendices 109


Index<br />

A<br />

Absorpti<strong>on</strong> of herbicide, 50, 52, 62, 63<br />

Acanthospermum hispidum, 66<br />

Acetolactase synthase, 70<br />

Acid equivalents, 60<br />

Active <strong>in</strong>gredient, 53, 55, 61<br />

Adjuvant, 53<br />

Adsorpti<strong>on</strong> of herbicide, 51<br />

Aeschynomene aspera, 98<br />

Aeschynomene virg<strong>in</strong>ica, 66, 80<br />

Africa, 42, 78, 83, 87, 91, 92, 95, 100, 101, 102<br />

Ageratum c<strong>on</strong>yzoides L., 3, 27, 66, 91<br />

Aizoaceae, 25<br />

Alachlor, 101<br />

Allelopathy, 2<br />

Alternanthera sessilis, 66<br />

Aman, 83<br />

Amaranthaceae, 26<br />

Amaranthus sp<strong>in</strong>osus L., 26, 66, 91<br />

Amaranthus spp., 3,4<br />

Ammania cocc<strong>in</strong>ea, 66<br />

Angola, 28, 31<br />

Anilides, 65<br />

Annual weeds, 1, 65<br />

herbicide effects <strong>on</strong>, 50<br />

life cycles, 5<br />

Antidotes, 49, 78, 86, 88<br />

Aphelenchoides oryzae, 2<br />

Applicators for herbicides<br />

hydraulic, 56<br />

granular, 56<br />

n<strong>on</strong>pressurized, 55-56<br />

pressurized, 55-56<br />

Aquatic weeds, 2<br />

dra<strong>in</strong>age effect <strong>on</strong>, 44<br />

Argent<strong>in</strong>a, 9, 26, 29, 31, 33, 35<br />

Aryl acylamidase, 50, 67<br />

Asia, 18, 42, 73, 76, 80, 83, 87, 92, 99, 100, 102<br />

Asteraceae, 9, 27<br />

Atraz<strong>in</strong>e, 101<br />

Australia, 10, 20, 22, 25, 26, 27, 42, 73, 78, 80, 102<br />

Azolla, 45<br />

B<br />

Bacterial leaf blight, 2<br />

Bangladesh, 9, 11, 12, 16, 19, 20, 23, 26, 28, 29, 30,<br />

38, 76, 83, 85, 87, 95, 101<br />

Bensulfur<strong>on</strong>, 66, 67, 70, 71, 72, 73, 75, 78, 84, 85, 99<br />

Bentaz<strong>on</strong>, 51, 65, 66, 67, 68, 69, 71, 75, 77, 78, 79, 80,<br />

81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97, 99,<br />

101,102<br />

Bhutan, 83<br />

Bidens pilosa, 66<br />

Bifenox, 66, 67, 68, 69, 75, 78, 86, 93, 94, 97<br />

Biological c<strong>on</strong>trol, 45<br />

Brachiara mutica, 66<br />

Brachiara spp., 3<br />

Brazil, 11, 12, 15, 16, 19, 20, 26, 27, 29, 30, 31, 32, 34,<br />

37, 38, 91, 92, 101<br />

Broadcast seeded rice, 73, 83<br />

hand weed<strong>in</strong>g <strong>in</strong>, 77,<br />

optimum seed<strong>in</strong>g rate, 43<br />

110 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

yield less due to weeds, 1<br />

Brown spot, 2<br />

Bul<strong>in</strong>us spp., 2<br />

Burn<strong>in</strong>g, 44<br />

Butachlor, 49, 55, 59, 62, 65, 66, 67, 69, 71, 72, 73,<br />

75, 77, 78, 79, 80, 84, 85, 86, 87, 88, 89, 93, 94, 96,<br />

97,100<br />

Butanex, 55<br />

Butral<strong>in</strong>, 66, 67, 68, 77, 78, 79, 80, 86, 87, 88, 89, 93,<br />

94, 96, 97<br />

Bypiridiliums, 68<br />

C<br />

C3 plants, 3<br />

drought tolerance, 4<br />

C4 plants, 3<br />

drought tolerance, 4<br />

Cambodia, 11, 12, 23, 25, 26, 29, 31, 34, 35, 37, 38,<br />

39, 95<br />

Camero<strong>on</strong>, 35<br />

Carbamate, 50<br />

Carboxylic esters, 52<br />

Carp, 62, 67, 70, 71<br />

Catfish, 68, 71<br />

Ceratophyllum demersum, 2<br />

Chamysyce hirta (L.) Millsp., 30<br />

Chile, 31<br />

Ch<strong>in</strong>a, 18,100<br />

Chlomethoxynil, 66, 67, 71<br />

Chlometoxyfen, see Chlomethoxynil<br />

C<strong>in</strong>methyl<strong>in</strong>, 66, 67, 71<br />

Cochliobolus miyabeanus, 2<br />

Colombia, 19, 21, 27, 32, 101<br />

Commel<strong>in</strong>aceae, 7, 28<br />

Commel<strong>in</strong>a benghalensis, 4, 5, 8, 28, 66<br />

Competiti<strong>on</strong><br />

between rice and weeds, 3-4<br />

critical period, 4<br />

Compositae, 9<br />

C<strong>on</strong>tact herbicides, 49<br />

water requirement, 59<br />

C<strong>on</strong>tent of herbicides, 55<br />

C<strong>on</strong>t<strong>in</strong>uous rice, 1<br />

C<strong>on</strong>trolled-droplet applicator, 55, 56-57, 59<br />

C<strong>on</strong>volvulaceae, 39<br />

Crop rotati<strong>on</strong>, 1, 42<br />

Cultivar, 76, 79, 84, 86, 88, 91, 96<br />

Cultural practices, 2<br />

Cynod<strong>on</strong> dactyl<strong>on</strong> (L.) Pers., 3, 5, 31, 41, 66<br />

Cyperaceae, 7, 10-13, 29<br />

Cyperus difformis L., 3, 10, 66, 73, 83, 85, 87<br />

Cyperus esculentus, 66<br />

Cyperus iria L., 2, 11, 66, 73, 83, 85<br />

Cyperus rotundus L., 3, 5, 7, 29, 66, 102<br />

2,4-D, 49, 51, 60, 63, 66, 67, 69, 75, 77, 78, 80, 81, 82,<br />

84, 85, 86, 87, 88, 89, 93, 94, 97, 99, 102<br />

D<br />

Dactyloctenium aegyptium, 66<br />

Deepwater rice, 96<br />

cultivar, 96<br />

fertilizer, 96<br />

hand weed<strong>in</strong>g, 97, 98<br />

herbicides, 97, 98<br />

land preparati<strong>on</strong>, 96<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant<strong>in</strong>g method, 96<br />

plant populati<strong>on</strong>, 96<br />

weed c<strong>on</strong>trol <strong>in</strong>, 95-98<br />

weed problems, 95<br />

Density of plant<strong>in</strong>g, 43<br />

Detoxificati<strong>on</strong>, 50<br />

Dicotyled<strong>on</strong>s, 8<br />

Diffusi<strong>on</strong> of herbicides, 50<br />

Digitaria adscendens, 2<br />

Digitaria sangu<strong>in</strong>alis (L.) Scop., 2, 32, 66<br />

Digitaria spp., 3<br />

Dimethametryn, 66, 67, 70, 75, 78, 79, 84, 85, 86,<br />

93, 95, 96, 97<br />

D<strong>in</strong>itroanil<strong>in</strong>es, 68<br />

Diphenyl ethers, 68<br />

Direct seeded rice<br />

herbicide relativity <strong>in</strong>, 50<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

<strong>on</strong> dry soil, for weed c<strong>on</strong>trol, 78-79, 88<br />

cultivar, 79, 88<br />

fertilizer, 88<br />

hand weed<strong>in</strong>g, 77, 79, 88<br />

herbicides, 79, 88<br />

herbicide use, 77, 88<br />

land preparati<strong>on</strong>, 78, 88<br />

plant<strong>in</strong>g method, 79, 88<br />

water management, 79, 88<br />

weed problems, 78, 87<br />

<strong>on</strong> puddled soil, for weed c<strong>on</strong>trol, 76, 85-86<br />

cultivar, 76, 86<br />

fertilizer, 76, 86<br />

hand weed<strong>in</strong>g, 77, 87<br />

herbicides, 77, 87<br />

herbicide use, 77, 78, 86<br />

land preparati<strong>on</strong>, 76, 86<br />

plant<strong>in</strong>g method, 76, 86<br />

plant populati<strong>on</strong>, 76, 86<br />

water management, 76, 86<br />

weed problems, 76, 85<br />

yield loss due to weeds, 1<br />

Diseases, 2<br />

Dom<strong>in</strong>ican Republic, 19<br />

Drill seeded rice, 73, 83<br />

deep drill<strong>in</strong>g seeds, 43<br />

hand weed<strong>in</strong>g <strong>in</strong>, 77<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

residual herbicide applicati<strong>on</strong> <strong>in</strong>, 51<br />

yield loss due to weeds, 1<br />

Drought, stress symptoms, 3<br />

effects <strong>on</strong> crop growth, 4, 42<br />

effects <strong>on</strong> herbicide activity, 50<br />

E<br />

Ech<strong>in</strong>ochloa col<strong>on</strong>a (L.) L<strong>in</strong>k, 2, 4, 8, 33, 66, 100<br />

Ech<strong>in</strong>ochloa crus-galli (L.) Beauv., 2, 8, 16, 49, 50,<br />

66, 73, 80, 81, 85, 87, 100<br />

Ech<strong>in</strong>ochloa crus-galli ssp. crus-galli var. crus-galli,<br />

16


Ech<strong>in</strong>ochloa crus-galli ssp. crus-galli var. praticola,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli ssp. hispidula var. austrojap<strong>on</strong>ensis,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli ssp. hispidula var. hispidula,<br />

16<br />

Ech<strong>in</strong>ochloa crus-galli P.B. var. kasaharae Ohwi, 8<br />

Ech<strong>in</strong>ochloa glabrescens Munro ex Hook.f., 18, 66,<br />

100<br />

Ech<strong>in</strong>ochloa oryzoides (Ard) Fritsch, 5<br />

Ech<strong>in</strong>ochloa phyllopog<strong>on</strong>, 5<br />

Ech<strong>in</strong>ochloa pyramidalis, 95, 100<br />

Ech<strong>in</strong>ochloa spp., 3, 83, 85, 100<br />

Ech<strong>in</strong>ochloa stagn<strong>in</strong>a, 95, 98<br />

Eclipta alba (L.) Hassk., 9, 66<br />

Eclipta erecta L., 9<br />

Eclipta prostrata (L.), 9<br />

Egypt, 33, 73<br />

Eichhornia crassipes (Mart.) Solms, 3, 8, 66, 38, 98<br />

Eleocharis acicularis, 66<br />

Eleus<strong>in</strong>e <strong>in</strong>dica (L.) Gaertn., 3, 4, 34, 66<br />

El Salvador, 21, 26<br />

Emulsifiable c<strong>on</strong>centrate, 53<br />

Emulsifier, 53<br />

Endothal, 81, 82<br />

Euphorbiaceae, 30<br />

Euphorbia hirta, 30, 66<br />

Euphorbia pilulifera L., 30<br />

Europe, 42, 73, 78, 80, 99<br />

Evaporati<strong>on</strong>, of herbicide, 52<br />

F<br />

Fenclorim, 49, 73<br />

Fenoxaprop, 66, 67, 71, 99<br />

Fertilizati<strong>on</strong>, 43<br />

Fertilizer, 74, 76, 82, 84, 86, 88, 91, 96<br />

Fiji, 19, 35<br />

Fimbristylis littoralis Gaud., 12<br />

Fimbristylis miliacea (L.) Vahl, 2, 12, 66, 83, 85, 87<br />

Float<strong>in</strong>g rice, weed c<strong>on</strong>trol <strong>in</strong>, 95-98<br />

Also see Deepwater rice<br />

Flowables, 53<br />

Flourodifen, 66, 67, 69, 93, 94, 96, 97<br />

Formulati<strong>on</strong> of herbicides, 47, 53, 55<br />

France, 9, 10, 13, 14, 16, 25, 26, 27, 29, 30, 31, 32, 33,<br />

34, 35, 36, 37, 38<br />

G<br />

Ghana, 25, 26, 27, 28, 29, 30, 35, 36, 37<br />

Glufos<strong>in</strong>ate, 103<br />

Glyphosate 49, 50, 66, 67, 69, 97, 101, 102, 103<br />

Gogorantja, 87<br />

Goldfish, 70<br />

Granular herbicide, 53<br />

applicati<strong>on</strong>, 62<br />

applicators, 55, 56<br />

Growth stages,<br />

effect <strong>on</strong> herbicide selectivity, 50<br />

for herbicide applicati<strong>on</strong>, 50, 65, 77, 80, 81, 85,<br />

87, 89, 93, 97<br />

Guyana, 101<br />

H<br />

Hand pull<strong>in</strong>g, see Hand weed<strong>in</strong>g<br />

Hand weed<strong>in</strong>g, 2, 44, 82,<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 97, 98<br />

<strong>in</strong> direct seeded rice, 77, 79, 87, 88<br />

<strong>in</strong> drill seeded rice, 77<br />

<strong>in</strong> transplanted rice, 75, 84,<br />

<strong>in</strong> upland rice, 93<br />

<strong>in</strong> water seeded rice, 82<br />

labor for, 45<br />

Harvest<strong>in</strong>g, effects of weeds, 2<br />

statements <strong>in</strong> labels, 55<br />

Hazards of herbicide use, 62<br />

as <strong>in</strong>dicated <strong>in</strong> labels, 55<br />

Herbicide, 45, 49-63, 65-71, 75, 84<br />

absorpti<strong>on</strong>, 50, 52, 62, 63<br />

adsorpti<strong>on</strong>, 51<br />

antidote for, 49, 78, 86, 88<br />

applicati<strong>on</strong> tim<strong>in</strong>g, 50<br />

applicators, 55, 56, 57<br />

behavior <strong>in</strong> soil, 51<br />

brand names, 54<br />

calibrati<strong>on</strong>, 62<br />

chemical names, 54-55<br />

classificati<strong>on</strong>, 65-72<br />

c<strong>on</strong>tact, 49, 58, 59<br />

c<strong>on</strong>ta<strong>in</strong>er disposal, 63<br />

dosage, 49, 55, 59-61<br />

evaporati<strong>on</strong> of, 52<br />

for deepwater and float<strong>in</strong>g rice, 97, 98<br />

for direct seeded rice, 77, 79, 87, 88<br />

for transplanted rice, 75, 84<br />

for upland rice, 94<br />

for water seeded rice, 82<br />

granular, 62<br />

leach<strong>in</strong>g, 51<br />

lethal dose (LD50), 62<br />

loss, 51-52<br />

manufacturer of, 55<br />

mix<strong>in</strong>g, 59, 61, 62<br />

mixtures, 65<br />

n<strong>on</strong>selective, 49, 50, 51<br />

persistence, 52<br />

photodegradati<strong>on</strong>, 52<br />

properties, 52-54<br />

residual, 51, 52, 58<br />

rotati<strong>on</strong>s, 65<br />

runoff, 52<br />

safe handl<strong>in</strong>g of, 62<br />

selecti<strong>on</strong> of, 61<br />

selective, 49, 50, 51<br />

spray<strong>in</strong>g, 61<br />

storage, 63<br />

systemic, 49, 50, 51, 58<br />

tolerance, 72<br />

trade or brand name, 54-55<br />

translocated, 49, 58<br />

uptake, 50<br />

volatilizati<strong>on</strong>, 52<br />

weeds c<strong>on</strong>trolled, 66<br />

Herbicide activity<br />

depth of, 52<br />

effects of relative humidity, 52<br />

soil factors, 51-52<br />

soil moisture, 52<br />

temperature, 52<br />

w<strong>in</strong>d, 52<br />

<strong>in</strong> plants and soil, 50<br />

Herbicide drift, 63<br />

Herbicide formulati<strong>on</strong>, 49, 53, 55<br />

Herbicide label, 54-55<br />

Herbicide selectivity, 49-50, 51<br />

physical factors, 49<br />

biological factors, 50<br />

loss of, 54<br />

postemergence, 51<br />

Herbicide toxicity, 55, 62<br />

Herbicide use,<br />

advantages, 45<br />

directi<strong>on</strong>s, 54, 55<br />

disadvantages, 45<br />

field techniques, 60-62<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 96<br />

<strong>in</strong> direct seeded rice, 77, 78, 86, 88<br />

<strong>in</strong> transplanted rice, 75, 84<br />

<strong>in</strong> upland rice, 94<br />

<strong>in</strong> water seeded rice, 82<br />

pr<strong>in</strong>ciples of, 49-63<br />

protective cloth<strong>in</strong>g, 62<br />

safety, 62<br />

Humic acids, 52<br />

Hydraulic applicator, 55-56<br />

I<br />

Imazapyr, 103<br />

Imperata cyl<strong>in</strong>drica (L.)Raeuschel, 3, 5, 35, 39, 41,<br />

66, 91, 102<br />

India, 9, 11, 16, 19, 23, 25, 27, 28, 29, 30, 31, 33, 34,<br />

35, 37, 38, 39, 76, 80, 83, 84, 95, 101<br />

Indica rices, 70, 72<br />

Ind<strong>on</strong>esia, 9, 11, 12, 16, 19, 20, 21, 22, 23, 24, 26, 27,<br />

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 83, 87, 95,<br />

101<br />

Insects, 2<br />

Isoleuc<strong>in</strong>e, 70<br />

Integrated crop management, 47<br />

Integrated pest management, 46<br />

Integrated weed management, 44, 46-47<br />

ec<strong>on</strong>omics, 47<br />

of C. rotundus, 102<br />

of I. cyl<strong>in</strong>drica, 102<br />

of P. distichum, 100<br />

of R. cochich<strong>in</strong>ensis, 103<br />

of S. maritimus, 99<br />

of wild rices, 101<br />

Internati<strong>on</strong>al Standardizati<strong>on</strong> Organizati<strong>on</strong> (ISO),<br />

54-55<br />

Internati<strong>on</strong>al Uni<strong>on</strong> of Pure and Applied<br />

Chemistry (IUPAC), 54<br />

Ipomoea aquatica Forssk., 66, 95, 97<br />

Ipomoea reptans (L.) Poir., 39<br />

Ipomoea spp., 3<br />

Iraq, 33<br />

Irrigated rice,<br />

best N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

classificati<strong>on</strong>, 73<br />

yield loss due to weeds, 1<br />

herbicide behavior <strong>in</strong> soil, 51<br />

weed c<strong>on</strong>trol <strong>in</strong>, 73-82<br />

Irrigati<strong>on</strong>, dra<strong>in</strong>age and overflow, 52<br />

herbicide effectiveness, 51, 52<br />

Ir<strong>on</strong>, 92<br />

Ischaemum rugosum Salisb., 2, 19, 44, 66<br />

Ivory Coast, 35<br />

J<br />

Japan, 9, 10, 11, 12, 14, 18, 21, 22, 100<br />

Jap<strong>on</strong>ica rices, 52, 70, 72<br />

Jussiaea suffruticosa L., 15<br />

K<br />

Kenya, 35<br />

Kharif, 83<br />

Knapsack sprayer, 55, 56-57<br />

Korea, 10, 11, 12, 16, 18, 23<br />

L<br />

Labels for herbicide, 59, 60<br />

Lambast, 55<br />

Land preparati<strong>on</strong>, 73<br />

mechanical, 73<br />

to c<strong>on</strong>trol weeds, 41<br />

<strong>in</strong> direct seeded rice, 76, 78, 86, 88<br />

<strong>in</strong> transplanted rice, 73, 84<br />

<strong>in</strong> water seeded rice, 81<br />

<strong>in</strong> upland rice, 91<br />

Index 111


<strong>in</strong> deepwater and float<strong>in</strong>g rice, 96<br />

<strong>in</strong> dryland, 42<br />

<strong>in</strong> wetland, 42<br />

limited, 42<br />

Lat<strong>in</strong> America, 42, 83, 91, 92, 102<br />

Leach<strong>in</strong>g of herbicides, 51, 53<br />

Leersia hexandra Sw., 2, 20, 66<br />

Leptochloa ch<strong>in</strong>ensis (L.)Nees., 3, 21, 66, 87<br />

Leptochlou spp., 2, 80<br />

Light,<br />

for rice growth, 3<br />

rice-weed competiti<strong>on</strong>, 3<br />

penetrati<strong>on</strong>, 43<br />

Lodg<strong>in</strong>g,<br />

Lowland rice weeds, 9-24, 42<br />

Ludwigia octovalvis (Jacq.) Raven, 15, 66<br />

M<br />

Machete, 55, 59, 62<br />

Madagascar, 35<br />

Malaysia, 9, 10, 12, 14, 15, 16, 19, 20, 22, 23, 24, 27,<br />

29, 30, 33, 34, 37, 38, 80, 91, 101<br />

Mali, 95<br />

Manufacturer of herbicides, 55<br />

Marsileaceae, 14<br />

Marsilea crenata Presl., 14<br />

Marsilea m<strong>in</strong>uta L., 14, 66<br />

Mauritius, 28, 31, 35, 37<br />

MCPA, 50, 63, 66, 67, 69, 71, 72, 75, 77, 78, 80, 81,<br />

82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97<br />

Mechanical transplanters,<br />

Mechanical weed<strong>in</strong>g, 44<br />

Meloidogyne, 2<br />

Metolachlor, 101<br />

Metribuz<strong>in</strong>e, 101<br />

Mexico, 9, 25, 26, 29, 30, 34, 37<br />

Mimics of rice, 5,44<br />

M<strong>in</strong>imum tillage,<br />

Mol<strong>in</strong>ate, 66, 67, 68, 70, 71, 75, 78, 79, 80, 81, 82, 84,<br />

100,101<br />

M<strong>on</strong>ochoria vag<strong>in</strong>alis (Burm.f.)Presl, 2, 3, 23, 66,<br />

73,83,85,95<br />

M<strong>on</strong>ocotyled<strong>on</strong>s, 7<br />

Myanmar, 9, 12, 19, 20, 26, 28, 30, 32, 34, 37, 38, 83,<br />

95<br />

N<br />

Nematodes, 2<br />

Nicaragua, 32<br />

Niger,<br />

Nigeria, 10, 25, 26, 27, 30, 34, 35, 37, 95<br />

Nilapurvata lugens, 2<br />

Nitrogen, 3, 4, 74, 76, 84, 86, 88<br />

recommended tim<strong>in</strong>g of applicati<strong>on</strong>, 43<br />

N<strong>on</strong>tilled rice fields, 92<br />

effect <strong>on</strong> weed flora, 1<br />

Nozzles, 56, 57, 58, 61, 63<br />

Nurseries, 84<br />

Nutrient uptake, 3, 4, 43, 44<br />

Nymphae stellata, 66<br />

Nymphula depunctalis, 2<br />

O<br />

Onagraceae, 15<br />

Organophosphorus compounds, 69<br />

<strong>in</strong>secticides, 50<br />

Oryza barthii A.Chev., 1, 2, 67, 95, 98, 101<br />

Oryza glaberrima, 1, 101<br />

Oryza l<strong>on</strong>gistam<strong>in</strong>ata A.Chev. & Roehr., 1, 2, 41,<br />

67,95,97,98,101<br />

Oryza nivara Sharma & Shastry, 1, 101<br />

Oryza offic<strong>in</strong>alis Wall. ex Watt., 101<br />

Oryza punctata Kotschy ex Steud., 101<br />

112 <strong>Weed</strong> c<strong>on</strong>trol handbook<br />

Oryza rufipog<strong>on</strong> Griff., 1,101<br />

Oryza sativa L., 1,101<br />

Oxadiaz<strong>on</strong>, 66, 67, 71, 75, 77, 78, 79, 80, 84, 85, 86,<br />

87, 88, 89, 93, 94, 96, 97, 100<br />

Oxisols, 92<br />

Oxyflourfen, 49, 66, 67, 69, 75, 77, 78, 84, 85, 86, 87,<br />

88, 89, 93, 94, 97, 100<br />

P<br />

Pacific Islands, 102<br />

Pakistan, 9, 11, 24, 29, 31, 37, 73<br />

Paraquat, 49, 50, 62, 66, 67, 68<br />

Partiti<strong>on</strong> coefficient, 53<br />

Paspalum paspalodes (Michx)Scribn., 22<br />

Paspalum distichum L., 2, 7, 22, 41, 66, 67, 100<br />

Pendimethal<strong>in</strong>, 66, 67, 68, 72, 73, 75, 78, 79, 80, 84,<br />

85, 86, 88, 89, 93, 94, 97, 100, 101, 103<br />

Perennial weeds, 1<br />

effect of herbicide, 50<br />

reproducti<strong>on</strong>, 5<br />

under limited tillage, 42<br />

Persistence of herbicide, 52<br />

Peru, 9, 13, 16, 19, 32, 39, 91<br />

Pest,<br />

Phenoxy acetic acids, 69,72<br />

Philipp<strong>in</strong>es, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20,<br />

21, 22, 23, 24, 25, 26, 27<br />

28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 43, 83, 85,<br />

91,92<br />

Phloem, 50<br />

Phosphoms, 3, 4, 43-44, 92<br />

Photodegradatio of herbicide, 52<br />

Photosynthesis, 3<br />

C 3 pathway, 3,4<br />

C 4 pathway, 3,4<br />

Physalis angulata, 66, 67<br />

Phytotoxicity, 52, 68<br />

Pictograms, 55<br />

Piperophos, 66, 67, 69, 71, 72, 75, 78, 79, 84, 85, 86,<br />

93, 94, 96, 97, 98<br />

Pistia stratiotes, 95<br />

Placement of herbicide, 49<br />

Plant height, advantages of, 4, 42<br />

Plant<strong>in</strong>g method, 42, 74, 76, 79, 86, 88, 91, 96<br />

Plant populati<strong>on</strong>, 74, 76, 81, 84, 86, 91, 96<br />

Poaceae, 16-22, 31-36<br />

Pois<strong>on</strong><strong>in</strong>g, 63<br />

Polycyclic alkanoic acids, 71<br />

P<strong>on</strong>tederiaceae, 7, 23, 38<br />

Portulacaceae, 37<br />

Portulaca oleracea L., 37, 66, 67,91<br />

Postemergence herbicides, 51, 65<br />

Potamoget<strong>on</strong>aceae, 7<br />

Potassium, 3, 4, 43, 92<br />

Preemergence herbicides, 51, 65, 76<br />

Preplant<strong>in</strong>g herbicides, 50<br />

Pressure chamber, 57<br />

Pretilachlor, 49, 50, 66, 67, 73, 78, 85, 86, 88, 100<br />

Preventi<strong>on</strong> of weed <strong>in</strong>troducti<strong>on</strong>, 41<br />

Propanil, 49, 51, 52, 66, 67, 68, 69, 71, 72, 73, 75, 77,<br />

78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 97,<br />

96, 99, 100<br />

Propaz<strong>in</strong>e, 101<br />

Protective cloth<strong>in</strong>g, 62-63<br />

Q<br />

Quality,<br />

Qu<strong>in</strong>clorac, 66, 67, 72, 73, 75, 78, 84, 86, 88, l00c<br />

R<br />

Radiati<strong>on</strong> from ultraviolet, 52<br />

Ra<strong>in</strong>fed rice<br />

N applicati<strong>on</strong> tim<strong>in</strong>g,<br />

classificati<strong>on</strong>, 83<br />

distributi<strong>on</strong>, 87<br />

time of seed<strong>in</strong>g, 42<br />

yield loss due to weeds, 1<br />

weed c<strong>on</strong>trol <strong>in</strong>, 83-89<br />

Ra<strong>in</strong>bow trout, 67, 68, 69, 71<br />

Rats, 68, 69, 70,71<br />

Red rice, 2,80,101<br />

Residual herbicide, 52<br />

nozzle type for, 61,58<br />

<strong>Rice</strong><br />

diseases, 2<br />

drought tolerance, 4<br />

growth requirements, 3<br />

herbicide tolerance, 72<br />

modern varieties, 42<br />

mutati<strong>on</strong>, 3<br />

susceptibility to herbicide, 50, 72<br />

similarities with weeds, 4, 5<br />

traditi<strong>on</strong>al varieties, 42<br />

wild species of, 2<br />

<strong>Rice</strong> culture classificati<strong>on</strong>, 7<br />

effect <strong>on</strong> weed flora, 1<br />

<strong>Rice</strong> dwarf, 2<br />

<strong>Rice</strong> grassy stunt virus, 2<br />

<strong>Rice</strong> maja blanca, 2<br />

<strong>Rice</strong> mimics, 5,44<br />

<strong>Rice</strong> producti<strong>on</strong> cost, 1<br />

<strong>Rice</strong> stripe, 2<br />

<strong>Rice</strong> tungro virus, 2<br />

<strong>Rice</strong>-weed competiti<strong>on</strong>, 2<br />

critical periods, 4<br />

factors, 3-3<br />

<strong>in</strong> direct seeded flooded rice, 77<br />

factors, 3-4<br />

<strong>Rice</strong> yellow dwarf, 2<br />

Rottboellia exaltata L.f., 36<br />

Rottboellia coch<strong>in</strong>ch<strong>in</strong>ensis (Lour.)W.D. Clayt<strong>on</strong>,<br />

3,4,36,66,67,91,103<br />

Runoff of herbicide, 52<br />

S<br />

Safety,<br />

Samoa, 28<br />

Scirpus maritimus L., 13, 66, 67, 71, 73, 83, 87, 99<br />

Scirpus spp., 85, 95<br />

Seed, dispersal, 4-5<br />

dormancy, 5<br />

growth, 3<br />

l<strong>on</strong>gevity,<br />

producti<strong>on</strong>, 4-5<br />

Seed<strong>in</strong>g, methods for rice, 7<br />

rate, 79<br />

tim<strong>in</strong>g, 42<br />

Selectivity of herbicide, 49-50, 51, 54<br />

Senegal, 29<br />

Sequential applicati<strong>on</strong>, 65<br />

Sesbania aculeata, 84, 98<br />

Sesbania exaltata, 80<br />

Sesbania sp., 95<br />

Setaria glauca, 66, 67<br />

Setaria viridis, 2<br />

Shad<strong>in</strong>g, 3<br />

effect <strong>on</strong> rice growth, 4<br />

Sierra Le<strong>on</strong>e, 10<br />

Signal words, 55<br />

Simetryn, 52, 70, 100<br />

Slash and burn, 91<br />

Soil, effect <strong>on</strong> C 3 -C 4 competiti<strong>on</strong>, 3<br />

herbicide activity,<br />

moisture, 51, 52<br />

pH,<br />

residual herbicide activity,


Sorghum bicolor, 3<br />

South America, 87<br />

Spac<strong>in</strong>g, dense plant<strong>in</strong>g, 74, 76<br />

optimum for rice plants, 43<br />

Spa<strong>in</strong>, 36<br />

Sphenocleaceae, 24<br />

Sphenoclea zeylanica Gaertn., 83, 85, 24, 66, 67<br />

Sprayer,<br />

Birky, 56<br />

calibrati<strong>on</strong> of, 58<br />

care of, 61<br />

leaks, 62<br />

nozzles, 63<br />

pressure, 58<br />

Spray<strong>in</strong>g, 61, 84<br />

Stale seedbed, 79, 88, 92<br />

Sri Lanka, 9, 16, 19, 27, 29, 33, 34, 76, 80, 85<br />

Sudan, 9, 31, 33<br />

Sugarcane, 2<br />

Sulf<strong>on</strong>ylureas, 70<br />

Sulfur, 92<br />

Sur<strong>in</strong>am, 20, 101<br />

Symbols, 55<br />

Systemic herbicides, 49, 50, 51<br />

nozzle type for, 58<br />

T<br />

Tadpole shimp,<br />

Tank-mix, 65<br />

Tanzania, 35<br />

Temperature<br />

45<br />

effect <strong>on</strong> herbicide activity, 50<br />

effect of vapor pressure, 53<br />

Thailand, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 23, 24,<br />

25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 80, 83,<br />

95, 101,<br />

Thiobencarb, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78,<br />

79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 93, 94, 96, 97,<br />

98, 100, 101<br />

Thiocarbamates,<br />

Tillage, 41<br />

dryland, 42<br />

52, 53, 70<br />

effect <strong>on</strong> weed flora, 41<br />

limited, 42<br />

wetland, 42<br />

Tim<strong>in</strong>g,<br />

of herbicide applicati<strong>on</strong>,<br />

82, 85, 87, 89, 93, 97<br />

of rice seed<strong>in</strong>g, 42<br />

50, 77, 78, 79, 80, 81,<br />

Toxicity of herbicide, 55, 62, 67-72<br />

Translocated herbicides,<br />

nozzle type for, 58<br />

49, 50, 52<br />

Transplanted rice, 73, 83<br />

applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

cultivar, 84<br />

fertilizer, 74, 84<br />

handweed<strong>in</strong>g, 75, 84<br />

herbicides, 75,84<br />

herbicide selectivity <strong>in</strong>, 50<br />

herbicide use, 75, 84<br />

land preparati<strong>on</strong>,<br />

nurseries, 84<br />

73, 84<br />

plant<strong>in</strong>g methods, 74<br />

plant populati<strong>on</strong>, 74, 84<br />

stand establishment, 73<br />

water management <strong>in</strong>, 74, 84<br />

weed problems, 73, 83<br />

Transplant<strong>in</strong>g, manual optimum spray<strong>in</strong>g, 43<br />

yield loss due to weeds, 1<br />

Trianthema m<strong>on</strong>ogyna L., 25<br />

Trianthema portulacastrum,<br />

Triaz<strong>in</strong>es, 50, 70<br />

4, 25, 66, 67, 91<br />

Triopus cancriformis, 4.5<br />

Triopus granaris, 45<br />

Triopus l<strong>on</strong>gicaudatus, 45<br />

U<br />

Uganda, 34<br />

Ultisols, 92<br />

Upland rice,<br />

C4 weeds, 91<br />

cultivar, 91<br />

fertilizer, 91<br />

handweed<strong>in</strong>g, 42, 93<br />

herbicide behavior <strong>in</strong> soil, 51<br />

herbicide use, 94<br />

land preparati<strong>on</strong>, 91<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant populati<strong>on</strong>, 91<br />

plant<strong>in</strong>g methods, 91<br />

weed competit<strong>on</strong>, 91<br />

weed c<strong>on</strong>trol <strong>in</strong>, 91-94<br />

weeds <strong>in</strong>, 25-37, 42<br />

weed problems, 91<br />

USA, 9, 10, 11, 12, 14, 15, 16, 19, 20, 21, 22, 23, 24,<br />

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39,<br />

42, 73, 78, 80, 99, 101<br />

USSR, 80<br />

V<br />

Val<strong>in</strong>e, 70<br />

Vapor pressure, 53<br />

effect of temperature, 53<br />

Variety,<br />

tolerance to herbicide, 72<br />

herbicide susceptibility,<br />

modern rice, 42<br />

selecti<strong>on</strong> for weed c<strong>on</strong>trol, 42<br />

traditi<strong>on</strong>al rice, 42<br />

Venezuela, 20, 32, 101<br />

Verbes<strong>in</strong>a alba, 9<br />

Verbes<strong>in</strong>a prostrata L., 9<br />

Vietnam, 9, 20, 21, 23, 24, 30, 31, 37, 38, 83, 95<br />

Virus <strong>in</strong> rice, 2<br />

Volatilizati<strong>on</strong> of herbicide, 52<br />

W<br />

Walk<strong>in</strong>g speed, 58, 59, 61<br />

Water<br />

depth effects <strong>on</strong> rice type, 84<br />

factor <strong>in</strong> rice-weed comp., 4<br />

for mix<strong>in</strong>g herbicides, 59, 61<br />

for rice growth, 3<br />

<strong>in</strong>creas<strong>in</strong>g depth, 44, 95<br />

Water management, 1, 44, 74, 76, 79, 81, 84, 86, 88<br />

Water seeded rice, 73, 80<br />

fertilizer, 82<br />

hand weed<strong>in</strong>g, 82<br />

herbicides, 82<br />

herbicide use, 82<br />

land preparati<strong>on</strong>, 81<br />

N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

plant populati<strong>on</strong>, 81<br />

water management, 81<br />

weed problems, 80<br />

yield loss due to weeds, 1<br />

Water solubility, 53, 67-72<br />

Water soluble c<strong>on</strong>centrate, 53<br />

Water uptake, 4<br />

<strong>Weed</strong>ers, 45, 74, 75, 88<br />

<strong>Weed</strong><strong>in</strong>g,<br />

by mach<strong>in</strong>e, 44, 45<br />

hand tools for, 44<br />

labor requirements, 44<br />

mechanical <strong>in</strong>terr<strong>on</strong>, 79<br />

<strong>Weed</strong>s,<br />

annual, 1, 5<br />

as alternate host, 2<br />

as ancestors of cultivated rice, 1<br />

aquatic, 2<br />

C 3 , 3, 44<br />

C 4 , 3<br />

characteristics, 4<br />

competitiveness, 4<br />

computer codes, 8<br />

def<strong>in</strong>iti<strong>on</strong>, 1<br />

dispersal, 4-5<br />

drought tolerance, 4<br />

effects, 1<br />

<strong>on</strong> gra<strong>in</strong> quality, 2<br />

<strong>on</strong> gra<strong>in</strong> yield, 1, 3-4<br />

<strong>on</strong> harvest<strong>in</strong>g, 2<br />

growth, 4<br />

habitat, 8<br />

<strong>in</strong> deep water rice, 95, 38-39<br />

<strong>in</strong> lowland rice, 9-24, 42<br />

<strong>in</strong> upland rice, 25-37<br />

life cycles, 7<br />

morphology, 7<br />

orig<strong>in</strong>, 1<br />

perennial, 1, 5, 16<br />

reproducti<strong>on</strong>, 4-5<br />

seeds, 4-5<br />

similarities with rice, 4, 5<br />

<strong>Weed</strong>-rice competiti<strong>on</strong><br />

critical periods, 4<br />

factors, 3-4<br />

<strong>in</strong> upland rice, 91<br />

<strong>Weed</strong> c<strong>on</strong>trol, 41-47<br />

biological methods, 45<br />

chemical methods, 45<br />

cultivar methods, 41, 46<br />

direct methods, 46-47<br />

ec<strong>on</strong>omics of, 1, 46<br />

<strong>in</strong> deepwater and float<strong>in</strong>g rice, 95-98<br />

<strong>in</strong>direct methods, 46-47<br />

<strong>in</strong> irrigated rice, 73-82<br />

<strong>in</strong> ra<strong>in</strong>fed lowland rice, 83-89<br />

<strong>in</strong> upland rice, 91-94<br />

manual methods, 44<br />

nursery,<br />

plann<strong>in</strong>g for, 41<br />

social aspect, 2<br />

<strong>Weed</strong> populati<strong>on</strong>, 1<br />

<strong>Weed</strong> problems, 73, 76, 78, 80, 83, 85, 87, 80, 91, 95<br />

West lndies, 101<br />

Wet seeded rice, N applicati<strong>on</strong> tim<strong>in</strong>g, 43<br />

Wettable powder, 53<br />

mix<strong>in</strong>g, 61<br />

White tip, 2<br />

Wild rices, 1, 5, 101<br />

X<br />

Xanthom<strong>on</strong>as campestris pv. oryzae, 2<br />

Xylem, 50<br />

Y<br />

Yield loss, due to weeds, 1<br />

Z<br />

Zambia, 27, 28, 31, 33, 34, 36, 37,<br />

Zimbabwe, 26, 34, 35, 36<br />

Z<strong>in</strong>c, 43, 92<br />

Index 113

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!