10.01.2013 Views

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(a)<br />

(b)<br />

110<br />

110<br />

l<strong>at</strong>ed with the depth scale of the analysis, and the total<br />

depth of this analysis is estim<strong>at</strong>ed to be approxim<strong>at</strong>ely<br />

60 nm. This d<strong>at</strong>a shows th<strong>at</strong> the martensite <strong>in</strong> the solution<br />

he<strong>at</strong>-tre<strong>at</strong>ed specimen is a supers<strong>at</strong>ur<strong>at</strong>ed solid solution<br />

conta<strong>in</strong><strong>in</strong>g all solute <strong>at</strong>oms homogeneously.<br />

C. Tempered microstructure<br />

(c)<br />

100nm<br />

110<br />

011<br />

Fig. 5 (a) TEM bright field image, (b) [001] and (c) [111] SAD<br />

p<strong>at</strong>tern of the martensite phase tempered <strong>at</strong> 580°C for 4 h.<br />

Figure 5 shows a bright field TEM image of the<br />

martensite phase <strong>after</strong> ag<strong>in</strong>g for 4 h <strong>at</strong> 580°C. Brightfield<br />

image does not give any clear contrast correspond<strong>in</strong>g<br />

to f<strong>in</strong>e coherent Cu precipit<strong>at</strong>es expected <strong>in</strong> this<br />

stage. This suggests th<strong>at</strong> Cu precipit<strong>at</strong>es, if any, is still<br />

coherent and they do not cause large stra<strong>in</strong> contrast due<br />

to the small stra<strong>in</strong> field around the precipit<strong>at</strong>e. In fact,<br />

the SADP taken from a martensite l<strong>at</strong>h does not show<br />

any evidence for a secondary phase, suggest<strong>in</strong>g th<strong>at</strong><br />

there is no precipit<strong>at</strong>es with the dist<strong>in</strong>ct structure different<br />

from the bcc m<strong>at</strong>rix. Figure 6 shows 3DAP elemental<br />

mapp<strong>in</strong>g of Cu and Cr obta<strong>in</strong>ed from the martensite<br />

phase. The Cu mapp<strong>in</strong>g clearly shows th<strong>at</strong> there<br />

is a small spherical particle enriched with Cu. On the<br />

other hand, the Cr mapp<strong>in</strong>g shows th<strong>at</strong> the distribution<br />

of Cr <strong>at</strong>oms is uniform martensite phase. The Cu el-<br />

Published <strong>in</strong> Metall. M<strong>at</strong>er. Trans. A. Vol. 30A, pp. 345-353. 1999<br />

emental map clearly shows th<strong>at</strong> there is Cu enriched<br />

precipit<strong>at</strong>e <strong>in</strong> this stage. As the SADP (Figure 5(b) and<br />

(c)) does not show any evidence for presence of the<br />

secondary phase, the Cu enriched precipit<strong>at</strong>e observe<br />

<strong>in</strong> the 3DAP d<strong>at</strong>a is believed to be fully coherent bcc-<br />

Cu. In order to quantify the concentr<strong>at</strong>ion of the particle,<br />

concentr<strong>at</strong>ion depth profile was measured from<br />

the selected region near the Cu-rich precipit<strong>at</strong>e as shown<br />

<strong>in</strong> Fig. 6 (c). The chemical composition of the Cu-rich<br />

precipit<strong>at</strong>es has been found to be 55 <strong>at</strong>.pct Cu, 30 <strong>at</strong>.pct<br />

Fe, 10 <strong>at</strong>. pct Cr, 5 <strong>at</strong>. pct Ni. It is seen th<strong>at</strong> Cr and Ni<br />

are rejected from the Cu-enriched particle slightly. It<br />

should also be noted th<strong>at</strong> the concentr<strong>at</strong>ion of Cu <strong>in</strong> the<br />

particle is significantly lower than th<strong>at</strong> expected from<br />

the equilibrium e-Cu.<br />

D. Ag<strong>in</strong>g for 100 h <strong>at</strong> 400°C<br />

Figure 7 (a) and (b) show 3DAP elemental mapp<strong>in</strong>g<br />

of Cu and Cr obta<strong>in</strong>ed from the martensite phase <strong>in</strong> the<br />

specimen aged for 100 h <strong>at</strong> 400°C. The Cu mapp<strong>in</strong>g<br />

shows th<strong>at</strong> a high density of Cu-rich precipit<strong>at</strong>es of approxim<strong>at</strong>ely<br />

3 nm <strong>in</strong> diameter is present. The Cr mapp<strong>in</strong>g<br />

shows th<strong>at</strong> the distribution of Cr <strong>at</strong>oms is no longer<br />

uniform and fluctu<strong>at</strong>ions of Cr concentr<strong>at</strong>ion occur.<br />

Concentr<strong>at</strong>ion depth profiles of Fe, Cr, Ni, Si and Cu<br />

were measured from a selected region cutt<strong>in</strong>g two Curich<br />

precipit<strong>at</strong>es as shown <strong>in</strong> Figure 6(c). The concentr<strong>at</strong>ion<br />

of Cu <strong>in</strong> the Cu-rich precipit<strong>at</strong>es is approxim<strong>at</strong>ely<br />

70 <strong>at</strong>. pct Cu, which is much higher than th<strong>at</strong> observed<br />

<strong>in</strong> the tempered specimen, but it is still lower than the<br />

equilibrium concentr<strong>at</strong>ion of the ε-Cu. The presence of<br />

fluctu<strong>at</strong>ions <strong>in</strong> Cr concentr<strong>at</strong>ion <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> the phase<br />

decomposition occurs <strong>in</strong> the martensite phase, and it<br />

decomposes to Fe-rich a and Cr-enriched α’ phases. The<br />

Cr concentr<strong>at</strong>ion <strong>in</strong> the α’ phase is only 25 <strong>at</strong>. pct and<br />

this is significantly lower than th<strong>at</strong> of equilibrium α’<br />

phase, suggest<strong>in</strong>g th<strong>at</strong> it is still <strong>in</strong> an <strong>in</strong>itial stage of the<br />

decomposition process. It should be noted th<strong>at</strong> there is<br />

no <strong>in</strong>dic<strong>at</strong>ion of partition<strong>in</strong>g of Ni.<br />

E. Ag<strong>in</strong>g for 5000 h <strong>at</strong> 400°C<br />

Figure 8 (a) shows a dark field image excited us<strong>in</strong>g<br />

the 1/2(110) reflection and Figures 8 (b) – (d) shows<br />

[001], [011], [111] zone SAD p<strong>at</strong>ters, respectively obta<strong>in</strong>ed<br />

from the martensite phase aged for 5000 hours<br />

<strong>at</strong> 400°C. Extra reflections <strong>in</strong>dic<strong>at</strong>e an ordered phase<br />

hav<strong>in</strong>g a cube-on-cube orient<strong>at</strong>ion rel<strong>at</strong>ionship precipit<strong>at</strong>es<br />

<strong>after</strong> prolonged ag<strong>in</strong>g. The dark field image which<br />

was taken us<strong>in</strong>g the 1/2(110) reflection shows a high<br />

density of f<strong>in</strong>e, ordered particles are dispersed <strong>in</strong> the<br />

martensite m<strong>at</strong>rix. The diffraction p<strong>at</strong>tern was found to<br />

be consistent with the G phase (structure type D8 , space a<br />

group Fm3m ) reported <strong>in</strong> aged duplex sta<strong>in</strong>less steels<br />

[23,26,27] [19] and type 308 sta<strong>in</strong>less steels .<br />

Figure 9 shows <strong>at</strong>om probe concentr<strong>at</strong>ion depth profiles<br />

obta<strong>in</strong>ed from the martensite phase <strong>in</strong> the alloy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!