10.01.2013 Views

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(a)<br />

(b)<br />

G phase Cu precipit<strong>at</strong>e<br />

020 fcc<br />

011<br />

2nm<br />

Fig. 11 (a) HREM image taken <strong>at</strong> the [111] zone axis of the martensite<br />

phase <strong>in</strong> the alloy aged <strong>at</strong> 400°C for 5000 h. (b) micro-diffraction<br />

p<strong>at</strong>tern obta<strong>in</strong>ed from the region with the Moire fr<strong>in</strong>ge.<br />

file obta<strong>in</strong>ed by the conventional <strong>at</strong>om probe (Figure<br />

9), Ni, Si and Mn <strong>at</strong>oms appear to be partitioned to the<br />

Cu enriched particle <strong>in</strong>dic<strong>at</strong>ed by the dashed l<strong>in</strong>es on<br />

the left side of the figure. However, this result is probably<br />

an artifact caused by the convolut<strong>in</strong>g effect of the<br />

probe hole cover<strong>in</strong>g both Cu and G-particles because<br />

Ni, Si and Mn enrichment is not observed <strong>at</strong> the other<br />

Cu enriched region <strong>in</strong> Figure 9. In the l<strong>at</strong>ter case, the<br />

probe hole covered only the Cu particle and missed the<br />

G-phase which was adjacent to the Cu particle. These<br />

results demonstr<strong>at</strong>es th<strong>at</strong> employment of the 3DAP technique<br />

provides more accur<strong>at</strong>e d<strong>at</strong>a for characteriz<strong>in</strong>g<br />

the morphological fe<strong>at</strong>ure of f<strong>in</strong>e precipit<strong>at</strong>es embedded<br />

<strong>in</strong> the m<strong>at</strong>rix.<br />

Figure 11 (a) shows an HREM image taken along<br />

the [111] zone axis of the martensite phase <strong>in</strong> the alloy<br />

aged <strong>at</strong> 400°C for 5000 hours. In this image, fr<strong>in</strong>ge contrast<br />

hav<strong>in</strong>g a periodicity of two (011) planes is ob-<br />

bcc<br />

served. This is consistent with the fr<strong>in</strong>ge contrast expected<br />

from the G-phase (Ni X Si , X=Fe, Mn,<br />

16 6 7<br />

Si, Fm3m , a=0.406 nm). Furthermore, a small particle<br />

is observed adjacent to the G-phase, which is believed<br />

to be a Cu precipit<strong>at</strong>e. A microdiffraction p<strong>at</strong>tern taken<br />

from the region with the Moire fr<strong>in</strong>ges is shown <strong>in</strong> Figure<br />

11 (b). The [111] microdiffraction p<strong>at</strong>tern shows<br />

Published <strong>in</strong> Metall. M<strong>at</strong>er. Trans. A. Vol. 30A, pp. 345-353. 1999<br />

the extra reflections near the {110} bcc reflections. The<br />

δ-spac<strong>in</strong>g calcul<strong>at</strong>ed from the extra reflections is ~0.<strong>17</strong>9<br />

nm which corresponds to the spac<strong>in</strong>g of the {020} fcc<br />

planes <strong>in</strong> fcc-Cu (0.180 nm). The orient<strong>at</strong>ion rel<strong>at</strong>ionship<br />

(OR) between the particle and the martensite almost<br />

m<strong>at</strong>ches with the K-S rel<strong>at</strong>ionship.<br />

IV. DISCUSSION<br />

This study has clarified evolution of microstructure<br />

<strong>in</strong> a <strong>17</strong>-4 <strong>PH</strong> sta<strong>in</strong>less steel dur<strong>in</strong>g long term ag<strong>in</strong>g <strong>at</strong><br />

400°C. Emphasis is given to characteriz<strong>at</strong>ion of chemical<br />

fe<strong>at</strong>ures of the precipit<strong>at</strong>es which appear <strong>in</strong> the martensite<br />

phase <strong>after</strong> prolonged ag<strong>in</strong>g.<br />

The ε-Cu precipit<strong>at</strong>es have been found <strong>in</strong> the δ-ferrite<br />

<strong>after</strong> the solution he<strong>at</strong> tre<strong>at</strong>ment. The appearance<br />

of these precipit<strong>at</strong>es <strong>in</strong> the δ-ferrite was unaffected by<br />

subsequent ag<strong>in</strong>g. Rack and Kalish [3] reported similar<br />

microstructural fe<strong>at</strong>ure <strong>in</strong> δ-ferrite, but they <strong>at</strong>tributed<br />

them to NbC precipit<strong>at</strong>es. In this study, NbC were observed<br />

<strong>at</strong> martensite l<strong>at</strong>h boundaries with much larger<br />

size as shown <strong>in</strong> Figure 1, and we believe th<strong>at</strong> the f<strong>in</strong>e<br />

precipit<strong>at</strong>e <strong>in</strong> the δ-ferrite observed <strong>in</strong> the previous study<br />

as well as <strong>in</strong> this study are the ε-Cu. Precipit<strong>at</strong>ion of Cu<br />

<strong>in</strong> the Fe-Cu b<strong>in</strong>ary system has been a subject of numerous<br />

studies [14-18] , and it is well established th<strong>at</strong> the<br />

<strong>in</strong>itial Cu-enriched precipit<strong>at</strong>e is perfectly coherent with<br />

the bcc m<strong>at</strong>rix, while large overaged precipit<strong>at</strong>es have<br />

an fcc structure with the K-S OR. However, b<strong>in</strong>ary alloys<br />

were all solution he<strong>at</strong>-tre<strong>at</strong>ed <strong>in</strong> the s<strong>in</strong>gle phase<br />

ferrite region around 900°C, while the <strong>17</strong>-4 <strong>PH</strong> sta<strong>in</strong>less<br />

steel is solution he<strong>at</strong>-tre<strong>at</strong>ed <strong>at</strong> much higher temper<strong>at</strong>ure<br />

around 1050°C. Diffusivity of Cu <strong>in</strong> the d-ferrite<br />

<strong>at</strong> this temper<strong>at</strong>ure (D Cu ~ 1 x 10 -9 cm 2 /s) is more<br />

than three orders of magnitude higher than th<strong>at</strong> <strong>in</strong> the<br />

austenite (D Cu ~ 4 x 10 -12 cm 2 /s), thus we believe th<strong>at</strong><br />

Cu precipit<strong>at</strong>ed out from the δ-ferrite dur<strong>in</strong>g cool<strong>in</strong>g<br />

<strong>after</strong> the solution he<strong>at</strong> tre<strong>at</strong>ment. Many Cu particles were<br />

observed along disloc<strong>at</strong>ions, and this would have ease<br />

the stra<strong>in</strong> contrast for precipit<strong>at</strong>ion of the fcc ε-Cu. On<br />

the other hand, no <strong>in</strong>dic<strong>at</strong>ion of presence of precipit<strong>at</strong>es<br />

are recognized <strong>in</strong> as-quenched martensite. The<br />

solubility of Cu <strong>in</strong> the austenite phase is up to 7 <strong>at</strong>. pct<br />

<strong>at</strong> 1100°C. However, the diffusivity of Cu <strong>in</strong> the austenite<br />

is orders of magnitude small than th<strong>at</strong> <strong>in</strong> the ferrite<br />

phase. Thus, the precipit<strong>at</strong>ion k<strong>in</strong>etics are much slower<br />

<strong>in</strong> the austenite phase and Cu can be quenched <strong>in</strong> the<br />

martensite phase from the solution he<strong>at</strong>-tre<strong>at</strong>ment temper<strong>at</strong>ure.<br />

After temper<strong>in</strong>g <strong>at</strong> 580°C for 4 hours, f<strong>in</strong>e Curich<br />

precipit<strong>at</strong>es were detected <strong>in</strong> the martensite phase<br />

us<strong>in</strong>g 3DAP. The Cu content <strong>in</strong> the Cu-rich precipit<strong>at</strong>es<br />

is significantly lower than the equilibrium value for ε-<br />

Cu. They reported th<strong>at</strong> the average copper concentr<strong>at</strong>ion<br />

of small precipit<strong>at</strong>es is approxim<strong>at</strong>ely 50 <strong>at</strong>. pct <strong>in</strong><br />

the earliest stage of the precipit<strong>at</strong>ion. The copper concentr<strong>at</strong>ion<br />

<strong>in</strong> the f<strong>in</strong>e, Cu-rich particles which precipit<strong>at</strong>e<br />

dur<strong>in</strong>g temper<strong>in</strong>g is <strong>in</strong> good agreement with the<br />

early study by Goodman et al. [16] . Unlike <strong>in</strong> the d-fer-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!