12.01.2013 Views

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

One-Dimensional Theoretical Research on MRS Excited by F<strong>in</strong>ite Current Wire<br />

One-Dimensional Theoretical Research on MRS Excited by F<strong>in</strong>ite Current<br />

Wire<br />

Yuanjie Li, Zhenyu Li, Jianwei Pan, Jiagang Zhang, Hao Liu, Kai Wang<br />

Institute of Geophysics and Geomatics, Ch<strong>in</strong>a University of Geosciences, Wuhan, PRC<br />

liyuanjie305@163.com<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g, abbreviated as<br />

MRS, is a novel geophysical technic specially<br />

designed for direct water exploration by us<strong>in</strong>g<br />

NMR phenomena. At present, <strong>in</strong> <strong>the</strong> fields a<br />

large loop normally acts as both transmitter<br />

and receiver, and <strong>in</strong> this model <strong>in</strong>formation of<br />

aquifers <strong>in</strong> varied depth from <strong>the</strong> shallow to <strong>the</strong><br />

deep will be obta<strong>in</strong>ed through amplify<strong>in</strong>g<br />

stimulat<strong>in</strong>g pulse. However, this traditional<br />

work mode has shortcom<strong>in</strong>gs of <strong>in</strong>tense labour<br />

of <strong>the</strong> operator, great <strong>in</strong>fluence from landform,<br />

only one-dimensional <strong>in</strong>formation of aquifers<br />

be<strong>in</strong>g achieved, and f<strong>in</strong>ite maximum depth of<br />

<strong>in</strong>vestigation which is a problem to be solved<br />

urgently. These drawbacks may be related to<br />

field source that is <strong>the</strong> magnetic field of <strong>the</strong><br />

loop, so, we propose a pioneer<strong>in</strong>g and bold<br />

assumption that <strong>the</strong> stimulat<strong>in</strong>g loop is<br />

superseded by f<strong>in</strong>ite current wire as <strong>the</strong> field<br />

source. In <strong>the</strong>ory, <strong>the</strong> new mode possesses few<br />

advantages of flexible lay-pattern, free from<br />

tomography limitation, affluent <strong>in</strong>formation<br />

about underground aquifer, potential research<br />

<strong>in</strong> detect<strong>in</strong>g depth. Therefore, we will do<br />

research about MRS methods excited by f<strong>in</strong>ite<br />

current wire, and determ<strong>in</strong>e its feasibility.<br />

The distribut<strong>in</strong>g of magnetic field stimulated<br />

by f<strong>in</strong>ite current l<strong>in</strong>e is numerical simulated <strong>in</strong><br />

<strong>the</strong> homogeneous half-space, while its<br />

characteristics will be quantitatively analysed.<br />

And <strong>the</strong>n various aquifers models <strong>in</strong> <strong>the</strong> mode<br />

of MRS method excited by wire source will be<br />

built to acquire NMR signals, characteristics of<br />

which will be compared with those <strong>in</strong> <strong>the</strong><br />

traditional mode. By do<strong>in</strong>g so ,it is can be<br />

concluded that it is feasible to employ l<strong>in</strong>e<br />

source excit<strong>in</strong>g MRS technique , and also <strong>the</strong><br />

superiority of this new method over<br />

conventional mode can be demonstrated. To<br />

perfect one-dimensional <strong>the</strong>oretical system of<br />

MRS method stimulated by l<strong>in</strong>e source,<br />

appropriate <strong>in</strong>version about new method will<br />

be carried out.<br />

References<br />

Anderson, W.L.. (1979): Numerical <strong>in</strong>tegration of<br />

related Hankel transforms of order 0 and 1 by<br />

adaptive digital filter<strong>in</strong>g. Geophysics, 44(10):<br />

1287-1305.<br />

Anderson, W.L.. (1984): Computation of Green's<br />

tensor <strong>in</strong>tegrals for three-dimensional<br />

electromagnetic problems us<strong>in</strong>g fast hankel<br />

transforms. Geophysics, 49(10): 877-901.<br />

Baltassat, J., A.V. Legchenko. (2002): Nuclear<br />

magnetic resonance as a geophysical tool for<br />

hydrogeologists. Journal of Applied Geophysics,<br />

50(1-2): 21-46.<br />

Braun, M., U. Yaramanci. (2011): Evaluation of <strong>the</strong><br />

Influence of 2-D Electrical Resistivity on<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g. Journal of<br />

Environmental & Eng<strong>in</strong>eer<strong>in</strong>g Geophysics,<br />

16(3): 95-103.<br />

Guillen, A., A.V. Legchenko. (2002): Inversion of<br />

surface nuclear magnetic resonance data by an<br />

adapted Monte Carlo method applied to water<br />

resource characterization. Journal of Applied<br />

Geophysics, 50(1-2): 193-205.<br />

Johansen, H.K.. (1979): Fast Hankel transform.<br />

Geophys Prosp, 49(10): 1754-1759.<br />

Keat<strong>in</strong>g, K., R.A. Knight. (2008): laboratory study<br />

of <strong>the</strong> effect of magnetite on NMR relaxation<br />

rates. Journal of Applied Geophysics, 66(3-4):<br />

188-196.<br />

Nabighian, M.N., M.L. OristaglioS. (1984): On <strong>the</strong><br />

approximation of f<strong>in</strong>ite loop sources by twodimensional<br />

l<strong>in</strong>e sources. GEOPHYSICS, 49(7):<br />

1027-1029.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!