12.01.2013 Views

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Magnetic</strong> <strong>Resonance</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Subsurface</strong><br />

5 th <strong>International</strong> Workshop<br />

on <strong>Magnetic</strong> <strong>Resonance</strong><br />

September 25 <strong>–</strong> 27, 2012<br />

Hannover, Germany<br />

Program & Abstracts


General Information<br />

Meet<strong>in</strong>g Venue<br />

The <strong>5th</strong> <strong>in</strong>ternational workshop on <strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> subsurface will be held at <strong>the</strong> Leibniz<br />

Institute for Applied Geophysics <strong>in</strong> Hannover, Germany. The auditorium is located directly beh<strong>in</strong>d <strong>the</strong><br />

entrance (<strong>in</strong>dicated by <strong>the</strong> red arrow <strong>in</strong> <strong>the</strong> picture below) <strong>in</strong> build<strong>in</strong>g part A.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

2


Poster Presentation<br />

Posters are displayed dur<strong>in</strong>g <strong>the</strong> complete conference. The poster area is side-by-side with <strong>the</strong><br />

auditorium. At <strong>the</strong> poster area <strong>the</strong> coffee breaks are located too, so <strong>the</strong>re will be room and time for<br />

discussions.<br />

Lunch<br />

Lunch is available at <strong>the</strong> GeoZentrum restaurant located <strong>in</strong> build<strong>in</strong>g part F. The restaurant operates<br />

without cash. You will need to get a Guest-Card at <strong>the</strong> entrance of <strong>the</strong> restaurant to pay for <strong>the</strong> lunch.<br />

Field Experiment<br />

A field experiment will take place on Wednesday between 16.00 and 17.30 at a test site close to <strong>the</strong><br />

conference location. Us<strong>in</strong>g <strong>the</strong> measurement equipments for Surface-NMR available at GeoZentrum<br />

Hannover, <strong>the</strong> issues of measurements and data collection will be discussed, and it will particularly be<br />

shown how Surface-NMR can be measured <strong>in</strong> urban areas.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

3


Conference Even<strong>in</strong>g<br />

The conference even<strong>in</strong>g will take place at <strong>the</strong> “Schlossküche Herrenhausen” on Wednesday 26 th start<strong>in</strong>g<br />

at 18.30. From <strong>the</strong> conference you can use <strong>the</strong> public transport of Hannover. Take <strong>the</strong> tram number 7<br />

(direction Wettbergen) until “Kröpke”, at “Kröpke” change for tram number 4 (direction Garbsen) until<br />

Herrenhäuser Gärten. From <strong>the</strong>re, it is a short distance to walk.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

4


Scientific Committee<br />

Yaramanci, Ugur Leibniz Institute for Applied Geophysics<br />

(<strong>LIAG</strong>)<br />

Müller-Petke, Mike Leibniz Institute for Applied Geophysics<br />

(<strong>LIAG</strong>)<br />

Auken, Esben Aarhus University<br />

(AU)<br />

Costabel, Stephan Federal Institute of Geosciences and<br />

Resources (BGR)<br />

Girard, Jean-Francois Bureau de recherches géologiques et<br />

m<strong>in</strong>ières (BRGM)<br />

Knight, Rosemary Stanford University<br />

(SU)<br />

Lange, Gerhard Federal Institute of Geosciences and<br />

Resources (BGR)<br />

Legtchenko, Anatoly Institute de recherche pour le<br />

development (IRD)<br />

Plata, Juan Luis Instituto Geologico y m<strong>in</strong>ero de Espana<br />

(IGME)<br />

List of Participants<br />

(Registered as with 6 th September 2012)<br />

Name First Name Affiliation Email<br />

Hannover, Germany<br />

Hannover, Germany<br />

Aarhus, Denmark<br />

Hannover, Germany<br />

Orleans, France<br />

Stanford, USA<br />

Hannover, Germany<br />

Grenoble, France<br />

Madrid, Spa<strong>in</strong><br />

Aaron Davis CSIRO aaron.davis@csiro.au<br />

Abraham Jared USGS jdabraha@usgs.gov<br />

Akca Irfan Ankara University iakca@eng.ankara.edu.tr<br />

Baofeng Tian Jil<strong>in</strong> University tianbf@jlu.edu.cn<br />

Baronc<strong>in</strong>i Turricchia Guido ITC-Twente University coprolog@yahoo.com<br />

Basokur Ahmet Tugrul Ankara University basokur@ankara.edu.tr<br />

Behroozmand Ahmad A. Aarhus University ahmad@geo.au.dk<br />

Bernard Jean Iris-Instruments iris@iris-<strong>in</strong>struments.com<br />

Boucher Marie IRD marie.boucher@ird.fr<br />

Chevalier Anto<strong>in</strong>e UJF anto<strong>in</strong>e.chevalier@ujfgrenoble.fr<br />

Chuandong Jiang Jil<strong>in</strong> University willianjcd@yahoo.com.cn<br />

Costabel Stephan BGR stephan.costabel@bgr.de<br />

Dalgaard Esben Aarhus University esben.dalgaard@geo.au.dk<br />

David Oliver Walsh David Vista-Clara davewalsh@vista-clara.com<br />

Dlubac Ka<strong>the</strong>r<strong>in</strong>e University Stanford kdlubac@stanford.edu<br />

Dlugosch Raphael <strong>LIAG</strong> raphael.dlugosch@liaghannover.de<br />

Esben Auken Aarhus University esben.auken@geo.au.dk<br />

Felix Rubio University Madrid fm.rubio@igme.es<br />

Francés Ala<strong>in</strong> Pascal ITC frances08512@itc.nl<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

5


Girard Jean-Francois BRGM jf.girard@brgm.fr<br />

Grombacher Denys University Stanford denysg@stanford.edu<br />

Grunewald Elliot Vista-Clara elliot@vista-clara.com<br />

Gün<strong>the</strong>r Thomas <strong>LIAG</strong> thomas.guen<strong>the</strong>r@liaghannover.de<br />

Hagensen Tom Feldberg Danish M<strong>in</strong>istry of <strong>the</strong><br />

Environment<br />

tofha@nst.dk<br />

Huangjian Wu University Wuhan kdjf_025@126.com<br />

Irons Trevor USGS tirons@usgs.gov<br />

Jun L<strong>in</strong> Jil<strong>in</strong> University L<strong>in</strong>_jun@jlu.edu.cn<br />

Keat<strong>in</strong>g Krist<strong>in</strong>a Rutgers University kmkeat@andromeda.rutgers.e<br />

du<br />

Knight Rosemary University Stanford rknight@stanford.edu<br />

Kuschel Lars BLM kuschel@blm-storkow.de<br />

Larsen Jakob Juul Aarhus University jjl@iha.dk<br />

Legchenko Anatoly IRD / LTHE anatoli.legtchenko@ird.fr<br />

Leite Orlando Iris-Instruments iris@iris-<strong>in</strong>struments.com<br />

Lubczynski Maciek ITC lubczynski@itc.nl<br />

Macnae James CSIRO james.macnae@rmit.edu.au<br />

Mavrommatis Andreas University Stanford andreasm@stanford.edu<br />

Mazzilli Naomi Université Montpellier mazzilli@msem.univmontp2.fr<br />

McDowell Andrew ABQMR mcdowell@abqmr.com<br />

Müller-Petke Mike <strong>LIAG</strong> mike.mueller-petke@liaghannover.de<br />

Nils Perttu Nils Luleå University of<br />

Technology<br />

nils.perttu@ltu.se<br />

Plata Juan University Madrid jl.plata@igme.es<br />

Q<strong>in</strong>gm<strong>in</strong>g Duan Jil<strong>in</strong> University duanqm@jlu.edu.cn<br />

Radic T<strong>in</strong>o Berl<strong>in</strong> radic@radic-research.de<br />

Ronczka Mathias <strong>LIAG</strong> mathias.ronczka@liaghannover.de<br />

Roy Jean ITC jeanroy_igp@videotron.ca<br />

Ryom Nielsen Mette Rambøll A/S mrn@ramboll.dk<br />

Seibertz Klodwig Universität Halle klodwig.seibertz@student.unihalle.de<br />

Shengwu Q<strong>in</strong> Jil<strong>in</strong> University q<strong>in</strong>sw@jlu.edu.cn<br />

Shu-q<strong>in</strong> Sun Jil<strong>in</strong> University sunsq@jlu.edu.cn<br />

Shushakov Oleg Institute of Chemical<br />

K<strong>in</strong>etics and Combustion<br />

SB RAS<br />

shushako@k<strong>in</strong>etics.nsc.ru<br />

Soltani Rafik University Beij<strong>in</strong>g rafiksoltani2008@gmail.com<br />

Texier Benoit Iris-Instruments iris@iris-<strong>in</strong>struments.com<br />

Tie-hu Fan Jil<strong>in</strong> University fth@jlu.edu.cn<br />

T<strong>in</strong>gt<strong>in</strong>g L<strong>in</strong> Jil<strong>in</strong> University ttl<strong>in</strong>@jlu.edu.cn<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

6


Toke Højbjerg Nielsen Toke Højbjerg Aarhus University t.hojbjerg@gmail.com<br />

Troels Norv<strong>in</strong> Vilhelmsen Aarhus University troels.norv<strong>in</strong>@geo.au.dk<br />

Vermeersch Fabrice Iris-Instruments iris@iris-<strong>in</strong>struments.com<br />

Vouillamoz Jean-Michel Cotonou, Ben<strong>in</strong> jean-michel.vouillamoz@ird.fr<br />

Walbrecker Jan University Stanford jan.walbrecker@stanford.edu<br />

Xiaofeng Yi Jil<strong>in</strong> University Yixiaofeng1985@126.com<br />

Yaramanci Ugur <strong>LIAG</strong> ugur.yaramanci@liaghannover.de<br />

Special Issue Publication<br />

There will be a special issue <strong>in</strong> “Near Surface Geophysics”, Journal of <strong>the</strong> European Association of<br />

Geoscientists & Eng<strong>in</strong>eers.<br />

This way, <strong>the</strong> tradition of <strong>the</strong> <strong>Magnetic</strong> <strong>Resonance</strong> workshops to produce a follow up peer review<br />

document will be cont<strong>in</strong>ued. Details of previous special issues can be found at:<br />

http://www.mrs2012.org/<br />

Participants are asked and encouraged to submit full papers derived from <strong>the</strong>ir workshop<br />

contributions. As usual, <strong>the</strong>se will be subject to peer review<strong>in</strong>g by support of scientific<br />

committee of <strong>the</strong> workshop.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

7


Scientific Program<br />

Tuesday, September 2<strong>5th</strong><br />

14.00 - 14.30 Open<strong>in</strong>g Session<br />

14.30 - 15.30 Measurement Technology 1<br />

Title Speaker<br />

14.30 - 14.50 Novel Surface-NMR Pulse Sequences for Improved<br />

Estimation of Relaxation Times and Hydrogeologic<br />

Properties<br />

14.50 - 15.10 Design and Experimental study of Small MRS<br />

Antenna for Underground Applications<br />

Grunewald<br />

Xiaofeng<br />

15.10 - 15.30 Detection Coils for Near-Surface Earth’s Field NMR McDowell<br />

15.30 - 16.00 Coffee Break<br />

16.00 - 17.20 Measurement Technology 2<br />

16.00 - 16.20 Quantify<strong>in</strong>g Background <strong>Magnetic</strong> Field<br />

Inhomogeneity Us<strong>in</strong>g Composite Pulses:<br />

Estimat<strong>in</strong>g T2 from T2* by Correct<strong>in</strong>g for Static<br />

Dephas<strong>in</strong>g<br />

Grombacher<br />

16.20 - 16.40 Modell<strong>in</strong>g NMR signal for compact sensors Davis<br />

16.40 - 17.00 3 component NMR with NMARMIT sensors Macnae<br />

17.00 - 17.20 Development of a novel MRS-TEM comb<strong>in</strong>ed<br />

<strong>in</strong>strument for improv<strong>in</strong>g MRS capacity <strong>in</strong><br />

groundwater <strong>in</strong>vestigations<br />

Wednesday, September 26th<br />

8.40 - 10.00 Signal Process<strong>in</strong>g<br />

8.40 - 9.00 Optimized Wiener filter<strong>in</strong>g with <strong>the</strong> Numis Poly<br />

system<br />

9.00 - 9.20 Model-based cancell<strong>in</strong>g of powerl<strong>in</strong>e harmonics<br />

<strong>in</strong> multichannel MRS record<strong>in</strong>gs<br />

9.20 - 9.40 Jo<strong>in</strong>t use of adaptive notch filter and empirical<br />

mode decomposition for noise cancellation<br />

applied to MRS<br />

Modell<strong>in</strong>g and Inversion 1<br />

9.40 - 10.00 The case for comprehensive frequency-doma<strong>in</strong><br />

<strong>in</strong>version of surface NMR data<br />

T<strong>in</strong>g-T<strong>in</strong>g<br />

Dalgaard<br />

Larsen<br />

Baofeng<br />

Irons<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

8


10.00 - 10.50 Coffee Break & Poster Session<br />

10.50 - 11.10 Inversion of T1 relaxation times based on pcPSR<br />

measurements - Syn<strong>the</strong>tic examples<br />

11.10 - 11.30 Inversion of surface-NMR T1 data: results from<br />

two field sites with reference to borehole logg<strong>in</strong>g<br />

Müller-Petke<br />

Walbrecker<br />

11.30 - 11.50 Earth's magnetic field and MRS phase shift Legchenko<br />

11.50 - 12.10 Bloch-Siegert effect <strong>in</strong> MRS Shushakov<br />

Case Studies 1<br />

12.10 - 12.30 Exploit<strong>in</strong>g <strong>the</strong> phase <strong>in</strong>formation: examples from<br />

<strong>the</strong> Ne<strong>the</strong>rlands<br />

12.30 - 14.00 Lunch<br />

14.00 - 15.40<br />

14.00 - 14.20 MRS and electrical prospection <strong>in</strong> <strong>the</strong> context of<br />

wea<strong>the</strong>red peridotite rocks <strong>in</strong> <strong>the</strong> South of New<br />

Caledonia<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

Roy<br />

Girard<br />

14.20 - 14.40 MRS and Borehole Correlation <strong>in</strong> Denmark Nielsen<br />

14.40 - 15.00 Implementation of MRS <strong>in</strong> <strong>the</strong> Danish National<br />

Groundwater management<br />

15.00 - 15.20 MRS study of water content variations <strong>in</strong> <strong>the</strong><br />

unsaturated zone of a karst aquifer (sou<strong>the</strong>rn<br />

France)<br />

15.20 - 15.40 Research on Gush<strong>in</strong>g Disaster Detection <strong>in</strong><br />

Tunnel with <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g<br />

15.40 - 16.00 Coffee Break<br />

16.00 Field Experiment<br />

18.30 Conference Even<strong>in</strong>g<br />

Thursday, September 27th<br />

8.40 - 12.30 Modell<strong>in</strong>g and Inversion 2<br />

8.40 - 9.00 2D Cell Inversion for <strong>Magnetic</strong> <strong>Resonance</strong><br />

Tomography us<strong>in</strong>g JLMRS-Array Instrument<br />

9.00 - 9.20 2D qt-<strong>in</strong>version to <strong>in</strong>vestigate spatial variations<br />

of hydraulic conductivity us<strong>in</strong>g SNMR<br />

9.20 - 9.40 Locat<strong>in</strong>g a karst conduit with 2D Monte Carlo<br />

<strong>in</strong>version of magnetic resonance measurements<br />

9.40 - 10.00 A comprehensive study of <strong>the</strong> parameter<br />

determ<strong>in</strong>ation <strong>in</strong> a jo<strong>in</strong>t MRS and TEM data<br />

analysis scheme<br />

Feldberg Hagensen<br />

Mazzilli<br />

Shengwu<br />

Chuandong<br />

Dlugosch<br />

Chevalier<br />

Behroozmand<br />

9


10.00 - 10.50 Coffee Break & Poster Session<br />

10.50 - 11.10 Hybrid and multi-objective genetic algorithm<br />

applications <strong>in</strong> MRS data <strong>in</strong>version<br />

Advances <strong>in</strong> hydrological parameterization 1<br />

11.10 - 11.30 Recent advancements <strong>in</strong> NMR for characteriz<strong>in</strong>g<br />

<strong>the</strong> vadose zone<br />

11.30 - 11.50 Direct <strong>in</strong>version for water retention parameters<br />

from MRS measurements <strong>in</strong> <strong>the</strong><br />

saturated/unsaturated zone <strong>–</strong> a sensitivity study<br />

11.50 - 12.10 MRS subsurface parametrization for coupled<br />

hydrological Marmites model<br />

12.10 - 12.30 An efficient full coupled <strong>in</strong>version of aquifer<br />

test, MRS and TEM data<br />

12.30 - 14.00 Lunch<br />

14.00 - 17.20 Advances <strong>in</strong> hydrological parameterization 2<br />

14.00 - 14.20 The <strong>in</strong>tegration of logg<strong>in</strong>g and surface NMR for<br />

mapp<strong>in</strong>g spatial variation <strong>in</strong> hydraulic<br />

conductivity<br />

14.20 - 14.40 Hard rock hydrogeophysics applied to<br />

hydrological model parameterization - Sardón<br />

catchment case study (Salamanca, Spa<strong>in</strong>)<br />

14.40 - 15.00 A laboratory study to determ<strong>in</strong>e <strong>the</strong> effect of<br />

surface roughness and gra<strong>in</strong> diameter on NMR<br />

relaxation rates of glass bead packs.<br />

15.00 - 15.20 A numerical study of <strong>the</strong> relationship between<br />

NMR relaxation and permeability <strong>in</strong> materials<br />

with large pores<br />

15.20 - 15.40 Coffee Break<br />

Case Studies 2<br />

15.40 - 16.00 NMR Logg<strong>in</strong>g: A tool for quantify<strong>in</strong>g effective<br />

porosity and hydraulic conductivity with<strong>in</strong> <strong>the</strong><br />

Murray Darl<strong>in</strong>g Bas<strong>in</strong> of Australia<br />

16.00 - 16.20 Feasibility study of <strong>the</strong> MRS monitor<strong>in</strong>g <strong>in</strong> a 3D<br />

hydrogeological structure: aquifer recharge<br />

from a pond <strong>in</strong> <strong>the</strong> Sahel (Niger)<br />

16.20 - 16.40 Investigat<strong>in</strong>g hydraulic properties of a glacial<br />

sand deposit <strong>in</strong> <strong>the</strong> north of Sweden<br />

16.40 - 17.00 Estmat<strong>in</strong>g regional groundwater reserve <strong>in</strong> a<br />

clayey sandstone aquifer of Cambodia<br />

17.00 - 17.20 The Applications of MRS for detection of<br />

Groundwater-<strong>in</strong>duced disasters , <strong>in</strong> Ch<strong>in</strong>a<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

Akca<br />

Walsh<br />

Costabel<br />

Baronc<strong>in</strong>i-<br />

Turricchia<br />

Vilhelmsen<br />

Knight<br />

Francés<br />

Keat<strong>in</strong>g<br />

Dlubac<br />

Abraham<br />

Boucher<br />

Pertuu<br />

Vouillamoz<br />

Jun<br />

10


Poster<br />

Measurement Technology Poster<br />

Aquater MRS <strong>in</strong>strument Shushakov<br />

Signal Process<strong>in</strong>g Poster<br />

Higher-Order Statistical Signal Process<strong>in</strong>g for Surface-NMR<br />

Electronic Instruments<br />

MRS noise <strong>in</strong>vestigations with focus on optimiz<strong>in</strong>g <strong>the</strong><br />

measurement setup <strong>in</strong> <strong>the</strong> field<br />

Soltani<br />

Costabel<br />

A comparison of harmonic noise cancellation concepts Müller-Petke<br />

Identification and elim<strong>in</strong>ation of spiky noise features <strong>in</strong> MRS<br />

data<br />

Modell<strong>in</strong>g and Inversion Poster<br />

Costabel<br />

Experimental verification of a 3D model for MRS Legchenko<br />

MRSMatlab <strong>–</strong> a toolbox for model<strong>in</strong>g, process<strong>in</strong>g, and <strong>in</strong>vert<strong>in</strong>g<br />

surface-NMR data<br />

Comparison of borehole and surface NMR-<strong>in</strong>ferred water<br />

content profiles<br />

Müller-Petke<br />

Mavrommatis<br />

Study on Factors Affect<strong>in</strong>g SNMR Vertical and Lateral Resolution Yan<br />

Research<strong>in</strong>g vertical resolution of SNMR by us<strong>in</strong>g numerical<br />

simulation<br />

Advances <strong>in</strong> hydrological parametrization Poster<br />

Research and Practice of <strong>the</strong> Relationship between<br />

MRS Inversion Parameters and <strong>the</strong> Water Yield<br />

Quantitative aquifer system characterization on Borkum island<br />

us<strong>in</strong>g jo<strong>in</strong>t <strong>in</strong>version of MRS and VES data<br />

A general model for predict<strong>in</strong>g hydraulic conductivity of<br />

unconsolidated material us<strong>in</strong>g nuclear magnetic resonance<br />

Case Studies Poster<br />

Case studies of <strong>the</strong> MRS method <strong>in</strong> various geological<br />

backgrounds<br />

Usage of <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS) for atta<strong>in</strong><strong>in</strong>g<br />

hydrogeological profiles (Havelland, Brandenburg)<br />

Assessment of <strong>the</strong> use of surface NMR to detect <strong>in</strong>ternal<br />

erosion and pip<strong>in</strong>g <strong>in</strong> ear<strong>the</strong>n embankments<br />

Characteristics and Examples of MRS Signals <strong>in</strong> Good Conductive<br />

Areas<br />

The Experimental Study of MRS Method <strong>in</strong> Plateau Permafrost<br />

Region<br />

Jo<strong>in</strong>t use of MRS and TDEM for characteriz<strong>in</strong>g groundwater<br />

recharge <strong>in</strong> <strong>the</strong> Lake Chad bas<strong>in</strong><br />

Calibration MRS Hydrodynamic Parameters Measurements from<br />

Pump<strong>in</strong>g Tests <strong>in</strong> Inner-Mongollia of Ch<strong>in</strong>a<br />

Application of surface-NMR to study unfrozen sediments below<br />

lakes <strong>in</strong> permafrost regions<br />

Surface NMR applied to determ<strong>in</strong><strong>in</strong>g aquifer properties <strong>in</strong> <strong>the</strong><br />

Central Platte River, central Nebraska<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

Peng<br />

Wang<br />

Gün<strong>the</strong>r<br />

Dlugosch<br />

Bernard<br />

Seibertz<br />

Irons<br />

Wang<br />

Zhang<br />

Boucher<br />

Sun<br />

Parsekian<br />

Abraham<br />

11


Abstracts<br />

Content<br />

Measurement Technology ....................................................................................................... 15<br />

Novel Surface-NMR Pulse Sequences for Improved Estimation of Relaxation Times and Hydrogeologic<br />

Properties .................................................................................................................................................... 16<br />

Design and Experimental study of Small MRS Antenna for Underground Applications ............................. 17<br />

Detection Coils for Near-Surface Earth’s Field NMR ................................................................................... 18<br />

Quantify<strong>in</strong>g Background <strong>Magnetic</strong> Field Inhomogeneity Us<strong>in</strong>g Composite Pulses: Estimat<strong>in</strong>g T2 from T2*<br />

by Correct<strong>in</strong>g for Static Dephas<strong>in</strong>g .............................................................................................................. 19<br />

Modell<strong>in</strong>g NMR signal for compact sensors ................................................................................................ 20<br />

3 component NMR with NMARMIT sensors ............................................................................................... 21<br />

Development of a novel MRS-TEM comb<strong>in</strong>ed <strong>in</strong>strument for improv<strong>in</strong>g MRS capacity <strong>in</strong> groundwater<br />

<strong>in</strong>vestigations .............................................................................................................................................. 22<br />

Aquater MRS <strong>in</strong>strument............................................................................................................................. 23<br />

One-Dimensional Theoretical Research on MRS Excited by F<strong>in</strong>ite Current Wire ....................................... 24<br />

Signal Process<strong>in</strong>g ............................................................................................................................. 25<br />

Optimized Wiener filter<strong>in</strong>g with <strong>the</strong> Numis Poly system ............................................................................ 26<br />

Model-based cancell<strong>in</strong>g of powerl<strong>in</strong>e harmonics <strong>in</strong> multichannel MRS record<strong>in</strong>gs ................................... 27<br />

Jo<strong>in</strong>t use of adaptive notch filter and empirical mode decomposition for noise cancellation applied to<br />

MRS ............................................................................................................................................................. 28<br />

Higher-Order Statistical Signal Process<strong>in</strong>g for Surface-NMR Electronic Instruments ................................. 29<br />

Identification and elim<strong>in</strong>ation of spiky noise features <strong>in</strong> MRS data ........................................................... 30<br />

MRS noise <strong>in</strong>vestigations with focus on optimiz<strong>in</strong>g <strong>the</strong> measurement setup <strong>in</strong> <strong>the</strong> field .......................... 31<br />

A comparison of harmonic noise cancellation concepts ............................................................................. 32<br />

Model<strong>in</strong>g and Inversion ............................................................................................................. 33<br />

The case for comprehensive frequency-doma<strong>in</strong> <strong>in</strong>version of surface NMR data ....................................... 34<br />

Inversion of T1 relaxation times based on pcPSR measurements - Syn<strong>the</strong>tic examples ............................ 35<br />

Inversion of surface-NMR T1 data: results from two field sites with reference to borehole logg<strong>in</strong>g ......... 36<br />

Earth's magnetic field and MRS phase shift ................................................................................................ 37<br />

Bloch-Siegert effect <strong>in</strong> MRS ......................................................................................................................... 38<br />

2D Cell Inversion for <strong>Magnetic</strong> <strong>Resonance</strong> Tomography us<strong>in</strong>g JLMRS-Array Instrument .......................... 39<br />

2D qt-<strong>in</strong>version to <strong>in</strong>vestigate spatial variations of hydraulic conductivity us<strong>in</strong>g SNMR ............................ 40<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

12


Locat<strong>in</strong>g a karst conduit with 2D Monte Carlo <strong>in</strong>version of magnetic resonance measurements ............. 41<br />

A comprehensive study of <strong>the</strong> parameter determ<strong>in</strong>ation <strong>in</strong> a jo<strong>in</strong>t MRS and TEM data analysis scheme. 42<br />

Hybrid and multi-objective genetic algorithm applications <strong>in</strong> MRS data <strong>in</strong>version .................................... 43<br />

Experimental verification of a 3D model for MRS ....................................................................................... 44<br />

Comparison of borehole and surface NMR-<strong>in</strong>ferred water content profiles.............................................. 45<br />

MRSMatlab <strong>–</strong> a toolbox for model<strong>in</strong>g, process<strong>in</strong>g, and <strong>in</strong>vert<strong>in</strong>g surface-NMR data ................................ 46<br />

Research<strong>in</strong>g vertical resolution of SNMR by us<strong>in</strong>g numerical simulation ................................................... 47<br />

Study on Factors Affect<strong>in</strong>g SNMR Vertical and Lateral Resolution ............................................................. 48<br />

Advances <strong>in</strong> hydrological parameterization................................................................. 49<br />

Recent advancements <strong>in</strong> NMR for characteriz<strong>in</strong>g <strong>the</strong> vadose zone ........................................................... 50<br />

Direct <strong>in</strong>version for water retention parameters from MRS mea-surements <strong>in</strong> <strong>the</strong> saturated/unsaturated<br />

zone <strong>–</strong> a sensitivity study ............................................................................................................................ 51<br />

MRS subsurface parametrization for coupled hydrological Marmites model ............................................ 52<br />

An efficient full coupled <strong>in</strong>version of aquifer test, MRS and TEM data ...................................................... 53<br />

The <strong>in</strong>tegration of logg<strong>in</strong>g and surface NMR for mapp<strong>in</strong>g spatial variation <strong>in</strong> hydraulic conductivity ...... 54<br />

Hard rock hydrogeophysics applied to hydrological model parameterization - Sardón catchment case<br />

study (Salamanca, Spa<strong>in</strong>)............................................................................................................................. 55<br />

A laboratory study to determ<strong>in</strong>e <strong>the</strong> effect of surface roughness and gra<strong>in</strong> diameter on NMR relaxation<br />

rates of glass bead packs. ............................................................................................................................ 57<br />

A numerical study of <strong>the</strong> relationship between NMR relaxation and permeability <strong>in</strong> materials with large<br />

pores ............................................................................................................................................................ 58<br />

A general model for predict<strong>in</strong>g hydraulic conductivity of unconsolidated material us<strong>in</strong>g nuclear magnetic<br />

resonance .................................................................................................................................................... 59<br />

Quantitative aquifer system characterization on Borkum island us<strong>in</strong>g jo<strong>in</strong>t <strong>in</strong>version of MRS and VES data<br />

..................................................................................................................................................................... 60<br />

Research and Practice of <strong>the</strong> Relationship between MRS Inversion Parameters and <strong>the</strong> Water Yield ...... 61<br />

Case studies ........................................................................................................................................ 62<br />

Exploit<strong>in</strong>g <strong>the</strong> phase <strong>in</strong>formation: examples from <strong>the</strong> Ne<strong>the</strong>rlands ........................................................... 63<br />

MRS and electrical prospection <strong>in</strong> <strong>the</strong> context of wea<strong>the</strong>red peridotite rocks <strong>in</strong> <strong>the</strong> South of New<br />

Caledonia. .................................................................................................................................................... 64<br />

MRS and borehole correlation <strong>in</strong> Denmark................................................................................................. 65<br />

Implementation of MRS <strong>in</strong> <strong>the</strong> Danish National Groundwater management ............................................ 66<br />

Feasibility study of <strong>the</strong> MRS monitor<strong>in</strong>g <strong>in</strong> a 3D hydrogeological structure: aquifer recharge from a pond<br />

<strong>in</strong> <strong>the</strong> Sahel (Niger) ...................................................................................................................................... 67<br />

Research on Gush<strong>in</strong>g Disaster Detection <strong>in</strong> Tunnel with <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g ......................... 68<br />

NMR Logg<strong>in</strong>g: A tool for quantify<strong>in</strong>g effective porosity and hydraulic conductivity with<strong>in</strong> <strong>the</strong> Murray<br />

Darl<strong>in</strong>g Bas<strong>in</strong> of Australia ............................................................................................................................ 69<br />

MRS study of water content variations <strong>in</strong> <strong>the</strong> unsaturated zone of a karst aquifer (sou<strong>the</strong>rn France) ..... 70<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

13


Investigat<strong>in</strong>g hydraulic properties of a glacial sand deposit <strong>in</strong> <strong>the</strong> north of Sweden ................................. 71<br />

Estmat<strong>in</strong>g regional groundwater reserve <strong>in</strong> a clayey sandstone aquifer of Cambodia. ............................. 72<br />

Application of underground magnetic resonance sound<strong>in</strong>g on advanced detection water-<strong>in</strong>duced disaster<br />

<strong>in</strong> 3D structure ............................................................................................................................................. 73<br />

Surface NMR applied to determ<strong>in</strong><strong>in</strong>g aquifer properties <strong>in</strong> <strong>the</strong> Central Platte River, central Nebraska .... 74<br />

Case studies of <strong>the</strong> MRS method <strong>in</strong> various geological backgrounds ......................................................... 75<br />

Jo<strong>in</strong>t use of MRS and TDEM for characteriz<strong>in</strong>g groundwater recharge <strong>in</strong> <strong>the</strong> Lake Chad bas<strong>in</strong> ................. 76<br />

Assessment of <strong>the</strong> use of surface NMR to detect <strong>in</strong>ternal erosion and pip<strong>in</strong>g <strong>in</strong> ear<strong>the</strong>n embankments . 77<br />

The Applications of MRS for detection of Groundwater-<strong>in</strong>duced disasters , <strong>in</strong> Ch<strong>in</strong>a ............................... 78<br />

Application of surface-NMR to study unfrozen sediments below lakes <strong>in</strong> permafrost regions ................. 79<br />

Usage of <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS) for atta<strong>in</strong><strong>in</strong>g hydrogeological profiles (Havelland,<br />

Brandenburg) .............................................................................................................................................. 80<br />

Calibration MRS Hydrodynamic Parameters Measurements from Pump<strong>in</strong>g Tests <strong>in</strong> Inner-Mongollia of<br />

Ch<strong>in</strong>a ............................................................................................................................................................ 81<br />

Characteristics and Examples of MRS Signals <strong>in</strong> Good Conductive Areas .................................................. 82<br />

The Experimental Study of MRS Method <strong>in</strong> Plateau Permafrost Region .................................................... 83<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

14


Measurement Technology<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

15


Novel Surface-NMR Pulse Sequences for Improved Estimation of Relaxation Times and<br />

Hydrogeologic Properties<br />

Novel Surface-NMR Pulse Sequences for Improved Estimation of Relaxation<br />

Times and Hydrogeologic Properties<br />

Elliot Grunewald and David Walsh<br />

Vista Clara, Inc., Mukilteo, Wash<strong>in</strong>gton, USA<br />

elliot@vista-clara.com<br />

Deriv<strong>in</strong>g robust estimates of hydrogeologic<br />

properties from NMR methods requires <strong>the</strong><br />

ability to accurately measure relaxation times<br />

that are sensitive to aquifer properties. While<br />

conventional surface-NMR (SNMR) free<strong>in</strong>duction<br />

decay (FID) methods reliably<br />

measure <strong>the</strong> effective transverse T2* relaxation<br />

time, this parameter is often dom<strong>in</strong>ated by<br />

<strong>in</strong>fluences from magnetic geology. The<br />

longitud<strong>in</strong>al T1 and transverse T2 relaxation<br />

times are known to exhibit more robust l<strong>in</strong>ks to<br />

permeability, but proposed approaches to<br />

measur<strong>in</strong>g <strong>the</strong>se parameters have shown<br />

considerable limitations. For example, <strong>the</strong><br />

pseudo-saturation-recovery (PSR) experiment<br />

for assess<strong>in</strong>g T1 yields a challeng<strong>in</strong>g and nonl<strong>in</strong>ear<br />

<strong>in</strong>version kernel, while <strong>the</strong> Hahn-sp<strong>in</strong>echo<br />

(HSE) for measur<strong>in</strong>g T2 is often still<br />

corrupted by magnetic <strong>in</strong>fluences. Recogniz<strong>in</strong>g<br />

<strong>the</strong>se limitations, we have developed new<br />

paradigms for pulse sequences to quantify T1<br />

and T2. A new “crush-recovery” (CR)<br />

sequence for measur<strong>in</strong>g T1 utilizes two pulses:<br />

a first “crush<strong>in</strong>g” pulse of fixed amplitude and<br />

a second, smaller “depth-profil<strong>in</strong>g” pulse with<br />

an amplitude varied between measurements.<br />

The first pulse does not generate true<br />

saturation (i.e., 90 o tip angles); ra<strong>the</strong>r, this<br />

<strong>in</strong>itial pulse acts to decoherently scatter <strong>the</strong><br />

magnetization spatially leav<strong>in</strong>g an effective<br />

saturated condition of zero net longitud<strong>in</strong>al<br />

magnetization over a range of shallow to<br />

<strong>in</strong>termediate depths. The second pulse, applied<br />

after a short delay, is used to profile, as a<br />

function of depth, <strong>the</strong> magnetization that<br />

recovers by T1 with<strong>in</strong> this crushed zone. The<br />

CR approach has many advantages to <strong>the</strong> PSR,<br />

as we demonstrate <strong>in</strong> syn<strong>the</strong>tic and real field<br />

experiments. A fixed amplitude for <strong>the</strong><br />

crush<strong>in</strong>g pulse provides constant <strong>in</strong>itial<br />

conditions, so signals recorded after <strong>the</strong> second<br />

pulse can be <strong>in</strong>verted us<strong>in</strong>g <strong>the</strong> standard<br />

SNMR imag<strong>in</strong>g kernel. Given a complete CR<br />

data set acquired for multiple delay times, <strong>the</strong><br />

<strong>in</strong>version yields both T1 and T2* as a function<br />

of depth. Fur<strong>the</strong>r, unique expression of <strong>the</strong><br />

covariance of <strong>the</strong>se times is exploited to obta<strong>in</strong><br />

2D T1-T2* mapped distributions. The CR<br />

approach, however, does share some common<br />

limitations with all previously demonstrated<br />

SNMR pulse sequences. Specifically, <strong>the</strong><br />

duration of <strong>the</strong> recorded signals are<br />

fundamentally constra<strong>in</strong>ed by <strong>the</strong> duration of<br />

T2*, and all double-pulse sequences for T1 or<br />

T2 require repeated experiments with varied<br />

<strong>in</strong>terpulse delay times. Ultimately, <strong>the</strong>se<br />

factors result <strong>in</strong> very long acquisition times,<br />

especially for conditions of low SNR and short<br />

T2*. We overcome all <strong>the</strong>se limitations with<br />

<strong>the</strong> first-ever development and field<br />

demonstration of a SNMR CPMG sequence.<br />

As <strong>in</strong> borehole CPMG measurements, this new<br />

approach uses a tra<strong>in</strong> of N appropriately phasecycled<br />

pulses to produce a tra<strong>in</strong> of N-1 echoes<br />

<strong>in</strong> a s<strong>in</strong>gle record. We present real CPMG<br />

field data, <strong>in</strong>clud<strong>in</strong>g one dataset <strong>in</strong> which six<br />

echoes are recorded a s<strong>in</strong>gle one-second long<br />

measurement. These data yield robust<br />

determ<strong>in</strong>ation of T2 versus depth <strong>in</strong> greatly<br />

reduced acquistion times and with limited<br />

sensitivity to magnetic geology that may<br />

potentially be used to probe fluid diffusion<br />

dynamics. These developments and cont<strong>in</strong>ued<br />

advancements <strong>in</strong> pulse sequences will provide<br />

substantial improvements <strong>in</strong> groundwater<br />

characterization by non-<strong>in</strong>vasive SNMR.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

16


Design and Experimental study of Small MRS Antenna for Underground Applications<br />

Design and Experimental study of Small MRS Antenna for Underground<br />

Applications<br />

Yi Xiaofeng, L<strong>in</strong> Jun, Duan Q<strong>in</strong>gm<strong>in</strong>g, Wang Y<strong>in</strong>gji, Fan Tiehu<br />

College of Instrumentation and Electrical Eng<strong>in</strong>eer<strong>in</strong>g / Key laboratory of Geo-exploration Instrumentation, M<strong>in</strong>istry of<br />

Education, Jil<strong>in</strong> University, Jil<strong>in</strong> 130061,Ch<strong>in</strong>a<br />

L<strong>in</strong>_jun@jlu.edu.cn; Yixiaofeng1985@126.com<br />

Tunnel traffic, coal m<strong>in</strong><strong>in</strong>g or o<strong>the</strong>r<br />

underground facilities constructions would<br />

<strong>in</strong>duce , water <strong>in</strong>rush, gush<strong>in</strong>g mud or collapse<br />

water disease problem. This worldwide crisis<br />

could cause serious accidents, and even<br />

catastrophic consequences. By restriction of<br />

complex geology and hydrology condition, <strong>the</strong><br />

traditional methods, such as TSP, TRT, TST<br />

and TEM cannot directly detect <strong>the</strong> water<br />

disaster because of its own pr<strong>in</strong>ciple limit.<br />

MRS technology as a direct detection method<br />

for water plays an important role on<br />

groundwater eng<strong>in</strong>eer<strong>in</strong>g. As MRS signal is<br />

produced uniquely by water, multiplicity of<br />

solutions can not exist. And its measurement<br />

process has advantages of high speed, high<br />

accuracy, abundant <strong>in</strong>formation and can<br />

<strong>in</strong>dicate <strong>the</strong> water burst<strong>in</strong>g accident type,<br />

enabl<strong>in</strong>g this method has a good development<br />

prospect <strong>in</strong> underground disaster water<br />

forecast .<br />

To date, <strong>the</strong> research of small coil for MRS<br />

just beg<strong>in</strong>s. Jesus Diaz-Curiel etc have used an<br />

octagon coil with side of 6 meter or 10 meter<br />

to detect shallow and very shallow<br />

groundwater. However <strong>the</strong> coil diameter is not<br />

small enough for most of <strong>the</strong> underground<br />

cases. J.M. Greben etc have used 2 meter<br />

square coil for advanced detection water <strong>in</strong><br />

m<strong>in</strong>e, unfortunately because of some<br />

conditions restrict, this coil did not receive<br />

MRS signal. Based on <strong>the</strong> above researches, a<br />

design and optimization method for MRS<br />

detection antenna apply<strong>in</strong>g for <strong>the</strong> demarcate<br />

space as tunnel and m<strong>in</strong><strong>in</strong>g is <strong>in</strong>troduced <strong>in</strong> this<br />

paper. By improv<strong>in</strong>g <strong>the</strong> property parameters<br />

of coil, we could enhance <strong>the</strong> received ability<br />

of small MRS antenna and streng<strong>the</strong>n <strong>the</strong><br />

magnetic field. The improved equipment has<br />

been used to field measurement on a<br />

simulation site, and <strong>the</strong> results prove <strong>the</strong><br />

validity of small MRS antenna design method.<br />

As <strong>the</strong> transimtter and receiver coils are<br />

separated, <strong>the</strong>y are designed <strong>in</strong>dependently to<br />

satisfy <strong>in</strong>dividual requirements <strong>in</strong> fur<strong>the</strong>st. For<br />

design of receiver coil, us<strong>in</strong>g <strong>the</strong> unique<br />

multilayer coil enw<strong>in</strong>d<strong>in</strong>g form can reduce <strong>the</strong><br />

coil impedance parameters and improve <strong>the</strong><br />

coil transfer characteristics. The simulation<br />

tests confirmed that this method can make <strong>the</strong><br />

transfer coefficient <strong>in</strong>creases to 7.2 and 4.6 for<br />

a coil with diameter of 6 meter and 2 meter,<br />

respectively, which meets <strong>the</strong> requirements of<br />

MRS signal receiver <strong>in</strong> tunnel or m<strong>in</strong>e. For<br />

design of transimitter coil, a transimitter<br />

system is constructed of multiple layers of<br />

<strong>in</strong>dependent coil, which uses <strong>the</strong> layered driver<br />

way to streng<strong>the</strong>n small coil excitation field<br />

energy efficiency and improve <strong>the</strong> quality of<br />

transmitter waveform. The experiments<br />

confirm that <strong>the</strong> energy utilization ratio for a<br />

coil of 6 meter diameter is improved from 0.35<br />

to 0.57, rectangular coefficient reaches 0.85<br />

and t for a coil of 2 meter diameter, <strong>the</strong> energy<br />

utilization ratio is improved from 0.24 to 0.49,<br />

rectangular coefficient reaches 0.78.<br />

Base on <strong>the</strong> commercial JLMRS-I <strong>in</strong>strument<br />

we improved and optimize <strong>the</strong> measurement<br />

system. A field test <strong>in</strong> Changchun, has <strong>the</strong>n<br />

been conducted us<strong>in</strong>g <strong>the</strong> improved apparatus..<br />

Detection results show that <strong>the</strong> coil<br />

optimization design method can get effective<br />

MRS signal from a certa<strong>in</strong> depth of<br />

groundwater. The proposed design method and<br />

conclusions provide guidance for <strong>the</strong> coil<br />

design and <strong>in</strong>strument optimal <strong>in</strong> limited<br />

measur<strong>in</strong>g space and a new possibility to<br />

expand <strong>the</strong> application range of MRS<br />

technology.<br />

References<br />

Greben J M, Meyer R, Kimmie Z. The underground<br />

application of <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>gs[J].<br />

Journal of Applied Geophysics, 2011,75: 220-226.<br />

Jesús Díaz-Curiel, Bárbara Biosca, Lucía Arévalo,et<br />

al.Development of field techniques for improv<strong>in</strong>g<br />

MRS quality <strong>in</strong> shallow <strong>in</strong>vestigations.Near Surface<br />

Geophysics,2011,9:113-121.<br />

Xue Guo-Qiang,LI Xiu. The technology of TEM tunnel<br />

prediction imag<strong>in</strong>g. Ch<strong>in</strong>ese Journal of Geophysics,<br />

2008,51(3)894:900<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

17


Detection Coils for Near-Surface Earth’s Field NMR<br />

E. Fukushima, A. F. McDowell, T. Z. Zhang, S. A. Altobelli<br />

ABQMR, Albuquerque, New Mexico, USA<br />

mcdowell@abqmr.com<br />

At present, Earth’s Field NMR from <strong>the</strong><br />

surface of <strong>the</strong> Earth (that is, Surface NMR) is<br />

used to detect significant volumes of water or<br />

organic pollutants at depths roughly<br />

comparable to <strong>the</strong> coil’s horizontal extent.<br />

However, <strong>the</strong>re are applications that require<br />

<strong>the</strong> detection signals from shallower depths.<br />

For example, <strong>the</strong> detection of oil that has<br />

escaped under Artic sea ice, or <strong>the</strong><br />

determ<strong>in</strong>ation of soil water content <strong>in</strong> <strong>the</strong><br />

vadose zone. The usual Surface NMR<br />

detection coils are not particularly suited for<br />

<strong>the</strong>se shallower depths; improvements that<br />

yield <strong>in</strong>creases <strong>in</strong> both SNR and depth<br />

resolution are needed.<br />

We have developed a new flat coil design to<br />

address <strong>the</strong>se issues. In traditional high field<br />

NMR, <strong>the</strong>re have been many attempts to<br />

optimize coils designs for unilateral<br />

applications and, <strong>in</strong> addition, to flat, th<strong>in</strong>,<br />

samples or sampled regions. The common<br />

simple loop is optimal for a sample region that<br />

is approximately a radius away from <strong>the</strong> loop,<br />

thus not ideally suited for a very th<strong>in</strong> sample<br />

region, close to <strong>the</strong> coil. The meanderl<strong>in</strong>e coil<br />

can have good senetivity and position<br />

resolution, but it is designed for flat samples<br />

oriented along <strong>the</strong> static field, not <strong>the</strong><br />

orientation that is common for EFNMR. An<br />

improved coil should have a flat, sensitive<br />

region that is close to <strong>the</strong> coil with high and<br />

flat specific sensitivity profile.<br />

Our coil consists of physically parallel wires<br />

connected <strong>in</strong> series and spread out over a flat<br />

substrate. The current return wires are placed<br />

on <strong>the</strong> same substrate but displaced to <strong>the</strong> sides<br />

to m<strong>in</strong>imize <strong>the</strong>ir contributions to <strong>the</strong> sensitive<br />

region of <strong>the</strong> coil. We have built an example<br />

of such a coil hav<strong>in</strong>g 82 parallel wires <strong>in</strong> <strong>the</strong><br />

center with <strong>the</strong> return wires bundled at <strong>the</strong><br />

edges of <strong>the</strong> ~1 meter square plywood<br />

substrate. A s<strong>in</strong>gle turn of <strong>the</strong> coil is<br />

topologically a figure-8, with <strong>the</strong> loops of <strong>the</strong> 8<br />

tak<strong>in</strong>g <strong>the</strong> form of rectangles. The two straight<br />

segments <strong>in</strong> <strong>the</strong> center constitute two of <strong>the</strong><br />

multiple parallel wires of <strong>the</strong> flat coil. A<br />

Detection Coils for Near-Surface Earth’s Field NMR<br />

simple extension to a two-turn figure-8 results<br />

<strong>in</strong> four parallel wires <strong>in</strong> <strong>the</strong> central region of<br />

<strong>the</strong> coil. For <strong>the</strong> 82 wire model coil, each<br />

straight wire is displaced on <strong>the</strong> plywood so<br />

nearly <strong>the</strong> entire board is covered.<br />

This 1 m 2 coil has been used <strong>in</strong> <strong>the</strong> field to<br />

detect EFNMR signals from water placed<br />

directly on top of <strong>the</strong> coil structure. These<br />

detections typically require only a few m<strong>in</strong>utes<br />

to achieve. The sentivitiy of <strong>the</strong> coil drops<br />

with distance from <strong>the</strong> coil structure, so <strong>the</strong><br />

detection of signals from <strong>the</strong> sub-surface will<br />

require larger coils. The sensitivity profile of<br />

<strong>the</strong> coil is relatively flat for depths small<br />

compared to <strong>the</strong> lateral extent of <strong>the</strong> coil, a<br />

property which will enable depth profil<strong>in</strong>g.<br />

Alternatively, <strong>the</strong> flat sensitivity profile can be<br />

used to optimize <strong>the</strong> coil for <strong>the</strong> detection of a<br />

th<strong>in</strong> layer of oil float<strong>in</strong>g on water under ice.<br />

A virtue of <strong>the</strong> flat coil consist<strong>in</strong>g of multiple<br />

figure-8 w<strong>in</strong>d<strong>in</strong>gs is its relative immunity to<br />

magnetic <strong>in</strong>terference such as from distant<br />

power l<strong>in</strong>es. The sensitivity to <strong>in</strong>terference can<br />

be adjusted after placement of <strong>the</strong> coil by<br />

ei<strong>the</strong>r mov<strong>in</strong>g <strong>the</strong> wires or by adjust<strong>in</strong>g<br />

conduct<strong>in</strong>g paddles <strong>in</strong> <strong>the</strong> spaces between <strong>the</strong><br />

ma<strong>in</strong> wires and <strong>the</strong> returns.<br />

This project is funded by Exxon Mobil Upstream<br />

Research Company to develop technology to detect<br />

spilled/leaked oil caught under Arctic sea ice. We<br />

also acknowledge assistance <strong>in</strong> coil w<strong>in</strong>d<strong>in</strong>g and<br />

test<strong>in</strong>g by J. Bench, D. Kue<strong>the</strong>, and N. Sowko.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

18


Quantify<strong>in</strong>g Background <strong>Magnetic</strong> Field Inhomogeneity Us<strong>in</strong>g Composite Pulses:<br />

Estimat<strong>in</strong>g T2 from T2* by Correct<strong>in</strong>g for Static Dephas<strong>in</strong>g<br />

Quantify<strong>in</strong>g Background <strong>Magnetic</strong> Field Inhomogeneity Us<strong>in</strong>g Composite<br />

Pulses: Estimat<strong>in</strong>g T2 from T2* by Correct<strong>in</strong>g for Static Dephas<strong>in</strong>g<br />

Denys Grombacher 1 , Jan O. Walbrecker 1 , Rosemary Knight 1<br />

1 Department of Geophysics, Stanford University<br />

denysg@stanford.edu<br />

Surface Nuclear <strong>Magnetic</strong> <strong>Resonance</strong> (SNMR)<br />

measurements typically <strong>in</strong>volve <strong>the</strong><br />

application of a s<strong>in</strong>gle perturb<strong>in</strong>g B1 pulse and<br />

<strong>the</strong> monitor<strong>in</strong>g of <strong>the</strong> sp<strong>in</strong> magnetization’s<br />

subsequent return to equilibrium. This<br />

measured decay, called <strong>the</strong> free <strong>in</strong>duction<br />

decay (FID), is governed by <strong>the</strong> relaxation time<br />

T2*. Although T2* conta<strong>in</strong>s <strong>in</strong>formation about<br />

<strong>the</strong> surface area to volume ratio (S/V), it<br />

rema<strong>in</strong>s very susceptible to dephas<strong>in</strong>g caused<br />

by <strong>the</strong> presence of background magnetic field<br />

<strong>in</strong>homogeneity. This dephas<strong>in</strong>g mechanism<br />

decreases <strong>the</strong> sensitivity of T2* to S/V.<br />

Grunewald and Knight (2011) have<br />

demonstrated that <strong>in</strong> many cases T2* does not<br />

carry sensitivity to S/V. This may lead to<br />

errors when us<strong>in</strong>g T2* to estimate hydraulic<br />

conductivity, as <strong>the</strong> relation between relaxation<br />

times and hydraulic conductivity is based on<br />

<strong>the</strong> underly<strong>in</strong>g assumption that <strong>the</strong> relaxation<br />

times carry a direct l<strong>in</strong>k to S/V.<br />

In order to allow for <strong>the</strong> estimation of S/V<br />

from an FID measurement, we develop a<br />

methodology to quantify, and correct for, <strong>the</strong><br />

component of <strong>the</strong> measured FID that is due to<br />

dephas<strong>in</strong>g. A suite of composite pulses is<br />

designed to characterize <strong>the</strong> <strong>in</strong>homogeneity of<br />

<strong>the</strong> background magnetic field. By <strong>in</strong>vert<strong>in</strong>g<br />

<strong>the</strong> variation of <strong>the</strong> FID amplitude and phase<br />

follow<strong>in</strong>g each composite pulse, we are able to<br />

predict <strong>the</strong> background magnetic field<br />

distribution. We use <strong>the</strong> predicted field<br />

distribution to quantify and remove <strong>the</strong><br />

component of static dephas<strong>in</strong>g present <strong>in</strong> <strong>the</strong><br />

measured FID. This allows <strong>the</strong> T2 decay,<br />

which can be related to S/V, to be predicted<br />

us<strong>in</strong>g only FID measurements.<br />

Each composite pulses utilized <strong>in</strong> this study<br />

consist of two <strong>in</strong>dividual pulses and is def<strong>in</strong>ed<br />

by 1) <strong>the</strong> flip angle of each <strong>in</strong>dividual pulse, 2)<br />

<strong>the</strong> delay time between pulses, and 3) <strong>the</strong><br />

relative phase of <strong>the</strong> two pulses. By limit<strong>in</strong>g<br />

ourselves to two pulses we reta<strong>in</strong><br />

compatiibility with SNMR. We used a suite of<br />

11 composite pulses was used to predict <strong>the</strong><br />

background magnetic field distribution for<br />

several samples <strong>in</strong> a controlled laboratory<br />

environment. For all samples, <strong>the</strong> predicted T2<br />

distributions (after correct<strong>in</strong>g for dephas<strong>in</strong>g) fit<br />

much more closely <strong>the</strong> true T2 distribution<br />

(measured us<strong>in</strong>g a CPMG) than do <strong>the</strong> T2*<br />

distributions (from FID measurements). This<br />

methodology may provide a means of<br />

correct<strong>in</strong>g for <strong>the</strong> static dephas<strong>in</strong>g that arises<br />

due to background field <strong>in</strong>homogeneity,<br />

potentially lead<strong>in</strong>g to subsequent<br />

improvements <strong>in</strong> <strong>the</strong> reliability of hydraulic<br />

conductivity estimates from SNMR.<br />

References<br />

Grunewald, E., Knight, R. (2011): The effect of<br />

pore size and magnetic susceptibility on <strong>the</strong><br />

surface NMR relaxation parameter T2*. Near<br />

Surface Geophysics, 9.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

19


Modell<strong>in</strong>g NMR signal for compact sensors<br />

Aaron Davis and James Macnae<br />

CSIRO and RMIT Universivty<br />

aaron.davis@csiro.au and james.macnae@rmit.edu.au<br />

Recent advances have <strong>in</strong>creased <strong>the</strong> signal to<br />

noise ratio of EM B and dB/dt sensors<br />

remarkably. By tun<strong>in</strong>g sensors for <strong>the</strong> low<br />

frequencies appropriate to earth-field NMR<br />

signal, it is <strong>the</strong>oretically possible to use <strong>the</strong>m<br />

<strong>in</strong> geophysical applications for <strong>the</strong><br />

<strong>in</strong>vesitgation of groundwater <strong>in</strong> <strong>the</strong> subsurface<br />

of <strong>the</strong> earth. In this paper, we model <strong>the</strong><br />

response of compact B and dB/dt sensors such<br />

as <strong>the</strong> 'NMARMIT' sensor (Macnae, 2012).<br />

We revisit <strong>the</strong> work of Weichman et al (2000)<br />

to generalise <strong>the</strong> <strong>the</strong>ory of surface NMR to<br />

account for compact sensors arrayed on <strong>the</strong><br />

surface of <strong>the</strong> earth. Our <strong>the</strong>ory is appropriate<br />

for any loop shape and conductivity structure.<br />

By simultanoeusly monitor<strong>in</strong>g <strong>the</strong> current<br />

pulse of <strong>the</strong> transmit loop and <strong>the</strong> NMR<br />

response <strong>in</strong> B and dB/dt, we demonstrate <strong>the</strong><br />

<strong>the</strong>oretical feasability of <strong>the</strong>se sensors to<br />

Modell<strong>in</strong>g NMR signal for compact sensors<br />

measure NMR signal <strong>in</strong> three dimensions with<br />

zero delay time.<br />

Through forward modell<strong>in</strong>g of <strong>the</strong> physical<br />

response, we show that deployment of sensor<br />

arrays can be used to detect complex<br />

distribution of water <strong>in</strong> <strong>the</strong> earth; and that it<br />

*<br />

should be possible to measure both T1 and T 2<br />

<strong>in</strong> a rout<strong>in</strong>e NMR tomography measurement <strong>in</strong><br />

<strong>the</strong> same time that it takes to do a conventional<br />

sNMR sound<strong>in</strong>g.<br />

References<br />

Macnae, J, 2012. A new generation of EM sensors,<br />

ASEG conference extended abstracts, Brisbane.<br />

Weichman, P.B., Lavely, E.M., and Ritzwoller,<br />

M.H., 2000. Thoery of surface nuclear magnetic<br />

resonance with applications to geophysical<br />

imag<strong>in</strong>g problems: Physical Review E, 62, 1,<br />

1290<strong>–</strong>1312.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

20


3 component NMR with NMARMIT sensors<br />

Janmes Macnae & Aaron Davis<br />

RMIT University and CSIRO<br />

James.macnae@rmit.edu.au & aaron.davis@csiro.au<br />

Recent developments <strong>in</strong> m<strong>in</strong>eral exploration<br />

have shown that compact B and dB/dt sensors<br />

(<strong>in</strong> particular <strong>the</strong> ARMIT sensor designed at<br />

RMIT University with fund<strong>in</strong>g from Abitibi<br />

Geophysics) based on monitor<strong>in</strong>g currents <strong>in</strong> a<br />

perfect conductor can achieve lower noise<br />

levels than High Temperature SQUIDS.<br />

(Macnae, 2012). Noise levels achieved around<br />

2 kHz are roughly equivalent to those <strong>in</strong> <strong>the</strong><br />

large loops commonly used as NMR receivers,<br />

with sensitivities better than 100fT.<br />

Optimisation of <strong>the</strong>se sensors for <strong>the</strong> NMR<br />

bandwidth and signals has produced <strong>the</strong><br />

“NMARMIT” sensor.<br />

The NMARMIT sensor measures<br />

simultaneously B and dBdt signals, with <strong>the</strong><br />

respective ga<strong>in</strong>s adjusted to ouput similar<br />

voltages for 1 kHz signals. They are effectively<br />

l<strong>in</strong>ear, and do not require any “recovery time’<br />

after saturation. They are thus suitable for<br />

field use for record<strong>in</strong>g low amplitude NMR<br />

signals immediately after <strong>the</strong> transmission<br />

pulse<br />

With careful alignment, horizontal component<br />

receivers are null-coupled to <strong>the</strong> primary<br />

magnetic field of a nearby (coplanar and<br />

perfectly horizontal) transmitter. This nullcoupl<strong>in</strong>g<br />

allows <strong>in</strong> <strong>the</strong>ory cont<strong>in</strong>uous record<strong>in</strong>g<br />

of <strong>the</strong> secondary NMR response dur<strong>in</strong>g proton<br />

excitation (sp<strong>in</strong>-up) and decay (sp<strong>in</strong> down)<br />

without <strong>the</strong> “dead-time” when <strong>the</strong> same loop is<br />

used for transmission and sens<strong>in</strong>g. In practice,<br />

coupl<strong>in</strong>g is never perfect, and some primary<br />

signal is seen <strong>in</strong> secondary record<strong>in</strong>gs.<br />

3 component NMR with NMARMIT sensors<br />

The first tests of <strong>the</strong> sensors (all 3 components,<br />

measur<strong>in</strong>g B and dB/dt) <strong>in</strong> Australia with a<br />

low-amplitude pulsed waveform transmitter<br />

have shown that <strong>the</strong>y may be capable of<br />

detect<strong>in</strong>g NMR signals associated with nearsurface<br />

water, and could map 2D changes<br />

around <strong>the</strong> edge of a dam surrounded by a<br />

transmitter. Fur<strong>the</strong>r tests with more powerful<br />

NMR transmitters are planned <strong>in</strong> <strong>the</strong> very near<br />

future.<br />

The new sensors, be<strong>in</strong>g compact and<br />

<strong>in</strong>expensive, can be arranged <strong>in</strong> an array,<br />

allow<strong>in</strong>g detailed spatial mapp<strong>in</strong>g of secondary<br />

NMR fields from each transmitter layout.<br />

Us<strong>in</strong>g exist<strong>in</strong>g <strong>in</strong>struments such as<br />

SmartEM24, up to 16 sensors can be<br />

simultaneously sampled. With 3 spatial<br />

components be<strong>in</strong>g sampled, it may be possible<br />

to separate T1 from T2* signals through<br />

resolv<strong>in</strong>g <strong>the</strong> spatial orientation of <strong>the</strong> source<br />

proton dipole moments.<br />

Modell<strong>in</strong>g (companion paper by Davis and<br />

Macnae, this conference) suggests that<br />

significant <strong>in</strong>creases <strong>in</strong> (a) vertical and spatial<br />

resolution of water and (b) survey productivity<br />

will occur if <strong>the</strong> use of <strong>the</strong> distributed<br />

NMARMIT sensors are used.<br />

References<br />

Macnae, J, 2012, A new generation of EM sensors,<br />

ASEG conference extended abstracts, Brisbane<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

21


Development of a novel MRS-TEM comb<strong>in</strong>ed <strong>in</strong>strument for improv<strong>in</strong>g MRS capacity <strong>in</strong><br />

groundwater <strong>in</strong>vestigations<br />

Development of a novel MRS-TEM comb<strong>in</strong>ed <strong>in</strong>strument for improv<strong>in</strong>g<br />

MRS capacity <strong>in</strong> groundwater <strong>in</strong>vestigations<br />

L<strong>in</strong> T<strong>in</strong>g-t<strong>in</strong>g, Wan L<strong>in</strong>g, Shang X<strong>in</strong>-lei, Shi Wen-long, L<strong>in</strong> Jun<br />

College of Instrumentation and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun, 130061, Ch<strong>in</strong>a<br />

ttl<strong>in</strong>@jlu.edu.cn ; cc56788@163.com<br />

In this paper we outl<strong>in</strong>e <strong>the</strong> technical<br />

specifications and capabilities of <strong>the</strong> MRS-<br />

TEM comb<strong>in</strong>ed system. We <strong>in</strong>itially<br />

demonstrate <strong>the</strong> high efficiency of <strong>the</strong> novel<br />

MRS-TEM <strong>in</strong>strument and its work<strong>in</strong>g models.<br />

Specifically, <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>version scheme of both<br />

MRS and TEM data sets for detect<strong>in</strong>g shallow<br />

and deeper aquifers (>150 m) were<br />

demonstrated <strong>in</strong> detail. This algorithm is used<br />

for enhanc<strong>in</strong>g spatial resolution to a<br />

quantitative <strong>in</strong>terpretation of <strong>the</strong> groundwater<br />

contents than us<strong>in</strong>g each method respectively.<br />

F<strong>in</strong>ally, we present <strong>the</strong> results of some recent<br />

groundwater <strong>in</strong>vestigations conducted <strong>in</strong> Ch<strong>in</strong>a<br />

and Mongolia.<br />

Instrumentation<br />

The comb<strong>in</strong>ed groundwater detection system is<br />

designed based on <strong>the</strong> pr<strong>in</strong>ciples of magnetic<br />

resonance sound<strong>in</strong>g (MRS) and transient<br />

electromagnetic (TEM). Both MRS module<br />

and TEM module are <strong>in</strong>tegrated with<strong>in</strong> one<br />

<strong>in</strong>strument conta<strong>in</strong>er. They compatibly share<br />

one ADC, one DC-DC convertor and one CPU<br />

to accomplish <strong>in</strong>dividual function. Aslo, a<br />

designed FPGA is capable of generat<strong>in</strong>g each<br />

transmit time sequence. Hence, by us<strong>in</strong>g<br />

different comb<strong>in</strong>ations of Tx/Rx loops, high<br />

work<strong>in</strong>g effeiciency for 1D/2D groundwater<br />

<strong>in</strong>vestigation could be expected when<br />

switch<strong>in</strong>g work<strong>in</strong>g status.<br />

When work<strong>in</strong>g at MRS mode, <strong>the</strong><br />

excitation pulse moment of <strong>the</strong> transmitter can<br />

exceeds to 20000 A·ms with 40ms of transmit<br />

time, allow<strong>in</strong>g <strong>the</strong> <strong>in</strong>strument produces<br />

maximum AC current pluses <strong>in</strong> excess of 500<br />

A. Additionally, by us<strong>in</strong>g special design of<br />

bilateral diode, <strong>the</strong> dead-time of this <strong>in</strong>strument<br />

can be shortened to a m<strong>in</strong>imum value of 17ms.<br />

The receiver circuit background noise is 1<br />

nV/sqrt (Hz) at 100Hz.<br />

The maximum detection depth could be<br />

reached to 300m when <strong>the</strong> <strong>in</strong>strument works at<br />

TEM mode. The turn off time is decreased to<br />

1µs, enabl<strong>in</strong>g plenty of <strong>in</strong>formation to be<br />

received for <strong>the</strong> post data <strong>in</strong>terpretation.<br />

Jo<strong>in</strong>t <strong>in</strong>version algorithms<br />

Initially, <strong>the</strong> MRS response curves were<br />

<strong>in</strong>verted us<strong>in</strong>g half-spaces with <strong>the</strong> resistivities<br />

of 500Ωm, 100 Ωm, 50Ωm, 10Ωm, and 1Ωm,<br />

respectively. This step allows estimation of <strong>the</strong><br />

error <strong>in</strong> determ<strong>in</strong>e <strong>the</strong> water content caused by<br />

<strong>the</strong> changes of <strong>the</strong> resistivity of <strong>the</strong> subsurface.<br />

The water content and layer boundaries are<br />

<strong>the</strong>n determ<strong>in</strong>ed for <strong>the</strong> first time by <strong>the</strong> block<br />

method. With <strong>the</strong> fix thickness to be <strong>the</strong> <strong>in</strong>itial<br />

parameters of <strong>the</strong> TEM <strong>in</strong>version method, <strong>the</strong><br />

resisitivities of <strong>the</strong> aquifer could be reached<br />

after repeated iteration. The forward kernel<br />

function was <strong>the</strong>n caculated with <strong>the</strong> update<br />

resisitivities as well as <strong>the</strong> layer boundaries.<br />

The iteration process could be term<strong>in</strong>ated until<br />

<strong>the</strong> calculate rms of both methods is below <strong>the</strong><br />

m<strong>in</strong>imum correspond<strong>in</strong>g value. Simulation of<br />

<strong>the</strong> two-six layer results show <strong>the</strong> new<br />

<strong>in</strong>version schemes can separate water bear<strong>in</strong>g<br />

layers with accuracy depth.<br />

Field example<br />

Experimental results are presented for recent<br />

MRS-TEM groundwater <strong>in</strong>vestigations<br />

conducted <strong>in</strong> Ch<strong>in</strong>a and Mongolia.<br />

References<br />

Braun, M., Yaramanci, U. (2008) : Inversion of<br />

resistivity <strong>in</strong> <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g.<br />

Journal of applied geophysics, 66(3-4): 151-164.<br />

Chalikakis, K., Nielsen, M.R., Legchenko,<br />

A.(2008) MRS applicability for a study of glacial<br />

sedimentary aquifers <strong>in</strong> Central Jutland,<br />

Denmark. Journal of applied geophysics, 66(3-<br />

4): 176-187.<br />

Legchenko, A., Ezersky, M., Camerlynck, C.<br />

(2009): Jo<strong>in</strong>t use of TEM and MRS methods <strong>in</strong> a<br />

complex geological sett<strong>in</strong>g. Comptes rendus<br />

geoscience, 341(10-11):908-917.<br />

L<strong>in</strong>, J., Duan, Q.M., Wang, Y.j.(2009): A<br />

<strong>in</strong>strument with nuclear magnetic resonance<br />

and TEM and <strong>the</strong>ir methods. Ch<strong>in</strong>a patent<br />

200610017226.8<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

22


Aquater MRS <strong>in</strong>strument<br />

Oleg A. Shushakov 1, 2 , Dmitry L. Bizyaev 3 , Dmitry B. Poluboyarov 3<br />

1) Institute of Chemical K<strong>in</strong>etics and Combustion SB RAS, Novosibirsk, Russia<br />

2) Novosibirsk State University, Novosibirsk, Russia<br />

3) Center of manufactur<strong>in</strong>g application LTD<br />

aquater@ngs.ru<br />

The magnetic-resonance sound<strong>in</strong>g (MRS) or<br />

<strong>the</strong> surface nuclear magnetic resonance<br />

(SNMR) can be used to unambiguously detect<br />

subsurface water <strong>in</strong> suitable geological<br />

formations (aquifers) down to a depth of <strong>the</strong><br />

order of 100 meters depend<strong>in</strong>g on <strong>the</strong> antenna<br />

size, formation electrical conductivity,<br />

resonant frequency, and <strong>the</strong> presence of natural<br />

or cultural electromagnetic noise.<br />

Ma<strong>the</strong>matical rout<strong>in</strong>es yield depth distributions<br />

of water, provided that water is present <strong>in</strong><br />

horizontal layers, namely <strong>in</strong> its pores or<br />

fractures. Determ<strong>in</strong>ation of pore size<br />

distributions is possible us<strong>in</strong>g MRS relaxation<br />

time measurement. The frequency of magnetic<br />

resonance <strong>in</strong> <strong>the</strong> case be<strong>in</strong>g considered<br />

amounts to several kilohertz, <strong>the</strong> dead time of<br />

<strong>the</strong> <strong>in</strong>strumentation <strong>–</strong> several milliseconds or<br />

tens of milliseconds. Water <strong>in</strong> extremely small<br />

pores of water-resist<strong>in</strong>g rocks (e.g., <strong>in</strong><br />

argillaceous grounds), chemically bound,<br />

crystallization or frozen water has smaller<br />

times of sp<strong>in</strong> relaxation and is not registered.<br />

Weston Anderson from Varian Associates<br />

first <strong>in</strong>troduced <strong>the</strong> surface NMR method [1].<br />

Semenov et al. first designed <strong>the</strong> MRS tool [2].<br />

The first MRS <strong>in</strong>strument, <strong>the</strong> Hydroscope has<br />

been made <strong>in</strong> late 80th at <strong>the</strong> Institute of<br />

Chemical K<strong>in</strong>etics and Combustion,<br />

Novosibirsk, Russia [3].<br />

The NUMIS (IRIS Instruments, Orleans,<br />

France) first made <strong>in</strong> late 90th is <strong>the</strong> most<br />

widely used MRS <strong>in</strong>strument [4].<br />

Output 250A*40ms<br />

(150m circle,<br />

2500Hz)<br />

Aquater MRS <strong>in</strong>strument<br />

Hidroscope NUMIS Poly<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

600A*40ms<br />

(100m<br />

square,<br />

frequency-?)<br />

Power supply 4x12V 2x12V<br />

Weight (kg) 100 105<br />

Max. depth of<br />

prospect<strong>in</strong>g (m)<br />

120 150<br />

Table 1. Basic parameters of <strong>the</strong> Hydroscope and<br />

NUMIS <strong>in</strong>struments.<br />

Table 1 compares <strong>the</strong> basic parameters of <strong>the</strong><br />

modern Hydroscope and NUMIS <strong>in</strong>struments.<br />

Never<strong>the</strong>less, 15 years (or even 25 years) of<br />

<strong>the</strong> MRS application displayed a number of<br />

significant problems:<br />

1) sensitivity to electromagnetic noise;<br />

2) <strong>in</strong>sufficient depth of prospect<strong>in</strong>g;<br />

3) <strong>in</strong>correct physical model used both <strong>in</strong><br />

<strong>the</strong> NUMIS and <strong>in</strong> <strong>the</strong> Hydroscope.<br />

Research is underway to determ<strong>in</strong>e if <strong>the</strong> MRS<br />

<strong>in</strong>struments currently used can be modified to<br />

solve <strong>the</strong>se problems. The novel Aquater MRS<br />

<strong>in</strong>strument is <strong>in</strong>troduced.<br />

References<br />

1. Varian R.H. (1962) Ground liquid prospect<strong>in</strong>g<br />

method and apparatus. US. Patent 3019383.<br />

2. Semenov A.G., Pusep A.Yu., and Schirov M.D.<br />

(1982) Hydroscope - an <strong>in</strong>stallation for<br />

prospect<strong>in</strong>g without drill<strong>in</strong>g. Prepr<strong>in</strong>t USSR<br />

Acad. Sci., Novosibirsk, 26 pp. (<strong>in</strong> Russian).<br />

3. http://www.k<strong>in</strong>etics.nsc.ru/results/paper47.html<br />

4. http://www.iris<strong>in</strong>struments.com/Product/Brochure/Numis.html<br />

23


One-Dimensional Theoretical Research on MRS Excited by F<strong>in</strong>ite Current Wire<br />

One-Dimensional Theoretical Research on MRS Excited by F<strong>in</strong>ite Current<br />

Wire<br />

Yuanjie Li, Zhenyu Li, Jianwei Pan, Jiagang Zhang, Hao Liu, Kai Wang<br />

Institute of Geophysics and Geomatics, Ch<strong>in</strong>a University of Geosciences, Wuhan, PRC<br />

liyuanjie305@163.com<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g, abbreviated as<br />

MRS, is a novel geophysical technic specially<br />

designed for direct water exploration by us<strong>in</strong>g<br />

NMR phenomena. At present, <strong>in</strong> <strong>the</strong> fields a<br />

large loop normally acts as both transmitter<br />

and receiver, and <strong>in</strong> this model <strong>in</strong>formation of<br />

aquifers <strong>in</strong> varied depth from <strong>the</strong> shallow to <strong>the</strong><br />

deep will be obta<strong>in</strong>ed through amplify<strong>in</strong>g<br />

stimulat<strong>in</strong>g pulse. However, this traditional<br />

work mode has shortcom<strong>in</strong>gs of <strong>in</strong>tense labour<br />

of <strong>the</strong> operator, great <strong>in</strong>fluence from landform,<br />

only one-dimensional <strong>in</strong>formation of aquifers<br />

be<strong>in</strong>g achieved, and f<strong>in</strong>ite maximum depth of<br />

<strong>in</strong>vestigation which is a problem to be solved<br />

urgently. These drawbacks may be related to<br />

field source that is <strong>the</strong> magnetic field of <strong>the</strong><br />

loop, so, we propose a pioneer<strong>in</strong>g and bold<br />

assumption that <strong>the</strong> stimulat<strong>in</strong>g loop is<br />

superseded by f<strong>in</strong>ite current wire as <strong>the</strong> field<br />

source. In <strong>the</strong>ory, <strong>the</strong> new mode possesses few<br />

advantages of flexible lay-pattern, free from<br />

tomography limitation, affluent <strong>in</strong>formation<br />

about underground aquifer, potential research<br />

<strong>in</strong> detect<strong>in</strong>g depth. Therefore, we will do<br />

research about MRS methods excited by f<strong>in</strong>ite<br />

current wire, and determ<strong>in</strong>e its feasibility.<br />

The distribut<strong>in</strong>g of magnetic field stimulated<br />

by f<strong>in</strong>ite current l<strong>in</strong>e is numerical simulated <strong>in</strong><br />

<strong>the</strong> homogeneous half-space, while its<br />

characteristics will be quantitatively analysed.<br />

And <strong>the</strong>n various aquifers models <strong>in</strong> <strong>the</strong> mode<br />

of MRS method excited by wire source will be<br />

built to acquire NMR signals, characteristics of<br />

which will be compared with those <strong>in</strong> <strong>the</strong><br />

traditional mode. By do<strong>in</strong>g so ,it is can be<br />

concluded that it is feasible to employ l<strong>in</strong>e<br />

source excit<strong>in</strong>g MRS technique , and also <strong>the</strong><br />

superiority of this new method over<br />

conventional mode can be demonstrated. To<br />

perfect one-dimensional <strong>the</strong>oretical system of<br />

MRS method stimulated by l<strong>in</strong>e source,<br />

appropriate <strong>in</strong>version about new method will<br />

be carried out.<br />

References<br />

Anderson, W.L.. (1979): Numerical <strong>in</strong>tegration of<br />

related Hankel transforms of order 0 and 1 by<br />

adaptive digital filter<strong>in</strong>g. Geophysics, 44(10):<br />

1287-1305.<br />

Anderson, W.L.. (1984): Computation of Green's<br />

tensor <strong>in</strong>tegrals for three-dimensional<br />

electromagnetic problems us<strong>in</strong>g fast hankel<br />

transforms. Geophysics, 49(10): 877-901.<br />

Baltassat, J., A.V. Legchenko. (2002): Nuclear<br />

magnetic resonance as a geophysical tool for<br />

hydrogeologists. Journal of Applied Geophysics,<br />

50(1-2): 21-46.<br />

Braun, M., U. Yaramanci. (2011): Evaluation of <strong>the</strong><br />

Influence of 2-D Electrical Resistivity on<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g. Journal of<br />

Environmental & Eng<strong>in</strong>eer<strong>in</strong>g Geophysics,<br />

16(3): 95-103.<br />

Guillen, A., A.V. Legchenko. (2002): Inversion of<br />

surface nuclear magnetic resonance data by an<br />

adapted Monte Carlo method applied to water<br />

resource characterization. Journal of Applied<br />

Geophysics, 50(1-2): 193-205.<br />

Johansen, H.K.. (1979): Fast Hankel transform.<br />

Geophys Prosp, 49(10): 1754-1759.<br />

Keat<strong>in</strong>g, K., R.A. Knight. (2008): laboratory study<br />

of <strong>the</strong> effect of magnetite on NMR relaxation<br />

rates. Journal of Applied Geophysics, 66(3-4):<br />

188-196.<br />

Nabighian, M.N., M.L. OristaglioS. (1984): On <strong>the</strong><br />

approximation of f<strong>in</strong>ite loop sources by twodimensional<br />

l<strong>in</strong>e sources. GEOPHYSICS, 49(7):<br />

1027-1029.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

24


Signal Process<strong>in</strong>g<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

25


Optimized Wiener filter<strong>in</strong>g with <strong>the</strong> Numis Poly system<br />

Optimized Wiener filter<strong>in</strong>g with <strong>the</strong> Numis Poly system<br />

Esben Dalgaard, Esben Auken and Jakob Juul Larsen<br />

Department of Geoscience, Aarhus University, Aarhus, Denmark.<br />

esben.dalgaard@geo.au.dk<br />

Some of <strong>the</strong> major noise contam<strong>in</strong>ators we<br />

observe <strong>in</strong> MRS data are power l<strong>in</strong>e harmonics<br />

and spikes. For a more efficient noise<br />

cancell<strong>in</strong>g multichannel systems have been<br />

developed (Walsh, 2008). With regards to <strong>the</strong><br />

powerl<strong>in</strong>e harmonics we will show a study on<br />

how to optimize <strong>the</strong> estimation of <strong>the</strong> transfer<br />

function between reference and primary<br />

receivers <strong>in</strong> <strong>the</strong> Numis Poly system. We will<br />

show how an automatic detection of spikes<br />

will improve and ease <strong>the</strong> signal process<strong>in</strong>g.<br />

In <strong>the</strong> Numis Poly system a noise record is<br />

obta<strong>in</strong>ed right before <strong>the</strong> signal section, this is<br />

done to estimate <strong>the</strong> transfer function. This<br />

transfer function can be estimated with<br />

different filter<strong>in</strong>g approaches e.g. adaptive<br />

filter<strong>in</strong>g, Wiener filter<strong>in</strong>g <strong>in</strong> both time and<br />

frequency doma<strong>in</strong>. We have observed jitter and<br />

small offsets between receivers <strong>in</strong> sampl<strong>in</strong>g<br />

frequency, which lead to imprecise<br />

calculations of <strong>the</strong> transfer function and<br />

<strong>in</strong>efficient noise cancell<strong>in</strong>g. We will<br />

demonstrate how much <strong>the</strong>se hardware<br />

limitations will affect <strong>the</strong> noise cancell<strong>in</strong>g.<br />

To overcome <strong>the</strong> issues with jitter and different<br />

sampl<strong>in</strong>g frequencies we explore alternative<br />

ways of estimat<strong>in</strong>g <strong>the</strong> transfer function. By<br />

estimat<strong>in</strong>g <strong>the</strong> transfer function from <strong>the</strong> signal<br />

record itself, <strong>the</strong> jitter offset is fixed between<br />

receivers, thus <strong>the</strong> filter is tuned <strong>in</strong> to <strong>the</strong>se<br />

offsets, and no error will be <strong>in</strong>duced. We<br />

compare transfer functions obta<strong>in</strong>ed from <strong>the</strong><br />

noise records with transfer functions obta<strong>in</strong>ed<br />

from <strong>the</strong> signal record itself. A drawback of<br />

estimat<strong>in</strong>g <strong>the</strong> filter <strong>in</strong> <strong>the</strong> signal section is <strong>the</strong><br />

risk of cancell<strong>in</strong>g pure MRS <strong>in</strong> <strong>the</strong> process<strong>in</strong>g<br />

(Dalgaard et al.). We show that <strong>in</strong> <strong>the</strong> design of<br />

<strong>the</strong> filter, it is possible to avoid cancell<strong>in</strong>g <strong>the</strong><br />

signal while estimat<strong>in</strong>g <strong>the</strong> filter directly on <strong>the</strong><br />

signal part.<br />

The presence of spikes of different orig<strong>in</strong>s <strong>in</strong><br />

MRS signal records will distort noise<br />

cancell<strong>in</strong>g of <strong>the</strong> powerl<strong>in</strong>e harmonics. The<br />

spikes <strong>in</strong> <strong>the</strong> signals from both <strong>the</strong> primary and<br />

reference receivers must <strong>the</strong>refore be removed<br />

<strong>in</strong> advance for fur<strong>the</strong>r noise cancell<strong>in</strong>g. The<br />

spikes will contam<strong>in</strong>ate only a part of <strong>the</strong><br />

signal section, leav<strong>in</strong>g a major part of <strong>the</strong><br />

section uncontam<strong>in</strong>ated, and thus delet<strong>in</strong>g<br />

entire sections is not necessary. Instead a local<br />

detection and removal of spikes are more<br />

appropriate. Due to <strong>the</strong> huge data amount, a<br />

spike detection performed manually is very<br />

time consum<strong>in</strong>g and an automatic spike<br />

detection would be preferable.<br />

Inspired by <strong>the</strong> work of Mukhopadhyay and<br />

Ray (1998) we have implemented a spike<br />

detection algorithm based on <strong>the</strong> nonl<strong>in</strong>ear<br />

energy operator. An ensemble based threshold<br />

is used with <strong>the</strong> threshold determ<strong>in</strong>ed by <strong>the</strong><br />

median absolute deviation (MAD) (Hoagl<strong>in</strong> et<br />

al., 2000). We will present an efficient and<br />

simple procedure for automatic spike<br />

detection.<br />

Key words: magnetic resonance sound<strong>in</strong>g;<br />

Wiener filter<strong>in</strong>g; despik<strong>in</strong>g; Numis Poly;<br />

References<br />

Dalgaard, E., Larsen, J.J., Auken, E. (submitted<br />

2012): Adaptive noise cancell<strong>in</strong>g of<br />

multichannel magnetic resonance sound<strong>in</strong>g<br />

signals: Geophysical Journal <strong>International</strong>.<br />

(submitted)<br />

Hoagl<strong>in</strong>, D. C., Mosteller, F., and Tukey, J. W.,<br />

2000, Understand<strong>in</strong>g robust and exploratory data<br />

analysis: Wiley classics library, 447.<br />

Mukhopadhyay, S. and Ray, G. C., 1998, A new<br />

<strong>in</strong>terpretation of nonl<strong>in</strong>ear energy operator and<br />

its efficacy <strong>in</strong> spike detection: IEEE Transactions<br />

on Biomedical Eng<strong>in</strong>eer<strong>in</strong>g, 45, 180-187.<br />

Walsh, D. O., 2008, Multi-channel surface NMR<br />

<strong>in</strong>strumentation and software for 1D/2D<br />

groundwater <strong>in</strong>vestigations: Journal of Applied<br />

Geophysics, 66, 140-150.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

26


Model-based cancell<strong>in</strong>g of powerl<strong>in</strong>e harmonics <strong>in</strong> multichannel MRS record<strong>in</strong>gs<br />

Model-based cancell<strong>in</strong>g of powerl<strong>in</strong>e harmonics <strong>in</strong> multichannel MRS<br />

record<strong>in</strong>gs<br />

Jakob Juul Larsen (1) , Esben Dalgaard (2) , Esben Auken (2)<br />

(1) Aarhus School of Eng<strong>in</strong>eer<strong>in</strong>g, Aarhus University, Denmark<br />

(2) Department of Geoscience, Aarhus University, Denmark<br />

jjl@iha.dk<br />

It is well known <strong>in</strong> <strong>the</strong> MRS community that<br />

MRS signals recorded <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of manmade<br />

<strong>in</strong>stallations are often heavily<br />

contam<strong>in</strong>ated by noise. Before a useful MRS<br />

signal can be extracted from <strong>the</strong> measured data<br />

an efficient noise cancell<strong>in</strong>g must be<br />

performed. The two most important noise<br />

sources are harmonics of <strong>the</strong> fundamental<br />

powerl<strong>in</strong>e frequency and spikes from electrical<br />

discharges. In multichannel MRS systems one<br />

or several reference loops are used to record<br />

<strong>the</strong> local noise environment simultaneously<br />

with <strong>the</strong> MRS signal <strong>in</strong> <strong>the</strong> primary channel.<br />

By appropriately filter<strong>in</strong>g of <strong>the</strong> reference<br />

channels <strong>the</strong> noise can be subtracted from <strong>the</strong><br />

primary loop record. However, a necessary<br />

condition for this procedure to be efficient, is<br />

that <strong>the</strong> same filter is optimum for all noise<br />

sources. In practice, we have found that this<br />

condition is not fulfilled e.g. a filter that<br />

cancels powerl<strong>in</strong>e harmonics does not<br />

necessarily cancel spikes. In this paper we<br />

suggest to remedy to this problem by us<strong>in</strong>g a<br />

more elaborate signal process<strong>in</strong>g scheme<br />

where prior knowledge of <strong>the</strong> noise is used as<br />

previously suggested for s<strong>in</strong>gle channel MRS<br />

by Legchenko and Valla (2003). The signal <strong>in</strong><br />

<strong>the</strong> primary coil P(t) can be modelled as<br />

In <strong>the</strong> above equation FID(t) represents <strong>the</strong><br />

free-<strong>in</strong>duction decay signal of <strong>the</strong> sub-surface<br />

protons. The powerl<strong>in</strong>e harmonics are<br />

modelled as<br />

Where <strong>the</strong> summation is over all excited<br />

harmonics. The temporally short spikes are<br />

described by spikes(t) and w(t) represents all<br />

o<strong>the</strong>r noise contributions. This separation of<br />

<strong>the</strong> recorded signal <strong>in</strong>to powerl<strong>in</strong>e-related<br />

components and o<strong>the</strong>r components have<br />

previously been employed for o<strong>the</strong>r<br />

geophysical methods, see e.g. Butler and<br />

Russell (2003). The fundamental frequency of<br />

<strong>the</strong> powerl<strong>in</strong>e is not fixed but varies on a<br />

timescale of typically a few seconds. f0 must<br />

<strong>the</strong>refore be treated as a parameter to be<br />

determ<strong>in</strong>ed by fitt<strong>in</strong>g In this work f0 is<br />

assumed constant with<strong>in</strong> each measurent of a<br />

few 100 ms duration. The values of f0 and <strong>the</strong><br />

Aq and �q coefficients can be efficiently found<br />

with standard fitt<strong>in</strong>g methods. Once <strong>the</strong> model<br />

parameters have been determ<strong>in</strong>ed, xh(t) is<br />

subtracted from P(t) hereby remov<strong>in</strong>g <strong>the</strong><br />

powerl<strong>in</strong>e harmonics. Similarly, a model of <strong>the</strong><br />

powerl<strong>in</strong>e harmonics is <strong>in</strong>dependently<br />

constructed and subtracted for each reference<br />

channel.<br />

Experiments with this model-based cancell<strong>in</strong>g<br />

of powerl<strong>in</strong>e harmonics with data recorded<br />

with a Numis Poly have proven very effective<br />

with noise cancell<strong>in</strong>g on par with or exceed<strong>in</strong>g<br />

standard filter<strong>in</strong>g methods. In particular, <strong>the</strong><br />

method circumvents problems with jitter and<br />

uneven sampl<strong>in</strong>g frequencies between<br />

channels.<br />

Subsequent to model-based cancell<strong>in</strong>g of <strong>the</strong><br />

powerl<strong>in</strong>e harmonics <strong>the</strong> standard methods of<br />

multichannel noise cancell<strong>in</strong>g can be applied to<br />

reduce <strong>the</strong> <strong>in</strong>fluence of o<strong>the</strong>r noise sources.<br />

References<br />

Butler, K.E. and Russell, R.D. (2003) Cancellation<br />

of multiple harmonic noise series <strong>in</strong> geophysical<br />

records. Geophysics 68, 1083-1090.<br />

Legchenko, A. and Valla, P. (2003) Removal of<br />

power-l<strong>in</strong>e harmonics from proton magnetic<br />

resonance sound<strong>in</strong>g measurements. Journal of<br />

Applied Geophysics, 53, 103-120.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

27


Jo<strong>in</strong>t use of adaptive notch filter and empirical mode decomposition for noise cancellation<br />

applied to MRS<br />

Jo<strong>in</strong>t use of adaptive notch filter and empirical mode decomposition for<br />

noise cancellation applied to MRS<br />

Tian Baofeng, L<strong>in</strong> T<strong>in</strong>gt<strong>in</strong>g, Yi xiaofeng, Jiang Chuandong, L<strong>in</strong> Jun<br />

College of <strong>in</strong>strumentation and electrical eng<strong>in</strong>eer<strong>in</strong>g, JiL<strong>in</strong> University,Changchun,130061,Ch<strong>in</strong>a<br />

ttl<strong>in</strong>@jlu.edu.cn; tianbf@jlu.edu.cn<br />

<strong>Magnetic</strong> resonance sound<strong>in</strong>g (MRS) as a k<strong>in</strong>d<br />

of direct groundwater detection method has<br />

widespread application <strong>in</strong> hydrogeological<br />

<strong>in</strong>vestigation. However, <strong>the</strong> application of<br />

<strong>in</strong>strument has been limited by <strong>the</strong><br />

susceptibility to ambient and electromagnetic<br />

noise. Statistical stack<strong>in</strong>g and wavelet<br />

transform methods have <strong>the</strong> advantages for<br />

decreas<strong>in</strong>g and remov<strong>in</strong>g spike noise and<br />

random noise. Whereas, it is still difficult to<br />

achieve signal-noise separation well <strong>in</strong> <strong>the</strong><br />

presence of strong electromagnetic noise.<br />

Notch filter<strong>in</strong>g is <strong>the</strong> most common method to<br />

reduce 50Hz or 60Hz power transmission<br />

harmonics for FID signal collected by early<br />

version of NMR <strong>in</strong>strument, but signals can be<br />

distorted when <strong>the</strong> Larmor frequency is close<br />

to a multiple of fundamental frequency. The<br />

United States and France have successively<br />

developed full-wave data acquisition NMR<br />

systems, which could mitigate noise based on<br />

adaptive noise cancellation pr<strong>in</strong>cipleby us<strong>in</strong>g<br />

referencecoils. The prerequisite for <strong>the</strong><br />

application of this method depends on <strong>the</strong> fact<br />

that <strong>the</strong> noise of reference channel(s) has <strong>the</strong><br />

best correlation with <strong>the</strong> MRS-signal detection<br />

channel. Sometimes, <strong>the</strong> de-nois<strong>in</strong>g effect is<br />

not ideal due to <strong>the</strong> complexity and variability<br />

of <strong>the</strong> environmental noise and <strong>in</strong>homogeneous<br />

of <strong>the</strong> spatial distribution.<br />

Thus, <strong>in</strong> <strong>the</strong> present article, we propose a new<br />

method for signal-to-noise separation based on<br />

adaptive notch filter (ANF) and empirical<br />

mode decomposition (EMD). This method<br />

aims at process<strong>in</strong>g <strong>the</strong> whole wave MRS signal<br />

with no requirement for reference coils. ANF<br />

has <strong>the</strong> advantages of easy to control<br />

bandwidth, and <strong>the</strong> bandwidth depends on <strong>the</strong><br />

size of <strong>the</strong> adaptive step length parameter<br />

ma<strong>in</strong>ly. T2 is between <strong>in</strong> 30 ~ 1000 ms which<br />

is MRS signal transverse relaxation time, and<br />

its band range of frequency spectrum is<br />

limited. Based on this characteristic, <strong>the</strong><br />

method <strong>in</strong> this paper realize <strong>the</strong> separation of<br />

signal and noise prelim<strong>in</strong>arily through<br />

controll<strong>in</strong>g <strong>the</strong> step length parameters of ANF<br />

effectively to process MRS signal with Larmor<br />

frequency as <strong>the</strong> center frequency.<br />

However, <strong>the</strong> MRS signal separated from ANF<br />

still conta<strong>in</strong>s trace of noise by <strong>the</strong> <strong>in</strong>fluence of<br />

ANF bandwidth. EMD is <strong>the</strong> most effective<br />

means of <strong>the</strong> extraction signal trend as a new<br />

type of adaptive signal time doma<strong>in</strong> and<br />

frequency doma<strong>in</strong> process<strong>in</strong>g method. This<br />

method can divide <strong>the</strong> signal <strong>in</strong>to several<br />

<strong>in</strong>tr<strong>in</strong>sic mode function (IMF) accord<strong>in</strong>g to <strong>the</strong><br />

<strong>in</strong>put signal characteristic <strong>in</strong> case of absence of<br />

prior knowledge. The decomposition<br />

rema<strong>in</strong>der can represent <strong>the</strong> trend of <strong>the</strong> signal.<br />

Extract<strong>in</strong>g envelope from <strong>the</strong> separated MRS<br />

signal us<strong>in</strong>g Hilbert transform, and extract<strong>in</strong>g<br />

<strong>the</strong> attenuation curve us<strong>in</strong>g EMD denoise<br />

method. The results of numerical simulation<br />

suggest that, <strong>the</strong> performance of comb<strong>in</strong><strong>in</strong>g<br />

ANF and EMD is more effective than us<strong>in</strong>g<br />

ANF alone. The average signal-to-noise ratio<br />

can improve more than 12 dB, <strong>the</strong> mean error<br />

of <strong>the</strong> extracted <strong>in</strong>itial amplitude E0 and<br />

relaxation time T2 is less than 5% and 10%<br />

respectively. It has also proved <strong>the</strong><br />

effectiveness of <strong>the</strong> proposed method through<br />

process<strong>in</strong>g <strong>the</strong> measurement data. F<strong>in</strong>ally, we<br />

present <strong>the</strong> results of field data to substantiate<br />

<strong>the</strong> effectiveness of <strong>the</strong> proposed method.<br />

References<br />

Cai HanPeng, He ZhenHua, Huang DeJi. Seismic<br />

data denois<strong>in</strong>g based on mixed time-frequency<br />

methods. Applied Geophysics, 2011,8(4):319-<br />

327.<br />

Hayk<strong>in</strong>, S. (1996): Adaptive Filter Theory. Prentice<br />

Hall, Upper Saddle River, New Jersey.<br />

Jiang, C.D., L<strong>in</strong>, J., Duan, Q.M., et al. (2011):<br />

Statistical stack<strong>in</strong>g and adaptive notch filter to<br />

remove high-level electromagnetic noise from<br />

MRS measurements, Nuar Surface Geophysics,<br />

9:459-468.<br />

Legchenko, A., Valla, P. (2003): Removal of<br />

power-l<strong>in</strong>e harmonics from proton magnetic<br />

resonance measurements. Journal of Applied<br />

Geophysics 53, 103<strong>–</strong>120.<br />

Walsh, D.O. (2008): Multi-channel surface NMR<br />

<strong>in</strong>strumentation and software for 1D/2D<br />

groundwater <strong>in</strong>vestigations. Journal of Applied<br />

Geophysics, 66(3-4):140-150.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

28


Higher-Order Statistical Signal Process<strong>in</strong>g for Surface-NMR Electronic Instruments<br />

Higher-Order Statistical Signal Process<strong>in</strong>g for Surface-NMR Electronic<br />

Instruments<br />

Rafik Soltani, Lizhi Xiao<br />

State Key Laboratory of Petroleum Resources and Prospect<strong>in</strong>g, Ch<strong>in</strong>a University of Petroleum, Beij<strong>in</strong>g, Ch<strong>in</strong>a<br />

rafiksoltani2008@gmail.com<br />

In so many practical cases, <strong>the</strong> surface-NMR<br />

measurements may feature very low signal-tonoise<br />

ratios (SNR's). The SNR's can be low <strong>in</strong><br />

cases of low free-water content, relatively deep<br />

groundwater, low <strong>in</strong>tensities of <strong>the</strong> Earth’s<br />

magnetic field, conductive subsurface, or<br />

presence of field noises such as RFI (radiofrequency<br />

<strong>in</strong>terferences). Therefore, it is very<br />

important to use robust signal process<strong>in</strong>g<br />

software to improve <strong>the</strong> recovery of <strong>the</strong> very<br />

weak underly<strong>in</strong>g FID signals from surface-<br />

NMR measurements. We propose a cumulantbased<br />

process<strong>in</strong>g scheme for <strong>the</strong> extraction of<br />

FID signals from MRS data. Cumulants are<br />

higher-order statistics (HOS) that are wellknown<br />

as automatic enhancers of SNR's. That<br />

is, by process<strong>in</strong>g MRS data <strong>in</strong>to <strong>the</strong> doma<strong>in</strong>s of<br />

<strong>the</strong>ir cumulants, <strong>the</strong> robustness to additive<br />

noise can be <strong>in</strong>creased. The follow<strong>in</strong>g signal<br />

process<strong>in</strong>g algorithms will be presented.<br />

Algorithm 1: Cumulant-based Mono-<br />

Exponential FID Estimator<br />

We present a fourth-order cumulant-based<br />

estimator for <strong>the</strong> extraction of monoexponential<br />

FID signals from MRS data. We<br />

demonstrate and illustrate <strong>the</strong> greater<br />

robustness to additive noise of this estimator<br />

over <strong>the</strong> currently and mostly used NLS<br />

estimators. That is, such a new estimator<br />

improves <strong>the</strong> extraction of MRS curves.<br />

Algorithm 2: Cumulant-based Multi-<br />

Exponential FID Estimator<br />

This estimator is an extension of <strong>the</strong> previous<br />

one from <strong>the</strong> mono-exponential to <strong>the</strong> multiexponential<br />

FID. It is also based on fourthorder<br />

cumulants. The robustness to additive<br />

noise of this estimator will be illustrated via<br />

examples.<br />

Algorithm 3: Adaptive Cumulant-based<br />

Canceler of RFI from Surface-NMR Data<br />

We present a fourth-order cumulant-based RFI<br />

canceler for multichannel surface-NMR<br />

<strong>in</strong>struments. This adaptive canceler can be<br />

viewed as an extension, from second-order to<br />

fourth-order statistics, of <strong>the</strong> classic adaptive<br />

LMS canceler. Thus, it helps to improve<br />

robustness to RFI <strong>in</strong> MRS data. We illustrate<br />

<strong>the</strong> performance of this canceler via examples.<br />

Algorithm 4: Adaptive ICA-based Canceler<br />

of RFI from Surface-NMR Data<br />

ICA (<strong>in</strong>dependent component analysis) is a<br />

HOS-based computational technique for<br />

separation of l<strong>in</strong>ear mixtures of statistically<br />

<strong>in</strong>dependent signals. We present an adaptive<br />

ICA-based RFI canceler for multichannel<br />

surface-NMR <strong>in</strong>struments. This canceler<br />

adaptively performs higher-order decorrelation<br />

between <strong>the</strong> canceler output signal and its<br />

reference <strong>in</strong>put signal. That is, it can be viewed<br />

as an extension, from second-order to higherorder<br />

statistics, of <strong>the</strong> classic adaptive LMS<br />

canceler. Thus, it helps to fur<strong>the</strong>r improve <strong>the</strong><br />

robustness to RFI <strong>in</strong> surface-NMR data. The<br />

performance of this canceler will be illustrated<br />

through examples.<br />

Conclusions<br />

It is possible to develop complete cumulantbased<br />

process<strong>in</strong>g software for surface-NMR<br />

<strong>in</strong>struments. Such software performs both <strong>the</strong><br />

adaptive cancelations of eventual RFI as well<br />

as mono-/multi-exponential fitt<strong>in</strong>g. The ma<strong>in</strong><br />

feature of such process<strong>in</strong>g software is its<br />

improved robustness to noise by comparison to<br />

<strong>the</strong> currently used MLS cancelers and NLS<br />

estimators. The process<strong>in</strong>g scheme presented<br />

here<strong>in</strong> is be<strong>in</strong>g described <strong>in</strong> details and<br />

illustrated by a variety of examples <strong>in</strong> a new<br />

book by <strong>the</strong> same authors of this abstract. Such<br />

a book is actually entitled as “Higher-Order<br />

Statistical Signal Process<strong>in</strong>g for Surface<br />

Nuclear <strong>Magnetic</strong> <strong>Resonance</strong> Instruments <strong>–</strong> A<br />

Non<strong>in</strong>vasive and Direct Electronic Technology<br />

for Hydrogeophysics and Hydrogeology”.<br />

Acknowledgments: We s<strong>in</strong>cerely thank all <strong>the</strong><br />

people, for <strong>the</strong>ir good wills, to provid<strong>in</strong>g us<br />

MRS datasets and any useful <strong>in</strong>formation,<br />

ei<strong>the</strong>r directly or <strong>in</strong>directly.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

29


Identification and elim<strong>in</strong>ation of spiky noise features <strong>in</strong> MRS data<br />

Identification and elim<strong>in</strong>ation of spiky noise features <strong>in</strong> MRS data<br />

Stephan Costabel 1 and Mike Müller-Petke 2<br />

1 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

2 Leibniz Institute for Applied Geophysics, Hannover<br />

stephan.costabel@bgr.de<br />

S<strong>in</strong>ce time series <strong>in</strong> MRS can be recorded by<br />

multiple detection channels simultaneously,<br />

<strong>the</strong> cancellation of harmonic noise by us<strong>in</strong>g<br />

additional noise reference loops has become<br />

possible (Walsh, 2008). This opportunity has<br />

greatly extended <strong>the</strong> applicability for MRS:<br />

Recent case studies show that successful MRS<br />

measurements can be conducted with quite<br />

good quality even near hous<strong>in</strong>g or power<br />

l<strong>in</strong>es. However, if <strong>the</strong> noise consists of<br />

randomly <strong>in</strong>terfer<strong>in</strong>g signals with short length<br />

(some milliseconds) and high amplitudes (up<br />

to a view microVolt), e.g. <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

radio masts or electric fences, MRS<br />

measurements persist be<strong>in</strong>g very difficult.<br />

If spiky noise features appear <strong>in</strong> MRS data, <strong>the</strong><br />

remote reference technique fails, because <strong>the</strong><br />

calculation of stable transfer functions between<br />

<strong>the</strong> MRS signal loop and <strong>the</strong> noise reference<br />

loops is not possible. A conventional method<br />

to avoid spiky noise is to def<strong>in</strong>e a threshold<br />

dur<strong>in</strong>g <strong>the</strong> measurement to refuse time series<br />

with extremely high voltages. However, this<br />

method often leads to an unacceptable long<br />

measurement duration for <strong>the</strong> entire sound<strong>in</strong>g.<br />

Consequently, <strong>the</strong> prefered strategy is to accept<br />

all signals and to elim<strong>in</strong>ate only <strong>the</strong> corrupted<br />

parts of <strong>the</strong> time series with adequate postprocess<strong>in</strong>g<br />

techniques (Strehl et al., 2006).<br />

We tested and compared three post-process<strong>in</strong>g<br />

methods to elim<strong>in</strong>ate f<strong>in</strong>ite <strong>in</strong>terfer<strong>in</strong>g signals<br />

from an MRS dataset, which was measured at<br />

<strong>the</strong> test site Fuhrberger Feld and shows heavy<br />

distortions with spiky noise. Us<strong>in</strong>g common<br />

process<strong>in</strong>g schemes, this data can hardly be<br />

<strong>in</strong>terpreted. In our study, we focussed, first, on<br />

<strong>the</strong> possibility to automate <strong>the</strong> algorithms to<br />

identify and elim<strong>in</strong>ate <strong>the</strong> spiky noise features<br />

and, second, on <strong>the</strong> capability of <strong>the</strong>se<br />

algorithms to be comb<strong>in</strong>ed with process<strong>in</strong>g<br />

tools for harmonic noise cancellation (HNC).<br />

The first method identifies and elim<strong>in</strong>ates<br />

<strong>in</strong>terfer<strong>in</strong>g signals <strong>in</strong> <strong>the</strong> time doma<strong>in</strong> by<br />

search<strong>in</strong>g for high voltage <strong>in</strong>duction, i.e.,<br />

spike-like pattern above a certa<strong>in</strong> threshold.<br />

The second approach is based on <strong>the</strong> univariate<br />

wavelet transform (WT) of <strong>the</strong> measured time<br />

series. The <strong>in</strong>terfer<strong>in</strong>g signal is identified and<br />

isolated <strong>in</strong> <strong>the</strong> wavelet doma<strong>in</strong> and, after <strong>the</strong><br />

<strong>in</strong>verse WT back <strong>in</strong>to <strong>the</strong> time doma<strong>in</strong>,<br />

subtracted from <strong>the</strong> orig<strong>in</strong>al time series (Strehl<br />

et al., 2006). The third approach uses <strong>the</strong><br />

multivariate WT and takes advantage of <strong>the</strong><br />

multi-channel detection (Am<strong>in</strong>ghafari et al.,<br />

2006).<br />

It is shown that all procedures can easily be<br />

applied automatically, and can <strong>the</strong>refore easily<br />

be implemented on demand ei<strong>the</strong>r as black box<br />

processes or as user controlled schemes <strong>in</strong>to<br />

exist<strong>in</strong>g post-process<strong>in</strong>g strategies. All<br />

techniques improved <strong>the</strong> signal-to-noise ratio<br />

(SNR) from 2 to about 5.5. Regard<strong>in</strong>g <strong>the</strong><br />

comb<strong>in</strong>ation with <strong>the</strong> HNC, <strong>the</strong> univariate WT<br />

approach shows a serious shortcom<strong>in</strong>g: After<br />

<strong>the</strong> application of <strong>the</strong> WT filter, <strong>the</strong> coherence<br />

of <strong>the</strong> noise pattern <strong>in</strong> <strong>the</strong> MRS signal to <strong>the</strong><br />

remote references gets lost to some extent.<br />

Consequently, <strong>the</strong> SNR decreases from 5.5 to 3<br />

after successive application of <strong>the</strong> univariate<br />

WT and <strong>the</strong> HNC. This shortcom<strong>in</strong>g was not<br />

found for <strong>the</strong> multivariate WT. Both, <strong>the</strong><br />

multivariate WT approach and <strong>the</strong> time doma<strong>in</strong><br />

threshold<strong>in</strong>g approach could f<strong>in</strong>ally reach an<br />

SNR of more than 7, when comb<strong>in</strong>ed with<br />

HNC.<br />

References<br />

Am<strong>in</strong>ghafari, M., Cheze, N., Poggi, J.-M.<br />

(2006): Multivariate denois<strong>in</strong>g us<strong>in</strong>g<br />

wavelets and pr<strong>in</strong>cipal component analysis,<br />

Computational Statistics & Data Analysis<br />

50, 2381-2398.<br />

Strehl, S., Rommel, I., Hertrich, M. and<br />

Yaramanci, U. (2006): New strategies for fitt<strong>in</strong>g<br />

and filter<strong>in</strong>g of MRS signals. Proceed<strong>in</strong>gs of 3 rd<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g <strong>International</strong><br />

Workshop, Madrid-Tres Cantos, Spa<strong>in</strong>.<br />

Walsh, D. O. (2008): Multi-channel surface NMR<br />

<strong>in</strong>strumentation and software for 1D/2D<br />

groundwater <strong>in</strong>vestigations. Journal of Applied<br />

Geophysics, 66, 140-150.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

30


MRS noise <strong>in</strong>vestigations with focus on optimiz<strong>in</strong>g <strong>the</strong> measurement setup <strong>in</strong> <strong>the</strong> field<br />

MRS noise <strong>in</strong>vestigations with focus on optimiz<strong>in</strong>g <strong>the</strong> measurement setup<br />

<strong>in</strong> <strong>the</strong> field<br />

Stephan Costabel 1 and Mike Müller-Petke 2<br />

1 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

2 Leibniz Institute for Applied Geophysics, Hannover<br />

stephan.costabel@bgr.de<br />

By us<strong>in</strong>g multi-channel MRS equipment <strong>the</strong><br />

opportunity to cancel harmonic noise from<br />

MRS data can be taken (Walsh, 2008). In<br />

addition to <strong>the</strong> MRS measurement loop, one or<br />

more reference loops are placed <strong>in</strong> an<br />

appropriate distance (remote reference) to<br />

measure <strong>the</strong> noise simultaneously. In <strong>the</strong> postprocess<strong>in</strong>g<br />

of <strong>the</strong> data, <strong>the</strong> electromagnetical<br />

(EM) transfer functions (TF) of <strong>the</strong> reference<br />

loop(s) to <strong>the</strong> measurement loop are calculated<br />

and used to predict <strong>the</strong> noise part <strong>in</strong> <strong>the</strong> MRS<br />

signal channel. F<strong>in</strong>ally, <strong>the</strong> predicted noise<br />

trace is substracted from <strong>the</strong> measured signal,<br />

which leads to a significant cancellation of <strong>the</strong><br />

harmonic noise.<br />

The quality of <strong>the</strong> noise cancellation technique<br />

us<strong>in</strong>g remote references depends on <strong>the</strong> setup<br />

of <strong>the</strong> reference loops, i.e., on <strong>the</strong> quality of <strong>the</strong><br />

harmonic noise signal and on <strong>the</strong> spatial<br />

coherence of <strong>the</strong> noise. Often, <strong>the</strong> same loop<br />

layout (size and number of turns) as <strong>the</strong><br />

measurement loop is preferred, which<br />

multiplies time and effort <strong>in</strong> <strong>the</strong> field.<br />

Consequently, <strong>the</strong> work<strong>in</strong>g progress <strong>in</strong> <strong>the</strong><br />

field slows down, which is, <strong>in</strong> particular, a<br />

serious problem when perform<strong>in</strong>g 2D<br />

measurements.<br />

We have conducted systematic <strong>in</strong>vestigations<br />

to f<strong>in</strong>d a trade-off between m<strong>in</strong>imiz<strong>in</strong>g time<br />

and effort <strong>in</strong> <strong>the</strong> field and apply<strong>in</strong>g <strong>the</strong> noise<br />

cancellation successfully. In do<strong>in</strong>g so, we<br />

concentrate on three basic ideas. First,<br />

decreas<strong>in</strong>g <strong>the</strong> size of <strong>the</strong> reference loop: A<br />

reference loop much smaller than <strong>the</strong><br />

measurement loop is positioned much faster.<br />

The quality of <strong>the</strong> noise <strong>in</strong>duction, which<br />

decreases with decreas<strong>in</strong>g loop size, is<br />

ma<strong>in</strong>ta<strong>in</strong>ed by a higher number of turns <strong>in</strong> <strong>the</strong><br />

reference loop. This strategy can successfully<br />

be applied, unless <strong>the</strong> difference <strong>in</strong> loop size is<br />

not below approximately one tenth. In this<br />

case, <strong>the</strong> spatial coherence between <strong>the</strong> two<br />

loops gets lost.<br />

Second, <strong>the</strong> use of very small and handy<br />

reference loops (1 sq m) to measure <strong>the</strong> x and y<br />

components of <strong>the</strong> EM field for <strong>the</strong> TF<br />

calculation. Follow<strong>in</strong>g <strong>the</strong> EM <strong>the</strong>ory, <strong>the</strong> z<br />

component (i.e., <strong>the</strong> measurement loop) is<br />

completely described by a l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of <strong>the</strong> x and y components, at least, for <strong>the</strong> farfield<br />

condition. Consequently, measur<strong>in</strong>g <strong>the</strong> x<br />

and y components as remote references leads<br />

to a successful noise cancellation. However, it<br />

fails if <strong>the</strong> site of <strong>in</strong>vestigation is located <strong>in</strong> <strong>the</strong><br />

near vic<strong>in</strong>ity of a potential noise source.<br />

Third, we <strong>in</strong>vestigated <strong>the</strong> spacial noise<br />

coherence <strong>in</strong> <strong>the</strong> presence of two potential<br />

noise sources. In do<strong>in</strong>g so, we verified <strong>the</strong><br />

necessity of us<strong>in</strong>g one remote reference loop<br />

for each noise source. Unfortunately, <strong>the</strong><br />

attempt to ga<strong>the</strong>r <strong>the</strong> noise <strong>in</strong>formation from<br />

both sources with just one reference channel<br />

lead to unacceptable results.<br />

Optimiz<strong>in</strong>g <strong>the</strong> noise cancellation technique is<br />

an ongo<strong>in</strong>g research field. Fur<strong>the</strong>r ga<strong>the</strong>r<strong>in</strong>g<br />

and exchang<strong>in</strong>g <strong>the</strong> experiences <strong>in</strong> that area<br />

helps <strong>the</strong> MRS community to improve and<br />

optimize <strong>the</strong>ir field experiments.<br />

References<br />

Walsh, D. O. (2008): Multi-channel surface NMR<br />

<strong>in</strong>strumentation and software for 1D/2D<br />

groundwater <strong>in</strong>vestigations. Journal of Applied<br />

Geophysics, 66, 140-150.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

31


A comparison of harmonic noise cancellation concepts<br />

A comparison of harmonic noise cancellation concepts<br />

Mike Müller-Petke 1 and Stephan Costabel 2<br />

1 Leibniz Institute for Applied Geophysics, Hannover<br />

2 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

mike.mueller-petke@liag-hannover.de<br />

Us<strong>in</strong>g multi-channel MRS equipment allows<br />

for cancell<strong>in</strong>g harmonic noise from MRS data<br />

(Walsh, 2008). In addition to <strong>the</strong> MRS<br />

measurement loop, one or more reference<br />

loops are placed <strong>in</strong> an appropriate distance<br />

(remote reference) to measure <strong>the</strong> noise<br />

simultaneously. In <strong>the</strong> post-process<strong>in</strong>g of <strong>the</strong><br />

data, <strong>the</strong> electromagnetical (EM) transfer<br />

functions (TF) of <strong>the</strong> reference loop(s) to <strong>the</strong><br />

measurement loop are calculated and used to<br />

predict <strong>the</strong> noise part <strong>in</strong> <strong>the</strong> MRS signal<br />

channel. F<strong>in</strong>ally, <strong>the</strong> predicted noise trace is<br />

substracted from <strong>the</strong> measured signal, which<br />

leads to a significant cancellation of <strong>the</strong><br />

harmonic noise.<br />

The quality of <strong>the</strong> noise cancellation (NC)<br />

depends on several factors that we have<br />

<strong>in</strong>vestigated. We dist<strong>in</strong>guish between practical<br />

parameter to be optimized <strong>in</strong> <strong>the</strong> field as<br />

presented <strong>in</strong> Costabel and Müller-Petke (2012)<br />

and <strong>the</strong>oretical aspects present <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g.<br />

1. There are different approaches to<br />

calculate <strong>the</strong> TF. For <strong>in</strong>stance Dalgaard et.al.<br />

(2012) <strong>in</strong>vestigated <strong>the</strong> differences <strong>in</strong> time<br />

doma<strong>in</strong> us<strong>in</strong>g Wiener filter<strong>in</strong>g compared to<br />

adaptive filter. We present a comparison of<br />

TFs <strong>in</strong> <strong>the</strong> time doma<strong>in</strong> and frequency doma<strong>in</strong>.<br />

2. The stability of both <strong>the</strong> filter (i.e. <strong>the</strong><br />

stability of <strong>the</strong> <strong>in</strong>verse problem) and <strong>the</strong><br />

harmonic noise over <strong>the</strong> measurement time.<br />

We present two different approaches <strong>in</strong> <strong>the</strong><br />

frequency doma<strong>in</strong>. A global approach tak<strong>in</strong>g<br />

all available measurements <strong>in</strong>to account and a<br />

local approach calculat<strong>in</strong>g <strong>the</strong> TF us<strong>in</strong>g only<br />

one measurement.<br />

3. The complexity of harmonic noise. We<br />

dist<strong>in</strong>guish between one source of noise with<br />

its higher harmonics and random distributed<br />

harmonics.<br />

4. If <strong>the</strong> harmonic noise is significantly<br />

chang<strong>in</strong>g with time it is necessary to calculate<br />

<strong>the</strong> TF us<strong>in</strong>g <strong>the</strong> measurement that conta<strong>in</strong>s <strong>the</strong><br />

signal <strong>in</strong>stead of us<strong>in</strong>g <strong>the</strong> pure noise record.<br />

We show how this <strong>in</strong>fluences <strong>the</strong> quality of<br />

NC, especially if <strong>the</strong> NMR frequency is close<br />

to a harmonic noise frequency.<br />

In conclusion we show that <strong>the</strong> local frequency<br />

doma<strong>in</strong> approach will be appropriate for most<br />

practical cases.<br />

References<br />

Dalgaard, E., Auken, E. and Larsen, J. (2012).<br />

Noise cancell<strong>in</strong>g of multichannel magnetic<br />

resonance sound<strong>in</strong>g signals. Geophysical Journal<br />

<strong>International</strong>. In pr<strong>in</strong>t.<br />

Costabel, S. and Müller-Petke, M. (2012). MRS<br />

noise <strong>in</strong>vestigations with focus on optimiz<strong>in</strong>g <strong>the</strong><br />

measurement setup <strong>in</strong> <strong>the</strong> field. Proceed<strong>in</strong>g of<br />

<strong>the</strong> 5 th <strong>in</strong>ternational meet<strong>in</strong>g on <strong>Magnetic</strong><br />

<strong>Resonance</strong>.<br />

Walsh, D. O. (2008): Multi-channel surface NMR<br />

<strong>in</strong>strumentation and software for 1D/2D<br />

groundwater <strong>in</strong>vestigations. Journal of Applied<br />

Geophysics, 66, 140-150.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

32


Model<strong>in</strong>g and Inversion<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

33


The case for comprehensive frequency-doma<strong>in</strong> <strong>in</strong>version of surface NMR data<br />

The case for comprehensive frequency-doma<strong>in</strong> <strong>in</strong>version of surface NMR<br />

data<br />

Trevor Irons 1,2 , Yaoguo Li 1 , Jared D. Abraham 2 , and Jason R. McKenna 3<br />

1 Colorado School of M<strong>in</strong>es, 2 U.S. Army Eng<strong>in</strong>eer Research & Development Center<br />

tirons@m<strong>in</strong>es.edu, ygli@m<strong>in</strong>es.edu, jdabraha@usgs.gov, Jason.R.McKenna@usace.army.mil<br />

Surface NMR (sNMR) experiments <strong>in</strong>volve<br />

large number of data. The data size of a FID<br />

survey with a co<strong>in</strong>cident transmitter and<br />

receiver can easily exceed 100 000 samples.<br />

The <strong>in</strong>creased adoption of Hahn-echo and<br />

pseudo-saturation recovery experiments<br />

compounds this problem due to <strong>the</strong> multiplepulse<br />

data. Fur<strong>the</strong>rmore, <strong>the</strong> use of multiplechannel<br />

<strong>in</strong>struments causes <strong>the</strong> data space to<br />

scale with <strong>the</strong> number of receiver channels<br />

(Dlugosch et al., 2011). Three-dimensional<br />

sNMR surveys us<strong>in</strong>g multiple pulses can easily<br />

<strong>in</strong>volve millions of data.<br />

The sNMR <strong>in</strong>verse problem is ill-posed and<br />

suffers from low signal-to-noise; performance<br />

improves dramatically with <strong>the</strong> comprehensive<br />

<strong>in</strong>clusion of <strong>the</strong> complete dataset (Mueller-<br />

Petke and Yaramanci, 2010). However, s<strong>in</strong>ce<br />

<strong>the</strong> computational cost of an <strong>in</strong>version scales<br />

with <strong>the</strong> problem size, <strong>the</strong> large data space of<br />

sNMR datasets poses a challenge with this<br />

approach. This problem is compounded by <strong>the</strong><br />

use of multiple pulses and receiver channels.<br />

There exists a clear need for a compressive<br />

<strong>in</strong>version scheme that preserves <strong>the</strong> data<br />

content, but reduces <strong>the</strong> size of <strong>the</strong> data space.<br />

A common approach for data reduction is to<br />

demodulate <strong>the</strong> time-series through quadrature<br />

detection and <strong>the</strong>n down sample. Implicit <strong>in</strong><br />

this conversion is <strong>the</strong> transformation of <strong>the</strong><br />

problem to <strong>the</strong> rotat<strong>in</strong>g frame. Off-resonance<br />

transmission and static magnetic field<br />

variations cause complicated artifacts <strong>in</strong> this<br />

frame (Walbrecker et al., 2011). Down<br />

sampl<strong>in</strong>g <strong>in</strong> <strong>the</strong> time-doma<strong>in</strong> also removes<br />

signal at <strong>the</strong> same rate as <strong>the</strong> decimation.<br />

Alternatively, <strong>the</strong> signal can be demodulated <strong>in</strong><br />

<strong>the</strong> Fourier-doma<strong>in</strong>. The sNMR data is band<br />

limited, and only a narrow frequency band<br />

around <strong>the</strong> Larmor frequency conta<strong>in</strong>s signal.<br />

The rest of <strong>the</strong> data is <strong>in</strong> <strong>the</strong> null-space of <strong>the</strong><br />

sNMR imag<strong>in</strong>g kernel, and may be safely<br />

dismissed. This not only provides high levels<br />

of compression, typically about 25 times, but<br />

also improves <strong>the</strong> condition number of <strong>the</strong><br />

underly<strong>in</strong>g <strong>in</strong>verse problem. Most importantly,<br />

no signal is lost <strong>in</strong> this transformation and<br />

decimation.<br />

There are several o<strong>the</strong>r advantages. The sNMR<br />

data are typically subjected to Fourier-doma<strong>in</strong><br />

filters with some amount of ripple and/or phase<br />

distortion. These effects can easily be<br />

<strong>in</strong>tegrated <strong>in</strong>to frequency-doma<strong>in</strong> forward<br />

modeled data. Off-resonance transmission<br />

effects are more straightforward.<br />

Under this framework, it is also easy to<br />

<strong>in</strong>corporate dephas<strong>in</strong>g dynamics of sp<strong>in</strong>s under<br />

<strong>the</strong> fast-diffusion approximation. This dephas<strong>in</strong>g<br />

<strong>in</strong>troduces non-exponential decay that<br />

cannot be fit with s<strong>in</strong>gle or multiple<br />

exponential terms, but can easily be<br />

<strong>in</strong>corporated <strong>in</strong> <strong>the</strong> frequency-doma<strong>in</strong> imag<strong>in</strong>g<br />

kernel. This feature allows <strong>in</strong>versions to<br />

achieve much lower data misfit under<br />

appropriate circumstances, and can be critical.<br />

In this paper, a constra<strong>in</strong>ed 1-D frequencydoma<strong>in</strong><br />

sNMR <strong>in</strong>version us<strong>in</strong>g <strong>the</strong><br />

comprehensive approach <strong>in</strong> <strong>the</strong> frequency<br />

doma<strong>in</strong> is presented. A logarithmic barrier<br />

method comb<strong>in</strong>ed with Tikhonov<br />

regularisation approach is adopted. An L-curve<br />

criterion is used to determ<strong>in</strong>e <strong>the</strong> optimal<br />

regularization parameter. Application to two<br />

field data sets which exhibit non-exponential<br />

decay acquired at different locations has<br />

produced improved results over conventional<br />

methods.<br />

References<br />

Dlugosch, R., M. Müeller-Petke, T. Gün<strong>the</strong>r, S.<br />

Costabel, and U. Yaramanci, 2011, Assessment<br />

of <strong>the</strong> potential of a new generation of surface<br />

nuclear magnetic resonance <strong>in</strong>struments: Near<br />

Surface Geophysics, 9, 169<strong>–</strong>178.<br />

Müeller-Petke, M., and U. Yaramanci, 2010, Qt<br />

<strong>in</strong>version — comprehensive use of <strong>the</strong> complete<br />

surface NMR data set: Geophysics, 75, WA199<strong>–</strong><br />

WA209.<br />

Walbrecker, J. O., M. Hertrich, and A. G. Green,<br />

2011, Off-resonance effects <strong>in</strong> surface nuclear<br />

magnetic resonance: Geophysics, 76, G1<strong>–</strong>12.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

34


Inversion of T1 relaxation times based on pcPSR measurements - Syn<strong>the</strong>tic examples<br />

Inversion of T1 relaxation times based on pcPSR measurements - Syn<strong>the</strong>tic<br />

examples<br />

Mike Müller-Petke 1 and Jan O. Walbrecker 2<br />

1 Leibniz Institute for Applied Geophysics, Hannover, Germany<br />

2 Stanford University, Department of Geophysics, Stanford, USA<br />

mike.mueller-petke@liag-hannover.de<br />

The ability of estimat<strong>in</strong>g hydraulic<br />

conductivties K from Surface Nuclear<br />

<strong>Magnetic</strong> <strong>Resonance</strong> (SNMR) measurements is<br />

one of <strong>the</strong> ma<strong>in</strong> reasons of <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong>terest <strong>in</strong> this technique <strong>in</strong> <strong>the</strong> field of<br />

hydrogeophysics. The key of estimat<strong>in</strong>g K is<br />

<strong>the</strong> sensitivity of NMR relaxation times to pore<br />

sizes. However, it is well known, both <strong>in</strong> field<br />

and laboratory applications, that <strong>the</strong> relaxation<br />

time T2* obta<strong>in</strong>ed from <strong>the</strong> free <strong>in</strong>duction<br />

decay (FID) is controlled not only by pore<br />

sizes, but also by magnetic <strong>in</strong>homogeneities,<br />

which do not affect T1 relaxation.<br />

Legchenko et al. (2004) published a T1<br />

measurement and <strong>in</strong>version scheme for SNMR.<br />

The scheme, named pseudosaturation recovery<br />

(PSR), consists of a double-pulse experiment,<br />

i.e. two pulses separated by a time tau. In PSR<br />

<strong>the</strong> FID recorded after <strong>the</strong> second pulse is <strong>the</strong>n<br />

used to <strong>in</strong>vert for <strong>the</strong> T1 relaxation time. The<br />

PSR scheme has been widely applied s<strong>in</strong>ce its<br />

<strong>in</strong>troduction, typically us<strong>in</strong>g data from a s<strong>in</strong>gle<br />

double-pulse experiment (i.e., tau).<br />

Walbrecker et al. (2011a) showed that such<br />

double-pulse experiments are highly<br />

<strong>in</strong>fluenced by off-resonance effects that are<br />

<strong>in</strong>evitable <strong>in</strong> SNMR. In addition, Walbrecker<br />

et. al. (2011b) showed that PSR is <strong>in</strong>fluenced<br />

by <strong>the</strong> T2* relaxation, which has not been<br />

taken <strong>in</strong>to account dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>version of PSR<br />

data. The authors proposed a new<br />

measurement sequence us<strong>in</strong>g a phase-cycled<br />

pseudosaturation recovery (pcPSR) that<br />

m<strong>in</strong>imizes <strong>the</strong> <strong>in</strong>fluence of both, off-resonance<br />

and T2*, effects.<br />

Based on Walbrecker et al. (2011) we<br />

developed an <strong>in</strong>version scheme to estimate <strong>the</strong><br />

distribution of T1 <strong>in</strong> <strong>the</strong> subsurface. S<strong>in</strong>ce <strong>the</strong><br />

SNMR kernel function becomes a function of<br />

<strong>the</strong> T1 distribution <strong>in</strong> <strong>the</strong> subsurface, <strong>the</strong><br />

<strong>in</strong>verse problem becomes higly non-l<strong>in</strong>ear and<br />

time consum<strong>in</strong>g to solve. Our <strong>in</strong>version<br />

approach is based on <strong>the</strong> QT <strong>in</strong>version concept<br />

(Müller-Petke & Yaramanci, 2010), extended<br />

to take account for <strong>the</strong> T1 <strong>in</strong>fluence on <strong>the</strong><br />

kernel function. In addition to <strong>the</strong> details of our<br />

<strong>in</strong>version approach we present a syn<strong>the</strong>tic<br />

example to address <strong>the</strong> follow<strong>in</strong>g practical<br />

issues that are important for SNMR T1<br />

surveys:<br />

1. How many sound<strong>in</strong>gs (i.e., tau’s) are<br />

required for a T1 <strong>in</strong>version?<br />

2. How sensitive is SNMR to changes <strong>in</strong><br />

<strong>the</strong> T1 parameter (<strong>in</strong> <strong>the</strong> presence of<br />

noise)?<br />

3. How far off is <strong>the</strong> old <strong>in</strong>version<br />

scheme based on PSR data?<br />

References<br />

Legchenko, A., Baltassat, J.-M., Bobachev, A.,<br />

Mart<strong>in</strong>, C., Roba<strong>in</strong>, H. & Vouillamoz, J.-M.<br />

(2004): <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g Applied<br />

to Aquifer Characterization. Ground Water,<br />

Blackwell Publish<strong>in</strong>g Ltd, 42 (3), 363-373.<br />

Mueller-Petke, M. & Yaramanci, U. (2010): QT<br />

<strong>in</strong>version --- Comprehensive use of <strong>the</strong> complete<br />

surface NMR data set. Geophysics, SEG, 75 (4),<br />

WA199-WA209.<br />

Walbrecker, J. O., Hertrich, M. & Green, A. G.<br />

(2011a): Off-resonance effects <strong>in</strong> surface nuclear<br />

magnetic resonance. Geophysics, SEG, 76 (2),<br />

G1-G12.<br />

Walbrecker, J. O., Hertrich, M., Lehmann-Horn, J.<br />

A. & Green, A. G. (2011b): Estimat<strong>in</strong>g <strong>the</strong><br />

longitud<strong>in</strong>al relaxation time T1 <strong>in</strong> surface NMR.<br />

Geophysics, SEG, 76 (2), F111-F122.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

35


Inversion of surface-NMR T1 data: results from two field sites with reference to borehole<br />

logg<strong>in</strong>g 36<br />

Inversion of surface-NMR T1 data: results from two field sites with<br />

reference to borehole logg<strong>in</strong>g<br />

Jan O. Walbrecker 1* , Mike Müller-Petke 2 , Rosemary Knight 1 , Ugur Yaramanci 2<br />

1 Stanford University, Department of Geophysics, Stanford, USA<br />

2 Leibniz Institute for Applied Geophysics, Hannover, Germany<br />

* jan.walbrecker@stanford.edu<br />

For any study address<strong>in</strong>g <strong>the</strong> quantity of<br />

producible water <strong>in</strong> groundwater aquifers <strong>the</strong><br />

hydraulic conductivity is a crucial piece of<br />

<strong>in</strong>formation. Because hydraulic conductivity<br />

can be <strong>in</strong>ferred through empirical relations<br />

from <strong>the</strong> NMR relaxation times, <strong>the</strong>y are<br />

important measurement parameters <strong>in</strong> many<br />

surface-NMR applications. Unfortunately, <strong>the</strong><br />

relaxation time most readily available from<br />

surface-NMR measurements, <strong>the</strong> effective<br />

transverse relaxation time T2 * , is strongly<br />

affected by <strong>the</strong> presence of magnetic species.<br />

In many realistic situations <strong>the</strong>ir <strong>in</strong>fluence is so<br />

dom<strong>in</strong>ant that T2 * becomes an unreliable<br />

estimator for hydraulic conductivity<br />

(Grunewald and Knight, 2011). Therefore,<br />

surface-NMR studies aimed at hydraulic<br />

properties often resort to measur<strong>in</strong>g <strong>the</strong><br />

longitud<strong>in</strong>al relaxation time T1 (Legchenko et<br />

al., 2004), which is less affected by magnetic<br />

field <strong>in</strong>homogeneities. Recent <strong>the</strong>oretical<br />

developments have demonstrated how robust<br />

surface-NMR T1 data can be acquired by<br />

employ<strong>in</strong>g an optimized acquisition technique<br />

termed phase-cycled pseudosaturation<br />

recovery (pcPSR; Walbrecker et al., 2011). In<br />

this study we complete <strong>the</strong>se recent advances,<br />

which focused on data acquisition, by<br />

develop<strong>in</strong>g an <strong>in</strong>version that estimates <strong>the</strong><br />

depth distribution of T1 based on pcPSR data.<br />

We apply our new <strong>in</strong>version scheme <strong>in</strong> two<br />

field studies and resolve how <strong>the</strong> T1 relaxation<br />

time varies with depth. In both cases we have<br />

access to borehole-NMR data as references. At<br />

site 1, Schillerslage (Germany), we acquired<br />

pcPSR surface-NMR T1 data at 4 delay times<br />

(50, 100, 300, and 700 ms) us<strong>in</strong>g a circular<br />

loop configuration (50 m diameter). Our<br />

<strong>in</strong>version result <strong>in</strong>dicates that T1 <strong>in</strong>creases<br />

cont<strong>in</strong>uously across <strong>the</strong> first aquifer, from 400<br />

ms to 700 ms at 15 m depth (less variation <strong>in</strong><br />

T2 * data), and rema<strong>in</strong>s constant across <strong>the</strong><br />

second aquifer where T2 * decreases. Both <strong>the</strong><br />

gradual <strong>in</strong>crease of T1 with depth, as well as<br />

<strong>the</strong> <strong>in</strong>creased T1 for <strong>the</strong> second aquifer is<br />

confirmed by <strong>the</strong> borehole data. At site 2 close<br />

to Lex<strong>in</strong>gton (Nebraska, USA), we acquired<br />

pcPSR T1 data at 4 delay times (133, 208, 506,<br />

and 789 ms) <strong>in</strong> a circular figure-eight setup<br />

(41 m diameter per circle). In this case, T1<br />

<strong>in</strong>creases from about 260 ms close to <strong>the</strong><br />

surface to 450 ms at 16 m depth, and <strong>the</strong>n<br />

decreases to about 150 ms towards <strong>the</strong><br />

penetration limit for our setup (~40 m). As for<br />

<strong>the</strong> previous survey, <strong>the</strong> relative trend of our<br />

surface-NMR T1 result is consistent with our<br />

borehole measurements. The borehole data<br />

show more details <strong>in</strong> <strong>the</strong> T1 profile, and tend<br />

towards lower absolute T1 values. These<br />

differences between <strong>the</strong> two methods we<br />

attribute to (1) <strong>the</strong> frequency dependence of<br />

relaxation and magnetic susceptibility effects<br />

(surface NMR operates at 2 kHz, borehole<br />

NMR at ~250 kHz to 1 MHz), and (2) <strong>the</strong> fact<br />

that surface NMR samples a much larger<br />

volume than <strong>the</strong> borehole tool, smooth<strong>in</strong>g out<br />

small-scale details visible <strong>in</strong> <strong>the</strong> borehole data.<br />

We implemented our <strong>in</strong>version of pcPSR T1<br />

data <strong>in</strong> MRSmatlab, which is freely available<br />

to <strong>the</strong> surface-NMR community.<br />

Acknowledgments<br />

This research was supported by fund<strong>in</strong>g to R.<br />

Knight and Y. Song from <strong>the</strong> Hydrology Program<br />

and <strong>the</strong> GOALI (Grant Opportunities for Academic<br />

Liaison with Industry) Program of <strong>the</strong> U.S.<br />

National Science Foundation (Award no. 0911234).<br />

References<br />

Grunewald, E., Knight, R. (2011): The effect of<br />

pore size and magnetic susceptibility on <strong>the</strong><br />

surface NMR relaxation parameter T2 * . Near<br />

Surface Geophysics, 9, 169-178.<br />

Legchenko, A., Baltassat, J.M., Bobachev, A.,<br />

Mart<strong>in</strong>, C., Roba<strong>in</strong>, H., Vouillamoz, J.M. (2004):<br />

<strong>Magnetic</strong> resonance sound<strong>in</strong>g applied to aquifer<br />

characterization. Ground Water, 42, 363-373.<br />

Walbrecker, J.O., Hertrich, M., Lehmann-Horn,<br />

J.A., Green, A.G. (2011): Estimat<strong>in</strong>g <strong>the</strong><br />

longitud<strong>in</strong>al relaxation time T1 <strong>in</strong> surface NMR.<br />

Geophysics, 76, F111-F122.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Earth's magnetic field and MRS phase shift 37<br />

Earth's magnetic field and MRS phase shift<br />

Legchenko 1* A., M. Descloitres 1 , K. Chalikakis 2 , M. Boucher 1 , G. Favreau 3<br />

1 IRD / LTHE, Grenoble, France; 2 LHA, Avignon, France; 3 IRD / HSM, Montpellier, France.<br />

anatoli.legtchenko@ird.fr<br />

At <strong>the</strong> early stage of development of <strong>the</strong><br />

magnetic resonance sound<strong>in</strong>g method (MRS)<br />

only <strong>the</strong> amplitude of MRS signal was used for<br />

<strong>in</strong>version (Legchenko and Shushakov, 1998).<br />

However it has been shown that use of both <strong>the</strong><br />

amplitude and <strong>the</strong> phase for <strong>in</strong>version allows<br />

better resolution (Weichman et al., 2002).<br />

Correct model<strong>in</strong>g of <strong>the</strong> phase shift is also<br />

important for <strong>in</strong>version of resistivity <strong>in</strong> MRS<br />

(Braun and Yaramanci, 2008).<br />

It is known that <strong>the</strong> phase of <strong>the</strong> magnetic<br />

resonance signal ma<strong>in</strong>ly depends on 1) <strong>the</strong><br />

electrical conductivity of <strong>the</strong> subsurface<br />

(Trushk<strong>in</strong> et al., 1995); and 2) <strong>the</strong> frequency<br />

offset between <strong>the</strong> Larmor frequency and <strong>the</strong><br />

frequency of <strong>the</strong> transmitted EM field<br />

(Mansfield et al., 1979). While <strong>the</strong> subsurface<br />

cause only positive phase shift, <strong>the</strong> frequency<br />

offset may cause both positive and negative<br />

shifts (Legchenko, 2004).<br />

Usually, <strong>the</strong> Earth's magnetic field is<br />

considered as constant. In practice however,<br />

<strong>the</strong> frequency offset may be often non-zero<br />

because of 1) MRS system may be tuned with<br />

some frequency offset; 2) <strong>the</strong> geomagnetic<br />

field may vary <strong>in</strong> time; 3) <strong>the</strong> geomagnetic<br />

field may vary with depth.<br />

We developed and tested a procedure that<br />

allows model<strong>in</strong>g of <strong>the</strong> phase shift tak<strong>in</strong>g <strong>in</strong>to<br />

account <strong>the</strong> frequency offset. For that we use<br />

<strong>the</strong> MRS signal measured for each pulse<br />

moment but also we check time variations of<br />

<strong>the</strong> geomagnetic field ei<strong>the</strong>r us<strong>in</strong>g a proton<br />

magnetometer or perform<strong>in</strong>g time lapse<br />

measurements of <strong>the</strong> MRS signal for a fixed<br />

pulse moment. Than, depth variations of <strong>the</strong><br />

geomagnetic field are derived from <strong>the</strong><br />

<strong>in</strong>version of measured frequency of <strong>the</strong> MRS<br />

signal. These data allow comput<strong>in</strong>g <strong>the</strong> phase<br />

shift for each syn<strong>the</strong>tic layer. Time vary<strong>in</strong>g<br />

geomagnetic field cause phase variations for<br />

all <strong>the</strong> layers: for each pulse moment <strong>the</strong><br />

geomagnetic field corresponds to measured<br />

geomagnetic field <strong>in</strong> correspond<strong>in</strong>g period of<br />

time.<br />

We demonstrate efficiency of this approach<br />

us<strong>in</strong>g MRS and TDEM data obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

Lake Chad area (Western Africa). In <strong>the</strong><br />

<strong>in</strong>vestigated area <strong>the</strong> aquifer is composed of<br />

layered alluvial deposits with typical electrical<br />

resistivity of around 20-30 �m. Model<strong>in</strong>g of<br />

<strong>the</strong> phase shift tak<strong>in</strong>g <strong>in</strong>to account TDEM data<br />

and us<strong>in</strong>g a standard procedure (Valla and<br />

Legchenko, 2002) did not allow us to<br />

reproduce measured phase with <strong>the</strong> accuracy<br />

sufficient for <strong>in</strong>version of complex signals.<br />

Hence, only amplitude <strong>in</strong>version was possible.<br />

However, when variations of <strong>the</strong> Earth's<br />

magnetic field were taken <strong>in</strong>to account we<br />

were able to apply <strong>in</strong>version of complex<br />

signals and consequently resolution of <strong>the</strong><br />

survey was significantly improved for deeper<br />

part of <strong>the</strong> aquifer. We also observed much<br />

better correspondence between MRS and<br />

TDEM results.<br />

References<br />

Braun, M., and U. Yaramanci (2008): Inversion of<br />

resistivity <strong>in</strong> <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g.<br />

Journal of Applied Geophysics, 66, 151-164.<br />

Legchenko, A.V., and O.A. Shushakov (1998):<br />

Inversion of surface NMR data. Geophysics, 63,<br />

75-84.<br />

Legchenko, A. (2004): <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g: Enhanced Model<strong>in</strong>g of a Phase Shift.<br />

Applied <strong>Magnetic</strong> <strong>Resonance</strong>, 25, 621-636.<br />

Mansfield, P., A.A. Maudsley, P.G. Morris and I.L.<br />

Pykett (1979): Selective pulses <strong>in</strong> NMR<br />

imag<strong>in</strong>g: reply to criticism. Journal of <strong>Magnetic</strong><br />

<strong>Resonance</strong>, 33, 261—274.<br />

Trushk<strong>in</strong>, D.V., O.A. Shushakov and A.V.<br />

Legchenko (1995): Surface NMR applied to an<br />

electroconductive medium. Geophysical<br />

Prospect<strong>in</strong>g, 43, 623-633.<br />

Valla, P., and A. Legchenko (2002): Onedimentional<br />

modell<strong>in</strong>g for proton magnetic<br />

resonance sound<strong>in</strong>g measurements over an<br />

electrically conductive medium. Journal of<br />

Applied Geophysics, 50, 217-229.<br />

Weichman, P.B., D.R. Lun, M.H. Ritzwoller and<br />

E.M. Lavely (2002): Study of surface nuclear<br />

magnetic resonance <strong>in</strong>verse problems. Journal of<br />

Applied Geophysics, 50, 131—147.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Bloch-Siegert effect <strong>in</strong> MRS<br />

Oleg A. Shushakov 1, 2 , Alexander G. Maryasov 1<br />

1) Institute of Chemical K<strong>in</strong>etics and Combustion SB RAS, Novosibirsk, Russia<br />

2) Novosibirsk State University, Novosibirsk, Russia<br />

shushako@k<strong>in</strong>etics.nsc.ru<br />

The special case of a weak field rotat<strong>in</strong>g<br />

around <strong>the</strong> strong field is usually used <strong>in</strong> <strong>the</strong><br />

magnetic resonance applications. Bloch and<br />

Siegert studied more general case of <strong>the</strong><br />

magnetic resonance with elliptic polarization<br />

of <strong>the</strong> radiofrequency field <strong>in</strong> particular <strong>the</strong><br />

commonly used case of simple l<strong>in</strong>ear<br />

oscillation. The Earth’s magnetic field is of <strong>the</strong><br />

order of 5∙10 -5 T. The RF-field produced by <strong>the</strong><br />

surface antenna is l<strong>in</strong>early polarized and can be<br />

compatible with <strong>the</strong> geomagnetic field. The<br />

us<strong>in</strong>g of RF pulses at Larmor frequency leads<br />

to appearance of <strong>the</strong> mean resonance offset <strong>in</strong><br />

rotat<strong>in</strong>g frame,<br />

2 2<br />

�1 s<strong>in</strong> �� 8�1cos�� �� � � �1��. (1)<br />

16�0 � 3�0<br />

�<br />

Here � is angle between static Earth B0 and<br />

l<strong>in</strong>early polarized B1 RF magnetic fields <strong>in</strong> lab<br />

frame, �0=�B0 is Larmor frequency, �1=�B is<br />

Rabi frequency, � is gyromagnetic ratio for<br />

protons. The equation (1) gives <strong>the</strong> value for<br />

Bloch-Siegert shift with one order higher<br />

accuracy than usual.<br />

The magnetic-resonance sound<strong>in</strong>g (MRS) has<br />

been measured us<strong>in</strong>g 100m diameter antenna.<br />

The Ob reservoir near Novosibirsk has been<br />

chosen to make measurements (figure 1).<br />

Fig. 1 A scheme of MRS experiment to study <strong>the</strong><br />

Bloch-Siegert effect with one order higher accuracy<br />

of subice water at <strong>the</strong> Ob reservoir near<br />

Novosibirsk.<br />

Fig. 2 exemplifies a good agreement between<br />

measured and calculated data tak<strong>in</strong>g <strong>in</strong>to<br />

Bloch-Siegert effect <strong>in</strong> MRS 38<br />

account <strong>the</strong> Bloch-Siegert and <strong>the</strong> next-order<br />

effects.<br />

Fig. 2. A comparison of MRS amplitude vs pulse<br />

moment (amplitude times duration) at 40 and 80ms<br />

pulse durations calculated and measured with <strong>the</strong><br />

signal calculated without <strong>the</strong> Bloch-Siegert effect.<br />

Legchenko et al. expla<strong>in</strong> similar data and a<br />

significant discrepancy between measured and<br />

calculated data without consider<strong>in</strong>g of <strong>the</strong><br />

Bloch-Siegert effect by existence of aquifer<br />

under <strong>the</strong> floor of Ob reservoir at depth 50 to<br />

100 m with 5% of water content. Never<strong>the</strong>less,<br />

such an <strong>in</strong>terpretation is <strong>in</strong>correct. MRS<br />

relaxation time T2 * of subice Ob-lake bulk<br />

water measured is 1s, whereas relaxation time<br />

T2 * of aquifer groundwater <strong>in</strong> pores is usually<br />

100-200ms, thus is 5-10 times shorter.<br />

Moreover, <strong>the</strong>re is no borehole drill<strong>in</strong>g data or<br />

some o<strong>the</strong>r <strong>in</strong>formation, confirm<strong>in</strong>g <strong>the</strong> 50-<br />

100m aquifer existence.<br />

References<br />

Bloch F., Siegert A., (1940) <strong>Magnetic</strong> resonance for<br />

nonrotat<strong>in</strong>g fields. Phys. Rev. v. 57, p. 522.<br />

Legchenko A., Baltassat J.-M., Bobachev A.,<br />

Mart<strong>in</strong> C., Roba<strong>in</strong> H., and Vouillamoz J.-M.<br />

(2004) <strong>Magnetic</strong> resonance sound<strong>in</strong>g applied to<br />

aquifer characterization. Ground Water, v. 42,<br />

No 3, p. 363.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


2D Cell Inversion for <strong>Magnetic</strong> <strong>Resonance</strong> Tomography us<strong>in</strong>g JLMRS-Array Instrument 39<br />

2D Cell Inversion for <strong>Magnetic</strong> <strong>Resonance</strong> Tomography us<strong>in</strong>g JLMRS-<br />

Array Instrument<br />

Jiang Chuandong, Duan Q<strong>in</strong>gm<strong>in</strong>g, Yi Xiaofeng, L<strong>in</strong> Jun<br />

College of Instrumentation and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun, 130061, Ch<strong>in</strong>a<br />

l<strong>in</strong>_jun@jlu.edu.cn; willianjcd@yahoo.com.cn<br />

Introduction<br />

In most geophyscial applications, magnetic<br />

resonance sound<strong>in</strong>g (MRS) is based on a s<strong>in</strong>gle<br />

co<strong>in</strong>cident transmitter and receiver loop for<br />

<strong>in</strong>vestigat<strong>in</strong>g 1D groundwater verically below<br />

<strong>the</strong> loop. By us<strong>in</strong>g multiple-offset concident<br />

loop as well as separated loop configurations ,<br />

magnetic reosnance tomography (MRT)<br />

technology is developed for permitt<strong>in</strong>g full 2D<br />

water reconstruction. However, compared to<br />

1D water <strong>in</strong>verted sechmes (smooth, block, TS<br />

and QT), which are sound<strong>in</strong>g and effective, ,<br />

2D <strong>in</strong>version strategies demands for fur<strong>the</strong>r<br />

development.<br />

Array-MRT<br />

Array-MRT measurement is consists of a large<br />

s<strong>in</strong>gle turn loop energizes a pulse of alternat<strong>in</strong>g<br />

current for excit<strong>in</strong>g <strong>the</strong> deeper and farer<br />

hydrogen proton, and several small multiturn<br />

loops laid out on a profile for receiv<strong>in</strong>g MRT<br />

signals, simultaneously. Increas<strong>in</strong>g of loop<br />

turns can improve <strong>the</strong> amplitude of signal.<br />

Thus, loop array composed by <strong>the</strong>se multiturn<br />

loops will significantly improve <strong>the</strong> sensibility<br />

of non-stratified groundwater <strong>in</strong> 2D and 3D.<br />

Simulation results <strong>in</strong>dicate <strong>the</strong> sensibility of<br />

Array-MRT is superior to multiple-offset<br />

concident loop or separate loops.<br />

Array-MRT measurement is performed us<strong>in</strong>g<br />

JLMRS-Array <strong>in</strong>strument developed by Jil<strong>in</strong><br />

University (Ch<strong>in</strong>a). The <strong>in</strong>strument has one<br />

transimitter unit which produces maximum AC<br />

current pulses <strong>in</strong> excess of 450 A across <strong>the</strong><br />

transimitter loop of 100 m, and 6~10 receiver<br />

units (capable of extend<strong>in</strong>g more units),<br />

allow<strong>in</strong>g it to simultaneously receiv<strong>in</strong>g MRT<br />

signals on all <strong>the</strong> multiturn loops of 10 m~ 25<br />

m. The analog amplifier circuitry has a ga<strong>in</strong> of<br />

60 dB ~ 120 dB and a bandwidth of 48 Hz ~<br />

122 Hz. Through <strong>the</strong> field test<strong>in</strong>g, <strong>the</strong> receiver<br />

short-circuit <strong>in</strong>put noise is 1 nV/Hz 1/2 , and <strong>the</strong><br />

dead-time is about 17 ms.<br />

Cell <strong>in</strong>version<br />

Array-MRT data are <strong>in</strong>versed by a new<br />

<strong>in</strong>version scheme, cell <strong>in</strong>version. A water cell<br />

is def<strong>in</strong>ed as a certa<strong>in</strong> area conta<strong>in</strong> <strong>the</strong> specific<br />

water conta<strong>in</strong> and relaxation time T2. Similar<br />

with block <strong>in</strong>version, <strong>the</strong> location and<br />

boundary of cell is not fixed, however, cells<br />

permits co<strong>in</strong>cide with each o<strong>the</strong>r, which blocks<br />

cannot. In <strong>the</strong> co<strong>in</strong>cidence area, water contents<br />

are <strong>the</strong> sum over all cells, but T2s are<br />

<strong>in</strong>dependent from each o<strong>the</strong>r. Accord<strong>in</strong>g to<br />

area equivalent, water cells can be converted to<br />

subdivision grids of groundwater distribution<br />

for forward calculation and <strong>in</strong>version.<br />

Cell <strong>in</strong>version uses all MRT records <strong>in</strong> time<br />

doma<strong>in</strong> of receiver loop array to seek an<br />

optimal water content and T2 model. The<br />

algorithm of cell <strong>in</strong>version is f<strong>in</strong>ished by<br />

comb<strong>in</strong>ed with genetic algorithm (GA) and<br />

nonl<strong>in</strong>ear programm<strong>in</strong>g (NP). Simulation<br />

results show <strong>the</strong> new <strong>in</strong>version scheme can<br />

separate multiple water cells with multi-T2 <strong>in</strong><br />

2D.<br />

Field example<br />

A field measurement has been carried out<br />

us<strong>in</strong>g JLMRS-Array <strong>in</strong>strument <strong>in</strong> Shaoguo<br />

town, Ch<strong>in</strong>a. The results verify <strong>the</strong> 2D<br />

groundwater distribution characteristics, and<br />

compared with <strong>the</strong> 1D results of smooth, block<br />

and QT <strong>in</strong>version, as well as borehole data.<br />

Conclusion<br />

Array-MRT measurement us<strong>in</strong>g JLMRS-Array<br />

<strong>in</strong>strument improves <strong>the</strong> efficiency and<br />

sensibility of detection 2D non-stratified<br />

groundwater. Data <strong>in</strong>versed by Cell <strong>in</strong>version<br />

can reconstruction of water content and multi-<br />

T2 <strong>in</strong> 2D, simultaneously.<br />

References<br />

Hertrich, M., Braun M., Yaramanci U. (2009):<br />

High-resolution surface NMR tomography of<br />

shallow aquifers based on multioffset<br />

measurements. Geophysics, 74(6): 47-59.<br />

Mueller-Petke, M., Yaramanci U. (2010): QT<br />

<strong>in</strong>version <strong>–</strong> Comprehensive use of <strong>the</strong> complete<br />

surface NMR data set. Geophysics, 75(4):199-<br />

209.<br />

Legchenko, A., Clement R., Garambois, S., (2011):<br />

Investigat<strong>in</strong>g water distribution <strong>in</strong> <strong>the</strong> Luitel<br />

Lake peat bog us<strong>in</strong>g MRS, ERT and GPR. Near<br />

Surface Geophysics, 9: 201-209<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


2D qt-<strong>in</strong>version to <strong>in</strong>vestigate spatial variations of hydraulic conductivity us<strong>in</strong>g SNMR 40<br />

2D qt-<strong>in</strong>version to <strong>in</strong>vestigate spatial variations of hydraulic conductivity<br />

us<strong>in</strong>g SNMR<br />

Raphael Dlugosch 1 , Thomas Gün<strong>the</strong>r, Mike Müller-Petke, and Ugur Yaramanci<br />

Leibniz Institute for Applied Geophysics (<strong>LIAG</strong>), Hannover<br />

1 Raphael.Dlugosch@liag-hannover.de<br />

Surface-NMR is able to detect water content <strong>in</strong><br />

<strong>the</strong> subsurface. Additionally, hydraulic<br />

conductivities can be estimated from NMR<br />

decay times (Legchenko et al. 2002, Dlugosch<br />

et al., 2011b). Both make SNMR a useful tool<br />

to answer hydrological questions. Most<br />

applications are 1D but SNMR has moved on<br />

to 2D targets (Hertrich et al., 2005; Hertrich et<br />

al., 2007) us<strong>in</strong>g comprehensive datasets while<br />

Girard et al. (2007) uses only co<strong>in</strong>cident loops.<br />

The development of multi channel<br />

<strong>in</strong>strumentation made comprehensive 2D<br />

datasets time efficient (Dlugosch et al., 2011a).<br />

Current 2D <strong>in</strong>versions focus on estimat<strong>in</strong>g <strong>the</strong><br />

water content distribution but do not <strong>in</strong>vert for<br />

spatial <strong>in</strong>formation of relaxation time T2*.<br />

Thus, estimation of hydraulic conductivity is<br />

yet undone. We present <strong>the</strong> development a<br />

robust <strong>in</strong>version to estimate a 2D distribution<br />

of T2*. F<strong>in</strong>ally, this enables to image spatial<br />

variations <strong>in</strong> hydraulic conductivity from<br />

SNMR data with a high lateral resolution.<br />

The <strong>in</strong>version is based on <strong>the</strong> qt-<strong>in</strong>version<br />

scheme (Müller-Petke and Yaramanci, 2010).<br />

It exploits <strong>the</strong> full measured free <strong>in</strong>duction<br />

decay data cube and <strong>in</strong>creases both spatial<br />

resolution and stability of <strong>the</strong> <strong>in</strong>verse problem.<br />

By account<strong>in</strong>g for separate transmitter and<br />

receiver loops an <strong>in</strong>creased lateral resolution is<br />

expected as shown by Hertrich et al. (2005).<br />

A challeng<strong>in</strong>g problem for a 2D <strong>in</strong>version of<br />

water content and decay time is <strong>the</strong> size of <strong>the</strong><br />

<strong>in</strong>verse problem both at <strong>the</strong> model and data<br />

doma<strong>in</strong>. We use an irregular mesh and monoexponential<br />

decay per cell to m<strong>in</strong>imize <strong>the</strong><br />

number of free parameter <strong>in</strong> <strong>the</strong> model doma<strong>in</strong>.<br />

In addition <strong>the</strong> FID data is gate <strong>in</strong>tegrated to<br />

m<strong>in</strong>imize <strong>the</strong> size of <strong>the</strong> dataset (Behroozmand<br />

et al., 2012). We present first prelim<strong>in</strong>ary<br />

results of a syn<strong>the</strong>tic dataset.<br />

References<br />

Behroozmand, A. A., Auken, E., Fiandaca, G.,<br />

Christiansen, A. V. & Christensen, N. B. (2012):<br />

Efficient full decay <strong>in</strong>version of MRS data with a<br />

stretched-exponential approximation of <strong>the</strong><br />

distribution. Geophysical Journal <strong>International</strong>,<br />

Blackwell Publish<strong>in</strong>g Ltd, 190 (2), 900-912.<br />

Dlugosch, R., Müller-Petke, M., Gün<strong>the</strong>r, T.,<br />

Costabel, S. and Yaramanci, U., 2011a. Assessment<br />

of <strong>the</strong> Potential of a new Generation of surface<br />

NMR <strong>in</strong>struments, Near Surface Geophysics 9(2),<br />

123-134.<br />

Dlugosch, R., Müller-Petke, M., Gün<strong>the</strong>r, T.,<br />

Ronczka, M. and Yaramanci, U., 2011b. An<br />

extended model for predict<strong>in</strong>g hydraulic<br />

conductivity from NMR measurements. <strong>–</strong> EAGE<br />

Near Surface 2011, 12,-14.09.2011; Leicester<br />

Girard, J.-F., Boucher, M., Legchenko, A. &<br />

Baltassat, J.-M. (2007): 2D magnetic resonance<br />

tomography applied to karstic conduit imag<strong>in</strong>g.<br />

Journal of Applied Geophysics, 63 (3-4), 103-116.<br />

Hertrich, M., Braun, M., Yaramanci, U., 2005.<br />

<strong>Magnetic</strong> resonance sound<strong>in</strong>gs with separated<br />

transmitter and receiver loops, Near Surface<br />

Geophysics 3(3), 131-144.<br />

Hertrich, M., Braun, M., Gün<strong>the</strong>r, T., Green, A.,<br />

Yaramanci, U., 2007. Surface Nuclear <strong>Magnetic</strong><br />

<strong>Resonance</strong> Tomography, IEEE Transactions on<br />

Geoscience and remote sens<strong>in</strong>g 45, 3752-3759.<br />

Legchenko, A., Baltassat, J.-M., Beauce, A.,<br />

Bernard, J. (2002): Nuclear magnetic resonance as<br />

a geophysical tool for hydrogeologists. Journal of<br />

Applied Geophysics, 50 (1-2), 21-46.<br />

Müller-Petke, M., Yaramanci, U., 2010. QT<br />

<strong>in</strong>version - Comprehensive use of <strong>the</strong> complete<br />

surface NMR data set, Geophysics 75, WA199 -<br />

WA209.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Locat<strong>in</strong>g a karst conduit with 2D Monte Carlo <strong>in</strong>version of magnetic resonance<br />

measurements 41<br />

Locat<strong>in</strong>g a karst conduit with 2D Monte Carlo <strong>in</strong>version of magnetic<br />

resonance measurements<br />

Chevalier* A., A. Legchenko, M. Boucher<br />

UJF, IRD / LTHE, Grenoble, France<br />

Anto<strong>in</strong>e.chevalier@ujf-grenoble.fr<br />

Assess<strong>in</strong>g <strong>the</strong> ability of magnetic resonance<br />

measurement to reconstruct heterogeneous 2D<br />

and 3D water saturated formations by means of<br />

<strong>in</strong>version algorithms is a recent issue for MRS<br />

applications (Hertrich et al. 2009; Legchenko<br />

et al 2011). Non-uniqueness of <strong>in</strong>version<br />

results <strong>in</strong> conjunction with limited accuracy of<br />

measurements affected by electromagnetic<br />

noise may cause erroneous <strong>in</strong>terpretations. The<br />

best way to deal with this issue is to compute a<br />

great number of water content distributions<br />

consistent with <strong>the</strong> data set, and to propose a<br />

probabilistic answer <strong>in</strong>stead of a s<strong>in</strong>gle<br />

solution us<strong>in</strong>g Monte Carlo approaches.<br />

(Mosegaard et al, 1995)<br />

The Poumeyssens site (sou<strong>the</strong>rn France) was<br />

previously <strong>in</strong>vestigated with MRS (Boucher et<br />

al, 2006 and Girard et al, 2007). Eleven 1D<br />

sound<strong>in</strong>gs were performed with 3 turns 25×25<br />

m 2 co<strong>in</strong>cident overlapp<strong>in</strong>g loops on a s<strong>in</strong>gle<br />

profile cross<strong>in</strong>g <strong>the</strong> conduit. Entirely mapped<br />

by divers, <strong>the</strong> Poumeyssens karst conduit is a<br />

target of choice to put 2D l<strong>in</strong>ear and Monte<br />

Carlo <strong>in</strong>version algorithms to <strong>the</strong> test.<br />

Reported results, based on a strongly<br />

constra<strong>in</strong>ed l<strong>in</strong>ear <strong>in</strong>version rout<strong>in</strong>e, show that<br />

<strong>the</strong> pr<strong>in</strong>cipal conduit was correctly located<br />

with MRS but <strong>the</strong> possibility of existence of<br />

o<strong>the</strong>r conduits <strong>in</strong> <strong>the</strong> area was not analyzed.<br />

We now <strong>in</strong>vestigate results obta<strong>in</strong>ed through<br />

less constra<strong>in</strong>ed 2D <strong>in</strong>version scheme based on<br />

<strong>the</strong> Monte Carlo approach.<br />

To compute <strong>the</strong> occurrence probability of such<br />

a scenario, we use a Simulated Anneal<strong>in</strong>g<br />

algorithm driven by a Blocky prior idea<br />

(generat<strong>in</strong>g models us<strong>in</strong>g blocks of water). Its<br />

capability to resolve different models with<br />

100% water content was tested numerically<br />

vary<strong>in</strong>g <strong>the</strong> signal to noise ratio.<br />

The average water content computed from <strong>the</strong><br />

solution collection, show that <strong>the</strong> models were<br />

resolved with<strong>in</strong> an uncerta<strong>in</strong>ty of 5 to 10 m<br />

where <strong>the</strong> true 100 % water content is<br />

gradually scattered from a central maximum<br />

(50%) to <strong>the</strong> edge (10%). The standard<br />

deviation of <strong>the</strong> water content distribution is<br />

between 30 and 50 %.<br />

Analysis of <strong>the</strong> field data shows that <strong>the</strong><br />

Poumeyssens conduit was correctly resolved<br />

with MRS us<strong>in</strong>g ei<strong>the</strong>r l<strong>in</strong>ear or Monte Carlo<br />

<strong>in</strong>version. Use of <strong>the</strong> Monte Carlo method<br />

allowed estimat<strong>in</strong>g <strong>the</strong> uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong><br />

conduit localization as about 5 m. In this zone,<br />

<strong>the</strong> MRS water content was scattered from<br />

50% <strong>in</strong> <strong>the</strong> center to 10% towards <strong>the</strong> edges of<br />

<strong>the</strong> zone. The possibility of existence of o<strong>the</strong>r<br />

conduits was estimated as highly improbable<br />

among <strong>the</strong> collection of well-fitt<strong>in</strong>g scenarios.<br />

To conclude, a Blocky simulated anneal<strong>in</strong>g<br />

algorithm was proved to be reliable and<br />

efficient approach to assess <strong>the</strong> <strong>in</strong>version<br />

uncerta<strong>in</strong>ties on 2D targets such as karstic<br />

conduit.<br />

References<br />

Boucher, M., J.-F. Girard, A. Legchenko, J.-M.<br />

Baltassat, N. Dörfliger, et K. Chalikakis (2006):<br />

Us<strong>in</strong>g 2D <strong>in</strong>version of magnetic resonance<br />

sound<strong>in</strong>gs to locate a water-filled karst conduit:<br />

Journal of Hydrology, 330(3<strong>–</strong>4). 413<strong>–</strong>421.<br />

Girard, J-F, M. Boucher, A. Legchenko, and J-M.<br />

Baltassat (2007): 2D magnetic resonance<br />

tomography applied to karstic conduit imag<strong>in</strong>g:<br />

Journal of Applied Geophysics, 63, 103-116.<br />

Hertrich, M., A.G. Green, M. Braun, and U.<br />

Yaramanci (2009): High-resolution surface<br />

NMR tomography of shallow aquifers based on<br />

multioffset measurements: Geophysics, 74, 47-<br />

59.<br />

Legchenko, A., M. Descloitres, C. V<strong>in</strong>cent, H.<br />

Guyard, S. Garambois, K. Chalikakis and M.<br />

Ezersky (2011): Three-dimensional magnetic<br />

resonance imag<strong>in</strong>g for groundwater: New<br />

Journal of Physics, 13, 025022, doi:<br />

10.1088/1367-2630/13/2/025022.<br />

Mosegaard, K. and Tarantola, A. (1995): Monte<br />

Carlo sampl<strong>in</strong>g of solutions to <strong>in</strong>verse problems:<br />

Journal of Geophysical Research, 100(7), 431-<br />

447.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


A comprehensive study of <strong>the</strong> parameter determ<strong>in</strong>ation <strong>in</strong> a jo<strong>in</strong>t MRS and TEM data<br />

analysis scheme 42<br />

A comprehensive study of <strong>the</strong> parameter determ<strong>in</strong>ation <strong>in</strong> a jo<strong>in</strong>t MRS and<br />

TEM data analysis scheme<br />

Ahmad A. Behroozmand, Esben Dalgaard, Anders Vest Christiansen and Esben Auken<br />

Department of Geoscience, Aarhus University, Aarhus, Denmark.<br />

ahmad@geo.au.dk<br />

We present a comprehensive study of <strong>the</strong><br />

parameter determ<strong>in</strong>ation of magnetic<br />

resonance sound<strong>in</strong>g (MRS) models, <strong>in</strong> a jo<strong>in</strong>t<br />

MRS and transient electromagnetic (TEM)<br />

data analysis scheme. We assessed model<br />

parameter determ<strong>in</strong>ation by calculat<strong>in</strong>g <strong>the</strong><br />

model parameter uncerta<strong>in</strong>ties, based on <strong>the</strong> aposterior<br />

model covariance matrix. Do<strong>in</strong>g this,<br />

we <strong>in</strong>clude <strong>the</strong> full system transfer function,<br />

<strong>in</strong>clud<strong>in</strong>g data noise and system parameters<br />

which are crucial <strong>in</strong> order to get reliable<br />

uncerta<strong>in</strong>ty estimates. The analyses are<br />

computed for conductive layered half-spaces.<br />

The entire MRS data set, dependent on pulse<br />

moment and time gate values, toge<strong>the</strong>r with<br />

TEM data, was used for all analyses and<br />

realistic noise levels were assigned to <strong>the</strong> data.<br />

The sensitivity analyses were studied for <strong>the</strong><br />

determ<strong>in</strong>ation of Water content as a key<br />

parameter estimated dur<strong>in</strong>g <strong>in</strong>version of MRS<br />

data. We show <strong>the</strong> results for different suites of<br />

(three-layer) models, <strong>in</strong> which we <strong>in</strong>vestigated<br />

<strong>the</strong> effect of resistivity, water content,<br />

relaxation time, loop side length, number of<br />

pulse moments, and measurement dead time on<br />

<strong>the</strong> determ<strong>in</strong>ation of water content <strong>in</strong> a waterbear<strong>in</strong>g<br />

layer. For all suites of models <strong>the</strong><br />

effect of a top conductive and a top resistive<br />

layer were compared. Moreover, we analyzed<br />

all models for measurement dead times of both<br />

40 ms (typically used with Numis Poly/Plus<br />

equipment, IRIS Instruments) and 10 ms<br />

(relevant to GMR equipment, Vista Clara Inc.).<br />

We conclude that, <strong>in</strong> general, <strong>the</strong> resistivity<br />

of <strong>the</strong> water-bear<strong>in</strong>g layer (layer of <strong>in</strong>terest,<br />

LOI) does not affect <strong>the</strong> determ<strong>in</strong>ation of water<br />

content <strong>in</strong> <strong>the</strong> LOI, but resistivity of <strong>the</strong> top<br />

layer <strong>in</strong>creases depth resolution; <strong>the</strong> water<br />

content of <strong>the</strong> LOI does not <strong>in</strong>fluence its<br />

determ<strong>in</strong>ation considerably <strong>in</strong> cases where <strong>the</strong><br />

signal has a relatively long relaxation time <strong>in</strong><br />

<strong>the</strong> LOI; determ<strong>in</strong>ation of <strong>the</strong> water content <strong>in</strong><br />

<strong>the</strong> LOI is improved by <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

relaxation time of <strong>the</strong> signal <strong>in</strong> <strong>the</strong> LOI; short<br />

measurement dead times will improve <strong>the</strong><br />

parameter determ<strong>in</strong>ation for signals with a<br />

relatively short relaxation time; <strong>in</strong>creas<strong>in</strong>g loop<br />

side length and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> number of pulse<br />

moments do not necessarily improve <strong>the</strong><br />

parameter determ<strong>in</strong>ation.<br />

Key words: magnetic resonance sound<strong>in</strong>g<br />

(MRS); parameter determ<strong>in</strong>ation; sensitivity<br />

analysis; TEM.<br />

References<br />

Behroozmand, A. A., Auken, E., Fiandaca, G.,<br />

Christiansen, A. V., and Christensen, N. B.,<br />

2012, Efficient full decay <strong>in</strong>version of MRS<br />

data with a stretched-exponential<br />

approximation of <strong>the</strong> T2* distribution:<br />

Geophysical Journal <strong>International</strong>, 190,<br />

900-912.<br />

Behroozmand, A. A., Auken, E., Fiandaca, G.,<br />

and Christiansen, A. V., 2012, Improvement<br />

<strong>in</strong> MRS parameter estimation by jo<strong>in</strong>t and<br />

laterally constra<strong>in</strong>ed <strong>in</strong>version of MRS and<br />

TEM data: Geophysics, 77(4), WB191-<br />

WB200.<br />

Mueller-Petke, M. and Yaramanci, U., 2008,<br />

Resolution studies for <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g (MRS) us<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gular value<br />

decomposition: Journal of Applied<br />

Geophysics, 66, 165-175.<br />

Tarantola, A. and Valette, 1982, Generalized<br />

nonl<strong>in</strong>ear <strong>in</strong>verse problems solved us<strong>in</strong>g a<br />

least squares criterion: Rewiews of<br />

Geophysics and Space Physics, 20, 219-232.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Hybrid and multi-objective genetic algorithm applications <strong>in</strong> MRS data <strong>in</strong>version 43<br />

Hybrid and multi-objective genetic algorithm applications <strong>in</strong> MRS data<br />

<strong>in</strong>version<br />

Irfan Akca 1 , Thomas Gün<strong>the</strong>r 2 , Mike Müller-Petke 2 , Ahmet T. Basokur 1 and Ugur<br />

Yaramanci 2<br />

1 Ankara University, Faculty of Eng<strong>in</strong>eer<strong>in</strong>g, Department of Geophysical Eng<strong>in</strong>eer<strong>in</strong>g<br />

2 Leibniz Institute for Applied Geophysics, Stilleweg, 2, Hannover, Germany<br />

iakca@eng.ankara.edu.tr<br />

The aim of <strong>in</strong>version algorithms is to estimate<br />

<strong>the</strong> parameters of a model which represents <strong>the</strong><br />

subsurface with<strong>in</strong> <strong>the</strong> resolution of applied<br />

geophysical method. The derivative based<br />

local optimization methods could provide fast<br />

and satisfactory solutions. However, <strong>the</strong> illposed<br />

nature of geophysical <strong>in</strong>version leads to<br />

stability problems. They may suffer from <strong>the</strong><br />

probability of trapp<strong>in</strong>g <strong>in</strong> a local m<strong>in</strong>umum<br />

depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>itial-guess. Genetic<br />

algorithms (GA) are <strong>in</strong>spired from <strong>the</strong><br />

evolution of organisms that controlled by <strong>the</strong><br />

environmental conditions (Holland, 1975;<br />

Goldberg, 1989). GAs generates a random<br />

<strong>in</strong>itial model population and rate all models <strong>in</strong><br />

<strong>the</strong> population by <strong>the</strong> help of objective<br />

function. Local and global optimization<br />

methods have <strong>the</strong>ir own advantages and<br />

disadvantages. For this reason, <strong>the</strong> sequential<br />

and hybrid apllications of global and local<br />

methods can be used to overcome <strong>the</strong><br />

difficulties encountered <strong>in</strong> <strong>the</strong> <strong>in</strong>dividiual<br />

applications (Başokur et al., 2007; Akca and<br />

Başokur, 2010; Başokur et al., 2007; Soupios<br />

et al., 2011). Moreover, <strong>the</strong> hybrid algorithms<br />

can be applied for <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>version problems<br />

that are applied for reduc<strong>in</strong>g uncerta<strong>in</strong>ities <strong>in</strong><br />

<strong>the</strong> model. Hybrid genetic algoritms give <strong>the</strong><br />

ability of search<strong>in</strong>g a wide solution space<br />

without loos<strong>in</strong>g <strong>the</strong> f<strong>in</strong>e tun<strong>in</strong>g capability of<br />

<strong>the</strong> local methods while reduc<strong>in</strong>g <strong>the</strong> classical<br />

GA evolution time.<br />

This paper deals with <strong>the</strong> application of a<br />

hybrid GA (GA hybridized with least-squares)<br />

for <strong>the</strong> <strong>in</strong>version of magnetic resonance<br />

sound<strong>in</strong>g (MRS) data and a multi-objective<br />

GA for <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>version of MRS and vertical<br />

electrical sound<strong>in</strong>g (VES) data.<br />

The follow<strong>in</strong>g procedure is applied for <strong>the</strong><br />

proposed hybrid genetic algorithm: An <strong>in</strong>itial<br />

population is created with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong><br />

search space (1); selection, cross-over and<br />

mutation operators proceed as <strong>in</strong> <strong>the</strong> simple<br />

GA (2); each model at <strong>in</strong>termediate<br />

generations is tried to be updated by leastsquares<br />

<strong>in</strong>version (3); succesfull <strong>in</strong>version<br />

candidates are replaced back <strong>in</strong>to <strong>the</strong><br />

population (4). The efficency of <strong>the</strong> hybrid<br />

scheme is tested by <strong>the</strong> use of syn<strong>the</strong>tic and<br />

field data applications.<br />

Fur<strong>the</strong>rmore, a multi-objective GA (Deb,<br />

2001) is utilized for <strong>the</strong> jo<strong>in</strong>t <strong>in</strong>version of MRS<br />

and VES data for a 1D blocky subsurface<br />

model. The model vectors def<strong>in</strong>ed for both<br />

methods are <strong>in</strong>terconnected via <strong>the</strong> thicknesses<br />

(Gün<strong>the</strong>r and Müller-Petke, 2012). At f<strong>in</strong>al<br />

stage a Pareto-optimal set of solutions is<br />

obta<strong>in</strong>ed.<br />

References<br />

Akca, İ. and Başokur, A. T., (2010): Extraction of<br />

structure-based geoelectric models by hybrid<br />

genetic algorithms, Geophysics, 75, F15-F22.<br />

Başokur, A. T., Akça, İ. and Siyam, N. W. A.<br />

(2007): Hybrid genetic algorithms <strong>in</strong> view of <strong>the</strong><br />

evolution <strong>the</strong>ories with application for <strong>the</strong><br />

electrical sound<strong>in</strong>g method. Geophysical<br />

Prospect<strong>in</strong>g, 55, 393<strong>–</strong>406.<br />

Deb, K., (2001): Multi-Objective Optimization<br />

us<strong>in</strong>g Evolutionary Algorithms, John Wiley &<br />

Sons, Ltd, Chichester, England.<br />

Goldberg, D.E. (1989): Genetic Algorithms <strong>in</strong><br />

Search, Optimization, and Mach<strong>in</strong>e Learn<strong>in</strong>g.<br />

Addison-Wesley Publ. Co., Inc.<br />

Gün<strong>the</strong>r, T. and Müller-Petke, M. (2012):<br />

Hydraulic properties at <strong>the</strong> North Sea island<br />

Borkum derived from jo<strong>in</strong>t <strong>in</strong>version of magnetic<br />

resonance and electrical resistivity sound<strong>in</strong>gs.<br />

Hydrol. Earth Syst. Sci. 9, 2797-2829.<br />

Holland, J. (1975): Adaptation <strong>in</strong> Natural and<br />

Artificial Systems. University of Michigan Press.<br />

Soupios, P., Akca, I, Mpogiatzis P., Basokur, A. T.<br />

and Papazachos, C., (2011):, Applications of<br />

hybrid genetic algorithms <strong>in</strong> seismic<br />

tomography, Journal of Applied Geophysics, 74,<br />

479-489.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Experimental verification of a 3D model for MRS<br />

Legchenko 1* A., J-F. Girard 2 , S. Morlighem 3 and J-M. Baltassat 2<br />

1 IRD / LTHE, Grenoble, France; 2 BRGM, Orléans, France; 3 VALE, New Calédonia.<br />

anatoli.legtchenko@ird.fr<br />

It is known that only one co<strong>in</strong>cident<br />

transmitt<strong>in</strong>g-receiv<strong>in</strong>g loop is required for <strong>the</strong><br />

1D magnetic resonance sound<strong>in</strong>g (MRS)<br />

measur<strong>in</strong>g and <strong>in</strong>version (Legchenko and<br />

Shushakov, 1998). The method could be<br />

extended to 2D (Girard et al., 2007) and 3D<br />

(Legchenko et al., 2011) applications and use<br />

of a multi-channel receiver allows a more<br />

sophisticated 3D implementation (Hertrich et<br />

al., 2009). Whatever would be <strong>the</strong> practical<br />

implementation of a 3D MRS survey,<br />

<strong>in</strong>version is based on <strong>the</strong> forward model<strong>in</strong>g of<br />

<strong>the</strong> magnetic resonance response.<br />

Consequently, <strong>the</strong> ma<strong>the</strong>matical model is a<br />

crucial po<strong>in</strong>t for <strong>the</strong> <strong>in</strong>version.<br />

In <strong>the</strong> majority of reported applications <strong>the</strong><br />

MRS method is used <strong>in</strong> <strong>the</strong> FID mode when<br />

<strong>the</strong> free <strong>in</strong>duction decay signal is measured<br />

(Legchenko et Valla, 2002). However, <strong>in</strong> some<br />

rocks <strong>the</strong> geomagnetic field may be perturbed<br />

and FID measurements may fail (Roy et al.,<br />

2008). For improv<strong>in</strong>g <strong>the</strong> MRS performance <strong>in</strong><br />

<strong>the</strong> presence of magnetic rocks MRS could be<br />

used <strong>in</strong> <strong>the</strong> sp<strong>in</strong> echo (SE) mode (Legchenko et<br />

al., 2010). In this case only <strong>the</strong> sp<strong>in</strong> echo signal<br />

is measured. Under some conditions both FID<br />

and SE signals can be observed.<br />

We have developed a 3D ma<strong>the</strong>matical model<br />

that allows comput<strong>in</strong>g MRS signal from 3D<br />

targets both <strong>in</strong> FID and SE modes. This model<br />

allows consider<strong>in</strong>g <strong>the</strong> field setup consist<strong>in</strong>g of<br />

ei<strong>the</strong>r one transmitt<strong>in</strong>g loop with number of<br />

separated receiv<strong>in</strong>g loops or <strong>the</strong> overlapped<br />

co<strong>in</strong>cident loops.<br />

For experimental verification of <strong>the</strong> model<strong>in</strong>g<br />

rout<strong>in</strong>e we used an artificial water reservoir<br />

located <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> New<br />

Caledonia Island. In this pool, of<br />

approximately 80×30 m 2 large, <strong>the</strong> depth is<br />

vary<strong>in</strong>g from 1.5 to 4 m. A rectangular loop of<br />

100×50 m 2 was put around <strong>the</strong> pool. Rocks <strong>in</strong><br />

this area are characterized by <strong>the</strong> magnetic<br />

susceptibility between 5e-4 and 5e-3 SIU thus<br />

perturb<strong>in</strong>g <strong>the</strong> geomagnetic field. However<br />

with<strong>in</strong> <strong>the</strong> pool <strong>the</strong>se perturbations are<br />

relatively small and we were able to measure<br />

Experimental verification of a 3D model for MRS 44<br />

both FID and SE signals. The geomagnetic<br />

field was of 47246 nT and <strong>the</strong> Larmor<br />

frequency was about 2013 Hz.<br />

We have found that <strong>the</strong> relaxation times for <strong>the</strong><br />

signal from water <strong>in</strong> <strong>the</strong> pool are: T1=1950 ms,<br />

T2=1400 ms, T2 * (FID)=100 ms and T2 * (SE)=125<br />

ms. The maximum signal amplitude was<br />

approximately 180 nV for <strong>the</strong> FID signal and<br />

120 nV for <strong>the</strong> SE signal (measured with <strong>the</strong><br />

delay of 256 ms between <strong>the</strong> pulses).<br />

Under <strong>the</strong>se conditions numerical model<strong>in</strong>g of<br />

<strong>the</strong> MRS signal from water <strong>in</strong> <strong>the</strong> pool showed<br />

a good correspondence between observed and<br />

<strong>the</strong>oretical signals for both FID and SE<br />

measurements.<br />

References<br />

Girard, J-F, M. Boucher, A. Legchenko, and J-M.<br />

Baltassat (2007): 2D magnetic resonance<br />

tomography applied to karstic conduit imag<strong>in</strong>g.<br />

Journal of Applied Geophysics, 63, 103-116.<br />

Hertrich, M., A.G. Green, M. Braun, and U.<br />

Yaramanci (2009): High-resolution surface<br />

NMR tomography of shallow aquifers based on<br />

multioffset measurements. Geophysics, 74, 47-<br />

59.<br />

Legchenko, A.V., and O.A. Shushakov (1998):<br />

Inversion of surface NMR data. Geophysics, 63,<br />

75-84.<br />

Legchenko, A., and P. Valla (2002): A review of<br />

<strong>the</strong> basic pr<strong>in</strong>ciples for proton magnetic<br />

resonance sound<strong>in</strong>g measurements. Journal of<br />

Applied Geophysics, 50, 3-19.<br />

Legchenko, A., J.M. Vouillamoz, J. Roy (2010):<br />

Application of <strong>the</strong> magnetic resonance sound<strong>in</strong>g<br />

method to <strong>the</strong> <strong>in</strong>vestigation of aquifers <strong>in</strong> <strong>the</strong><br />

presence of magnetic materials. Geophysics 75:<br />

L91<strong>–</strong>L100.<br />

Legchenko, A., M. Descloitres, C. V<strong>in</strong>cent, H.<br />

Guyard, S. Garambois, K. Chalikakis and M.<br />

Ezersky (2011): Three-dimensional magnetic<br />

resonance imag<strong>in</strong>g for groundwater. New<br />

Journal of Physics, 13, 025022, doi:<br />

10.1088/1367-2630/13/2/025022.<br />

Roy, J., A. Rouleau, M. Chouteau, M. Bureau<br />

(2008): Widespread occurrence of aquifers<br />

currently undetectable with <strong>the</strong> MRS technique<br />

<strong>in</strong> <strong>the</strong> Grenville geological prov<strong>in</strong>ce, Canada.<br />

Journal of Applied Geophysics, 66, 82-93.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Comparison of borehole and surface NMR-<strong>in</strong>ferred water content profiles 45<br />

Comparison of borehole and surface NMR-<strong>in</strong>ferred water content profiles<br />

Andreas P. Mavrommatis 1* , Jan O. Walbrecker 1 , Rosemary Knight 1<br />

1 Department of Geophysics, Stanford University, Stanford, California, USA.<br />

* andreasm@stanford.edu<br />

The direct comparison of borehole and surface<br />

nuclear magnetic resonance (NMR)<br />

measurements made over <strong>the</strong> same area can<br />

provide useful <strong>in</strong>sights about both <strong>the</strong><br />

reliability and limitations of surface NMR. Our<br />

area of study is near Lex<strong>in</strong>gton, Nebraska, <strong>in</strong><br />

<strong>the</strong> central United States, overly<strong>in</strong>g <strong>the</strong> High<br />

Pla<strong>in</strong>s Aquifer, which is one of <strong>the</strong> largest and<br />

most important aquifers <strong>in</strong> <strong>the</strong> U.S.<br />

We use borehole NMR measurements of<br />

relaxation time distributions, T2, and electrical<br />

resistivity, acquired <strong>in</strong> a 150-m deep borehole<br />

drilled at <strong>the</strong> site <strong>in</strong> November 2009 (Knight et<br />

al., 2012). Because surface NMR measures a<br />

different transverse relaxation time constant,<br />

referred to as T2*, we transform <strong>the</strong> measured<br />

T2 distributions to pseudo-T2* distributions<br />

follow<strong>in</strong>g Knight et al., 2012, account<strong>in</strong>g for a<br />

magnetic field <strong>in</strong>homogeneity effect and an<br />

<strong>in</strong>strument dead time.<br />

In <strong>the</strong> forward model<strong>in</strong>g stage, we use <strong>the</strong><br />

borehole-determ<strong>in</strong>ed water content, pseudo-<br />

T2*, and resistivity as <strong>in</strong>put to predict <strong>the</strong><br />

surface-NMR response for this site. We<br />

explore <strong>the</strong> effects of discretiz<strong>in</strong>g water<br />

content and resistivity models at different<br />

resolutions on <strong>the</strong> predicted surface-NMR<br />

sound<strong>in</strong>g curves.<br />

We analyze two sets of surface-NMR data that<br />

were acquired at <strong>the</strong> site <strong>in</strong> April 2009 and<br />

April 2012. We process a total of 768<br />

record<strong>in</strong>gs for <strong>the</strong> 2009 data set and 1232<br />

record<strong>in</strong>gs for 2012. Signal process<strong>in</strong>g<br />

<strong>in</strong>cludes noise cancellation us<strong>in</strong>g reference<br />

record<strong>in</strong>gs at three locations around <strong>the</strong> field<br />

site, removal of outliers, band-pass filter<strong>in</strong>g,<br />

stack<strong>in</strong>g of record<strong>in</strong>gs for each pulse moment,<br />

and fitt<strong>in</strong>g. We <strong>in</strong>vert <strong>the</strong> surface-NMR data<br />

sets us<strong>in</strong>g QT <strong>in</strong>version (Müller-Petke and<br />

Yaramanci, 2010) and estimate <strong>the</strong> predicted<br />

water content profiles and T2* depth<br />

distributions. Various <strong>in</strong>version parameters are<br />

explored, <strong>in</strong>clud<strong>in</strong>g smooth<strong>in</strong>g and mono- vs.<br />

multi-exponential fitt<strong>in</strong>g.<br />

Prelim<strong>in</strong>ary results suggest <strong>the</strong> presence of a<br />

systematic difference between <strong>the</strong> observed<br />

and modeled surface-NMR data. Modeled<br />

signal amplitudes are consistently larger, by as<br />

much as a factor of three, than observed <strong>in</strong> <strong>the</strong><br />

2009 and 2012 surface-NMR measurements.<br />

Because signal amplitude is l<strong>in</strong>early related to<br />

water content, we observe <strong>the</strong> same<br />

discrepancy when compar<strong>in</strong>g borehole- and<br />

surface-NMR water content profiles. We are<br />

assess<strong>in</strong>g possible sources for this discrepancy,<br />

such as <strong>the</strong> quality of <strong>the</strong> T2 to T2*<br />

transformation and <strong>the</strong> <strong>in</strong>fluence of magnetite<br />

<strong>in</strong> <strong>the</strong> pore space of <strong>the</strong> subsurface materials.<br />

References<br />

Knight, R., Grunewald, E., Irons, T., Dlubac, K.,<br />

Song, Y., Bachman, H. N., Grau, B., Walsh, D.<br />

J., Abraham, D., Cannia, J. (2012): Field<br />

experiment provides ground truth for surface<br />

nuclear magnetic resonance measurement.<br />

Geophys. Res. Lett., 39, L03304.<br />

Müller-Petke, M., Yaramanci, U. (2010): QT<br />

Inversion <strong>–</strong> Comprehensive use of <strong>the</strong> complete<br />

surface NMR data set. Geophysics, 75, WA199-<br />

WA209.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


MRSMatlab <strong>–</strong> a toolbox for model<strong>in</strong>g, process<strong>in</strong>g, and <strong>in</strong>vert<strong>in</strong>g surface-NMR data 46<br />

MRSMatlab <strong>–</strong> a toolbox for model<strong>in</strong>g, process<strong>in</strong>g, and <strong>in</strong>vert<strong>in</strong>g surface-<br />

NMR data<br />

Mike Müller-Petke 1 , Jan O. Walbrecker 2 , S. Costabel 3 , T. Gün<strong>the</strong>r 1 , M. Hertrich 4<br />

1 Leibniz Institute for Applied Geophysics, Hannover, Germany<br />

2 Stanford University, Department of Geophysics, Stanford, USA<br />

3 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

4 ETH Zurich, Institute of Geophysics, Switzerland<br />

Mike.mueller-petke@liag-hannover.de<br />

Surface Nuclear <strong>Magnetic</strong> <strong>Resonance</strong> (SNMR)<br />

is a geophysical technique tailored for<br />

explor<strong>in</strong>g groundwater occurrences <strong>in</strong> <strong>the</strong><br />

shallow subsurface. Many groups worldwide<br />

have contributed significant improvements to<br />

<strong>the</strong> technique over <strong>the</strong> last decade, cover<strong>in</strong>g all<br />

important segments such as data acquisition,<br />

process<strong>in</strong>g, forward model<strong>in</strong>g, and <strong>in</strong>version.<br />

We have fused many of <strong>the</strong> recent advances<br />

<strong>in</strong>to <strong>the</strong> s<strong>in</strong>gle open-source software toolkit<br />

MRSmatlab. The software consists of various<br />

modules for data process<strong>in</strong>g, forward<br />

model<strong>in</strong>g, and <strong>in</strong>version of surface-NMR data.<br />

For process<strong>in</strong>g, data can be imported from all<br />

currently available commercial surface-NMR<br />

systems (import of raw as well as preprocessed<br />

data is facilitated). Process<strong>in</strong>g supports<br />

enhanced data <strong>in</strong>spection, digital filter<strong>in</strong>g,<br />

spike suppression, data fitt<strong>in</strong>g, and noise<br />

cancellation employ<strong>in</strong>g one or more reference<br />

channels.<br />

Forward model<strong>in</strong>g currently features setups of<br />

co<strong>in</strong>cident transmitter and receiver loops of<br />

circular, square, or figure-8 geometry.<br />

Arbitrary 1D electrical-conductivity structures<br />

can be <strong>in</strong>cluded. S<strong>in</strong>gle and double-pulse<br />

surface-NMR experiments can be modeled to<br />

study <strong>the</strong> effect of water content and <strong>the</strong> T1<br />

relaxation parameter, respectively. For<br />

improved forward model<strong>in</strong>g off-resonance<br />

excitation can be <strong>in</strong>cluded (Walbrecker et. al,<br />

2011a)<br />

The <strong>in</strong>version implemented <strong>in</strong> MRSmatlab is<br />

based on <strong>the</strong> recently <strong>in</strong>troduced QT-Inversion<br />

approach (Müller-Petke and Yaramanci, 2010)<br />

with improved performance, support<strong>in</strong>g<br />

complex surface-NMR data as well as<br />

smooth/layered model discretization and<br />

mono/multi-exponential decay times. The most<br />

recent feature is <strong>the</strong> <strong>in</strong>version of double-pulse<br />

data to obta<strong>in</strong> <strong>the</strong> T1 relaxation parameter<br />

based on pcPSR (Walbrecker et.al. 2011b).<br />

The software package is frequently ma<strong>in</strong>ta<strong>in</strong>ed,<br />

under cont<strong>in</strong>uous development, and publicly<br />

available to <strong>the</strong> surfacfe-NMR community<br />

through a website.<br />

References<br />

Mueller-Petke, M. & Yaramanci, U. (2010): QT<br />

<strong>in</strong>version --- Comprehensive use of <strong>the</strong> complete<br />

surface NMR data set. Geophysics, SEG, 75 (4),<br />

WA199-WA209.<br />

Walbrecker, J. O., Hertrich, M. & Green, A. G.<br />

(2011a): Off-resonance effects <strong>in</strong> surface nuclear<br />

magnetic resonance. Geophysics, SEG, 76 (2),<br />

G1-G12.<br />

Walbrecker, J. O., Hertrich, M., Lehmann-Horn, J.<br />

A. & Green, A. G. (2011b): Estimat<strong>in</strong>g <strong>the</strong><br />

longitud<strong>in</strong>al relaxation time T1 <strong>in</strong> surface NMR.<br />

Geophysics, SEG, 76 (2), F111-F122.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Research<strong>in</strong>g vertical resolution of SNMR by us<strong>in</strong>g numerical simulation 47<br />

Research<strong>in</strong>g vertical resolution of SNMR by us<strong>in</strong>g numerical simulation<br />

Wang Peng 1 ,Zhengyu Li 1 ,Fei Yan 1<br />

1 Ch<strong>in</strong>a University of Geosciences,Wuhan,PRC<br />

pwhope@163.com<br />

Abstract<br />

At present, few geophysicists research<br />

resolution of SNMR. There are many factors<br />

impact<strong>in</strong>g resolution of SNMR, <strong>the</strong>y relate to<br />

<strong>the</strong> whole process from excitation to data<br />

process<strong>in</strong>g. There is no strict def<strong>in</strong>ition of<br />

resolution of SNMR <strong>in</strong> o<strong>the</strong>r paper, and a<br />

cursory def<strong>in</strong>ition of resolution of SNMR has<br />

been given <strong>in</strong> this paper. We can say that <strong>the</strong><br />

vertical resolution of SNMR is <strong>the</strong> m<strong>in</strong>imum<br />

thickness that we can recognize along with <strong>the</strong><br />

vertical direction of <strong>the</strong> strata, <strong>the</strong> horizontal<br />

resolution of SNMR is <strong>the</strong> m<strong>in</strong>imum width that<br />

we can recognize along with <strong>the</strong> horizontal<br />

direction of <strong>the</strong> strata. There are many factors<br />

affect<strong>in</strong>g <strong>the</strong> resolution of SNMR, which exist<br />

<strong>in</strong> <strong>the</strong> whole process <strong>in</strong>clud<strong>in</strong>g excitation,<br />

collection, data process<strong>in</strong>g and <strong>in</strong>tegrated<br />

<strong>in</strong>terpretation.These factors can be divided <strong>in</strong>to<br />

natural factors and hunman factors. The natural<br />

factors <strong>in</strong>clude strata resistivity, geomagnetic<br />

field <strong>in</strong>tensity, <strong>the</strong> dip angle of geomagnetic<br />

field, <strong>the</strong> type of <strong>the</strong> waterstone and so on.The<br />

hunman factors <strong>in</strong>clude <strong>the</strong> shape and size of<br />

<strong>the</strong> coil , <strong>the</strong> number and <strong>the</strong> value of <strong>the</strong> pulse<br />

and so on.<br />

In <strong>the</strong> uniform half-space, with <strong>the</strong> method<br />

of forward numerical simulation, <strong>the</strong> SNMR<br />

forward models for s<strong>in</strong>gle water layer <strong>in</strong><br />

different factors are caculated by Samogon<br />

software.In this paper six factors have been<br />

discused, it <strong>in</strong>cludes <strong>the</strong> dip angle of<br />

geomagnetic field, <strong>the</strong> size of <strong>the</strong> coil, <strong>the</strong><br />

value of T2*,<strong>the</strong> water content of <strong>the</strong> aquifer,<br />

<strong>the</strong> thickness and depth of <strong>the</strong> aquifer, and<br />

related q-E0 figures are drawn. These figures<br />

can reflect how <strong>the</strong> factors affect <strong>the</strong> vertical<br />

resolution of SNMR. Besides, it can be<br />

<strong>in</strong>duced that <strong>the</strong> relationship between <strong>the</strong><br />

resolv<strong>in</strong>g power of SNMR and <strong>the</strong> aquifer with<br />

th<strong>in</strong> thickness or low water content. The results<br />

will provide <strong>the</strong>oretical basis for explor<strong>in</strong>g<br />

groundwater with SNMR method.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Study on Factors Affect<strong>in</strong>g SNMR Vertical and Lateral Resolution 48<br />

Study on Factors Affect<strong>in</strong>g SNMR Vertical and Lateral Resolution<br />

Fei Yan, Zhenyu Li, Wang Peng, Zunp<strong>in</strong>g Hu, Yuchao Xu, Huangjian Wu<br />

Institute of Geophysics and Geomatics, Ch<strong>in</strong>a University of Geosciences, Wuhan, PRC<br />

kdjf_025@126.com<br />

There are many factors affect<strong>in</strong>g <strong>the</strong> resolution<br />

of surface nuclear magnetic resonance (shorted<br />

for SNMR), which exist <strong>in</strong> <strong>the</strong> whole process<br />

<strong>in</strong>clud<strong>in</strong>g excitation, collection, data<br />

process<strong>in</strong>g and <strong>in</strong>tegrated <strong>in</strong>terpretation. The<br />

resolution of SNMR can be divided <strong>in</strong>to <strong>the</strong><br />

vertical resolution and <strong>the</strong> lateral resolution.<br />

The paper ma<strong>in</strong>ly make forward numerical<br />

simulation for aquiferous cyl<strong>in</strong>ders <strong>in</strong> <strong>the</strong><br />

uniform half-space to study <strong>the</strong> variations of<br />

SNMR signal amplitudes affected by <strong>the</strong> water<br />

content , <strong>the</strong> thickness and <strong>the</strong> depth of <strong>the</strong><br />

aquiferous body, as well as <strong>the</strong> stratigraphic<br />

conductivity. The q-E0 figures are drawn and<br />

generalize <strong>the</strong> resolv<strong>in</strong>g power of SNMR for<br />

low water content or th<strong>in</strong> aquifer. The results<br />

will provide <strong>the</strong>oretical basis for explor<strong>in</strong>g<br />

groundwater with SNMR method.<br />

In <strong>the</strong> numerical simulation, transmittance and<br />

reception with <strong>the</strong> same loop is used as <strong>the</strong><br />

work<strong>in</strong>g pattern, and aquiferous cyl<strong>in</strong>der is<br />

used as <strong>the</strong> water model. The diameter of <strong>the</strong><br />

cyl<strong>in</strong>der evaluates <strong>the</strong> lateral resolution, while<br />

<strong>the</strong> thickness of <strong>the</strong> cyl<strong>in</strong>der evaluates <strong>the</strong><br />

vertical resolution. Accord<strong>in</strong>g to <strong>the</strong> field test<br />

experience, E0max = 50nV is def<strong>in</strong>ed as <strong>the</strong><br />

measur<strong>in</strong>g standard of <strong>the</strong> recognizable SNMR<br />

response, which means if <strong>the</strong> detected SNMR<br />

response meets <strong>the</strong> standard, <strong>the</strong>re is<br />

groundwater <strong>in</strong> <strong>the</strong> formation, o<strong>the</strong>rwise it<br />

can't be affirmed that <strong>the</strong>re is groundwater <strong>in</strong><br />

<strong>the</strong> formation. E0max represents <strong>the</strong> maximum<br />

of <strong>the</strong> <strong>in</strong>itial amplitude. Aquiferous body<br />

which is up to <strong>the</strong> standard is called<br />

recognizable aquiferous body.<br />

Accord<strong>in</strong>g to <strong>the</strong> caculational results, some<br />

conclusions can be shown as followed:<br />

1. When <strong>the</strong> diameter of aquiferous cyl<strong>in</strong>der is<br />

fixed, with <strong>the</strong> <strong>in</strong>crease of <strong>the</strong> buried depth of<br />

aquiferous body, thickness of <strong>the</strong> recognizable<br />

aquiferous body <strong>in</strong>crease as well. The vertical<br />

resolution of SNMR decl<strong>in</strong>es; when <strong>the</strong><br />

thickness of <strong>the</strong> aquiferous cyl<strong>in</strong>der is fixed,<br />

<strong>the</strong> diameter of <strong>the</strong> recognizable aquiferous<br />

body becomes larger along with <strong>the</strong> <strong>in</strong>crease of<br />

<strong>the</strong> burial depth of aquiferous body, and <strong>the</strong><br />

<strong>in</strong>creas<strong>in</strong>g range largens, which means <strong>the</strong><br />

lateral resolution of SNMR decl<strong>in</strong>es.<br />

2. When <strong>the</strong> diameter of aquiferous cyl<strong>in</strong>der is<br />

fixed, <strong>the</strong> thickness of <strong>the</strong> recognizable<br />

aquiferous body decreases with <strong>the</strong> <strong>in</strong>crease of<br />

<strong>the</strong> burial depth of aquiferous body, and <strong>the</strong><br />

rangeability reduces gradually, which means<br />

<strong>the</strong> vertical resolution of SNMR <strong>in</strong>creases;<br />

when <strong>the</strong> thickness of <strong>the</strong> aquiferous cyl<strong>in</strong>der<br />

is fixed, <strong>the</strong> diameter of <strong>the</strong> recognizable<br />

aquiferous body will become smaller with <strong>the</strong><br />

<strong>in</strong>crease of <strong>the</strong> water content of aquiferous<br />

body, which means <strong>the</strong> aquiferous body with<br />

larger water content has higher lateral<br />

resolution of SNMR.<br />

3. when <strong>the</strong> diameter of aquiferous cyl<strong>in</strong>der is<br />

fixed, if formation resistivity changes from<br />

1Ω•m to 1000Ω•m, <strong>the</strong> thickness of <strong>the</strong><br />

recognizable aquiferous body will decrease<br />

rapidly at first and <strong>the</strong>n <strong>in</strong>crease a little , which<br />

means <strong>the</strong> vertical resolution of SNMR is<br />

highest when <strong>the</strong> resistivity is a specific value;<br />

when <strong>the</strong> thickness of <strong>the</strong> aquiferous body is<br />

fixed, <strong>the</strong> diameter of <strong>the</strong> recognizable<br />

aquiferous body becomes smaller with <strong>the</strong><br />

<strong>in</strong>crease of formation resistivity, which means<br />

<strong>the</strong> lateral resolution of SNMR enhances.<br />

noise <strong>in</strong>terference.<br />

References<br />

Aihua Weng, Zhoubo Li, Xueqiu Wang. (2002):<br />

Numerical study of SNMR response. Comput<strong>in</strong>g<br />

Techniques For Geophysical and Geochemical<br />

Exploration, 24(2): 97~101.<br />

Goldman M, Rab<strong>in</strong>ovich B, Rab<strong>in</strong>ovich M, et al.<br />

(1994): Application of <strong>the</strong> <strong>in</strong>tegrated NMR-<br />

TDEM method <strong>in</strong> groundwater exploration <strong>in</strong><br />

Israel. Journal of Applied Geophysics, 31(4):<br />

27~52.<br />

Shusakov, O.A., Legchenko,A.V.. (1995): Surface<br />

NMR applied to an electroconductive medium.<br />

Geophysics.Prosp.,vol.43, 623~633.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Advances <strong>in</strong> hydrological<br />

parameterization<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

49


Recent advancements <strong>in</strong> NMR for characteriz<strong>in</strong>g <strong>the</strong> vadose zone 50<br />

Recent advancements <strong>in</strong> NMR for characteriz<strong>in</strong>g <strong>the</strong> vadose zone<br />

David Walsh 1 , Elliot Grunewald 1 , Hong Zhang 1 , Paul Ferre 2 and Andrew H<strong>in</strong>nell 2<br />

1 Vista Clara, Inc., Mukilteo, WA, USA, davewalsh@vista-clara.com, 2 University of Arizona, Tucson AZ, USA<br />

Until recently, most applications of NMR<br />

<strong>in</strong> hydrogeology have focused on detect<strong>in</strong>g<br />

and characteriz<strong>in</strong>g groundwater <strong>in</strong> <strong>the</strong><br />

saturated zone. Ano<strong>the</strong>r target for<br />

hydrogeophysical methods is water <strong>in</strong> <strong>the</strong><br />

vadose zone, <strong>the</strong> dynamics of which<br />

control contam<strong>in</strong>ant migration,<br />

groundwater recharge, evapotranspiration,<br />

and soil stability. The challenge of<br />

characteriz<strong>in</strong>g water <strong>in</strong> <strong>the</strong> vadose zone by<br />

NMR is that <strong>the</strong> signals are typically very<br />

weak (due to low water content) and very<br />

short (due to concentration of water on<br />

gra<strong>in</strong> surfaces or <strong>in</strong> <strong>the</strong> smallest available<br />

pores). Here we present improvements <strong>in</strong><br />

NMR geophysics technology over <strong>the</strong> past<br />

4 years, and demonstrate <strong>the</strong> application of<br />

<strong>the</strong>se technologies to vadose zone<br />

characterization.<br />

To address <strong>the</strong> challenges of us<strong>in</strong>g Earth’s<br />

field surface NMR <strong>in</strong>strumentation to<br />

detect and characterize water <strong>in</strong> <strong>the</strong> vadose<br />

zone, we designed a modified GMR<br />

<strong>in</strong>strument with faster switch<strong>in</strong>g and higher<br />

powered electronics. This <strong>in</strong>strument has a<br />

measurement dead-time of 2.8 ms, an<br />

<strong>in</strong>stantaneous power output of 7000 V and<br />

800 A, and a noise floor of 0.5 nV/rt(Hz).<br />

The new <strong>in</strong>strument was used to collect<br />

and <strong>in</strong>terpret surface NMR data at active<br />

vadose zone <strong>in</strong>vestigation sites <strong>in</strong> <strong>the</strong><br />

western United States. First, <strong>the</strong> equipment<br />

was used to detect, image and quantify<br />

water <strong>in</strong>filtrat<strong>in</strong>g <strong>in</strong>to <strong>the</strong> ground at a<br />

managed aquifer storage and recovery<br />

(ASR) facility <strong>in</strong> Tucson Arizona. Analysis<br />

of this data <strong>in</strong>dicates that <strong>the</strong> surface NMR<br />

tool was able to measure <strong>the</strong> recharge<br />

speed of <strong>the</strong> <strong>in</strong>itial wett<strong>in</strong>g front, and<br />

quantify some, but not all of <strong>the</strong> water that<br />

was recharged. Fur<strong>the</strong>r analysis showed<br />

that <strong>in</strong>filtrat<strong>in</strong>g water filled larger pores,<br />

temporarily, and <strong>the</strong> water filled pore size<br />

distribution <strong>in</strong> <strong>the</strong> top 15m returned to its<br />

“dry“ condition with<strong>in</strong> 3 weeks of <strong>the</strong> end<br />

of <strong>the</strong> surface water <strong>in</strong>filtration.<br />

Additional surface NMR measurements at<br />

vadose zone <strong>in</strong>vestigations <strong>in</strong> Wash<strong>in</strong>gton,<br />

Nebraska and Kansas demonstrated that<br />

<strong>the</strong> equipment could detect and image <strong>the</strong><br />

location of bound and perched water to<br />

depths of at least 25m. Borehole NMR logs<br />

at <strong>the</strong>se sites <strong>in</strong>dicated that <strong>the</strong> surface<br />

NMR measurements were detect<strong>in</strong>g only a<br />

portion of <strong>the</strong> bound water. Additional<br />

borehole NMR measurements <strong>in</strong> eastern<br />

Kansas demonstrated <strong>the</strong> ability of NMR<br />

logg<strong>in</strong>g to detect and quantify transient<br />

water content <strong>in</strong> <strong>the</strong> vadose zone. In this<br />

case decayed tree roots were temporarily<br />

saturated with water, follow<strong>in</strong>g a local<br />

stream flood event.<br />

F<strong>in</strong>ally, a new geotechnical NMR<br />

<strong>in</strong>strument has been developed and<br />

demonstrated for detect<strong>in</strong>g and<br />

characteriz<strong>in</strong>g soil moisture <strong>in</strong> <strong>the</strong> top 1m<br />

of <strong>the</strong> subsurface. This tool generates a<br />

boosted static gradient field, and performs<br />

non-<strong>in</strong>vasive CPMG NMR measurements<br />

<strong>in</strong> <strong>the</strong> low RF band (40 kHz <strong>–</strong> 500 kHz)<br />

with an echo spac<strong>in</strong>g of 1 ms or less.<br />

Prelim<strong>in</strong>ary field tests showed that <strong>the</strong> tool<br />

can accurately measure water content and<br />

its T2 distribution at multiple depths, <strong>in</strong><br />

both dry and wetted conditions, with total<br />

scan times of approximately 3 m<strong>in</strong>utes.<br />

Acknowledgement: This material is based upon<br />

work supported, <strong>in</strong> part, by <strong>the</strong> US Department of<br />

Energy under Grant numbers DE-FG02-<br />

08ER84979 and DE-SC000423, and US Army<br />

Contract # W912HZ-12-P-0018. Any op<strong>in</strong>ions,<br />

f<strong>in</strong>d<strong>in</strong>gs, and conclusions or recommendations<br />

expressed <strong>in</strong> this material are those of <strong>the</strong> author(s)<br />

and do not necessarily reflect <strong>the</strong> views of <strong>the</strong> US<br />

Department of Energy or <strong>the</strong> US Army.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Direct <strong>in</strong>version for water retention parameters from MRS measurements <strong>in</strong> <strong>the</strong><br />

saturated/unsaturated zone <strong>–</strong> a sensitivity study 51<br />

Direct <strong>in</strong>version for water retention parameters from MRS measurements<br />

<strong>in</strong> <strong>the</strong> saturated/unsaturated zone <strong>–</strong> a sensitivity study<br />

Stephan Costabel 1 and Thomas Gün<strong>the</strong>r 2<br />

1 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

2 Leibniz Institute for Applied Geophysics, Hannover<br />

stephan.costabel@bgr.de<br />

The idea of apply<strong>in</strong>g MRS for characteriz<strong>in</strong>g<br />

<strong>the</strong> vadose zone has been discussed for almost<br />

ten years. First experiments showed that it is<br />

actually possible to identify water <strong>in</strong> <strong>the</strong><br />

unsaturated zone (e.g. Roy and Lubczynski,<br />

2005). However, <strong>the</strong> reliability of this<br />

<strong>in</strong>formation is usually quite poor due to low<br />

signal-to-noise ratios (S/N). Moreover, it has<br />

become apparent that <strong>the</strong> usual MRS<br />

<strong>in</strong>terpretation concept based on smooth<br />

<strong>in</strong>version techniques is not suitable to estimate<br />

hydraulic parameters, unless time-lapse MRS<br />

is performed to monitor water fluxes <strong>in</strong> <strong>the</strong><br />

subsurface (Roy and Lubczynski, 2005;<br />

Costabel and Yaramanci, 2011).<br />

Costabel and Yaramanci (2011) suggested an<br />

alternative MRS <strong>in</strong>version approach for<br />

estimat<strong>in</strong>g water retention (WR) parameters. It<br />

is based on <strong>the</strong> soil physical parameterization<br />

of <strong>the</strong> capillary fr<strong>in</strong>ge (CF), i.e. <strong>the</strong> transition<br />

between <strong>the</strong> unsaturated and <strong>the</strong> saturated<br />

zones. In do<strong>in</strong>g so, a WR model (e.g. after<br />

Brooks and Corey, 1964) that describes <strong>the</strong><br />

water content <strong>in</strong>crease <strong>in</strong> <strong>the</strong> capillary fr<strong>in</strong>ge is<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> MRS forward operator.<br />

Consequently, <strong>the</strong> CF <strong>in</strong>version approach<br />

directly provides <strong>the</strong> WR parameters and,<br />

follow<strong>in</strong>g <strong>the</strong> common soil physical concept of<br />

piston flow, it becomes possible to estimate <strong>the</strong><br />

unsaturated hydraulic conductivity as a<br />

function of <strong>the</strong> saturation degree.<br />

We have developed and <strong>in</strong>vestigated <strong>the</strong> CF<br />

<strong>in</strong>version approach fur<strong>the</strong>r to account for<br />

different WR models and to assess its general<br />

applicability. Its forward operator generally<br />

consists of five parameters: <strong>the</strong> saturated and<br />

<strong>the</strong> residual water content, a parameter for <strong>the</strong><br />

height of <strong>the</strong> CF, a parameter describ<strong>in</strong>g <strong>the</strong><br />

gradient of <strong>the</strong> water content <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

CF, and <strong>the</strong> water table. However, <strong>the</strong> residual<br />

water content for our examples is generally<br />

neglected. This is <strong>in</strong> common with <strong>the</strong> usual<br />

assumption that water related to <strong>the</strong> smallest<br />

pores is unvisible with MRS due to <strong>the</strong><br />

<strong>in</strong>strumental dead time.<br />

A sensitivity study based on both syn<strong>the</strong>tic and<br />

real data analyzes <strong>the</strong> resolution properties, <strong>the</strong><br />

uncerta<strong>in</strong>ties and <strong>the</strong> cross covariances of <strong>the</strong><br />

<strong>in</strong>volved parameters. The <strong>in</strong>version is realized<br />

with <strong>the</strong> software package GIMLi us<strong>in</strong>g a<br />

Marquardt-Levenberg m<strong>in</strong>imization scheme<br />

us<strong>in</strong>g logarithmic barriers to keep <strong>the</strong> parameters<br />

with<strong>in</strong> reasonable ranges along with <strong>the</strong><br />

computation of model uncerta<strong>in</strong>ties.<br />

For every WR model, we found that it is not<br />

mean<strong>in</strong>gful to <strong>in</strong>vert for all parameters at once.<br />

At least, an estimate of <strong>the</strong> CF’s height or <strong>the</strong><br />

water table must be available as a-priori<br />

<strong>in</strong>formation. O<strong>the</strong>rwise <strong>the</strong> CF <strong>in</strong>version<br />

cannot reliably be applied, even when <strong>the</strong> noise<br />

level is unrealistically low. The accuracy of <strong>the</strong><br />

saturated water content is generally high with<br />

errors less than 1%. Depend<strong>in</strong>g on <strong>the</strong> actual<br />

noise level, <strong>the</strong> uncerta<strong>in</strong>ties of <strong>the</strong> o<strong>the</strong>r<br />

parameters are <strong>in</strong> <strong>the</strong> range of 10 to 100%, i.e.,<br />

only for moderate noise conditions <strong>the</strong> CF<br />

<strong>in</strong>version can provide WR parameters accurate<br />

enough to estimate <strong>the</strong> unsaturated hydraulic<br />

conductivity. However, <strong>the</strong> CF <strong>in</strong>version is a<br />

first attempt to <strong>in</strong>terpret MRS measurements<br />

with <strong>the</strong> focus on hydraulic parameters<br />

characteriz<strong>in</strong>g <strong>the</strong> vadose zone.<br />

References<br />

Brooks, R. H., Corey, A.T. (1964), Hydraulic<br />

properties of porous media. Colorado State<br />

University Papers 3.<br />

Costabel, S., Yaramanci, U. (2011): Relative<br />

hydraulic conductivity <strong>in</strong> <strong>the</strong> vadose zone from<br />

magnetic resonance sound<strong>in</strong>g <strong>–</strong> Brooks-Corey<br />

parameterization of <strong>the</strong> capillary fr<strong>in</strong>ge.<br />

Geophysics, 76 (3), 61-71.<br />

Roy, J., Lubczynski, M. W. (2005): MRS multiexponential<br />

decay analysis: aquifer pore-size<br />

distribution and vadose zone characterization.<br />

Near Surface Geophysics, 3(4), 287-298.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


MRS subsurface parametrization for coupled hydrological Marmites model 52<br />

MRS subsurface parametrization for coupled hydrological Marmites model<br />

Baronc<strong>in</strong>i-Turricchia, G. 1,2,* ; Francés, A.P. 1 ; Lubczynski, M.W. 1 ; Martínez-Fernández, J. 2 ;<br />

Roy, J. 3<br />

1 ITC-Twente University, Hengelosestraat 99, Enschede (NL)<br />

2 CIALE-Universidad de Salamanca, Calle Duero 12 37185 Villamayor, Salamanca (ES)<br />

3 IGP, cp 48671 csp van Horne, Outremont, QC, Canada H2V 4T9, former ITC<br />

* coprolog@yahoo.com<br />

This study presents MRS data <strong>in</strong>tegration <strong>in</strong><br />

<strong>the</strong> transient and distributed MARMITES-<br />

MODFLOW (MM-MF) coupled models<br />

(Frances et al. 2011) that simulate <strong>the</strong> water<br />

fluxes between land surface, unsaturated and<br />

saturated zones. The MM-MF allows to<br />

compute spatio-temporally a water balance at<br />

<strong>the</strong> catchment scale.<br />

The coupled models like MM-MF, due to <strong>the</strong>ir<br />

spatio- temporally variable <strong>in</strong>put fluxes are<br />

better constra<strong>in</strong>ed, so more reliable, than <strong>the</strong><br />

standard groundwater models. They are<br />

particularly valuable when facilitated by good<br />

monitor<strong>in</strong>g network and supported by reliable<br />

aquifer system parameterization. We present<br />

MRS data <strong>in</strong>tegration follow<strong>in</strong>g Lubczynski<br />

and Roy (2007) <strong>in</strong> <strong>the</strong> coupled Carrizal<br />

catchment MM-MF model. The Carrizal<br />

catchment (73 km 2 ) is located near Salamanca<br />

<strong>in</strong> Spa<strong>in</strong>. It is a hilly, agricultural land,<br />

composed of sedimentary unconsolidated rocks<br />

overla<strong>in</strong> by a sandy soil. The bottom of<br />

unconf<strong>in</strong>ed Carrizal aquifer is at depth of 10-<br />

60 m b.g.s. and a water table at ~4-12 m b.g.s.<br />

The study area is well-equipped with wea<strong>the</strong>r<br />

stations, soil moisture and discharge stations<br />

operat<strong>in</strong>g s<strong>in</strong>ce 1999. Additionally <strong>in</strong> 2009, a<br />

network of 12 piezometers register<strong>in</strong>g<br />

groundwater levels hourly was <strong>in</strong>stalled with<br />

<strong>the</strong> objective of study<strong>in</strong>g <strong>the</strong> shallow alluvial<br />

aquifer regime to assess susta<strong>in</strong>ability of<br />

groundwater resources under <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

water use, ma<strong>in</strong>ly due to <strong>the</strong> expansion of<br />

irrigation practices. However <strong>in</strong> that study area<br />

<strong>the</strong>re are no aquifer pump<strong>in</strong>g tests to facilitate<br />

aquifer system parameterization. For that<br />

purpose we used non-<strong>in</strong>vasive MRS technique<br />

which allows to def<strong>in</strong>e most important<br />

subsurface parameters <strong>in</strong> non-<strong>in</strong>vasive time-<br />

and scale- efficient manner provid<strong>in</strong>g valuable<br />

constra<strong>in</strong> for <strong>the</strong> model calibration.<br />

To parametrize Carrizal aquifer for <strong>the</strong> MM-<br />

MF coupled model, we carried out <strong>in</strong> total 12<br />

MRS surveys well distributed with<strong>in</strong> <strong>the</strong><br />

Carrizal catchment. These surveys were done<br />

<strong>in</strong> 2010 and 2011 us<strong>in</strong>g NUMIS Lite MRS<br />

equipment. Our aim was to def<strong>in</strong>e: (i)<br />

geometry of <strong>the</strong> shallow unconf<strong>in</strong>ed aquifer,<br />

i.e. aquifer bottom and water table; (ii) aquifer<br />

transmissivity; (iii) aquifer specific yield. The<br />

aquifer geometry was def<strong>in</strong>ed by analyz<strong>in</strong>g <strong>the</strong><br />

water content and pore size distribution along<br />

<strong>the</strong> <strong>in</strong>verted profiles. For <strong>the</strong> aquifer<br />

transmissivity we used MRS forward approach<br />

described <strong>in</strong> Plata and Rubio (2008). F<strong>in</strong>ally,<br />

for estimate of specific yield we applied <strong>the</strong><br />

approach presented by Vouillamoz et al. 2012.<br />

The MM-MF model calibration showed a good<br />

agreement between MRS-derived specific<br />

yield and transmissivity and coupled model<br />

parameters. The Carrizal study confirmed <strong>the</strong><br />

appropriatness of <strong>the</strong> forward method of MRS<br />

parametrization and its suitability for data<br />

<strong>in</strong>tegration <strong>in</strong> coupled models.<br />

References<br />

Francés, A.P., et al., 2011. Towards an improved<br />

assessment of <strong>the</strong> water balance at <strong>the</strong> catchment<br />

scale: a coupled model approach. In: Estudios en<br />

la zona no saturada del suelo: vol.X: ZNS11<br />

Proceed<strong>in</strong>gs, 19-21 October 2011, Salamanca,<br />

Spa<strong>in</strong>: e-book/ p.321-326.<br />

Lubczynski, M.W. and J. Roy, 2007. Use of MRS<br />

for hydrogeological system parameterization and<br />

model<strong>in</strong>g. Bolet<strong>in</strong> Geologico y M<strong>in</strong>ero,. 118(3):<br />

p.509-530.<br />

Plata, J.L. and F.M. Rubio, 2008. The use of MRS<br />

<strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation of hydraulic transmissivity:<br />

The case of alluvial aquifers. Journal of Applied<br />

Geophysics. 66(3-4): p.128-139.<br />

Vouillamoz, J.M., S.Sokheng, O.Bruyere, D.<br />

Caron, L. Arnout 2012. Towards a better<br />

estimate of storage properties of aquifer with<br />

magnetic resonance sound<strong>in</strong>g. Journal of<br />

Hydrology, accepted <strong>in</strong> press.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


An efficient full coupled <strong>in</strong>version of aquifer test, MRS and TEM data 53<br />

An efficient full coupled <strong>in</strong>version of aquifer test, MRS and TEM data<br />

Troels N. Vilhelmsen, Ahmad A. Behroozmand, Steen Christensen, Toke Højbjerg Nielsen,<br />

and Esben Auken<br />

Department of Geosciences, Høegh-Guldbergs Gade 2, 8000 Aarhus C, Aarhus University, Denmark<br />

troels.norv<strong>in</strong>@geo.au.dk<br />

Parameters estimated by MRS can be related<br />

empirically to hydraulic properties such as<br />

hydraulic conductivity or transmissivity if it is<br />

calibrated to nearby aquifer tests. Traditionally<br />

this is done <strong>in</strong>dependently by an analytical<br />

analysis of <strong>the</strong> aquifer test <strong>in</strong> order to get<br />

estimates of storage parameters and<br />

transmissivity. These are subsequently<br />

calibrated/correlated to <strong>the</strong> parameters<br />

estimated by MRS <strong>in</strong>version through an<br />

empirical relation. Examples of this are given<br />

by Nielsen et al. (2011); Vouillamoz et al.<br />

(2002); and o<strong>the</strong>rs. To achieve good results<br />

us<strong>in</strong>g this methodology, analytical models<br />

which agree with <strong>the</strong> field conditions must<br />

exist. However, even if such models exist <strong>the</strong><br />

full potential for <strong>the</strong> resolution of both <strong>the</strong><br />

MRS dataset and <strong>the</strong> aquifer test dataset might<br />

not be achieved due to limitations of<br />

parameters estimated by <strong>the</strong> <strong>in</strong>dividual<br />

methods.<br />

Here we present a new methodology for a full<br />

coupled <strong>in</strong>version between an aquifer test,<br />

MRS and TEM. It has been shown that<br />

<strong>in</strong>version results can be improved us<strong>in</strong>g a jo<strong>in</strong>t<br />

<strong>in</strong>version of MRS and TEM datasets<br />

(Behroozmand et al. 2012). In this context,<br />

especially <strong>the</strong> improved resolutions of layer<br />

thicknesses provide valuable <strong>in</strong>formation when<br />

analyz<strong>in</strong>g aquifer tests. Traditionally aquifer<br />

tests are only used to estimate transmissivity<br />

(namely <strong>the</strong> hydraulic conductivity times <strong>the</strong><br />

thickness), s<strong>in</strong>ce <strong>the</strong> responses measured will<br />

only be sensitive to <strong>the</strong> potential for <strong>the</strong> aquifer<br />

to conduct water. If hydraulic conductivity is<br />

to be determ<strong>in</strong>ed, <strong>the</strong> layer thickness must be<br />

provided through o<strong>the</strong>r sources; this typically<br />

be<strong>in</strong>g through borehole <strong>in</strong>formation. However,<br />

<strong>in</strong> <strong>the</strong> present study we analyze a two aquifer<br />

system, where only <strong>the</strong> upper aquifer is<br />

penetrated by a borehole. The presence of <strong>the</strong><br />

deeper aquifer is only seen as a secondary<br />

drawdown response measured <strong>in</strong> observation<br />

wells <strong>in</strong> <strong>the</strong> upper aquifer and through <strong>the</strong><br />

MRS and TEM sound<strong>in</strong>gs. Based on this<br />

system we suggest and demonstrate a new<br />

coupled <strong>in</strong>version approach. We show that<br />

reliable estimates can be achieved for a<br />

number of parameters perta<strong>in</strong><strong>in</strong>g to each<br />

geological layer: water content, decay time,<br />

resistivity (of low resistivity layers), hydraulic<br />

conductivity and storage coefficients.<br />

Based on <strong>the</strong> results we advocate <strong>the</strong> use of<br />

numerical flow models when analyz<strong>in</strong>g aquifer<br />

tests due to <strong>the</strong>ir versatility, and <strong>the</strong> potential<br />

for <strong>the</strong> proposed method to couple multiple<br />

MRS sound<strong>in</strong>gs to one aquifer test through<br />

regularized constra<strong>in</strong>ts between parameters.<br />

The coupled models were calibrated us<strong>in</strong>g<br />

PEST (Doherty 2010), and <strong>the</strong> forward<br />

responses were calculated us<strong>in</strong>g em1d<strong>in</strong>v<br />

(Auken et al. 2012) for <strong>the</strong> geophysical models<br />

and a radial-symmetric version of MODFLOW<br />

(Clemo 2002) for <strong>the</strong> aquifer test.<br />

References<br />

Auken, E., C. Kirkegaard, and A. V. Christiansen,<br />

2012, EM1DINV part A: A highly versatile and<br />

robust <strong>in</strong>version code implement<strong>in</strong>g accurate<br />

system forward model<strong>in</strong>g and arbitrary model<br />

constra<strong>in</strong>ts: Geophysical Prospect<strong>in</strong>g, Submitted<br />

Behroozmand, A. A., Auken, E., Fiandaca, G., and<br />

Christiansen, A. V. (2012). "Improvement <strong>in</strong><br />

MRS parameter estimation by jo<strong>in</strong>t and laterally<br />

constra<strong>in</strong>ed <strong>in</strong>version of MRS and TEM data."<br />

Geophysics, 77(4), 1-10.<br />

Clemo, T. "MODFLOW-2000 for cyl<strong>in</strong>drical<br />

geometry with <strong>in</strong>ternal flow observations and<br />

improved water table simulation." Boise, Idaho.<br />

Doherty, J. (2010). PEST Model-Independent<br />

Parameter Estimation, User Manual: <strong>5th</strong> edition.<br />

Watermark Numerical Comput<strong>in</strong>g.<br />

Nielsen, M. R., Hagensen, T. F., Chalikakis, K.,<br />

and Legchenko, A. (2011). "Comparison of<br />

transmissivities from MRS and pump<strong>in</strong>g tests <strong>in</strong><br />

Denmark." Near Surface Geophysics, 9, 211-<br />

223.<br />

Vouillamoz, J.-M., Descloitres, M., Bernard, J.,<br />

Fourcassier, P., and Romagny, L. (2002).<br />

"Application of <strong>in</strong>tegrated magnetic resonance<br />

sound<strong>in</strong>g and resistivity methods for borehole<br />

implementation. A case study <strong>in</strong> Cambodia."<br />

Journal of Applied Geophysics, 50, 67-81.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


The <strong>in</strong>tegration of logg<strong>in</strong>g and surface NMR for mapp<strong>in</strong>g spatial variation <strong>in</strong> hydraulic<br />

conductivity 54<br />

The <strong>in</strong>tegration of logg<strong>in</strong>g and surface NMR for mapp<strong>in</strong>g spatial variation<br />

<strong>in</strong> hydraulic conductivity<br />

Rosemary Knight 1 , Elliot Grunewald 2 , Ka<strong>the</strong>r<strong>in</strong>e Dlubac 1 , David Walsh 2 and James Butler 3<br />

1 Stanford University, Department of Geophysics, Stanford, CA, USA<br />

2 Vista Clara Inc., Mukilteo, WA, USA<br />

3 Kansas Geological Survey, Lawrence, KS, USA<br />

rknight@stanford.edu<br />

Over <strong>the</strong> past two decades <strong>the</strong>re has been<br />

grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> <strong>the</strong> use of <strong>the</strong> surface NMR<br />

method as a means of characteriz<strong>in</strong>g<br />

groundwater aquifers. The surface NMR<br />

method can be described by <strong>the</strong> same basic<br />

physics as <strong>the</strong> logg<strong>in</strong>g NMR measurement.<br />

Logg<strong>in</strong>g NMR has been used for decades <strong>in</strong><br />

<strong>the</strong> petroleum <strong>in</strong>dustry to obta<strong>in</strong> estimates of<br />

permeability from <strong>the</strong> measured relaxation<br />

time constant T2ML, which is <strong>the</strong> mean log of<br />

<strong>the</strong> acquired distribution of T2 relaxation times.<br />

The basic assumption is that T2ML -1 is directly<br />

related to <strong>the</strong> surface-area-to-volume ratio of<br />

<strong>the</strong> pore space S/V through <strong>the</strong> surface<br />

relaxivity �: T2ML -1 = � S/V. By assum<strong>in</strong>g a<br />

constant value for �, and us<strong>in</strong>g a Kozeny-<br />

Carman type of relationship with NMRderived<br />

porosity, T2ML can provide an estimate<br />

of permeability, or hydraulic conductivity K.<br />

Unlike <strong>the</strong> logg<strong>in</strong>g measurement, <strong>the</strong><br />

surface NMR measurement cannot readily<br />

acquire T2ML data; <strong>in</strong>stead a measure of <strong>the</strong> free<br />

<strong>in</strong>duction decay (FID) yields <strong>the</strong> relaxation<br />

time constant T2ML*, which is <strong>the</strong> mean log of<br />

<strong>the</strong> acquired distribution of T2* relaxation<br />

times. T2ML* can be related to S/V, but <strong>in</strong> <strong>the</strong><br />

presence of <strong>in</strong>homogeneity <strong>in</strong> <strong>the</strong> background<br />

field this relationship can be completely<br />

obscured (Grunewald and Knight, 2011).<br />

Background field <strong>in</strong>homogeneity results <strong>in</strong><br />

relaxation due to static and diffusion-related<br />

dephas<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> measurement,<br />

characterized by <strong>the</strong> relaxation time T2IH. This<br />

leads to an accelerated decay <strong>in</strong> surface NMR,<br />

caus<strong>in</strong>g T2ML* to underestimate T2ML.<br />

The methodology we propose for us<strong>in</strong>g<br />

surface NMR measurements of T2ML* to<br />

estimate K at a site <strong>in</strong>volves two steps. First<br />

co-located measurements of T2ML and K are<br />

used to determ<strong>in</strong>e <strong>the</strong> form of <strong>the</strong> empirical<br />

relationship required to transform<br />

measurements of T2ML to estimates of K. Next<br />

co-located logg<strong>in</strong>g and surface NMR<br />

measurements are used to determ<strong>in</strong>e how to<br />

transform measurements of T2ML* to T2ML. This<br />

proposed methodology is possible due to<br />

recent advancements <strong>in</strong> technology that have<br />

made available <strong>the</strong> Javel<strong>in</strong> NMR logg<strong>in</strong>g tool,<br />

designed specifically for use <strong>in</strong> small-diameter<br />

water wells. In addition to be<strong>in</strong>g deployed <strong>in</strong> a<br />

borehole, <strong>the</strong> Javel<strong>in</strong> can also be deployed with<br />

a direct-push system.<br />

We have tested this methodology with data<br />

sets from two sites: one from Nebraska<br />

(Knight et al., 2012; Dlubac et al., 2012), and<br />

one acquired at <strong>the</strong> GEMS site <strong>in</strong> Kansas. In<br />

develop<strong>in</strong>g <strong>the</strong> transform from T2ML to K, we<br />

used a modified form of <strong>the</strong> Schlumberger-<br />

Doll research equation. We determ<strong>in</strong>ed <strong>the</strong><br />

values for <strong>the</strong> empirical constants <strong>in</strong> this<br />

equation by optimiz<strong>in</strong>g <strong>the</strong> agreement between<br />

<strong>the</strong> measured K and K predicted from <strong>the</strong> NMR<br />

data. In Nebraska measured K was measured<br />

with a wellbore flowmeter; <strong>in</strong> Kansas K was<br />

measured with a direct push permeameter.<br />

Develop<strong>in</strong>g <strong>the</strong> transform from T2ML* to<br />

T2ML requires quantify<strong>in</strong>g <strong>the</strong> magnitude of<br />

T2IH. In <strong>the</strong> Nebraska study, we had obta<strong>in</strong>ed<br />

an estimate of T2IH from measurements of <strong>the</strong><br />

variability <strong>in</strong> <strong>the</strong> total magnetic field measured<br />

<strong>in</strong> a borehole. In <strong>the</strong> Kansas study, we obta<strong>in</strong>ed<br />

an estimate of T2IH through comparison of <strong>the</strong><br />

surface and <strong>the</strong> logg<strong>in</strong>g data. In both cases we<br />

found excellent agreement between K<br />

estimated from <strong>the</strong> surface NMR data and<br />

measured K. The use of <strong>the</strong>se transforms raises<br />

a number of questions related to scale and<br />

heterogeneity, <strong>the</strong> focus of ongo<strong>in</strong>g research.<br />

References<br />

Grunewald, E. and R. Knight, Near Surface<br />

Geophysics, 9 (2), 169-178 doi:10.3997/1873-<br />

0640.2010062, 2011.<br />

Knight, R., et al., Geophy. Res.Lett., 39, L03304,<br />

doi:10.1029/2011GL050167, 2012.<br />

Dlubac, K., et al., submitted to Water Resources<br />

Research, 2012<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Hard rock hydrogeophysics applied to hydrological model parameterization - Sardón<br />

catchment case study (Salamanca, Spa<strong>in</strong>) 55<br />

Hard rock hydrogeophysics applied to hydrological model<br />

parameterization - Sardón catchment case study (Salamanca, Spa<strong>in</strong>)<br />

Ala<strong>in</strong> Pascal Francés a , Jean Roy b , Maciek Lubczynski a<br />

a <strong>International</strong> Institute for Geo-Information Science and Earth Observation (ITC, Ne<strong>the</strong>rland), b IGP (Canada)<br />

frances08512@itc.nl<br />

Modell<strong>in</strong>g of groundwater systems is<br />

challeng<strong>in</strong>g because of subsurface<br />

heterogeneity and typical data scarcity due to<br />

<strong>the</strong> high cost of <strong>in</strong>vasive methods. Modell<strong>in</strong>g<br />

of hard rock systems is even more difficult<br />

because of extraord<strong>in</strong>ary heterogeneity. In hard<br />

rock aquifers, <strong>the</strong> upper wea<strong>the</strong>red layer, socalled<br />

saprolite, has typically a storage<br />

function while <strong>the</strong> underly<strong>in</strong>g fissured layer<br />

has a transmissive function (Dewandel et al.,<br />

2006; Lloyd, 1999). In this study, we propose<br />

to apply hydrogeophysics to assess <strong>the</strong> aquifer<br />

parameters and geometry. These data are<br />

fur<strong>the</strong>r <strong>in</strong>tegrated <strong>in</strong> a transient and distributed<br />

hydrological model of <strong>the</strong> land surface,<br />

unsaturated and saturated zones (MARMITES-<br />

MODFLOW coupled models).<br />

We applied <strong>the</strong> proposed methodology to<br />

characterize hydrogeologically a hard rock<br />

aquifer with<strong>in</strong> Sardón catchment (~80 km 2 ),<br />

located <strong>in</strong> <strong>the</strong> Iberian Meseta (west of<br />

Salamanca, Spa<strong>in</strong>). The Sardón catchment is<br />

predom<strong>in</strong>antly composed of two micas granites<br />

and is affected <strong>in</strong> its centre by a NNE-SSW<br />

fault (F1) along which <strong>the</strong> ma<strong>in</strong> Sardón stream<br />

is located. Ano<strong>the</strong>r family of faults (F2), with<br />

NE-SW direction, also controls <strong>the</strong> catchment<br />

hydrology. Our objective was to retrieve <strong>the</strong><br />

spatial variation of <strong>the</strong> saprolite and fissured<br />

layers, namely <strong>the</strong>ir thickness and hydraulic<br />

properties. Hydrogeophysics was used to<br />

complement <strong>the</strong> classical methods (geological<br />

mapp<strong>in</strong>g, remote sens<strong>in</strong>g and aerial photograph<br />

analysis of fracture detection) as follow<strong>in</strong>g: i)<br />

subsurface characterization of wea<strong>the</strong>red layers<br />

us<strong>in</strong>g vertical electrical sound<strong>in</strong>gs (VES) at 61<br />

locations, electromagnetic (FDEM) transect<br />

perpendicular to <strong>the</strong> ma<strong>in</strong> valley (~3 km) and<br />

electrical resistivity tomography (ERT) at 13<br />

locations; ii) depth of groundwater table<br />

assessment us<strong>in</strong>g ground penetrat<strong>in</strong>g radar<br />

(GPR) to complement <strong>the</strong> <strong>in</strong>formation of <strong>the</strong><br />

piezometric network; iii) depth-wise<br />

subsurface water content and aquifer<br />

transmissivity quantification us<strong>in</strong>g magnetic<br />

resonance sound<strong>in</strong>g (MRS) at 15 locations. We<br />

realized a drill<strong>in</strong>g campaign of 5 deep<br />

boreholes (25 to 48 m deep) to validate <strong>the</strong><br />

hydrophysical <strong>in</strong>terpretation and complement<br />

15 shallow piezometers bored <strong>in</strong> <strong>the</strong> alluvium.<br />

With <strong>the</strong> GPR method, comb<strong>in</strong>ed with ERT,<br />

we could identify locally <strong>the</strong> water table<br />

(Mahmoudzadeh et al., 2012). Us<strong>in</strong>g <strong>the</strong><br />

FDEM, VES and ERT methods, we were able<br />

to identify <strong>the</strong> saprolite and fissured layers.<br />

The sites surveyed with MRS at <strong>the</strong> hilltop<br />

showed <strong>the</strong> absence of signal, <strong>in</strong>dicat<strong>in</strong>g low<br />

water content (< 2,5%) and/or high content of<br />

f<strong>in</strong>es (silts/clays) <strong>in</strong> <strong>the</strong> saprolite. Along <strong>the</strong><br />

thalweg, we obta<strong>in</strong>ed valid MRS signal at<br />

several places, namely at <strong>the</strong> <strong>in</strong>tersection of <strong>the</strong><br />

two major faults F1 and F2. However, <strong>the</strong> 1D<br />

<strong>in</strong>terpretation of such data was not<br />

straightforward. Fur<strong>the</strong>r analysis of <strong>the</strong> data<br />

<strong>in</strong>volv<strong>in</strong>g comparison with o<strong>the</strong>r authors<br />

(Baltassat et al., 2005; Legchenko et al., 2006;<br />

Vouillamoz et al., 2005; Wyns et al., 2004) as<br />

well as process<strong>in</strong>g us<strong>in</strong>g recently developed<br />

3D <strong>in</strong>version of <strong>the</strong> MRS signal (Legchenko et<br />

al., 2011) may help to <strong>in</strong>terpret <strong>the</strong> obta<strong>in</strong>ed<br />

data. The drill<strong>in</strong>g of two boreholes at this place<br />

showed <strong>the</strong> presence of a thick saprolite layer,<br />

as well as ano<strong>the</strong>r borehole drilled along <strong>the</strong> F1<br />

fault. The o<strong>the</strong>r 2 boreholes showed <strong>the</strong><br />

absence of saprolite and found <strong>the</strong> fissured<br />

layer beneath <strong>the</strong> soil layer. The collected<br />

<strong>in</strong>formation, toge<strong>the</strong>r with soil hydraulic<br />

properties and hydrometeorological data<br />

obta<strong>in</strong>ed from <strong>the</strong> monitor<strong>in</strong>g network, were<br />

used to parameterize <strong>the</strong> system, assess water<br />

fluxes and calibrate <strong>the</strong> hydrological model to<br />

obta<strong>in</strong> <strong>the</strong> water balance at <strong>the</strong> catchment<br />

scale.<br />

The comb<strong>in</strong>ation of <strong>the</strong> techniques applied <strong>in</strong><br />

this study allowed: i) to identify <strong>the</strong><br />

hydrodynamics of <strong>the</strong> Sardón aquifer; ii) to<br />

confirm <strong>the</strong> presence of <strong>the</strong> ma<strong>in</strong> prospective<br />

zone <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> area where a regional<br />

fault zone dra<strong>in</strong>s <strong>the</strong> groundwater of <strong>the</strong><br />

catchment; iii) to evidence through MRS a<br />

high-yield at <strong>the</strong> <strong>in</strong>tersection of two major fault<br />

zones; iii) to provide <strong>the</strong> spatio-temporal<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Hard rock hydrogeophysics applied to hydrological model parameterization - Sardón<br />

catchment case study (Salamanca, Spa<strong>in</strong>) 56<br />

variability of fluxes and estimate <strong>the</strong> water<br />

balance <strong>in</strong> <strong>the</strong> study area; iv) to def<strong>in</strong>e an<br />

efficient protocol of hydrogeological<br />

assessment <strong>in</strong> data scarce areas.<br />

References<br />

Baltassat, J.M., Legchenko, A., Ambroise, B.,<br />

Mathieu, F., Lachassagne, P., Wyns, R., Mercier,<br />

J.L., Schott, J.J., 2005. <strong>Magnetic</strong> resonance<br />

sound<strong>in</strong>g (MRS) and resistivity characterisation<br />

of a mounta<strong>in</strong> hard rock aquifer: <strong>the</strong> R<strong>in</strong>gelbach<br />

Catchment, Vosges Massif, France. Near Surface<br />

Geophysics, 3(4): 267-274.<br />

Dewandel, B., Lachassagne, P., Wyns, R.,<br />

Maréchal, J.C., Krishnamurthy, N.S., 2006. A<br />

generalized 3-D geological and hydrogeological<br />

conceptual model of granite aquifers controlled<br />

by s<strong>in</strong>gle or multiphase wea<strong>the</strong>r<strong>in</strong>g. Journal of<br />

hydrology, 330(1-2): 260-284.<br />

Legchenko, A., Descloitres, M., Bost, A., Ruiz, L.,<br />

Reddy, M., Girard, J.-F., Sekhar, M., Mohan<br />

Kumar, M.S., Braun, J.-J., 2006. Resolution of<br />

MRS Applied to <strong>the</strong> Characterization of Hard-<br />

Rock Aquifers. Ground Water, 44(4): 547-554.<br />

Legchenko, A., Descloitres, M., V<strong>in</strong>cent, C.,<br />

Guyard, H., Garambois, S., Chalikakis, K.,<br />

Ezersky, M., 2011. Three-dimensional magnetic<br />

resonance imag<strong>in</strong>g for groundwater. New<br />

Journal of Physics, 13(2): 025022.<br />

Lloyd, J.W. (Ed.), 1999. Water resources of hard<br />

rock aquifers <strong>in</strong> arid and semi-arid zones. Studies<br />

and reports <strong>in</strong> hydrology. UNESCO, Paris, 284<br />

pp.<br />

Mahmoudzadeh, M.R., Francés, A.P., Lubczynski,<br />

M., Lambot, S., 2012. Us<strong>in</strong>g ground penetrat<strong>in</strong>g<br />

radar to <strong>in</strong>vestigate <strong>the</strong> water table depth <strong>in</strong><br />

wea<strong>the</strong>red granites — Sardon case study, Spa<strong>in</strong>.<br />

Journal of Applied Geophysics, 79(0): 17-26.<br />

Vouillamoz, J.M., Descloitres, M., Toe, G.,<br />

Legchenko, A., 2005. Characterization of<br />

crystall<strong>in</strong>e basement aquifers with MRS:<br />

comparison with boreholes and pump<strong>in</strong>g tests<br />

data <strong>in</strong> Burk<strong>in</strong>a Faso. Near Surface Geophysics,<br />

3(3).<br />

Wyns, R., Baltassat, J.-M., Lachassagne, P.,<br />

Legchenko, A., Vairon, J., Mathieu, F., 2004.<br />

Application of proton magnetic resonance<br />

sound<strong>in</strong>gs to groundwater reserve mapp<strong>in</strong>g <strong>in</strong><br />

wea<strong>the</strong>red basement rocks (Brittany, France).<br />

Bullet<strong>in</strong> de la Societe Geologique de France,<br />

175(1): 21-34.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


A laboratory study to determ<strong>in</strong>e <strong>the</strong> effect of surface roughness and gra<strong>in</strong> diameter on<br />

NMR relaxation rates of glass bead packs. 57<br />

A laboratory study to determ<strong>in</strong>e <strong>the</strong> effect of surface roughness and gra<strong>in</strong><br />

diameter on NMR relaxation rates of glass bead packs.<br />

Krist<strong>in</strong>a Keat<strong>in</strong>g<br />

Rutgers University, Department of Earth and Environmental Sciences, Newark, NJ<br />

kmkeat@andromeda.rutgers.edu<br />

The NMR measurement is used <strong>in</strong> <strong>the</strong> earth<br />

sciences for <strong>the</strong> evaluation of petroleum<br />

reservoirs and aquifers because it can directly<br />

detect hydrogen, <strong>in</strong> hydrocarbons or <strong>in</strong> water,<br />

and is sensitive to pore geometry. While NMR<br />

measurements are used primarily to determ<strong>in</strong>e<br />

water or hydrocarbon content, <strong>the</strong> sensitivity of<br />

<strong>the</strong> measurement to pore geometry means that<br />

it has also be used to estimate <strong>the</strong> permeability<br />

of petroleum reservoirs and <strong>the</strong> hydraulic<br />

conductivity of aquifers (e.g. Yaramanci et al.,<br />

1999; Freedman, 2006).<br />

The measured NMR signal is typically<br />

described by two parameters: <strong>the</strong> <strong>in</strong>itial signal<br />

magnitude, which is proportional to <strong>the</strong><br />

number of hydrogen molecules <strong>in</strong> <strong>the</strong><br />

measured volume, and <strong>the</strong> average relaxation<br />

rate, R2ML. Early numerical work showed that<br />

R2ML is proportional to <strong>the</strong> <strong>in</strong>verse of <strong>the</strong> pore<br />

diameter, 1/d, for idealized pore shapes (i.e.<br />

spherical, cyl<strong>in</strong>drical, or planar; Brownste<strong>in</strong><br />

and Tarr, 1979). For <strong>the</strong>se pore shapes, 1/d is<br />

equal to <strong>the</strong> ratio of <strong>the</strong> pore surface area to<br />

pore volume, S/V, scaled by a factor that<br />

accounts for pore shape (e.g. 3 for spherical<br />

pores). In <strong>the</strong> <strong>in</strong>terpretation of NMR<br />

measurements on geologic material, which do<br />

not have idealized pore, it is often assumed<br />

that both 1/d and S/V are proportional to R2ML.<br />

However, <strong>the</strong>se parameters can only be<br />

equated if <strong>the</strong> pore surface is smooth; for rough<br />

surfaces <strong>the</strong> difference between 1/d and S/V<br />

can be greater than one order of magnitude<br />

(Keat<strong>in</strong>g and Knight, 2010). This laboratory<br />

study was designed to evaluate <strong>the</strong> relationship<br />

between R2ML and both 1/d and S/V for<br />

materials with smooth and rough surfaces and<br />

to determ<strong>in</strong>e which parameter is relavent for<br />

<strong>the</strong> <strong>in</strong>terpretation of NMR data. The results<br />

from this study are a critical step towards<br />

improv<strong>in</strong>g <strong>the</strong> relationship between R2ML and<br />

pore geometry and will ultimately help to<br />

improve NMR derived estimates of<br />

permeability and hydraulic conductivity.<br />

Sample materials were made from soda lime<br />

glass beads with vary<strong>in</strong>g gra<strong>in</strong> diameter and<br />

specific surface area. Four sets of glass beads<br />

with a different range of gra<strong>in</strong> diameters were<br />

used. The surface area of each set of glass<br />

beads was altered <strong>in</strong> three ways; one that<br />

removed surface paramagnetic impurities but<br />

only m<strong>in</strong>imally changed <strong>the</strong> surface area and<br />

bead diameter and two that altered <strong>the</strong> surface<br />

area but only m<strong>in</strong>imally changed <strong>the</strong> bead<br />

diameter. The specific surface area of each<br />

bead type was measured us<strong>in</strong>g <strong>the</strong> BET<br />

adsorption method; <strong>the</strong> average gra<strong>in</strong> diameter<br />

was determ<strong>in</strong>ed by laser particle analysis.<br />

Laboratory NMR measurements were collected<br />

on water saturated glass bead packs us<strong>in</strong>g a 2<br />

MHz Rock Core Analyzer (Magritek Ltd.).<br />

R2ML was plotted aga<strong>in</strong>st both 1/d, estimated<br />

from <strong>the</strong> average gra<strong>in</strong> diameter, and S/V,<br />

calculated from <strong>the</strong> specific surface area. A<br />

s<strong>in</strong>gle l<strong>in</strong>ear function was not found to<br />

acurately represent <strong>the</strong> relationship between<br />

R2ML and 1/d. Two l<strong>in</strong>ear functions were<br />

needed to accurately fit <strong>the</strong> data: one for <strong>the</strong><br />

non-etched samples and one for <strong>the</strong> etched<br />

samples. Conversely, a s<strong>in</strong>gle l<strong>in</strong>ear function<br />

was found to accurately represent <strong>the</strong><br />

relationship between R2ML and S/V (R 2 =0.97).<br />

The results from this study showed that, for<br />

materials with rough surfaces, S/V is <strong>the</strong><br />

relavent parameter <strong>in</strong> <strong>the</strong> <strong>in</strong>terpretation of<br />

NMR data.<br />

References<br />

Brownste<strong>in</strong>, K. R., and Tarr, C. E. (1979): The<br />

importance of classical diffusion on NMR<br />

studies of water <strong>in</strong> biological cells. Phys. Rev. A.<br />

Freedman, R. (2006): Advances <strong>in</strong> NMR logg<strong>in</strong>g.<br />

Journal of Petroleum Technology.<br />

Keat<strong>in</strong>g, K. and Knight, R. (2010): A laboratory<br />

study on <strong>the</strong> effect of Fe(II)-bear<strong>in</strong>g m<strong>in</strong>erals on<br />

nuclear magnetic relaxation rates. Geophysics.<br />

Yaramanci, U., Lange, G., Knödel, K. (1999):<br />

Surface NMR with<strong>in</strong> a geophysical study of an<br />

aquifer at Haldensleben (Germany). Geophysical<br />

Prospect<strong>in</strong>g<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


A numerical study of <strong>the</strong> relationship between NMR relaxation and permeability <strong>in</strong><br />

materials with large pores 58<br />

A numerical study of <strong>the</strong> relationship between NMR relaxation and<br />

permeability <strong>in</strong> materials with large pores<br />

Ka<strong>the</strong>r<strong>in</strong>e Dlubac and Rosemary Knight<br />

Stanford University<br />

kdlubac@Stanford.edu<br />

NMR is a geophysical method of great <strong>in</strong>terest<br />

for groundwater applications because it is able<br />

to provide estimates of permeability (k). The<br />

measured NMR parameters have been used to<br />

estimate k though empirical equations based on<br />

<strong>the</strong> Kozeny-Carman (K-C) relationship, which<br />

predicts k from porosity (�) and <strong>the</strong> ratio<br />

between <strong>the</strong> total surface area and <strong>the</strong> total<br />

volume of <strong>the</strong> pore space (S/V). The<br />

Schlumberger-Doll Research (SDR) equation,<br />

commonly used <strong>in</strong> petroleum applications on<br />

consolidated materials, modifies <strong>the</strong> K-C<br />

relationship by replac<strong>in</strong>g (S/V) -1 with <strong>the</strong> mean<br />

log of T2 (T2ML) and modify<strong>in</strong>g <strong>the</strong> exponent on<br />

�. It is given by kSDR=b� m T2ML n , where b<br />

accounts surface relaxivity (����m is most<br />

commonly equal to 4, and n is set equal to 2.<br />

The SDR equation is based on <strong>the</strong> assumptions<br />

that (1) bulk fluid relaxation (T2B) is negligible,<br />

and (2) because pores are small, relaxation<br />

occurs <strong>in</strong> <strong>the</strong> fast diffusion regime (RFD). By<br />

assum<strong>in</strong>g <strong>the</strong> contribution of T2B is negligible,<br />

T2 -1 is equal to <strong>the</strong> surface relaxation rate, T2S -1 ,<br />

and <strong>the</strong> form of <strong>the</strong> SDR equation for<br />

predict<strong>in</strong>g k is valid. In <strong>the</strong> RFD, T2S -1 =�(S/V).<br />

However, <strong>the</strong> assumption that T2B is negligible<br />

and that relaxation occurs <strong>in</strong> <strong>the</strong> RFD may be<br />

violated <strong>in</strong> unconsolidated materials where<br />

pores can be relatively large.<br />

In this study, we exam<strong>in</strong>e <strong>the</strong> effects on k<br />

estimates when <strong>in</strong>correctly assum<strong>in</strong>g (1) <strong>the</strong><br />

contribution of T2B and (2) <strong>the</strong> diffusion<br />

regime. When <strong>the</strong> contribution of T2B is not<br />

negligible, T2 -1 =T2S -1 + T2B -1 and kSDR should be<br />

modified to kSDR-BF=b� m ((T2ML -1 -T2B -1 ) -1 ) n .<br />

When pores are larger than a critical size,<br />

relaxation occurs <strong>in</strong> <strong>the</strong> slow diffusion regime<br />

(RSD) <strong>in</strong> which T2S -1 =(2/3)D(S/V) 2 , where D is<br />

<strong>the</strong> self-diffusion coefficient of <strong>the</strong> fluid, and n<br />

<strong>in</strong> kSDR should be set equal to 1.<br />

We chose to <strong>in</strong>vestigate <strong>the</strong>se effects through<br />

simulations on numerical gra<strong>in</strong> packs. Six<br />

homogeneous F<strong>in</strong>ney packs were created with<br />

gra<strong>in</strong> radii rang<strong>in</strong>g from 5.9e-5 to 3.2e-3 m<br />

(f<strong>in</strong>e sand to gravel). For each pack, <strong>the</strong> NMR<br />

response was simulated for seven � values<br />

rang<strong>in</strong>g from 1e-5 to 1e-3 m/s us<strong>in</strong>g a random<br />

walk model that implemented <strong>the</strong> First-<br />

Passage-Time technique (Toumel<strong>in</strong> et al.,<br />

2003). The walkers were constra<strong>in</strong>ed to start <strong>in</strong><br />

an <strong>in</strong>itial location with<strong>in</strong> a cubic subset <strong>in</strong> <strong>the</strong><br />

center of each pack. The simulated relaxations<br />

occurred <strong>in</strong> <strong>the</strong> <strong>in</strong>termediate and slow diffusion<br />

regimes and were <strong>in</strong>verted for T2 distributions.<br />

The T2 values of <strong>the</strong> highest order relaxation<br />

modes ranged from 0.37 to 2.9 s. The k, �, and<br />

S/V of each pack were calculated on <strong>the</strong><br />

volume of <strong>the</strong> pack likely to have been<br />

sampled by <strong>the</strong> walkers. The March<strong>in</strong>g Cubes<br />

technique was used to calculate S/V, which<br />

ranged from 6.3e4 to 2.8e3 m -1 . The Navier-<br />

Stokes based lattice-Boltzmann method was<br />

used to calculate <strong>the</strong> true k (ktrue), which ranged<br />

from 1.2e-17 to 5.2e-15 m 2 .<br />

For all packs of a given � value, we optimized<br />

<strong>the</strong> fit between kSDR and ktrue assum<strong>in</strong>g<br />

relaxation occurred <strong>in</strong> ei<strong>the</strong>r <strong>the</strong> RFD or <strong>the</strong><br />

RSD. Regardless of whe<strong>the</strong>r we assumed <strong>the</strong><br />

RFD or <strong>the</strong> RSD, <strong>the</strong> kSDR estimates showed<br />

relatively poor agreement with ktrue, differ<strong>in</strong>g<br />

by up to an order of magnitude. We <strong>the</strong>n<br />

performed <strong>the</strong> same optimization, account<strong>in</strong>g<br />

for T2B by substitut<strong>in</strong>g kSDR-BF for kSDR. We<br />

found that by assum<strong>in</strong>g <strong>the</strong> RFD, <strong>the</strong>re was little<br />

improvement <strong>in</strong> <strong>the</strong> agreement between kSDR<br />

and ktrue. However, by correctly assum<strong>in</strong>g <strong>the</strong><br />

RSD, almost all of <strong>the</strong> kSDR-BF estimates were<br />

with<strong>in</strong> a factor of 3 of ktrue. This work shows<br />

that <strong>the</strong> contribution of T2B can be significant<br />

<strong>in</strong> pores with large radii (>6e-5 m) and should<br />

be accounted for <strong>in</strong> <strong>the</strong> SDR equation <strong>in</strong> order<br />

to obta<strong>in</strong> more reliable k estimates.<br />

References<br />

Toumel<strong>in</strong>, E., Torres-Verd<strong>in</strong>, C. and Chen, S.,<br />

(2003): Model<strong>in</strong>g of multiple echo-time NMR<br />

measurements for complex pore geometries<br />

and multiphase saturations. Spe Reservoir<br />

Evaluation & Eng<strong>in</strong>eer<strong>in</strong>g, 6(4), 234-243.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


A general model for predict<strong>in</strong>g hydraulic conductivity of unconsolidated material us<strong>in</strong>g<br />

nuclear magnetic resonance 59<br />

A general model for predict<strong>in</strong>g hydraulic conductivity of unconsolidated<br />

material us<strong>in</strong>g nuclear magnetic resonance<br />

Raphael Dlugosch 1 , Thomas Gün<strong>the</strong>r, Mike Müller-Petke, and Ugur Yaramanci<br />

Leibniz Institute for Applied Geophysics (<strong>LIAG</strong>), Hannover<br />

1 Raphael.Dlugosch@liag-hannover.de<br />

The prediction of hydraulic conductivity (K)<br />

from nuclear magnetic resonance (NMR)<br />

measurements of <strong>the</strong> porosity (ϕ) and decay<br />

time (T) has been performed successfully on<br />

sandstones. However, <strong>in</strong> hydrogeological<br />

applications, unconsolidated material is more<br />

prevalent. This material generally shows less<br />

variability <strong>in</strong> porosity and tortuosity, but a<br />

larger range of pore sizes compared to<br />

sandstones. The known (semi-)empiric<br />

relations to estimate K from ϕ and T (Seevers,<br />

1966 and Kenyon et al., 1988) have been<br />

applied to unconsolidated material, but <strong>the</strong><br />

underly<strong>in</strong>g assumptions are not valid for large<br />

pores.<br />

We present a new, general model based on<br />

tube-shaped pores (after Kozeny, 1927 and<br />

Carman, 1938) that is valid for <strong>the</strong> whole range<br />

of lam<strong>in</strong>ar flow, i.e., from silt to f<strong>in</strong>e gravel.<br />

Compared to former models we additionally<br />

account for bulk water relaxation and all<br />

diffusion regimes (after Godefroy et al., 2001),<br />

and thus overcome <strong>the</strong> commonly applied fastdiffusion<br />

approximation. Both bulk-water<br />

relaxation and slow diffusion significantly<br />

affect <strong>the</strong> NMR measurements on coarse<br />

material. By account<strong>in</strong>g for <strong>the</strong> slow-diffusion<br />

case a maximum K can be derived from NMR<br />

measurements. Additionally, <strong>the</strong> model<br />

replaces <strong>the</strong> empirical factors <strong>in</strong> known<br />

relations with (petro-)physical parameters.<br />

This enables to separate effects caused by<br />

variations of <strong>the</strong> material-specific surface<br />

relaxivity (ρ) from variations of o<strong>the</strong>r, e.g.,<br />

temperature-dependent parameters. This<br />

<strong>in</strong>creases <strong>the</strong> range where, after calibration by<br />

flow experiments on similar material, K can be<br />

predicted reliably.<br />

A data set measured on glass beads with<br />

different gra<strong>in</strong> sizes is used for validation. It<br />

confirms <strong>the</strong> applicability of <strong>the</strong> new model<br />

and allows to evaluate <strong>the</strong> impact of surface<br />

relaxivity by compar<strong>in</strong>g longitud<strong>in</strong>al and<br />

transversal relaxation. As an outcome we<br />

expect <strong>the</strong> model to improve prediction of<br />

hydraulic conductivity by surface or borehole<br />

NMR measurements.<br />

References<br />

Carman, P. C. (1938). The determ<strong>in</strong>ation of <strong>the</strong><br />

specific surface of powders. Journal of <strong>the</strong> Society<br />

of Chemical Industrialists, 57:225-234.<br />

Godefroy, S., Korb, J., Fleury, M., and Bryant, R.<br />

(2001). Surface nuclear magnetic relaxation and<br />

dynamics of water and oil <strong>in</strong> macroporous media.<br />

Physical Review E, 64(2):1-13.<br />

Kenyon, W., Day, P., Straley, C., and Willemsen, J.<br />

(1988). A Three-Part Study of NMR Longitud<strong>in</strong>al<br />

Relaxation Properties of Water-Saturated<br />

Sandstones. SPE Formation Evaluation, 3(3):622-<br />

636.<br />

Kozeny, J. (1927). Über kapillare Leitung des<br />

Wassers im Boden. Sitz.Ber. d. Akad. d. Wiss.,<br />

Math.-Nat. Kl. Wien, 36:271-306.<br />

Seevers, D. (1966). A nuclear magnetic method for<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> permeability of sandstones. Society<br />

of Professional Well Log Analysts Transactions,<br />

Paper L:1-14.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Quantitative aquifer system characterization on Borkum island us<strong>in</strong>g jo<strong>in</strong>t <strong>in</strong>version of<br />

MRS and VES data 60<br />

Quantitative aquifer system characterization on Borkum island us<strong>in</strong>g jo<strong>in</strong>t<br />

<strong>in</strong>version of MRS and VES data<br />

Thomas Gün<strong>the</strong>r, Mike Müller-Petke & Raphael Dlugosch<br />

Leibniz Institute for Applied Geophysics (<strong>LIAG</strong>), Hannover<br />

Thomas.guen<strong>the</strong>r@liag-hannover.de<br />

On <strong>the</strong> barrier islands <strong>in</strong> <strong>the</strong> North sea fresh<br />

water lenses exist that are important for water<br />

supply. Cont<strong>in</strong>uous pump<strong>in</strong>g and climate<br />

changes are factors that affect <strong>the</strong> development<br />

of <strong>the</strong> ground water lense. For predict<strong>in</strong>g <strong>the</strong><br />

long-term behaviour, ground water modell<strong>in</strong>g<br />

needs to be done on <strong>the</strong> base of density driven<br />

flow (Sulzbacher et al., 2012). For <strong>the</strong> latter,<br />

reliable lithologic models and <strong>the</strong> distribution<br />

of <strong>the</strong> quantities porosity (�), hydraulic<br />

conductivity (K) and sal<strong>in</strong>ity must be known at<br />

<strong>the</strong> catchment scale.<br />

Geophysical measurements can help to provide<br />

three-dimensional <strong>in</strong>formation s<strong>in</strong>ce resistivity<br />

(�) is sensitive to both clay content and<br />

sal<strong>in</strong>ity. However, <strong>the</strong> <strong>in</strong>terpretation is<br />

ambiguous and <strong>the</strong>re is no l<strong>in</strong>k to hydraulic<br />

conductivity. The method Nuclear <strong>Magnetic</strong><br />

<strong>Resonance</strong> (NMR) yields water content and<br />

decay time. The latter is sensitive to pore-size<br />

and <strong>the</strong>refore allows for estimat<strong>in</strong>g hydraulic<br />

conductivity. S<strong>in</strong>ce <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g (MRS) needs a resistivity model, a<br />

jo<strong>in</strong>t <strong>in</strong>version with a resistivity sound<strong>in</strong>g, e.g.<br />

Vertical Electrical Sound<strong>in</strong>g (VES) is<br />

reasonable. As a result, <strong>the</strong> desired parameters<br />

can be retrieved from <strong>the</strong> <strong>in</strong>verted properties<br />

(Gün<strong>the</strong>r & Müller-Petke, 2012).<br />

We present a jo<strong>in</strong>t <strong>in</strong>version scheme based on a<br />

block <strong>in</strong>version for both apparent resistivity<br />

and <strong>the</strong> full free <strong>in</strong>duction decay data cube<br />

(Müller-Petke & Yaramanci, 2010). Coupl<strong>in</strong>g<br />

of <strong>the</strong> methods is achieved by common layer<br />

thicknesses. A Levenberg-Marquardt algorithm<br />

is used to m<strong>in</strong>imize <strong>the</strong> error-weighted misfit<br />

of <strong>the</strong> comb<strong>in</strong>ed data set <strong>in</strong> a least-quares<br />

sense. Moreover, uncerta<strong>in</strong>ty measures can be<br />

derived by a variance analysis. These<br />

uncerta<strong>in</strong>ties are <strong>the</strong>n propagated <strong>in</strong>to<br />

uncerta<strong>in</strong>ties of <strong>the</strong> target values.<br />

The method is applied to three sound<strong>in</strong>gs at <strong>the</strong><br />

North Sea island of Borkum. The first<br />

sound<strong>in</strong>g was conducted at a research borehole<br />

to verify <strong>the</strong> method by <strong>the</strong> known lithology.<br />

As expected <strong>the</strong> result clearly shows <strong>the</strong> two<br />

aquifers, <strong>the</strong> unsaturated zone and two<br />

aquitards. The second sound<strong>in</strong>g was done at a<br />

pump<strong>in</strong>g test location <strong>in</strong> order to calibrate <strong>the</strong><br />

K-T relation developed by Dlugosch et al.<br />

(2011) for <strong>the</strong> local conditions. Results show a<br />

similar lithology and parameters as <strong>the</strong> first.<br />

F<strong>in</strong>ally, a sound<strong>in</strong>g <strong>in</strong> <strong>the</strong> flood<strong>in</strong>g area<br />

demonstrates <strong>the</strong> superiority of <strong>the</strong> jo<strong>in</strong>t<br />

<strong>in</strong>version over <strong>in</strong>dividual <strong>in</strong>version. Whereas<br />

<strong>the</strong> MRS data can be expla<strong>in</strong>ed by a three-layer<br />

model, four layers are needed for VES and five<br />

layers for <strong>the</strong> comb<strong>in</strong>ed model to fit <strong>the</strong> data.<br />

The subsurface model shows two aquifers with<br />

fresher water over salt water each. The very<br />

good data quality leads to a precise prediction<br />

of <strong>the</strong> target parameters. TDS concentration is<br />

calculated us<strong>in</strong>g a modified Archie equation<br />

that is calibrated us<strong>in</strong>g Direct-Push data.<br />

The method could be fur<strong>the</strong>r extended to T1<br />

experiments that yield a less sophisticated l<strong>in</strong>k<br />

to lithology and pore-sizes. Fur<strong>the</strong>rmore, ei<strong>the</strong>r<br />

2D/3D jo<strong>in</strong>t <strong>in</strong>version or a coupl<strong>in</strong>g to airborne<br />

electromagnetic data can f<strong>in</strong>ally lead to threedimensional<br />

ground water models.<br />

References<br />

Dlugosch, R., Müller-Petke, M., Gün<strong>the</strong>r, T. &<br />

Yaramanci, U. (2011): Extended prediction of<br />

hydraulic conductivity from NMR measurements<br />

for coarse material. Ext. Abstr. 17 th EAGE Near<br />

Surface Geophysics, Leicester (UK).<br />

Gün<strong>the</strong>r, T. & Müller-Petke, M. (2012): Hydraulic<br />

properties at <strong>the</strong> North Sea island of Borkum<br />

derived from jo<strong>in</strong>t <strong>in</strong>version of magnetic<br />

resonance and electrical resistivity sound<strong>in</strong>gs,<br />

Hydrol. Earth Syst. Sci. Discuss., 9, 2797-2829,<br />

doi:10.5194/hessd-9-2797-2012.<br />

Müller-Petke, M. & Yaramanci, U. (2010): QT-<br />

Inversion <strong>–</strong> Comprehensive use of <strong>the</strong> complete<br />

surface-NMR dataset, Geophysics, 75, WA199<strong>–</strong><br />

WA209, doi:10.1190/1.3471523, 2010.<br />

Sulzbacher, H., Wiederhold, H., Siemon, B., Gr<strong>in</strong>at,<br />

M., Igel, J., Burschil, T., Gün<strong>the</strong>r, T., & H<strong>in</strong>sby,<br />

K. (2012): A modell<strong>in</strong>g study of <strong>the</strong> freshwater<br />

lens of <strong>the</strong> North Sea Island of Borkum, Hydrol.<br />

Earth Syst. Sci. Discuss., 9, 3473<strong>–</strong>3525,<br />

doi:10.5194/hessd-9-3473-2012.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Research and Practice of <strong>the</strong> Relationship between MRS Inversion Parameters and <strong>the</strong><br />

Water Yield 61<br />

Research and Practice of <strong>the</strong> Relationship between MRS Inversion<br />

Parameters and <strong>the</strong> Water Yield<br />

Yao Wang 1 ,Zhenyu Li 2 ,Qiuyu Lv 2 , Haijun Xie 2 ,Lishuang Yan 2<br />

1. The Hunan KECHUANG Power Eng<strong>in</strong>eer<strong>in</strong>g Technology Co., Ltd. ChangSha. PRC<br />

2. Ch<strong>in</strong>a University of Geosciences,<br />

wangyao2772@gmail.com<br />

Groundwater eng<strong>in</strong>eer<strong>in</strong>g has approximately<br />

150 years of experience. By contrast, <strong>the</strong><br />

geophysical MRS technique is commercially<br />

available only for last approximately 20 years.<br />

The method of traditional geophysical f<strong>in</strong>d<br />

water <strong>in</strong> <strong>the</strong> aquifer storage and flow property<br />

evaluation is not enough, hydrogeological<br />

methods commonly used method like drill<strong>in</strong>g<br />

wells and pump<strong>in</strong>g tests, are expensive and<br />

time-consum<strong>in</strong>g.MRS method as <strong>the</strong> only<br />

direct detection method for groundwater has an<br />

advantage compared to traditional geophysical<br />

techniques and hydrogeological methods. But<br />

very few people research how to study <strong>the</strong><br />

water yield by MRS <strong>in</strong>version parameters, this<br />

article is about <strong>the</strong> research and practice of <strong>the</strong><br />

relationship between MRS <strong>in</strong>version<br />

parameters and <strong>the</strong> water yield.<br />

Accord<strong>in</strong>g to <strong>the</strong> MRS practice and borehole<br />

data <strong>in</strong> Guangdong, Anhui, Q<strong>in</strong>ghai of <strong>the</strong><br />

University of Geosciences (Wuhan) <strong>in</strong> recent<br />

years , to establish contact through <strong>the</strong> MRS<br />

parameters and transmissivity, while after<br />

establish contact between <strong>the</strong> transmissivity<br />

and <strong>the</strong> water yield. This article calculated <strong>the</strong><br />

CT values of <strong>the</strong> unconsolidated sediment<br />

aquifers and bedrock aquifers accord<strong>in</strong>g to<br />

Guangdong and Anhui data, and obta<strong>in</strong>ed <strong>the</strong><br />

empirical formula of <strong>the</strong> transmissivity T and<br />

specific capacity q.<br />

Accord<strong>in</strong>g to <strong>the</strong> application data of MRS<br />

method to f<strong>in</strong>d water <strong>in</strong> <strong>the</strong> Q<strong>in</strong>ghai region,<br />

this article analyzes <strong>the</strong> MRS method for <strong>the</strong><br />

detection of <strong>the</strong> Quaternary unconsolidated<br />

sediment aquifers and bedrock aquifers depth<br />

and aquifer thickness, f<strong>in</strong>ds that <strong>the</strong> greater <strong>the</strong><br />

depth of <strong>the</strong> aquifer and <strong>the</strong> smaller <strong>the</strong><br />

thickness, <strong>the</strong> larger <strong>the</strong> po<strong>in</strong>t of measurement<br />

error. The results show that <strong>the</strong> MRS method<br />

detection is accurate.<br />

The article compares <strong>the</strong> transmissivity TMRS,<br />

<strong>the</strong> specific capacity qMRS, <strong>the</strong> water yield<br />

QMRS of MRS with <strong>the</strong> pump<strong>in</strong>g tests<br />

(Tpt,qpt,Qpt).The relative errors are with<strong>in</strong> an<br />

acceptable range, <strong>the</strong> MRS detection results of<br />

<strong>the</strong> calculation method is more accurate. We<br />

found that <strong>the</strong> greater <strong>the</strong> depth of <strong>the</strong> aquifer,<br />

<strong>the</strong> larger of <strong>the</strong> error. And this relates to <strong>the</strong><br />

<strong>in</strong>crease with depth of MRS method, <strong>the</strong> lower<br />

<strong>the</strong> resolution.<br />

References<br />

M.Mejías,J.Plata. General concepts <strong>in</strong><br />

Hydrogeology and Geophysics related to MRS.<br />

Boletín Geológico y M<strong>in</strong>ero,2007,118,423-440<br />

J.M.Vouillamoz,J.M.Baltassat,J.F.Girard.Hydrogeo<br />

logical experience <strong>in</strong> <strong>the</strong> use of MRS.Boletín<br />

Geológico y M<strong>in</strong>ero,2007,118,531-550<br />

M.W.Lubczynski,J.Roy. Use of MRS for<br />

hydrogeological system parameterization and<br />

model<strong>in</strong>g. Boletín Geológico y<br />

M<strong>in</strong>ero,2007,118,509-530<br />

The use of MRS <strong>in</strong> <strong>the</strong> determ<strong>in</strong>ation of hydraulic<br />

transmissivity:The case of alluvial<br />

aquifers.JuanL.Plata ,F¨|lixM.Rubi. Journal of<br />

Applied Geophysics 66(2008)128<strong>–</strong>139.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Case studies<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012<br />

62


Exploit<strong>in</strong>g <strong>the</strong> phase <strong>in</strong>formation: examples from <strong>the</strong> Ne<strong>the</strong>rlands 63<br />

Exploit<strong>in</strong>g <strong>the</strong> phase <strong>in</strong>formation: examples from <strong>the</strong> Ne<strong>the</strong>rlands<br />

Jean Roy * and Maciek Lubczynski &<br />

(*) IGP, Outremont, QC, Canada; (&) ITC, Enschede, The Ne<strong>the</strong>rlands<br />

(*) jeanroy_igp@videotron.ca; (&) Lubczynski@itc.nl<br />

As early as <strong>the</strong> first MRS Workshop <strong>in</strong> Berl<strong>in</strong>,<br />

<strong>in</strong> 1999, observations were made on aquifers<br />

missed by MRS. Exclud<strong>in</strong>g magnetic rocks,<br />

typically three conditions were simultaneously<br />

met for such missed aquifers: (1) <strong>the</strong> data<br />

<strong>in</strong>version was us<strong>in</strong>g only <strong>the</strong> signal amplitude,<br />

(2) <strong>the</strong> missed aquifer was below a shallower<br />

aquifer but still with<strong>in</strong> <strong>the</strong> nom<strong>in</strong>al detection<br />

range of <strong>the</strong> MRS <strong>in</strong>strument, and (3) <strong>the</strong><br />

missed aquifer was with<strong>in</strong> or below a less<br />

resistive layer than <strong>the</strong> shallower aquifer.<br />

Under such conditions, <strong>the</strong> NMR signal<br />

produced by <strong>the</strong> 2 nd deeper aquifer may have<br />

such a phase rotation that <strong>the</strong> amplitude of <strong>the</strong><br />

resultant field has <strong>the</strong> same shape on <strong>the</strong> MRS<br />

sound<strong>in</strong>g as <strong>the</strong> shape of a s<strong>in</strong>gle aquifer<br />

amplitude response. In <strong>the</strong> Ne<strong>the</strong>rlands, <strong>the</strong> 3rd<br />

condition corresponds to <strong>the</strong> presence of a<br />

clay-rich aquitard between <strong>the</strong> top and <strong>the</strong><br />

deeper aquifer. In one of <strong>the</strong> presented cases,<br />

this is also supplemented by a deeper aquifer<br />

with higher sal<strong>in</strong>ity.<br />

In Central-Nor<strong>the</strong>rn Europe, so also <strong>in</strong> <strong>the</strong><br />

Ne<strong>the</strong>rlands, <strong>the</strong> typical post-glacial<br />

hydrostratigraphic system is composed of<br />

unconsolidated deposits form<strong>in</strong>g <strong>in</strong>terchang<strong>in</strong>g<br />

layers’ systems of permeable aquifers and<br />

clay-rich aquitards. Such systems are also<br />

typical <strong>in</strong> The Ne<strong>the</strong>rlands where this study<br />

was carried out. In <strong>the</strong> multi-layered aquifer<br />

systems, often 2 nd or even 3 rd aquifers are<br />

productive. If less porous or hydraulically<br />

conductive <strong>the</strong>y still may constitute a valuable<br />

groundwater reserve less vulnerable to surface<br />

contam<strong>in</strong>ation. Besides, even if affected by<br />

sal<strong>in</strong>ity reject<strong>in</strong>g <strong>the</strong>ir use for exploitation,<br />

<strong>the</strong>ir characterization (parameterization and<br />

sal<strong>in</strong>ity distribution) would still be useful to<br />

characterize <strong>the</strong> system vulnerability to <strong>the</strong><br />

sal<strong>in</strong>ity expansion under groundwater<br />

abstraction of <strong>the</strong> overly<strong>in</strong>g aquifers.<br />

The deep aquifers overla<strong>in</strong> by conductive<br />

aquitards were <strong>in</strong> <strong>the</strong> past detected ei<strong>the</strong>r by:<br />

(1) a complex kernel scheme (Braun and<br />

Yaramanci, 2003) or (2) by hav<strong>in</strong>g selective<br />

phase components extraction prior to <strong>the</strong><br />

amplitude-only <strong>in</strong>version (Roy and<br />

Lubczynski, 2003). These two solutions had<br />

disadvantages for <strong>the</strong> MRS end-user: solution<br />

(1) was for <strong>in</strong>-house use only while solution<br />

(2) required preprocess<strong>in</strong>g <strong>the</strong> data set prior to<br />

its <strong>in</strong>version. This last solution was done <strong>in</strong><br />

several steps. First up-front model<strong>in</strong>g of <strong>the</strong><br />

resistivity depth profile was done to select <strong>the</strong><br />

appropriate phase components. Next <strong>the</strong><br />

selected phase components were extracted<br />

from <strong>the</strong> field data and two data sets were thus<br />

generated: <strong>the</strong> upper target and deeper target<br />

data sets. These data sets were <strong>the</strong>n processed<br />

<strong>in</strong> a normal way with amplitude-only MRS<br />

data <strong>in</strong>version tools of <strong>the</strong> time (i.e. <strong>in</strong> <strong>the</strong> late<br />

1990s).<br />

Recently an off-<strong>the</strong>-shelf MRS data <strong>in</strong>version<br />

tool - Samovar_11 (Legchenko, 2011) <strong>–</strong><br />

became available to MRS end-users. This tool<br />

has an option to use phase at <strong>the</strong> <strong>in</strong>version step.<br />

The advantages of us<strong>in</strong>g such strategy <strong>in</strong> terms<br />

of simplicity, layer discrim<strong>in</strong>ation and<br />

characterization will be illustrated through <strong>the</strong><br />

reprocess<strong>in</strong>g of <strong>the</strong> MRS surveys of <strong>the</strong> multilayered<br />

systems <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands earlier<br />

presented by Roy and Lubczynski (2003).<br />

References<br />

Braun, M. and Yaramanci, U., 2003, Inversions of<br />

surface-NMR signals us<strong>in</strong>g complex<br />

kernels; 9 th EEGS-ES Meet<strong>in</strong>g, Prague,<br />

Aug 31 st -Sept 4, Paper O-049.<br />

Legchenko, A., 2011, Samovar Software 11x3<br />

User's Guide, IRD, France.<br />

Roy, J. and Lubczynski, M., 2003, The case of an<br />

MRS-elusive second aquifer; Proceed<strong>in</strong>gs<br />

2 nd <strong>in</strong>ternational MRS workshop, 19-21<br />

Nov. 2003, Orléans, France, p. 105-108.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


MRS and electrical prospection <strong>in</strong> <strong>the</strong> context of wea<strong>the</strong>red peridotite rocks <strong>in</strong> <strong>the</strong> South of<br />

New Caledonia. 64<br />

MRS and electrical prospection <strong>in</strong> <strong>the</strong> context of wea<strong>the</strong>red peridotite rocks<br />

<strong>in</strong> <strong>the</strong> South of New Caledonia.<br />

Girard 1* J-F., J-M. Baltassat 1 , A. Legchenko 2* A., S. Morlighem 3 , I. Domergue- Schmidt 3 , P.<br />

Maurizot 4 , J-L. Folio 3 and B. François 1<br />

1 BRGM, Orléans, France; 2 IRD / LTHE, Grenoble, France; 3 VALE, New Calédonia. 4 BRGM, Nouméa, New<br />

Caledonia;<br />

jf.girard@brgm.fr<br />

In November 2011 and July 2012 were<br />

conducted geophysical prospections <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn part of New Caledonia. Both<br />

electrical tomography (ERT) and <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g (MRS) were performed<br />

to obta<strong>in</strong> a better understand<strong>in</strong>g of <strong>the</strong> water<br />

storage and circulation. The geological context<br />

is <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g profile of peridotite rock<br />

(Maurizot and Vendé-Leclerc, 2009).<br />

In such environment, <strong>the</strong> general distribution<br />

of geology is (from surface to depth), <strong>the</strong> iron<br />

cap, laterite (red and yellow), saprolite,<br />

fractured and <strong>the</strong>n fresh bedrock. The lateritic<br />

profile is developed over a thickness rang<strong>in</strong>g<br />

from 20m to 60 m.<br />

Electrical imagery is a well-established method<br />

to detect variations <strong>in</strong> depth and laterally <strong>in</strong><br />

this geological context (Rob<strong>in</strong>eau et al., 2007)<br />

and is rout<strong>in</strong>ely used <strong>in</strong> m<strong>in</strong><strong>in</strong>g exploration and<br />

exploitation to estimate <strong>the</strong> thickness of<br />

laterite.<br />

Hydrogeology <strong>in</strong> this environment is complex<br />

because water flows <strong>in</strong> heterogeneous media:<br />

<strong>in</strong>filtration trough <strong>the</strong> iron cap, unsaturated<br />

zone, fractured bedrock. As a consequence,<br />

various regimes of hydrological responses are<br />

observed, from low permeability (laterite) to<br />

high permeable zones (fractured zone and<br />

locally “pseudo-karst” behavior).<br />

MRS as a tool to detect directly water and<br />

provide <strong>in</strong>sight of higher permeable zone<br />

sounds attractive <strong>in</strong> such a context. The sites<br />

studied are well documented thanks to preexist<strong>in</strong>g<br />

boreholes logs and hydrogeological<br />

studies.<br />

Difficulty to perform MRS <strong>the</strong>re is l<strong>in</strong>k to two<br />

major reasons. First, <strong>the</strong> rocks present nonnegligible<br />

magnetic susceptibility. Despite<br />

surface measurement of <strong>the</strong> geomagnetic field<br />

revealed to be relatively homogeneous at <strong>the</strong><br />

loop scale (< 100 nT variation), standard Free<br />

Induction Decay (FID) MRS measurement<br />

appeared to be un-practicable (like observed by<br />

Roy et al., 2008). The average magnetic<br />

susceptibility is 5 10 -4 SI and it proved to be<br />

suitable to perform MRS measurement <strong>in</strong> Sp<strong>in</strong><br />

Echo (SE) mode (Roy et al, 2009, Legchenko<br />

et al., 2010, Vouillamoz et al., 2011).<br />

The second difficulty is l<strong>in</strong>k with <strong>the</strong> very f<strong>in</strong>e<br />

structure of laterite, where a large part of water<br />

is not detectable by MRS like bound water <strong>in</strong><br />

clay. But <strong>the</strong> high yield zones revealed to<br />

produce a clear MRS signal <strong>in</strong> SE mode.<br />

We present a review of <strong>the</strong> various ERT and<br />

MRS responses observed <strong>in</strong> this context.<br />

References<br />

Legchenko, A., J.M. Vouillamoz, J. Roy (2010):<br />

Application of <strong>the</strong> magnetic resonance sound<strong>in</strong>g<br />

method to <strong>the</strong> <strong>in</strong>vestigation of aquifers <strong>in</strong> <strong>the</strong><br />

presence of magnetic materials. Geophysics 75:<br />

L91<strong>–</strong>L100.<br />

Maurizot P., Vendé-Leclerc M., 2009, Geological<br />

map of New Caledonia at 1/500 000, 1 st edition, ,<br />

DIMENC, BRGM.<br />

Rob<strong>in</strong>eau B., Jo<strong>in</strong> J.L., Beauvais A., Parisot J-C.,<br />

Sav<strong>in</strong> C., Geoelectrical imag<strong>in</strong>g of a thick<br />

regolith developed on ultramafic rocks :<br />

groundwater <strong>in</strong>fluence. Australian Journal of<br />

Earth Sciences, 54 (773-781), 2007.<br />

Roy, J., A. Rouleau, M. Chouteau, M. Bureau<br />

(2008): Widespread occurrence of aquifers<br />

currently undetectable with <strong>the</strong> MRS technique<br />

<strong>in</strong> <strong>the</strong> Grenville geological prov<strong>in</strong>ce, Canada:<br />

Journal of Applied Geophysics, 66, 82-93.<br />

Roy J., Legchenko A., Menier J., Chouteau M.,<br />

Bureau M. and Rouleau A. 2009. MRS <strong>in</strong> sp<strong>in</strong>eco<br />

mode <strong>–</strong> 2008 tests <strong>in</strong> <strong>the</strong> Greenville.<br />

MRS2009 Workshop, Grenoble, France,<br />

Expanded Abstracts, 201<strong>–</strong>206.<br />

Vouillamoz J-M., A. Legchenko A., Nandagiri,<br />

Characteriz<strong>in</strong>g aquifers when us<strong>in</strong>g magnetic<br />

resonance sound<strong>in</strong>g <strong>in</strong> a heterogeneous<br />

geomagnetic field, Near Surface Geophysics,<br />

2011, 9, 135-144.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


MRS and borehole correlation <strong>in</strong> Denmark 65<br />

MRS and borehole correlation <strong>in</strong> Denmark<br />

Mette Ryom Nielsen 1 , Tom Feldberg Hagensen 2 , Anatoly Legchenko 3 and Konstant<strong>in</strong>os<br />

Chalikakis 4<br />

1) Rambøll A/S, Aarhus, Denmark, 2) Danish M<strong>in</strong>istry of <strong>the</strong> Environment, 3) IRD / LTHE, Grenoble, France,<br />

4) UMR 1114 EMMAH (UAPV-INRA), Avignon, France<br />

1) mrn@ramboll.dk, 2) tofha@nst.dk, 3) anatoly.legtchenko@ujf-grenoble.fr, 4) konstant<strong>in</strong>os.chalikakis@univavignon.fr<br />

S<strong>in</strong>ce 2005 succesfull efforts have been made<br />

to implement MRS <strong>in</strong> <strong>the</strong> portfolio of<br />

hydrogeophysical services applied <strong>in</strong> Danish<br />

surveys (Chalikakis et el., 2008, Chalikakis et<br />

al., 2009, Ryom Nielsen et al., 2011). Each<br />

survey is carefully planned accord<strong>in</strong>g to <strong>the</strong><br />

specific purpose and <strong>the</strong> optimal comb<strong>in</strong>ation<br />

of methods from <strong>the</strong> portfolio is determ<strong>in</strong>ed.<br />

Between 2005 and 2012 approximately 200<br />

MRS sound<strong>in</strong>gs have been performed <strong>in</strong> <strong>the</strong><br />

framework of more than 30 different surveys<br />

<strong>in</strong> Denmark each aim<strong>in</strong>g a specific purpose<br />

and agenda. Many of <strong>the</strong> surveys are<br />

performed as a part of <strong>the</strong> national Danish<br />

groundwater mapp<strong>in</strong>g.<br />

In <strong>the</strong> Danish groundwater mapp<strong>in</strong>g large scale<br />

hydrogeophysical mapp<strong>in</strong>gs are typically<br />

performed <strong>in</strong>itially with ei<strong>the</strong>r SkyTEM or<br />

CVES. Hereby locations of possible aquifer<br />

systems are discrim<strong>in</strong>ated and borehole<br />

locations are suggested based on this. To help<br />

prioritise <strong>the</strong> most optimal of <strong>the</strong>se borehole<br />

locations MRS are performed before drill<strong>in</strong>g.<br />

Subsequently drill<strong>in</strong>gs are performed at <strong>the</strong><br />

optimal locations <strong>in</strong>dicated by <strong>the</strong> MRS<br />

results. Additional drill<strong>in</strong>gs have been<br />

performed at o<strong>the</strong>r MRS locations <strong>in</strong> order to<br />

verify <strong>the</strong> results of <strong>the</strong> method.<br />

Besides <strong>the</strong>se new boreholes <strong>the</strong> national<br />

Danish borehole database conta<strong>in</strong>s more than<br />

240,000 borehole logs correspond<strong>in</strong>g to an<br />

average of approximately 5.5 boreholes per<br />

km 2 . Hence exist<strong>in</strong>g boreholes can often be<br />

found <strong>in</strong> proximity and used for correlation<br />

purposes.<br />

All <strong>the</strong> available MRS measurements<br />

performed <strong>in</strong> Denmark s<strong>in</strong>ce 2005 until today<br />

and exist<strong>in</strong>g borehole <strong>in</strong>formation compose a<br />

relatively large dataset of approximately 125<br />

borehole and MRS pairs available for<br />

correlation.<br />

The correlation between MRS and boreholes<br />

are performed with attention to both <strong>the</strong><br />

measured MRS amplitude, <strong>the</strong> <strong>in</strong>terpreted<br />

MRS parameters; water content and hydraulic<br />

conductivity, <strong>the</strong> borehole log description and<br />

<strong>the</strong> electrical resistivity <strong>in</strong>terpreted from<br />

TDEM sound<strong>in</strong>gs at <strong>the</strong> MRS location.<br />

In most cases very good correlation is<br />

observed between MRS results and borehole<br />

descriptions. These examples will be presented<br />

along with example of more complicated<br />

correlations.<br />

Examples of correlation between MRS and<br />

boreholes are given for different geological<br />

environments rang<strong>in</strong>g between Glacial<br />

Quaternary melt water sediments, Tertiary<br />

sandy formations and <strong>in</strong> Cretaceous and<br />

Palaeocene limestone.<br />

The borehole and MRS correlations are<br />

summed up <strong>in</strong> different cross plots of <strong>the</strong> MRS<br />

parameters and <strong>the</strong> lithological description of<br />

<strong>the</strong> aquifer from <strong>the</strong> borehole log. Clear<br />

variations of <strong>the</strong> <strong>in</strong>terpreted hydraulic MRS<br />

parameters are observed. These variations<br />

correlate overall well with <strong>the</strong> expectations of<br />

<strong>the</strong> hydraulic variations based on <strong>the</strong> aquifer<br />

characteristics.<br />

References<br />

Chalikakis, K., Nielsen, M. R., Legchenko, A.<br />

(2008): MRS applicability for a study of glacial<br />

sedimentary aquifers <strong>in</strong> Central Jutland,<br />

Denmark, Journal of Applied Geophysics 66,<br />

176-187.<br />

Chalikakis, K., Nielsen, M. R., Legchenko, A.,<br />

Hagensen, T. F. (2009): Investigation of<br />

Sedimentary aquifers <strong>in</strong> Denmark us<strong>in</strong>g <strong>the</strong><br />

magnetic resonance sound<strong>in</strong>g method (MRS), C.<br />

R. Geoscience 341, 918<strong>–</strong>927.<br />

Ryom Nielsen M., Hagensen T. F., Chalikakis K.,<br />

and Legchenko A. (2011): Comparison of<br />

transmissivities from MRS and pump<strong>in</strong>g tests <strong>in</strong><br />

Denmark, Near Surface Geophysics, vol. 9, no.<br />

2, 211-223.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Implementation of MRS <strong>in</strong> <strong>the</strong> Danish National Groundwater management 66<br />

Implementation of MRS <strong>in</strong> <strong>the</strong> Danish National Groundwater management<br />

Tom Feldberg Hagensen 1 , Mette Ryom Nielsen 2 , Anatoly Legchenko 3 and Konstant<strong>in</strong>os<br />

Chalikakis 4<br />

1) Danish M<strong>in</strong>istry of <strong>the</strong> Environment, 2) Rambøll A/S, Aarhus, Denmark, 3) IRD / LTHE, Grenoble, France,<br />

4) UMR 1114 EMMAH (UAPV-INRA), Avignon, France<br />

1) tofha@nst.dk, 2) mrn@ramboll.dk, 3) anatoly.legtchenko@ujf-grenoble.fr, 4) konstant<strong>in</strong>os.chalikakis@univavignon.fr<br />

In Denmark <strong>the</strong> watersupply is based on high<br />

quality ground water where complex and<br />

expensive purification is not needed. However<br />

<strong>in</strong>creas<strong>in</strong>g threats to <strong>the</strong> groundwater ressource<br />

from urban and agricultural sources forced a<br />

national protection plan <strong>in</strong> 1998. 40% of<br />

Denmark is designated as particularly valuable<br />

water-abstraction areas <strong>in</strong> which <strong>in</strong>tensive<br />

hydrogeological mapp<strong>in</strong>g is performed,<br />

(Thomsen et al, 2004). The National Danish<br />

groundwater mapp<strong>in</strong>g is performed by <strong>the</strong><br />

M<strong>in</strong>istry of <strong>the</strong> Environment (NST) as a part of<br />

<strong>the</strong> Act of Environmental Goals.<br />

The hydrogeological mapp<strong>in</strong>g has an estimated<br />

cost of €20 mil. per year and it is f<strong>in</strong>anced by a<br />

surcharge of €0.05 per m 3 on dr<strong>in</strong>k<strong>in</strong>g water<br />

paid by <strong>the</strong> consumer.<br />

NST encourage development of methods <strong>in</strong><br />

cooperation with universities and consultancies<br />

<strong>in</strong> order to improve quality, speed and cost<br />

efficiency of <strong>the</strong> mapp<strong>in</strong>g procedures.<br />

MRS was considered <strong>in</strong> 2005 and subsequently<br />

used <strong>in</strong> <strong>the</strong> groundwater mapp<strong>in</strong>g for <strong>the</strong> first<br />

time (Chalikakis et al. 2008). Data and results<br />

carefully acquired from 2006 proved MRS to<br />

be efficient under Danish conditions (Chalikakis<br />

et al. 2009; Ryom Nielsen et al. 2011).<br />

By 2009 MRS campaigns were improved <strong>in</strong><br />

frequency and <strong>the</strong> amount of data <strong>in</strong>creased,<br />

hence official implementation of MRS <strong>in</strong> <strong>the</strong><br />

national groundwater mapp<strong>in</strong>g was required.<br />

Co-operation agreement between NST,<br />

consultancies and universities was established.<br />

The objective was implementation of MRS <strong>in</strong><br />

<strong>the</strong> national groundwater mapp<strong>in</strong>g comparable<br />

to implementation of o<strong>the</strong>r geophysical<br />

methods. This requires open m<strong>in</strong>ded cooperation<br />

between experienced hands-on field<br />

work, developers of hardware, acquisition<br />

software, data <strong>in</strong>terpretation software and<br />

database developers.<br />

The implementation process will be presented<br />

and <strong>the</strong> task <strong>in</strong>cluded:<br />

� Tests on different geology <strong>in</strong> Denmark,<br />

verified with boreholes and pump<strong>in</strong>g tests.<br />

� Expansion of <strong>the</strong> national geophysical<br />

database for both field data and <strong>in</strong>version.<br />

� Requirements specifikation and national<br />

guide for data acquisition and <strong>in</strong>terpretation.<br />

� Course for project leaders <strong>in</strong> groundwater<br />

mapp<strong>in</strong>g.<br />

� MRS <strong>the</strong>me days for shar<strong>in</strong>g experiences.<br />

� Establishment of a national test site for MRS<br />

In 2010 MRS has been <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> EU<br />

Framework agreement used for contracts with<br />

consultant eng<strong>in</strong>eer<strong>in</strong>g firms <strong>in</strong> <strong>the</strong> national<br />

groundwater mapp<strong>in</strong>g.<br />

Until june 2012 more than 30 projects <strong>in</strong> <strong>the</strong><br />

national groundwater mapp<strong>in</strong>g have <strong>in</strong>cluded<br />

MRS. From s<strong>in</strong>gle site measurements with<br />

focus on well site location to <strong>in</strong>put <strong>in</strong>to 3D<br />

geological models and groundwater modell<strong>in</strong>g.<br />

References<br />

Thomsen, R., Søndergaard, V. H., Sørensen, K. I.<br />

(2004): Hydrogeological mapp<strong>in</strong>g as a basis for<br />

establish<strong>in</strong>g site-specific groundwater protection<br />

zones <strong>in</strong> Denmark. Hydrogeology Journal, 12, p<br />

550-562.<br />

Chalikakis, K., Nielsen, M. R., Legchenko, A.<br />

(2008): MRS applicability for a study of glacial<br />

sedimentary aquifers <strong>in</strong> Central Jutland,<br />

Denmark, Journal of Applied Geophysics 66,<br />

176-187.<br />

Chalikakis, K., Nielsen, M. R., Legchenko, A.,<br />

Hagensen, T. F. (2009): Investigation of<br />

Sedimentary aquifers <strong>in</strong> Denmark us<strong>in</strong>g <strong>the</strong><br />

magnetic resonance sound<strong>in</strong>g method (MRS), C.<br />

R. Geoscience 341, 918<strong>–</strong>927.<br />

Ryom Nielsen M., Hagensen T. F., Chalikakis K.,<br />

and Legchenko A. (2011): Comparison of<br />

transmissivities from MRS and pump<strong>in</strong>g tests <strong>in</strong><br />

Denmark, Near Surface Geophysics, vol. 9, no.<br />

2, 211-223.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Feasibility study of <strong>the</strong> MRS monitor<strong>in</strong>g <strong>in</strong> a 3D hydrogeological structure: aquifer<br />

recharge from a pond <strong>in</strong> <strong>the</strong> Sahel (Niger) 67<br />

Feasibility study of <strong>the</strong> MRS monitor<strong>in</strong>g <strong>in</strong> a 3D hydrogeological structure:<br />

aquifer recharge from a pond <strong>in</strong> <strong>the</strong> Sahel (Niger)<br />

M. Boucher 1* , G. Favreau 2 , A. Legchenko 1<br />

1 IRD / LTHE, Grenoble, France; 2 IRD / HSM, Montpellier, France. Marie.Boucher@ird.fr<br />

Currently, MRS method is often used for<br />

characteriz<strong>in</strong>g spatial distribution of<br />

hydrodynamic parameters, but rarely for<br />

monitor<strong>in</strong>g temporal changes <strong>in</strong> groundwater<br />

content (e.g. Descloitres et al. 2008). This<br />

issue is particularly challeng<strong>in</strong>g <strong>in</strong> 3D context<br />

of rapid changes <strong>in</strong> aquifer storage.<br />

In <strong>the</strong> Sahel, groundwater recharge is mostly<br />

an <strong>in</strong>direct process and ma<strong>in</strong>ly occurs through<br />

temporary ponds. An estimate of seasonal<br />

changes <strong>in</strong> water storage <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of<br />

ponds is thus important for quantify<strong>in</strong>g<br />

groundwater recharge. The aim of this study is<br />

to assess <strong>the</strong> ability of <strong>the</strong> MRS method to<br />

better quantify <strong>the</strong> temporal variations of<br />

groundwater storage near temporary pond <strong>in</strong><br />

sedimentary porous aquifers.<br />

In SW Niger, <strong>the</strong> Wankama catchment (2 km 2 ,<br />

60 km east of Niamey, Niger’s capital) was<br />

selected for field implementation. This site has<br />

got <strong>the</strong> benefit from a long-term hydrological<br />

monitor<strong>in</strong>g (Cappelaere et al. 2009) <strong>in</strong>clud<strong>in</strong>g<br />

ra<strong>in</strong>fall measurements, pond water level<br />

records and 4 piezometric surveys positioned<br />

perpendicularly to <strong>the</strong> pond axis. In this area,<br />

<strong>the</strong> aquifer is unconf<strong>in</strong>ed and composed of<br />

sandstone. The pond is rapidly filled up by ra<strong>in</strong><br />

events dur<strong>in</strong>g <strong>the</strong> monsoon (June to October),<br />

<strong>the</strong>n water <strong>in</strong>filtrates under <strong>the</strong> pond and<br />

contributes to <strong>the</strong> aquifer recharge. The<br />

piezometric gradient is close to 0.1‰ dur<strong>in</strong>g<br />

<strong>the</strong> late dry season (May) and forms a dome of<br />

<strong>in</strong>creas<strong>in</strong>g amplitude dur<strong>in</strong>g <strong>the</strong> ra<strong>in</strong> season to<br />

reach its maximum <strong>in</strong> September.<br />

NumisPlus© equipment was used with edgeto-edge<br />

or overlapp<strong>in</strong>g eight-shape co<strong>in</strong>cident<br />

loops with 2 squares of 50 meters side each.<br />

The spatial distribution of water content was<br />

mapped with 21 sound<strong>in</strong>gs performed dur<strong>in</strong>g<br />

<strong>the</strong> dry season when <strong>the</strong> pond was dry<strong>in</strong>g up<br />

and piezometric levels were almost horizontal.<br />

Data were <strong>in</strong>verted <strong>in</strong> 3D with Samovar<br />

software (Legchenko et al. 2011).<br />

The <strong>in</strong>fluence of water table fluctuations on <strong>the</strong><br />

MRS signal was modeled tak<strong>in</strong>g <strong>in</strong>to account<br />

<strong>the</strong> heterogeneity of <strong>the</strong> porosity evidenced by<br />

<strong>the</strong> MRS mapp<strong>in</strong>g. The groundwater level<br />

showed rise up to ~5.7 m at <strong>the</strong> edge of <strong>the</strong><br />

pond dur<strong>in</strong>g <strong>the</strong> wet season. Accord<strong>in</strong>g to<br />

numerical model<strong>in</strong>g, temporal changes <strong>in</strong> <strong>the</strong><br />

MRS signal are expected to be greater than <strong>the</strong><br />

measurement uncerta<strong>in</strong>ty that is particularly<br />

high dur<strong>in</strong>g <strong>the</strong> monsoon due to frequent<br />

thunder storm events. Model<strong>in</strong>g results were<br />

confirmed by MRS monitor<strong>in</strong>g carried out<br />

between 2008 and 2010: sound<strong>in</strong>gs on two<br />

loop positions were repeated 6 and 7 times <strong>in</strong><br />

contrasted hydrologic conditions. Significant<br />

variations of MRS signal were only observed<br />

at <strong>the</strong> position <strong>the</strong> closest to <strong>the</strong> pond and for<br />

extreme hydrologic event (four days after an<br />

exceptional ra<strong>in</strong>fall event of ~100 mm).<br />

However <strong>the</strong> 3D model<strong>in</strong>g showed that <strong>the</strong><br />

variation of piezometric level could not<br />

completely expla<strong>in</strong> variations <strong>in</strong> <strong>the</strong> MRS<br />

signal. In particular, <strong>the</strong> variation of <strong>the</strong> water<br />

level <strong>in</strong> <strong>the</strong> pond was shown to br<strong>in</strong>g a<br />

significant <strong>in</strong>fluence on <strong>the</strong> MRS signal<br />

(~20 nV).<br />

MRS quantification of temporal natural<br />

changes of <strong>the</strong> groundwater storage <strong>in</strong> <strong>the</strong><br />

aquifer formation was shown possible only for<br />

significant variations of <strong>the</strong> water volume. The<br />

quantification of m<strong>in</strong>or variations is limited by<br />

<strong>the</strong> sensitivity of <strong>the</strong> MRS measurements.<br />

References<br />

Cappelaere B., Descroix L., Lebel T. et al. 2009.<br />

The AMMA-Catch experiment <strong>in</strong> <strong>the</strong> cultivated<br />

Sahelian area of south-west Niger - Investigat<strong>in</strong>g<br />

water cycle response to a fluctuat<strong>in</strong>g climate and<br />

chang<strong>in</strong>g environment. Journal of Hydrology<br />

375 (1-2): 34-51.<br />

Descloitres M., Ruiz L., Sekhar M. et al. 2008.<br />

Characterization of seasonal local recharge us<strong>in</strong>g<br />

Electrical Resistivity Tomography and <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g. Hydrological Processes<br />

22: 384-394.<br />

Legchenko A., Descloitres M., V<strong>in</strong>cent C. et al.<br />

2011. Three-dimensional magnetic resonance<br />

imag<strong>in</strong>g for groundwater. New Journal of<br />

Physics 13: 025022. doi:10.1088/1367-<br />

2630/13/2/025022.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Research on Gush<strong>in</strong>g Disaster Detection <strong>in</strong> Tunnel with <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g 68<br />

Research on Gush<strong>in</strong>g Disaster Detection <strong>in</strong> Tunnel with <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g<br />

Q<strong>in</strong> Shengwu1,2, L<strong>in</strong> Jun1,Jiang Chuandong1, Wang Y<strong>in</strong>gji1<br />

1.College of Instrument Science & Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun 130026, Ch<strong>in</strong>a<br />

2.College of Construction Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun 130026, Ch<strong>in</strong>a<br />

q<strong>in</strong>sw@jlu.edu.cn<br />

Gush<strong>in</strong>g disaster often happen dur<strong>in</strong>g tunnel<br />

construction, and normal water detection<br />

methods are almost <strong>in</strong>direct methods. <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g(MRS) is a direct<br />

underground water geophysics detection<br />

method, which can efficiently detect and<br />

quantify underground water.<br />

In <strong>the</strong> usual surface based measurements, with<br />

horizontal loop on <strong>the</strong> ground, <strong>the</strong> exploration<br />

depth approximate to <strong>the</strong> side length of s<strong>in</strong>gle<br />

turn loop (maximum 150m). Because of <strong>the</strong><br />

restriction of tunnel space, <strong>the</strong> multi-turn coil<br />

can be used to <strong>in</strong>sure <strong>the</strong> sufficient detection<br />

distance. So, we can use MRS <strong>in</strong>struments<br />

with small multi-turn coil to detect<br />

waterbear<strong>in</strong>g ahead of tunnel operation.<br />

For <strong>the</strong> subsuface based measurements <strong>in</strong><br />

tunnels, where <strong>the</strong> loop is non-horizontal, <strong>the</strong><br />

geometry can be described <strong>in</strong> an effective<br />

<strong>in</strong>cl<strong>in</strong>ation that can be expressed <strong>in</strong> terms of<br />

<strong>the</strong> Earth magnetic <strong>in</strong>cl<strong>in</strong>ation, decl<strong>in</strong>ation, and<br />

<strong>the</strong> orientation of <strong>the</strong> tunnel operation.<br />

Forward simulation bas been carried out. The<br />

simulation model is a 100m side lengh cube,<br />

whose resistivity is 500 Ω� m . <strong>the</strong> Earth<br />

magnetic <strong>in</strong>cl<strong>in</strong>ation, decl<strong>in</strong>ation are<br />

respectively 60 degree, 5 degree, and <strong>the</strong><br />

orientation of <strong>the</strong> tunnel operation is 124<br />

degree. The coil is 4.5m×8m with 8 turns, and<br />

excitation frequency is 2325 HZ. Forward<br />

simulation results <strong>in</strong>dicate that 1m thickness<br />

target waterbear<strong>in</strong>g fractures, located 30m<br />

ahead of tunnel operation can produce 5nV<br />

signal, which can be received by JLMRS<br />

<strong>in</strong>strument.<br />

Moreover, through forward simulation,<br />

analysis<strong>in</strong>g <strong>the</strong> relationship of Earth magnetic<br />

<strong>in</strong>cl<strong>in</strong>ation, decl<strong>in</strong>ation, and <strong>the</strong> orientation of<br />

<strong>the</strong> tunnel operation, <strong>the</strong> optimal coil lay plan<br />

is proposed.<br />

To test <strong>the</strong> feasibility of <strong>the</strong> tunnel usage of<br />

MRS, a typical gush<strong>in</strong>g water tunnel tests has<br />

been performed. This tunnel is a highway<br />

road , whose diameter is 12m and <strong>the</strong> rock are<br />

mostly basalt with fractures. When we test, <strong>the</strong><br />

tunnel operation was gush<strong>in</strong>g water on <strong>the</strong><br />

speed of 8~10m 3 /h. We used JLMRS<br />

<strong>in</strong>strument with 8 turns 4.5m×8m coil placed<br />

aga<strong>in</strong>st <strong>the</strong> tunnel operation to detect <strong>the</strong> water.<br />

Through time doma<strong>in</strong> analysis, <strong>the</strong> received<br />

signals obviously decl<strong>in</strong>e with time, which<br />

<strong>in</strong>dicate that <strong>the</strong> signals are MRS signals<br />

produced by water ahead of tunnel operation.<br />

The signal amplitude E0 is about 10~20nV,<br />

and S/N ratio is 0.9983. Noise cancellation<br />

(weighted stack, adaptive notch filter 50HZ,<br />

lowpass filter 10HZ)has been processed. After<br />

noise cancellation S/N ratio can reach 3.5288,<br />

which can be used to data <strong>in</strong>version.<br />

After data <strong>in</strong>version with smooth <strong>in</strong>version and<br />

block <strong>in</strong>version, we get <strong>the</strong> water content<br />

distuibution plot with<strong>in</strong> 30m distance away<br />

from tunnel operation. The result shows that<br />

water content with<strong>in</strong> 10m distance is higher<br />

than 10m~30m.That is to say, it is gush<strong>in</strong>g<br />

water now, but it will stop gush<strong>in</strong>g after 10m,<br />

which co<strong>in</strong>cide with actual situation.<br />

From <strong>the</strong> forward simulation, tunnel test, data<br />

time doma<strong>in</strong> analysis, and comparison with<br />

actual situation, we draw a conclusion that<br />

MRS detection with multi-turn coil can be<br />

used <strong>in</strong> tunnels.<br />

References<br />

Re<strong>in</strong>hard Meyer, Michael van Schoor, Jan<br />

Greben.(2007): Development of and Tests with<br />

<strong>the</strong> NMR[C].10th SAGA Biennial Technical<br />

Meet<strong>in</strong>g and Exhibition Technique to Detect<br />

Water Bear<strong>in</strong>g Fractures.<br />

J.M. Greben, R. Meyer, Z. Kimmie. (2008):The<br />

underground application of <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>gs. Journal of Applied Geophysics.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


NMR Logg<strong>in</strong>g: A tool for quantify<strong>in</strong>g effective porosity and hydraulic conductivity with<strong>in</strong><br />

<strong>the</strong> Murray Darl<strong>in</strong>g Bas<strong>in</strong> of Australia 69<br />

NMR Logg<strong>in</strong>g: A tool for quantify<strong>in</strong>g effective porosity and hydraulic<br />

conductivity with<strong>in</strong> <strong>the</strong> Murray Darl<strong>in</strong>g Bas<strong>in</strong> of Australia<br />

Jared D. Abraham,<br />

jdabraha@usgs.gov, United States Geological Survey, Denver, Colorado<br />

Kok Piang Tan,<br />

KokPiang.Tan@ga.gov.au, Geoscience Australia, Canberra, Australia<br />

Ken Lawrie,<br />

Ken.Lawrie@ga.gov.au, Geoscience Australia, Canberra, Australia<br />

Ross S. Brodie,<br />

Ross.Brodie2@ga.gov.au, Geoscience Australia, Canberra, Australia<br />

Jon Clarke,<br />

Jon.Clarke@ga.gov.au, Geoscience Australia, Canberra, Australia<br />

Gerhard Schon<strong>in</strong>g,<br />

Gerhard.Schon<strong>in</strong>g@ga.gov.au, Geoscience Australia, Canberra, Australia<br />

With<strong>in</strong> Australia, and <strong>the</strong> world, understand<strong>in</strong>g<br />

groundwater resources and <strong>the</strong>ir management<br />

are grow<strong>in</strong>g <strong>in</strong> importance to society as<br />

groundwater resources are stressed by drought<br />

and cont<strong>in</strong>ued development. To m<strong>in</strong>imize<br />

conflicts, new tools and techniques need to be<br />

applied to support knowledge-based decisions<br />

and management. The critical and challeng<strong>in</strong>g<br />

measurements <strong>in</strong> characteriz<strong>in</strong>g aquifers<br />

<strong>in</strong>clude effective porosity and hydraulic<br />

conductivity. Typically, values for effective<br />

porosity and hydraulic conductivity are derived<br />

by lithological comparisons with published<br />

data; direct measurements of hydraulic<br />

conductivity acquired by a few constant head<br />

aquifer tests or slug tests; and expensive and<br />

time consum<strong>in</strong>g laboratory measurements of<br />

cores which can be biased by sampl<strong>in</strong>g and <strong>the</strong><br />

difficulty of mak<strong>in</strong>g measurements on<br />

unconsolidated materials. Aquifer tests are<br />

considered to be <strong>the</strong> best method to ga<strong>the</strong>r<br />

<strong>in</strong>formation on hydraulic conductivity but are<br />

rare because of cost and difficult logistics.<br />

Also <strong>the</strong>y are unique <strong>in</strong> design and<br />

<strong>in</strong>terpretation from site to site. Nuclear<br />

<strong>Magnetic</strong> <strong>Resonance</strong> (NMR) can provide a<br />

direct measurement of <strong>the</strong> presence of water <strong>in</strong><br />

<strong>the</strong> pore space of aquifer materials. Detection<br />

and direct measurement is possible due to <strong>the</strong><br />

nuclear magnetization of <strong>the</strong> hydrogen<br />

(protons) <strong>in</strong> <strong>the</strong> water. These measurements are<br />

<strong>the</strong> basis of <strong>the</strong> familiar MRI (magnetic<br />

resonance imag<strong>in</strong>g) <strong>in</strong> medical applications.<br />

NMR is also widely used <strong>in</strong> logg<strong>in</strong>g<br />

applications with<strong>in</strong> <strong>the</strong> petroleum <strong>in</strong>dustry.<br />

With<strong>in</strong> <strong>the</strong> Murray Darl<strong>in</strong>g dra<strong>in</strong>age NMR data<br />

were acquired <strong>in</strong> 26 boreholes. Effective<br />

porosity values were derived directly from <strong>the</strong><br />

NMR data, and hydraulic conductivity values<br />

were calculated us<strong>in</strong>g empirical relationships<br />

calibrated and verified with few laboratory<br />

permeameter and aquifer tests. NMR provided<br />

measurements of <strong>the</strong> effective porosity and<br />

hydraulic conductivity at a resolution not<br />

possible us<strong>in</strong>g traditional methods. Unlike<br />

aquifer tests, NMR logs are not unique <strong>in</strong><br />

design and are applied <strong>in</strong> similar fashion from<br />

borehole to borehole provid<strong>in</strong>g a standard way<br />

of measur<strong>in</strong>g hydraulic properties. When <strong>the</strong><br />

hydraulic properties from <strong>the</strong> NMR are<br />

<strong>in</strong>tegrated with hydrogeological <strong>in</strong>terpretations<br />

of airborne electromagnetic data large areas of<br />

<strong>the</strong> Murray Darl<strong>in</strong>g Bas<strong>in</strong> can be characterized.<br />

This provides a much more robust method for<br />

conceptualiz<strong>in</strong>g groundwater models <strong>the</strong>n<br />

simply us<strong>in</strong>g previously published data for<br />

assign<strong>in</strong>g effective porosity and hydraulic<br />

conductivity. Borehole NMR allows superior,<br />

rapid measurements of <strong>the</strong> complexities of<br />

aquifers with<strong>in</strong> <strong>the</strong> Murray Darl<strong>in</strong>g Bas<strong>in</strong> when<br />

compared with <strong>the</strong> traditional methods.<br />

References<br />

Lawrie, K.C., Brodie R.S., Dillon, P., Tan, K.P.,<br />

Gibson, D., Magee, J., Clarke, J.D.A.,<br />

Somerville, P., Gow, L., Halas, L., Apps, H.E.,<br />

Page, D., Vanderzalm, J., Abraham, J., Hostetler,<br />

S., Christensen, N.B., Miotl<strong>in</strong>ski, K., Brodie,<br />

R.C., Smith, M. and Schon<strong>in</strong>g, G., 2012.<br />

BHMAR Project: Assessment of Conjunctive<br />

Water Supply Options to Enhance <strong>the</strong><br />

Drought Security of Broken Hill, Regional<br />

Communities and Industries- Summary<br />

Report. Geoscience Australia Record<br />

2012/15. 213 p.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


MRS study of water content variations <strong>in</strong> <strong>the</strong> unsaturated zone of a karst aquifer (sou<strong>the</strong>rn<br />

France) 70<br />

MRS study of water content variations <strong>in</strong> <strong>the</strong> unsaturated zone of a karst<br />

aquifer (sou<strong>the</strong>rn France)<br />

Mazzilli N.* 1 , Boucher M. 2 , Chalikakis K. 3 , Legchenko A. 2 , Jourde H. 1 , Carriere S. 3 ,<br />

Guyard H. 2 , Chevallier A. 2<br />

1<br />

UMR 5569 HSM, Université Montpellier 2 CC MSE, 34095 Montpellier cedex 5, France<br />

2<br />

IRD/LTHE, Grenoble, France<br />

3<br />

UMR 1114 EMMAH (UAPV/INRA), Avignon, France<br />

*mazzilli@msem.univ-montp2.fr<br />

In <strong>the</strong> mediteranean bass<strong>in</strong>, groundwater <strong>in</strong><br />

karst aquifers is a vital but also highly<br />

vulnerable resource. The unsaturated zone of<br />

karst plays a key role <strong>in</strong> <strong>the</strong> recharge and<br />

contam<strong>in</strong>ant attenuation processes but<br />

unsaturated zone properties assessment<br />

rema<strong>in</strong>s mostly qualitative.<br />

Presented study aims to assess <strong>the</strong> potential of<br />

<strong>the</strong> <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g method<br />

(MRS) applied to <strong>the</strong> characterisation of <strong>the</strong><br />

unsaturated zone of karst systems. MRS<br />

method was <strong>in</strong>itially developed for<br />

characteriz<strong>in</strong>g saturated aquifers, and few<br />

applications <strong>in</strong> unsaturated zone have been<br />

performed up to now. Hence <strong>the</strong> issues<br />

addressed are: (i) does water storage with<strong>in</strong> <strong>the</strong><br />

unsaturated zone of karst yield measurable<br />

MRS signal ? if so, (ii) can we evidence ei<strong>the</strong>r<br />

a temporal or a spatial variability of <strong>the</strong> MRS<br />

response ? and (iii) can we relate MRS<br />

response variability to observed unsaturated<br />

zone characteristics ?<br />

A total of 21 sites have been selected for <strong>the</strong><br />

MRS <strong>in</strong>vestigations <strong>in</strong> dolomite and limestone<br />

formations on <strong>the</strong> Larzac plateau and <strong>the</strong> Lez<br />

recharge area (sou<strong>the</strong>rn France), based on <strong>the</strong><br />

two follow<strong>in</strong>g criteria: (i) diversity and spatial<br />

representativity of <strong>the</strong> hydrogeological and<br />

geomorphological sett<strong>in</strong>g, and (ii) favorable<br />

ambient electromagnetic noise conditions. The<br />

temporal variability of <strong>the</strong> MRS signal was<br />

<strong>in</strong>vestigated by repeat<strong>in</strong>g sound<strong>in</strong>gs on 7 of<br />

<strong>the</strong>se sites where high water storage variations<br />

were expected. Dur<strong>in</strong>g our study we used <strong>the</strong><br />

NUMIS plus and NUMIS lite <strong>in</strong>struments with a<br />

80×80 m 2 square loop or eight-shaped loops<br />

with 40 m size each square.<br />

The average signal-to-noise ratio for <strong>the</strong> MRS<br />

measurements is equal to 4, which confirms<br />

<strong>the</strong> applicability of <strong>the</strong> MRS method for <strong>the</strong><br />

<strong>in</strong>vestigation of <strong>the</strong> unsaturated zone of karst.<br />

Usually, <strong>the</strong> detection of MRS signal <strong>in</strong><br />

unsaturated zone is limited by <strong>the</strong> short<br />

relaxation time T2* that cannot be detected due<br />

to <strong>the</strong> <strong>in</strong>strumental dead time. In <strong>the</strong> case of<br />

karst unsaturated zone, <strong>the</strong> possibility to record<br />

signal is expla<strong>in</strong>ed by a low magnetic<br />

susceptibility of limestone and dolomites that<br />

allowed T2 * not to be affected by natural<br />

heterogeneities <strong>in</strong> magnetic field.<br />

As regards <strong>the</strong> spatial variability, <strong>the</strong> raw MRS<br />

responses clearly dist<strong>in</strong>guish between <strong>the</strong><br />

<strong>in</strong>vestigated formations: <strong>the</strong> maximum values<br />

of signal amplitude and T2* are associated with<br />

ru<strong>in</strong>iform dolomite (40 to 80nV and up to 250<br />

ms respectively) whereas m<strong>in</strong>imum signal<br />

amplitudes and T2* (


Investigat<strong>in</strong>g hydraulic properties of a glacial sand deposit <strong>in</strong> <strong>the</strong> north of Sweden 71<br />

Investigat<strong>in</strong>g hydraulic properties of a glacial sand deposit <strong>in</strong> <strong>the</strong> north of<br />

Sweden<br />

Perttu 1* N., A. Legchenko 2<br />

1 Luleå University of Technology, Sweden; 2 IRD / LTHE, Grenoble, France.<br />

nils.perttu@ltu.se<br />

The city of Luleå is located about 1000 km<br />

north of Stockholm, Sweden, with 73 000<br />

<strong>in</strong>habitants. The city is dependent on artificial<br />

groundwater, i.e. <strong>the</strong> clean<strong>in</strong>g of surface water<br />

through <strong>in</strong>filtration of a natural sand formation.<br />

Due to <strong>the</strong> recent establishment of Facebook,<br />

this alone demands 10% of <strong>the</strong> dr<strong>in</strong>k<strong>in</strong>g water<br />

currently produced and an <strong>in</strong>creas<strong>in</strong>g<br />

population <strong>in</strong>evitably lead to a need to <strong>in</strong>crease<br />

<strong>the</strong> dr<strong>in</strong>k<strong>in</strong>g water production. In order to<br />

extend exist<strong>in</strong>g water supply <strong>the</strong> local<br />

authorities <strong>in</strong>itiated a hydrogeophysical study<br />

aim<strong>in</strong>g to improve <strong>the</strong> knowledge of <strong>the</strong> lateral<br />

and vertical extension of <strong>the</strong> aquifer toge<strong>the</strong>r<br />

with its hydraulic properties. In <strong>the</strong><br />

<strong>in</strong>vestigated area <strong>the</strong> granite basement is<br />

covered by a glacial deposit of a few tens of<br />

meters, consist<strong>in</strong>g of medium to coarse sand<br />

with <strong>in</strong>terlac<strong>in</strong>g layers of clay and silt. The<br />

aquifer borders to areas of till with poorer<br />

aquifer potential. The magnetic susceptibility<br />

of <strong>the</strong> sand and till varies between 10 -3 to 10 -2<br />

SI.<br />

In this study, <strong>the</strong> <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g (MRS) method has been used<br />

(Legchenko et al, 2004). However, due to <strong>the</strong><br />

presence of magnetic materials, standard MRS<br />

measurements, based on measur<strong>in</strong>g <strong>the</strong> free<br />

<strong>in</strong>duction decay signal (FID), were <strong>in</strong>efficient<br />

(Roy et al., 2008). Thus, <strong>the</strong> more <strong>in</strong>tricate<br />

MRS sp<strong>in</strong> echo (SE) mode was used<br />

(Legchenko et al, 2010; Vouillamoz et al,<br />

2011). The water supply plant with runn<strong>in</strong>g<br />

pump<strong>in</strong>g <strong>in</strong>stallations and correspond<strong>in</strong>g<br />

power l<strong>in</strong>es is located close to an <strong>in</strong>dustrial<br />

zone and consequently <strong>the</strong> level of <strong>in</strong>dustrial<br />

noise was very high. The measurements were<br />

made with 20×20 m 2 and 50×50 m 2 figureeight<br />

loops (Trushk<strong>in</strong> et al., 1995) us<strong>in</strong>g notchfilter<strong>in</strong>g<br />

(Legchenko and Valla, 2003), and a<br />

stack<strong>in</strong>g number between 200 and 600.<br />

No FID signals were observed <strong>in</strong> any of <strong>the</strong><br />

n<strong>in</strong>e sound<strong>in</strong>gs made. The amplitude of <strong>the</strong> SE<br />

signal varied between 20 to 120 with a T2 *<br />

about 30 ms. The water content derived from<br />

<strong>in</strong>version ranged from 10 to 30% with <strong>the</strong><br />

relaxation time T2 between 260 and 560 ms,<br />

thus show<strong>in</strong>g a clear heterogeneity of <strong>the</strong><br />

glacial deposit.<br />

MRS results were compared with numerous<br />

boreholes (lithology and hydraulic properties)<br />

with good correspondence. Some boreholes<br />

located at a distance of 50 m (which is<br />

comparable with MRS loop size) show fivefold<br />

variation <strong>in</strong> <strong>the</strong> hydraulic conductivity derived<br />

from pump<strong>in</strong>g tests thus po<strong>in</strong>t<strong>in</strong>g on a 3D<br />

formation. Under <strong>the</strong>se conditions we consider<br />

that 1D MRS results were sufficiently<br />

accurate.<br />

We have shown that MRS SE allowed gett<strong>in</strong>g<br />

reliable <strong>in</strong>formation of <strong>the</strong> hydraulic properties<br />

of <strong>the</strong> subsurface that could not have been<br />

obta<strong>in</strong>ed us<strong>in</strong>g o<strong>the</strong>r geophysical methods.<br />

References<br />

Legchenko A., and P. Valla (2003): Removal of<br />

power l<strong>in</strong>e harmonics from proton magnetic<br />

resonance measurements. Journal of Applied<br />

Geophysics, 53, 103-120.<br />

Legchenko A., J-M. Baltassat, A. Bobachev, C.<br />

Mart<strong>in</strong>, H. Rob<strong>in</strong>, and J-M. Vouillamoz (2004):<br />

<strong>Magnetic</strong> resonance sound<strong>in</strong>g applied to aquifer<br />

characterization. Journal of Ground Water, 42,<br />

363-373.<br />

Legchenko, A., J.M. Vouillamoz, J. Roy (2010):<br />

Application of <strong>the</strong> magnetic resonance sound<strong>in</strong>g<br />

method to <strong>the</strong> <strong>in</strong>vestigation of aquifers <strong>in</strong> <strong>the</strong><br />

presence of magnetic materials. Geophysics 75:<br />

L91<strong>–</strong>L100.<br />

Trushk<strong>in</strong> D.V., O.A. Shushakov, and A.V.<br />

Legchenko (1995): Surface NMR applied to an<br />

electroconductive medium: Geophysical<br />

Prospect<strong>in</strong>g, 43, 623-633.<br />

Roy, J., A. Rouleau, M. Chouteau, M. Bureau<br />

(2008): Widespread occurrence of aquifers<br />

currently undetectable with <strong>the</strong> MRS technique<br />

<strong>in</strong> <strong>the</strong> Grenville geological prov<strong>in</strong>ce, Canada.<br />

Journal of Applied Geophysics, 66, 82-93.<br />

Vouillamoz J-M., A. Legchenko A., Nandagiri<br />

(2011): Characteriz<strong>in</strong>g aquifers when us<strong>in</strong>g<br />

magnetic resonance sound<strong>in</strong>g <strong>in</strong> a heterogeneous<br />

geomagnetic field, Near Surface Geophysics, 9,<br />

135-144.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Estmat<strong>in</strong>g regional groundwater reserve <strong>in</strong> a clayey sandstone aquifer of Cambodia. 72<br />

Estmat<strong>in</strong>g regional groundwater reserve <strong>in</strong> a clayey sandstone aquifer of<br />

Cambodia.<br />

Vouillamoz a , J.-M.; Sophoeun b , P.; Bruyere c , O.; Caron a , D.; and Arnout c , L.<br />

a IRD, UMR LTHE; b Cambodian Red Croos; c French Red Cross<br />

Jean-Michel.Vouillamoz@ird.fr<br />

Climate change and rapid population growth <strong>in</strong><br />

Asia will probably impact all water sources.<br />

S<strong>in</strong>ce most of <strong>the</strong> Earth's liquid fresh water is<br />

groundwater, its potential buffer role will be a<br />

key issue to support adaptation strategies. The<br />

buffer behavior of aquifer is controlled by<br />

several factors <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> groundwater<br />

reserve (i.e. <strong>the</strong> amount of groundwater<br />

actually stored <strong>in</strong> <strong>the</strong> rock reservoir).<br />

Although <strong>the</strong> knowledge of groundwater<br />

reserve is a key isssue, it is usually quantified<br />

based on poor dataset (see for example<br />

MacDonald et al., 2011 for Africa). Moreover,<br />

common tools used by hydrogeologists for<br />

quantyfy<strong>in</strong>g groundwater reserve (i.e.<br />

hydraulic tests and groundwater modell<strong>in</strong>g)<br />

consume a numerous set of data, a lot of<br />

money and time, and thus <strong>the</strong>y are rarely used<br />

for rout<strong>in</strong>e works <strong>in</strong> develop<strong>in</strong>g countries.<br />

Nowadays, <strong>the</strong> potential of magnetic resonance<br />

sound<strong>in</strong>g (MRS) for complement<strong>in</strong>g <strong>the</strong><br />

hydrogeological toolbox is well known.<br />

However, relationships between <strong>the</strong> field scale<br />

MRS results and hydrogeological storagerelated<br />

properties have not been well<br />

established yet (Vouillamoz et al., 2005;<br />

Boucher et al., 2009).<br />

We started a study <strong>in</strong> a clayey sandstone<br />

environment of Nor<strong>the</strong>rn Cambodia <strong>in</strong> 2010.<br />

Our ma<strong>in</strong> objective is to quantify <strong>the</strong> water<br />

ressources at a regional scale (about 2 000<br />

km²) for establish<strong>in</strong>g appropriate practices for<br />

<strong>the</strong> development of irrigated paddy field. In<br />

this paper, we present <strong>the</strong> methodology we<br />

developed and <strong>the</strong> results we obta<strong>in</strong>ed for<br />

quantyfy<strong>in</strong>g <strong>the</strong> groundwater reserve of <strong>the</strong><br />

targeted region.<br />

We first present <strong>the</strong> result of a comparison<br />

between MRS records (i.e. water content and<br />

decay rate of FID signal) and both specific<br />

yield calculated from pump<strong>in</strong>g tests and<br />

effective porosity calculated from tracer tests.<br />

Based on <strong>the</strong>se results obta<strong>in</strong>ed at 9 sites, we<br />

adapt an approach used <strong>in</strong> <strong>the</strong> oil <strong>in</strong>dustry for<br />

differenc<strong>in</strong>g gravitational water from capillary<br />

water and from bound water, based on <strong>the</strong><br />

MRS decay time parameter (among o<strong>the</strong>r<br />

Dunn et al., 2002). For check<strong>in</strong>g <strong>the</strong> validity of<br />

our so-named MRS apparent cutoff time<br />

approach (MRS-ACT), we compare MRS<br />

signal recorded just before pump<strong>in</strong>g (i.e. <strong>in</strong> a<br />

fully saturated reservoir) with signal recorded<br />

while pump<strong>in</strong>g (i.e. gravitational water<br />

removed) at a s<strong>in</strong>gle location. Then, we use our<br />

MRS-ACT approach for estimat<strong>in</strong>g<br />

groundwater reserve at a regional scale from<br />

47 MRS squatered over <strong>the</strong> area.<br />

We conclude that we are able to estimate <strong>the</strong><br />

specific yield with an average error of 23%,<br />

which is far less than <strong>the</strong> previous published<br />

results. Then, we found that <strong>the</strong> groundwater<br />

reserve of <strong>the</strong> surveyed aquifer is rang<strong>in</strong>g<br />

between 120 and 200 liters/m² of surface area<br />

for 50% of <strong>the</strong> sites. If we had considered that<br />

MRS water content is a rough estimate of <strong>the</strong><br />

specific yield, <strong>the</strong>n <strong>the</strong> groundwater reserve<br />

would have been over-estimated from 13 to<br />

55%.<br />

References<br />

Boucher, M., Favreau, G., Vouillamoz, J.M.,<br />

Nazoumou, Y. and A., L., 2009. Estimat<strong>in</strong>g<br />

specific yield and transmissivity with <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g <strong>in</strong> an unconf<strong>in</strong>ed sandstone<br />

aquifer. Hydrogeology Journal, ISSN 1431-<br />

2174.<br />

Dunn, K.J., Bergman, D.J, Latorraca, G.A., 2002.<br />

Nuclear magnetic resonance petrophysical and<br />

logg<strong>in</strong>g applications. Elsevier Science Ltd, 293<br />

pp.<br />

MacDonald, A.M., Bonsor, H.C., Calow, R.C.,<br />

Taylor, G.R., Lapworth, D.J., Maurice, L.,<br />

Tucker, J. and O Dochartaigh, B.E., 2011.<br />

Groundwater resilience to climate change <strong>in</strong><br />

Africa. OR/11/031, British Geological Survey<br />

Open Report.<br />

Vouillamoz, J.M., Descloitres, M., Toe, G. and<br />

Legchenko, A., 2005. Characterization of<br />

crystall<strong>in</strong>e basement aquifers with MRS :<br />

comparison with boreholes and pump<strong>in</strong>g tests<br />

data <strong>in</strong> Burk<strong>in</strong>a Faso. Near Surface Geophysics,<br />

3: 205-213.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Application of underground magnetic resonance sound<strong>in</strong>g on advanced detection water<strong>in</strong>duced<br />

disaster <strong>in</strong> 3D structure 73<br />

Application of underground magnetic resonance sound<strong>in</strong>g on advanced<br />

detection water-<strong>in</strong>duced disaster <strong>in</strong> 3D structure<br />

L<strong>in</strong> Jun, Jiang Chuandong, L<strong>in</strong> T<strong>in</strong>gt<strong>in</strong>g<br />

College of Instrumentation and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun, 130061, Ch<strong>in</strong>a<br />

ttl<strong>in</strong>@jlu.edu.cn; willianjcd@yahoo.com.cn;<br />

Introduction<br />

Water-<strong>in</strong>duced disasters, such as tunnel<br />

water-gush, m<strong>in</strong>e water-<strong>in</strong>rush, fatal goafwater<br />

accident, have happened around world <strong>in</strong><br />

recent years. Nondestructive detection methods<br />

(TSP, GPR and BEAM) are applied for waterburst<strong>in</strong>g<br />

detection. However, misjudgment<br />

often occurs due to <strong>the</strong> multiple potential<br />

<strong>in</strong>terpretations of exploration results. <strong>Magnetic</strong><br />

resonance sound<strong>in</strong>g (MRS) method is <strong>the</strong>n<br />

conceived as it is particularly relevant to<br />

groundwater <strong>in</strong>vestigations. Whereas,<br />

perform<strong>in</strong>g MRS <strong>in</strong> underground condition<br />

(UMRS) presents considerable challenges for<br />

three ma<strong>in</strong> reasons: 1) <strong>the</strong> size of <strong>the</strong> loop is<br />

severely limited by <strong>the</strong> tunnel dimensions. 2)<br />

Calculation of <strong>the</strong> excit<strong>in</strong>g magnetic field<br />

when <strong>the</strong> antenna was rotated by an arbitrary<br />

angle. 3) In <strong>the</strong> whole space doma<strong>in</strong>, UMRS<br />

signal could be significantly affected by<br />

<strong>in</strong>terference water beh<strong>in</strong>d <strong>the</strong> head<strong>in</strong>g face.<br />

To solve <strong>the</strong> above problems, on <strong>the</strong> <strong>the</strong>oretical<br />

basis of surface MRS method, underground<br />

MRS of whole space is modeled with<strong>in</strong> this<br />

paper. The advance detection distance could be<br />

extended by us<strong>in</strong>g multi-turn transmiter and<br />

receiver antenna. Meanwhile, by <strong>in</strong>troduc<strong>in</strong>g<br />

<strong>the</strong> concept of rotation coefficient matrix, <strong>the</strong><br />

vertical component of excit<strong>in</strong>g field with<br />

arbitrary direction of geomagnetic field and<br />

antenna can effortlessly calculated.<br />

Forward problem<br />

For UMRS forward problem, hydraulic<br />

conductivity fault is generalized to a plate with<br />

widths 1 m to 4 m. The large karst cave is<br />

approximated as a sphere with radius of 5 m to<br />

15 m. In regard to ra<strong>the</strong>r complicated karst<br />

cave system, <strong>the</strong> comb<strong>in</strong>ation of plates and<br />

spheres is modeled. The UMRS responses of<br />

<strong>the</strong> three water-bear<strong>in</strong>g structures have been<br />

numerical simulated <strong>in</strong> 3D.<br />

Our results suggest that, by us<strong>in</strong>g 10 turn<br />

or 100 turn co<strong>in</strong>cident antenna with <strong>the</strong> size of<br />

6 m or 2 m, <strong>the</strong> advanced detection distance<br />

can be reached to 30 m assum<strong>in</strong>g that <strong>the</strong><br />

receiv<strong>in</strong>g sensitivity of MRS <strong>in</strong>strument is<br />

5nV. Additionally, series of numerical<br />

modell<strong>in</strong>g exercises suggest that <strong>the</strong> optimal<br />

coupl<strong>in</strong>g of <strong>the</strong> angles could be achieved when<br />

<strong>the</strong> normal orientation of <strong>the</strong> antenna is<br />

paralleled to direction of geomagnetic field.<br />

This fact make feasible that, ei<strong>the</strong>r with <strong>the</strong><br />

smaller pulse moment to detect <strong>the</strong> same depth<br />

of water, or with <strong>the</strong> same pulse moment to get<br />

<strong>the</strong> maximum MRS signal amplitude which<br />

provide a higher sensitivity to groundwater<br />

distribution. The <strong>in</strong>terference water will br<strong>in</strong>g<br />

disturbance to <strong>the</strong> observed UMRS signals, but<br />

<strong>the</strong> <strong>in</strong>fluence is negligible with extended<br />

distance <strong>in</strong> <strong>the</strong> back of <strong>the</strong> head<strong>in</strong>g face.<br />

3D <strong>in</strong>version<br />

Accord<strong>in</strong>g to <strong>the</strong> advanced detection<br />

distance and <strong>the</strong> <strong>in</strong>fluence range of <strong>in</strong>terference<br />

water, <strong>the</strong> <strong>in</strong>version space is optimized to a<br />

reasonable zone with 3000 subdivision units <strong>in</strong><br />

front of head<strong>in</strong>g face. Numerical simulations<br />

of 3D <strong>in</strong>version <strong>in</strong> regard to hydraulic<br />

conductivity fault, karst cave and complicated<br />

karst system are presented to confirm <strong>the</strong><br />

feasibility of UMRS method.<br />

Conclusion<br />

In summary, <strong>the</strong> present numerical study<br />

proposed <strong>in</strong> this paper will promote <strong>the</strong><br />

development of UMRS equipment and provide<br />

technical support for early warn<strong>in</strong>g of water<strong>in</strong>duced<br />

disasters.<br />

References<br />

Greben, J. M., Meyer R., Kimmie Z, 2011. The<br />

underground application of <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>gs. Journal of Applied Geophysics 75,<br />

220-226<br />

Girard, J. F., Legchenko, A., Boucher, M., et al,<br />

2008. Numerical study of <strong>the</strong> variations of<br />

magnetic resonance signals caused by surface<br />

slope. Journal of Applied Geophysics 66, 94-<br />

103.<br />

Hertrich, M., 2008. Imag<strong>in</strong>g of ground water with<br />

nuclear magnetic resonance. Progress <strong>in</strong> Nuclear<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Spectroscopy 53, 227<strong>–</strong>248<br />

.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Surface NMR applied to determ<strong>in</strong><strong>in</strong>g aquifer properties <strong>in</strong> <strong>the</strong> Central Platte River, central<br />

Nebraska 74<br />

Surface NMR applied to determ<strong>in</strong><strong>in</strong>g aquifer properties <strong>in</strong> <strong>the</strong> Central<br />

Platte River, central Nebraska<br />

Jared D. Abraham<br />

US Geological Survey Denver, Colorado, jdabraha@usgs.gov<br />

Trevor P. Irons<br />

US Geological Survey Denver, Colorado, tirons@usgs.gov<br />

James C. Cannia<br />

US Geological Survey Mitchell, Nebraska, jcannia@usgs.gov<br />

Christopher M. Hobza<br />

US Geological Survey L<strong>in</strong>coln, Nebraska, chobza@usgs.gov<br />

Gregory V. Steel<br />

US Geological Survey L<strong>in</strong>coln, Nebraska, gvsteele@usgs.gov<br />

Duane D. Woodward<br />

Centeral Platte Natrual Resource District, woodward@cpnrd.org<br />

Surface nuclear magnetic resonance (SNMR)<br />

is a non-<strong>in</strong>vasive geophysical method that<br />

measures a signal directly related to <strong>the</strong><br />

amount of water <strong>in</strong> <strong>the</strong> subsurface. This allows<br />

for low-cost quantitative estimates of hydraulic<br />

parameters. In practice though, additional<br />

factors <strong>in</strong>fluence <strong>the</strong> signal complicat<strong>in</strong>g<br />

<strong>in</strong>terpretation. The U.S. Geological Survey, <strong>in</strong><br />

cooperation with <strong>the</strong> Nebraska Environmental<br />

Trust and <strong>the</strong> Central Platte Natural Resources<br />

District, evaluated whe<strong>the</strong>r hydraulic<br />

parameters derived from SNMR data could<br />

provide valuable <strong>in</strong>put <strong>in</strong>to groundwater<br />

models used for evaluat<strong>in</strong>g water management<br />

practices. Two calibration sites <strong>in</strong> Dawson<br />

County, Nebraska were chosen based on<br />

previous detailed hydrogeologic and<br />

geophysical <strong>in</strong>vestigations. At both sites, T2*<br />

free <strong>in</strong>duction decay SNMR data were<br />

collected, and derived parameters were<br />

compared with results from four constantdischarge<br />

aquifer tests previously conducted at<br />

<strong>the</strong>se same sites. Additionally, borehole<br />

electromagnetic <strong>in</strong>duction flow meter data<br />

were analyzed as a less expensive substitute<br />

for traditional aquifer tests. Flow meter data<br />

allow <strong>in</strong>creased resolution of <strong>the</strong> hydraulic<br />

properties than <strong>the</strong> constant-discharge aquifer<br />

tests. An <strong>in</strong>novative SNMR model<strong>in</strong>g and<br />

<strong>in</strong>version method was used that <strong>in</strong>corporates<br />

electrical conductivity and magnetic field<br />

<strong>in</strong>homogeneity effects, which had a significant<br />

impact on <strong>the</strong> data, on <strong>the</strong> T2* free <strong>in</strong>duction<br />

decay data. After calibrat<strong>in</strong>g <strong>the</strong> SNMR<br />

<strong>in</strong>versions at <strong>the</strong> two calibration sites, SNMR<br />

derived parameters were compared with<br />

historical aquifer tests at o<strong>the</strong>r locations with<strong>in</strong><br />

<strong>the</strong> Central Platte Natural Resources District.<br />

This served as a bl<strong>in</strong>d test for <strong>the</strong> SNMR. The<br />

SNMR derived aquifer parameters were <strong>in</strong><br />

agreement with <strong>the</strong> aquifer tests <strong>in</strong> most cases.<br />

In some cases, <strong>the</strong> previously performed<br />

aquifer tests were not designed to fully<br />

characterize <strong>the</strong> aquifer, and <strong>the</strong> SNMR was<br />

able to provide miss<strong>in</strong>g data. This allows <strong>the</strong><br />

calibrated SNMR parameters to be applied<br />

throughout <strong>the</strong> general hydrogeological<br />

environment of <strong>the</strong> Central Platte Natural<br />

Resources District. The factors that <strong>in</strong>fluenced<br />

<strong>the</strong> success of <strong>the</strong> SNMR <strong>in</strong>cluded cultural and<br />

natural noise; conductive sediments; and <strong>the</strong><br />

quality of <strong>the</strong> hydrogeological calibration data.<br />

One o<strong>the</strong>r issue is <strong>the</strong> lack of quantifiable<br />

uncerta<strong>in</strong>ty <strong>in</strong> many of <strong>the</strong> hydrogeological<br />

calibration data.<br />

In favorable locations SNMR is able to provide<br />

valuable non-<strong>in</strong>vasive <strong>in</strong>formation about<br />

aquifer parameters. This allows for an<br />

improved spatial sampl<strong>in</strong>g of <strong>the</strong> critical<br />

aquifers with<strong>in</strong> <strong>the</strong> Central Platte Natural<br />

Resources District. Us<strong>in</strong>g this data with<strong>in</strong><br />

groundwater models provides a useful tool for<br />

groundwater managers <strong>in</strong> Nebraska.<br />

References<br />

Irons, T.P., Hobza, C.M., Steele, G.V., Abraham,<br />

J.D., Cannia, J.C., Woodward, D.D., (2012):<br />

Quantification of aquifer properties us<strong>in</strong>g<br />

nuclear magnetic resonance <strong>in</strong> <strong>the</strong> Platte River<br />

valley, central Nebraska us<strong>in</strong>g a novel <strong>in</strong>version<br />

method, USGS Scientific Investigations Report<br />

2012, 125 p.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Case studies of <strong>the</strong> MRS method <strong>in</strong> various geological backgrounds 75<br />

Case studies of <strong>the</strong> MRS method <strong>in</strong> various geological backgrounds<br />

Jean BERNARD, Orlando LEITE, Fabrice VERMEERSCH<br />

IRIS Instruments<br />

iris@iris-<strong>in</strong>struments.com<br />

S<strong>in</strong>ce a few years, <strong>the</strong> <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g method has become more and more<br />

popular all around <strong>the</strong> world for groundwater<br />

<strong>in</strong>vestigations.<br />

The <strong>in</strong>terpretation of <strong>the</strong> MRS measurements<br />

permits to estimate <strong>the</strong> water content (porosity)<br />

and <strong>the</strong> permeability of each layer at depth.<br />

These parameters are useful to determ<strong>in</strong>e <strong>the</strong><br />

prospects of a groundwater reservoir before<br />

drill<strong>in</strong>g and to make a prediction of <strong>the</strong> yield of<br />

water which can be obta<strong>in</strong>ed, after calibration<br />

with exist<strong>in</strong>g holes <strong>in</strong> <strong>the</strong> area of <strong>the</strong> survey.<br />

The <strong>in</strong>tegration of MRS among o<strong>the</strong>r more<br />

traditional geophysical methods (DC<br />

resistivity, TDEM, …) will be <strong>the</strong> key po<strong>in</strong>t of<br />

its success <strong>in</strong> <strong>the</strong> long term, tak<strong>in</strong>g <strong>in</strong>to account<br />

<strong>the</strong> advantages and <strong>the</strong> limitations and <strong>the</strong> cost<br />

of all <strong>the</strong>se methods. The optimization of <strong>the</strong><br />

budgets of <strong>the</strong> surveys is <strong>in</strong>deed an important<br />

factor of <strong>the</strong> projects aim<strong>in</strong>g at provid<strong>in</strong>g water<br />

to population, cattle, agriculture, m<strong>in</strong><strong>in</strong>g or<br />

o<strong>the</strong>r <strong>in</strong>dustrial activities.<br />

Field examples of MRS data will be given,<br />

obta<strong>in</strong>ed <strong>in</strong> various cont<strong>in</strong>ents <strong>in</strong>clud<strong>in</strong>g Asia<br />

and Africa, with different geological contexts<br />

and with various EM noise, magnetic latitude,<br />

loop geometries conditions; also, when<br />

available, <strong>in</strong> comparison with borehole results.<br />

References<br />

F. Vermeersch, J Bernard, O. Leite (2003):<br />

Comparison of various loop geometries <strong>in</strong><br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>gs on <strong>the</strong> Pyla sand<br />

dune (France), 2 nd MRS Workshop, Orleans<br />

J. Bernard (2006): Instruments and field work to<br />

measure a <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g with<br />

NUMIS equipment, 3 rd MRS Workshop, Madrid<br />

J. Bernard (2006): Application use of <strong>the</strong> Proton<br />

<strong>Magnetic</strong> <strong>Resonance</strong> method (MRS) for<br />

groundwater <strong>in</strong>vestigations <strong>in</strong> various geological<br />

environments, AGU, San Francisco<br />

J. Bernard (2012): Application use of <strong>the</strong> <strong>Magnetic</strong><br />

<strong>Resonance</strong> Sound<strong>in</strong>g method for groundwater<br />

exploration, ICEEG, Changsha<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Jo<strong>in</strong>t use of MRS and TDEM for characteriz<strong>in</strong>g groundwater recharge <strong>in</strong> <strong>the</strong> Lake Chad<br />

bas<strong>in</strong> 76<br />

Jo<strong>in</strong>t use of MRS and TDEM for characteriz<strong>in</strong>g groundwater recharge <strong>in</strong><br />

<strong>the</strong> Lake Chad bas<strong>in</strong><br />

Boucher 1* M., G. Favreau 2 , M. Descloitres 1 , K. Chalikakis 3 , A. Legchenko 1 , M. Ibrahim 2 , M. Le Coz 2 ,<br />

A.M. Moussa 4<br />

1 IRD / LTHE, Grenoble, France; 2 IRD, UM2 / HSM, Montpellier, France; 3 UAPV / EMMAH, Avignon, France;<br />

4 M<strong>in</strong>istère de l’Hydraulique et de l’Environnement, Z<strong>in</strong>der, Niger. Marie.boucher@ird.fr<br />

Dramatic changes <strong>in</strong> surface area of Lake<br />

Chad, semiarid Africa, are known to have<br />

occurred dur<strong>in</strong>g <strong>the</strong> Holocene and have largely<br />

impacted <strong>the</strong> aquifer recharge at <strong>the</strong> bas<strong>in</strong><br />

scale. Yet, little is known on <strong>the</strong> pattern of <strong>the</strong><br />

aquifer hydrodynamics, thus affect<strong>in</strong>g <strong>the</strong><br />

reliability of groundwater model<strong>in</strong>g (Leduc et<br />

al. 2000). The objective of our study is to<br />

evaluate <strong>the</strong> contribution of <strong>the</strong> jo<strong>in</strong>t use of<br />

MRS and TDEM for <strong>in</strong>vestigat<strong>in</strong>g aquifer<br />

characteristics below and close to <strong>the</strong> Lake.<br />

Two field-surveys were carried out <strong>in</strong> <strong>the</strong><br />

northwestern part of Lake Chad Bas<strong>in</strong>: 1) <strong>in</strong><br />

2008, a detailed 12-km-long profile (117<br />

TDEM and 11 MR sound<strong>in</strong>gs) was carried out<br />

across <strong>the</strong> valley of <strong>the</strong> Komadugu river, one<br />

of <strong>the</strong> 3 tributaries of Lake Chad; 2) 12 TDEM<br />

and MR sound<strong>in</strong>gs were performed at regional<br />

scale (~10 4 km 2 ) <strong>in</strong> May 2010 (a period when<br />

<strong>the</strong> Lake is mostly dry). The MRS<br />

NumisPlus® equipment was used with square<br />

loops of 100 m side length to reach <strong>the</strong><br />

maximum depth of <strong>in</strong>vestigation. High natural<br />

electromagnetic noise was observed dur<strong>in</strong>g<br />

afternoon and night, limit<strong>in</strong>g <strong>the</strong> time w<strong>in</strong>dow<br />

for data acquisition (~from 6:00 until 14:00<br />

local time). MRS data were <strong>in</strong>terpreted us<strong>in</strong>g<br />

Samovar software with 3 alternative <strong>in</strong>version<br />

schemes 1) smooth automatic <strong>in</strong>version; 2)<br />

blocky <strong>in</strong>version by lett<strong>in</strong>g all parameters free<br />

and assum<strong>in</strong>g a one-uniform-layer distribution<br />

of water content; 3) blocky <strong>in</strong>version by fix<strong>in</strong>g<br />

<strong>the</strong> geometry of aquifer accord<strong>in</strong>g to TDEM<br />

results. For TDEM acquisition, <strong>the</strong> light (2 Kg)<br />

Tem-Fast 48 device (AEMR technology,) was<br />

used with co<strong>in</strong>cident Tx/Rx loop of 50×50 m 2 ,<br />

provid<strong>in</strong>g 100-m-deep <strong>in</strong>vestigation. Data were<br />

<strong>the</strong>n <strong>in</strong>verted with <strong>the</strong> Tem-Res software.<br />

The aquifer permeability (KMRS) was computed<br />

us<strong>in</strong>g <strong>the</strong> standard empirical relationship:<br />

� �2 K MRS � Cp ��<br />

MRS T where θMRS is <strong>the</strong> MRS<br />

1<br />

water content, T1 is <strong>the</strong> relaxation time, and Cp<br />

is an empirical pre-factor. In our study, Cp was<br />

calibrated us<strong>in</strong>g results of two short (12h)<br />

pump<strong>in</strong>g tests. A relatively high value of Cp<br />

(~2.10 -7 ) <strong>in</strong> comparison with previous studies<br />

(e.g. Vouillamoz et al. 2007) was obta<strong>in</strong>ed that<br />

may be due to <strong>the</strong> presence of a th<strong>in</strong> (~8 m)<br />

coarse sandy layer usually targeted for<br />

boreholes screen location at depth of ~35 m<br />

below <strong>the</strong> soil surface and hidden for MRS by<br />

a thicker, shallower and less permeable layer<br />

of f<strong>in</strong>e to clayey sands.<br />

MRS results revealed a distribution of aquifer<br />

hydrodynamic properties that depends on <strong>the</strong><br />

distance to surface waters: (1) High θMRS (10-<br />

35%) and KMRS (10 -3 to 10 -2 m/s) values are<br />

evidenced below present-day Lake Chad. (2)<br />

Below <strong>the</strong> former clayey deposits of <strong>the</strong><br />

Megalake Chad, lower θMRS (8-13%) and KMRS<br />

(10 -4 to 10 -3 m/s) values were estimated. These<br />

low values suggest limited aquifer fluxes, <strong>in</strong><br />

accordance with <strong>the</strong> occurrence of paleogroundwater<br />

(determ<strong>in</strong>ed by isotopes) below<br />

<strong>the</strong> clayey pla<strong>in</strong>. (3) Intermediate and<br />

homogenous hydraulic properties (θMRS and<br />

KMRS values <strong>in</strong> <strong>the</strong> ranges of 16 to 25% and<br />

1.10 -3 to 3.10 -3 m/s, respectively) were found<br />

below <strong>the</strong> Komadugu valley, filled with<br />

coarser fluvial sediments. TDEM allowed<br />

estimat<strong>in</strong>g accurately <strong>the</strong> depth of <strong>the</strong> Pliocene<br />

clayey formation (~2 Ω.m) which is supposed<br />

to be <strong>the</strong> aquifer substratum. The variations of<br />

resistivity <strong>in</strong>side aquifer are probably related to<br />

both presence of a variable amount of clay and<br />

variable water sal<strong>in</strong>ity (electrical conductivity<br />

of water vary<strong>in</strong>g from 0.2 mS/m <strong>in</strong> <strong>the</strong><br />

Komadougou valley to 5 mS/m bellow <strong>the</strong><br />

Lake Chad). The comb<strong>in</strong>ation of MRS and<br />

TDEM methods proved to be an important tool<br />

to identify groundwater recharge patterns <strong>in</strong><br />

this poorly documented area.<br />

References<br />

Leduc C, Sabljak S, Taup<strong>in</strong> JD et al. 2000 Recharge of<br />

<strong>the</strong> Quaternary water table <strong>in</strong> <strong>the</strong> northwestern Lake<br />

Chad bas<strong>in</strong> (sou<strong>the</strong>astern Niger) estimated from<br />

isotopes. C.R. Acad. Sci., IIa 330: 355-361.<br />

Vouillamoz JM, Baltassat JM, Girard JF et al. 2007<br />

Hydrogeological experience <strong>in</strong> <strong>the</strong> use of MRS.<br />

Boletín Geológico y M<strong>in</strong>ero 118: 531-550.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Assessment of <strong>the</strong> use of surface NMR to detect <strong>in</strong>ternal erosion and pip<strong>in</strong>g <strong>in</strong> ear<strong>the</strong>n<br />

embankments 77<br />

Assessment of <strong>the</strong> use of surface NMR to detect <strong>in</strong>ternal erosion and pip<strong>in</strong>g<br />

<strong>in</strong> ear<strong>the</strong>n embankments<br />

Trevor Irons 1 , Meghan C. Qu<strong>in</strong>n 2 , Jason R. McKenna 2 , and Yaoguo Li 1<br />

1 Colorado School of M<strong>in</strong>es, 2 U.S. Army Eng<strong>in</strong>eer Research & Development Center<br />

tirons@m<strong>in</strong>es.edu, Meghan.C.Qu<strong>in</strong>n@usace.army.mil, Jason.R.McKenna@usace.army.mil,<br />

ygli@m<strong>in</strong>es.edu<br />

The US Army Corps’ National Inventory of<br />

Dams (2012) currently identifies 26,642 dams<br />

with ei<strong>the</strong>r high or significant hazard potential.<br />

This represents over 30% of <strong>the</strong> structures <strong>in</strong><br />

<strong>the</strong> database. Almost all of <strong>the</strong> dams <strong>in</strong> <strong>the</strong><br />

database are of ear<strong>the</strong>n construction and many<br />

are old and few details are known about <strong>the</strong>ir<br />

construction. Levees present a similar hazard.<br />

There are many failure modes of dams and<br />

levees: <strong>in</strong>ternal erosion and pip<strong>in</strong>g,<br />

overtopp<strong>in</strong>g, undercutt<strong>in</strong>g, and dry-side<br />

erosion. Of <strong>the</strong>se failure modes, <strong>in</strong>ternal<br />

erosion and pip<strong>in</strong>g is one most difficult to<br />

assess, as it cannot be directly observed.<br />

Geophysical methods provide a means to<br />

assess <strong>the</strong>se structures non<strong>in</strong>vasively. As <strong>the</strong>re<br />

is often little <strong>in</strong>formation about <strong>the</strong><br />

construction of <strong>the</strong>se older ear<strong>the</strong>n dams, many<br />

geophysical methods that rely on <strong>in</strong>direct<br />

relationships between material properties and<br />

water content can be unreliable <strong>in</strong> this<br />

application. For <strong>in</strong>stance, <strong>the</strong>re may not be a<br />

large electrical resistivity change associated<br />

with <strong>in</strong>ternal erosion events <strong>in</strong> every dam.<br />

Surface NMR (sNMR) is unique <strong>in</strong> its ability<br />

to directly detect water, and also estimate <strong>the</strong><br />

pore size and hydraulic permeability of media.<br />

For this reason sNMR could be an <strong>in</strong>valuable<br />

tool for non-<strong>in</strong>vasively assess<strong>in</strong>g <strong>in</strong>ternal<br />

erosion <strong>in</strong> dams and levees.<br />

We present sNMR and subsurface seepage<br />

forward modell<strong>in</strong>g results from several ear<strong>the</strong>n<br />

embankment scenarios. A homogeneous<br />

ear<strong>the</strong>n embankment is loaded with a high<br />

level of water until seepage is detected. We<br />

<strong>the</strong>n modelled a series of scenarios of pip<strong>in</strong>g<br />

develop<strong>in</strong>g <strong>in</strong> <strong>the</strong> embankment.<br />

Typical erosional pip<strong>in</strong>g patterns start at <strong>the</strong><br />

toe of <strong>the</strong> embankment and progress back<br />

towards <strong>the</strong> head. As <strong>the</strong> pip<strong>in</strong>g progresses,<br />

significant drop <strong>in</strong> <strong>the</strong> phreatic surface across<br />

<strong>the</strong> embankment develops, and presents a<br />

target for sNMR mapp<strong>in</strong>g.<br />

We assess <strong>the</strong> deployment of co<strong>in</strong>cident and<br />

separated sNMR transmitter and receivers<br />

under chang<strong>in</strong>g field conditions and static<br />

magnetic field orientations. The significant<br />

topography of <strong>the</strong> ear<strong>the</strong>n embankment<br />

requires special care. We address this by<br />

<strong>in</strong>tegrat<strong>in</strong>g around an arbitrary current source<br />

and calculat<strong>in</strong>g <strong>the</strong> magnetic fields generated<br />

by f<strong>in</strong>ite ungrounded electric dipoles along <strong>the</strong><br />

current path. The optimal use of separated or<br />

co<strong>in</strong>cident transmitters and receivers is<br />

affected by <strong>the</strong> static magnetic field<br />

orientation, as well as <strong>the</strong> geometry of <strong>the</strong><br />

ear<strong>the</strong>n embankment. We demonstrate that<br />

under favourable, but plausible, field<br />

conditions, sNMR can provide valuable<br />

<strong>in</strong>formation <strong>in</strong> <strong>the</strong> assessment of ear<strong>the</strong>n<br />

embankment <strong>in</strong>ternal erosion.<br />

References<br />

US Army Corps of Eng<strong>in</strong>eers (2012). National<br />

<strong>in</strong>ventory of dams. http://nid.usace.army.mil/.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


The Applications of MRS for detection of Groundwater-<strong>in</strong>duced disasters , <strong>in</strong> Ch<strong>in</strong>a 78<br />

The Applications of MRS for detection of Groundwater-<strong>in</strong>duced disasters ,<br />

<strong>in</strong> Ch<strong>in</strong>a<br />

L<strong>in</strong> Jun, Duan Q<strong>in</strong>gm<strong>in</strong>g, Fan Tie-hu<br />

College of Instrumentation and Electrical Eng<strong>in</strong>eer<strong>in</strong>g, Jil<strong>in</strong> University, Changchun 130021, Ch<strong>in</strong>a<br />

L<strong>in</strong>_jun@jlu.edu.cn; fth@jlu.edu.cn<br />

Groundwater is one of <strong>the</strong> most important and<br />

<strong>in</strong>dispensable natural resources to human<br />

be<strong>in</strong>gs ei<strong>the</strong>r <strong>in</strong> <strong>in</strong>dusties or daily life.<br />

however it sometimes leads to terrible<br />

catastrophes , such as dam leakage, tunnel<br />

gush<strong>in</strong>g, water-impacted landslide, seawater<br />

<strong>in</strong>trusion, karst collapse, groundwater<br />

pollution, and coalm<strong>in</strong>e goaf-water.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS), which<br />

is widely used as <strong>the</strong> most effective and direct<br />

approach for groundwater <strong>in</strong>vestigations, , has<br />

also been used for detect<strong>in</strong>g <strong>the</strong> water-<strong>in</strong>duced<br />

disasters .As it has with<strong>in</strong> certa<strong>in</strong> limits been<br />

proved to promot <strong>the</strong> technical supports <strong>in</strong><br />

prevent<strong>in</strong>g losses of water disater that MRS<br />

and o<strong>the</strong>r geophysical methods are efficiently<br />

<strong>in</strong>tegrated. The discussions of <strong>the</strong> detection<br />

methods with MRS as core technique for <strong>the</strong>ir<br />

each features of <strong>the</strong> specific water-<strong>in</strong>duced<br />

disasters are summarized <strong>in</strong> this paper. The<br />

high-resolution 2D MRS technique has been<br />

developed for <strong>the</strong> survey of dike and dam<br />

leakage, <strong>the</strong> 2D MRS-TEM device and MRS-<br />

TEM jo<strong>in</strong>t <strong>in</strong>version are applied to <strong>the</strong><br />

extraction of water body boundary as an valid<br />

solution to karst collapse and m<strong>in</strong>e goaf-water ,<br />

and to <strong>the</strong> determ<strong>in</strong>ation of salt-fresh water<br />

<strong>in</strong>terface of seal<strong>in</strong>e while solv<strong>in</strong>g seawater<br />

<strong>in</strong>trusion. 2D MRS and TEM jo<strong>in</strong>t detection<br />

for seawater <strong>in</strong>trusion was carried out<br />

tentatively <strong>in</strong> Liaodong bay, and <strong>the</strong> <strong>in</strong>terface<br />

between sal<strong>in</strong>e and fresh water <strong>in</strong> <strong>the</strong> transition<br />

zone can be <strong>in</strong>fered by <strong>the</strong> analysis of what <strong>the</strong><br />

<strong>in</strong>terpretation results show. The same k<strong>in</strong>d of<br />

jo<strong>in</strong>t detection with some little po<strong>in</strong>ted<br />

alternations <strong>in</strong> detail was also performed <strong>in</strong><br />

Shanxi, Ch<strong>in</strong>a, among <strong>the</strong> all 13 survey<br />

l<strong>in</strong>es(192 survey po<strong>in</strong>ts) 16 water-rich regions<br />

were ranged by <strong>the</strong> actual survey data, which is<br />

confirmed consistent with <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g<br />

geology. On <strong>the</strong> basis of <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong><br />

properties of key parameter T2* closely<br />

related to <strong>the</strong> porosity of <strong>the</strong> aquifer, a stability<br />

evaluation of side slopes with different<br />

<strong>in</strong>cl<strong>in</strong>ations and conditions of moisture content<br />

by MRS with coils non-horizontally set. Filed<br />

experiment of dam leakage detection<br />

performed on Chuijiajie Dam <strong>in</strong> Liaon<strong>in</strong>g<br />

,Ch<strong>in</strong>a, proves <strong>the</strong> MRS method for dam<br />

leakage be feasible and effective, and basic<br />

conclusions are reached on three leakage<br />

po<strong>in</strong>ts and two <strong>in</strong>filtration areas at each<br />

correspond<strong>in</strong>g depth respectively <strong>in</strong>side <strong>the</strong><br />

dam body. Not only is a brandnew and<br />

productive method presented by <strong>in</strong>troduc<strong>in</strong>g<br />

MRS technique <strong>in</strong>to <strong>the</strong> water-<strong>in</strong>duced disaster<br />

exploration, but <strong>the</strong> safety of <strong>the</strong> people's lives<br />

and property is earnestly guaranteed.<br />

References<br />

Abragam A. The Pr<strong>in</strong>ciples of Nuclear Magnetism<br />

[M]. London: Oxford University, 1961:648.<br />

Guillen A, Legchenko A. Application of L<strong>in</strong>ear<br />

Programm<strong>in</strong>g Techniques to <strong>the</strong> Inversion of<br />

Proton <strong>Magnetic</strong> <strong>Resonance</strong> Measurements for<br />

Water Prospect<strong>in</strong>g from <strong>the</strong> Surface [J]. Journal<br />

of Applied Geophysics, 2002, 50(1-2):149-162.<br />

Legchenko A V, Semenov A G, Shirov M D.<br />

Apparatus for Measur<strong>in</strong>g <strong>the</strong> Parameters of<br />

Water-Bear<strong>in</strong>g Underground Levers (<strong>in</strong><br />

Russian): USSR, 1540515 [P], 1991.2.5.<br />

Legchenko A, Valla P. A Review of <strong>the</strong> Basic<br />

Pr<strong>in</strong>ciples for Proton <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g Measurements [J]. Journal of Applied<br />

Geophysics, 2002, 50(1-2):3-19.<br />

Roy J, Lubczynski M. The <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g Technique and its Use for<br />

Groundwater Investigations [J]. Hydrogeology<br />

Journal, 2003, 11(4): 455<strong>–</strong>465.<br />

Schirov M, Legchenko A, Creer G. New Direct<br />

Non-Invasive Groundwater Detection<br />

Technology for Australia [J]. Exploration<br />

Geophysics, 1991, 22(2): 333<strong>–</strong>338.<br />

Varian R H. Ground Liquid Prospect<strong>in</strong>g Method<br />

and Apparatus: US, 3019383 [P], 1962.1.30.<br />

Weichman P B, Lavely E M, Ritzwoller M H.<br />

Theory of Surface Nuclear <strong>Magnetic</strong> <strong>Resonance</strong><br />

with Applications to Geophysical Imag<strong>in</strong>g<br />

Problems [J]. Physical Review E, 2000, 62 (1,<br />

Part B): 1290<strong>–</strong>1312.<br />

Yaramanci U, Lange G, Knödel K. Surface NMR<br />

with<strong>in</strong> a Geophysical Study of an Aquifer at<br />

Haldensleben (Germany) [J]. Geophysical<br />

Prospect<strong>in</strong>g, 1999, 47(6): 923<strong>–</strong>943.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Application of surface-NMR to study unfrozen sediments below lakes <strong>in</strong> permafrost<br />

regions 79<br />

Application of surface-NMR to study unfrozen sediments below lakes <strong>in</strong><br />

permafrost regions<br />

Andrew Parsekian 1 , Jan O. Walbrecker 1 , Mike Muller-Petke 2 , Guido Grosse 3 , Krist<strong>in</strong>a<br />

Keat<strong>in</strong>g 4 , L<strong>in</strong> Liu 1 , Benjam<strong>in</strong> Jones 5 and Rosemary Knight 1<br />

1 Stanford University, Department of Geophysics, Stanford, CA, USA<br />

2 Leibniz Institute for Applied Geophysics, Hannover, Germany<br />

3 University of Alaska, Geophyiscal Institute, Fairbanks, AK, USA<br />

4 Rutgers University, Department of Earth and Environmental Sciences, Newark, NJ, USA<br />

5 Alaska Science Center, U.S. Geological Survey, Anchorage, AK<br />

parsekia@stanford.edu<br />

Lakes <strong>in</strong> permafrost landscapes are often<br />

attributed to thaw<strong>in</strong>g of sediments and <strong>the</strong><br />

subsequent pool<strong>in</strong>g of water on <strong>the</strong> surface<br />

(Lachenbruch 1962). Over time, and given<br />

sufficient depth of <strong>the</strong> "<strong>the</strong>rmokarst" lake, such<br />

that it exceeds w<strong>in</strong>ter ice growth, <strong>the</strong> sediment<br />

also thaws result<strong>in</strong>g <strong>in</strong> a volume of unfrozen<br />

material that may extend many tens of meters<br />

below <strong>the</strong> surface with a large fraction of<br />

liquid water known as a thaw bulb. Due to<br />

microbial methanogenisis <strong>in</strong> <strong>the</strong> thaw bulb,<br />

<strong>the</strong>rmokarst lakes have been identified as an<br />

important source of methane to <strong>the</strong> atmosphere<br />

with contributions to global climate change<br />

(Walter et al., 2007). Determ<strong>in</strong><strong>in</strong>g <strong>the</strong> spatial<br />

extent of unfrozen sediment is important to<br />

estimat<strong>in</strong>g <strong>the</strong> methane production potential of<br />

<strong>the</strong>rmokarst lakes; however, measurements of<br />

thaw bulb thickness by direct (i.e. probes and<br />

boreholes) and geophysical methods (e.g. DC<br />

resistivity, GPR) have met with limited success<br />

thus far mostly due to limitations <strong>in</strong> depth<br />

penetration and differentation between frozen<br />

and unfrozen sediment. To understand<br />

hydrology <strong>in</strong> discont<strong>in</strong>uous permafrost regions<br />

it is also important to determ<strong>in</strong>e if thaw bulbs<br />

are hydraulically connected to deep, regional<br />

groundwater (open) or if <strong>the</strong>y are bounded by<br />

permafrost on all sides (closed). We have<br />

identified surface-NMR as a tool for<br />

<strong>in</strong>vestigat<strong>in</strong>g thaw bulb sediments due to <strong>the</strong><br />

large volume of water present <strong>in</strong> thaw bulb<br />

sediments and <strong>the</strong> appropriate depth of<br />

<strong>in</strong>vestigation <strong>in</strong> excess of 100 m. To<br />

demonstrate <strong>the</strong> ability of surface-NMR to<br />

make <strong>the</strong> desired measurements of water<br />

content and thaw bulb depth, we conducted<br />

surface-NMR surveys on <strong>the</strong>rmokarst lakes<br />

near Fairbanks, Alaska, USA. Measurements<br />

were made on frozen lakes dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter to<br />

facilitate deployment of <strong>the</strong> <strong>in</strong>strument over<br />

<strong>the</strong> deepest portions of <strong>the</strong> lakes. Figure-eight<br />

transmitt<strong>in</strong>g/receiv<strong>in</strong>g loop configurations<br />

were used <strong>in</strong> conjunction with reference loops<br />

<strong>in</strong> a multi-channel configuration to compensate<br />

for electromagnetic noise orig<strong>in</strong>at<strong>in</strong>g from<br />

nearby power l<strong>in</strong>es <strong>in</strong> <strong>the</strong> Fairbanks area. The<br />

data were <strong>in</strong>verted us<strong>in</strong>g a 1D blocky <strong>in</strong>version<br />

that simultaneously fit <strong>the</strong> NMR amplitude and<br />

T2 * decay time data. Four layers were<br />

sufficient to obta<strong>in</strong> good fit to <strong>the</strong> data. From<br />

top to bottom <strong>the</strong>se layers correspond to lake<br />

ice, lake water, thaw bulb sediments and<br />

permafrost. At a 6 m deep lake, <strong>the</strong> thaw bulb<br />

was deeper than <strong>the</strong> maximum sensitive depth<br />

of <strong>the</strong> surface-NMR measurement (>23 m)<br />

given <strong>the</strong> figure-eight configuration. At a<br />

smaller, 1.2 m deep lake, a thaw bulb depth of<br />

4 m below <strong>the</strong> lake surface was observed. For<br />

comparison, we made measurements us<strong>in</strong>g<br />

square loops at a terrestrial permafrost location<br />

with borehole control for ground truth<br />

purposes. The measurement at this location<br />

<strong>in</strong>dicated unfrozen sediments below 30 m and<br />

also suggests sensitivity to <strong>the</strong> low water<br />

content (θ


Usage of <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS) for atta<strong>in</strong><strong>in</strong>g hydrogeological profiles<br />

(Havelland, Brandenburg) 80<br />

Usage of <strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS) for atta<strong>in</strong><strong>in</strong>g<br />

hydrogeological profiles (Havelland, Brandenburg)<br />

K. Seibertz 1 , T. Gün<strong>the</strong>r 2 , S. Costabel 3<br />

1 Mart<strong>in</strong>-Lu<strong>the</strong>r-University Halle/Wittenberg<br />

2 Leibniz Institute for Applied Geophysics (<strong>LIAG</strong>), Hannover<br />

3 Federal Institute for Geosciences and Natural Resources, Berl<strong>in</strong><br />

klodwig.seibertz@student.uni-halle.de<br />

The knowledge about aquifer properties <strong>in</strong> <strong>the</strong><br />

near-surface underground is of great<br />

importance for different types of questions,<br />

e.g. for groundwater modell<strong>in</strong>g. Therefore<br />

knowledge about <strong>the</strong> hydraulic conductivity,<br />

water content and of course <strong>the</strong> location of<br />

aquifers has to be ga<strong>the</strong>red. Often this<br />

<strong>in</strong>formation is taken from drill<strong>in</strong>g cores or<br />

groundwater observation-wells, which are<br />

expensive and not always applicable.<br />

The ma<strong>in</strong> goal of this work was to show that<br />

<strong>the</strong> feasibility of magnetic resonance sound<strong>in</strong>g<br />

(MRS) <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of settlements <strong>in</strong><br />

geologically less prospected areas is given and<br />

fur<strong>the</strong>rmore that it could be used as<br />

<strong>in</strong>expensive and fast method to <strong>in</strong>crease <strong>the</strong><br />

density of <strong>the</strong> hydro-/geological <strong>in</strong>formation of<br />

<strong>the</strong> underground <strong>in</strong> addition to exist<strong>in</strong>g<br />

drill<strong>in</strong>gs.<br />

Therefore, MRS was applied <strong>in</strong> Brädikow, a<br />

village <strong>in</strong> Havelland/Brandenburg. The<br />

geological and hydro-geological <strong>in</strong>formations<br />

where ga<strong>the</strong>red from a hydro-geological<br />

profile created by LBGR (Landesamt für<br />

Bergbau, Geologie und Rohstoffe<br />

Brandenburg). MRS was applied along <strong>the</strong><br />

hydro-geological profile and f<strong>in</strong>ally <strong>the</strong> data of<br />

four successful sound<strong>in</strong>gs were analysed. The<br />

collected data was analysed for water content,<br />

hydraulic conductivity, as well as for position<br />

of <strong>the</strong> aquifers. Hydraulic conductivity was<br />

calculated from T2* decay times us<strong>in</strong>g <strong>the</strong><br />

empiric equation by Seevers (1966). The<br />

needed calibration factor (CS) is generally set<br />

to values <strong>in</strong> <strong>the</strong> range of 30-326*10 -4 m/s 2<br />

(Mohnke & Yaramanci 2008) but <strong>in</strong> this case it<br />

was set to 15*10 -4 m/s 2 , a value obta<strong>in</strong>ed by<br />

Dlugosch et al. (2011) for <strong>the</strong> closely located<br />

test-site Nauen. The collected data was<br />

comb<strong>in</strong>ed to a hydro-geological profile, which<br />

was compared to <strong>the</strong> LBGR profile. To<br />

overcome <strong>the</strong> problems of noise from <strong>the</strong> near<br />

settlement, different noise cancellation<br />

methods were applied.<br />

In fact, <strong>the</strong> comparison of <strong>the</strong> hydrogeological<br />

profile with <strong>the</strong> MRS results shows a good up<br />

to very good accordance to <strong>the</strong> vertical<br />

distributions of <strong>the</strong> two aquifers with<strong>in</strong> <strong>the</strong><br />

survey<strong>in</strong>g area. The results allow a more<br />

detailed re<strong>in</strong>terpretation of <strong>the</strong> formerly, by<br />

LBGR, published data.<br />

We conclude that MRS nowadays is an<br />

<strong>in</strong>expensive and fast applicable technology of<br />

non-<strong>in</strong>vasive geophysics that can be used <strong>in</strong><br />

addition to conventional drill<strong>in</strong>g to <strong>in</strong>crease <strong>the</strong><br />

knowledge about near-surface underground<br />

properties.<br />

References<br />

Dlugosch, R., Müller-Petke, M., Gün<strong>the</strong>r, T.,<br />

Yaramanci, U. (2011): Extended prediction of<br />

hydraulic conductivity from NMR measurements<br />

for coarse material. Ext. Abstr. EAGE Near<br />

Surface Conference, Leicester.<br />

Mohnke, O., Yaramanci, U. (2008): Pore size<br />

distributions and hydraulic conductivities of<br />

rocks derived from <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g relaxation data us<strong>in</strong>g multi-exponential<br />

decay time <strong>in</strong>version. In : Journal of Applied<br />

Geophysics 66, 73-81.<br />

Seevers, D. (1966): A nuclear magnetic method for<br />

determ<strong>in</strong><strong>in</strong>g <strong>the</strong> permeability of sandstones.<br />

Conference of Society of professional Well Log<br />

Analysts.<br />

Seibertz, K. (2011): Möglichkeiten zur Aquiferabbildung<br />

mit Magnet Resonanz Sondierung<br />

(MRS) im Vergleich zum hydrogeologischen<br />

Schnitt Brädikow <strong>–</strong> Witzker See (<strong>in</strong> German).<br />

BSc <strong>the</strong>sis, Kiel University.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Calibration MRS Hydrodynamic Parameters Measurements from Pump<strong>in</strong>g Tests <strong>in</strong> Inner-<br />

Mongollia of Ch<strong>in</strong>a 81<br />

Calibration MRS Hydrodynamic Parameters Measurements from Pump<strong>in</strong>g<br />

Tests <strong>in</strong> Inner-Mongollia of Ch<strong>in</strong>a<br />

LIN Jun 1 , SUN Shu-Q<strong>in</strong> 1 *, ZHAO Yi-P<strong>in</strong>g 2 , DUAN Q<strong>in</strong>g-M<strong>in</strong>g 1 , LI Hai-Sheng 2<br />

1,Lab. of Geo-Exploration and Instrumentation M<strong>in</strong>istry of Education of Ch<strong>in</strong>a, College of Instrumentation and<br />

Electrical Eng<strong>in</strong>eer<strong>in</strong>g Jil<strong>in</strong> University, Changchun, Ch<strong>in</strong>a, 130061; 2. Grad uate School of Department of<br />

Water Resources, Inne r-Mongolia 010000, Ch<strong>in</strong>a<br />

L<strong>in</strong>_jun@jlu.edu.cn, sunsq@jlu.edu.cn<br />

Introduction <strong>Magnetic</strong> resonance sound<strong>in</strong>gs<br />

(MRS) have been performed to characterize<br />

<strong>the</strong> aquifer and measure groundwater <strong>in</strong> Inner-<br />

Mongolia of Ch<strong>in</strong>a. An extensive geological<br />

study us<strong>in</strong>g MRS equipment was performed<br />

dur<strong>in</strong>g 2001 to 2005. By compar<strong>in</strong>g MRS<br />

measurements with pump<strong>in</strong>g tests, we could<br />

establish an empirical relationship between<br />

MRS and hydrodynamic parameters, and<br />

establish a methodology for MRS<br />

characterization over potential groundwater<br />

exploration drill<strong>in</strong>g sites <strong>in</strong> Inner-Mongolia.<br />

Methodology A methodological study for<br />

calculat<strong>in</strong>g <strong>the</strong> hydraulic conductivity and<br />

transmissivity from <strong>the</strong> automatic <strong>in</strong>version<br />

process provided by <strong>the</strong> Samovar software,<br />

study <strong>the</strong> relationship between <strong>the</strong> hydraulic<br />

conductivity and <strong>the</strong> pump<strong>in</strong>g capacity, <strong>the</strong>re<br />

are different equations to calculate <strong>the</strong><br />

hydraulic conductivity from pump capacity for<br />

phreatic water and conf<strong>in</strong>ed water, establish an<br />

empirical model to calculate <strong>the</strong> hydraulic<br />

conductivity of <strong>the</strong> several boreholes for<br />

phreatic water and conf<strong>in</strong>ed water.<br />

Field test A field measurement us<strong>in</strong>g <strong>the</strong><br />

NUMISplus system developed by IRIS<br />

company was carried out <strong>in</strong> Wulateqi of <strong>in</strong>nermongolia.<br />

There are two large zones of<br />

fracture <strong>in</strong> <strong>the</strong> test area, <strong>the</strong> purpose of this<br />

measurement is to explore <strong>the</strong> aquifer depth<br />

and thickness at <strong>the</strong> both sides of zones of<br />

fracture. More than one hundred MRS tests<br />

were carried out, <strong>the</strong> MRS <strong>in</strong>version results<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> aquifer depth and thickness,<br />

water content , relaxation time constant, <strong>the</strong><br />

hydraulic conductivity and <strong>the</strong> transmissivity<br />

were analyzed.<br />

Summary and Conclusions Based on MRS<br />

measurements and borehole data, an empirical<br />

relationship was established between MRS<br />

results and pump<strong>in</strong>g test transmissivity. The<br />

methodology derived from this study was<br />

successfully applied to new potential drill<strong>in</strong>g<br />

sites for dr<strong>in</strong>k<strong>in</strong>g water supply <strong>in</strong> this terra<strong>in</strong>.<br />

References<br />

Juan L. Plata, Félix M. Rubio, The use of MRS <strong>in</strong><br />

<strong>the</strong> determ<strong>in</strong>ation of hydraulic transmissivity:<br />

The case of alluvial aquifers, Journal of Applied<br />

Geophysics. 2008 (66):128<strong>–</strong>139<br />

Wiete Schoenfelder, Hans-Re<strong>in</strong>hard Gläser, et al.,<br />

Two-dimensional NMR relaxometry study of<br />

pore space characteristics of carbonate rocks<br />

from a Permian aquifer Journal of Applied<br />

Geophysics. 2008 (65): 21<strong>–</strong>29<br />

Balzar<strong>in</strong>i, M., Brancol<strong>in</strong>i, A., et al., Permeability<br />

estimation from NMR<br />

diffusionmeasurements <strong>in</strong> reservoir rocks.<strong>Magnetic</strong><br />

<strong>Resonance</strong> Imag<strong>in</strong>g. 1998, 16:601<strong>–</strong>603.<br />

Banavar, J.R., Schartz, L.M., <strong>Magnetic</strong> resonance<br />

as a probe of permeability <strong>in</strong> porous media.<br />

Physical Review Letters. 1987.58 (14):1411-<br />

1414.<br />

Boucher M., Favreau G., et al., Estimat<strong>in</strong>g specific<br />

yield and transmissivity with magnetic resonance<br />

sound<strong>in</strong>g <strong>in</strong> an unconf<strong>in</strong>ed sandston aquifer<br />

(Niger), Hydrogeology Journal. 2009,<br />

doi:10.1007/s10040-009-0447-x.<br />

Edmilson Helton Rios, Paulo Frederico de Oliveira<br />

Ramos, Model<strong>in</strong>g rock permeability from NMR<br />

relaxation data by PLS regression, Journal of<br />

Applied Geophysics. 2011 (75):631-637<br />

Yaramanci, U., Lange, G., et al., 2002. Aquifer<br />

characterization us<strong>in</strong>g surface NMR jo<strong>in</strong>tly with<br />

o<strong>the</strong>r geophysical techniques at <strong>the</strong> Nauen/Berl<strong>in</strong><br />

test site. Journal of Applied Geophysics 2002.<br />

(50):47-65<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


Characteristics and Examples of MRS Signals <strong>in</strong> Good Conductive Areas 82<br />

Characteristics and Examples of MRS Signals <strong>in</strong> Good Conductive Areas<br />

Kai Wang, Zhenyu Li, Yao Wang, Hao Liu, Peng Wang<br />

Institute of Geophysics and Geomatics, Ch<strong>in</strong>a University of Geosciences, Wuhan, PRC<br />

841651351@qq.com<br />

MRS is only geophysical method which is<br />

direct to f<strong>in</strong>d water <strong>in</strong> <strong>the</strong> world at present. So<br />

MRS is widely used for groundwater<br />

exploration and aquifer characterization. S<strong>in</strong>ce<br />

this is an electromagnetic method, <strong>the</strong><br />

excitation magnetic field depends on <strong>the</strong><br />

resistivity of <strong>the</strong> subsurface. Therefore, <strong>the</strong><br />

resistivity has to be taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong><br />

application.<br />

This paper ma<strong>in</strong>ly discusses <strong>the</strong> effect of<br />

resistivity to MRS signals. In MRS signals,<br />

resistivity br<strong>in</strong>gs φ0 , which is decided by E0.<br />

So <strong>the</strong> effect of resistivity can be discussed by<br />

E0-q curves and φ0 -q curves.<br />

We do <strong>the</strong> forward to get <strong>the</strong> φ0 <strong>–</strong>q curves and<br />

E0-q curves. And we focus on <strong>the</strong> trend of<br />

phase with <strong>the</strong> formation resistivity. We select<br />

<strong>the</strong> symbol of its extreme po<strong>in</strong>t, and that is <strong>the</strong><br />

outlier. The results show that <strong>the</strong> phase<br />

changes with variations of <strong>the</strong> formation<br />

resistivity. The lower <strong>the</strong> resistivity is, <strong>the</strong><br />

greater <strong>the</strong> phase value is.<br />

Then we do an example of MRS signals <strong>in</strong><br />

good conductive areas. The project is done <strong>in</strong><br />

sal<strong>in</strong>e-alkali soil. The sal<strong>in</strong>ity of soil is big, so<br />

<strong>the</strong> resistivity is small. And phases are large<br />

negative value. It can prove <strong>the</strong> resistivity of<br />

<strong>the</strong> earth is low. Consequently, <strong>the</strong> <strong>in</strong>version<br />

obta<strong>in</strong>ed by general methods is affected. We<br />

should notice it.<br />

At last, we th<strong>in</strong>k it significant. The lack of<br />

conventional <strong>in</strong>version method can be found<br />

by understand<strong>in</strong>g <strong>the</strong> impact of <strong>the</strong> formation<br />

resistivity to MRS signal, which can guide us<br />

to improve <strong>the</strong> <strong>in</strong>version method.<br />

References<br />

Chengyong Y<strong>in</strong>g. (1998): Forward calculation of<br />

<strong>the</strong> NMR signals (D).CUG.<br />

Yim<strong>in</strong> Chen. (2010): Relationship between phase of<br />

NMR signals and conductivity of stratum<br />

(D).CUG.<br />

Yul<strong>in</strong>g Pan, Changda Zhang. (2000): Theories and<br />

methods of f<strong>in</strong>d<strong>in</strong>g water by SNMR(M).CUG.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012


The Experimental Study of MRS Method <strong>in</strong> Plateau Permafrost Region 83<br />

The Experimental Study of MRS Method <strong>in</strong> Plateau Permafrost Region<br />

Jiagang Zhang, Zhenyu Li, Yunhao Guan, Yuanjie Li, Jianwei Pan<br />

Institute of Geophysics and Geomatics, Ch<strong>in</strong>a University of Geosciences, Wuhan, PRC<br />

zhang_jiagang@126.com<br />

<strong>Magnetic</strong> <strong>Resonance</strong> Sound<strong>in</strong>g (MRS) is <strong>the</strong><br />

only geophysical method currently which is<br />

specially designed for direct water detection,<br />

and this new technique has wide applications<br />

<strong>in</strong> many fields <strong>in</strong> recent years. However, due to<br />

only 30-year development history, <strong>the</strong><br />

researches of this method ma<strong>in</strong>ly focus on<br />

common environments, while <strong>the</strong> application<br />

<strong>in</strong> high-pressure environments, such as plateau<br />

permafrost region, is excluded. The spatial<br />

distribution of permafrost zone is of<br />

importance to <strong>the</strong> study of <strong>the</strong> existence of<br />

terrigenous gas hydrate, <strong>the</strong> exploration of<br />

which becomes an <strong>in</strong>ternational hotspot<br />

academic issue recently, with <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

demand for energy sources globally.<br />

Several works have been done regard<strong>in</strong>g on<br />

MRS applied <strong>in</strong> permafrost zone. Firstly, <strong>the</strong><br />

NMR signals of permafrost samples <strong>in</strong> <strong>the</strong> lab<br />

would be acquired and analysed so that <strong>the</strong><br />

change laws of parameters of signals can be<br />

drawn. And <strong>the</strong>n, experimental work has been<br />

carried out <strong>in</strong> <strong>the</strong> field to acquire NMR signals<br />

<strong>in</strong> permafrost zone, <strong>the</strong>reby determ<strong>in</strong><strong>in</strong>g<br />

connotations of signals curses accord<strong>in</strong>g to <strong>the</strong><br />

results <strong>in</strong> <strong>the</strong> lab. Meanwhile, <strong>the</strong> comparison<br />

with drill<strong>in</strong>g results <strong>in</strong> <strong>the</strong> same positions<br />

shows that two groups keep consistent<br />

basically, especially <strong>the</strong> determ<strong>in</strong>ation of <strong>the</strong><br />

lower limit of permafrost, so it can be verified<br />

<strong>the</strong> feasibility that <strong>Magnetic</strong> <strong>Resonance</strong><br />

Sound<strong>in</strong>g could be applied <strong>in</strong> plateau<br />

permafrost region. Consequently, large-scale<br />

applications <strong>in</strong> some experimental zone have<br />

been conducted to deduce <strong>the</strong> profile of <strong>the</strong><br />

lower limit of permafrost <strong>in</strong> this area. At <strong>the</strong><br />

same time, several issues has been discussed,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> work mode of MRS applied <strong>in</strong><br />

this special environment, <strong>the</strong> problem about<br />

detection depth, as well as <strong>the</strong> way to elim<strong>in</strong>ate<br />

noise <strong>in</strong>terference.<br />

References<br />

Changda Zhang, Zhenyu Li, Yul<strong>in</strong>g Pan. (2011):<br />

Development of MR Sound<strong>in</strong>g Technology.<br />

Ch<strong>in</strong>ese Journal of Eng<strong>in</strong>eer<strong>in</strong>g Geophysics, 8<br />

(3): 314-322.<br />

Hongtao Zhang, Yonghai Zhu. (2011): Survey and<br />

research on gas hydrate <strong>in</strong> permafrost region of<br />

Ch<strong>in</strong>a. Geological Bullet<strong>in</strong> of Ch<strong>in</strong>a, 30 (12):<br />

1809-1815.<br />

Sloan, E. Dendy. (2003): Fundamental pr<strong>in</strong>ciples<br />

and application of natural gas hydrates [J].<br />

Nature, 426 (20): 353-359.<br />

Yaramanci U. (2004): New technologies <strong>in</strong> ground<br />

water exploration. Surface Nuclear Magnctic<br />

<strong>Resonance</strong>, 2(2): 109-120.<br />

Youhai Zhu, Yongq<strong>in</strong> Zhang. (2009): Gas Hydrates<br />

<strong>in</strong> <strong>the</strong> Qilian Mounta<strong>in</strong> Permafrost, Q<strong>in</strong>ghai,<br />

Northwest Ch<strong>in</strong>a. Acta Geologica S<strong>in</strong>ica, 83<br />

(11): 1762-1771.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!