12.01.2013 Views

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

Magnetic Resonance in the Subsurface – 5th International ... - LIAG

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Experimental verification of a 3D model for MRS<br />

Legchenko 1* A., J-F. Girard 2 , S. Morlighem 3 and J-M. Baltassat 2<br />

1 IRD / LTHE, Grenoble, France; 2 BRGM, Orléans, France; 3 VALE, New Calédonia.<br />

anatoli.legtchenko@ird.fr<br />

It is known that only one co<strong>in</strong>cident<br />

transmitt<strong>in</strong>g-receiv<strong>in</strong>g loop is required for <strong>the</strong><br />

1D magnetic resonance sound<strong>in</strong>g (MRS)<br />

measur<strong>in</strong>g and <strong>in</strong>version (Legchenko and<br />

Shushakov, 1998). The method could be<br />

extended to 2D (Girard et al., 2007) and 3D<br />

(Legchenko et al., 2011) applications and use<br />

of a multi-channel receiver allows a more<br />

sophisticated 3D implementation (Hertrich et<br />

al., 2009). Whatever would be <strong>the</strong> practical<br />

implementation of a 3D MRS survey,<br />

<strong>in</strong>version is based on <strong>the</strong> forward model<strong>in</strong>g of<br />

<strong>the</strong> magnetic resonance response.<br />

Consequently, <strong>the</strong> ma<strong>the</strong>matical model is a<br />

crucial po<strong>in</strong>t for <strong>the</strong> <strong>in</strong>version.<br />

In <strong>the</strong> majority of reported applications <strong>the</strong><br />

MRS method is used <strong>in</strong> <strong>the</strong> FID mode when<br />

<strong>the</strong> free <strong>in</strong>duction decay signal is measured<br />

(Legchenko et Valla, 2002). However, <strong>in</strong> some<br />

rocks <strong>the</strong> geomagnetic field may be perturbed<br />

and FID measurements may fail (Roy et al.,<br />

2008). For improv<strong>in</strong>g <strong>the</strong> MRS performance <strong>in</strong><br />

<strong>the</strong> presence of magnetic rocks MRS could be<br />

used <strong>in</strong> <strong>the</strong> sp<strong>in</strong> echo (SE) mode (Legchenko et<br />

al., 2010). In this case only <strong>the</strong> sp<strong>in</strong> echo signal<br />

is measured. Under some conditions both FID<br />

and SE signals can be observed.<br />

We have developed a 3D ma<strong>the</strong>matical model<br />

that allows comput<strong>in</strong>g MRS signal from 3D<br />

targets both <strong>in</strong> FID and SE modes. This model<br />

allows consider<strong>in</strong>g <strong>the</strong> field setup consist<strong>in</strong>g of<br />

ei<strong>the</strong>r one transmitt<strong>in</strong>g loop with number of<br />

separated receiv<strong>in</strong>g loops or <strong>the</strong> overlapped<br />

co<strong>in</strong>cident loops.<br />

For experimental verification of <strong>the</strong> model<strong>in</strong>g<br />

rout<strong>in</strong>e we used an artificial water reservoir<br />

located <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> New<br />

Caledonia Island. In this pool, of<br />

approximately 80×30 m 2 large, <strong>the</strong> depth is<br />

vary<strong>in</strong>g from 1.5 to 4 m. A rectangular loop of<br />

100×50 m 2 was put around <strong>the</strong> pool. Rocks <strong>in</strong><br />

this area are characterized by <strong>the</strong> magnetic<br />

susceptibility between 5e-4 and 5e-3 SIU thus<br />

perturb<strong>in</strong>g <strong>the</strong> geomagnetic field. However<br />

with<strong>in</strong> <strong>the</strong> pool <strong>the</strong>se perturbations are<br />

relatively small and we were able to measure<br />

Experimental verification of a 3D model for MRS 44<br />

both FID and SE signals. The geomagnetic<br />

field was of 47246 nT and <strong>the</strong> Larmor<br />

frequency was about 2013 Hz.<br />

We have found that <strong>the</strong> relaxation times for <strong>the</strong><br />

signal from water <strong>in</strong> <strong>the</strong> pool are: T1=1950 ms,<br />

T2=1400 ms, T2 * (FID)=100 ms and T2 * (SE)=125<br />

ms. The maximum signal amplitude was<br />

approximately 180 nV for <strong>the</strong> FID signal and<br />

120 nV for <strong>the</strong> SE signal (measured with <strong>the</strong><br />

delay of 256 ms between <strong>the</strong> pulses).<br />

Under <strong>the</strong>se conditions numerical model<strong>in</strong>g of<br />

<strong>the</strong> MRS signal from water <strong>in</strong> <strong>the</strong> pool showed<br />

a good correspondence between observed and<br />

<strong>the</strong>oretical signals for both FID and SE<br />

measurements.<br />

References<br />

Girard, J-F, M. Boucher, A. Legchenko, and J-M.<br />

Baltassat (2007): 2D magnetic resonance<br />

tomography applied to karstic conduit imag<strong>in</strong>g.<br />

Journal of Applied Geophysics, 63, 103-116.<br />

Hertrich, M., A.G. Green, M. Braun, and U.<br />

Yaramanci (2009): High-resolution surface<br />

NMR tomography of shallow aquifers based on<br />

multioffset measurements. Geophysics, 74, 47-<br />

59.<br />

Legchenko, A.V., and O.A. Shushakov (1998):<br />

Inversion of surface NMR data. Geophysics, 63,<br />

75-84.<br />

Legchenko, A., and P. Valla (2002): A review of<br />

<strong>the</strong> basic pr<strong>in</strong>ciples for proton magnetic<br />

resonance sound<strong>in</strong>g measurements. Journal of<br />

Applied Geophysics, 50, 3-19.<br />

Legchenko, A., J.M. Vouillamoz, J. Roy (2010):<br />

Application of <strong>the</strong> magnetic resonance sound<strong>in</strong>g<br />

method to <strong>the</strong> <strong>in</strong>vestigation of aquifers <strong>in</strong> <strong>the</strong><br />

presence of magnetic materials. Geophysics 75:<br />

L91<strong>–</strong>L100.<br />

Legchenko, A., M. Descloitres, C. V<strong>in</strong>cent, H.<br />

Guyard, S. Garambois, K. Chalikakis and M.<br />

Ezersky (2011): Three-dimensional magnetic<br />

resonance imag<strong>in</strong>g for groundwater. New<br />

Journal of Physics, 13, 025022, doi:<br />

10.1088/1367-2630/13/2/025022.<br />

Roy, J., A. Rouleau, M. Chouteau, M. Bureau<br />

(2008): Widespread occurrence of aquifers<br />

currently undetectable with <strong>the</strong> MRS technique<br />

<strong>in</strong> <strong>the</strong> Grenville geological prov<strong>in</strong>ce, Canada.<br />

Journal of Applied Geophysics, 66, 82-93.<br />

<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>the</strong> <strong>Subsurface</strong> <strong>–</strong> 5 th <strong>International</strong> Workshop on <strong>Magnetic</strong> <strong>Resonance</strong><br />

Hannover, Germany, 25 <strong>–</strong> 27 September 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!