17.01.2013 Views

Reliability Evaluation of PEMs Rejected During C-SAM - NASA ...

Reliability Evaluation of PEMs Rejected During C-SAM - NASA ...

Reliability Evaluation of PEMs Rejected During C-SAM - NASA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Reliability</strong> <strong>Evaluation</strong> <strong>of</strong> <strong>PEMs</strong><br />

<strong>Rejected</strong> <strong>During</strong> C-<strong>SAM</strong><br />

Examination<br />

Alexander Teverovsky<br />

Parts, Packaging, and Assembly Technologies<br />

Office, Code 562, GSFC/ QSS Group, Inc.<br />

Alexander.A.Teverovsky.1@gsfc.nasa.gov<br />

CSME’04 1


Acknowledgements<br />

This work was sponsored by the GSFC projects<br />

and <strong>NASA</strong> Electronic Parts and Packaging (NEPP)<br />

program.<br />

The author would like to thank GSFC Parts<br />

Engineers Bruce Meinhold and Gerry Kiernan for<br />

providing samples for this work and initial C-<strong>SAM</strong><br />

images.<br />

The author acknowledges his debt to engineers<br />

and technicians <strong>of</strong> the Parts, Packaging, and<br />

Assembly Technologies Office, Code 562, GSFC,<br />

for help with testing, and to Darryl Lakins, Branch<br />

Head <strong>of</strong> Code 562, for support <strong>of</strong> this work.<br />

CSME’04 2


Purpose and Outline<br />

Purpose:<br />

To discuss effectiveness <strong>of</strong> C-<strong>SAM</strong> examinations during<br />

screening <strong>of</strong> low-power devices in SOIC8 packages and<br />

power devices in TO-220 and SOT-223 style packages.<br />

Outline:<br />

� General problems with C-<strong>SAM</strong>.<br />

� Description <strong>of</strong> C-<strong>SAM</strong> rejects used for experiments.<br />

� <strong>Reliability</strong> testing conditions and results.<br />

� Conclusion.<br />

CSME’04 3


Which Part to Choose?<br />

Delaminations are due to stress relief in <strong>PEMs</strong>.<br />

Typically rejected<br />

Typically accepted<br />

Before stress. After stress? Before stress. After stress?<br />

This part might operate<br />

reliably because<br />

mechanical stresses have<br />

been relieved and<br />

delaminations are stable.<br />

This part might fail if the<br />

stresses have not been<br />

relieved and delaminations<br />

develop in critical wire bond<br />

areas.<br />

� Some types <strong>of</strong> delaminations might be not harmful.<br />

� If delaminations are serious defects, is it possible to improve<br />

reliability <strong>of</strong> a lot with 5% to 50% rejects by screening?<br />

CSME’04 4


More Provocative Questions<br />

Regarding Acoustic Microscopy<br />

If no delaminations were observed by screening:<br />

� Can they appear after soldering reflow, TC,<br />

environmental stresses, operation, …?<br />

� Can they develop reversibly at high/low temperatures<br />

or during moisture sorption/desorption?<br />

What if there is a sponge-like<br />

structure at the interface?<br />

How reliable is C-<strong>SAM</strong> data?<br />

How <strong>of</strong>ten do delaminations self-heal?<br />

How risky are different types <strong>of</strong> delaminations?<br />

CSME’04 5


Is C<strong>SAM</strong> Testing Non-Destructive?<br />

Each handling has the probability <strong>of</strong> ~0.1% <strong>of</strong> ESD<br />

damaging the parts. This number might be larger for<br />

low voltage microcircuits.<br />

Requirements for the cleanliness <strong>of</strong> water are not<br />

always enforced.<br />

To screen large-quantity lots, the<br />

parts are installed on a sticky<br />

plate. This might contaminate<br />

leads and mechanically damage<br />

small parts.<br />

Special holders to avoid damage<br />

are not always available.<br />

CSME’04 6


Description <strong>of</strong> Parts Used<br />

Part Package<br />

Die<br />

coating<br />

Total<br />

QTY<br />

Rejects,<br />

%<br />

Type <strong>of</strong><br />

delam.<br />

PEM1 SOIC8 silicone 712 83% P, L<br />

PEM2 SOIC8 silicone 469 20% P, L<br />

PEM3 SOIC8 silicone 2143 5.1% P, L<br />

PEM4 SOIC8 - 463 32.2% P, L<br />

PEM5 SOIC8 silicone 297 18.9% P, L<br />

FET1 D2pak - 995 14.6% P, L, D<br />

FET2 D2pak - 200 28% P, L, D<br />

FET3 SOT223 - 895 10.5% P, L<br />

Delaminations:<br />

P - top <strong>of</strong> paddle; L – leads at wire bonds; D – top <strong>of</strong> die.<br />

CSME’04 7


Typical AM Images<br />

(Linear Devices, SOIC8 Packages)<br />

PEM1 PEM2<br />

PEM2 had 2 WBs to the<br />

paddle, which might<br />

cause failures if broken.<br />

PEM3 PEM4 PEM5<br />

CSME’04 8


Typical AM images (Power FETs)<br />

FETs 1 and 2 have<br />

Al wire bonds.<br />

Characteristics <strong>of</strong><br />

molding compound:<br />

Tg = 165 o C<br />

CTE1 = 21.5 ppm/ o C<br />

FET3 has<br />

Au wire bonds.<br />

Characteristics <strong>of</strong><br />

molding compound:<br />

Tg = 155 o C<br />

CTE1 = 16.4 ppm/ o C<br />

CSME’04 9


Testing <strong>of</strong> AM Rejects<br />

Thirty samples <strong>of</strong> each part type rejected by C-<strong>SAM</strong><br />

screening were electrically tested, environmentally<br />

stressed, and examined using acoustic microscopy:<br />

� Before testing.<br />

� After SMT simulation and preconditioning per JEDEC<br />

JESD22-A113 (85 o C/85% RH/168 hrs +3 runs<br />

through IR reflow chamber+ flux application and<br />

rinsing).<br />

� After 100, 300, and 1000 temperature cycles<br />

between –55 and +125 o C (condition TC0).<br />

� After 100 and 300 cycles between 0 and 180 o C<br />

(condition TC1).<br />

� After 100 and 300 cycles between 20 and 200 o C<br />

(condition TC2).<br />

CSME’04 10


Examples <strong>of</strong> AM Images Before and<br />

After Stress Testing (Linear Devices)<br />

PEM1<br />

PEM4<br />

PEM5<br />

init after SMT after 1000 TC<br />

The proportion<br />

<strong>of</strong> delaminated<br />

area<br />

decreased<br />

after SMT and<br />

increased after<br />

temperature<br />

cycling.<br />

CSME’04 11


Changes in Delaminations Due to<br />

Stress Testing (Linear Devices)<br />

Proportion <strong>of</strong> delaminations, %<br />

Proportion <strong>of</strong> delaminations, %<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

PEM1<br />

PEM3<br />

PEM5<br />

PEM4<br />

init after SMT 1000 TC<br />

init after SMT 1000 TC<br />

Lead-to-MC<br />

delaminations<br />

Paddle-to-MC<br />

delaminations<br />

CSME’04 12


Examples <strong>of</strong> AM Images Before and<br />

After Stress Testing (Power Devices)<br />

FET 1die<br />

FET 1 lead frame<br />

FET 3<br />

init after SMT after 1000 TC after HT TC<br />

CSME’04 13


Changes in Delaminations Due to<br />

Stress Testing (Power Devices)<br />

delaminations, %<br />

delaminations, %<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Die surface Leads<br />

init after SMT after 1000<br />

TC<br />

Top paddle<br />

FET2<br />

FET1<br />

FET3<br />

init after SMT after 1000<br />

TC<br />

after HT TC<br />

after HT TC<br />

CSME’04 14<br />

delaminations, %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

init after SMT after 1000<br />

TC<br />

FET2<br />

FET1<br />

FET3<br />

after HT<br />

TC<br />

� No top-<strong>of</strong>-die delaminations<br />

(TODD) in FET3.<br />

� In FETs 1 and 2 TODD<br />

increased and paddle<br />

delaminations decreased<br />

after SMT.


VOS, uV<br />

Results <strong>of</strong> Electrical Testing<br />

(Operational Amplifiers)<br />

Offset voltage variation<br />

during temperature cycling<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

PEM3<br />

PEM4<br />

PEM1<br />

PEM5<br />

init SMT 100 TC 300 TC 1000<br />

TC<br />

100 TC<br />

H<br />

100 TC<br />

H2<br />

300 TC<br />

H2<br />

Input bias current variation<br />

during temperature cycling<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

1.E+00<br />

init SMT 100<br />

TC<br />

CSME’04 15<br />

IOSP, pA<br />

PEM3<br />

PEM4<br />

PEM1<br />

PEM5<br />

300<br />

TC<br />

1000<br />

TC<br />

100<br />

TC H<br />

The parts had no failures and manifested only<br />

minor parametric variations.<br />

100<br />

TC<br />

H2<br />

300<br />

TC<br />

H2


Results <strong>of</strong> Electrical Testing<br />

(Voltage References)<br />

Vout, V<br />

2.501<br />

2.5005<br />

2.5<br />

2.4995<br />

2.499<br />

Average output voltages<br />

no load<br />

load 10 mA<br />

init SMT 100 TC300 TC 1000<br />

TC<br />

100 TC<br />

H<br />

100 TC300<br />

TC<br />

H2 H2<br />

CSME’04 16<br />

2.5<br />

2.495<br />

2.49<br />

2.485<br />

2.48<br />

2.475<br />

� Devices had minor parametric variations.<br />

� One part failed at load conditions after 100 HT TC.<br />

Vout load, V


VTH, V<br />

IGP, A<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

Results <strong>of</strong> Electrical<br />

Measurements (Power FET)<br />

1.E-06<br />

1.E-07<br />

1.E-08<br />

1.E-09<br />

1.E-10<br />

1.E-11<br />

1.E-12<br />

Average threshold voltage<br />

FET1<br />

FET2<br />

FET3<br />

Average gate current<br />

init<br />

after SMT<br />

100 TC<br />

300 TC<br />

1000 TC<br />

100 TC H<br />

300 TC H<br />

100 TC H<br />

300 TC H<br />

FET1<br />

FET2<br />

FET3<br />

init<br />

after SMT<br />

100 TC<br />

300 TC<br />

1000 TC<br />

100 TC H<br />

300 TC H<br />

100 TC H<br />

300 TC H<br />

� No failures after TC.<br />

� No VTH variations.<br />

� Significant increase<br />

in leakage currents<br />

after SMT simulation.<br />

� All failed parts<br />

recovered after TC.<br />

� Some failed parts<br />

had corrosion <strong>of</strong> Al<br />

metallization after<br />

HAST.<br />

CSME’04 17


Results <strong>of</strong> Temperature Cycling <strong>of</strong><br />

Parts with Excessive Delaminations<br />

Part SMT TC0 100 TC0 300<br />

TC0 1k TC1 300 TC2 300<br />

PEM1 0/30 0/30 0/30 0/30 0/15 0/15<br />

PEM2 0/30 0/30 0/30 0/30 1/15 1/15<br />

PEM3 0/30 0/30 0/30 0/30 0/15 0/15<br />

PEM4 0/30 0/30 0/30 0/30 0/15 0/15<br />

PEM5 0/30 0/30 0/30 0/30 0/15 0/15<br />

FET1 0/30 0/30 0/30 0/30 0/15 0/15<br />

FET2 0/30 0/30 0/30 0/30 0/15 0/15<br />

FET3 0/30 0/30 0/30 0/30 0/15 0/15<br />

PEM6* 0/30 0/30 0/30 0/30 - -<br />

*Parts had excessive delaminations at finger-tips after HAST.<br />

CSME’04 18


IG S P , A<br />

Effect <strong>of</strong> Flux Application on<br />

1.E-06<br />

1.E-08<br />

1.E-10<br />

1.E-12<br />

Power Devices<br />

Effect <strong>of</strong> flux application.<br />

init<br />

after flux<br />

applic ation<br />

15 hrs RT<br />

CSME’04 19<br />

87 hrs RT<br />

Test conditions:<br />

Immersion into<br />

KESTER 2331-ZX<br />

water-soluble flux<br />

for 10 seconds,<br />

rinsing, and blowing<br />

with dry air.<br />

Excessive leakage<br />

currents remained<br />

after a few days <strong>of</strong><br />

storing in laboratory<br />

conditions.


IG, A<br />

Effect <strong>of</strong> Flux Application on<br />

Power Devices, Cont’d<br />

1.E-06<br />

1.E-07<br />

1.E-08<br />

1.E-09<br />

1.E-10<br />

1.E-11<br />

1.E-12<br />

Failed samples.<br />

in it S MT s imul.<br />

+ C<strong>SAM</strong><br />

1 hr 125<br />

oC<br />

3 hr 125<br />

oC<br />

15 hr<br />

100% RH<br />

22 oC<br />

10 sec in<br />

deionized<br />

wa te r<br />

� Baking for a few<br />

hours at 125 o C<br />

mostly restored<br />

leakage currents.<br />

� Immersion in<br />

water and storing<br />

at 100%RH did<br />

not increase IG.<br />

� Effect <strong>of</strong> SMT<br />

simulation is likely<br />

due to good<br />

wettability <strong>of</strong> flux.<br />

� The type <strong>of</strong> flux used for SMT simulation might affect results <strong>of</strong><br />

qualification testing. JESD22-A113 might need a review.<br />

� Flux used for soldering might be different from the one used for<br />

the simulation, thus making results <strong>of</strong> qualification questionable.<br />

CSME’04 20


IG, A<br />

1.E-06<br />

1.E-07<br />

1.E-08<br />

1.E-09<br />

1.E-10<br />

1.E-11<br />

1.E-12<br />

Can C<strong>SAM</strong> Screen Out Flux-<br />

Related Failures?<br />

paddle delaminations<br />

Effect <strong>of</strong> immersion into flux<br />

0 20 40 60 80<br />

proportion <strong>of</strong> delamination, %<br />

1.E-06<br />

1.E-07<br />

1.E-08<br />

1.E-09<br />

1.E-10<br />

1.E-11<br />

1.E-12<br />

TODD<br />

0 20 40 60 80<br />

proportion <strong>of</strong> delamination, %<br />

No correlation between TODD or paddle-to-MC delaminations<br />

and leakage currents after flux immersion was observed.<br />

CSME’04 21<br />

IG, A


Conclusion<br />

Parts with excessive delaminations at the paddle and leads<br />

(at secondary bond locations) had no electrical failures after<br />

1000 TC at –55 to +125 o C conditions.<br />

The analyzed power devices in TO220-style packages are<br />

prone to formation <strong>of</strong> top-<strong>of</strong>-die delaminations; however, no<br />

wire bond fractures occurred even after multiple temperature<br />

cycling.<br />

Washable flux can penetrate to the die surface through<br />

delaminations significantly increasing leakage currents and<br />

causing corrosion <strong>of</strong> Al metallization.<br />

No correlation between the proportion <strong>of</strong> delaminations and<br />

flux-induced leakage currents were observed indicating a<br />

failure <strong>of</strong> C<strong>SAM</strong> examination to screen out potential failures.<br />

For the part types used, C<strong>SAM</strong> examination is not a valueadded<br />

technique for screening; however, it is very useful for<br />

qualification testing.<br />

CSME’04 22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!