01.12.2012 Views

Virtual Qualification of Electronic Hardware - NEPP - NASA

Virtual Qualification of Electronic Hardware - NEPP - NASA

Virtual Qualification of Electronic Hardware - NEPP - NASA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Virtual</strong> <strong>Qualification</strong> <strong>of</strong> <strong>Electronic</strong> <strong>Hardware</strong><br />

Dr. Michael Osterman<br />

CALCE <strong>Electronic</strong> Products and Systems Center<br />

A. J. Clark School <strong>of</strong> Engineering<br />

University <strong>of</strong> Maryland<br />

College Park, MD 20742<br />

www.calce.umd.edu<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Design Capture<br />

<strong>Virtual</strong> <strong>Qualification</strong> Methodology<br />

Load<br />

Load<br />

Transformation<br />

Ranking <strong>of</strong> Potential Failures<br />

Under Life-Cycle Loads<br />

1<br />

Failure Risk<br />

Assessment<br />

2<br />

3<br />

Time to Failure<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

Field<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Life-Cycle Loading<br />

Characterization<br />

Physical Verification: Test Setup, Specimen Characterization, Accelerated Stress Test


<strong>Virtual</strong> <strong>Qualification</strong> Infrastructure for Circuit Card<br />

Assemblies (CCAs) : calcePWA 3.1<br />

Computer Design Data<br />

Load Transformation<br />

Toolbox Product Modeling and Databases<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

-2<br />

ε 2/Hz<br />

0.0000006<br />

0.0000005<br />

0.0000004<br />

0.0000003<br />

0.0000002<br />

0.0000001<br />

0<br />

Relay strain gage PSD @ 25c<br />

Acceleration History <strong>of</strong> Mars Pathfinder Landing<br />

Frequency (Hz)<br />

0<br />

2090 2100 2110 2120 2130 2140 2150 2160 2170<br />

Time (sec)<br />

Life Cycle Load<br />

Failure Risk Assessment<br />

& sensitivity analysis<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

30g<br />

20g<br />

Characterization<br />

30g<br />

20g<br />

c:\mydocuments\presentations\jpl010516.ppt


Avionics Application Demonstration<br />

AS900 Engine Family<br />

<strong>Electronic</strong> Chassis<br />

<strong>Electronic</strong> hardware is to be mounted on engine and operate<br />

reliably under high temperature and vibration loading<br />

conditions. To achieve an adequate design, reliability was<br />

considered upfront in the design process and simulation<br />

techniques were applied to virtually qualify the assembly.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Steps Involved in calcePWA<br />

<strong>Virtual</strong> <strong>Qualification</strong> Assessment <strong>of</strong> CCAs<br />

• Collect design information<br />

• Develop design model<br />

• Transform environment and operation loads<br />

• Perform thermal analysis<br />

• Perform vibration analysis<br />

• Perform failure assessment<br />

• Review and verify results<br />

• Refine model (if necessary)<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


I/O<br />

212 Parts<br />

2122 Components<br />

10 Layer FR4<br />

Copper Metallization<br />

Design Capture<br />

AS900 Circuit Card Assemblies<br />

EMI<br />

16 Parts<br />

328 Components<br />

10 Layer FR4<br />

Copper Metallization<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

CPU<br />

167 Parts<br />

1622 Components<br />

10 Layer FR4<br />

Copper Metallization


Design Capture and Model Development<br />

Mentor Neutral Files<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

MS Excel Data<br />

Design information was capture using import facility in calcePWA.<br />

Subsequent data processing <strong>of</strong> part information was done in spreadsheets<br />

and within s<strong>of</strong>tware. Material data from calcePWA library was used in<br />

modeling board and component structures.


Design Capture: Part Models<br />

Package<br />

Effective Material<br />

Attach Positions<br />

Interconnect<br />

Pad Size<br />

Lead Geometry<br />

Attach<br />

Joint Height<br />

Pad Size<br />

Operational<br />

Power dissipation<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Design Capture: Board Model<br />

Board<br />

Vias<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Layered Structure<br />

Signal<br />

Dielectric<br />

Regions <strong>of</strong><br />

Inserts<br />

Drill Size<br />

Plating Thickness<br />

Pad Diameter<br />

Plating Material


Use<br />

Category<br />

Section 1<br />

Section 2<br />

Life Cycle Loading Characterization<br />

The temperatures shown in Table 1 were taken as inputs to the thermal analysis.<br />

Section 1 and section 2 are combined to account for one cycle.<br />

Tmin<br />

( 0 C)<br />

9.5<br />

12.5<br />

Tmax<br />

( 0 C)<br />

49<br />

82<br />

AS900 nominal<br />

temperature pr<strong>of</strong>ile for<br />

one cycle<br />

Temperature ( o Temperature ( C)<br />

o Temperature ( C)<br />

o C)<br />

Ramp time to<br />

Tmax/ to Tmin<br />

35 min/ 35 min<br />

50 min/ 15 min<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

Section 1<br />

Dwell at Tmax<br />

/Tmin<br />

25 min /30 min<br />

35 min /30 min<br />

Table 1. Sections <strong>of</strong> one thermal cycle<br />

Time <strong>of</strong><br />

Cycles<br />

175 min<br />

160 min<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Total time<br />

365 days/ 10<br />

year<br />

365 days/ 10<br />

year<br />

0 50 100 150 200 250<br />

Time (minutes)<br />

Section 2


Load Transformation: Thermal Assessment<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Thermal analysis<br />

results with an<br />

aluminum heat sink<br />

in the backside. The<br />

thermal analysis was<br />

simulated with pure<br />

conduction with no<br />

heat loss from the<br />

top and bottom<br />

surfaces.<br />

Thermal<br />

Model<br />

CPU board<br />

I/O board<br />

EMI board<br />

Total Power<br />

29.9<br />

8.7<br />

0.6


Load Transformation: Thermal Analysis Results<br />

CPU model at 82 °C ambient temperature and up-hold nominal power<br />

Thermal<br />

Model<br />

CPU board<br />

I/O board<br />

EMI board<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Max Temp.<br />

(° C)<br />

94.0<br />

84.5<br />

82.1


Comparison with Experimental Result<br />

Percent Diffrence<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

Simulation verus Experimental Results<br />

U90<br />

U114<br />

CR47/CR48<br />

CR35/CR38<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

U34<br />

Selected Parts<br />

U66<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

U46<br />

U56


Defining the Life Cycle Stress Pr<strong>of</strong>ile<br />

Stress pr<strong>of</strong>ile was created using<br />

results <strong>of</strong> the thermal analysis runs<br />

considering the electronics be<br />

operational full time.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

Temperature ( o Temperature ( C)<br />

o Temperature ( C)<br />

o C)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

Section 1<br />

0 50 100 150 200 250<br />

Time (minutes)<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Section 2


Failure Risk Assessment: Selecting Failure Models<br />

and Sites<br />

Failure Model Selection<br />

Once a Life Cycle Stress Pr<strong>of</strong>ile Database has been selected and the<br />

analysis mode and related information defined, the s<strong>of</strong>tware will<br />

automatically screen the data to determine the set <strong>of</strong> applicable failure<br />

models. At this point, you can then review available failure sites.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

PWB<br />

R x<br />

Componen<br />

t<br />

R y<br />

c:\mydocuments\presentations\jpl010516.ppt


Handling Multiple Environments for the Same<br />

Failure Site<br />

Damage is defined as the percent <strong>of</strong> life removed from a functional structure. If<br />

we assume that data is accumulated in a linear fashion, then we can define a<br />

damage index as<br />

where n is the applied time and N is the survivable time. Failure is defined if<br />

n ≥ N or D ≥1<br />

.<br />

For multiple environments and the same failure site and mechanism. We can<br />

define the total damage as the sum <strong>of</strong> the damage indices for the individual<br />

environments or<br />

Dtotal=<br />

∑Di<br />

i<br />

Failure is assumed to occur when<br />

D=<br />

n<br />

N<br />

Dtotal<br />

Caveat: The assumption <strong>of</strong> linear may not be valid for different failure mechanisms. One<br />

needs to understand the physical failure phenomenon to accurately determine the effect <strong>of</strong><br />

multiple environmental factors.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

≥1<br />

c:\mydocuments\presentations\jpl010516.ppt


PDF<br />

Handling Uncertainty in Input Data<br />

Material Properties Geometry Loads<br />

PDF<br />

t = 0 FFOP<br />

PDF<br />

Failure Distribution<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

PDF<br />

Monte Carlo Simulation on Failure Model<br />

Time to Failure<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

PDF<br />

Damage Coefficients


Table Display<br />

Once the Life<br />

Pr<strong>of</strong>ile and Failure<br />

Models and Sites have<br />

been selected, save the<br />

analysis problem to file<br />

and start the analysis by<br />

selecting Evaluate<br />

button.<br />

Failure Risk Assessment - Results<br />

Results are presented<br />

through both tabular and<br />

color coded graphical<br />

displays. More detailed<br />

information is available<br />

for each failure site.<br />

PWA display<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt<br />

Site Text Report<br />

Sensitivity Plots


Failure Risk Assessment - Results<br />

Analysis indicates several design weaknesses: In particular<br />

Clock Oscillator<br />

1206 Chip Resistors<br />

Transistor (SOT23).<br />

Assessment indicates that these parts will not survive the<br />

design requirement.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Temperature<br />

Cycle<br />

•-50 °C to 125 °C<br />

Temp limits<br />

•10 min. Dwell time<br />

•15 °C/min ramp rate<br />

•~45 cycles per day<br />

Review and Verification: Physical Test<br />

Temperature (C)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

0 10 20 30 40 50 60 70 80 90<br />

Time (min)<br />

Board was inspected every 100 cycles until visible failure was<br />

noticed under magnification. Subsequent inspection was every<br />

50 cycles.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Analysis <strong>of</strong> Failed Test Specimens<br />

Accelerated test confirmed<br />

these weaknesses. Visible<br />

cracking <strong>of</strong> solder joints was<br />

observed at 300 cycles.<br />

Fatigue Failure <strong>of</strong> Clock Oscillator<br />

Fatigue Failure <strong>of</strong> 1206 Chip Resistor<br />

Cross-Section <strong>of</strong> Clock Oscillator Joint<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Other demonstrations <strong>of</strong> virtual qualification<br />

<strong>NASA</strong>-JPL<br />

• Assessed four circuit cards<br />

assemblies (CCAs).<br />

• Matched thermal analysis<br />

results.<br />

• Confirmed robustness <strong>of</strong><br />

design<br />

JSTARS Ground Station<br />

• Compared commercial<br />

and ruggedized designs<br />

• Recommended commercial<br />

processor circuit card<br />

• Estimated saving $1.2M<br />

Tri-Service Radio<br />

• Assessed three production CCAs<br />

• Determined design would not meet<br />

life objective.<br />

• Design change resulting in $25M<br />

AAAV<br />

• Assessed two <strong>of</strong> CCAs<br />

• Provided test plan<br />

Bradley Fire Support Vehicle<br />

• Assessed 15 CCAs<br />

• Identified potential problems<br />

• Confirmed vibration simulation<br />

results through test.<br />

Automotive<br />

• Assessed and tested CCA<br />

• 83% reduction in design issues<br />

• 10% reduction in time to market<br />

Life Life Cycle PoF PoF Analysis Provides Considerable ROI ROI<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt


Summary<br />

• Reliability <strong>of</strong> product can be improved dramatically by<br />

conducting virtual qualification prior to building hardware.<br />

• Automated s<strong>of</strong>tware can be used to facilitate assessment<br />

process.<br />

• Damage and stress models are effective for identifying<br />

intrinsic design deficiencies and for providing a relationship<br />

between test and field failures.<br />

• Physical testing should be used to verification that<br />

simulation adequately captured the anticipated failures sites.<br />

CALCE <strong>Electronic</strong> Products and Systems Center University <strong>of</strong> Maryland<br />

c:\mydocuments\presentations\jpl010516.ppt

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!