17.01.2013 Views

for the sqfe use of lqsers - LIGO

for the sqfe use of lqsers - LIGO

for the sqfe use of lqsers - LIGO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

o<br />

q'<br />

g)<br />

d<br />

ot<br />

N<br />

o<br />

2<br />

uqo-Pqbet+-Qc-Y<br />

ANS12r36.1.1985<br />

<strong>for</strong> <strong>the</strong> <strong>sqfe</strong> <strong>use</strong> <strong>of</strong> <strong>lqsers</strong>


o I<br />

Contents SECTION<br />

l. General<br />

I q^^na<br />

r.r oeuPc.<br />

1.2 Application.<br />

1.3 l,aser Safety Oflicer (LSO)<br />

2. Definitions<br />

3. Hazard Evaluation and Classification<br />

3.1 Ceneral.<br />

3.2 LaserConsiderations.<br />

3.3 Laser and I-aser System Hazard Classification<br />

Definitions.<br />

3.4 Environment in Which <strong>the</strong> Laser is Used.<br />

3.5 Personnel.<br />

4. Control Measures<br />

4.1 General Considerations. .<br />

4.2 Laser Safety Oflicer (LSO).<br />

4.3 Engineering Controls.<br />

4.4 Administrative and Procedural Controls. . .<br />

4.5 Special Considerations .<br />

4.6 PersonalProtectiveEquipmeni .....<br />

4.7 Waming Signs and Labels<br />

4.8 Service and Repair <strong>of</strong> Laser Systems. . . . ' ,<br />

4.9 Modification <strong>of</strong> Laser Systems.<br />

5. Laser Safety and Training Programs<br />

5.1 Organization.<br />

5.2 Education.<br />

5.3 Implementation. .....<br />

Medical Surveillance<br />

6.1 General.<br />

6.2 Personnel Categories-<br />

6.3 General Procedures.<br />

6.4 Frequency <strong>of</strong> Medical Examinations.<br />

7. SoecialConsiderations<br />

7. t Industrial Hygiene Considerations.<br />

7.2 Explosion Hazards. ....<br />

7.3 Optical Radiation Hazards -<br />

(O<strong>the</strong>r than Laser Beam Hazards).<br />

7.4 Electrical Hazards. .<br />

7.5 Flammability <strong>of</strong>Laser Beam Enclosutes. .<br />

7.6 Laser Operation in Outdoor Environments .<br />

Criteria <strong>for</strong> Exposure <strong>of</strong> <strong>the</strong> Eye and Skin<br />

8.1 Intrabeam Viewing and Extended-Source Ocular Exposures. . . .<br />

8.2 MPE <strong>for</strong> Intrabeam Viewing.<br />

8.3 MPE <strong>for</strong> Extended-Source Viewing. . . . . .<br />

8.4 MPE <strong>for</strong> Skin Exnosure to a Laser Beam.<br />

8.5 Special Qualifications - lnfrared.<br />

9. Measurements<br />

9.1 General.<br />

9.2 lntrabeam and Extended-Source Measurements,<br />

9,3 Instruments.<br />

I<br />

I<br />

I<br />

6<br />

6<br />

7<br />

8<br />

9<br />

l0<br />

ll<br />

l')<br />

t6<br />

tt<br />

t9<br />

2l<br />

22<br />

z2<br />

22<br />

22<br />

22<br />

,)?<br />

23<br />

23<br />

23<br />

23<br />

.i<br />

24<br />

25<br />

25<br />

25<br />

25<br />

26<br />

26<br />

27<br />

2'l<br />

27<br />

28


o<br />

SECTION<br />

10. Revision <strong>of</strong> American National Standards<br />

Refened to in This Document<br />

Tables<br />

Table I Accessible Emission Limits <strong>for</strong> Selected<br />

Continuous-Wave Lasers and<br />

Laser Systems<br />

Table 2 Summary <strong>of</strong> Levels (Energy and Radiant<br />

Exposure Emissions) <strong>for</strong> Single-Pulsed<br />

Leser and Laser System Classification<br />

Table 3 Maximum Radiant Exposure Incident Upon a Diff<strong>use</strong><br />

Surface Which Will Not Produce Hazardous Reflections<br />

Table 4 Minimum Optical Densities Required<br />

<strong>for</strong>ProtectiveEyewear . . ., .<br />

Table 5 MPE <strong>for</strong> Direct Ocular Exposure, Intrabeam<br />

Viewing, to a LaserBeam ..<br />

Table 6 MPE <strong>for</strong> Viewing a Diff<strong>use</strong> Reflection <strong>of</strong> a<br />

Laser Beam or an Extended Source<br />

Table7<br />

MPE <strong>for</strong> Skin Exposurc to a Laser Beam<br />

Table 8 Required Radiomeric Parameters<br />

Table 9 Maximum Apenure Diameters (Limiting Aperture)<br />

<strong>for</strong> Measurement Averaging<br />

Table l0 Control Measures <strong>for</strong> <strong>the</strong> Four Laser Classes<br />

Figurcs<br />

Fig. la<br />

Fig. lb<br />

Fig. lc<br />

Fig. 2a<br />

Fig. 2b<br />

Fig. 2c<br />

Fig. 2d<br />

Fig. 2e<br />

Fig. 3<br />

Fig. 4<br />

Sample Waming Sign <strong>for</strong> Class 2<br />

and Certain Class 3a Lasers<br />

Sample Waming Sign <strong>for</strong> Certain Class 3a Lasers and <strong>for</strong><br />

Class 3b and Class 4 Lasers<br />

Sample Waming Sign <strong>for</strong> Temporary<br />

Conholled Area<br />

Area,/EntrYway Safety Controls<br />

<strong>for</strong> Class 4 Lasen<br />

Safeay Controls <strong>for</strong> Class 4 Lasers where<br />

Arey'Entryway Controls are Inappropriate . . . .<br />

Unsupervised Laser Installation <strong>for</strong><br />

Demonstrationlaser .,,,.<br />

Supervised Laser lnstallation <strong>for</strong><br />

Demonshationlaser .... .<br />

Supervised Laser Installation <strong>for</strong><br />

Demonstrationlaser ....,<br />

Limiting Angular Subtense (Apparent Visual Angle),<br />

0tn6, <strong>for</strong> l"= 0.4 to 1.4 lrm<br />

MPE <strong>for</strong> Direct Ocular Exposure to Visible and Near<br />

Infrared Radiation (1"= 0.4 to 1.4 pm) Intrabeam<br />

Viewing (Angular Subtense < o'n;n in Fig. 3), <strong>for</strong><br />

Single Pulses or Exposures .<br />

28<br />

30<br />

3l<br />

3l<br />

JJ<br />

34<br />

35<br />

35<br />

36<br />

4l<br />

43


o<br />

SECTION<br />

Fie. MPE <strong>for</strong> Direct Ocular Exposure to Ultraviolei<br />

Radiation (Intrabeam Viewing and Extended<br />

Sources) <strong>for</strong> Exposure Durations from l0e to 3 x ld s<br />

Fig. 6 MPE <strong>for</strong> Direct Ocular Exposure to Ultraviolet<br />

(1" = 0.315 to 0.400 pm) and Infrarcd<br />

(1, = 1.4 pm to I mm) Radiation (lntrabeam<br />

Viewing aod Extended Sources) <strong>for</strong> Single<br />

Pulses or Continuous Exposures<br />

Fig. 7 MPE <strong>for</strong> Direct Ocular Exposure to Laser Radiation<br />

(1" = 0.4 to 0.7 pm and 1.051 to 1.4 pm) from<br />

Extended Sources (Angular Subtense >cln;n in Fig' 3)<br />

<strong>for</strong> Single Pulses or Continuous ExPosures<br />

Fig. 8 Conection Factor C,a <strong>for</strong> WaYelengths Between<br />

0.7 and l4 pm (From Tables 5 and 6)<br />

Fig. 9 Correction Factors CB and ft <strong>for</strong> Wavelengths<br />

Between 0.55 and 0.7 um . .<br />

Fig l0 Ocular MPE <strong>for</strong> lntrabeam Viewing (Angular<br />

Subtense < cr,n6 in Fig. 3) as a Function<br />

<strong>of</strong> Exposure Dumtion and Wavelength<br />

Fig. ll Ocular MPE <strong>for</strong> Extended Sources (Angular<br />

Subtense 2 cr-6, in Fig. 3) as a Function<br />

<strong>of</strong> Exposure Duration and Wavelength<br />

Fig. 12 Reduction <strong>of</strong>MPE <strong>for</strong> Repetitively Pulsed Lasers and<br />

<strong>for</strong> Multiple Exposures from Scanning Lasers ' . .<br />

Fig. 13 Measurement Arrangement Used <strong>for</strong> Purposes<br />

<strong>of</strong> Laser Classification ....<br />

Appendixes<br />

Appendix A Examples <strong>of</strong> Classification <strong>of</strong> Lasers or Laser Systems<br />

Tables<br />

Table Al Typical Laser Classilication - Continuous-Wave (CW) Lasers . . . . .<br />

Table A2 Typical Laser Classification - Single-Pulse Lasers<br />

Table ,A3 lntrabeam MPE <strong>for</strong> <strong>the</strong> Eye and Skin <strong>for</strong><br />

Selected CW Lasers<br />

Table 44 Inrabeam MPE <strong>for</strong> <strong>the</strong> Eye and Skin <strong>for</strong><br />

Selected Pulsed Lasers<br />

Appendix B Calculation <strong>for</strong> Hazard Evaluation and Classification<br />

8.1 General .<br />

8.2<br />

B.3<br />

8.4<br />

Tables<br />

Symbols<br />

Examples <strong>of</strong> MPE Determinadon and Laser Classification<br />

Formulas and Examples Useful in Evaluation<br />

<strong>of</strong> Various Laser Applications<br />

Table B I Typical Diff<strong>use</strong> Reflection Cases <strong>for</strong> Visible Radiation<br />

(l=0.4to0.?um) ...<br />

PACE<br />

47<br />

48<br />

49<br />

50<br />

52<br />

)J<br />

J)<br />

)t<br />

)/<br />

58<br />

58<br />

59<br />

59<br />

59<br />

60<br />

tt)


SECTION<br />

Figures<br />

Fig. Bl<br />

Fig. 92<br />

Fig. 83<br />

Fig. 84<br />

Fig. 85<br />

Fig' 86<br />

Fig. B7<br />

Appendix C<br />

Figures<br />

Fig. Cl<br />

Fig. C2<br />

Appendix D<br />

Dl.<br />

D2.<br />

D3.<br />

Dl.<br />

D5.<br />

D6.<br />

D7.<br />

Tables<br />

Table Dl<br />

Intrabeam Viewing - Direct (himary) Beam<br />

lntrabeam Viewing - Specularly Reflected (Secondary) Beam " " ' '<br />

Extended-Source Viewing - Normally Diff<strong>use</strong> Reflection<br />

Examples <strong>of</strong> Use <strong>of</strong> l-aser Range Equation <strong>for</strong><br />

Determining Nominal Hazard Distance<br />

Nominal Hazard Zone <strong>for</strong> Diff<strong>use</strong> Reflection<br />

Laser Range F4uation Nomogram ' ' ' '<br />

Diagram <strong>of</strong> <strong>the</strong> l-aser Arrangement <strong>for</strong> Exampte 26<br />

ln<strong>for</strong>mation and References <strong>for</strong> Sections 3 and 4<br />

IEC-825 (1985) Waming Label -<br />

Hazard Symbol<br />

IEC-825 (1985) Waming Label -<br />

Label <strong>for</strong> ExPlanatory Wording<br />

Guide <strong>for</strong> Organization and ImPlementation<br />

<strong>of</strong> Laser Safety and Training Programs<br />

Responsibility and Authority <strong>of</strong> Laser Safety Oflicer (LSO)<br />

Deputy Laser SafetY Officers<br />

Safety Committee<br />

Responsibility <strong>of</strong> <strong>the</strong> Laser or Laser System Supervisor<br />

Responsibility <strong>of</strong> Employees Working with or near Lase$<br />

Training .<br />

References<br />

Recommended Training <strong>for</strong> LSOs and Employees<br />

(lncludins but Not Limited to' OPerators'<br />

Maintena-nce Personnel. and Service Technicians)<br />

Routinely Working with or Around Lasers ' ' '<br />

AppendixE<br />

Medical Surveillance . .<br />

Pumose <strong>of</strong> Medical Surveillance " " ' '<br />

El,<br />

82.<br />

E3.<br />

E4.<br />

E5.<br />

86.<br />

w.<br />

Medical Examinations '.. '<br />

Medical Refenal Following Suspected or<br />

Known Laser Injury<br />

Records and Record Retentron<br />

Access To Records<br />

Epidemiologic Studies .... "'<br />

References<br />

AppendixF<br />

Special Considerations ' ' '<br />

Fl.<br />

F2.<br />

Compressed Gases<br />

Cryogenic Liquids .. " "<br />

PACE<br />

73<br />

73<br />

74<br />

74<br />

75<br />

/b<br />

78<br />

79<br />

79<br />

't9<br />

80<br />

80<br />

80<br />

8t<br />

8l<br />

82<br />

83<br />

83<br />

83<br />

84<br />

85<br />

85<br />

85<br />

85<br />

6)<br />

E5<br />

86


SETION<br />

F3.<br />

F4.<br />

F5.<br />

F6.<br />

Appendix<br />

Gl.<br />

c2.<br />

Appendix H<br />

Hl.<br />

H2.<br />

H3.<br />

Lt4.<br />

Ventilaiion<br />

Ionizing Radiation<br />

Toxic Materials<br />

References<br />

Biological Effects on <strong>the</strong> Eye and Sktn .<br />

Minimal Biologicai Effects <strong>of</strong> Laser<br />

Radiation on <strong>the</strong> Eye .. '. '<br />

Biological Effects <strong>of</strong> Laser<br />

Radiation on <strong>the</strong> Skin . . . .<br />

Measurements<br />

RadiomearicMeasurements .<br />

Radiant Exposure Pr<strong>of</strong>iles and Radiant Exposure<br />

Estimates <strong>for</strong> Pulsed Lasers .<br />

Beam Divergence<br />

References<br />

PACE<br />

86<br />

86<br />

86<br />

86<br />

87<br />

8'1<br />

89<br />

90<br />

90<br />

90<br />

90<br />

90


American National Standard<br />

<strong>for</strong> <strong>the</strong> Safe Use <strong>of</strong> Lasers<br />

1. General<br />

1.1 Scope. This standard provides reasonable and<br />

adequate guidance <strong>for</strong> <strong>the</strong> safe <strong>use</strong> <strong>of</strong> lase$ and laser<br />

syslems.<br />

1.2 Application. The objective <strong>of</strong> this standard is to<br />

pmvide reasonable and adequate guidance <strong>for</strong> <strong>the</strong><br />

safe <strong>use</strong> <strong>of</strong> lasen and laser systems. A practical<br />

means <strong>for</strong> accomplishing this is first to classify lasers<br />

and laser systems according to <strong>the</strong>ir relative hazards<br />

and <strong>the</strong>n 1o specify appropriate conrols <strong>for</strong> each<br />

classification.<br />

The basis <strong>of</strong> <strong>the</strong> hazard classincation scheme in Section<br />

3 <strong>of</strong> this standand is <strong>the</strong> ability <strong>of</strong> <strong>the</strong> primary<br />

laser beam or reflected primary laser beam to ca<strong>use</strong><br />

biological damage to <strong>the</strong> eye or skin during intended<br />

<strong>use</strong>. For example, a Class I laser is one that is considered<br />

to be incapable <strong>of</strong> producing damaging radiation<br />

levels and is, <strong>the</strong>re<strong>for</strong>e, exempt from any control<br />

measures or o<strong>the</strong>r <strong>for</strong>ms <strong>of</strong> surveillance. Class 2<br />

lasers (low-power) are divided into two subclasses, 2<br />

and 2a. A Class 2 laser emits in <strong>the</strong> visible portion <strong>of</strong><br />

<strong>the</strong> spectrum (0.4 to 0.7 !rm) and eye protection is<br />

normally af<strong>for</strong>ded by <strong>the</strong> aversion response including<br />

<strong>the</strong> blink reflex. Class 3 lasers (medium-power) are<br />

divided into two subclasses, 3a and 3b. A Class 3<br />

laser may be hazardous under direct and specular<br />

reflection viewing conditions, but <strong>the</strong> diff<strong>use</strong><br />

reflection is usually not a hazard. A Class 3 laser is<br />

normally not a fire hazard. A Class 4 laser (highpower)<br />

is a hazard to <strong>the</strong> eye and skin from <strong>the</strong> dircct<br />

beam and sometimes from a diff<strong>use</strong> reflection and<br />

also can be a fire hazard,<br />

It must be recognized that <strong>the</strong> classification scheme<br />

given in this standard relates specifically to <strong>the</strong> laser<br />

product and its potential hazard, based on op€rating<br />

characterisdcs. However, <strong>the</strong> conditions under which<br />

<strong>the</strong> laser is <strong>use</strong>d, <strong>the</strong> level <strong>of</strong> safety training <strong>of</strong> individuals<br />

usiog <strong>the</strong> laser and o<strong>the</strong>r environmental and<br />

personnel factors are imponant considerations in<br />

determining lhe full extent <strong>of</strong> safety control measures.<br />

Since such situations require in<strong>for</strong>med judgments<br />

by responsible persons, major responsibility<br />

<strong>for</strong> such judgments has been assigned to a person<br />

with <strong>the</strong> requisite authority and responsibility,<br />

namely <strong>the</strong> Laser Safety Officer (LSO).<br />

Lasen or laser systems certified <strong>for</strong> a specific class by<br />

a manufacturer in accordance with <strong>the</strong> Federal Laset<br />

Product Per<strong>for</strong>mance Standard may be considered as<br />

fulfilling alt claJsification requirements <strong>of</strong> this standard.<br />

In cases where <strong>the</strong> laser or laser system<br />

classification is not provided or where <strong>the</strong> class level<br />

may change beca<strong>use</strong> <strong>of</strong> th€ addition or deletion <strong>of</strong><br />

engineering conrol measures (see 4.3), <strong>the</strong> laser or<br />

laser system shall be classified by <strong>the</strong> LSO in accordance<br />

with <strong>the</strong> descriptions given in Section 3 or <strong>the</strong><br />

methods described in Section 9, or both.<br />

The recommended stepwise procedure <strong>for</strong> using this<br />

standard is as follows:<br />

(l) Determine <strong>the</strong> appropriate class <strong>of</strong> laser or laser<br />

syslem,<br />

(2) Comply with <strong>the</strong> measurcs specified <strong>for</strong> that class<br />

<strong>of</strong> laser or laser system, using <strong>the</strong> following table as a<br />

guide. This procedure will in most cases eliminate<br />

<strong>the</strong> need <strong>for</strong> measurement <strong>of</strong> laser radiation, quantitative<br />

analysis <strong>of</strong> hazard potential, or <strong>use</strong> <strong>of</strong> <strong>the</strong> Maximum<br />

Permissible Exposure (MPE) values given in<br />

Section 8 <strong>of</strong> this standard.<br />

Class Control Measur€s Medical Surveillance<br />

I<br />

2<br />

2a<br />

3a<br />

3b<br />

4<br />

Not applicable*<br />

Applicable<br />

Applicable<br />

Applicable<br />

Applicable<br />

Appticable<br />

Not applicable<br />

Not applicable<br />

Not applicable<br />

Not applicable<br />

Applicable<br />

Appticable<br />

* During normal oJrration and mainlenance only Alignment<br />

and service procedurcs <strong>of</strong>an embedded Chss 2. 3, or 4 laser<br />

shatl rcquire conuol or adminislmtive procedures appropdale<br />

to <strong>the</strong>class during <strong>the</strong>s€ functions.<br />

For quantitatiye evaluation <strong>of</strong> <strong>the</strong> hazard associated<br />

with a given laser or laser syslem, Sections 8 and 9<br />

should be consulted. To <strong>use</strong> <strong>the</strong> MPE values in Section<br />

8, first determine whe<strong>the</strong>r <strong>the</strong>re is a possibility <strong>of</strong><br />

intrabeam viewing (in which case <strong>the</strong> intrabeam MPE<br />

criteria in 8.2 shalt be <strong>use</strong>d) or whe<strong>the</strong>r a hazardous<br />

diff<strong>use</strong> reliection is being viewed (in which case <strong>the</strong><br />

MPE values <strong>for</strong> an extended source as given in 8.3 or


o<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

<strong>the</strong> intrabeam MPE values as given in 8.2 may be<br />

applicable). (See Figs. Bl, 82, and 83 in<br />

Appendix B <strong>for</strong> illustrated viewing conditions-)<br />

For <strong>the</strong> purposes <strong>of</strong> this standard, except <strong>for</strong> shortdistance<br />

viewing <strong>of</strong> small diameter foc<strong>use</strong>d Class 3<br />

lasers (see 3.4.1.3), only Class 4 lasers are capable <strong>of</strong><br />

producing hazardous diff<strong>use</strong> reflections; hence calculations<br />

<strong>for</strong> viewing diff<strong>use</strong> reflections from Class l, 2,<br />

and 3 systems are normally unnecessary.<br />

The laser hazard classification system is based<br />

entirely on <strong>the</strong> laser radiation emission. O<strong>the</strong>r ancillary<br />

hazards must be dealt with separately and are<br />

addressed in Section 7 (Special Considerations).<br />

O<strong>the</strong>r special application standards within <strong>the</strong> 2136<br />

series may have provisions which are exceptions to<br />

<strong>the</strong> requirements <strong>of</strong> this standard. Each exception is<br />

valid only <strong>for</strong> applications within <strong>the</strong> scope <strong>of</strong> <strong>the</strong><br />

standard in which it appears.<br />

1.3 Laser Safety Officer (LSO)<br />

1.3.1 General, An individual shall be designated<br />

<strong>the</strong> Laser Safety Officer (LSO) with <strong>the</strong> authority and<br />

responsibility to monitor and en<strong>for</strong>ce <strong>the</strong> control <strong>of</strong><br />

laser hazards, and to effect <strong>the</strong> knowledgeable evalua-<br />

(ion and control <strong>of</strong> laser hazards.<br />

Depending on <strong>the</strong> extent and numb€r <strong>of</strong> laser installations,<br />

<strong>the</strong> position <strong>of</strong> LSO may or may not be a full<br />

time assignment. In some instances, designation <strong>of</strong><br />

an LSO may not be required. Such instances could<br />

include operation and maintenance which are limited<br />

to Class I and Class 2 lasers. However, under some<br />

circumstances it may be necessary to designate an<br />

LSO <strong>for</strong> example, if service is per<strong>for</strong>med on a laser<br />

product having an embedded Class 3a, Class 3b, or<br />

Class 4laser. In such iostances, <strong>the</strong> designation <strong>of</strong>an<br />

LSO may be <strong>the</strong> responsibility <strong>of</strong> <strong>the</strong> organization<br />

requiring access to <strong>the</strong> embedded laser or laser system,<br />

such as <strong>the</strong> service company or organization.<br />

There shall be a designated LSO <strong>for</strong> all circumstances<br />

<strong>of</strong> operation, maintenance, and service <strong>of</strong> a Class 3a,<br />

Class 3b or Class 4 laser or laser system.<br />

1.3,2 LSO Specific Responsibililies<br />

13.2.1 Classification. The LSO shall classily,<br />

or verify classifications, <strong>of</strong> lasers and laser systems<br />

<strong>use</strong>d under <strong>the</strong> LSO's jurisdiction.<br />

1.3,2.2 Hnard Evaluation. The LSO shall be<br />

responsible <strong>for</strong> hazard evaluation <strong>of</strong> laser work areas,<br />

including <strong>the</strong> establishment <strong>of</strong> Nominal Hazard<br />

Zones (NHZ). (See 3.4.)<br />

2<br />

1.3.2.3 Control Measures. The LSO shall be<br />

responsible <strong>for</strong> assuring that <strong>the</strong> prescribed control<br />

measures are in effect, recommending or approving<br />

substitute or altemate control measures when <strong>the</strong> primary<br />

ones are not feasible or practical, and periodically<br />

auditing <strong>the</strong> functionability <strong>of</strong> those controls<br />

measures in <strong>use</strong>.<br />

13.2.4 Procedure Approvals, The LSO shall<br />

approve standard operating procedures, alignment<br />

procedures, and o<strong>the</strong>r procedures that may be part <strong>of</strong><br />

<strong>the</strong> requirements <strong>for</strong> administrative and procedural<br />

control measures.<br />

1,3.2.5 Protective Equipment. The LSO shall<br />

recommend or approve protective equipment i.e.,<br />

eyewear, clothing, barriers, scrcens, etc., as may be<br />

required to assure personnel safety. The LSO shall<br />

assure that protective equipment is audited periodically<br />

to ensure proper working order.<br />

1,3.2.6 Signs and Labels. The LSO shall<br />

approve <strong>the</strong> wording on area signs and equipment<br />

labels.<br />

1.3.2.7 Facility and Equipment. The LSO<br />

shall approve laser installation facilities aod laser<br />

equipment prior to <strong>use</strong>. This also applies to<br />

modification <strong>of</strong> existing facilities or equipment.<br />

1.3.2.8 Training, The LSO shall assur€ that<br />

adequae safety education and training is provided to<br />

laser area penionnel.<br />

1.3.2.9 Medical Surveillance. The LSO shall<br />

determine <strong>the</strong> personnel categories <strong>for</strong> medical surveillance.<br />

(See 6.2)<br />

1.3,2.10 Additional. Additional recommended<br />

duties <strong>of</strong> <strong>the</strong> LSO are included in Appendix D.<br />

2. Definitions<br />

The definitions <strong>of</strong> <strong>the</strong> lerms listed below are based on<br />

r pragmatic rathor than u basic approach. The tcrms<br />

delined are <strong>the</strong>re<strong>for</strong>e limited to those actually <strong>use</strong>d in<br />

this standard and its appendixes and are in no way<br />

intended to constitute a dictionary <strong>of</strong> terms <strong>use</strong>d in<br />

<strong>the</strong> laser lield as a whole.<br />

absorption. Trans<strong>for</strong>mation <strong>of</strong> radiant energy to a<br />

differenr <strong>for</strong>m <strong>of</strong>energy by interaction with matter.<br />

accessible emission limit (AEL). The maximum<br />

accessible emission level p€rmined wiftin a particular<br />

class.


accessible radiation. Radiation to which it is possible<br />

fbr <strong>the</strong> humiln eye or skin to be cxposed in nonuill<br />

usage.<br />

(Inmi^. See limiting dngular subtense.<br />

apertDre. An opening through which radiation can<br />

pass.<br />

apparent visual angle. The angular subtense <strong>of</strong> <strong>the</strong><br />

source as calculated from source size and distance<br />

from <strong>the</strong> eye. It is not <strong>the</strong> beam divergence <strong>of</strong> <strong>the</strong><br />

source. (See 8.1 <strong>for</strong> criteria.)<br />

attenuation. The decrease in <strong>the</strong> radiant flux as it<br />

passes<br />

through an absorbing or scattering medium.<br />

average power. The total energy imparted during<br />

exposurc divided by <strong>the</strong> exposure duration.<br />

aversion response. Movement <strong>of</strong> <strong>the</strong> eyelid or <strong>the</strong><br />

head to avoid an exposure to a noxious stimulant or<br />

bright light. It can occur within 0.25 s, including <strong>the</strong><br />

blink reflex time.<br />

beam. A collection <strong>of</strong> rays which may be parallel,<br />

divergent, or convergent,<br />

beam diameter. The distance between diametrically<br />

opposed points in that cross-seciion <strong>of</strong> a beam where<br />

<strong>the</strong> power per unit area is l/e (0.368) tim€s that <strong>of</strong> <strong>the</strong><br />

peak power per unit area.<br />

blink reflex. See aversion response,<br />

calorim€ter. A device <strong>for</strong>.measuring <strong>the</strong> total<br />

amount <strong>of</strong> energy absorbed from a source <strong>of</strong> electromagnetic<br />

radiation.<br />

carcinogen. An agent potentially capable <strong>of</strong> causing<br />

cancer.<br />

coherent. A light beam is said to be coherent when<br />

<strong>the</strong> electric vector at any point in it is related to that at<br />

any o<strong>the</strong>r poiDt by a definite, continuous function.<br />

collimated beam. Effectively, a "parallel" beam <strong>of</strong><br />

Iight with very low divergence or convergence. (See<br />

8.1 <strong>for</strong> criteria.)<br />

conjunctival discharge (<strong>of</strong> <strong>the</strong> eye). Increased<br />

secretion <strong>of</strong> mlrcus from <strong>the</strong> surface <strong>of</strong> <strong>the</strong> eyeball.<br />

continuous wave (cw). The output <strong>of</strong> a laser which<br />

is operated in a continuous ra<strong>the</strong>r than a pulsed mode.<br />

In this standard, a laser operating with a continuous<br />

output <strong>for</strong> a period >0.25 s is regarded as a cw laser.<br />

controlled area, An area where <strong>the</strong> occupancy and<br />

activity <strong>of</strong> those within is subject to contml and<br />

supelvision <strong>for</strong> <strong>the</strong> purpose <strong>of</strong> protection from radiation<br />

hazards.<br />

AMERICAN NATIONAL STANDARD ZI 36. I -I 986<br />

cornea. The transparent outer co&t <strong>of</strong> <strong>the</strong> human eye<br />

which covers <strong>the</strong> iri$ and ahe cryst{lline lens. The<br />

comea is <strong>the</strong> main refracting element <strong>of</strong> <strong>the</strong> eye.<br />

cryogenics. The branch <strong>of</strong> physics dealing with very<br />

low temperatures.<br />

depigmentation. The rcmoval <strong>of</strong> <strong>the</strong> pigment <strong>of</strong><br />

melanin granules fmm human tissues.<br />

dermatology. A branch <strong>of</strong> medical science that deals<br />

with <strong>the</strong> skin, iis structure, functions, and diseases,<br />

diffraction. Deviation <strong>of</strong> part <strong>of</strong> a beam, determined<br />

by lhe wave nature <strong>of</strong> radiation and occuring when<br />

<strong>the</strong> radiation passes <strong>the</strong> edge <strong>of</strong>an opaque ob$iacle.<br />

diff<strong>use</strong> reflection. Change <strong>of</strong> <strong>the</strong> spatial distribution<br />

<strong>of</strong> a beam <strong>of</strong> radiation when it is reflecied in many<br />

directions by a surface or by a medium.<br />

divergence. The increase in <strong>the</strong> diameter <strong>of</strong> <strong>the</strong> laser<br />

beam with distance from <strong>the</strong> exit aperture. The value<br />

gives <strong>the</strong> full angle at <strong>the</strong> point where <strong>the</strong> laser<br />

energy or irradiance is l/e (36.8%) <strong>of</strong> <strong>the</strong> maximum<br />

value. For <strong>the</strong> purposes <strong>of</strong> lhis standard, divergence<br />

is taken as <strong>the</strong> full angle, expressed in radians, <strong>of</strong> <strong>the</strong><br />

beam diameter measured between those points which<br />

include laser energy or irradiance equal to l/e <strong>of</strong> <strong>the</strong><br />

maximum value (<strong>the</strong> angular extend <strong>of</strong> a beam which<br />

contains all <strong>the</strong> radius vectors <strong>of</strong> <strong>the</strong> polar curve <strong>of</strong><br />

radiant intensity that have length rated at 36.8Eo <strong>of</strong><br />

<strong>the</strong> maximum). Sometimes this is also refened to as<br />

beam spread,<br />

edema. The swelling <strong>of</strong> tissues in <strong>the</strong> human body<br />

due to <strong>the</strong> presence <strong>of</strong> abnormal amounts <strong>of</strong> fluid in<br />

<strong>the</strong> extracellular spaces.<br />

electromagnetic radiation. The flow <strong>of</strong> energy consisting<br />

<strong>of</strong> orthogonally vibrating electric and magnetic<br />

fields lying transverse to <strong>the</strong> dir€ction <strong>of</strong> propagation.<br />

X-ray, ulraviolet, visible, infrared, and radio<br />

waves occupy various portions <strong>of</strong> <strong>the</strong> electromagnetic<br />

spectrum and differ only in frequency and<br />

wavelength.<br />

embedded laser. A laser with an assigned class<br />

number higher than <strong>the</strong> inherent capability <strong>of</strong> <strong>the</strong><br />

laser system in which it is incorporated, where <strong>the</strong><br />

systems lower classiflcation is appropriate due to <strong>the</strong><br />

engineering fearures limiting accessible emission.<br />

energy. The capacity <strong>for</strong> doing work. Energy content<br />

is commonly <strong>use</strong>d to characterize lhe output from<br />

pulsed lasers, and is generally expressed in joules (J).<br />

epidemiologJr. A brarch <strong>of</strong> medical science that<br />

deals with <strong>the</strong> incidence, distribution and control <strong>of</strong>


AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

disease in a population.<br />

€pi<strong>the</strong>lium (<strong>of</strong> ahe cornea). The layer <strong>of</strong> cells fbrming<br />

<strong>the</strong> outer surface <strong>of</strong> <strong>the</strong> comea.<br />

ery<strong>the</strong>ma. Redness <strong>of</strong> <strong>the</strong> skin due to congestion <strong>of</strong><br />

<strong>the</strong> capillaries.<br />

extended source. A source <strong>of</strong> radiation that can be<br />

resolved by <strong>the</strong> eye into a geometrical image, in contrast<br />

10 a point source <strong>of</strong> radiation, which cannot be<br />

resolved into a geome*ical image. (See 8.1 <strong>for</strong> criteria.)<br />

failsafe interlock. An interlock where <strong>the</strong> failure <strong>of</strong><br />

a single mechanical or electrical component <strong>of</strong> <strong>the</strong><br />

interlock will ca<strong>use</strong> <strong>the</strong> system to go into, or remain<br />

in, a safe mode.<br />

focal length. The distance from <strong>the</strong> secondary nodal<br />

point <strong>of</strong> a lens to <strong>the</strong> primary focal point. In a thin<br />

lens, <strong>the</strong> focal length is <strong>the</strong> distance between <strong>the</strong> lens<br />

and <strong>the</strong> focal point.<br />

focal point. The point toward which radiation converges<br />

or from which radiation diverges or appears to<br />

diverge.<br />

fundus. See oculdr fundus.<br />

funduscopic. Examination <strong>of</strong><strong>the</strong> fundus (rear) <strong>of</strong><strong>the</strong><br />

natf-power poirrt. The value on ei<strong>the</strong>r <strong>the</strong> leading or<br />

trailing edge <strong>of</strong> a laser pulse at which <strong>the</strong> power is<br />

one-half <strong>of</strong> its maximum value.<br />

hertz (Hz). The unit which expresses <strong>the</strong> frequency<br />

<strong>of</strong> a periodic oscillation in cycles per second.<br />

infrar€d radiation. Electromagnetic radiation with<br />

wavelengths which lie within <strong>the</strong> range O.?;rm to<br />

I mm.<br />

integrated radiance. The integral <strong>of</strong> <strong>the</strong> radiance<br />

over <strong>the</strong> exposure duration. Also known as pulsed<br />

radiance. Unit: joules per square centimeter per<br />

steradian (J 'cm-2 sil).<br />

intrabeam viewing. The viewing condition whereby<br />

<strong>the</strong> eye is exposed to all or pan <strong>of</strong> a laser beam where<br />

<strong>the</strong> visual angle is less than clmin (see limiting angular<br />

subtense). (See Figs. Bl and 82.)<br />

ionizing radiation. Electromagnetic radiation having<br />

a sufficiently large photon energy to directly ionize<br />

atomic or molecular systems with a single quantum<br />

event,<br />

iris. The circular pigrnented membrane which lies<br />

behind <strong>the</strong> comea <strong>of</strong> th€ human eve. The iris is<br />

per<strong>for</strong>ated by <strong>the</strong> pupil.<br />

irradiance (al a poinl <strong>of</strong> a surface). Quotient <strong>of</strong> <strong>the</strong><br />

radiant flux incident on an element <strong>of</strong> <strong>the</strong> surface containing<br />

<strong>the</strong> point at which inadiance is measured, by<br />

<strong>the</strong> area <strong>of</strong> that element. Unit watt per square centimeter<br />

(W ' cm-2).<br />

Jaeger's tesa. Samples <strong>of</strong> type <strong>of</strong> various sizes<br />

printed on a card <strong>for</strong> testing close visual acuity. An<br />

analogue <strong>of</strong> <strong>the</strong> Snellen chan <strong>for</strong> distant visual acuity.<br />

joule. A unit <strong>of</strong> energy. I joule = I watt ' second.<br />

Lambertian surface. An ideal surface whose emitted<br />

or rcflected radiance is independent <strong>of</strong> <strong>the</strong> viewing<br />

angle.<br />

laser. A device which produces an intense, coherent,<br />

directional beam <strong>of</strong> light by stimulating electronic or<br />

molecular transitions to lower energy levels. An<br />

acmnym <strong>for</strong> Light Amplification by Stimulated<br />

Emission <strong>of</strong> Radiation.<br />

laser safety <strong>of</strong>ficer (LSO). One who has authority to<br />

monitor and en<strong>for</strong>ce <strong>the</strong> conhol <strong>of</strong> laser hazards and<br />

effect <strong>the</strong> knowledgeable evaluation and control <strong>of</strong><br />

laser hazards.<br />

laser system. An assembly <strong>of</strong>electrical, mechanical,<br />

and optical components which includes a laser.<br />

lesion. An abnormal change in <strong>the</strong> structure <strong>of</strong> an<br />

organ or purt due to injury or disease.<br />

limiting angular sublense (dmin). The apparent<br />

visual angle which divides intrabeam viewing from<br />

extended-source viewing, (See 8.1 <strong>for</strong> criteria,)<br />

limiting aperture. The maximum diameter <strong>of</strong> a circle<br />

over which inadiance and radiant exoosure can be<br />

averaged,<br />

limiting exposure duration (tma,(). An exposure<br />

duration which is specifically limited by <strong>the</strong> design or<br />

intended <strong>use</strong>(s). (See Section 8 <strong>for</strong> examples.)<br />

lossy medium. A medium which absorbs or scatters<br />

radiation passing thruugh i1.<br />

maint€nsnce. Per<strong>for</strong>mance <strong>of</strong> those adjustments or<br />

procedures specified in <strong>use</strong>r in<strong>for</strong>mation provided by<br />

<strong>the</strong> manufacturer with <strong>the</strong> laser or laser system, which<br />

are to be per<strong>for</strong>med by <strong>the</strong> <strong>use</strong>r to ensure <strong>the</strong> intended<br />

per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> product, It does not include<br />

operation ot seruice as defined in this section.<br />

maximum permissible exposure (MPE). The level<br />

<strong>of</strong> laser radiation to which a person may be exposed<br />

without hazardous effecl or adverse biological<br />

changes in <strong>the</strong> eye or skin. The criteria <strong>for</strong> MPE <strong>for</strong>


lhe eye and skin are detailed in Section 8<br />

meter. A unit <strong>of</strong> length in <strong>the</strong> international system <strong>of</strong><br />

units; cunently defined as a ' fixed number <strong>of</strong><br />

wavelengths, in vacuum, <strong>of</strong> <strong>the</strong> orange-red line <strong>of</strong> <strong>the</strong><br />

spectrum <strong>of</strong> krypton 86. Typically, <strong>the</strong> meter is subdivided<br />

into <strong>the</strong> following units:<br />

Centimeter (cm) = l0-2 m<br />

Millimeter (mm) = l0-r m<br />

Micrometer (pm) = l0{ m<br />

Nanometer (nm) = lOa m<br />

nominal hazard zone (NHZ). The nominal hazard<br />

zone describes <strong>the</strong> space within which <strong>the</strong> level <strong>of</strong> <strong>the</strong><br />

direct, reflected or scattered radiation during normal<br />

operation exceeds <strong>the</strong> applicable MPE. Exposure<br />

levels beyond <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> NHZ are below <strong>the</strong><br />

appropriate MPE level.<br />

nominal ocular hazard distance NOHD). The dislance<br />

along <strong>the</strong> axis <strong>of</strong> <strong>the</strong> unobstructed beam from<br />

<strong>the</strong> laser to th€ human eye beyond which <strong>the</strong> inadiance<br />

or radiant exposure during normal operation is<br />

not expected to exceed <strong>the</strong> appropriate MPE.<br />

ocular fundus. The back <strong>of</strong> <strong>the</strong> eye. May be seen<br />

through<br />

<strong>the</strong> pupil with an ophthalmoscope.<br />

operation. The per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> laser or laser system<br />

over <strong>the</strong> full range <strong>of</strong> its intended functions (normal<br />

operation). It does not include maintenance or<br />

service as defined in this section.<br />

ophthalmoscope. An instrument <strong>for</strong> examining <strong>the</strong><br />

interior <strong>of</strong>fte eye.<br />

optical density (D1). Logarithm to <strong>the</strong> base ten <strong>of</strong><br />

<strong>the</strong> reciprocal <strong>of</strong> <strong>the</strong> transmittance: D1=-log1e t1,<br />

where t1 is transmittance.<br />

- optically pumped laser. A laser in which <strong>the</strong> clechons<br />

are excited into an upper energy state by <strong>the</strong><br />

absorption <strong>of</strong> light from an auxiliary light source.<br />

photophobia. An unusual intolerance <strong>of</strong> light. Also,<br />

an aversion to light usually ca<strong>use</strong>d by physical<br />

discomfon upon exposure to light.<br />

photosensitizers. Substances which increase <strong>the</strong> sensitivity<br />

<strong>of</strong> a material io irradiation by electromagnetic<br />

energy.<br />

pigment epi<strong>the</strong>lium (<strong>of</strong> <strong>the</strong> r€tina). The layer <strong>of</strong><br />

cells which contain brown or black pigment granules<br />

next to and behind <strong>the</strong> rods and cones.<br />

point source. A source <strong>of</strong> radiation whose dimensions<br />

are small enough, compared with <strong>the</strong> distance<br />

between source and receptor, to be neglected in<br />

AMERICAN NATIONAL STANDARD ZI36.I -1986<br />

calculations. Equivalent <strong>for</strong> <strong>the</strong> purpose <strong>of</strong> this standard<br />

to intrabeam viewing. (See 8. t <strong>for</strong> criteria.)<br />

power. The rate at which energy<br />

hansfered, or received. Unit: watts<br />

second).<br />

prf. Abbreviation <strong>for</strong> pulse-repetition<br />

(See repetitively pulsed laser.)<br />

is emitted,<br />

(oules per<br />

frequency.<br />

protective housing. An enclosure that surrounds <strong>the</strong><br />

laser or laser system that prevenls access co laser radiation<br />

above <strong>the</strong> applicable MPE level. The aperture<br />

through which <strong>the</strong> <strong>use</strong>ful beam is emitted is not pan<br />

<strong>of</strong> <strong>the</strong> protective housing. The protective housing<br />

may enclose associated optics and a work station and<br />

shall limit access to o<strong>the</strong>r associated radiant energy<br />

emissions and to electrical hazards associated with<br />

components and tefminals.<br />

pulse duration. The duration <strong>of</strong> a laser pulse; usually<br />

measured as <strong>the</strong> time interval between <strong>the</strong> halfpower<br />

points on <strong>the</strong> leading and trailing edges <strong>of</strong> <strong>the</strong><br />

pulse.<br />

pulsed laser. A laser which delivers its energy in <strong>the</strong><br />

<strong>for</strong>m <strong>of</strong> a single pulse or a train <strong>of</strong> pulses. ln this<br />

standard, <strong>the</strong> duration <strong>of</strong>a pulse


AMERICAN NATIONAL STANDARD 2I36.I.I986<br />

Quotient <strong>of</strong> <strong>the</strong> radiant flux leaving <strong>the</strong> source and<br />

propagated in an element <strong>of</strong> solid angle containing<br />

<strong>the</strong> given direction, by <strong>the</strong> element <strong>of</strong> solid angle'<br />

Unit: watts per steradian (W ' sf').<br />

radiant power. See radiant flux'<br />

radiometry. A branch <strong>of</strong> science which deals with<br />

<strong>the</strong> measurement <strong>of</strong> radiation. For <strong>the</strong> purposes <strong>of</strong><br />

this standard, radiometry will be limited to <strong>the</strong> measurement<br />

<strong>of</strong> infrared, visible, and ultraviolet rddiation.<br />

Rayl€igh scataering. Scattering <strong>of</strong> radiadon in <strong>the</strong><br />

course <strong>of</strong> its passage thtough a medium containing<br />

panicles whose sizes are small compared with <strong>the</strong><br />

wavelength <strong>of</strong> <strong>the</strong> radialion.<br />

reflectance. The ratio <strong>of</strong> total reflected radianl power<br />

to total incident power. Also called re.fecrivity.<br />

reflection. Deviation <strong>of</strong> radiation following<br />

incidence on a surface.<br />

rep€titively pulsed laser. A laser with multiple<br />

pulses <strong>of</strong> radiant energy occurring in sequence with a<br />

prf ) I Hz.<br />

retina. The sensory membrane which receives <strong>the</strong><br />

incident image <strong>for</strong>med by <strong>the</strong> comea and lens <strong>of</strong> <strong>the</strong><br />

human eye. :Ihe retina lines <strong>the</strong> inside <strong>of</strong><strong>the</strong> eye.<br />

scannlng laser. A laser having a time-varying direction,<br />

origin, or pa em <strong>of</strong> proPagation with respect to<br />

a stationary frame <strong>of</strong> reference.<br />

scintillation. The rapid changes in irradiance levels<br />

in a cross-section <strong>of</strong> a laser beam.<br />

service. The per<strong>for</strong>mance <strong>of</strong> those procedures or<br />

adjustments describ€d in <strong>the</strong> manufacturer's servlce<br />

instructions which may affect any asPect <strong>of</strong> <strong>the</strong> per<strong>for</strong>mance<br />

<strong>of</strong> lhe laser or laser system. It does not<br />

include maintenance or operation as defined in this<br />

section.<br />

shall. The word "shall" is to be understood as mandatory.<br />

should. The word "should" is to be understood as<br />

advisory.<br />

solid angle. The three-dimensional angular spread at<br />

<strong>the</strong> vertex <strong>of</strong> a cone measured by <strong>the</strong> area intercepted<br />

by <strong>the</strong> cone on a unit sphere whose center is <strong>the</strong> vertex<br />

<strong>of</strong> <strong>the</strong> cone. It is expressed in steradians (sr).<br />

source. A laser or a laser-illuminated reflecting surface.<br />

specular r€fl€ction. A mirrorlike reflection.<br />

steradian (sr). The unit <strong>of</strong> measure <strong>for</strong> a solid angle'<br />

6<br />

There are 4ft steradians about any Point in space.<br />

stromal haze (<strong>of</strong> <strong>the</strong> cornea). Cloudiness in <strong>the</strong><br />

connective tissue or main body <strong>of</strong> <strong>the</strong> comea.<br />

surface exfoliation (<strong>of</strong> th€ cornea). A stripping or<br />

peeling <strong>of</strong>f <strong>of</strong> <strong>the</strong> surface layer <strong>of</strong> cells from <strong>the</strong> cornea.<br />

tonometry. Measurcment <strong>of</strong> <strong>the</strong> pressurc (tension)<br />

<strong>of</strong> <strong>the</strong> eyeball.<br />

transmission. Passage <strong>of</strong> radiation through a<br />

medium.<br />

transmittance. The ratio <strong>of</strong> total tmnsmitted radiant<br />

power lo total incident radiant power.<br />

ultraviolet radiation. ElecFomagnelic radiation<br />

with wavelengths smaller than those <strong>of</strong> visible radiation;<br />

<strong>for</strong> <strong>the</strong> purpose <strong>of</strong> this standard, 0.2 to 0.4 pm.<br />

visible radiation (light). Electromagnetic radiation<br />

which can b€ detected by <strong>the</strong> human eye. This term<br />

is commonly us€d to describ€ wavelengths which lie<br />

in <strong>the</strong> range 0.4 to 0.7 Fm.<br />

$att. The unit <strong>of</strong> power or radiant flux. 1 watt = i<br />

joule per second.<br />

wavelength, The disknce between two successive<br />

points on a periodic wave which have <strong>the</strong> same<br />

phase,<br />

3, Hazard Evaluation and Classification<br />

3.1 General. Three aspects <strong>of</strong> <strong>the</strong> application <strong>of</strong> a<br />

laser or laser system influence <strong>the</strong> total hazard<br />

evaluation and <strong>the</strong>reby influence <strong>the</strong> application ol<br />

contlol measures:<br />

(1) The laser or laser sys@m's capability <strong>of</strong> iniurinS<br />

personnel<br />

(2) The environment in which <strong>the</strong> laser is <strong>use</strong>d<br />

(3) The personnel who may <strong>use</strong> or be exposed to laser<br />

radiation<br />

The laser classification scheme is based on aspect ( I )<br />

Laser and laser systems classilied in accordance with<br />

this \tandard shall be labeled with <strong>the</strong> appropriatt<br />

hazatd classification (see 3.3). Classification labeling<br />

<strong>use</strong>d in con<strong>for</strong>mance with <strong>the</strong> Federal Laser Producl<br />

Per<strong>for</strong>mance Standard may be <strong>use</strong>d to satisfy lhis<br />

labeling requirement. lt should be noied that in some<br />

cases <strong>the</strong>re may be differences beMeen this standard<br />

and <strong>the</strong> Federal L,aser Product Per<strong>for</strong>mance Standard'


(See Appendix C <strong>for</strong> references.) If <strong>the</strong> laser<br />

b€en modified subsequent to classification by<br />

manufacturer, <strong>the</strong> guidance in 4.10 shall be <strong>use</strong>d.<br />

has<br />

<strong>the</strong><br />

Any laser or laser system shall be classified according<br />

to its accessible radiation during normal operation.<br />

Aspects (2) and (3) vary with each laser application<br />

and cannot be readily standardiud. The total hazard<br />

evaluation procedure shall consider all three aspects,<br />

although in most cases only aspect (l) influences <strong>the</strong><br />

conrol measures which are applicable.<br />

The detailed hazard evaluation or <strong>the</strong> classification <strong>of</strong><br />

a laser or laser system as outlined in this section<br />

should not be attempted by personnel untrained in<br />

laser safety or optical engineering/physics. When it<br />

is necessary <strong>for</strong> <strong>the</strong> LSO to effect such an eyaluation,<br />

it should be based on adequate training or<br />

knowledgeable assistance so that <strong>the</strong> calculations and<br />

risk determinations outlined in this section will be<br />

accomplished. Errors in such analyses could result in<br />

injuries <strong>of</strong> personnel and should not be taken lightly.<br />

3,2 Laser Considerations. The LSO or knowledgeable<br />

individual responsible <strong>for</strong> laser classification<br />

shall ensure that laser-output data are valid in accordance<br />

with Section 9 (Measurements). Classification<br />

shall be based on <strong>the</strong> maximum output available <strong>for</strong><br />

<strong>the</strong> intended <strong>use</strong>.<br />

3.2.1 Multiwavelength Lasers. The classification<br />

<strong>of</strong> lasers or laser syslems capable <strong>of</strong> emitting<br />

numemus wavelengths shall be based on <strong>the</strong> most<br />

hazardous possible op€ration. (See 83, examples l2<br />

and 13.)<br />

3.2.1,1 A multiwavelength laser which by<br />

dssign can operate only as a single-wavelength laser<br />

shall be classified as a single-wavelengrh laser.<br />

3.2.1.2 A multiwavelength laser which by<br />

design can operate over two or more wavelength<br />

regions (as defined in Section 8) shall require<br />

classification in each region <strong>of</strong> operalion. Thc<br />

apprcpriate control measures <strong>for</strong> each region shall be<br />

taken.<br />

3.2.2 Repetitively Pulsed Lasers. The evaluation<br />

<strong>of</strong> repetitively pulsed laseE or exposures requires <strong>the</strong><br />

<strong>use</strong> <strong>of</strong> cenain correction factors. (See Section 8.)<br />

3.2.3 Radiometric Parameters <strong>of</strong> <strong>the</strong> Laser<br />

Required <strong>for</strong> Determlnlng Laser Hazard<br />

Classification<br />

AMERICAN NATIONAL STANDARD 2136.I - I986<br />

3.2.3.1 Classification <strong>of</strong> essentially all lasers<br />

requires <strong>the</strong> following Parameters:<br />

(l) Wavelength(s) or wavelength range<br />

(2) For cw or repetitively Pulsed lasers: average<br />

Dowcr output and limiting exposure durdtion 1,,,.<br />

inherent in <strong>the</strong> design or intended <strong>use</strong> <strong>of</strong> <strong>the</strong> laser or<br />

laser system<br />

(3) For pulsed lasers: total energy per pulse (or peak<br />

power), pulse duration, prf, and emergent beam radianl<br />

exposure<br />

3.23.2 Classification <strong>of</strong> extended-source lasers<br />

or laser systems (such as laser arays, injection laser<br />

diodes, and lasers having a permanent diff<strong>use</strong>r within<br />

<strong>the</strong> output optics) requires, in addition to <strong>the</strong> Parameters<br />

listed in 3.2.3.1, knowledge <strong>of</strong> <strong>the</strong> laser source<br />

radiance or integrated radiance and ihe maximum<br />

viewing angular subtense.<br />

3,2.3.3 Class I AEL. To determine <strong>the</strong> laser's<br />

potenlial <strong>for</strong> producing injury, it is necessary to consider<br />

not only <strong>the</strong> laser outPut irradiance or radiant<br />

exposure, but also whe<strong>the</strong>r a hazard would exist if <strong>the</strong><br />

total laser beam power or pulse energy were confined<br />

to <strong>the</strong> area <strong>of</strong> <strong>the</strong> limiting aperture <strong>for</strong> <strong>the</strong> applicable<br />

MPE (see Table 9).<br />

The Class I AEL is defined in two different ways'<br />

depending on whe<strong>the</strong>r <strong>the</strong> laser is considered a point<br />

source or an extended source (an unusual case).<br />

3.2.3.3.1 Most lasers can be considered Point<br />

sources. For such lasers, <strong>the</strong> Class I AELs shall be<br />

determined by <strong>the</strong> pmduct <strong>of</strong> two factors:<br />

( l) The intrabeam MPE <strong>for</strong> <strong>the</strong> eye (see Figs. 4 and<br />

6) <strong>for</strong> <strong>the</strong> limiting exposure duradon<br />

(2) The area <strong>of</strong> <strong>the</strong> limiting apenure <strong>for</strong> <strong>the</strong> MPE (i.e"<br />

1, 7 or l I mm as applicable; see Table 9) in cm'<br />

That is, AEL = MPE x (arca <strong>of</strong> limiting aperturc)<br />

3.2.33.2 For exlcndcd-vrurce lasen or laser<br />

systems which emit in <strong>the</strong> sPectral range 0'4 to<br />

1.4 pm, <strong>the</strong> Class I AELs shall be determined by a<br />

power or energy outPut such that:<br />

(l) The source radiance does not exceed <strong>the</strong> MPE<br />

(see Table 6) when <strong>the</strong> source is viewed at <strong>the</strong><br />

minimum viewing dista.nce<br />

(2) A <strong>the</strong>oretically perfect optical viewing system<br />

(50-mm limiting entlance aperture, T-mm exit aperture)<br />

would collect lhe entire laser beam output


AMERICAN NATIONAL STANDARD 2I36.I-I986<br />

If this definition is difficult to apply, <strong>the</strong> definition in<br />

3.2.3.3.1 may be applied and will result in a conservative<br />

Class I AEL.<br />

3,2.3.3.3 The Class 2 AEL's shall be determined<br />

in <strong>the</strong> same manner as Class I AEL'S except<br />

<strong>the</strong> MPE values are based on an exposure duration <strong>of</strong><br />

0,25 s (aversion response). For cw point source conditions,<br />

<strong>the</strong> MPE is 2.5 mW' cm-r.<br />

3.3 Laser and Laser Sysaem Hazard Classification<br />

Definitions. Tables I and 2 <strong>of</strong>fer a summary <strong>of</strong> levels<br />

<strong>for</strong> laser and laser system classification: Table I<br />

<strong>for</strong> cw lasers with an emission duration > 0.25 s and<br />

Table 2 <strong>for</strong> pulsed lasers with an emission duration<br />

< 0.25 s. (See Appendix A, Examplcs <strong>of</strong><br />

Classification <strong>of</strong> Lasers or Laser Systems).<br />

3,3,1 Class I Las€rs and Laser Systems<br />

3.3.1.1 Any laser, or laser system containing a<br />

laser. that cannot emit accessible laser radiation levels<br />

in excess <strong>of</strong> <strong>the</strong> Class I AEL <strong>for</strong> <strong>the</strong> maximum<br />

possible duration inherent in <strong>the</strong> design or intended<br />

<strong>use</strong> <strong>of</strong> <strong>the</strong> laser or laser system is a Class I laser or<br />

laser system during normal operation and is exempt<br />

from all control measures or o<strong>the</strong>r <strong>for</strong>ms <strong>of</strong> surveillance<br />

with <strong>the</strong> exception <strong>of</strong> applicable requirements<br />

<strong>for</strong> embedded lasers. See 4.3.1.1. The exemption<br />

strictly applies to emitted laser radiation hazards and<br />

not to o<strong>the</strong>r potential hazards (see Section 7. Special<br />

Considerations).<br />

3.3.1.2 Lasers or laser systems intended <strong>for</strong> a<br />

specific <strong>use</strong> may be designated Class I by <strong>the</strong> LSO on<br />

<strong>the</strong> basis <strong>of</strong> that <strong>use</strong> <strong>for</strong> a t "* classification duration<br />

less than 3 x lOa s, provided that <strong>the</strong> accessible laser<br />

radiation does not exceed <strong>the</strong> corresponding Class I<br />

AELs <strong>for</strong> <strong>the</strong> maximum possible duration inherent in<br />

<strong>the</strong> design or intended <strong>use</strong> <strong>of</strong> <strong>the</strong> laser or laser system.<br />

3.3,2 Class 2 and Class 2a Visible Lasers and<br />

Laser Systems<br />

3.3,2.1 Class 2 lasers and laser systems incl ude:<br />

(l) Visible (0.4 to 0.7 pm) cw lasers and laser systems<br />

which can emit accessible radiant Dower<br />

exceeding <strong>the</strong> Class I AEL <strong>for</strong> <strong>the</strong> maximunr possible<br />

duration inherent in <strong>the</strong> design or intended <strong>use</strong> <strong>of</strong> <strong>the</strong><br />

laser or laser system, but not exceeding I mW<br />

(2) Visible (0.4 to 0.7 pm) repetitively pulsed lasers<br />

and laser systems which can emit accessible radiant<br />

power exceeding <strong>the</strong> appropriate Class I AEL <strong>for</strong> <strong>the</strong><br />

maximum possible duration inhercnt in <strong>the</strong> design or<br />

intended <strong>use</strong> <strong>of</strong> <strong>the</strong> laser or laser svstem. but not<br />

R<br />

exceeding <strong>the</strong> Class I AEL <strong>for</strong> a 0.25 s exposure<br />

duration<br />

3^1,2,2 Visible (0.4 to 0.7 pm) laser and laser<br />

systems intended <strong>for</strong> a speciic <strong>use</strong> where <strong>the</strong> output<br />

is not intended to be viewed shall be designated<br />

Ctass 2a by <strong>the</strong> LSO, provided that <strong>the</strong> accessible<br />

radiation does not exceed <strong>the</strong> Class I AEL <strong>for</strong> an<br />

exposure duration less than or equal 1o ld s.<br />

3.3.3 Class 3a and Class 3b Lasers and l,aser<br />

Systems<br />

3J.3.1 Class 3a and Class 3b laser and laser<br />

systems include:<br />

( l) Infrared ( 1.4 Fm to I mm) and ultraviolet (0.2 to<br />

0.4 pm) lasers and laser systems which can emit<br />

accessible radiant power in excess <strong>of</strong> <strong>the</strong> Class I AEL<br />

<strong>for</strong> <strong>the</strong> maximum possible duration inherent in <strong>the</strong><br />

design <strong>of</strong> <strong>the</strong> laser or laser system, but which<br />

(a) cannot emit an average radiant power in excess <strong>of</strong><br />

0.5W <strong>for</strong> 20.25s or (b) cannot produce a mdiant<br />

exposure <strong>of</strong> l0J'cm-2 within an exposure time<br />

< u.lJ s<br />

(2) Visible (0.4 to 0.7 pm) cw or rcpetitively pulsed<br />

lasers and laser systems which produce accessible<br />

radiant power in excess <strong>of</strong> <strong>the</strong> Class I AEL <strong>for</strong> a<br />

0.25 s exposure time (l mW <strong>for</strong> a cw laser), but<br />

which cannot emil an average radiant power greater<br />

than O.5 W<br />

(3) visible and near-infrarcd (0.4 to 1.4 pm) singlepulsed<br />

lasers which can emit accessible radiant<br />

cnergy in excess <strong>of</strong> <strong>the</strong> Class I AEL but which cannot<br />

produce a radiant exposurc that exceeds<br />

10 J 'cm-z or produce a hazardous diff<strong>use</strong> reflection<br />

as given in Table 3<br />

(4) Near-infrared (0.7 to 1.4 pm) cw lasers or pulsed<br />

lasers which can emit accessible radiant power in<br />

excess <strong>of</strong> <strong>the</strong> Class I AEL <strong>for</strong> <strong>the</strong> r,"* inherent in <strong>the</strong><br />

design or intended <strong>use</strong> <strong>of</strong> <strong>the</strong> laser or laset system,<br />

but which cannot emit an average power <strong>of</strong> 0.5 W or<br />

greater <strong>for</strong> periods ) 0.25 s<br />

33.3.2 All Class 3 lasers and laser systems<br />

which have an accessible output power between I<br />

and 5 times <strong>the</strong> Class I AELs <strong>for</strong> wavelengths less<br />

than 0.4 pm or greater than 0.7 pm, or 5 times <strong>the</strong><br />

Class 2 AELs <strong>for</strong> wavelengths between 0.4 pm and<br />

0.7 pm, are Class 3a. See 4.7.3.1 .<br />

3.3.3.3 All Class 3 lasers and laser systems<br />

which do not meet <strong>the</strong> requirements <strong>of</strong> 3.1.3.2 shall<br />

be classified as Class 3b.


3.3.4 Ctass 4 Lasers and Laser Systems. Class<br />

4 lasers and lsser systems include:<br />

(l) Ultraviolet (0.2 to 0.4 pm) and infrared ( 1.4 pm to<br />

I mm) lasers and laser systems which (a) emit an<br />

average accessible radiant power in excess <strong>of</strong> 0.5 W<br />

<strong>for</strong> periods >,0.25 s or (b) produce a radiant exlxrsurc<br />

<strong>of</strong> l0 J ' cm-' <strong>for</strong> an exposure duration <strong>of</strong> < 0.25 s<br />

(2) Visible (0.4 to 0.7 ltm) and near-infrared (0.7 to<br />

1.4 pm) lasers and laser systems which (a) emil an<br />

average accessible radiant power <strong>of</strong> 0.5 w or greater<br />

<strong>for</strong> periods ) 0.25 s or (b) produce a radiant exposure<br />

in excess <strong>of</strong> lOJ'cm-2. or a hazardous dill'<strong>use</strong><br />

reflection as defined in Table 3. <strong>for</strong> Deriods < 0.25 s<br />

3.4 Environment in Which <strong>the</strong> Laser is Used. Following<br />

laser or laser system classification, environmental<br />

factors rcquire consideration. Their importance<br />

in <strong>the</strong> total hazard evaluation depends on <strong>the</strong><br />

laser classification. The decision by <strong>the</strong> LSO to<br />

employ additional control measures not specifically<br />

required in Section 4 <strong>of</strong> this standard, (or eliminate<br />

some thaa are), is influenced by environmental considerations<br />

principally <strong>for</strong> Class 3 and Class 4 lasers<br />

or laser Systems.<br />

The probability <strong>of</strong> personnel exposure to hazardous<br />

laser radiation shall be considered. This may be<br />

influenced by whe<strong>the</strong>r <strong>the</strong> laser is <strong>use</strong>d indoors or<br />

outdooni. Examples <strong>of</strong> indoor applications include<br />

lasers <strong>use</strong>d in a classroom, a machine shop, a closed<br />

research laboratory or on a factory production line.<br />

Examples <strong>of</strong> outdoor applications include lasers <strong>use</strong>d<br />

in a mining tunnel, a highway construction site, a<br />

military laser range, <strong>the</strong> atmosphere above occupied<br />

areas, a pipeline construction uench or in outer space.<br />

O<strong>the</strong>r environmental hazards (see Section 7) shall<br />

also be considered.<br />

If exposure <strong>of</strong> unprotected personnel to <strong>the</strong> primary<br />

or specularly reflected beam is possible, determination<br />

<strong>of</strong> <strong>the</strong> inadiance or radiant exposure <strong>for</strong> ihe primary<br />

or specularly reflected beam at that specific<br />

location, or <strong>of</strong> <strong>the</strong> radiance <strong>of</strong> an extended source, is<br />

required. (See Appendix B.)<br />

Where applicable, e.9., in <strong>the</strong> presence <strong>of</strong> unenclosed<br />

Class 3b and Class 4 beam paths, <strong>the</strong> LSO shall be<br />

responsible <strong>for</strong> establishing <strong>the</strong> Nominal Hazard<br />

Zone (NHZ). The NHZ describes <strong>the</strong> space within<br />

which <strong>the</strong> level <strong>of</strong> direct, reflected or scattered radiation,<br />

during normal operation, exceeds <strong>the</strong> applicable<br />

MPE. If <strong>the</strong> beam <strong>of</strong> an unenclosed Class 3b or<br />

Class4 laser or laser system is contained within a<br />

region by adequate control measures lo protecl<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

personnel from exposure to levels <strong>of</strong> radiation above<br />

<strong>the</strong> approp ote MPE, thst region may bc considcrcd<br />

ro conhin <strong>the</strong> NHZ. The NHZ may be determined by<br />

in<strong>for</strong>mation supplied by <strong>the</strong> laser or laser system<br />

manufacturer, by measurement, or by using <strong>the</strong><br />

appropriate laser range equation or o<strong>the</strong>r equivalent<br />

assessment as described in this $ection and<br />

Appendix B<br />

The LSO shall assure that consideration is given to<br />

dir6ct, reflected and scattered radiation in <strong>the</strong> establishment<br />

<strong>of</strong> boundaries <strong>for</strong> <strong>the</strong> laser conrolled area<br />

(see4.3.10). [f operation or maintenance peEonnel<br />

are required to be within <strong>the</strong> NHZ, appropriate control<br />

measures shall be established (see Section 4).<br />

During service, a temporary laser contf,olled area may<br />

be required (see 4.3. t2).<br />

Since <strong>the</strong> levels <strong>of</strong> radiation that escap€ <strong>the</strong> NHZ are<br />

maintained at or below <strong>the</strong> appropriate MPE, no additional<br />

controls are required outside <strong>the</strong> NHZ.<br />

Viewing <strong>the</strong> main beam or a specular laser hrget with<br />

an optical instrument is potentially hazardous due to<br />

<strong>the</strong> instrument's light-ga<strong>the</strong>ring capability (see<br />

4.3-5.2 and B4.5, examples 2l and 22). Use <strong>of</strong> such<br />

optical systems may <strong>the</strong>re<strong>for</strong>e effectively increase <strong>the</strong><br />

NHZ boundaries and must be considered in <strong>the</strong><br />

overall hazard analysis.<br />

3.4.1 lndoor Laser Operations. ln general, only<br />

<strong>the</strong> laser is considered in evaluating an indoor laser<br />

operation if <strong>the</strong> beam is enclosed or is operated in a<br />

controlled area. The step-by-steP procedure<br />

described in 3.4.1.1 through 3.4.1.4 is recommended<br />

fbr evaluaaion <strong>of</strong> <strong>the</strong> NHZ <strong>of</strong> laser and laser systems<br />

when <strong>use</strong>d indoors if <strong>the</strong>re is a potential <strong>for</strong> exposure<br />

<strong>of</strong> unprotected personnel. In this evaluation consider<br />

all optics (lenses, mimors, fiber optics, etc.) which<br />

are a perrnanent pan <strong>of</strong> <strong>the</strong> laser beam Path,<br />

3.4.1.1 Step l. Detemine and evaluate <strong>the</strong><br />

NHZ <strong>of</strong> all possible beam paths. Include multiple<br />

beam paths due to lack <strong>of</strong> fixed positioning and unintended<br />

Lream paths due to unstable mounts, bearing<br />

wear, vibration, etc]<br />

3,4.1.2 Step l. Determine <strong>the</strong> NHZ <strong>for</strong> specular<br />

reflections (as fi1)m optical surfaces).<br />

3.4.1.3 Step tl. Determine <strong>the</strong> exient <strong>of</strong> hazardous<br />

diff<strong>use</strong> reflections if <strong>the</strong> emergent laser beam is<br />

foc<strong>use</strong>d. Hazardori; diff<strong>use</strong> reflections are possible<br />

from a foc<strong>use</strong>d or imall-diameter beam <strong>of</strong> a Class 3<br />

laser. However, <strong>the</strong> angular subtense <strong>of</strong> <strong>the</strong> source is<br />

normally sufficiently small at all practical viewing<br />

distances that intrabeam MPEs apply. Determine <strong>the</strong>


AMERICAN NATIONAL STANDARD 2I36. I. I 986<br />

NHZ.<br />

3.4.1.4 Slep 4. Determine <strong>the</strong> likelihood <strong>for</strong><br />

operation or maintenance personnel to be within <strong>the</strong><br />

NHZ during normal operation.<br />

3.4.15 Step 5. Determine if o<strong>the</strong>r (nonlas€r)<br />

hazards exist (see Section ?, Special Considerations),<br />

3,4.2 Outdoor Laser Operaaions Over<br />

Extended Distances. The total hazard evaluation <strong>of</strong><br />

a particular laser system depends on defining <strong>the</strong><br />

extent <strong>of</strong> several potentially hazardous conditions. In<br />

this evaluation, consider all optics (lenses, mirrors,<br />

fiber optics etc.) which are a permanent part <strong>of</strong> lhe<br />

laser beam path. This may be done in a step-by-step<br />

manner, as given in 3.4.2.I through 3.4.2.5.<br />

3.4.2.1 Step l Determine <strong>the</strong> NHZ <strong>of</strong> <strong>the</strong><br />

laser, Calculations <strong>of</strong> radiant exposure or beam irradiance<br />

as a function <strong>of</strong> ftrnge can be made with <strong>the</strong><br />

raDge equation <strong>for</strong> a circular beam (see Appendix B).<br />

These calculated ranges are only estimates beyond a<br />

few hundred meters. since uncertainties arise from<br />

atmospheric effects (<strong>for</strong> example, scintillation due to<br />

turbulence; see ?,6.3).<br />

3.4.2.2 Step 2. Evaluate potential hazards<br />

from transmission through windows and specular<br />

reflections, Specular surfaces ordinarily encountered<br />

(<strong>for</strong> example, windows and mirrors in vehicles and<br />

windows in buildings) arc oriented vertically and will<br />

usually reflect a horizontal beam in a horizontal<br />

plane.<br />

As much as 89o <strong>of</strong> <strong>the</strong> beam's original inadiance or<br />

radiant exposure can be reflected toward <strong>the</strong> laser<br />

from a clear glass window which is oriented perpendicular<br />

to <strong>the</strong> beam. If <strong>the</strong> beam strikes a flat, specular<br />

surface at an angle, a much greater percentage <strong>of</strong><br />

<strong>the</strong> beam can be reflected beyond or to <strong>the</strong> side <strong>of</strong> <strong>the</strong><br />

target area. If <strong>the</strong> beam strikes a still pond or o<strong>the</strong>r<br />

similar surface at a grazing angle, effective<br />

reflectivity also may be high. Specular reflective surfaces,<br />

such as raindrops, wet leaves, and most o<strong>the</strong>r<br />

shiny natural objects, seldom reflect hazardous radiant<br />

intensities beyond a meter from <strong>the</strong>sc reflectors.<br />

3.4.2.3 Step 3. Determine whe<strong>the</strong>r hazardous<br />

diff<strong>use</strong> reflections exist (see Table 3 and 8.3.2.3,<br />

Examples 8 and 9). Determine <strong>the</strong> coresponding<br />

NHZ.<br />

3.4.2.4 Step 4. Evaluate <strong>the</strong> stabiliry <strong>of</strong> rhe<br />

laser platfom to determine <strong>the</strong> extent <strong>of</strong> lateral range<br />

control and <strong>the</strong> lateral constraints that should be<br />

placed on <strong>the</strong> beam traverse. Determine <strong>the</strong><br />

l0<br />

corresponding NHZ during normal operatlon.<br />

3.4.2.5 Step 5, Consider <strong>the</strong> likelihood <strong>of</strong> people<br />

being in <strong>the</strong> NHZ.<br />

3.5 Personn€I. The personnel who may b€ in <strong>the</strong><br />

vicinity <strong>of</strong> a laser and its emitted beam(s), including<br />

maintenance personnel, service personnel and <strong>the</strong><br />

operator, can influence <strong>the</strong> total hazard evaluation<br />

and hence influence <strong>the</strong> decision to adopt additional<br />

control measures not specifically required <strong>for</strong> <strong>the</strong><br />

class <strong>of</strong> laser being employed. This depends upon <strong>the</strong><br />

classification <strong>of</strong> <strong>the</strong> laser or laser system.<br />

35.1 If children or o<strong>the</strong>rs unable to read or und€rstand<br />

waming labels may be exposed to potentially<br />

hazardous laser radiation, <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> hazard<br />

is affected and control measures may require<br />

appropriate modifi cation.<br />

3.5.2 The type <strong>of</strong> personnel influences <strong>the</strong> total<br />

hazard evaluation. It must be kept in mind that <strong>for</strong><br />

certain lasers or laser systems (<strong>for</strong> example, military<br />

laser rangefinders and some lasers <strong>use</strong>d in <strong>the</strong> construction<br />

industry), <strong>the</strong> principal hazard conrol rests<br />

with <strong>the</strong> operator, whose responsibility is to avoid<br />

aiming <strong>the</strong> laser at personnel or flat mirrorlike surfaces.<br />

The following are considerations regarding operating<br />

personnel and those who may be exposed:<br />

( | ) Maturity <strong>of</strong>judgment <strong>of</strong> <strong>the</strong> laser <strong>use</strong>r(s)<br />

(2) General level <strong>of</strong> training and experience <strong>of</strong> laser<br />

<strong>use</strong>r(s) (that is, whe<strong>the</strong>r high school students, military<br />

personnel, production line operators, scientists, etc.)<br />

(3) Awareness on <strong>the</strong> part <strong>of</strong> onlookers that potentially<br />

hazardous laser radiation may b€ present and<br />

<strong>the</strong> relevant safety precautions<br />

(4) Degree <strong>of</strong> training in laser safety <strong>of</strong> all individuals<br />

involved in <strong>the</strong> laser's operation<br />

(5) Reliability <strong>of</strong> individuals to follow standard<br />

operating procedures (SOP) and recommended control<br />

procedures<br />

(6) Number <strong>of</strong> individuals and <strong>the</strong>ir location relative<br />

to <strong>the</strong> pdmary beam or reflections, and potential <strong>for</strong><br />

accidental exposure<br />

(71 O<strong>the</strong>r hazards not due to laser radiation which<br />

may ca<strong>use</strong> <strong>the</strong> individuals to rEact unexpectedly or<br />

which influence <strong>the</strong> choice <strong>of</strong> personnel protective<br />

equipment<br />

NOTE: Examples <strong>of</strong> typical lasers classified in accordance<br />

with this standard are given in Appendix A. Examples <strong>of</strong>


AMERICAN NATIONAL STANDARD ZI36.I - 1986<br />

diagnostic, <strong>the</strong>rapeutic, or medical research purposes,<br />

by or under <strong>the</strong> direction <strong>of</strong> qualified pr<strong>of</strong>essionals<br />

engaged in <strong>the</strong> healing arts. However, those administering<br />

and assisting in <strong>the</strong> administering <strong>of</strong> <strong>the</strong> laser<br />

radiation as well as <strong>the</strong> patient where applicable, shall<br />

be protected by <strong>the</strong> control measures as outlined<br />

hercin, and, as applicable, to <strong>the</strong> requirements as<br />

specified in <strong>the</strong> American National Standard <strong>for</strong> Laser<br />

Safety in Health Care Faciliries, ANSI Zt 36.3.<br />

4.1.4 El€ctrical, Beam Int€raction, and o<strong>the</strong>r<br />

Associated Hazards. The ancillary hazards associated<br />

with <strong>the</strong> <strong>use</strong> <strong>of</strong> laser or laser systems can be<br />

significant. For example, loss <strong>of</strong> life has occuned<br />

during elecrical servicing and testing <strong>of</strong> laser equipment<br />

incorporaiing high-voltage power supplies.<br />

In addition, toxic fumes, particulates and intense<br />

blackbody radiation (which can prcsent additional<br />

eye hazards) may be released during <strong>the</strong> interaction <strong>of</strong><br />

laser energy with materials. The controls <strong>for</strong> associated<br />

hazards are included in this section. and Section<br />

?.<br />

4.2 Laser Safety Officer (LSO). The LSO shall<br />

have <strong>the</strong> responsibility and authority to monitor and<br />

en<strong>for</strong>ce <strong>the</strong> control <strong>of</strong> laser hazards and effect fte<br />

knowledgeable evaluation and control <strong>of</strong> laser<br />

hazards. This shall include, but not be limited to,<br />

such actions as establishing an NHZ, approving standard<br />

operating procedures (SOP's), avoiding<br />

unnecessary or duplicate controls, seleclion ol allernate<br />

controls and training. (See Sections l, 3, 5 and<br />

Appendix D.)<br />

4.3 Engineering Controls. The engineering control<br />

measules fol a )aser ol laser sysrems are as specified<br />

in4.3.1to4.3.15.<br />

Although corimercial laser products ihanufactured in<br />

compliance with <strong>the</strong> Federal Laser Product Pedormance<br />

Standard will be certified by <strong>the</strong> manufacturer<br />

and will incorporate some engineering controls, <strong>the</strong><br />

<strong>use</strong> <strong>of</strong> <strong>the</strong> additional conhols outlined in this section<br />

shall be considered in order to reduce <strong>the</strong> potential lbr<br />

hazard associated with some applications <strong>of</strong> lasers<br />

and laser systems.<br />

The engineering controls (per<strong>for</strong>mance features)<br />

which are supplied by <strong>the</strong> mtmufacturer <strong>of</strong> cenified<br />

products and are <strong>use</strong>d in this documenl are described<br />

in 4.3. l, 4.3.2, 4.3.-1, 4.3.4, 4.3.5. l, 4.3.7, 4.3.tt. 4.3.9,<br />

and 4.3.14.<br />

NOTE: Lasers and laser systems which have been altered<br />

by o<strong>the</strong>r than <strong>the</strong> <strong>use</strong>r may necessitatc rccenilication,<br />

reclassilication and compliance reporl;ng under <strong>the</strong><br />

t1<br />

requirements <strong>of</strong> <strong>the</strong> Federal Laser hoducl Per<strong>for</strong>mance<br />

Standard.<br />

4,3.1 Protective Housings: (All Classes). A protective<br />

housing shall be provided (except as noted in<br />

4.3. l.l ) <strong>for</strong> all classes <strong>of</strong> lasers or laser systems. (See<br />

4.4.8) The pmtective housing may require interlocks<br />

(4.3.2) and labels (4.7).<br />

43,1.1 Laser Use without Protecaive Housing:<br />

(All Classes). In some circumsiances, such as<br />

research and development and during <strong>the</strong> manufacture<br />

<strong>of</strong> la.sers, operation <strong>of</strong> laser or laser systems<br />

without a protective housing may become necessary.<br />

In such cases <strong>the</strong> LSO shall determine <strong>the</strong> hazard and<br />

ensure that controls are instituted appropriate to <strong>the</strong><br />

class <strong>of</strong> maximum accessible emission to assure safc<br />

operation. These controls may include, but not b€<br />

limited to:<br />

(l) access restriction (see 4.3.10)<br />

(2) eye protection (see 4.6.?)<br />

(3) area controls (see 4.3.10 and 4.3.1 l)<br />

(4) barriers, shrouds, beam stops etc. (see<br />

4.3.8)<br />

(5) administrative and pmcedural controls<br />

(see 4.4)<br />

(6) education and training (Section 5)<br />

43,2 Interlocks on Removablc Protective<br />

Housings (Embedded Class 3a, Class 3b or Class<br />

4). Protective housings which enclose embedded<br />

Class 3a, Class 3b or Class 4 lasers or laser systems<br />

shall be provided with an interlock system which is<br />

activated when <strong>the</strong> protective housing is intended to<br />

be opened during operation and maintenance. The<br />

interlock or interlock sysrem shall be designed to<br />

prevent access to laser radiation above <strong>the</strong> applicable<br />

MPE. The interlock may, <strong>for</strong> example, be electrically<br />

or mechanically interfaced to a shutter which interrupts<br />

<strong>the</strong> beam when <strong>the</strong> protective housing is<br />

removed (see 7.4.2 <strong>for</strong> electrical design criteria).<br />

Failsafe interlocks shall be provided <strong>for</strong> any ponion<br />

<strong>of</strong> <strong>the</strong> protective housing which, by design, can be<br />

removed or displaced during normal operaiion and<br />

maintenance and <strong>the</strong>reby allows access to laser radialion<br />

<strong>of</strong> an embedded Class 3b or Class 4 laser. One<br />

method to fulfill <strong>the</strong> fail-safe requirement is <strong>the</strong> <strong>use</strong><br />

oI redundanl electrical series-connected interlocks.<br />

The protective housing interlock shall not be defeated<br />

or overridden during operation.


t<br />

The LSO should periodically confirm that protective<br />

hou$ing interlocks are functional.<br />

Adjustments or procedures during service on lasers or<br />

laser systems containing interlocks shall not ca<strong>use</strong> <strong>the</strong><br />

interlocks to be inoperative when <strong>the</strong> equipment is<br />

restored to its normal operational condition, except ns<br />

noted in 4.3.1.1.<br />

4.3.3 Service Access Panels: (Embedded Class<br />

3b or Class 4). Ponions <strong>of</strong> <strong>the</strong> protective housing<br />

which are intended to be removed only by service<br />

personnel and permit direct access to laser radiation<br />

associated with an emb€dded Class 3b or Class 4<br />

laser or laser system shall ei<strong>the</strong>r:<br />

(l) be interlocked (fail-safe interlock nol<br />

required), or<br />

(2) require a tool <strong>for</strong> removal and shall have an<br />

appropriate warning label (see 4.7) on <strong>the</strong> panel.<br />

If <strong>the</strong> interlock can be bypassed or defeated, a waming<br />

label with <strong>the</strong> appropriate indicarions shall be<br />

located on or near <strong>the</strong> interlock. The design shall not<br />

permit <strong>the</strong> service access panel to be replaced with<br />

<strong>the</strong> interlock bypassed or defeated.<br />

4.3,4 Master Switch: (Class 3b or Class 4), A<br />

Class 3b laser or laser system should be provided<br />

with a master switch. A Class 4 laser or laser system<br />

shall be provided with a master switch. This mdster<br />

switch shalt be operated by a key, or by a coded<br />

access (such as a computer code).<br />

The authority <strong>for</strong> access to <strong>the</strong> master switch shall be<br />

vested in <strong>the</strong> appropriate supervisory personnel. The<br />

master switch shall be disabled when <strong>the</strong> laser or<br />

laser system is not intended to be <strong>use</strong>d.<br />

4.3.5 Vlewing Portals and Collecting Opaics<br />

4.3.5.1 Viewing Portals and Display Screens:<br />

(Class 2' Class 3a, Class 3b or Class 4). All viewing<br />

ponals and/or display screens included as an<br />

integral part <strong>of</strong> a Class 2, Class 3a, Class 3b or<br />

Class 4 laser or laser system shall incorporate a suitable<br />

means (such as interlocks, filters, attenuators) to<br />

maintain <strong>the</strong> laser radiation at <strong>the</strong> viewing position at<br />

or below <strong>the</strong> applicable MPE <strong>for</strong> all conditions <strong>of</strong><br />

operation and maintenance.<br />

4.3,5.2 Collecting Optics (Class 2, Class 3a,<br />

Class 3b or Class 4). All collecting optics (such as<br />

lenses, telescopes, microscopes, endoscopes, etc.,)<br />

intended <strong>for</strong> viewing <strong>use</strong> with a laser or laser system<br />

shall incorporate suitable means (such as interlocks,<br />

filters, attenuators) !o maintain <strong>the</strong> laser radiation<br />

transmitted through <strong>the</strong> collecting optics to l€vels at<br />

AMERICAN NATIONAL STANDARD 2136,I.I986<br />

or below <strong>the</strong> appropriate MPE, under all conditions<br />

ol operation and maintenance.<br />

NOTE: Normal or prescription eyeweal are nor considered<br />

collecting optics.<br />

4.3.6 Beam Paths: (Class 3b or Class 4). Control<br />

<strong>of</strong> lhe laser b,:am path shall be accomplished as<br />

described in <strong>the</strong> following sections. (AIso, see<br />

Appendix B.)<br />

4.3.6.1 Totally Unenclosed Beam Path:<br />

(Class 3b or Class 4). In applications <strong>of</strong> Class 3b or<br />

Class 4 lasers or laser systems where fte entire beam<br />

path is unenclosed, a laser hazard analysis shall be<br />

effected by <strong>the</strong> LSO to establish <strong>the</strong> NHZ if not furnished<br />

by <strong>the</strong> manufacturer or available as part <strong>of</strong> <strong>the</strong><br />

classification (see 3.4).<br />

The analysis will define <strong>the</strong> area where laset radiation<br />

is accessible at levels above <strong>the</strong> appropriate MPE and<br />

will define <strong>the</strong> zone requiring control measures. A<br />

laser controlled area shall be established in this zone<br />

(see 4.3.10 and 4.3. | | ) and appropriate control measures<br />

shall be implemented based upon <strong>the</strong><br />

clussification associated with <strong>the</strong> maximum level <strong>of</strong><br />

accessible laser radiation.<br />

4.3.6.2 Limited Open Beam Path: (Class 3b<br />

or Class 4). In applications <strong>of</strong> Class 3b or Class 4<br />

lasers or laser systems where <strong>the</strong> beam path is<br />

confrned by design to significantly limit <strong>the</strong> degree <strong>of</strong><br />

accessibility <strong>of</strong> <strong>the</strong> open beam, a hazard analysis shall<br />

be effected by <strong>the</strong> LSO ro establish <strong>the</strong> NHZ<br />

(see 3.4). The LSO shall establish controls approPriate<br />

to <strong>the</strong> magnitude and exte[t <strong>of</strong> <strong>the</strong> accessible radiallon,<br />

Frequently <strong>the</strong> hazard analysis will define an<br />

extremely limited NHZ and procedural controls can<br />

pmvide adequate Protection.<br />

4.3.6.3 Enclosed Beam Palh: (All Classes).<br />

In applicaiions <strong>of</strong> laser or laser systems where <strong>the</strong><br />

entire beam path is enclosed, and <strong>the</strong> enclosure<br />

fulfills all requirements <strong>of</strong> a protective housing (i.e.,<br />

limits <strong>the</strong> exposure to <strong>the</strong> MPE; see 4.3.1 and 4.3 2),<br />

<strong>the</strong> requirements <strong>of</strong> Class I are fullilled and no<br />

fur<strong>the</strong>r controls are required.<br />

When <strong>the</strong> protective housing requirements are temporarily<br />

relaxed, such as during service, <strong>the</strong> LSO<br />

shall establish <strong>the</strong> appropriate controls. These may<br />

include a temporary area control (see4.3.12) and<br />

adminisrative and procedural controls (see 4.4).


AMERICAN NATIONAL STANDARD ZI 36.I. I986<br />

43,7 Remoae Interlock Connector: (Class 3b or<br />

Class 4). A Class 3b laser or laser system should be<br />

provide.d with a remote interlock connector. A<br />

Class 4 laser or laser system shall b€ provided with a<br />

remote interlock connector.<br />

The interlock connector facilitates electrical connections<br />

to an emergency mastet disconnector interlock,<br />

or to a room, entryway, floor, or area interlock, as<br />

may be required <strong>for</strong> a Class 4 controlled area (see<br />

4.3.10.2).<br />

When <strong>the</strong> terminals <strong>of</strong> <strong>the</strong> connector are open circuited,<br />

<strong>the</strong> accessible radiation shall not exceed <strong>the</strong><br />

appropriate MPE levels.<br />

4.3,E Beam Stop or Attenuators (Class 3a,<br />

Class 3b or Class 4), A Class 3a or a Class 3b laser<br />

or laser system shoutd be provided with a permanently<br />

attached tream stop or attenuator.<br />

A Class 4 laser or laser system shall be provided with<br />

a permanently attached beam stop or attenuator.<br />

The beam stop or attenuator shall be capable <strong>of</strong><br />

preventing access to laser radiation in excess <strong>of</strong> <strong>the</strong><br />

appropriate MPE levet when <strong>the</strong> laser or laser system<br />

output is not requircd.<br />

There are many instances, such as during service,<br />

when a temporary beam attenuator placed over <strong>the</strong><br />

beam aperture can reduce <strong>the</strong> level <strong>of</strong> accessible laser<br />

radiation to levels below <strong>the</strong> applicable MPE level.<br />

Such a practice can replace <strong>the</strong> requirements <strong>for</strong> laser<br />

eye protection <strong>for</strong> some critical alignment procedures.<br />

4.3.9 Laser Activation Warning Systems:<br />

(Class 3b or Class 4). An alarm (<strong>for</strong> example, an<br />

audible sound such as a bell or chime), a waming<br />

light (visible through protective eyewear), or a verbal<br />

"countdown"<br />

command should be <strong>use</strong>d with<br />

Class 3b, and shall be <strong>use</strong>d with Class 4 lasen or<br />

laser systems during activation or startup.<br />

Distinctive and clearly identifiable sounds which<br />

arise from auxiliary equipment (such as a vacuum<br />

pump or fan) and which are uniquely associated with<br />

<strong>the</strong> emission <strong>of</strong> laser radiation are acceptable as an<br />

audible waming.<br />

4.3,9.1 Emissior Delay (Class 4). For Class 4<br />

lasers or laser systems, <strong>the</strong> waming systcm shall be<br />

activated a sufficient time prior to emission <strong>of</strong> laser<br />

radiation to allow appropriate action to be taken to<br />

avoid exposure to <strong>the</strong> laser radiation.<br />

t4<br />

4.3.10 Indoor Laser Controlled Area (Class 3b<br />

or Class 4). A laser hazard analysis, including determination<br />

<strong>of</strong> <strong>the</strong> NHZ, shall be effected by <strong>the</strong> LSO.<br />

If <strong>the</strong> analysis determines that <strong>the</strong> classification associated<br />

with <strong>the</strong> maximum level <strong>of</strong> accessible radiation<br />

is Class 3b or Class 4, a laser conuolled area shall be<br />

established and adequate control measurcs instituted<br />

(see 4.3.10.1 or 4.3.10.2).<br />

NOTE: The rcquirements <strong>for</strong> nonenclosed laseN or laser<br />

systems inyolving <strong>the</strong> general public are detailed in 4.5.1.<br />

4.3.10.1 Class 3b Laser Controlled Are:<br />

(Class 3b). The Class 3b laser controlled area shall:<br />

(l)Be posted with <strong>the</strong> appropriate waming<br />

sign(s) (see 4,7), except as detailed in 4.5.1.10<br />

(2) Be operated by qualified and authorized<br />

personnel<br />

(3) Be operated in a manner such that <strong>the</strong> path<br />

is limited when <strong>the</strong> NHZ <strong>of</strong> <strong>the</strong> laser beam must exit<br />

an indoor controlled area, particularly to <strong>the</strong> outdoors<br />

under adverse atmospheric conditions, i.e., rain, fog,<br />

snow, etc. See 4.3.1 I or 7.6<br />

In addition to <strong>the</strong> above, a Class 3b contmlled arca<br />

should:<br />

(l) Be under <strong>the</strong> direct supervision <strong>of</strong> an individual<br />

knowledgeable in laser safety<br />

(2) Be so located that access to <strong>the</strong> area by<br />

spectators is limited and requires approval, except as<br />

detailed in 4.5<br />

(3) Have any potentially hazardous beam terminated<br />

in a beam stop <strong>of</strong> an appropriate material<br />

(4) Have only diff<strong>use</strong> reflective materials in or<br />

near <strong>the</strong> beam path, where feasible<br />

(5) Have personnel within <strong>the</strong> controlled arca<br />

provided with <strong>the</strong> appropriate eye protection if <strong>the</strong>re<br />

is any possibility <strong>of</strong> viewing <strong>the</strong> direct or reflected<br />

beams<br />

(6) Have <strong>the</strong> laser secured such that <strong>the</strong> beam<br />

path is above or below eye level <strong>of</strong> a person in any<br />

standing or seated position, except as required <strong>for</strong><br />

medical <strong>use</strong><br />

(7) Have all windows, doorways, open ponals,<br />

etc. from an indoor facility be ei<strong>the</strong>r covered or restricted<br />

in such a manner as to r€duce <strong>the</strong> transmitted<br />

laser radiation to levels at or below <strong>the</strong> appmpriate<br />

ocular MPE<br />

(8) Requirc storage or disabling (<strong>for</strong> example,<br />

removal <strong>of</strong> <strong>the</strong> k€y) <strong>of</strong> <strong>the</strong> laser or laser system when


not in <strong>use</strong> to prcvent unauthorized <strong>use</strong><br />

4.3.10.2 Class 4 Laser Controlled Ar€g<br />

(Class 4). All personnel who regularly require entry<br />

into a Class 4 laser controlled area shall be adequately<br />

trained, provided with appropriate protecrive<br />

equipment, and follow all applicable administrative<br />

and procedural controls.<br />

All Class 4 area/entryway safety controls shall be<br />

designed to allow both rapid egrrss by laser person.<br />

nel at all times and admiB,ance to <strong>the</strong> laser controlled<br />

area under emergency conditions.<br />

For emergency conditions <strong>the</strong>rc shall be a clearly<br />

marked<br />

"Panic Button" (remote controlled connector<br />

or equivalent device) available <strong>for</strong> deactivating <strong>the</strong><br />

laser or reducing <strong>the</strong> output to <strong>the</strong> appropdate MPE<br />

levels.<br />

The Class 4 laser controlled area shatl be designed to<br />

fullill all items <strong>of</strong> 4.3.10.1, and in addition shall<br />

incorporate one <strong>of</strong> <strong>the</strong> following altematives.<br />

( I ) Non-Defeatable (non-override) Area,/Entryway<br />

Safety Controls.<br />

Non-defeatable safely latches, entryway or area inLerlocks<br />

(e.g., electrical switches, pressure sensitive<br />

floor mats, infrared or sonic detectors) shall be <strong>use</strong>d<br />

to deactivate <strong>the</strong> laser or reduce lhe output to <strong>the</strong><br />

appropriate MPE levels in <strong>the</strong> event <strong>of</strong> unexpected<br />

entry into <strong>the</strong> laser controlled area. (See Figure 2a).<br />

(2) Defeatable Area/Entryway Safery Controls.<br />

Defeatable safety latches, entryway or area interlocks<br />

shall be <strong>use</strong>d if non-defeatable area/entryway safety<br />

controls limit <strong>the</strong> intended <strong>use</strong> <strong>of</strong> <strong>the</strong> laser or laser<br />

system. For example, during normal usage requiring<br />

operation without interruption (e.9., long telm testing,<br />

medical procedures, surgery), if it is clearly evident<br />

that <strong>the</strong>re is no oplical radiation hazard at <strong>the</strong> point <strong>of</strong><br />

entry, override <strong>of</strong> <strong>the</strong> safety controls shall be permitted<br />

to allow access to authorized personnel provided<br />

that <strong>the</strong>y have been adequately trained and provided<br />

with adequate personal protective equipment. (See<br />

Figure 2a.)<br />

(3) Procedural Area,/Entryway Safety Controls.<br />

Where safety latches or interlocks are not feasible or<br />

are inappropriate, <strong>for</strong> example during medical procedures,<br />

surgery, etc., <strong>the</strong> followi[g shall apply (see<br />

Fig.2b):<br />

(a) All authorized personnel shall be adequately<br />

trained and adequate personal protective<br />

AMERICAN NATIONAL STANDARD 2I36.I -I986<br />

equipment shall be provided upon enry<br />

(b) A door, blocking barrier, screen, curtains,<br />

etc. shall be <strong>use</strong>d to block, scrcen or attenuate<br />

<strong>the</strong> laser radiation at <strong>the</strong> entryway. The level <strong>of</strong> laser<br />

radiation at <strong>the</strong> exterior <strong>of</strong> <strong>the</strong>se devices shall not<br />

exceed <strong>the</strong> applicable MPE, nor shall personnel<br />

experience any exposure above <strong>the</strong> MPE immediately<br />

upon entry<br />

(c) From <strong>the</strong> entryway <strong>the</strong>re shall be a<br />

visible or audible signal indicating that <strong>the</strong> laser is<br />

energized and operating at Class 4 levels. A lighted<br />

laser waming sign or flashing light are two <strong>of</strong> <strong>the</strong><br />

appropriate methods to accomplish this requirement<br />

4.3.11 Outdoor Control Measures (Class 3b or<br />

Class 4). A Class 3b or Class 4 laser or laser system<br />

<strong>use</strong>d outdoors shall meet <strong>the</strong> following requircments:<br />

(l) The LSO shall effect an analysis to establish<br />

<strong>the</strong> NHZ if not available as pan <strong>of</strong> <strong>the</strong><br />

classification documentation nor fumished bv <strong>the</strong><br />

manufacturer<br />

(2) Unprotected, ultrained and unauthorized<br />

personnel shall be excluded from <strong>the</strong> beam path at all<br />

points where <strong>the</strong> appropriate MPE is exceeded<br />

(3) Appmpriate combinations <strong>of</strong> physical barriers,<br />

screening, protective eye and body wear or<br />

appropriate adminisirative controls shall be <strong>use</strong>d if<br />

personnel are permitted within <strong>the</strong> NHZ<br />

(4) Directing <strong>the</strong> laser beam toward automobiles,<br />

aircraft or o<strong>the</strong>r manned vehicles shall be prohibited<br />

within <strong>the</strong> NHZ<br />

(5) The laser beam path shall not be maintained<br />

at or near personnel eye level without specific authorization<br />

<strong>of</strong> <strong>the</strong> LSO<br />

(6) The beam path shall be terminated where<br />

possible<br />

(7) When <strong>the</strong> laser is not being <strong>use</strong>d, it shall be<br />

disabled in a manner that prcvents unauthorized <strong>use</strong><br />

(8) Only qualified rmd authorized personnel<br />

shall operate <strong>the</strong> laser or laser system<br />

(9) The operation <strong>of</strong> Class 4 lasers or laser systems<br />

during rain or snow-fall or in fog or dusty atmosphere<br />

may produce hazardous reflections near <strong>the</strong><br />

beam. In such applications, <strong>the</strong> LSO shall effect an<br />

evaluation <strong>of</strong> <strong>the</strong> need <strong>for</strong>, and specify <strong>the</strong> <strong>use</strong> <strong>of</strong>,<br />

appropriate personal protective equipment<br />

t5


AMERICAN NATIONAL STANDARD 2136,I.1986<br />

4.3.12 Temporary Laser Controlled Area<br />

(Embedded Class 3b or Class 4). In those conditions<br />

where removal <strong>of</strong> panels or protective housings,<br />

over-riding <strong>of</strong> protective housing interlocks, or entry<br />

into <strong>the</strong> NHZ becomes necessary (such as <strong>for</strong> service),<br />

and <strong>the</strong> accessible laser radiation exceeds th€<br />

applicable MPE, a temporary laser controlled area<br />

shall be devised <strong>for</strong> an embedded Class 3b or Class 4<br />

laser or laser system.<br />

Such an area, which by its nature will not have <strong>the</strong><br />

built-in proteclive features as defined <strong>for</strong> a laser controlled<br />

area, shall provide all safety requirements <strong>for</strong><br />

all personnel, both within and without.<br />

A notice sign (see 4.7.4.3) shall be posted outside <strong>the</strong><br />

temporary laser controlled area to wam <strong>of</strong> <strong>the</strong> potential<br />

hazafi.<br />

4.3.13 Remole Firing and Monitoring (Class 4).<br />

Whenever appropriate and possible, Class 4 lasers or<br />

laser systems should be monitored and fired from<br />

remote positions. The remote console should also<br />

include a laser activation waming system.<br />

4.3.14 Equipment Lab€lsr (All Classes Except<br />

Class l). All lasers or laser sysaems (except Class l)<br />

shall have appropriate waming labels (see 4.7) with<br />

<strong>the</strong> appropriate cautionary statement. The label shall<br />

be affixed to a conspicuous place on <strong>the</strong> laser housing<br />

or control panel. Such labels should be placed on<br />

both <strong>the</strong> housing and <strong>the</strong> control panel if <strong>the</strong>se are<br />

separated by more than 2 meters.<br />

NOTE: A Class 2a laser requires a label, but no symbol.<br />

Additional wording <strong>for</strong> non-laser hazards may bc required<br />

(see 7.4-61.<br />

4,3.15 Area Posting Signs (Class 2, Class 3a,<br />

Class 3b or Class 4). An area which contains a<br />

Class 2 or Class 3a laser or laser system should be<br />

posted with <strong>the</strong> appropriate sign as described in 4.7,<br />

except as noted in 4.5. l.10.<br />

An area which contains a Class 3b or Class 4 laser or<br />

laser system shall be posted with <strong>the</strong> appropriate sign<br />

as described in 4.7-<br />

A notice sign, as described in 4.7, shall be posted outside<br />

a temporary laser controlled area.<br />

4.4 Administrative and Procedural Controls.<br />

Administrative and procedural controls are methods<br />

or instructions which specify rules, or work practices,<br />

or both, which implement or supplement engineering<br />

contrcis and which may specify thc <strong>use</strong> <strong>of</strong> personal<br />

protcctive cquipmcnt. Unless o<strong>the</strong>rwise specilied,<br />

administrative and procedural controls shall apply<br />

l6<br />

only to Class 3b and Class 4 lasers or laser systems.<br />

4.4.1 Standard Opersting Procedures: (Class<br />

3b or Class 4). The LSO should require approved<br />

written standard operating, maintenance and sewice<br />

procedures (SOP's) <strong>for</strong> Class 3b lasers or laser systems.<br />

The LSO shall require and approve written<br />

SOP'S <strong>for</strong> Class 4 lasers or laser systems. These<br />

written SOP's shall be maintained with <strong>the</strong> [aser<br />

equipment <strong>for</strong> rcference by <strong>the</strong> op€rator. and maintenance<br />

or service personnel.<br />

4.4.2 Output Emission Limitations: (Class 3a,<br />

Class 3b or Class 4). If, in <strong>the</strong> opinion <strong>of</strong> <strong>the</strong> LSO,<br />

excessive power or radiant energy is accessible during<br />

operation and maintenance, <strong>the</strong> LSO shall take<br />

such action as required to rcduce <strong>the</strong> levels <strong>of</strong> accessible<br />

power or radiant energy to that which is commensurate<br />

with <strong>the</strong> required applicaaion.<br />

4.4.3 Education and Training: (Class 2, Class<br />

3a, Class 3b or Class 4). Education and training<br />

shall be provided <strong>for</strong> operators, maintenance or service<br />

personnel <strong>for</strong> Class 3a, Class 3b or Class 4 lasers<br />

or laser systems, Education and raining should be<br />

providcd <strong>for</strong> opcratoni. maintenance or service personnel<br />

<strong>for</strong> Class 2 lasers or laser systems. The level<br />

<strong>of</strong> training shall be commensurate with <strong>the</strong> level <strong>of</strong><br />

potential hazard (see Section 5 and Appendix D).<br />

4.4.4 Authorized Personnel (Class 3b or Class<br />

4). Class 3b or Class 4 lasers or laser systems shall<br />

be operated, maintained or serviced only by authorized<br />

personnel. l-asers or laser systems with embedded<br />

Cla.ss 3b or Class 4 lasers shall be maintained or<br />

serviced only by authorized personnel if such procedures<br />

would permit access to levels which exceed<br />

<strong>the</strong> appropriate MPE (see Section 5).<br />

4.4.5 Alignment Procedures (Class 2, Class 3a'<br />

Class 3b or Class 4). Alignment <strong>of</strong> laser optical systems<br />

(mirrors, lenses, beam deflectors, etc.) shatl be<br />

per<strong>for</strong>med in such a manner that <strong>the</strong> primary beam, or<br />

a specular or diff<strong>use</strong> reflection <strong>of</strong> a beam, does not<br />

expose <strong>the</strong> eye to a level above <strong>the</strong> applicable MPE.<br />

Written procedures outlining alignment methods<br />

should be approved <strong>for</strong> Class 3b and shall be<br />

approved <strong>for</strong> Class 4 lasers or laser systems. The <strong>use</strong><br />

<strong>of</strong> low power (Class I or Class 2) visible lasers <strong>for</strong><br />

path simulation <strong>of</strong> higher power lasers is recommended<br />

<strong>for</strong> alignment <strong>of</strong> higher power Class 3b or<br />

Class 4 visible or invisible lasers and laser systems.<br />

Experience has shown that a significant ocular hazard<br />

muy exist during olignment procedures.


4.4,6 Eye Protection (Class 3b or Class 4). Eye<br />

protection devices which are speciRcally designed <strong>for</strong><br />

protection against radiation from Class 3b lasers or<br />

laser systems should be administratively required and<br />

<strong>the</strong>ir <strong>use</strong> en<strong>for</strong>ced when engineering or o<strong>the</strong>r procedural<br />

and admiui$trative controls are inadequate to<br />

eliminate potential exposure in excess <strong>of</strong> <strong>the</strong> appticable<br />

MPE (see 4.6).<br />

Eye protection devic€s which are specifically<br />

designed <strong>for</strong> protection against radiation from Class 4<br />

lasers or laser systems shall be administratively<br />

required and <strong>the</strong>ir <strong>use</strong> en<strong>for</strong>ced when engineering or<br />

o<strong>the</strong>r procedural and administrative controls are<br />

inadequate to eliminate potential exposure in excess<br />

<strong>of</strong> <strong>the</strong> applicable MPE (see 4.6).<br />

When long-term exposure to visible lasers is not<br />

intended, <strong>the</strong> applicable MPE <strong>use</strong>d to establish <strong>the</strong><br />

optical density requircment <strong>for</strong> eye protection may be<br />

based on a 0.25 second exposure (see 8-2).<br />

When viewing an extended source or <strong>the</strong> diff<strong>use</strong><br />

reflection <strong>of</strong> <strong>the</strong> beam from a Class 3b or Class 4<br />

la,ser or laser system where intermediate viewing time<br />

is intended, e.g., optical alignment procedures, <strong>the</strong><br />

applicable MPE should be based upon <strong>the</strong> maximum<br />

viewing time anticipated during any given 8 hour<br />

period. For example, a maximum viewing time <strong>of</strong><br />

600 seconds is applicable <strong>for</strong> most alignment procedures<br />

when viewing a diff<strong>use</strong>ly reflecting target.<br />

If <strong>the</strong> extended source criteria (8.3) is not applicable<br />

due to a small beam size, <strong>the</strong>n <strong>the</strong> exposure at <strong>the</strong><br />

comea from a diff<strong>use</strong> reflector may be estimated<br />

using <strong>the</strong> inverse square law relationship and <strong>the</strong><br />

intrabeam MPE criteria shall apply. See B.4.4.<br />

4.4.7 Spectators (Class 3b or Class 4). Spectators<br />

should not be permitted within a laser controlled<br />

area (see4.3.10 and 4.3.11) which contains a<br />

Class 3b laser or laser system and spectators shall not<br />

be permitted within a laser controlled area which contains<br />

a Class 4 laser or laser system unless:<br />

(l) appropriate supervisory approval has been<br />

obtained<br />

(2) <strong>the</strong> degree <strong>of</strong> hazard and avoidance procedure<br />

has been explained<br />

(3) appropriate protective measurcs are taken<br />

Laser demonstrations involving <strong>the</strong> general public<br />

shall be govemed by <strong>the</strong> requirements <strong>of</strong> 4.5.<br />

4.4.8 Seryice Personnel (All Classes). Personnel<br />

who require access to Class 3b or Class 4 lasers or<br />

laser systems contained within a protecdve housing<br />

AMERICAN NATIONAL STANDARD 2I36.I.I986<br />

or protected area enclosure <strong>for</strong> <strong>the</strong> Purpose <strong>of</strong> service<br />

shall comply with <strong>the</strong> appropriate control measures <strong>of</strong><br />

<strong>the</strong> enclosed or embedded laser or laser system. The<br />

service personnel shall have <strong>the</strong> education and training<br />

commensurate with <strong>the</strong> class <strong>of</strong> <strong>the</strong> laser or laser<br />

system contained within <strong>the</strong> pmtective housing.<br />

4.5 Special Considerations<br />

4.5.1 Laser Demonstrations Involving <strong>the</strong> G€neral<br />

Public. The following special control measures<br />

shall be employed <strong>for</strong> those situations where lasers or<br />

laser systems are <strong>use</strong>d <strong>for</strong> demonstration, anistic<br />

display, entertainment or o<strong>the</strong>r related <strong>use</strong>s where <strong>the</strong><br />

intended viewing group is <strong>the</strong> general public.<br />

Such demonstrations can be, but are not timited to,<br />

trade show demonstrations, artistic light per<strong>for</strong>mances,<br />

planetarium laser shows, disco<strong>the</strong>que lighting,<br />

stage tighting effects and similar special lighting<br />

effects that <strong>use</strong> lasers or laser systems emitting in <strong>the</strong><br />

visible wavelength range (0.4 to 0.7 pm).<br />

For <strong>the</strong> purposes <strong>of</strong> this section, <strong>the</strong> applicable MPE<br />

may be detemined by using <strong>the</strong> classilication duration<br />

defined as <strong>the</strong> total combined operational time <strong>of</strong><br />

<strong>the</strong> laser during <strong>the</strong> per<strong>for</strong>mance or demonshation<br />

within any single period <strong>of</strong> 3 x lOa seconds.<br />

4.5.1.1 Operational Requir€ments - Gen'<br />

erat. Only Class I laser or laser systems shall be<br />

<strong>use</strong>d <strong>for</strong> general public demonstration, display' or<br />

entertainment in unsupervised areas without additional<br />

rcquirements,<br />

lf unsupervised, <strong>the</strong> <strong>use</strong> <strong>of</strong> Class 2 and Class 3a lasers<br />

or laser systeDs shall be limited to installations<br />

which prcvent access to <strong>the</strong> direct or specularly<br />

reflected beams or where <strong>the</strong> accessible radiation is<br />

maintained at <strong>the</strong> distance requirements specified in<br />

4.5.1.6.<br />

The <strong>use</strong> <strong>of</strong> Class 3b or Class 4 lasers or laser systems<br />

shall be permitted only under <strong>the</strong> following conditions:<br />

(l) When <strong>the</strong> laser operation is under <strong>the</strong> control<br />

<strong>of</strong> an experienced, trained operator<br />

(2) When <strong>the</strong> laser is operated in a superyised<br />

laser installation as specified in 4.5.1.7<br />

(3) When <strong>the</strong> laser is operaaed in an unsupervised<br />

laser installation provided: (a) <strong>the</strong> LSO has<br />

assured that appropriate controls are incorporated<br />

which provide <strong>for</strong> an equivalent degree <strong>of</strong> protection<br />

to <strong>the</strong> general public: (b) a designated person, present<br />

at all times at <strong>the</strong> show or display, is responsible <strong>for</strong><br />

t7


AMERICAN NATIONAL STANDARD 2I36.I-I986<br />

<strong>the</strong> immediate termination <strong>of</strong> <strong>the</strong> laser equipment in<br />

<strong>the</strong> event <strong>of</strong> equipment malfunction, audience unruliness,<br />

or o<strong>the</strong>r unsafe conditions.<br />

For training <strong>of</strong> operators see Section 5.<br />

4.5.1.2 Invisible Laser Emission Limitations.<br />

The general public shall not be exposed nor have<br />

access to laser radiation emission at wavelengths outside<br />

<strong>the</strong> visible range (0.4 to 0.7 pm) at levels<br />

exceeding <strong>the</strong> applicable MPE levels under any possible<br />

conditions <strong>of</strong> operation.<br />

4,5.1.3 Optical Radlatlon Limlts <strong>for</strong> <strong>the</strong> General<br />

Public. Laser radiation in <strong>the</strong> location where <strong>the</strong><br />

general public is normally allowed shall not exceed<br />

<strong>the</strong> applicable MPE levels during operation. hser<br />

radiation to be considered shall include reflections<br />

from all possible surfaces and scattering materials.<br />

4.5.1.4 Operator and Per<strong>for</strong>mers. Alt operators,<br />

per<strong>for</strong>mers and employees shall be able lo per<strong>for</strong>m<br />

<strong>the</strong>ir required functions without <strong>the</strong> need <strong>for</strong><br />

exposure to laser radiation levels in excess <strong>of</strong> <strong>the</strong><br />

applicable MPE level.<br />

4,5.1.5 Scanning Devices. Scanning devices,<br />

including rotating minored balls, shall incorporate a<br />

means to prevent laser emission if scan failure or<br />

o<strong>the</strong>r failure resulting in a change in ei<strong>the</strong>r scan velocity<br />

or amplitude would result in failure to fulfill <strong>the</strong><br />

criteria given in 4.5.1.3 and 4.5.1.4.<br />

4.5.1.6 Unsupervised Installaaions - Distanc€<br />

R€quirements. If a laser demonstration using<br />

a Class 2. Class 3a, Class 3b or Class 4 laser does not<br />

operate at all limes under <strong>the</strong> direct supervision or<br />

conhol <strong>of</strong> an experienced, trained operator, <strong>the</strong> laser<br />

radiation levels to which access can be gained shall<br />

be limited by baniers, windows, or o<strong>the</strong>r means so as<br />

not to exceed <strong>the</strong> limits <strong>of</strong> <strong>the</strong> applicable MPE. This<br />

limitation applies at any point less than 6 m above<br />

any surface upon which a penon in <strong>the</strong> general public<br />

is permitted to stand and to any point less than 2.5 m<br />

in lateral separation from any position where a person<br />

in <strong>the</strong> general public is permitted to be present du ng<br />

<strong>the</strong> per<strong>for</strong>mance or display. See Figures 2c, 2d and<br />

2e.<br />

4.5.1.7 Supervis€d Laser Installations. Laser<br />

demonstrations which do not meet <strong>the</strong> criteria stated<br />

in 4.5.1.6 shall be operated at all times under <strong>the</strong><br />

direct supervision or conrol <strong>of</strong> an experienced,<br />

trained operator who shall maintain constant surveillance<br />

<strong>of</strong> <strong>the</strong> laser display and terminate <strong>the</strong> laser<br />

emission in <strong>the</strong> event <strong>of</strong> equipment malfunction.<br />

audience unruliness or o<strong>the</strong>r unsafe conditions.<br />

18<br />

The operator shall have visual access to <strong>the</strong> entire<br />

area <strong>of</strong> concem. lf obstacles or size preclude visual<br />

access by <strong>the</strong> operator, <strong>the</strong>n multiple obsewers shall<br />

be <strong>use</strong>d, with a communication link to <strong>the</strong> operator,<br />

In such supervised installations accessible laser radiation<br />

shall be limited by baniers, windows or o<strong>the</strong>r<br />

means so as to not exceed <strong>the</strong> applicable MPE (see<br />

4.5.1) at any point unless <strong>the</strong> following requirements<br />

arc mer:<br />

(l ) The accessible laser radiation is maintained<br />

a minimum distance <strong>of</strong> 3.0 m above any sudace upon<br />

which <strong>the</strong> general public would be able to stand during<br />

a per<strong>for</strong>mance. See Figure 2d.<br />

(2) The accessible laser radiation is maintained<br />

a minimum distance <strong>of</strong> 2.5 m in lateral separation<br />

from any position where <strong>the</strong> general public is permitted<br />

to be prcsent during <strong>the</strong> per<strong>for</strong>mance or demonstration.<br />

See Figure 2e.<br />

As a general practice, <strong>the</strong> largest practical venical<br />

and lateral separation distances should be employed<br />

wherever possible. However, if specific physical limitations<br />

<strong>of</strong> <strong>the</strong> space in which <strong>the</strong> lasers are to be <strong>use</strong>d<br />

preclude compliance with <strong>the</strong> required minimum<br />

separations specified in (l) and (2), shorter separation<br />

distances may be utilized, provided that <strong>the</strong> LSO<br />

assures that altemative measurBs are established<br />

which assure an equivalent degree <strong>of</strong> protection to <strong>the</strong><br />

general public.<br />

4.5.1.8Beam Termination Requirements.<br />

All laser demonshation syslems shall be provided<br />

with a rcadily accessible means to effect immediate<br />

termination <strong>of</strong> <strong>the</strong> laser radiation. lf <strong>the</strong> demonstration<br />

does not require continuous supervision or<br />

operator control during its operation, <strong>the</strong>re must be a<br />

designated person at all times at <strong>the</strong> show or display<br />

who is responsible <strong>for</strong> <strong>the</strong> immediate termination <strong>of</strong><br />

<strong>the</strong> laser radiation in <strong>the</strong> event <strong>of</strong> equipment malfunction,<br />

audience unruliness or o<strong>the</strong>r unsafe cond.itions.<br />

45,1.9 Maximum Power Limitations. The<br />

maximum output power <strong>of</strong> <strong>the</strong> laser shall be limited<br />

to <strong>the</strong> level required to pmduce <strong>the</strong> desired and<br />

intended effect within <strong>the</strong> limitations outlined in<br />

4.5.1.1 through 4.5.1.8.<br />

4.5.1,10 Posting <strong>of</strong> Warning Signs and<br />

l-ogm. If <strong>the</strong> laser installation fulfills all requirements<br />

as detailed in 4.5.1.1 through 4.5.1.9 - or as<br />

altematively provided by <strong>the</strong> LSO (see, <strong>for</strong> example,<br />

4.5.1.7\ - <strong>the</strong>n posting <strong>of</strong> area waming signs shall<br />

not be required.


4.5.1.11 Federal, Slste, or Local Require.<br />

ments, The lsscr operstor snd/or LSO responsible<br />

<strong>for</strong> producing <strong>the</strong> laser demonsfation should determine<br />

that any applicable federal, state, or local<br />

requirements are satisfr ed.<br />

4J,2 Laser Optical Fiber Transmission System.<br />

Laser transmission systems which employ optical<br />

cables shall be considered enclosed systems with<br />

<strong>the</strong> optical cable <strong>for</strong>ming part <strong>of</strong> <strong>the</strong> enclosure. If<br />

disconnection <strong>of</strong> a connector results in accessible<br />

radiation being reduced to below <strong>the</strong> applicable MPE<br />

by engineering conhols, connection or disconnection<br />

may take place in an uncontrolled area and no o<strong>the</strong>r<br />

control measures are required. When <strong>the</strong> system provides<br />

access to laser radiation above <strong>the</strong> applicable<br />

MPE via a connector, lhe conditions given in 4.5.2.1<br />

or 4.5.2.2, or <strong>for</strong> optical communication systems as<br />

specifled in <strong>the</strong> American National Standard <strong>for</strong> <strong>the</strong><br />

Safe Use <strong>of</strong> Optical Fiber Communication Systems<br />

Utilizing Laser Diode and LED Sources, ANSI<br />

2136.2, shalt apply.<br />

4.5.2.1 Connection or disconnection during<br />

operation shall take place in an appropriate laser controlled<br />

area, in accordance with <strong>the</strong> requirements <strong>of</strong><br />

4.3.12, if<strong>the</strong> MPE is exceeded.<br />

4.5.2.2 Connection or disconnection during<br />

maintenance, modification, or service shall take place<br />

in a temporary laser conuolled area, in accordance<br />

with 4.3.12 if <strong>the</strong> MPE is exceeded. When <strong>the</strong> connection<br />

or disconnection is made by means <strong>of</strong> a connector,<br />

o<strong>the</strong>r than one within a secured enclosure,<br />

such a connector shall be disconnectable onlv bv <strong>the</strong><br />

<strong>use</strong> <strong>of</strong> a tool.<br />

When <strong>the</strong> connection or disconnection is made within<br />

a secured enclosure, no tool <strong>for</strong> connector disconnection<br />

shall be required, but a waming sign appropriate<br />

to <strong>the</strong> class <strong>of</strong> laser or laser system shall be visible<br />

when <strong>the</strong> enclosure is open.<br />

4.6 Personal Protective Equipment<br />

4.6.1 General. Enclosure <strong>of</strong> <strong>the</strong> laser equipment<br />

or beam path is <strong>the</strong> prefened method <strong>of</strong> control, since<br />

<strong>the</strong> enclosure will isolate or minimize <strong>the</strong> hazard.<br />

When o<strong>the</strong>r control measures do not provide adequate<br />

means to prevent access to direct or reflected beams<br />

at levels above <strong>the</strong> MPE, it may be necessary to <strong>use</strong><br />

p€rsonal protective equipment. It should be noted<br />

that personal protective equipment may have serious<br />

limitations when <strong>use</strong>d as <strong>the</strong> only contol measure<br />

with higher-power Class 4 lasers or laser systems; <strong>the</strong><br />

protective equipment may not adequately reduce or<br />

AMERICAN NATIONAL STANDARDZI36.I-I986<br />

eliminate <strong>the</strong> hazard.<br />

4,6.2 Prolective Eyewear (Class 3b or Class 4)<br />

4.6,2.1 Class 3b Laser. Protective eyewear<br />

should be wom whenever operational conditions may<br />

result in a potential eye hazard.<br />

4.6,2,2 Class 4 Laser. Protective eyewear<br />

shall be wom whenever operational conditions may<br />

result in a potential eye hazard.<br />

4,6.2.3 Eyewear <strong>for</strong> Proteciion Against<br />

O<strong>the</strong>r Agents. Physical and chemical hazards to <strong>the</strong><br />

eye can be rcduced by <strong>the</strong> <strong>use</strong> <strong>of</strong> face shields, goggles<br />

and similar protective devices. Consult American<br />

National Standard Practice <strong>for</strong> Occupational and Educational<br />

Eye and Face Protection, ANSI 287.1-1979<br />

(or latest revision <strong>the</strong>reo0,<br />

4,6.2.4 Factors in D€t€rmining Appropriate<br />

Eyewear. The following factors shall be considercd<br />

in determining <strong>the</strong> appmpriate protective ey€wear to<br />

be <strong>use</strong>d:<br />

( I ) Wavelength <strong>of</strong> laser output<br />

(2) Potential <strong>for</strong> multiwavelength operation<br />

(3) Radiant exposure or iradiance<br />

(4) Maximum permissible exposure (MPE)<br />

(see Section 8, Criteria <strong>for</strong> Exposure <strong>of</strong> <strong>the</strong> Eye and<br />

Skin)<br />

(5) Optical density <strong>of</strong> eyewear at laser output<br />

wavelength<br />

(6) Visible light hansmission requirement<br />

(7) Peripheral vision r€quirement<br />

(8) Radiant exposure or irradiance and <strong>the</strong><br />

corresponding time factors at which laser. safety<br />

eyewear damage (penetration) occurs, including transient<br />

bleaching<br />

(9) Need <strong>for</strong> prescription glasses<br />

(10) Comfon and fit<br />

(l l) D€gradation <strong>of</strong> abs<strong>of</strong>ting media, such as<br />

photobleaching<br />

(12) Strength <strong>of</strong> materials (resistance to shock)<br />

(13) Capability <strong>of</strong> <strong>the</strong> fmnt surface to produce<br />

a specular reflection<br />

4.6.2.5 OptlcalDensity<br />

4.6.2.5.1 Specification <strong>of</strong> Opaical Density'<br />

D1. The optical density (attenuation), D1, <strong>of</strong> laser<br />

piotective eyewear at a specific wavelength shall be<br />

19


AMERICAN NATIONAL STANDARD 2I36. I. I986<br />

specified. Many lasers radiate at more than one<br />

wavelength; thus eyewear designed to have an adequate<br />

l)1 <strong>for</strong> a particular wavelength could have a<br />

completely inadequate Dt at ano<strong>the</strong>r wavelength<br />

radiated by <strong>the</strong> same laser. This problem may<br />

become panicularly serious with lasers that are tunable<br />

over broad wavelength bands. In such cases,<br />

altemative methods <strong>of</strong> eye protection, such as indir€ct<br />

viewing, may be more appropriate (e.9., image converte$.<br />

closed circuit TV).<br />

If <strong>the</strong> potenlial eye exposure is given by H/,, <strong>the</strong> optical<br />

density, DI, required <strong>of</strong> protective eyewear to<br />

reduce this exposure to <strong>the</strong> MPE is given by<br />

H<br />

D1= log;s<br />

lutfu = - log'<strong>of</strong>r<br />

where Ho is expressed in <strong>the</strong> same units as <strong>the</strong><br />

appropriate MPE and Tt is <strong>the</strong> transmittance <strong>of</strong> <strong>the</strong><br />

filter at <strong>the</strong> specific wavelength (see Section 8).<br />

NOTEi When thc laser beam ir smaller than <strong>the</strong> limiting<br />

aperture (L,{ ), <strong>the</strong> value <strong>of</strong> H/, is determined by averaging<br />

<strong>the</strong> beam energy over <strong>the</strong> limiting aperture (7 mm <strong>for</strong> <strong>the</strong><br />

0.4 to 1,4 Um region). This is required beca<strong>use</strong> <strong>the</strong> MPE<br />

value has been established (normalized) relative to <strong>the</strong> limiting<br />

aperture area. Use <strong>of</strong> <strong>the</strong> beam diamercr (o) to evaluate<br />

F/p <strong>for</strong> cases where a


using Class 4 lasers,<br />

4.6.4 O<strong>the</strong>r Personnel Protective Equipment.<br />

Respirators and hearing protection may be required<br />

whenever engineering contlols cannot provide protection<br />

from a harmful ancillary envimnment (see 7.1).<br />

4.7 Warning Signs and Labels<br />

4.7.1 Design <strong>of</strong> Signs. Sign dimensions, letter<br />

size and color. etc.. shall be in accordance with<br />

American Nationel Standard Specification <strong>for</strong><br />

Accident Prevention Signs, ANSI Z35-l-1972 (or <strong>the</strong><br />

latest revision <strong>the</strong>re<strong>of</strong>). Figures la and lb show sample<br />

signs <strong>for</strong> Class 2, Class 3a, Class 3b and Class 4<br />

lasers or laser systems.<br />

4.7.2 Symbols. The laser hazard symbol shall be<br />

a sunburst panem consisting <strong>of</strong> two sets <strong>of</strong> radial<br />

spokes <strong>of</strong> different lengths and one long spoke, radiating<br />

from a common center.<br />

The color, dimensions, and location <strong>of</strong> <strong>the</strong> symbol<br />

within lhe sign shall be as specified in <strong>the</strong> American<br />

National Standard Specification <strong>for</strong> Accident Prevention<br />

Signs, ANSI 235.1- 1972, (or <strong>the</strong> latest revision<br />

<strong>the</strong>reoO.<br />

NOTE: Classification labeling in accordance with <strong>the</strong><br />

Federal Laser Product Per<strong>for</strong>mance Standard may be <strong>use</strong>d<br />

to satisfy <strong>the</strong> labeling requirements in this section.<br />

4.7,3 Signal Words<br />

4.7.3.1 The signal word "Caution" shall be<br />

<strong>use</strong>d with all signs and labels associated with Class 2<br />

lasers and laser syslem.s and all Class 3a lasers and<br />

laser systems that do not exceed <strong>the</strong> appropriate MPE<br />

<strong>for</strong> irradiance (see Figure ta). The signal word<br />

"Danger" shall be <strong>use</strong>d with all signs and labels<br />

associated with all o<strong>the</strong>r Class 3a, and all Class 3b<br />

and Class 4 lasen and laser systems (see Figurc lb).<br />

4.7,3.2 A Class 2a laser or laser system shall<br />

have a label affixed which instructs: "Avoid Long-<br />

Term Viewing <strong>of</strong> Direct Laser Radiation". This<br />

label need not bear <strong>the</strong> waming symbol (see 4.7.2) or<br />

signal words but must be clearly visible during operation<br />

and bear <strong>the</strong> designation "Class 2a Laser".<br />

4.7.3.3 The word "Radiation" on signs and<br />

labels may be replaced by <strong>the</strong> word "Light"<br />

<strong>for</strong><br />

lasers operating in <strong>the</strong> visible mnge at wavelengths<br />

greater than 0.4 pm and equal to or less than 0.7 pm.<br />

For lasers operating outside <strong>of</strong> this visible range th€<br />

word "invisible" shall be placed prior to <strong>the</strong> word<br />

"radiation".<br />

AMERICAN NATIONAL STANDARD ZI 36. I.I986<br />

4.7.4 Inclusion <strong>of</strong> Pertinent In<strong>for</strong>mation. Signs<br />

and labels shall con<strong>for</strong>m to <strong>the</strong> following<br />

specifications.<br />

4.7.4.1 The rypropriate signal word (Caution or<br />

Danger) shall be located in <strong>the</strong> upper panel.<br />

4.7.4.2 Adequate spac€ shall be left on all signs<br />

and labels to allow <strong>the</strong> inclusion <strong>of</strong> pertinent in<strong>for</strong>manon.<br />

Such in<strong>for</strong>mation may be included during <strong>the</strong> printing<br />

<strong>of</strong> <strong>the</strong> sign or label or may be handwritten in a legible<br />

manner, and shall include <strong>the</strong> following:<br />

(l) At position I above <strong>the</strong> tail <strong>of</strong> <strong>the</strong> sunburst,<br />

special precautionary instructions or protective<br />

actions required by <strong>the</strong> reader such as:<br />

(a) For Class 2 and Class 3a lasers and<br />

laser systems wherc <strong>the</strong> accessible irradiance does not<br />

exceed <strong>the</strong> appropriate MPE based upon a 0.25<br />

second exposure (see 3.2.3.3.3)<br />

"Laser Radiation -<br />

Do Not Stare into Beam or View with Optical Instruments"<br />

(b) For all o<strong>the</strong>r Class 3a las€rs and laser<br />

systems, "l-aser Radiation - Avoid Direct Eye<br />

Exposure"<br />

(c) For all Class 3b lasers and laser systems,<br />

"Laser Radiation - Avoid Direct Exposure to<br />

Beam"<br />

(d) For Class 4 lasers and laser systems,<br />

"Laser<br />

Radiation - Avoid Eye or Skin Exposure to<br />

Direct or Scattered Radiation"<br />

(2) At position I above <strong>the</strong> tail <strong>of</strong> <strong>the</strong> sunburst,<br />

special precautionary instructions or protecliv€ action<br />

such as: Invisible Laser Radiation; Knock Be<strong>for</strong>e<br />

Entering; Do Not Enler When Light is On; Restricted<br />

Arcai etc,<br />

(3) At posilion 2 below <strong>the</strong> tail <strong>of</strong> <strong>the</strong> sunbuIst,<br />

type <strong>of</strong> laser (Ruby, Helium-Neon, etc.), or <strong>the</strong> emitted<br />

wavelength, pulse duration (if appropriate), and<br />

maxtmum output<br />

(4) At position 3, <strong>the</strong> class <strong>of</strong> <strong>the</strong> laser or laser<br />

sysrem<br />

4.7,4.3 Temporary Laser Controlled Area<br />

Signs: lClass 3b or Class 4). A notice sign (see<br />

Figure lc) shall be posted outside a temporary laser<br />

controlled area (see4.3.12) <strong>for</strong> example, during<br />

periods <strong>of</strong> service. When a temporary laser controlled<br />

area is created, <strong>the</strong> area outside <strong>the</strong> temporary<br />

area remains Class l, while <strong>the</strong> area within is ei<strong>the</strong>r<br />

Class 3b or class 4 and <strong>the</strong> appropriate danger<br />

?l


AMERICAN NATIONAL STANDARD 2136,1- I986<br />

waming is required. (See Figure lb.)<br />

4.7.4.4 Display Signs and Labels, All signs<br />

and labels shall be conspicuously displayed in locations<br />

where <strong>the</strong>y best will serve to wam onlookers.<br />

4.7.4.5 Existing Signs and Labels. Signs and<br />

labels prepared in accordance with previous revisions<br />

<strong>of</strong> this standard are considered to fulfill <strong>the</strong> recuirement<br />

<strong>of</strong> <strong>the</strong> standard.<br />

4.E Service and Repair <strong>of</strong> Laser Systerns. Following<br />

any service or repair which may affect <strong>the</strong> output<br />

power or operating characteristics <strong>of</strong> a laser or laser<br />

system so as to make it potentially more hazardous,<br />

<strong>the</strong> LSO shall ascenain whe<strong>the</strong>r any changes are<br />

required in control measures.<br />

4.9 Modiffcation <strong>of</strong> Laser Systems. Whenever deliberate<br />

modifications are made which could change a<br />

laser or laser system's class and affect its output<br />

power or operating characteristics so as to make it<br />

potentially more hazardous, <strong>the</strong> LSO shall ascenain<br />

whe<strong>the</strong>r any changes and control mgasures are<br />

required.<br />

5. Laser Safety and Training Programs<br />

5.1 Organization. The management (employer)<br />

shall establish and maintain an adequate program <strong>for</strong><br />

<strong>the</strong> control <strong>of</strong> laser hazards. Safety and training progmms<br />

shall be required <strong>for</strong> Class 3a, Class 3b or<br />

Class 4 lasers and laser systems. Safety and training<br />

programs should be required <strong>for</strong> Class 2 lasers and<br />

laser systems. Safety and training programs are not<br />

required <strong>for</strong> Class I or Class 2a lasers and la,ser systems,<br />

The program shall include provisions <strong>for</strong> <strong>the</strong><br />

following:<br />

(1) Delegarion <strong>of</strong> authority and responsibility to <strong>the</strong><br />

LSO <strong>for</strong> <strong>the</strong> monitoring and en<strong>for</strong>cement <strong>of</strong> hazard<br />

evaluation and control <strong>of</strong> laser hazards. Depending<br />

on <strong>the</strong> extent and number <strong>of</strong> laser operations, <strong>the</strong><br />

position <strong>of</strong> LSO may or may not be a full-time<br />

assignment. Where <strong>the</strong> number and diversity <strong>of</strong> laser<br />

operations warrants, an nssociated Safety Committee<br />

may be <strong>for</strong>med and utilized. When <strong>the</strong>re is normally<br />

no requirement <strong>for</strong> an LSO, such as <strong>the</strong> operation <strong>of</strong><br />

Class I or Class 2 lasers and laser systems which<br />

contain lasers with a higher classification, <strong>the</strong> designation<br />

<strong>of</strong> LSO <strong>for</strong> temporary periods <strong>of</strong> access <strong>for</strong><br />

servicing, training, etc, may be <strong>the</strong> responsibility <strong>of</strong><br />

<strong>the</strong> organization requiring access, such as a service<br />

22<br />

organization. However, <strong>the</strong>re shall be a designated<br />

LSO <strong>for</strong> all circumstances <strong>of</strong> operations <strong>of</strong> a laser or<br />

laser system above Class 2. Specific minimum duties<br />

<strong>of</strong> <strong>the</strong> LSO are detailed in l3.2<br />

(2) Education <strong>of</strong> authorized penonnel (LSOs, operators,<br />

sewice personnel and o<strong>the</strong>rs) in <strong>the</strong> assessment<br />

and control <strong>of</strong> laser hazards. This may be accomplished<br />

thmugh training programs<br />

(3) Application <strong>of</strong> adequate protective measures <strong>for</strong><br />

<strong>the</strong> control <strong>of</strong> laser hazards as required in Section 4<br />

(4) Incident investigation, including reporting <strong>of</strong><br />

alleged accidents, and preparation <strong>of</strong> action plans <strong>for</strong><br />

<strong>the</strong> futur€ prevention <strong>of</strong> accidents following a known<br />

or susp€cted incident. (See reference [7] in D7 <strong>for</strong><br />

Federal reporting requirements.)<br />

(5) Provide an appropriate rnedical surveillance pmgram<br />

in accordance with Section 6<br />

A guide <strong>for</strong> <strong>the</strong> organization <strong>of</strong> a laser safety proglam<br />

is outlined in Appendix D.<br />

5.2 Education. The management shall provide<br />

training to <strong>the</strong> LSO on <strong>the</strong> potential hazards (including<br />

bioeffects), control m€asures, applicable standards,<br />

medical surveillance (if applicable) and o<strong>the</strong>r<br />

pertinent in<strong>for</strong>mation pertaining to laser safety or provide<br />

to <strong>the</strong> LSO adequate consultive services. The<br />

training shall be commensurate to at least <strong>the</strong> highest<br />

class <strong>of</strong> laser under <strong>the</strong> jurisdiction <strong>of</strong> <strong>the</strong> LSO.<br />

Safety raining program(s) shall be provided to <strong>the</strong><br />

<strong>use</strong>rs <strong>of</strong> Class 3a, Class 3b or Class 4 lasers and laser<br />

systemsr and should be provided to <strong>the</strong> <strong>use</strong>rs <strong>of</strong><br />

Class 2 lasers and laser systems. Users shall include<br />

operators, technicians, engineers, maintenance and<br />

service personnel, etc., working with lasers. The<br />

training shall ensure that <strong>the</strong> <strong>use</strong>rs are knowledgeable<br />

<strong>of</strong> <strong>the</strong> potential hazards and <strong>the</strong> control mealurcs <strong>for</strong><br />

laser equipment <strong>the</strong>y may have occasion to <strong>use</strong>.<br />

Where applicable, training shall include elecrical<br />

safety and cardiopulmonary rcsuscitation (CPR).<br />

(See 7.4.7.)<br />

A guide <strong>for</strong> <strong>the</strong> organization <strong>of</strong> a training program is<br />

outlined in D6.<br />

5.3 lmplementation. The management shall provide<br />

adequate supewision, personnel training, facilities,<br />

equipmeDt fid supplies to control potential<br />

hazands <strong>of</strong> laser and laser systems.


6. MedicalSurveillance<br />

6.1 General. The radonale <strong>for</strong> medical surveillance<br />

requirements <strong>for</strong> personnel working in a laser<br />

enyironment and specific in<strong>for</strong>mation <strong>of</strong> value to examining<br />

or attending physicians are included in<br />

Appendix E. Medical surveillance requirements have<br />

been limited to those that are clearly indicated, based<br />

on known risks <strong>of</strong> particular kinds <strong>of</strong> laser radiation.<br />

Medical surveillance is not required <strong>for</strong> personnel<br />

using Class l, Class 2, Class 2a or Class 3a lasers and<br />

laser systems as defined in 3.3.3.2 and is required <strong>for</strong><br />

Class 3b and Class 4lasers and laser systems. Some<br />

employers may wisb to provide <strong>the</strong>ir employees with<br />

additional examinations <strong>for</strong> medical-legal reasons, to<br />

con<strong>for</strong>m with established principles <strong>of</strong> what constitutes<br />

a thorough ophthalmologic or dermatologic<br />

examination, or as pan <strong>of</strong> a planned epidemiologic<br />

study. Fur<strong>the</strong>r in<strong>for</strong>mation is provided in<br />

Appendix E.<br />

6.2 Personnel Categories. Each emptoyee's<br />

category shall be determined by <strong>the</strong> LSO in charge <strong>of</strong><br />

<strong>the</strong> installation involved. The indiyiduals who should<br />

be under laser medical surveillance are defined in<br />

6.2.1 and 6.2.7.<br />

6,2.1 Incidental Personnel. Incidental personnel<br />

are those whose work makes it possible (but unlikely)<br />

that <strong>the</strong>y will be exposed to laser energy sufficient to<br />

damage <strong>the</strong>ir eyes or skin, e.9., custodial, military<br />

personnel on maneuvers, clerical, and supervisory<br />

personnel not working directly with laser devices.<br />

6.2.7 Lasel Personnel. l,aser personnel are those<br />

who work routinely in laser environments. These<br />

individuals are ordinarily fully protected by engineering<br />

controls or administrative procedures, or both.<br />

6.3 Ceneral Procedures<br />

6.3.1 Incidental personnel shall have an eye examination<br />

<strong>for</strong> visual acuity (see Appendix E <strong>for</strong> fur<strong>the</strong>r<br />

details).<br />

6.3.2 t aser personnel shall be subject to <strong>the</strong> following<br />

baseline eye examination:<br />

Ocular history (E2.2.1). If <strong>the</strong> ocular history shows<br />

no probfems and visual acuity (E2.2.2) is found to be<br />

2OIZO (616 in each eye <strong>for</strong> far, and Jaeger l+ <strong>for</strong> near)<br />

with corrections (whe<strong>the</strong>r wom or not), central visual<br />

fields (82.2.3) and contrast sensitivity (E2.2.4) are<br />

normal, no fur<strong>the</strong>r examination is required. Laser<br />

workers with medical conditions noted in E2.2.1<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

should be evaluated carefully with respect to <strong>the</strong><br />

potential <strong>for</strong>chronic exposure to laser radiation, Any<br />

deviations from acceptable per<strong>for</strong>mance will rcquire<br />

an identification <strong>of</strong> <strong>the</strong> underlying pathology ei<strong>the</strong>r<br />

by a funduscopic examination (E2.2.5), or o<strong>the</strong>r tests<br />

as determined appropriate by <strong>the</strong> responsible medical<br />

examiner.<br />

6.4 Frequency <strong>of</strong> Medical Examinations. For both<br />

incidental and laser personnel, required examinations<br />

shall be per<strong>for</strong>med prior to panicipation in laser<br />

work. Following any suspected laser injury, <strong>the</strong> pertinena<br />

required examinations will be repeated, in<br />

addition to whatever o<strong>the</strong>r examinations may b€<br />

desired by <strong>the</strong> altending physician. Periodic examinations<br />

are not required.<br />

7. SpecialConsiderations<br />

7.1 Industrial Hygiene Considerations. In many<br />

laser applications industrial hygiene aspects may<br />

require consideration. Associated hazards shall be<br />

evaluated and appropriate conhol measures taken.<br />

Some examples <strong>of</strong> <strong>the</strong>se aspects are hazards associated<br />

with compressed gas, fumes, cryogenic materials,<br />

toxic and carcinogenic materials, noise and ionizing<br />

radiation. Adequate local exhaust ventilation<br />

shall be installed to reduce po@ntialty hazardous<br />

fumes and vapors produced by laser welding, cutting<br />

and o<strong>the</strong>r laser target interactions to levels b€low <strong>the</strong><br />

appropriate threshold limit values. Appendix F provides<br />

reference material to aid in <strong>the</strong> control <strong>of</strong> such<br />

hazards.<br />

7,2 Explosion Hazards. High-pressure arc lamps<br />

and filament lamps in laser equipment shall be<br />

enclosed in housings which can withstand <strong>the</strong> maximum<br />

explosive pressures resulting from lamp disintegration.<br />

The laser target and elements <strong>of</strong> <strong>the</strong> optical<br />

train which may shaltcr during lascr operalion shall<br />

also be enclosed or equivalently protected to prevent<br />

injury to operators and observers.<br />

7.3 Optical Radiation Hazards - (O<strong>the</strong>r than<br />

Laser Beam Hazards). Ultraviolet radiation emi ed<br />

from laser discharge tube$ and pumping lamps (i.e.,<br />

not part <strong>of</strong> <strong>the</strong> primary laser beam) shall be suitably<br />

shielded so that personnel exposures are maintained<br />

within <strong>the</strong> threshold limit values specified by <strong>the</strong><br />

American Conference <strong>of</strong> Govemmental lndustrial<br />

Hygienists.


AMERICAN NATIONAL STANDARD 2136,I - I986<br />

Studies have shown that plasma emissions created<br />

during a laser-welding process may have sufficient<br />

ult.aviolet and/or blue light content (0.2 to 0.55 pm)<br />

to raise concem <strong>for</strong> operators viewing a laser-welding<br />

proc€ss on a long-term basis without additional protection<br />

<strong>for</strong> <strong>the</strong> plasma emission.<br />

7.4 El€ctrical Harards. Electrocutions have<br />

occurred to a number <strong>of</strong> individuals touble-shooting<br />

or sewicing laser equipment. Generally <strong>the</strong> individual<br />

was working alone or o<strong>the</strong>r personnel working<br />

nearby did not know how to administer Cardiopulmonary<br />

Resuscitation (CPR, see 7.4.7). The importance<br />

<strong>of</strong> adequate training, and <strong>the</strong> <strong>use</strong> <strong>of</strong> <strong>the</strong> "buddy<br />

system" when working around high voltage laser<br />

power supplies cannot be overstressed. Protective<br />

electrical circuit design is also important. The laser<br />

resonator and electro-optical elements should be<br />

designed so that no exposed metallic element is<br />

above ground potential.<br />

7.4.1 Installation, The intended application <strong>of</strong><br />

<strong>the</strong> laser equipment determines <strong>the</strong> method <strong>of</strong> electrical<br />

installation and connection to <strong>the</strong> power supply<br />

circuit (<strong>for</strong> example, conduit vs flexible cord). All<br />

equipment shall be installed as specified in <strong>the</strong><br />

National Electrical Code. Such installed equipment<br />

is acceptable to <strong>the</strong> U.S. Department <strong>of</strong> Labor, Occupational<br />

Safety and Health Administration, if<br />

accepted, certified, listed, labeled. or o<strong>the</strong>rwise deter'<br />

mined safe by a qualitied testing laboratory, such as,<br />

but not limited to, Underwriters Laboratories Inc. and<br />

Factory Mutual Corporation.<br />

7.4.2 Shock Hazard. Live parts <strong>of</strong> circuits and<br />

components with peak open-circuit potentials over<br />

42.5 volts are considered hazardous, unless limited to<br />

less than 0.5 mA. Such circuits require positive protection<br />

against contact. For equipment intended <strong>for</strong><br />

general <strong>use</strong>, interlock switches (and capacitor bleeder<br />

resistors, if applicable) or <strong>the</strong>ir equivalent shall be<br />

installed to remove <strong>the</strong> voltage from accessible live<br />

parts to permit servicing operation. Bleeder resisron<br />

shall be <strong>of</strong> such size and rating as to carry <strong>the</strong> capacitor<br />

discharge current without bumout or mechanical<br />

injury. Circuits and components with peak opencircuit<br />

potentials <strong>of</strong> 2500 volts or more shall be adequately<br />

covered or enclosed if an appreciable capacitance<br />

is associated with <strong>the</strong> circuits.<br />

If servicing <strong>of</strong> equipment requires entrance into an<br />

interlocked enclosure within 24-hours <strong>of</strong> <strong>the</strong> presence<br />

<strong>of</strong> high voltage within <strong>the</strong> unit, a solid metal grounding<br />

rod shall be utilized to ensure discharge <strong>of</strong> highvoliage<br />

capacitors. The grounding rod shall be firmly<br />

attached to ground prior to contact with <strong>the</strong> potentially<br />

live point. A resistor grounding rod (<strong>for</strong> example,<br />

a large-wattage ceramic resistor) may be <strong>use</strong>d<br />

pfior to applicadon <strong>of</strong> <strong>the</strong> solid conductor grounding<br />

rod to protect circuit components from overly rapid<br />

discharge, but shall not be <strong>use</strong>d as a replacement'<br />

7.4.3 Grounding, The frames, enclosures and<br />

o<strong>the</strong>r accessible nontunenttarrying metallic parts<br />

<strong>of</strong> laser equipment shall be grounded. Grounding<br />

shall be accomplished by providing a rcliable, con'<br />

tinuous metallic connection between <strong>the</strong> part or parts<br />

to be grounded and <strong>the</strong> grounding conductor <strong>of</strong> <strong>the</strong><br />

power wiring system.<br />

7.4,4 Electrical Fire Hazards' Components in<br />

electrical circuits shalt be evaluated with r€spect to<br />

6re hazards. Enclosures, barriers or baffles <strong>of</strong> nonmetallic<br />

material shall comply with "Polymeric<br />

Materials <strong>for</strong> <strong>use</strong> in Electric Equipment," Underwriters<br />

Laboratories Standard, UL 746C.<br />

7.4.5 Electrical Hazards from Explosion. Gas<br />

laser tubes and llash lamps shall be supponed to<br />

ensure that <strong>the</strong>ir terminals cannot make any contact<br />

which will result in a shock or fire hazard in <strong>the</strong> event<br />

<strong>of</strong> a tube or lamp failure. Components such as electrolytic<br />

capacitors may explode if subjected to voltages<br />

higher than <strong>the</strong>ir ratings, with <strong>the</strong> result that<br />

ejected metal may bridge live electrical parts' Such<br />

capacitors shall be tesbd to make cenain that <strong>the</strong>y<br />

can withstand <strong>the</strong> highest probable potentials should<br />

o<strong>the</strong>r circuit componenls fail, unless lhe capacitors<br />

are adequately contained so as not to crcate a hazard.<br />

7.4.6 Marking. The <strong>use</strong>r shall ensure that each<br />

laser is permanently marked with its Primary electrical<br />

rating in volts, frequency, and watts or amperes.<br />

If <strong>the</strong> laser is intended <strong>for</strong> <strong>use</strong> by <strong>the</strong> public or by p€r'<br />

sonnel untrained in laser safety, and is provided with<br />

clectrical safety interlocks, waming notices instructing<br />

<strong>the</strong> <strong>use</strong>r not to defeat <strong>the</strong> interlock should be<br />

applied to <strong>the</strong> device immediately adjacent <strong>the</strong>reto.<br />

7.4,7 Cardiopulmonary Resuscitation (CPR).<br />

Laser service personnel, research personnel and <strong>the</strong>ir<br />

assistants working with high voltages shall be trained<br />

in CPR. Periodic refresher courses shall be provided<br />

by <strong>the</strong> employer.<br />

7,5 Flammability <strong>of</strong> Laser Beam Enclosures.<br />

Enclosure <strong>of</strong> Class 4 laser beams can result in potential<br />

fire hazards if suitable enclosure materials are<br />

likely to be exposed to iffadiances exceeding<br />

lOWcm2 or total beam powers exceeding 0.5 W.<br />

Plastic materials and paper producb are not


precluded, but <strong>the</strong>ir <strong>use</strong> and potential <strong>for</strong> direct expo-<br />

$ure should be considercd. Flame resictant materials<br />

should be encouraged.<br />

7.6 Laser Operation in Outdoor Environments<br />

7.6.1 Use <strong>of</strong> Lasers in Navigable Airspace, The<br />

Federal Aviation Administration (FAA) is responsible<br />

<strong>for</strong> regulating <strong>the</strong> <strong>use</strong> and efficient utilization <strong>of</strong><br />

navigable airspace to ensurc <strong>the</strong> safety <strong>of</strong> aircraft and<br />

<strong>the</strong> protection <strong>of</strong> people and propefly on <strong>the</strong> ground.<br />

Laser experiments or programs that will involve <strong>the</strong><br />

<strong>use</strong> <strong>of</strong> navigable airspace should be coordinated with<br />

<strong>the</strong> FAA (Washington, DC 20590, or any FAA<br />

regional <strong>of</strong>fice) in <strong>the</strong> planning stages to ensure<br />

pmper control <strong>of</strong> any attendant hazard to airbome<br />

personnel or equipment.<br />

7.6.2 Laser Beam Attenuation. The effects <strong>of</strong><br />

attenuation on a laser beam traveling through a<br />

homogeneous but lossy medium can be trested at<br />

visible wavelengths by using an exponential attenuation<br />

coefficient. (See B.4.) For propagation at longer<br />

wavelengths, individual lines must be separately<br />

determined, panicularly at wavelengths where <strong>the</strong><br />

effects <strong>of</strong> waier vapor become important.<br />

7.6.3 Scintillation, Scintillation arises from local<br />

variations in <strong>the</strong> refractive index <strong>of</strong> <strong>the</strong> medium<br />

through which a laser beam is propagated. It ca<strong>use</strong>s<br />

random pointing, spreading, blurring and energy<br />

redistribution <strong>of</strong> a beam. A "worst-case" analysis<br />

shall be <strong>use</strong>d in evaluating <strong>the</strong> potential ocular hazard<br />

from such scintillation €ffects.<br />

NOTE: References <strong>use</strong>ful <strong>for</strong> <strong>the</strong> special considerations<br />

covered in 7-l through 7.6 may be found in Appendix F.<br />

8. Criteria <strong>for</strong> Exposure <strong>of</strong><strong>the</strong> Eye and Skin<br />

Maximum prermissibte exposure (MPE) values are<br />

below known hazardous levels. Levels at <strong>the</strong> MPE<br />

values given may be uncomfonable to view or feel<br />

upon <strong>the</strong> skin. Thus, it is good practice to maintain<br />

exposure levels as far below <strong>the</strong> MPE values as is<br />

practicable.<br />

When a laser emits radiation at several widely different<br />

wayelengths, or where pulses are superimposed<br />

on a cw background, computation <strong>of</strong> <strong>the</strong> MPE is<br />

complex. Exposures from several wavelengths in <strong>the</strong><br />

same time domain are additive on a proportional<br />

basis <strong>of</strong> specral effectiveness with due allowance <strong>for</strong><br />

all correction factors. The simultaneous exposure to<br />

pulses and cw radiation is not strictly additive (<strong>the</strong>re<br />

AMERICAN NATIONAL STANDARD 2I36.1-I986<br />

may be synergism) and caution should be <strong>use</strong>d in<br />

<strong>the</strong>se situations until more data arc available.<br />

The limiting aperture shall be <strong>use</strong>d <strong>for</strong> measurements<br />

and calculations with all MPE values. The limiting<br />

aperture is <strong>the</strong> maximum circular area over which<br />

irradiance and radiant exposure can be averaged. See<br />

Table 9 and Fig. 13 <strong>for</strong> proper application <strong>of</strong> this<br />

aPenurc.<br />

In <strong>the</strong> tabulations <strong>for</strong> MPE, values <strong>for</strong> irradiance can<br />

be obtained by dividing <strong>the</strong> radiant exposure by <strong>the</strong><br />

time, t, in seconds, and values <strong>for</strong> radiant exposure<br />

can be obtained by multiplying <strong>the</strong> irradiance by r in<br />

seconds.<br />

NOTE: Exposure limits <strong>for</strong> pulse duralions less than I ns<br />

are Dot provided !1 lhc prescnt time becausc <strong>of</strong> a laqk <strong>of</strong><br />

biological data. However, IEC Srandard 825 (1984) suggests<br />

limiting peak inadianc€s to <strong>the</strong> exposure limit applicable<br />

to nanosecond pulses.<br />

Appendix G provides reference material on this subject.<br />

8.1 Intrabeam Viewing and Extend€d Source<br />

Ocular Exposures. For <strong>the</strong> purposes <strong>of</strong> this standard,<br />

sources such as laser arrays, diodes and diff<strong>use</strong><br />

reflecting surfaces are considered to be extended<br />

sources if <strong>the</strong>ir angular subtense (apparent visual<br />

angle) is equal to or greater than cr,;n as specifled in<br />

Fig.3. For all o<strong>the</strong>r laseni, including as those wilh<br />

collimated beams which produce a small (nearly<br />

diffractionlimited) retinal imag€ and also point<br />

sources, intrabeam viewing criteria applies. In this<br />

category <strong>the</strong> angular subtense is less than o-in.<br />

Sources such as laser arrays, multiple diodes, or multiple<br />

diff<strong>use</strong> reflecting surfaces are treated as in[abeam<br />

viewing cases <strong>for</strong> any <strong>of</strong> <strong>the</strong> separate images<br />

whose angular subtense is less than (Iln6. Any<br />

sources whose centers are separated by an angle less<br />

than ohrin are treated as extended sources. See 9.2 <strong>for</strong><br />

sources between 0.4 pm and L4 Um.<br />

Appropriate MPES are associated with each type <strong>of</strong><br />

source, For intrabeam viewing criteria see 8.2t <strong>for</strong><br />

extended-source viewing criteria see 8.3.<br />

NOTE: The angular subtense is not <strong>the</strong> beam divergence <strong>of</strong><br />

<strong>the</strong> source. It is <strong>the</strong> apparent visual angle as calculated<br />

from <strong>the</strong> source size and distance from <strong>the</strong> eye. The limiting<br />

angular subtense is that apparent visual angle which<br />

divides intrabeam viewing from extended-source viewing.<br />

See B-3-2.<br />

8.2 MPE <strong>for</strong> Inarabeam Viewing. The single pulse<br />

or single exposure MPE values <strong>for</strong> intrabeam viewing<br />

are given in Table 5. ln order to apply <strong>the</strong>se MPE<br />

ZJ


AMERICAN NATIONAL STANDARD 2I36.I.I986<br />

values, <strong>the</strong> in<strong>for</strong>mation specified in 8.2.1 and 8.2.2 is<br />

required. (See 8.5 <strong>for</strong> special qualilications and <strong>use</strong>;<br />

see also Figs. 4,5,6 and 10.)<br />

8.2,1 Wavelength. The wavelength must be<br />

specified to establish which specral region is applicable.<br />

The MPEs in Table 5 arc arranged in broad<br />

wavelength regions and by specific wavelength<br />

expressed in micrometers. Fot multiple wavelength<br />

laser emissions, <strong>the</strong> MPE must first be determined <strong>for</strong><br />

each wavelength separately. In <strong>the</strong> ultraviolet rtgion,<br />

special considerations may apply <strong>for</strong> multiple exposures<br />

(see 8.2.2.1).<br />

8.2,2 Exposure Duration. For a single-pulse<br />

laser, <strong>the</strong> exposure duration is equal to <strong>the</strong> pulse duration,<br />

r, defined at its half-power points. For a cw visible<br />

(0.4 to 0.7 pm) laser, <strong>the</strong> exposurc duration is <strong>the</strong><br />

maximum time <strong>of</strong> anticipated direct exposure, fm"*,<br />

If purposeful staring into <strong>the</strong> beam is not intended or<br />

anticipat€d, <strong>the</strong>n <strong>the</strong> aversion response time, 0,25 s,<br />

may be <strong>use</strong>d.<br />

For non-visible wavelengths (less than 0.4 pm or<br />

greater than 0.7 Fm), <strong>the</strong> cw exposur€ duration is <strong>the</strong><br />

maximum time <strong>of</strong> anticipated direct exposute, I.",.<br />

For <strong>the</strong> hazard evaluation <strong>of</strong> retinal exposures in <strong>the</strong><br />

near-infrared (0.7 to 1.4 Fm), a maximum exposure<br />

duration <strong>of</strong> l0 s provides an adequate hazard criterion<br />

<strong>for</strong> ei<strong>the</strong>r unintended or purposeful staring condi<br />

tions. In this case, eye movements will provide a<br />

nalural exposure limitation eliminating <strong>the</strong> need <strong>for</strong><br />

exposure durations greater than l0s, except <strong>for</strong><br />

unusual conditions. In special applications, such as<br />

medical instrumentation, even longer exposure durations<br />

may apply.<br />

For rep€titively pulsed lasers, <strong>the</strong> total exposure duration,<br />

I, <strong>of</strong> <strong>the</strong> train <strong>of</strong> pulses must be determined.<br />

This duration is determined in lhe same manner as is<br />

<strong>use</strong>d <strong>for</strong> cw laser exposures. The method <strong>for</strong> determining<br />

<strong>the</strong> MPEs <strong>for</strong> repetitively pulsed laser exposures<br />

is given in 8.2.2.1 and 8.2.2.2. Forpulse widths<br />

less than I ns, see Note in Section 8.<br />

8.2,2.lRepeated Exposures, Ultraviolet<br />

(0.315 to 0.4 pm) - Special Considerations. For<br />

repeated exposures, <strong>the</strong> exposure dose is additive<br />

over a 24-hour period, regardless <strong>of</strong> <strong>the</strong> repetition<br />

rate. The MPE <strong>for</strong> any 24-hour period should be<br />

reduced by a factor <strong>of</strong> 2.5 times relative to <strong>the</strong><br />

single-pulse MPE if exposures on succeeding days<br />

are expected.<br />

26<br />

E.2.2,2 Repeated Exposures, Visible (0,4 to<br />

0.7 pm) and Infrared (> 0.7 pm), Bolh scanned cw<br />

lasers and repetitively pulsed lasers can produce<br />

repetitively pulsed exposur€ conditions. The MPE<br />

per pulse <strong>for</strong> repetitively pulsed intrabeam viewing is<br />

a-rl4 times <strong>the</strong> MPE <strong>for</strong> a single pulse cxposure<br />

where r is <strong>the</strong> number <strong>of</strong> pulses found from <strong>the</strong> product<br />

<strong>of</strong> <strong>the</strong> prf and <strong>the</strong> exposure duration (f) as<br />

defined in 8.2.2. (See Figure 12 <strong>for</strong> a graphical<br />

repr€sentation <strong>of</strong> n-t14.) This MPE applies to all<br />

wavelengths greater than 0.7 pm (<strong>the</strong>rmal injury).<br />

For wavelengths less than 0.7 pm, <strong>the</strong> MPE as calculated<br />

on <strong>the</strong> basis <strong>of</strong> n-rla also must not exceed <strong>the</strong><br />

MPE calculated <strong>for</strong> nt seconds when nt is grcater than<br />

l0 s.<br />

For pulse repetition frequencies greater than 15 kHz,<br />

<strong>the</strong> average irradiance or radiant exposurc (radiance<br />

or integrated radiance) <strong>of</strong> <strong>the</strong> pulse rain shall not<br />

exceed <strong>the</strong> MPE (as given in 8.2) <strong>for</strong> a single pulse<br />

equal in duration to <strong>the</strong> pulse train duration, T'<br />

For wavelengths between 0.4 and 0.7 pm, <strong>the</strong> aversion<br />

response time, 0,25 s, may be <strong>use</strong>d unless purposeful<br />

staring into <strong>the</strong> b€am is intended or antici'<br />

pated. For wavelengths greater than 0.7 pm, lOs<br />

may be <strong>use</strong>d as <strong>the</strong> exposure duration unless purposeful<br />

staring into <strong>the</strong> beam is intended or anticipated.<br />

8.3 MPE <strong>for</strong> Extended-Source Viewing. MPE<br />

values <strong>for</strong> ocular exposure to extended sources <strong>for</strong><br />

single pulses or exposures are given in Table 6. All<br />

values are specified at <strong>the</strong> comea. (See 8.5 <strong>for</strong> special<br />

qualificalions and <strong>use</strong>; see also Figs.5,6, and 7.) For<br />

multiple pulse lasers or exposures, <strong>the</strong> MPE is deter'<br />

mined using <strong>the</strong> exposure time <strong>of</strong> <strong>the</strong> pulse train<br />

duration, 7'<br />

8,4 MPE <strong>for</strong> Skin Exposure to a Laser Beam.<br />

MPE values <strong>for</strong> skin exposure to a laser beam are<br />

given in Table 7. These levels arc <strong>for</strong> worst-case<br />

conditions and are based on <strong>the</strong> best available in<strong>for</strong>manon.<br />

E.4,1 MPE <strong>for</strong> Skin, Repeated Exposures For<br />

repetitive-pulsed lasers <strong>the</strong> MPEs <strong>for</strong> skin exposurc<br />

are applied as follows: Exposure <strong>of</strong> <strong>the</strong> skin shall not<br />

exceed <strong>the</strong> MPE based upon a single-pulse exposure,<br />

and <strong>the</strong> average irradiance <strong>of</strong> <strong>the</strong> pulse train shall not<br />

exceed <strong>the</strong> MPE applicable <strong>for</strong> <strong>the</strong> total pulse train,<br />

duration I. (See 8.5 <strong>for</strong> special qualifications and<br />

<strong>use</strong>s.)<br />

E.4.2 Wavelengths Greater than 1.4 lrm. For<br />

b€am cross-sectional areas between 100 cm' and<br />

1000 cm2, <strong>the</strong> MPE <strong>for</strong> exposure durations exceeding


l0 s is 10,000/,4" mW/cm', where A, is <strong>the</strong> area <strong>of</strong><br />

<strong>the</strong> exposed skin in cm2. For exposed skin areas<br />

exceeding 1000 cm2, <strong>the</strong> MPE is 10 mWcm2.<br />

8.5 Special Qualifications - Infrared. Available<br />

data is not suflicient to define wavelength corrections<br />

relative to l.06pm over <strong>the</strong> entire infrared range<br />

(1.4 pm to I mm). At 1.54 Um, <strong>the</strong> MPE given in<br />

Tables 5,6 and 7 has been increased by a factor <strong>of</strong><br />

100 <strong>for</strong> time periods shorter than I ps at inte als<br />

greater than 100 s. However, no exlrapolation to<br />

o<strong>the</strong>r wavelengths is justified on <strong>the</strong> basis <strong>of</strong><br />

presently available in<strong>for</strong>mation.<br />

9, M€asurements<br />

9.1 G€neral. The laser classification scheme<br />

described in.Section 3 is designed to minimize <strong>the</strong><br />

need <strong>for</strong> laser measurements and calculations by <strong>the</strong><br />

<strong>use</strong>r. Generally, such measurements are required<br />

only when manufacturer's in<strong>for</strong>mation is not available,<br />

when <strong>the</strong> laser or laser system has not been<br />

classified by <strong>the</strong> manufacturcr in accordance with <strong>the</strong><br />

Federal Laser Products Per<strong>for</strong>mance Standard, or<br />

when alterations to a system may have changed its<br />

classification.<br />

The cumulative error due to all sources <strong>of</strong> inaccuracy<br />

(both systematic and statistical), including human<br />

factors, operating conditions, and instrumental emors,<br />

shall not exceed 1209o, or, if this is not possible, <strong>the</strong><br />

best that <strong>the</strong> state <strong>of</strong><strong>the</strong> art reasonably will permit. It<br />

is important to recognize that measurements improperly<br />

per<strong>for</strong>med may be worse than no measurements,<br />

since <strong>the</strong>y may imply a safe condition that does not<br />

actually exist. Experience has shown that measurement<br />

erIToBIs well in excess <strong>of</strong> !2OEo arc commonly<br />

made and <strong>of</strong>ten are unidentified.<br />

If measurements are per<strong>for</strong>med, <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong><br />

instrumentation should be traceable to national standards,<br />

ei<strong>the</strong>r directly to <strong>the</strong> National Institute <strong>of</strong> Science<br />

and Technology (NIST) or to o<strong>the</strong>r transfer siandards<br />

aceable to NIST. The NIST conducts programs<br />

<strong>for</strong> assistance in meeting <strong>the</strong>se requirements.<br />

(See references in H4.)<br />

Measurcments should be attempted only by personnel<br />

rained or experienced in laser technology and<br />

radiometry. Routine survey measurcments <strong>of</strong> lasers<br />

or laser systems are nei<strong>the</strong>r required nor advisable<br />

when <strong>the</strong> laser classifications are known and <strong>the</strong><br />

appropriate control measures implemented.<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

If a laser or laser system is <strong>use</strong>d outdoors over long<br />

ranges, where <strong>the</strong> uncenainties <strong>of</strong> propagation<br />

influence exposures, or where <strong>the</strong> beam divergence is<br />

uncenain, measurements may be <strong>use</strong>ful.<br />

Measurements shall be made with <strong>the</strong> laser adjusted<br />

f<strong>of</strong> maximum output <strong>for</strong> <strong>the</strong> intended <strong>use</strong>.<br />

9.2 Intmbeam and Extended-Source Measurements.<br />

If measurements or calculations are required,<br />

distinction shall first be made between intrabeam<br />

viewing and extended-source viewing in <strong>the</strong> 0.4 to<br />

l.4pm wavelength region. For <strong>the</strong> purpose <strong>of</strong> this<br />

standard, an extended source subtends an angle at <strong>the</strong><br />

observer's eye grqlter than <strong>the</strong> angular subt€nse,<br />

c.;n, (shown in Fig.3), acmss <strong>the</strong> greatest angular<br />

dimension <strong>of</strong> <strong>the</strong> source as viewed by <strong>the</strong> observer.<br />

Table 8 gives <strong>the</strong> radiometric parameter ihal is<br />

requircd to determine exposure to various laser<br />

sources.<br />

9.2,1 Radiance. The maximum radiance <strong>of</strong> an<br />

extended source, such as <strong>the</strong> scattering <strong>of</strong> a laser<br />

beam from a diff<strong>use</strong> surface, shall be determined by<br />

measurement. The measurement may average oYef<br />

<strong>the</strong> appropriate conical field <strong>of</strong> view defined by <strong>the</strong><br />

angular subtense, crmin, or over a | -mm-diameter circular<br />

area, whichever gives <strong>the</strong> larger value <strong>of</strong> radiance.<br />

In <strong>the</strong> case <strong>of</strong> nonuni<strong>for</strong>m extended-source<br />

pr<strong>of</strong>iles, such as those resulting from inhomogeneous<br />

beams or "hot spots," <strong>the</strong> measurement shall be<br />

taken from <strong>the</strong> regions <strong>of</strong> greatest radiance.<br />

9.2.2 Irradiance or Radiant Exposure<br />

9.2,2.1 Limiting Aperture. The measurement<br />

<strong>of</strong> inadiance or radiant exposure shall be made wiah<br />

insruments that average over circular areas defrned<br />

by <strong>the</strong> effective limiting aperture diameters given in<br />

Table 9 or smaller diameters.<br />

The sensitivity per unit area shall be sufliciently uni<strong>for</strong>m,<br />

when mapped with a l-mm-diameter beam, to<br />

ensure <strong>the</strong> required accumcy <strong>of</strong> measurcment.<br />

No conection <strong>for</strong> beam size or homogeneity is necessary<br />

in cases where <strong>the</strong> entire beam enters <strong>the</strong> effective<br />

limiting aperture. For larger beams, <strong>the</strong> measurement<br />

shall be made in <strong>the</strong> area <strong>of</strong> <strong>the</strong> beam that gives<br />

<strong>the</strong> maximum reading.<br />

For distinguishing between Class 3b and Class 4<br />

pulsed lasers (if manufacturer's specilications are<br />

<strong>use</strong>d), <strong>the</strong> maximum output irradiance or radiant<br />

exposure which could be measured through a l-mm<br />

circular apenure shall be <strong>use</strong>d.<br />

27


AMERICAN NATIONAL STANDARD 2I36.I-I986<br />

See Fig. 13 <strong>for</strong> <strong>the</strong> anangement <strong>use</strong>d <strong>for</strong> measurements<br />

<strong>for</strong> <strong>the</strong> purpose <strong>of</strong> laser classification.<br />

9.2.2.2 Field <strong>of</strong> View (0,2 to 0.4 lrm and 1.4<br />

Fm to I mm Wavelengths). In measuring <strong>the</strong> inadiance<br />

or radiant exposure from ultraviolet and farinfrared<br />

extended sources, care shall be taken to make<br />

sure that <strong>the</strong> field <strong>of</strong> view <strong>of</strong> <strong>the</strong> instrument is<br />

sufficiently large to ensure <strong>the</strong> required accuracy <strong>of</strong><br />

measurement.<br />

9,3 Instruments. Many optical power, energy, pulse<br />

shape, and prf measuring devices available commercially<br />

can b€ <strong>use</strong>d to determine classification and<br />

compliance with this standard. Instruments shall be<br />

calibrated sufficiently well to pemit overall measurcment<br />

accuracies <strong>of</strong> 120% wherever possible.<br />

Measurements with instruments ftaving smaller effective<br />

timiting apertures than those in Table 9 are permitted,<br />

provided <strong>the</strong> appropriate correction factors are<br />

apptied to ensure <strong>the</strong> required accuracy <strong>of</strong> measurement.<br />

A variety <strong>of</strong> such instruments is described in <strong>the</strong><br />

refercnces listed in H4.<br />

28<br />

10. Revision <strong>of</strong> American National Standards<br />

Refened to in This Document<br />

When any <strong>of</strong> <strong>the</strong> following American National Standards<br />

refered to in this document is superseded by a<br />

revision approved by lhe American National Standards<br />

lnstitute, lnc, <strong>the</strong> rcvision shall appty:<br />

American National Standard<br />

Cylinder Value Outlet and<br />

ANSI/CGA V' l - 1977<br />

American National Standard<br />

Code. ANSI/|,IFPA 70- 1984<br />

Compressed Gas<br />

lnlet Connections,<br />

Natlonal Elecftical<br />

American National Standard Safety Standard <strong>for</strong><br />

Radio Receivers, Audio Systems, and Accessories,<br />

ANSIruL 1270-1978<br />

American National Standard General Safety Standard<br />

<strong>for</strong> Installations Using Non-Medical X-Ray and<br />

Sealed Gamma-Ray Sources, Energies up to l0 MeV,<br />

ANSI/NBS Handbook I 14<br />

American National Standard Specifications <strong>for</strong><br />

Accident Prevention Sighs, ANSI 235.1-1972<br />

American National Standard Method <strong>of</strong> Marking<br />

Portable Compressed Gas Containers to Identify <strong>the</strong><br />

Material Contained, ANSIrcCA C-4-1978<br />

American National Standard Practice <strong>for</strong> Occupational<br />

and Educational Eye and Face Ptotection,<br />

ANSI 287.t-r979


o<br />

Wavelength<br />

Range<br />

(Pml<br />

Ultraviolet<br />

0.2 to 0.4<br />

Visible<br />

0.4 to 0.7<br />

Near Infrared<br />

0.7 to I .06<br />

Near Infrared<br />

1.06 to 1.4<br />

Far lnfrar€d<br />

1.4 to 102<br />

Submillirneter<br />

102 lo 101<br />

T<br />

I<br />

$<br />

Table I<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

Accessible Emission Limits <strong>for</strong> Sclected Continuous-Wav€* Lasers and f,aser Systems<br />

Emission<br />

Duration<br />

(s) Class lt Class 2t Class 3$ Class 4<br />

3xloa<br />

3xl0{<br />

3xloa<br />

3 x loa<br />

> l0<br />

> l0<br />

Emission duration > 0.25 s.<br />


AMERICAN NATIONAL STANDARD ZI36.I -I986<br />

Wsvelength<br />

Range<br />

(pm)<br />

Ultraviolett<br />

0.2 to 0.4<br />

Visible<br />

0.4 to 0.7<br />

Near Infraredt<br />

0.7 to 1.06<br />

1.06 to |.4<br />

Far Infrared<br />

1.4 to 10'<br />

Submillimeter<br />

102<br />

to 103<br />

Table 2<br />

Summary <strong>of</strong> Lev€ls (Energy and Radiant Exposure Emissions)<br />

<strong>for</strong> Single-Pulsed Laser and Laser System Classiffcatlonr<br />

Emission<br />

Duration**<br />

(s) Class I Class 3 Class 4<br />

> l0-2<br />

lo-e<br />

to<br />

o.25<br />

t 0-e<br />

to<br />

o.25<br />

l0-4<br />

to<br />

o.25<br />

1tre<br />

to<br />

o.25<br />

l0-e<br />

to<br />

o.25<br />

l0J'cm-2<br />

> 3l x l0-3 J . cm-?<br />

>l0J.cm-2<br />

>10J'cm-?<br />

> l0 J cm-2<br />

>l0J'cm-!<br />

>luJ cm-<br />

f Diff<strong>use</strong> re8ection criteria (Table 3) apply from l0-e to 33 x l0-r s <strong>for</strong> Class 3. For > 33 x l0-l s exposure, <strong>the</strong><br />

maximum radiant exposure is l0 J . cm-2. Class I and 3 values are wavelength dependeflt (see Fig, 8).<br />

30


Exposurc<br />

Duration, r<br />

(r)<br />

l0-t<br />

l0-{<br />

10n<br />

l0-6<br />

lfrJ<br />

l0-4<br />

lrl<br />

lr'<br />

t0-<br />

o.25<br />

Table 3<br />

Maximum Radiant Exposure Incident upon a Diff<strong>use</strong> Surface<br />

Which Will Not Produce Hazardous Reflections<br />

Visible<br />

(0.4 to 0.7 trn)<br />

3.1 x l0-2<br />

6.8 x l0-2<br />

1.5 x l0-'<br />

3.t x l0-l<br />

6.8 x l0-'<br />

1.5<br />

3.t<br />

6.8<br />

l5*<br />

20+<br />

Maximum Radient Exposute<br />

(J .cm-2)<br />

Near Infraredt<br />

(0.7 to 1.051 p|n)<br />

CA(3.1 x lo-')<br />

Ca(6.8 x l0-2)<br />

C^(1.5 x l0-r)<br />

CA(3.1x l0-r)<br />

CA(6.8 x l0-r)<br />

cA( 1.5)<br />

ca(3.1)*<br />

cA(6.8)*<br />

cA( l5)'r'<br />

cA(20)*<br />

AMERICAN NATIONAL STANDARD ZI36.I- I986<br />

Near lnfrared<br />

(l.051 !o 1.4 Pm)<br />

1.5 x l0-l<br />

3.1x l0-l<br />

8.0 x l0-'<br />

3.1<br />

8.0<br />

15*<br />

3l*<br />

80*<br />

100{'<br />

General expression<br />

<strong>for</strong><br />

duration , rortt tr t onCotr/l 5onCotl/3<br />

values <strong>for</strong> classincation are limited to l0 J ' cm-' (see 3-3.3.1(3) and 3,3.4(2)).<br />

values <strong>for</strong> CA will be found in Fig. 8,<br />

Table 4<br />

Minimum Optical Densities<br />

Required <strong>for</strong> Protective EYewear<br />

H}MPE<br />

l=l0o<br />

l0 = l0'<br />

100 = 102<br />

1 966 = r0l<br />

1O 00O = lOa<br />

l0O 000 = 10s<br />

I 000 000 = 106<br />

.Dr<br />

0<br />

I<br />

a<br />

3<br />

4<br />

5<br />

6<br />

3l


AMERICAN NAT]ONAL STANDARD 2I36.I-I986<br />

Wavelength, ).<br />

0rm)<br />

Itraviolet<br />

:00 to 0.302<br />

303<br />

.1(X<br />

105<br />

106<br />

r07<br />

.r08<br />

r09<br />

ll0<br />

1t I<br />

2<br />

lt3<br />

4<br />

ll5 to 0.400<br />

ll5 to 0.400<br />

,\ible and Ncar Infrared**<br />

l{}0 to 0.700<br />

100 to 0,700<br />

,-.^


o<br />

Wavelength, L<br />

$rm)<br />

Ultraviolet<br />

0.200 to 0.302<br />

0.303<br />

0.304<br />

0.305<br />

0.306<br />

0.30?<br />

0.308<br />

0.309<br />

0.3r0<br />

0.31I<br />

0.312<br />

0.313<br />

0.314<br />

0.315 to 0.400<br />

0.315 to 0.400<br />

Visible**<br />

0.400 to 0.700<br />

0.400 to 0.550<br />

0.550 to 0.700<br />

0.550 to 0.700<br />

0.,100 to 0.700<br />

Near Infrared*<br />

0.700 to | .400<br />

0.700 to 1.400<br />

0.700 to l.4m<br />

Far Infrarcd<br />

I.4 to 103<br />

1.54 only<br />

Table 6<br />

MPE <strong>for</strong> Viewing a Diff<strong>use</strong> Reflection<br />

<strong>of</strong>a Laser Beam or an Exlended-Source l,aser<br />

AMERICAN NATIONAL STANDARD ZI36,I-1986<br />

Exposure Duration l* Maximum Permissible Exposure<br />

(r) (MPE) Notcs <strong>for</strong> Calculation and Measurement<br />

l0-eto3xloa<br />

l0-eto3xl04<br />

lOato3xlOa<br />

l0-4to3xl04<br />

tOato3xld<br />

lOaro3xlOa<br />

l0-eto3xlOa<br />

104ro3x104<br />

lo-e!o3xl04<br />

lOaro3xlOa<br />

lo-eto3xl04<br />

l04to3x 104<br />

10ato3xlOa<br />

10-e ro l0<br />

l0to3x10a<br />

loj ro l0<br />

l0 to td<br />

l0 to fl<br />

Tr to 104<br />

l0"ta3xloa<br />

10-e to 10<br />

l0 to 103<br />

lorto3xld<br />

loj ao lo-7<br />

l0-? to l0 -<br />

>to<br />

lOa to lOj<br />

* See Note in Section 8 <strong>for</strong> puls€widths less than I ns.<br />

**See Fig. 7 and Fig. 83 <strong>of</strong> Appendix B <strong>for</strong> graphic representation.<br />

NOTES; Ca = I <strong>for</strong> ,\, = 0.400 to 0.700 trm,<br />

CA = 102.q1'-{<br />

700)<br />

<strong>for</strong> 1. = 0.700 to 1.051 pm (see Fig. 8),<br />

Ce = 5 <strong>for</strong> l, = | .051 to 1.400 pm,<br />

Cs = I <strong>for</strong> L = 0.400 to 0.550 pm,<br />

ca = l0r5(r-o 550) <strong>for</strong> l, = 0.550 to 0.?m lrm (see Fig. 9],<br />

Tr = l0 x 1020(r-4150) <strong>for</strong> ], = o-550 to 0.?fi) pm (see Fig. 9).<br />

3xl0-rJ.cm-2<br />

4 x l0-r J cm-2<br />

6xl0-r J.cm-2<br />

l.0x lO-2 J . cm-2<br />

l.6 x l0-2 J cm-2<br />

2.5x102 J cm-2<br />

4.0 x l0-2 J cm-2<br />

6.3x 10-2 J cm-2<br />

l.0x l0-r J.cm-r<br />

1.6 x l(f I J'cm-2<br />

2.5x10.-r J'cm-l<br />

4.oxl0-rJ'cm-z<br />

6.3 x l0-r J ' cm-2<br />

0.56tr/a J 'cm-?<br />

I J'cm-2<br />

l0 tll3 J. cm-2 . sal<br />

2l J cm-2 'sil<br />

3,83 r3lo J cm-2 ' sat<br />

2l Cs J cm-z sil<br />

2-l C8l0-r W cm-2 sr-l<br />

l0 Co tllr J . cm-2 sil<br />

3-83 CAi3t4 ! cm-2 sal<br />

0.64 Ca W cm-2 sr-l<br />

i o-2 J . cm-2<br />

0,56 rrlo J cm-2<br />

0,1W cm-2<br />

1.0 J cm-2<br />

or 0.56 tlla J ' cm-2, whichever is lower.<br />

l-mm limiling ap€rlure<br />

See Figs. 5 and 6 <strong>for</strong> graphical rcpresentation.<br />

l-mm limiting aperture or d-in, whichever ls<br />

greater<br />

See 8.2 and Figs. 7,8,9,11, ard 12 <strong>for</strong><br />

graphic reprcsenlation and multiple pulse<br />

limitations<br />

See Table 9 <strong>for</strong> aperturcs.<br />

See 8.5 and Fie, 6 <strong>for</strong> core,ction factors<br />

33


AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

Wavelength, I<br />

(pm)<br />

Ultraviolet<br />

0.200 to 0.302<br />

0.303<br />

0.3(X<br />

0.305<br />

0.306<br />

0.307<br />

0.308<br />

0.309<br />

0.3l0<br />

0.31I<br />

0.312<br />

0.313<br />

0.314<br />

0.315 to 0.400<br />

0.315 io 0.400<br />

0.315 to 0.it00<br />

Visible and Near lnfrared<br />

I to t.aoo<br />

-<br />

Far Infrared*<br />

1.4 to t0r<br />

l -54 only<br />

Exposure Duration I<br />

(r)<br />

lojto3xloa<br />

l0-eto3xl0{<br />

lo-eto3xl04<br />

lo-eto3x loa<br />

10-eto3xld<br />

lo-eto3xld<br />

lo-eto3xld<br />

lfero3xld<br />

l0+to3xld<br />

tfeto3xld<br />

lO-eto3xld<br />

lseto3xld<br />

lo-eto3xld<br />

l0+ to t0<br />

l0 to l0l<br />

lorto3xlo4<br />

10-e to lf7<br />

l0-7 to l0<br />

l0ro3x104<br />

lo-e to lo-7<br />

10-? to l0<br />

>10<br />

lo-e to l0{<br />

*See 8,4.2 <strong>for</strong> large beam cross-sections.<br />

o<br />

34<br />

Table 7<br />

MPE <strong>for</strong> Skln Exposure to a Laser Beam<br />

Maximum Permissible Exposure<br />

(MPE) Notes <strong>for</strong> Calculalion and Me{rr<br />

3 x 10.1 J . cm-2<br />

4xl0-!J.cm-t<br />

6xl0-!J.cm-2<br />

l.0xl0-2J.cm-2<br />

l.6x l0-rJ.cm-?<br />

2.5x10-2J.cm-2<br />

4.0x10-2t.cm-2<br />

6.3x1(f2J'cm-2<br />

l.0xl0-rJ.cm-2<br />

1,6 x l0-t J . cm-2<br />

2.5x10-rJ.cm-z<br />

4.0 x ltrr J ' cm-2<br />

6.3x10-rJ.cm-2<br />

0.56tr/4J cm-2<br />

tJ cml<br />

x10-!w cm-l<br />

2 cA x l0-2 J cm-z<br />

l lcArr/4J.cm-2<br />

0.2 Ca W cm-?<br />

l02J.cm-2<br />

0.56tr/aJ'cm-?<br />

0.1 W'cm-2<br />

1.0 J ' cm-2<br />

or 0.56 t r/{ J ' cm-2. whichever is lor<br />

I mm limiting apenure.<br />

See Figs. 5 and 6 <strong>for</strong> graphic represo '<br />

1 mm limiting aperture<br />

Ser Figs. 6 and 8<br />

I mm limiaing apedure <strong>for</strong> 1.4 to lmf<br />

ll-mm limiting aFEnure <strong>for</strong> 0,1 to I<br />

&


Laser Source<br />

Extended Sources<br />

(Angular subtense > c..)<br />

lntrabeam<br />

(Algular subtense < c,6)<br />

Measurement<br />

Eye MPE<br />

Table 8<br />

Required Radiometric Parameters<br />

Visible<br />

(0.4 to l4 pm)<br />

Radiance<br />

Inadiance<br />

AMERICAN NATIONAL STANDARD ZI 36.1 -1986<br />

Eye Skin<br />

Ultraviolet Infrared<br />

(0.2 to 0.4 pm) (l.4to l0! pm)<br />

Irradiance<br />

Irradiance<br />

Tsble 9<br />

Irradiance<br />

lrradiance<br />

All Wavelengths<br />

(0.2 to l0r pm)<br />

Irradiance<br />

Inadiance<br />

Maximum Aperture Diamet€rs (Limiting Aperture) <strong>for</strong> Measurement Averaging<br />

Exposure<br />

Duration, r<br />

(s)<br />

lOato3xlOa<br />

Skin MPE<br />

Laser<br />

loato3xloa<br />

Classification+ l0{ to 3 x loa<br />

Visible and<br />

Ultraviolet Nearlnfrared<br />

(0.2 to 0.4 pm) (0.4 to 1.4 pm)<br />

lmm<br />

lmm<br />

50 mm<br />

WaYelengti Range<br />

7mm<br />

lmm<br />

50 mm<br />

Medium and<br />

Far Infrared<br />

(1.4 to l0' pm)<br />

lmm<br />

lmm<br />

50 mm<br />

Submillimeter<br />

(0.1<br />

to I mm)<br />

ll mm<br />

ll mm<br />

50 mm<br />

* The apertures are <strong>use</strong>d <strong>for</strong> <strong>the</strong> measurement <strong>of</strong> total output power or outpul energy <strong>for</strong> laser classification purposes,<br />

that is, to distinguish between all classes <strong>of</strong> cw lasers or bctween Class I and Class 3 pulsed lasers. The <strong>use</strong> <strong>of</strong> <strong>the</strong><br />

50-mm apenurcs as shown in fie ho zontal line labeled<br />

"Laser Classification" applies only to thosc cases where<br />

<strong>the</strong> laser output is intended to be viewed with optical instruments (excluding ordinary eyeglass lenses) or where <strong>the</strong><br />

Laser Safety Officer determines that <strong>the</strong>re is some probability that <strong>the</strong> output will be accidentally viewed with<br />

optical instrurnents and that such radiation will be viewcd <strong>for</strong> a sufficient time duration so a! to constitute a hazard.<br />

O<strong>the</strong>rwise <strong>the</strong> apertures listed <strong>for</strong> Eye MPE and Skin MPE ar€ to be us€d,<br />

For <strong>the</strong> specific case <strong>of</strong> optical viewing (beam collecting) instruments, <strong>the</strong> apenures li$ted <strong>for</strong> eye MPE and skin<br />

MPE spply to <strong>the</strong> cxit beam <strong>of</strong> such devices.


o<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

D<br />

M<br />

I<br />

N<br />

I<br />

S<br />

T<br />

R<br />

T<br />

I<br />

E<br />

Controls<br />

E<br />

N<br />

I<br />

N<br />

E<br />

E<br />

I<br />

N<br />

P<br />

R<br />

c<br />

D<br />

U<br />

R<br />

L<br />

Table l0<br />

Control Measur€s <strong>for</strong> <strong>the</strong> Four Laser Classes<br />

Classification<br />

Protcctive Housing (4.3. I I<br />

Without Protective Housing (4.3,l.l)<br />

Interlocks on Protective (4.3.2)<br />

Service Access Panel (4.3.3)<br />

Key Switch Ma$ter (4.3.4)<br />

Viewing Portals (4.3.5. l 1<br />

Op.ics (4.3.5.2)<br />

Totauy Open Beam Path (4.3.6.1)<br />

Limited Beam Path (4.3.6.2)<br />

Remote Interlock C<strong>of</strong>lnector (4.3.7t<br />

Beam Stop or Attenuator (4.3.8)<br />

Activation Waming Systems (4.3.9)<br />

Emission Delay (4.3.9.1)<br />

Class 3b Laser Controlled Area (4.3.10.1)<br />

Class 4 Laser Controlled Area (4,3.10.2)<br />

Laser Outdoor Controls (4.3.1 l)<br />

Temporary Laser Controlled Area* (4.1,l2)<br />

Remote Firing & Monitoring (4.3.13)<br />

Labels (4.3.l4)<br />

Area Posting (4.3.l5)<br />

Administrative & hocedural Controls (4.4)<br />

Standard Opcrating Proccdurcs (4.4. l )<br />

Output Emission Limilations (4.4.2)<br />

Educalion and Training (4.4.3)<br />

Autho zed Personnel (4.4.4)<br />

Aligtmett Procedures (4.4.5)<br />

Eye Protection (4.4.6)<br />

Spectator<br />

Conuol (4.4.7)<br />

Service Personnel (4.4.8)<br />

Laser Demonstration (4.5. l )<br />

Laser Fiber Optics (4.5.2)<br />

LSO shall establish Altemate Controls<br />

LECEND X-Shall. r-Should. - No requiremcnr. V-Shall if Embedded Class 3b orClass 4,<br />

tr - Shall if MPE is cxceeded, A - shall ifembeddcd Class 3a, class 3b, Class 4, * During Sewice Only<br />

36


(YELLOW)<br />

(BLACK<br />

SYIEOL}<br />

/ eosrrrol r \<br />

\BOLD BLACK rErr€RNO/l<br />

Fig, la<br />

Sample Waming Sign <strong>for</strong> Class 2 and<br />

Cenain Class 3a l:sers<br />

AMERICAN NATIONAL STANDARD ZI ]6. I -I9116<br />

/ rosrnon a \<br />

\ Brlcx L€TrEn|tao<br />

/


AMERICAN NATIONAL STANDARD 2I.36' I.I986<br />

.llr<br />

(BED SY$BOLI<br />

Fig. lb<br />

Sample Waming Sign <strong>for</strong> Cenain Class 3a Lasen<br />

and <strong>for</strong> Class 3b and Class 4 Lasers<br />

lwrirE)


AMERICAN NATTONAL STANDARD ZI 36. I - I 9116<br />

LASER REPAIR IN PROGRESS<br />

lh lbt Entsl Whcn Uglrt ls Harhlng<br />

EYE PROTECTION REOUIRED<br />

Fig. lc<br />

Sample Waming Sign <strong>for</strong> Temporary<br />

Controlled Area<br />

-19


AMERICAN NATIONAL STANDARD 2I.16,I.I986<br />

4(l<br />

AREA<br />

SENSOR<br />

NTERLOCKS<br />

(NONDEFEATABLE<br />

DEFEATABLE)<br />

FLOORMAT<br />

Fig. 2a<br />

Area/Entryway Safety Conrols<br />

<strong>for</strong> Class 4 Lasers


l---f-<br />

APPLICABLE MPE<br />

AMERICAN NATIONAL STANDARD Z I]6. I .I986<br />

E"PANlc" BUTToN<br />

- CLASS 4<br />

BARRIER,<br />

SCREEN,<br />

CURTAIN<br />

8 '.PANIC''<br />

BUTTON<br />

INDICATOR<br />

(VISIBLE<br />

OR AUDIBLE)<br />

Fig. 2b<br />

Safety Controls <strong>for</strong> Class 4 Lasers wherc<br />

Arca,/Entryway Controls are Inapprcpriate<br />

4l


I<br />

AMERICAN NATIONAL STANDARD ZI.J6.I.I986<br />

> 6 METERS<br />

BARRIER<br />

Fig. 2c<br />

Unsupervised Laser Installation <strong>for</strong><br />

Demonstration [.aser<br />

r/ncL\ss 3b oR 4<br />

ru(LESS THAN<br />

6 METERS)


3 METERS<br />

Fig. 2d<br />

Supervised Laser Installation <strong>for</strong><br />

DemonsFalion Laser<br />

AMERICAN NATIONAL STANDARD 2 I 36. I.I 9It6


o<br />

O<br />

AMERICAN NATIONAL STANDARD ZI 36. I. I986<br />

BARRIER<br />

Fig. k<br />

Superviscd Laser Installation <strong>for</strong><br />

D€monstration Laser<br />

I<br />

AUDIENC<br />

ldESr


s Nvtovu<br />

t'llt$t Nr(uluto)<br />

tsNfrgns uvtncNv<br />

o o<br />

Ot q, F Or (t {. t7 N rat<br />

t;<br />

F<br />

2<br />

*o'<br />

u,o'<br />

3 b<br />

9 c<br />

( J E<br />

! o<br />

-c ot<br />

!l<br />

EE<br />

E=<br />

(DE<br />

or c:<br />

-c,<br />

i.s<br />

o-g<br />

FJ<br />

[Elnr*or''.- 5<br />

-e<br />

le e9eQQq90-o<br />

xE,<br />

o<br />

at<br />

!2 cn<br />

! c<br />

: ]<br />

;.9<br />

oo<br />

t<br />

fral s<br />

.


I<br />

AMERICAN NATIONAL STANDARD ZI]6.I- I986<br />

I<br />

E<br />

t!<br />

E<br />

3<br />

o<br />

o.<br />

x<br />

u,<br />

F<br />

2<br />

c<br />

ro-'r<br />

to<br />

to- 6<br />

5r<br />

:l<br />

;l<br />

8l<br />

6l<br />

']<br />

2<br />

,I<br />

I<br />

6<br />

4<br />

2<br />

,t 86<br />

4<br />

z<br />

rl<br />

I<br />

6<br />

4<br />

\|<br />

2<br />

ffi<br />

K':lc<br />

lo' to-' to-t lo - ?<br />

EXPOSURE DURATION (S)<br />

NOTE: For corrcction factor in<strong>for</strong>nation at wavclcngth$ b€lween 0'7 Fm and 1.4 pm, scc Table 5<br />

Fig. 4<br />

MPE <strong>for</strong> Direct Ocular Exposure to Visible and Near Infrared<br />

Radiation (1"=0.4 to 1.4 Fm) lntrflb€am Viewing<br />

(Angular Subtense


o<br />

"ro<br />

ro<br />

to<br />

^ lo't<br />

E<br />

o<br />

lrl<br />

e<br />

:)<br />

v,<br />

o<br />

o.<br />

x<br />

l!<br />

F<br />

2<br />

= to'2<br />

E<br />

8<br />

8<br />

6<br />

4<br />

o.20<br />

0.26 0.28 o.so<br />

IvAVELENGTH (F,ml<br />

MpE <strong>for</strong> Diroct O"ur", eff.usr" ro Ultraviolct Radiarion<br />

(Intrabcam Vicwing and Extcndcd Sourccs) <strong>for</strong> Eloocurc<br />

Durations from t0-e to 3 x lds.<br />

*Unless 0.561| /a is cxcccded (possiblc <strong>for</strong> erposurc ouraiions < I o s ar ], = 0..m5-O.3tS |rm).<br />

AMERICAN NATIONAL STANDARD 2I.16. I - I9116<br />

I<br />

8<br />

6<br />

ll<br />

;)<br />

)<br />

J I<br />

o.34<br />

I' 6l<br />

2<br />

I<br />

8<br />

6<br />

4<br />

t.<br />

I<br />

I<br />

6<br />

4<br />

to'3<br />

5<br />

2


o<br />

AMERICAN NATIONAL STANDARD 2I36. I.I986<br />

F<br />

z<br />

g<br />

< ,^-,<br />

4lJ<br />

to-! to-' to-l<br />

EXPOSURE OU RAT IO I{ (SI<br />

. Loi to_'J.cm-2<br />

l.Brto_?J. cm-2<br />

3.2 r l(l2 J cni-z<br />

s.6 r|o_2 J cm_z<br />

t.or ro-r ,J. crn_z<br />

l.8 rlo_lJ.crr-2<br />

3.2 r ro_rJ. cd2<br />

3.6 r lo-rJ cm-?<br />

t.oJ.cm_2<br />

2 4581 2 ,l 681 2 4681 2 468<br />

Fig' 6<br />

MPE <strong>for</strong> Dircct Ocular Exposurc to Ultraviolet ()' = 0.315 to 0',rc0 t .)<br />

and lnfrared (1" = 1.4 pm to I mm) Radiation (lntrabeam Viewing<br />

and Extended Sources) <strong>for</strong> Single Pulses or Conlinuous Exposures


49<br />

do<br />

( r-,rs.?-uI3.0)<br />

ItNvt0vu o:llvugllNl<br />

(o{ N -<br />

I<br />

5z<br />

o<br />

':<br />

@<br />

o<br />

t<br />

:<br />

. e<br />

l<br />

el I<br />

t<br />

to<br />

o<br />

o<br />

E<br />

a<br />

5 - . Eo<br />

F. o<br />

o<br />

I-i-<br />

!}<br />

ao<br />

(o<br />

@ =<br />

6 z E<br />

> =<br />

O E<br />

F t<br />

e E<br />

s $ . E<br />

" i a;**<br />

O E E;E&<br />

@<br />

0<br />

rt<br />

tl<br />

.E: trieFa<br />

bg; f;-r:g<br />

*E g?gE<br />

JO<br />

u<br />

6<br />

@<br />

t<br />

\<br />

9 Y - . , . 4 = :<br />

-! 3 E=eE<br />

e: l.F:;E<br />

? d ; r r r<br />

"<br />

d .E.*<br />

; EesH<br />

^1" Ba/\g<br />

e; jl gH<br />

*,r-{ g:58<br />

ti<<br />

'll<br />

r!B<br />

..|<br />

EZ<br />

-o<br />

.'oFoo,,,..J= e.<br />

g e9'9 9e99e-9^9<br />

o<br />

b<br />

o<br />

ao<br />

Et<br />

o;<br />

g;<br />

24 -:<br />

trr o<br />

FF<br />

_'1'o9 e eQ;;;;;f<br />

eIi6iis$5es9.<br />

: (\lt - Ntt (\'<br />

o<br />

\ I<br />

t t<br />

?; 6t<br />

-o:<br />

*"g"gs sry;ilit:<br />

a<br />

o<br />

t il| i ill<br />

r'il'41'l- - - -- -!<br />

@<br />

o<br />

t<br />

JO<br />

o<br />

o<br />

AMERICAN NATIONAL STANDARD<br />

Z I.]6.I-<br />

I9116


o<br />

o<br />

AMERICAN NATIONAL STANDARD 2I36.I.I986<br />

g<br />

E<br />

0<br />

t- a)<br />

f -<br />

o<br />

F<br />

c<br />

E<br />

o<br />

(,<br />

!t<br />

2<br />

50<br />

Ca = I <strong>for</strong> I = 0.4 to 0.7 [m'<br />

c^ = l02q^-oD <strong>for</strong>l=0.7 to l.o5l rm:<br />

Cr, =5<strong>for</strong>l= 1.051 to l.4pm.<br />

WAVEL€NGTH (;rml<br />

Fig. 8<br />

Correction Factor C^ <strong>for</strong> Wavelengths Between<br />

0.7 and l.4 tm (From Tabtes 5 and 6)


z<br />

I<br />

o.s50 o.575<br />

NOTE: See Table 5 and 6.<br />

i4<br />

0.600 0.625 0.650 0.6?5<br />

WAVELENGTH (/rm)<br />

Fig. 9<br />

Correction Factors Cs and T, <strong>for</strong> Wavelengths Belween<br />

0.55 and 0.7 um<br />

AMERICAN NATIONAL STANDARD ZI36.I-I986<br />

o.700<br />

5l


AMERICAN NATIONAL STANDARD 2I.16.I- I9116<br />

;<br />

z<br />

-<br />

o.<br />

-<br />

.51<br />

t ar''<br />

l t l<br />

'1 J< ro t.)<br />

\-- l.n<br />

-1 ,.os;L_<br />

6 8 4 5 6 2 4 6 8 2 6 8 ? t<br />

to<br />

roo looo<br />

EXPOSURE OURATION (SI<br />

Fig. l0<br />

Ocular MPE <strong>for</strong> tntrabeam Viewing (Angular Subtense


,,O<br />

.ro<br />

roo<br />

to<br />

I<br />

5<br />

4<br />

z<br />

I<br />

6<br />

4<br />

2<br />

(r<br />

E l 5<br />

: tol 1.<br />

l.<br />

z,<br />

6<br />

G ir<br />

tori:<br />

\<br />

l'<br />

(b<br />

l'<br />

l4<br />

I'<br />

l '<br />

\<br />

tl<br />

a4<br />

r+w_,<br />

% il^ =r-f=<br />

_1d<br />

N 7,<br />

7t art<br />

c<br />

-*<br />

6 8 4 6 8 2 4 6 8<br />

ro<br />

too tooo<br />

EXPOSURE DURATION (S)<br />

Fig. I I<br />

Ocular MPE <strong>for</strong> Extended Sources (Angular Subtense >c,.,", in Fig. 3)<br />

as a Function <strong>of</strong> Exposure Duration and Wavelength<br />

AMERICAN NATIONAL STANDARD Z I 36. I. I 9Ii6<br />

b<br />

b l<br />

. d I<br />

4<br />

k"<br />

\<br />

\.l<br />

6 8 2 3<br />

to.<br />

I<br />

6<br />

2<br />

too<br />

l l o<br />

s<br />

6<br />

2<br />

I<br />

\ I<br />

-l-1


O(Dlo<br />

q<br />

-i@ (o t<br />

o<br />

o<br />

ct<br />

I<br />

t<br />

(o<br />

(o<br />

I<br />

I<br />

9<br />

I<br />

I<br />

o<br />

.o<br />

Ee<br />

3<br />

&<br />

GI<br />

=3-<br />

.-.'g<br />

oE<br />

€><br />

r:l<br />

Y 3<br />

z<br />

, -<br />

(O lrl<br />

ao<br />

G,<br />

o<br />

= c l<br />

flgg r.!<br />

€ E<br />

Ffi<br />

I<br />

I<br />

at<br />

lrl<br />

_ - J<br />

t<br />

o.<br />

t E<br />

EE<br />

5d<br />

9 s<br />

S€E<br />

I<br />

@<br />

@<br />

e<br />

EGI gg<br />

q 1<br />

EH<br />

I<br />

!t<br />

o<br />

aO<br />

I<br />

I<br />

,<br />

I<br />

@<br />

o<br />

to<br />

AMERICAN NATIONAL STANDARD<br />

ZI ]6,I.I986


,l<br />

AMERICAN NATIONAL STANDARD ZI J6.I.I986<br />

;flNG LENS<br />

(P=5 DIOPTERS OR<br />

GREATER)<br />

,o<br />

SOURCE<br />

SOLID ANGLE OF<br />

ACCEPTANCE<br />

(sEE 9.2) APERTURE STOP<br />

(SEE TABLE 9)<br />

,a<br />

Fig. l3<br />

Measurcment Arrangement Used <strong>for</strong> Purposes<br />

iif Laser Classifi cation<br />

DETECTOR


o<br />

Appendixes<br />

Appendix A<br />

This Appendix is not pan <strong>of</strong> American National standard 2136.l-1986, bul is intended f<strong>of</strong><br />

in<strong>for</strong>mation only.<br />

Examptes <strong>of</strong>Typical Lasers or Laser Syst€m Classificstion and MPE Values <strong>for</strong> Selected Laserc<br />

Since <strong>the</strong> laser classification was designed to include<br />

all types <strong>of</strong> lasers operating at essentially any<br />

wavelength or pulse duration, <strong>the</strong> rules <strong>of</strong><br />

classification (see 3.2) may appear complicated. To<br />

assist in <strong>the</strong> classification <strong>of</strong> commonly available<br />

fasers, Tables Al and A2 have been prcpared to aid<br />

<strong>the</strong> <strong>use</strong>r in rapidly determining lhe required<br />

radiometric parameters needed to classify a laser and<br />

its applicable class once <strong>the</strong> required output<br />

parameters are known. Table Al applies to cw lasers<br />

(potential exposure time >0.25 s), and Table ,A2<br />

applies to pulsed lasers. To classify a repetitively<br />

pulsed laser, <strong>the</strong> values in Tables Al and AZ are not<br />

generally applicable but may be <strong>use</strong>d as a first step in<br />

estimating approximately what class <strong>the</strong> laser will fall<br />

into;<br />

56<br />

<strong>the</strong> <strong>use</strong>r should <strong>the</strong>n apply <strong>the</strong> rules given in<br />

Section 3 <strong>of</strong> <strong>the</strong> standard.<br />

Calculations rcquired <strong>for</strong> some classifications are<br />

presented in Appendix B.<br />

The MPE per pulse values given in Section 8 can be<br />

applied to any laser or laser system operating at<br />

essentially any wavelength, pulse duration and<br />

exposure duration. Tables ,43 and ,{4 have been<br />

preparcd to assist in determining <strong>the</strong> intrabeam MPE<br />

<strong>for</strong> <strong>the</strong> eye and skin <strong>for</strong> several commonly <strong>use</strong>d<br />

lasers. Table A3 applies to selected cw lasers and<br />

Table A'4 applies to selected pulsed lasers.<br />

Calculations required to detemire &e MPE <strong>for</strong><br />

various situations are prcsented in Appendix B.


,l<br />

,,<br />

..-<br />

-<br />

ro<br />

(0. I to O-2E<br />

lrrn)<br />

(0.315<br />

ro 04!m)<br />

(0.4<br />

ro 0.?<br />

Im)<br />

(0.? to 1.4 FF)<br />

Fd Inf@d<br />

(l.4 ro l0oIm)<br />

Far InrmEd<br />

{O. l to I mm)<br />

YAG (Quadopled)<br />

H€lium{rdrDium<br />

Helium-Sctenium<br />

YAC (Dolblcd)<br />

Helium-Neon<br />

Krypton<br />

cw Galliutn-Aluminum<br />

YAG<br />

Hydro8en Cyanid.<br />

Table Al<br />

Typical Laser Classification - continuous.Wave (CW) Lasers<br />

125 rm only<br />

35l.l,363.8 nm only<br />

350.?,1564 motrly<br />

457-9, 4?6.t, 488.<br />

(l0lines)<br />

J33nnl<br />

632.8 m<br />

617. I, 530.9, 676.4 nm<br />

o.8s<br />

Im (20 " c)<br />

0-905<br />

ll'n (20 " C)<br />

l,0li, 1.152<br />

xn only<br />

5.0-5.5In<br />

10.6!m<br />

3.39 lrn dly<br />

IIEBE<br />

3l7pm<br />

APPENDTX<br />

ExcnF -Cl!$ l' Cbs.? Clasr 3<br />

Cl6 4<br />

< 0.?5 x lfr W<br />

s 0.3!r trr w<br />

>Clsss l b Cl.ss I blr < 0.5 w > 0.5 W<br />

>ctas.lhr0.5w<br />

>Ctasslbut30.5W >0.5W<br />

- >Chs|butso5w >0.5\'<br />

' > Cllrs I but 0 5 !Y<br />

- > Clu\' I but s lr'5 W >lr't \4<br />

- >ChsrIbut0i\'<br />

- >ClNlburso.sw >05[<br />

* Assumes no mechanical or elecrrical design incoryorar€d inro ldser $ysrcm to prevent exposurcs from lasling lo 1-., = I hours (one workdry): o<strong>the</strong>twis€<br />

rhe Class I AEL could b€ larg€r than lab{llared.<br />

Table A2<br />

Typical Laser Classificalion - single-Puls€ Lasers<br />

Wa'./eng.h<br />

R,n8. l-e. wrvelen8th Pulse Duo(ion EremPl.clrs l c|&s 3 Hi8n.Pog€rcls.4<br />

(O.l ro 04 trn) Q*w (Q{adruplcd)<br />

Ruby (Do$bl.d)<br />

(DoubLd)<br />

Rhodmio€ 6G<br />

(Dy. Lasco<br />

266 nn<br />

532 nh<br />

694.3 nm<br />

450-650 nn<br />

1.064 Fm<br />

L54 Fm<br />

l0to 30x ltr's (Q-sw)<br />

l0ro 30x l0-'s (Q-se)<br />

l i = ?0 'r0" s rQ-sw)<br />

: !0x l0-'i (Q-sw)<br />

: lOlo l00x l0 " s (Q-sw)<br />

I tu t0(tx l0'r (Q-sw)<br />


APPENDIX<br />

Laser Type<br />

Helium-Cadmium<br />

Argon<br />

Helium-Neon<br />

Krypton<br />

Neodymium: YAG<br />

Callium-Arsenide<br />

at room temp<br />

Helium-Cadmium<br />

Nitrogen<br />

Carbon-dioxide<br />

(and o<strong>the</strong>r lasers<br />

1.4 lrm to 1000 pm)<br />

Table A3<br />

Intrabeam MPE <strong>for</strong> <strong>the</strong> Eve and Skin <strong>for</strong> Selected CW Lasers<br />

Primary<br />

Wavelength(s)<br />

(nm)<br />

441.6<br />

488/s r4.5<br />

632.E<br />

647<br />

I,064<br />

905<br />

325<br />

337 .l<br />

a)<br />

b)<br />

c)<br />

a)<br />

b)<br />

d)<br />

a)<br />

b)<br />

c)<br />

d)<br />

Exposure Limit<br />

Eye Skin<br />

2.5 mW ' cm-2 <strong>for</strong> 0.25 s<br />

l0 mJ ' cm-z <strong>for</strong> l0 to ld s<br />

I pW.cm-r <strong>for</strong>t> ld s<br />

2.5 mW ' cm-2 <strong>for</strong> 0.25 s<br />

10 mJ ' cm-2 <strong>for</strong> l0 s<br />

170 mJ . cm-z <strong>for</strong> t > 453 s<br />

t7 pW . cm-2 <strong>for</strong> t > lOa s<br />

2.5 mW . cm-2 <strong>for</strong> 0.25 s<br />

l0 nJ . cm-? <strong>for</strong> lo s<br />

280 mJ ' cm-2 <strong>for</strong> t > 871 s<br />

28 pW cm-? <strong>for</strong> t > ld s<br />

1.6 mW cm-z <strong>for</strong> t > 1000 s<br />

0.8 mW cm-2 <strong>for</strong> t > l0O0 s<br />

0.2 W ' cm-2<br />

<strong>for</strong>t> l0s<br />

0.2 W . cm-2<br />

<strong>for</strong>t> l0s<br />

0.2 W . cm-?<br />

<strong>for</strong>t> l0s<br />

1.0 W . cm-2<br />

0.5 W . cm-2<br />

<strong>for</strong>t> l0s<br />

lJ.cm-2<strong>for</strong>l0to3xlOas a) 1J'cm-2<strong>for</strong><br />

l0 to 1000 s<br />

b) l mw .cm-2 <strong>for</strong><br />

t> 1000 s<br />

10,600 0.1 W . cm-2 <strong>for</strong> >10 s 0.1 W.cm-2 <strong>for</strong><br />

t>l0s<br />

Table A4<br />

Intrabea4 MPE <strong>for</strong> <strong>the</strong> Eye and Skin For Selected Pulsed Las€rs<br />

Primary<br />

Maximum Pemissible Exposure<br />

wavelength(s) Pulse<br />

Laser (nm) Duration Eye Skin<br />

Normal-pulsed ruby<br />

Q-switched ruby<br />

Rhodamine 6C dye laser<br />

Normal pulsed<br />

neodymium<br />

Q-switched neodymium<br />

58<br />

694.3<br />

694.3<br />

= 500 - 700<br />

1064<br />

l0@<br />

= I msec<br />

5 - 100 nsec<br />

0.5 - 20 psec<br />

= | msec<br />

5 - 100 nsec<br />

t0-s J ' cm-z<br />

5xl0-7J'cm-2<br />

5x l0-?J.cm-2<br />

5xl0-5J'cm-2<br />

5xl0{J.cm-2<br />

0.2 J ' cm-2<br />

0.02 J ' cm-z<br />

0.03 to 0.07 J . cm-2<br />

1.0 J ' cm-z<br />

0.1 J . cm-z


JO<br />

JO<br />

,t'<br />

Appendix B<br />

Calculaaions <strong>for</strong> Hazard Evaluation and Classification<br />

Bl. General<br />

Calculations are not necessary <strong>for</strong> hazard evaluation<br />

aod classification in many applications; however, in<br />

outdoor applications and o<strong>the</strong>r specialized <strong>use</strong>s where<br />

eye exposure is contemplated, several types <strong>of</strong> calculations<br />

permit <strong>the</strong> important quantitative study <strong>of</strong><br />

potential hazards.<br />

Ma<strong>the</strong>matical symbols <strong>use</strong>d here are defined in 82.<br />

Hazard classification and MPE determination may<br />

requirc <strong>the</strong> <strong>use</strong> <strong>of</strong> fomulas in 83. Formulas <strong>use</strong>ful in<br />

estimating exposure at significant distances from <strong>the</strong><br />

laser and in optically aided viewing are presented in<br />

84.<br />

Figures Bl, 82 and 83 illustrate rhe three conditions<br />

<strong>of</strong> ocular exposure to laser mdiation,<br />

82. Symbols<br />

The following symbols are <strong>use</strong>d in <strong>the</strong> <strong>for</strong>mulas <strong>of</strong><br />

this Appendix.<br />

a = Diameter <strong>of</strong>emergent laser beam (cm)<br />

b, = Diameter <strong>of</strong> laser beam incident on a<br />

focusing lens (cm)<br />

= Major axis <strong>of</strong>elliptical cross-section<br />

beam (cm)<br />

c = Minor axis <strong>of</strong> elliptical cross-section<br />

beam (cm)<br />

bl = Width <strong>of</strong> rcctangular beam (cm)<br />

Cl = Height <strong>of</strong> rectangular beam (cm)<br />

d" = Diameter <strong>of</strong> <strong>the</strong> pupil <strong>of</strong> <strong>the</strong> eye (varies<br />

from approximately 0.2 to 0.7 cm)<br />

= Limiting object size <strong>of</strong> extended object<br />

(cm)<br />

D" = Diameter <strong>of</strong> <strong>the</strong> exit pupil <strong>of</strong>an oprical<br />

system (cm)<br />

Da = Diameter <strong>of</strong> laser beam at range r (cm)<br />

D, = Diameter <strong>of</strong> objective <strong>of</strong> an optical iystem<br />

(cm)<br />

e = Base <strong>of</strong> natural losarithms<br />

APPENDIX<br />

/ = Effective focal length <strong>of</strong>eye (1.7 cm)<br />

.6 = Focal length <strong>of</strong> lens (cm)<br />

F = Pulse-repetition frequency, prf(s-r)<br />

G = Ratio <strong>of</strong> retinal iradiance <strong>of</strong> radiant exposure<br />

received by optically aided eye to<br />

that received by unaided eye<br />

H, E = Radiant exposurc (II) or iradiance (E)<br />

at range r, measurcd in J ' cm-2 <strong>for</strong><br />

pulsed lasers and W ' cm-2 <strong>for</strong> cw lasers<br />

t/,, E, = Emergent beam radiant exposure (I1a) or<br />

inadiance (8") at zero range (units as <strong>for</strong><br />

E,m<br />

Ha = The potential eye exposurc, in <strong>the</strong><br />

appropriate units, utilized in <strong>the</strong><br />

determination <strong>of</strong> <strong>the</strong> optical density<br />

<strong>of</strong>protective eyewear<br />

l, = Radiance <strong>of</strong>an extended source (W.<br />

cm''sr'<br />

lp = lntegrated radiance <strong>of</strong>an exlended source<br />

(J'Cm - 'Sr ',,<br />

m = Atmospheric attenuation coefficient<br />

(cm-r) at a particular wavelength<br />

NA = Numerical aperture <strong>of</strong> optical fiber<br />

P = Magnifying power<strong>of</strong>an optical system<br />

O = Total radiart enorgy output <strong>of</strong> a pulsed<br />

laser, measured in joules<br />

r = Range fmm <strong>the</strong> laser to <strong>the</strong> viewer or to<br />

a diff<strong>use</strong> target (cm)<br />

rr = Range from <strong>the</strong> laser target to <strong>the</strong> viewer<br />

(cm)<br />

11 ."" = Maximum range from <strong>the</strong> laser target to<br />

<strong>the</strong> viewer where extended-source MPE<br />

applies (cm)<br />

R = Radius <strong>of</strong> curvature <strong>of</strong> a specular surface<br />

(cm)<br />

r,vom = The distance along <strong>the</strong> axis <strong>of</strong><strong>the</strong><br />

unobstructed beam liom <strong>the</strong> laser<br />

beyond which <strong>the</strong> iffadiance or<br />

radiant exposure is not expected to<br />

exceed <strong>the</strong> appropriate MPE (cm)<br />

S = Scan rate <strong>of</strong> a scanning laser (number <strong>of</strong><br />

scans across eye per second)<br />

, = Duration <strong>of</strong>single pulse (s)<br />

T = Total exposure duration (in seconds) <strong>of</strong>a<br />

train <strong>of</strong> pulses<br />

cr = Viewing arigle subtended by an extended<br />

)v


o<br />

o<br />

APPENDIX<br />

source<br />

d-in = Minimum angle subtended by a source <strong>for</strong><br />

which extended-source MPE applies (rad)<br />

p = Atmospheric attenuation coefficient<br />

(cm-r) at a panicular wavelength<br />

0 = Emergent beam divergence measured in<br />

mdians I i e<br />

0r = Emergent beam divergence <strong>of</strong> <strong>the</strong> major<br />

cross-sectional dimension <strong>of</strong> a rectangular<br />

or elliptical beam, measured in radians<br />

0? = Emergent beam divergence <strong>of</strong><strong>the</strong> minor<br />

cross-sectional dimerlsion <strong>of</strong> a rectangular<br />

or elliptical beam, measurcd in radians<br />

O = Total radiant power output <strong>of</strong> a cw laser,<br />

or average radiant power <strong>of</strong>a rcpetitively<br />

pulsed laser, measured in watt$<br />

pi. = Spctral reflectance <strong>of</strong> a diff<strong>use</strong> object at<br />

wavelength ?',<br />

4 = Maximum angular sweep <strong>of</strong> a scanning<br />

beam (rad)<br />

0u = Viewing angle (see Fig. 83)<br />

orn = Mode field diameter <strong>of</strong> single mode<br />

optical fiber (pm)<br />

83. Examples <strong>of</strong> MPE Determination and Laser<br />

Classification<br />

B3.1 Determining <strong>the</strong> MPE <strong>for</strong> Intrabeam Viewing<br />

<strong>for</strong> Particular Exposures<br />

83.l.l Single-Pulse Laser MPES.<br />

MPEs <strong>for</strong> single-pulse lasers may be calculated from<br />

<strong>the</strong> in<strong>for</strong>mation provided in Tables 5, 6 and 7 (as in<br />

Examples I and 2) or <strong>the</strong>y may be rcad directly from<br />

<strong>the</strong> graphs <strong>of</strong> Figs. 4, 5, 6 and 7.<br />

Emmple l: Single-Pulse Visible Laser. Determine<br />

<strong>the</strong> MPE <strong>for</strong> a direct intrabeam exposurE to a<br />

694.3 nm ruby laser pulse having a duration <strong>of</strong><br />

8 x l0r s (0.8 ms).<br />

The appropriate MPE, as given in Table -5, is<br />

MPE: t/ = 1.8 x l0-3 r3la J cm-2<br />

Substituting <strong>the</strong> yalues <strong>for</strong> , in <strong>the</strong> example yields<br />

60<br />

I Jiv lO-3 r<br />

MPE: l1 =#<br />

-1,l<br />

_ (1.8x l0-3x8x 10r)<br />

a!8 x Io{<br />

l -1, ., ! ^-6<br />

1.68 x l0-'<br />

Since E . , = H, <strong>the</strong> MPE may also be expressed as:<br />

H 8.6 x l0+ J'cm-2<br />

,\nYL: E =<br />

r 8xl0- s<br />

=l.lxl0-2W.cm-z<br />

Example 2: Single-Pulse Near Infrarcd l,aser. Detet<br />

mine <strong>the</strong> intrabeam dircct-viewing MPE <strong>for</strong> t<br />

1.081pm (Nd: YAG) laser having a pulse durationd<br />

Ex loa s. The MPE as given in Table 5 is<br />

MPE:H = 9t3/a x l0-3 J/cm2<br />

= 9(8x loa)3i a x l0-3<br />

=4.3x10-5J'cm-z<br />

Ano<strong>the</strong>r way to approach this problem is to note thd<br />

in Fig.8, <strong>the</strong> direct-beam MPE <strong>for</strong> this laset is fivc<br />

times that <strong>for</strong> <strong>the</strong> visible laser having <strong>the</strong> same expo<br />

sure duration (see Example l). Therc<strong>for</strong>e, <strong>the</strong> MPE<br />

<strong>for</strong> this exposure is<br />

MPE: H = 5x(8.6x 10-6 J cm-2)<br />

= 4.3 x 10-s J cm-z<br />

and in terms <strong>of</strong> irradiance,<br />

MPE: E = 5 x(l.l x l0-2 w' cm-2)<br />

= 5.4x l0? W' cm-2<br />

83.1.2 Rep€titively Pulsed Laser MPE.<br />

To determine <strong>the</strong> MPE applicable <strong>for</strong> an exposure t0<br />

a repetitively pulsed laser one must know <strong>the</strong><br />

wavelength, prf, duration <strong>of</strong> a single pulse, and dwa'<br />

tion <strong>of</strong> a complete exposurc. The MPE per pulse fot<br />

repetitively pulsed intrabeam viewing is n-rla timel<br />

<strong>the</strong> MPE <strong>for</strong> a single pulse exposure where n is thc<br />

number <strong>of</strong> pulses found fmm <strong>the</strong> product <strong>of</strong> <strong>the</strong> prf<br />

and <strong>the</strong> exposurc duration (T) as defined in 8.2.2<br />

This MPE applies to all wavelengths gr€ater than<br />

700 nm. For wavelengths between 40O and 700 nrn,<br />

<strong>the</strong> MPE as calculated on <strong>the</strong> basis <strong>of</strong> n-rla also mu$<br />

not exceed <strong>the</strong> MPE calculated <strong>for</strong> |rl seconds when<br />

nr is sreater than l0 s,


I I<br />

Tlir,'i :":,3*1;If;iTrjfrTfJfiiff"#r<br />

'<br />

. o<br />

-<br />

ance or radiant exposure (radiance or int€grated radiance)<br />

<strong>for</strong> <strong>the</strong> pulse ffain duration (f) is limited to <strong>the</strong><br />

MPE <strong>for</strong> one pulse <strong>of</strong> this inadiance or radiant exposure<br />

(radiance or integrated radiance) whose duration<br />

is <strong>the</strong> maximum exposurc duration, fmax.<br />

Exarnple 3: Repetitively Pulsed Visible Laser with<br />

Very High PRF. Determine <strong>the</strong> direct intrabeam<br />

MPE <strong>of</strong> a 514.5 nm (Ar) laser and operating at a prf<br />

(F) <strong>of</strong> l0MHz a pulsewidth t <strong>of</strong> l0ns (10-u s).<br />

Assume an exposure duration I <strong>of</strong> 0.25 s.<br />

Since <strong>the</strong> prf is greater than 15 kHz <strong>the</strong> avemge radiant<br />

exposure limitation applies. From Table 5,<br />

MPE (avg):H < 1.8 t3lax l0-3 J. cm-2<br />

= 1.8(0.25)3/a x t0-3 J.cm-z<br />

=6.36x10{J.cm-?<br />

This may also be expressed in terms <strong>of</strong> average irradiance.<br />

-2<br />

rru'u - z - 6'36x!-o:l' cm<br />

=2.55xlo3W<br />

cm2<br />

Example 4: Repetitively Pulsed Near Infrared Laser<br />

with Moderate PRF. Detemile <strong>the</strong> intrabeam<br />

direct-viewing MPE <strong>for</strong> a 905 nm (GaAs) laser which<br />

has a pulsewidrh r= l0Ons (107s) and a prf<br />

F = I kHz. Since <strong>the</strong> 905 nm wavelength will not<br />

p,rovide a natural aversion response such as a visiblewavelength<br />

laser would, assume a l0 s exposure<br />

duration f <strong>for</strong> this panicular laser application. The<br />

total number <strong>of</strong> pulses in a l0 s exposure duration is<br />

determined from <strong>the</strong> product <strong>of</strong> <strong>the</strong> exposure duration<br />

and <strong>the</strong> prf, i.e., n = F xT equals lOa pulses. From<br />

Fig. 12, <strong>the</strong> reduction factor n-lla is found to be 0.1.<br />

From Table 5 or Fig.8, <strong>the</strong> wavelength conection<br />

factor is 2.6 at 905 nm and th€ MPE from Table 5 <strong>for</strong><br />

a single pulse is:<br />

MPE. H = (5C,{<br />

x l0-?; J. cm-2<br />

.'.MPE/Pulse: H < r?-u4(5C,{ x l0-7; J . cm-z<br />

< 0.1 x5 x2.6x l0-7 J . cm-?<br />

, I "."*. ,n" "ru .-o,,j:o ui'u'J,nu,",,". .**,",.<br />

<strong>for</strong> <strong>the</strong> dumtion <strong>of</strong> <strong>the</strong> entire oulse train would be:<br />

MPE/(cum) : t/ < ( l0 s) (101 Hz) '<br />

(1.3x l0-? J . cm-2)<br />

=l.3xl0-3J.cm-z<br />

APPENDIX<br />

This may also be exprcssed in terms <strong>of</strong> average irradiance,<br />

.. . ^ .^-r. -t<br />

MpF.F= it _ l.JXtu-J'cm-<br />

T los<br />

= t.3x 104 W ' cm-2<br />

Example 5: l-ow-PRF, long-Pulse, RePetitively<br />

Pulsed Visible Laser. Determine <strong>the</strong> MPE <strong>for</strong> a<br />

632.8 nm (He-Ne) laser where T = 0.25 s, t = l0-3 s,<br />

andF=l0OHz.<br />

The MPE per pulse is given by <strong>the</strong> product <strong>of</strong> n-rla<br />

and <strong>the</strong> MPE <strong>for</strong> a single pulse. [n addition, since<br />

this is a visible laser, <strong>the</strong> MPE.per pulse must not<br />

exceed <strong>the</strong> MPE calculated <strong>for</strong> r, when nt is greater<br />

than l0 s.<br />

nt=t'F'T<br />

= (10-3 s) (0.25<br />

s) (t00 Hz) = 2.5x 102 s<br />

(Eq Bl)<br />

Since this is less than l0 s, <strong>the</strong> latter does not apply.<br />

The total number <strong>of</strong> pulses in <strong>the</strong> 0.25 s exposure is<br />

n = F x I equals 25. From Fig. 12 <strong>the</strong> conesPonding<br />

value <strong>of</strong> n-rla is 0.45.<br />

From Table 5 or Fig.4 lhe MPE <strong>for</strong> a single l0-3 s<br />

pulse is<br />

MPE: H ( 1.8 tlla x l0-3 J cm-z<br />

= l.0lxl0-s J'cm-2<br />

and <strong>the</strong> corresponding MPE per pulse <strong>for</strong> a 0.25s<br />

exposure is:<br />

MPE/Pulse: Hi < (n-rl4) MPE<br />

= (0.45) ( l.0lxr 0-5)<br />

=4.55x10{J'cm-2<br />

ln terms <strong>of</strong> average power,<br />

MPE (average power): E.,e= H ' F<br />

= (4.55 x l0{ J . cm-z)( l0O Hz)<br />

=4.55x10aW'cm-2<br />

(Ec 82)<br />

Example 6: One-Pulse Croup, Shon-Pulse L,aser'<br />

Find <strong>the</strong> MPE <strong>of</strong> a p-switched ruby laser (694.3 nm)<br />

6l


APPENDIX<br />

which has an output <strong>of</strong> three 20 ns pulses, each<br />

separated by l0O ns.<br />

This is not a repetitively pulsed laser in <strong>the</strong> usual<br />

sense (that is, one having a continuous train <strong>of</strong> pulses<br />

lasting on <strong>the</strong> order <strong>of</strong> 0.25 s or more with <strong>the</strong> pulses<br />

being reasonably equally spaced). The inaabeam<br />

visible MPE per pulse is given as <strong>the</strong> product <strong>of</strong> n-rla<br />

and <strong>the</strong> MPE <strong>for</strong> a single pulse (from Table 5), or <strong>the</strong><br />

MPE per pulse is<br />

MPE/Pulse : H < 1n-rla; lMpE; J' cm-2<br />

= 3-l/a (5 x l0-?)<br />

= 3.8x l0-7 J.cm-2<br />

Example 7: Repetitively Pulsed Pulse Groups. Find<br />

<strong>the</strong> MPE <strong>for</strong> an Argon laser (488 nm) <strong>use</strong>d in a<br />

pulse.code-modulated (pcm) communications link.<br />

The laser presents l0a "words" per second (that is,<br />

10" pulse groups per second) and each word consists<br />

<strong>of</strong> five 20 ns pulses spaced at coded intervals such<br />

that each pulse group lasts no longer than I ps.<br />

The effective prf <strong>of</strong> <strong>the</strong> pulse train is equal to <strong>the</strong> product<br />

<strong>of</strong> <strong>the</strong> number <strong>of</strong> words per second and <strong>the</strong><br />

number <strong>of</strong> pulses per word, or 50 kHz. Since this is<br />

greater than 15 kHz, <strong>the</strong> cw or average power limitation<br />

applies. Thus, <strong>the</strong> corresponding MPE from<br />

Table 5 or Fig.4 <strong>for</strong> a nonmodulated laser and an<br />

exposure duration <strong>of</strong> 0.25 s is:<br />

or<br />

MPE:11 = 1.8 l3l4x10-3 J - cm-z<br />

I R,l/4 Y l n-l<br />

MPE : E( ""' ^ '" W cm-2<br />

I<br />

=2.55x10-3W.cm-2<br />

This value is compared with <strong>the</strong> average irradiance <strong>of</strong><br />

<strong>the</strong> laser which is obtained from <strong>the</strong> effective duty<br />

factor <strong>of</strong> <strong>the</strong> pulse train and <strong>the</strong> peak power. The<br />

duty factor is defined as <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> pulse width<br />

(r) to <strong>the</strong> period, which can also be expressed as<br />

t x f. In this example <strong>the</strong> effective duty factor is<br />

20nsx50kHz=0.001 and hence <strong>the</strong> average irradiance<br />

is 0.001 times <strong>the</strong> peak inadiance.<br />

83.2 Determining When to Use <strong>the</strong> Extended-<br />

Source MPEs.<br />

The intrabeam MPEs are <strong>use</strong>d in all situations <strong>of</strong><br />

intrabeam viewing <strong>of</strong> thc direcl beam or specularly<br />

62<br />

rcflected beam, except <strong>for</strong> close viewing <strong>of</strong> laser<br />

diodes or diode arrays. The intrabeam MPEs are also<br />

<strong>use</strong>d when viewing an extended source at a distance<br />

greater than r I ll's .<br />

83.2.1 Extended-Source MPEs Application.<br />

The extended-source MPEs are applied only in <strong>the</strong><br />

spectral region <strong>of</strong> 0.4 to 1.4 pm where <strong>the</strong> source size<br />

is significantly larger than a "point;'and wherc <strong>the</strong><br />

conesponding retinal image in <strong>the</strong> viewer's eye is<br />

definitely not a "minimal spot". Diff<strong>use</strong> reflections<br />

arc extended sources at close viewing distances;<br />

<strong>the</strong>re<strong>for</strong>e, depending upon environmental considerations<br />

and <strong>the</strong> laser, it may be necessary to consider<br />

<strong>the</strong> extended-source MPEs. Class I and 2 lasers are<br />

not capable <strong>of</strong> producing hazardous diff<strong>use</strong><br />

reflections, and only <strong>the</strong> direct ocular inrabeamviewing<br />

MPEs arE applied (exc€pt in <strong>the</strong> case <strong>of</strong><br />

intrabeam viewing <strong>of</strong> semiconductor diode lasers and<br />

laser arrays), Class 4 lasers are always capable <strong>of</strong><br />

producing hazardous diff<strong>use</strong> reflections at close viewing<br />

distances. Class 3 lasers will not pmduce hazardous<br />

diff<strong>use</strong> reflections <strong>for</strong> exposure times


JO<br />

D1 . cosO,<br />

cQnm = --l-<br />

'lnar<br />

Emmple 8: Finding <strong>the</strong> Maximum Distance Where<br />

<strong>the</strong> Extended-Source MPE Applies. Find <strong>the</strong> maximum<br />

distance rr <strong>for</strong> a visible laser having an emergent<br />

beam diameter d = I cm, a beam divergence<br />

Q = l0' rad, and a pulse duration <strong>of</strong> 20 ps. A diff<strong>use</strong><br />

matte target is placed l@ cm from <strong>the</strong> beam exit<br />

<strong>of</strong> <strong>the</strong> laser; that is, th€ target distance r = 100 cm.<br />

The relation <strong>of</strong> D1 (in Fig. B I ) to <strong>the</strong> emergent beam<br />

divergence and diameter is:<br />

Dt=a+r'Q<br />

(Eq 84)<br />

At sholt target distances, where (r.Q) is nearly zero,<br />

Dz is clearly <strong>the</strong> same as a, or I cm, and using Eq 83<br />

and finding o,n,n from Fig. 3, we have:<br />

Dlcos0u<br />

rlmu=c4oin<br />

which <strong>for</strong> small viewing angles, where cos0v = l, is<br />

a (l cm) (l)<br />

rr drw = - = -----j-:--:::r+j-.-_ = 625 cm<br />

oq.i^ (1.6x l0-r rad)<br />

There<strong>for</strong>c, <strong>for</strong> distances less than 625 cm, <strong>the</strong> applicable<br />

MPE from Table 6 or Fig. 7 is.<br />

MPE=l0rr/3J'cm-z.sar<br />

or<br />

MPE = 10(20x l0{)r'3 J 'cm-? . sal<br />

=2.'l2xll-t J .cm-2 . sal<br />

and <strong>for</strong> greater distances <strong>the</strong> applicable MPE from<br />

Tabte 5 or Fig. 4 is 5x l0-7 J' cm-2.<br />

This example illustrates that <strong>for</strong> most pulsed lasers<br />

<strong>the</strong> extended-source MPEs are applicable <strong>for</strong> diff<strong>use</strong><br />

reflections in such indoor areas as laboratories.<br />

Exceptions would be foc<strong>use</strong>d-beam diff<strong>use</strong><br />

reflections, such as those occuning in microdrilling<br />

processes, For visible cw lasers where <strong>the</strong> exposure<br />

time could b€ 0.25 s or greater and where a is <strong>of</strong>ten<br />

only 0,1 to 0.2cm, q;" is sufficiently great (10-<br />

24 mrad) that <strong>the</strong> maximum distance r 1 at which <strong>the</strong><br />

extended source MPEs apply would be only a few<br />

centimeters and <strong>the</strong> intrabeam MPEs would be more<br />

rclevant. For a = 0.1 cm, and o"nin = 24 mrad,<br />

rl mlx<br />

= a/ohin = 4.2 cm.<br />

Exatnple 9: Extended-Source MPEs <strong>for</strong> Diff<strong>use</strong><br />

Reflections Expressed as Incident-Beam Irradiance or<br />

Radiant Exposure. In most cases it is simpler to<br />

determine whe<strong>the</strong>r <strong>the</strong> incident-beam irradiance or<br />

radiant exposure is capable <strong>of</strong> producing a hazardous<br />

APPENDIX<br />

diff<strong>use</strong> reflection, ra<strong>the</strong>r than having to deal with less<br />

familiar radiometric quantities such as radiance.<br />

Consider <strong>the</strong> laser defined in Example 8. Since <strong>the</strong><br />

extended-source MPE is exprcssed as an integrated<br />

radiance, it is necessary to determine <strong>the</strong> beam radiant<br />

exposure at <strong>the</strong> target which Produces this<br />

integrated radiance. The relation is<br />

H.o\<br />

L" = -------:-::<br />

OI<br />

H = --------L<br />

Pr<br />

where L, is determined from Table 6.<br />

(F.q B5)<br />

Hence, <strong>the</strong> MPE expressed <strong>for</strong> a 100% - reflectance<br />

white diff<strong>use</strong> talget is<br />

(3.14J Q.8x l?-t J . cm-2 . sr<br />

1.0<br />

= 0.88 J cm-'<br />

NOTE| Eq 85 is stricdy true only <strong>for</strong> a <strong>the</strong>oreticalty perfect<br />

Lambenian surface: however, unless a surface has a highly<br />

glossy !;heen, it may b€ considered sufficiently<br />

"diff<strong>use</strong>"<br />

ro apply this <strong>for</strong>mula and <strong>the</strong> diff<strong>use</strong>-surface MPES. The<br />

above rcsult could have been obtained by interpolating <strong>the</strong><br />

values in Column 4 <strong>of</strong> Table B I belween l0-" and l0* s.<br />

Example l0: Sp€ctral Corrections <strong>for</strong> Near Infrared<br />

Laser MPEs. A GaAs laser operating at room temperature<br />

has a peak wavelength at 0.904 pm. What is<br />

<strong>the</strong> MPE <strong>for</strong> a single pulse <strong>of</strong> 200 ns duration?<br />

The MPE can be calculated fmm <strong>the</strong> in<strong>for</strong>malion in<br />

Table 5 and 6 or can be determined as follows: From<br />

Fig.8, note that <strong>the</strong> spectral corection factor C,{ is<br />

2.5. From Fig.4, <strong>the</strong> MPE <strong>for</strong> direct viewing <strong>of</strong> <strong>the</strong><br />

source is H = (2.5) (5x t0-7 J 'cm2; = l.28xl0{<br />

J'cm-2 <strong>for</strong> a single pulse. Similarly, <strong>the</strong> extendedsource<br />

MPE (from Fig.7 <strong>for</strong> 200 ns) <strong>for</strong> sources subtending<br />

an angle greater ihan 3.3 mrad is<br />

(2.5) (5.8x l0 2 J .cm 2<br />

sr-r;=<br />

1.46 x 10-r J cm-z ' sal .<br />

NOTE: Unlike gas or solid-statc lasers, some semiconductor<br />

diqde lasers o. laser anays could be an extended source<br />

at close viewing range within <strong>the</strong> beam if <strong>the</strong> line source<br />

were magnified by a projection lens or a microscope-


APPENDIX<br />

B3.3 Central-Beam Irradiance or Radiant Exposur€.<br />

Often <strong>the</strong> beam inadiance or radiant exposure is not<br />

provided in a laser's specification. However, if <strong>the</strong><br />

laser is single mode and has a Gaussian beam pr<strong>of</strong>ile,<br />

<strong>the</strong> central-beam values may be obtained from lhe<br />

beam diameter specilied at l/e points and <strong>the</strong> beam<br />

radiant power or energy. The relations are<br />

- 40 1.274<br />

(Eq 86)<br />

Lo= -.......--l =<br />

"<br />

17a' 4-<br />

or<br />

. _" Q _1.?7Q<br />

,to - -------;<br />

a<br />

- ------lta'<br />

a'<br />

Often <strong>the</strong> beam divergence or diameter is specified at<br />

lle2 points ra<strong>the</strong>r than aa <strong>the</strong> lle points, so that <strong>the</strong><br />

above relations would provide average values ra<strong>the</strong>r<br />

than central-beam values. In such a case, divide <strong>the</strong><br />

diameter specified at <strong>the</strong> l/e2 points by {7 to obtain<br />

<strong>the</strong> corresponding l/e value. Note however, that <strong>the</strong><br />

MPEs can be specified as averaged ei<strong>the</strong>r over a I<br />

mm or 7 mm aperture depending on <strong>the</strong> wavelength.<br />

In this case <strong>the</strong> calculated values <strong>of</strong> 11., or 8,, may not<br />

be relevant.<br />

83.4 Laser Classification.<br />

Examples I I through 16 show nrethods <strong>of</strong>calculating<br />

parameters necessary <strong>for</strong> classifying lasers in accotdance<br />

with Section 3 <strong>of</strong> <strong>the</strong> standard.<br />

Example Il: Classify a single pulse (prt


fa<br />

,l<br />

,o<br />

pipe; Class 4, if more than 0.5 W is emitted from <strong>the</strong><br />

laser system as an unenclosed beam; or Class 3b, if<br />

after passing through beam-<strong>for</strong>ming optics <strong>the</strong> total<br />

optical power in <strong>the</strong> beam werc greater than 5 mW<br />

but less than 0.5 W(see3.3).<br />

Etample 15: Find <strong>the</strong> appropriate beam diameter to<br />

be <strong>use</strong>d <strong>for</strong> calculations in this standard if a laser<br />

beam diameter is specified as being 3 mm in diameter<br />

as measured at l/e'-<strong>of</strong>-peak-inadiance points. The<br />

beam is fur<strong>the</strong>r specified to be single-mode and Gaussian.<br />

Since <strong>the</strong> beam is Gaussian, <strong>use</strong> may be made <strong>of</strong> <strong>the</strong><br />

relation that <strong>the</strong> beam diameter measured at <strong>the</strong> l/e2<br />

points is greater by a factor <strong>of</strong> {T= l.4l than <strong>the</strong><br />

diameaer measured at <strong>the</strong> l/e points. Henc€:<br />

0.3 cm<br />

a=- = tr-l I cm<br />

\12<br />

This exercise was purely academic, since <strong>the</strong> calculation<br />

<strong>of</strong> diameters below 7 mm is not necessary to<br />

determine laser classification. The value a could,<br />

however, have been <strong>use</strong>d <strong>for</strong> <strong>the</strong> laser range equalion<br />

Eq 87 (see 84.l ).<br />

Emmple 16: Classify a 0.6328 pm visible laser (He-<br />

Ne) <strong>use</strong>d as a remote-control switch. The laser is<br />

electronically pulsed with a I mW peak-power output,<br />

a pulse duration <strong>of</strong> 0.1 s (hence an energy <strong>of</strong><br />

l0{ J per pulse) and a beam diameter <strong>of</strong> I cm. The<br />

recycle time <strong>of</strong> <strong>the</strong> laser is 5 s (maximum<br />

prf = 0.2 Hz).<br />

Since <strong>the</strong> device is pulse.d with an exposure duration<br />

<strong>of</strong> 0.1 s, <strong>the</strong> applicable MPE <strong>for</strong> intrabeam viewing<br />

from Table 5 or Fig. 4 is 3.2 x l0-3 W.cm-? or<br />

3.2 x lt' ! . cm-z. Using Eq 86, <strong>the</strong> emergent beam<br />

radiant exposure per pulse is l.27xl0{J.cm-2,<br />

which is less than half <strong>the</strong> MPE, indicating <strong>the</strong> laser<br />

is Class I if repeated exposure is not considered possible.<br />

In <strong>the</strong> absence <strong>of</strong> biologic dara and MPEs <strong>for</strong><br />

exposures repeated at prfs less than I Hz, <strong>the</strong> exposures<br />

should be considered linearly additive. Following<br />

this rule, at least two exposures are possible considering<br />

all three aspects in a hazard evaluation (see<br />

3.1); <strong>the</strong> prudent approach would be to apply a caution<br />

label to <strong>the</strong> device with <strong>the</strong> words "Do Nor Stare<br />

Continuously Into Laser Beam".<br />

APPENDIX<br />

84. Formulas and Examples Useful in Evaluation<br />

<strong>of</strong> Various Laser Applicftions*<br />

84.l Correction <strong>for</strong> Atmospherlc Attenuation.<br />

Beam irradiance, f, or radiant exposure, f/, <strong>for</strong> a nondiverging<br />

beam at range r which is attenuated by <strong>the</strong><br />

atmosphere is given by<br />

E_E ^itr<br />

or<br />

H = Hoe-['<br />

(Eq 87)<br />

NOTE: The anenuation coeffcic[I. l-1. varies from l0{ per<br />

centimeter in thick fog to l0-' in air <strong>of</strong> very good visibilily.<br />

The Rayleigh scattering coeflicienr at 0.6943 pm is<br />

4.llx l0 xcm-r, and l.8x l0-7cm-r at 0.500 um, The<br />

eflect <strong>of</strong> acrosols in cvcn thc clcanest atmosphcrcs uliuitlly<br />

raises p at 0.6943 pm to at least l0-7 cm r.<br />

84.2 The Laser Range Equation,<br />

Average irradiance at range r (<strong>for</strong> a direct circular<br />

beam) is <strong>the</strong> total power in <strong>the</strong> beam at ,' divided by<br />

<strong>the</strong> area <strong>of</strong> <strong>the</strong> beam at ,'; likewise, <strong>the</strong> radiant exposure<br />

in a nonturbulent medium is <strong>the</strong> total energy in<br />

<strong>the</strong> beam at r divided by its total area.<br />

' @e lt' | .2'1 Q e-r<br />

(Eq 88)<br />

'<br />

z=----f--|T=<br />

la+r-Ol<br />

nl " I<br />

L - _ t<br />

n"-lt | | j1 /'la-l.r r<br />

H = --Y--------,-t'- = :::29:-<br />

" l<br />

la+rbl'<br />

? |<br />

L - J<br />

(a+rQ>'<br />

(Eq 89)<br />

NOTE l: These <strong>for</strong>mulas are accurate only <strong>for</strong> small 0<br />

values: <strong>the</strong> accur,rcy is belter than l% tbr angles less than<br />

0.l7rad (10') and better than 5% tbr angl€s less than<br />

0.37 rad (21').<br />

NOTE 2: For a Gaussian beam <strong>the</strong> mdximum iffadiance at<br />

<strong>the</strong> beam axis is calculatcd using Eq 88, if a and S are<br />

defined at <strong>the</strong> l/e points <strong>of</strong> maximum irradiance.<br />

* Adrpted ironr C.'l 1l .'J ltu:ar.l! kt Hutlth ft1'n Lu:ttr<br />

Rudiution, U.S. Depanment <strong>of</strong> <strong>the</strong> Afmy Technical Bulletin<br />

I'B-MED-524 {1985). S€€ Applndix C, References <strong>for</strong> Control


APPENDIX<br />

NOTE 3: For rectangular or elliptical beams see 84.7.<br />

Example I7'. Find <strong>the</strong> radiant exposure at I km<br />

(105 cm) from a O.lJ Q switched ruby laser (pulse<br />

length = 20 ns) which has a beam div€rgence <strong>of</strong><br />

I mrad (lfr rad) and an emergent beam diameter <strong>of</strong><br />

0.7 cm. Using !t = l0-7 cm-r to provide a worst case<br />

estimate,<br />

"<br />

'J =<br />

, ,rrn , ,,_fl0 ' )rtd )<br />

jj:j-:::j=-<br />

(0.7 + 1t05;116-111:<br />

_ (1.27) (0.1) (0.ee)<br />

(0.7 + 100)2<br />

= 1.25 x l0-5 J . cm-2<br />

84.2.1 Norninal Ocular Hazrrd Distance<br />

(NOHD).<br />

If <strong>the</strong> atmospheric attenuation coefficient is<br />

neglected, a worst case estimate <strong>of</strong> <strong>the</strong> NOHD<br />

(rM<strong>of</strong>lD) <strong>for</strong> Example l7 can be calculated from:<br />

1<br />

rNoHD =<br />

6<br />

o [,_ I<br />

=# h/+*P -.'J<br />

( 5.M km<br />

84,2.2 Range Nomogram, Fig, 86.<br />

The range nomogram in Fig. 86 (which includes <strong>the</strong><br />

attenuation coefficient) can also be <strong>use</strong>d to determine<br />

rNoHD. For <strong>the</strong> values given in Example 17, draw a<br />

line between l00mJ and l.0mrad. This line intercepts<br />

<strong>the</strong> "lntegrated Radiant lntensity" scale at<br />

approximately 0.13 MJ ' s.'. A line is <strong>the</strong>n drawn<br />

from <strong>the</strong> above point to 0.5 lrJ.cm-z on <strong>the</strong> "Radiant<br />

Exposure" scale, intercepting <strong>the</strong> "Range" scale<br />

at 4.9 km <strong>for</strong> a clear day and 4 km <strong>for</strong> a hazy day.<br />

84,3 Bearn Diameter.<br />

The minimum beam diameter. <strong>for</strong> a small 0 at range<br />

r, is given by F4 84:<br />

Dt=a +Qr<br />

Example 18: Find <strong>the</strong> diameter <strong>of</strong> a laser beam at<br />

l km where <strong>the</strong> emergent beam diameter is lOcm<br />

and <strong>the</strong> beam divergence is 0.1 mrad.<br />

66<br />

Dr = l0 cm + (l0r rad) (105 cm)<br />

P1<br />

E=<br />

tD cosO"<br />

or<br />

H=<br />

and<br />

= l0+ l0=20cm<br />

84,4 Diff<strong>use</strong> Refl ections.<br />

The reflected irradiance or radiant exposure <strong>for</strong> a dif.<br />

f<strong>use</strong> reflector (<strong>for</strong> rl :> D.) is given by<br />

--;4-<br />

pr O cos0"<br />

--;i-<br />

{@=,,.,".<br />

'(rr)(10-")<br />

(Eqs Bl0<br />

Example 19: Find <strong>the</strong> maximum rcflected mdiad<br />

exposure at a point along <strong>the</strong> beam axis <strong>of</strong> a 0.1 I<br />

laser, lOm from a diff<strong>use</strong> matte <strong>of</strong> reflectance 0.6 .<br />

(cos 0l = 1).<br />

H_<br />

(0.1J)(9.6),<br />

= 1.9t x tga J.cm-2<br />

(3.14) (10' cm)'<br />

Example 20: Find <strong>the</strong> minimum safe viewing distane<br />

<strong>for</strong> looking at a diff<strong>use</strong> target having a rcflectivity<br />

P;, = 0.9 from a laboratory Ar laser with O = 2W and<br />

d = 2 mm (assume a l0 s exposure duration). (fhis is<br />

also <strong>the</strong> border <strong>of</strong> <strong>the</strong> NHZ, see Fig. B4). The emergent<br />

beam irradiance is 6^3.7 W.cm-2 which ir<br />

greater than <strong>the</strong> 6,8 W 'cm-' maximum permissible<br />

irradiance incident on a 100 percent diff<strong>use</strong>ly<br />

reflecting surface <strong>for</strong> a lOs exposure duration (s€e<br />

TableBl). It is <strong>the</strong>re<strong>for</strong>e concluded that 4vflz must<br />

be greater than Dllohin and intmbeam MPEs apply.<br />

Hence, <strong>the</strong> l0 s MPE is I x l0-3 w'cm-2 (Table 5<br />

or Fig. 4) and <strong>the</strong> expression <strong>for</strong> rpsT can be found by<br />

reananging Eq Bl0. Hence<br />

(Eq BI0a)<br />

Figure 86 may also be <strong>use</strong>d to determine this distance<br />

graphically.


84.5 OptlcaUy Alded Vlewing.<br />

The ratio, G, <strong>of</strong> <strong>the</strong> radiant exposure or inadiance at<br />

<strong>the</strong> retina when viewing is aided by an optical system,<br />

to that received if <strong>the</strong> eye were unaided, is<br />

defined by <strong>the</strong> equations given in B4.5.1 and 84.5.2.<br />

84,5.1<br />

Intrabeam viewing and specular reflection (or diff<strong>use</strong><br />

spot unresolved by eye and optical system):<br />

D7<br />

Q = --l <strong>for</strong> d"2D"<br />

a;<br />

ano<br />

D2<br />

G=-s=P' <strong>for</strong> d"3D"<br />

t);<br />

84.5.2<br />

Indirect viewing <strong>of</strong> a diff<strong>use</strong> reflection, extended<br />

objects only (that is, <strong>the</strong> object subtendsan<br />

angle<br />

greater than 0.6 mrad when magnified):<br />

D1<br />

C = -<br />

and<br />

3l<strong>for</strong>d,2D"<br />

DI<br />

C = =j ^ =l<strong>for</strong>d"3D.<br />

P'Di<br />

(Eq Bl l)<br />

(Eq B l2)<br />

(Eq B 13)<br />

(Eq B 14)<br />

NOTE: The ratio, G, is affected by <strong>the</strong> optical transmission<br />

<strong>of</strong> <strong>the</strong> instrument, but this is normally insignificant. If this<br />

is not <strong>the</strong> case, <strong>the</strong>n this factor should be in <strong>the</strong> numera(ors<br />

<strong>of</strong> Eqs Bll through B14.<br />

Example 2l: Viewing <strong>the</strong> diff<strong>use</strong> reflection <strong>of</strong> <strong>the</strong><br />

laser flash <strong>of</strong> Example l9 through a pair <strong>of</strong> l0 x 50<br />

binoculars (that is, P = l0 and D., = 50 mm). Determine<br />

<strong>the</strong> relative hazard io <strong>the</strong> viewer's eyes <strong>for</strong> night<br />

viewing. Since <strong>the</strong> exit pupil is D,/P = 0.5 cm,<br />

estimating 4 to be 0.7 cm and using Eq B13 yields<br />

G= - !5cm)2 - =-_4 _ =0.r,<br />

(10)2 (0.7 cm)2 (100) (0.49,<br />

The hazard is equiyalent to a comeal radiant exposure<br />

on <strong>the</strong> naked eye <strong>of</strong>: (0.51)(1.91 x l0-8 J .cm-2) =<br />

9.7 x l0-q J . cm-2.<br />

Emmple 22: Viewing a specularly reflecled beam at a<br />

distant point where <strong>the</strong> beam radiant exposure measurcs<br />

2 x lO-e J.cm-2. If an operator were to view<br />

<strong>the</strong> beam through a pair <strong>of</strong> 7 x 50 binoculars, (and <strong>the</strong><br />

beam diarneter is larger than <strong>the</strong> objective diameter),<br />

what would be <strong>the</strong> relative hazard compared with<br />

unaided viewing? The magnifying power, P, <strong>of</strong> <strong>the</strong><br />

APPENDIX<br />

binoculars is 7 and, if inrierted in Eq Bl2, will pro.<br />

vide <strong>the</strong> simplest solution:<br />

G=p2=72=49<br />

Thus, <strong>the</strong> operator would be viewing a level 49 times<br />

greater than with <strong>the</strong> naked ey^e, or a com€al radiant<br />

exposurc <strong>of</strong> nearly l0-' J . cm-'.<br />

84.6 Scanning Lasers.<br />

The comeal radiant exposure <strong>for</strong> a single exposure<br />

from a scanning laser beam is given by Eqs B 15 and<br />

Bl6. (Repetitive-pulsed exposures depend upon<br />

geometrical considerations, scan rate and frame rale.)<br />

.- l.ZlQen' de ^<br />

a =,, *6 ;d- ror4>(4+/'o)<br />

ot<br />

<strong>for</strong> d" < (a + r$)<br />

(4 + ro) 0's0")<br />

(Eq B l5)<br />

(& B16)<br />

The applicable MPEs depend upon <strong>the</strong> repetitive<br />

nature <strong>of</strong> <strong>the</strong> exposure and <strong>the</strong> exposure duration <strong>of</strong> a<br />

single pulse, where<br />

r=@!-!$ <strong>for</strong> d. < (a + 16)<br />

rJ U.<br />

or<br />

|.27 Qe-Y'<br />

d"<br />

1= _ <strong>for</strong> d" > (a + rO)<br />

ruur<br />

and <strong>the</strong> prf is 5 if each scan passes over <strong>the</strong> eye.<br />

(Eq B l7)<br />

(Eq B 18)<br />

Example 23: Find <strong>the</strong> exposure <strong>of</strong> a scanning He-Ne<br />

laser system having <strong>the</strong> _following<br />

pararnete$:<br />

a=0.lcm, Q=5 x 10" rad,


o<br />

APPENDIX<br />

'<br />

0,1+(200)(5 x t0-3) l.l<br />

(?oo) (30) (o.l) 600<br />

t = - = -<br />

= 1.85 x l0-3 s<br />

Step 3. The radiant exposure per pulse as found from<br />

Eq Bl6 is:<br />

(r.27) (10 x lo-1)(l)<br />

" ,. =<br />

(oJJ l x2oox3oxoJ )<br />

=l.92xl0sJ'cm-2<br />

Step 4. The average irradiance at <strong>the</strong> comea is<br />

Eav = H . S = (1.92x l0-5) (30)<br />

= -5.76 x 10{ W cm-2<br />

Step 5. The applicabte MPE per pulse <strong>for</strong> a 0.25 s<br />

exposure is determined by <strong>the</strong> cumulative exposure <strong>of</strong><br />

almost eight pulses:<br />

MPE/Pulse = n-r14(MPE)<br />

= r-rla11.g tl/a) x lo:3 J .cm 2<br />

= 8r/4(1.8) (1.82 x 1fr3)3/a x lf3 =<br />

= (0.s95) ( 1.6 x l0-s) =<br />

=9.44xt06J'cm-2<br />

The total radiant exprosure <strong>for</strong> a 0.25 s exposure duration<br />

must be compared with <strong>the</strong> MPE <strong>for</strong> a pulse train<br />

<strong>of</strong> <strong>the</strong> same duration. The MPE <strong>for</strong> <strong>the</strong> pulse train<br />

dumtion is:<br />

MPE/Train = a (MPE/Pulse)<br />

(S) (9.44 x tg o1J cm-?<br />

= 7.55 x 10-5 J cm-2<br />

This total radiant exposure is equal to <strong>the</strong> producl <strong>of</strong><br />

<strong>the</strong> single pulse exposure and <strong>the</strong> number <strong>of</strong> pulses,<br />

or<br />

11r,, = n (H/Pulse)<br />

=8(1.92x10-5)<br />

= 15.4 x l0-5 J cm-z<br />

Since <strong>the</strong> MPE <strong>for</strong> a 0.25 s exposurc duration is less<br />

than <strong>the</strong> radiant exposure <strong>for</strong> a train <strong>of</strong> pulses <strong>of</strong> <strong>the</strong><br />

68<br />

same duration, <strong>the</strong> exposure is not permissible <strong>for</strong><br />

momentary (uninrcntional; viewing.<br />

84.7 Axial Beam Radiant Exposure <strong>for</strong> R€ctangu.<br />

lar and Elliptical Beams.<br />

The axial beam radiant exposure <strong>for</strong> a rectangular or<br />

elliptical beam can be calculated using modifications<br />

<strong>of</strong> Eqs 88 and 89.<br />

For an elliptical beam<br />

1.27 @ e}' (Eq Bl9)<br />

(b + ror) (c + r02)<br />

-. t .27 Oe-P'<br />

'' H = +<br />

(h + r0r) (c + r02)<br />

For a rectangulat beam (or a<br />

bt=tt)<br />

E=<br />

H =<br />

@ e+'<br />

(br +r0r)(cr +r+2)<br />

Qc-P'<br />

(h1+i'q'116'a,.qr;<br />

(Eq 820)<br />

squarc beam, wherc<br />

(Eq B2l)<br />

(Eq B22)<br />

Example 24: Find <strong>the</strong> average beam irradiance at<br />

r = 20 m <strong>for</strong> a CaAs laser illuminator with <strong>the</strong> following<br />

parameters: @=2W; br =2cm;cr = l3cm;<br />

0r = 5l mrad (3"); 0z = l7 mrad (l').<br />

Using Eq B2l:<br />

(2W)(l)<br />

[2 cm + (200O cm) (0.05 radiJ<br />

.<br />

[1.3 cm + (2000 cm) (0.017 rad)<br />

E=<br />

t<br />

=5.4x lOa w cm-2<br />

( r04) (35.3)<br />

B4.E Nominal Hazard Zone (NHZ).<br />

Examples 25 and 26 show methods <strong>use</strong>d <strong>for</strong> determining<br />

lhe NHZ <strong>for</strong> medical and industrial laser<br />

applications.<br />

E,rample 25: A 50 W cw Nd:YAG (l'= 1.064lrm)<br />

surgical laser is <strong>use</strong>d in an operating suite. It can be<br />

<strong>use</strong>d ei<strong>the</strong>r with an endoscope (where <strong>the</strong> beam is<br />

contained within <strong>the</strong> patient whenever ihe laser<br />

operates). or with a handpiece having a focal length<br />

<strong>of</strong> l0cm and emergent beam diametsr, a, <strong>of</strong> I cm<br />

(f /a) = l9 Determine <strong>the</strong> NHZ.


lO<br />

,,.0 L when <strong>the</strong> laser is operated with rhe endo-<br />

, scope lhe NHZ is limitcd to <strong>the</strong> endoscope.<br />

Step 2. Delermine rNHz. When <strong>the</strong> handpiece is <strong>use</strong>d<br />

<strong>the</strong> beam would normally be directed downward<br />

toward <strong>the</strong> patient and <strong>the</strong> diff<strong>use</strong> reflection zone<br />

from a worsFcase reflection from an anodized instrument<br />

(p=O.9) could be calculated from Eq. Bl0a.<br />

Assuming a worst case viewing angle, (0u = 0"),<br />

(0.9x50x1)<br />

r(5x103)<br />

=./2364 = 53.5 gm<br />

Although one could attempt to <strong>use</strong> TableBl, <strong>the</strong><br />

focal spot size would vary and is nol generally<br />

known; hence Eq. Bl0a provides <strong>the</strong> only approach,<br />

and in any case will always provide <strong>the</strong> most conservatlve<br />

answer.<br />

Step 3. Determine ry6pp. lf <strong>the</strong> handpiece could be<br />

directed away from <strong>the</strong> patient, determine r*op <strong>for</strong> a<br />

I0 s exposure where <strong>the</strong> MPE(E) is 5 mW cm-z:<br />

I<br />

0<br />

ti<br />

l0<br />

I<br />

^ fr2i @<br />

Y cm<br />

t"a<br />

| .27 A<br />

MPE "...<br />

1.27 (so)<br />

fxltt-<br />

=ll?6cm=ll.3m<br />

(Eq B23)<br />

This value <strong>of</strong> 11.3 m becomes <strong>the</strong> dominant value <strong>for</strong><br />

determining <strong>the</strong> radial extent <strong>of</strong> <strong>the</strong> NHZ if rhe beam<br />

can be reasonably expected to be accidentally or<br />

intentionally directed toward people. In normal surgical<br />

<strong>use</strong>, such lasers are not intentionally operat€d<br />

except when directed at <strong>the</strong> target tissue. Hence <strong>the</strong><br />

I1.3 m distance shoutd be <strong>use</strong>d to define <strong>the</strong> region<br />

wherein eye protection and o<strong>the</strong>r control measures<br />

(e.g., area,/entryway controls) arc administratively<br />

APPENDIX<br />

Example 26: A manufacture <strong>use</strong>s a 1000 W (l kW)<br />

cw CO2 laser <strong>for</strong> a cutting process. The beam is<br />

routed through a beam conduit (pipe) tb a final work<br />

station where <strong>the</strong> beam size has expanded to a diameter<br />

<strong>of</strong> I inch (2.54 cm). A s-inch (l2.7cm) focal<br />

length lens is <strong>use</strong>d to focus <strong>the</strong> beam. The lens determines<br />

<strong>the</strong> extent <strong>of</strong> <strong>the</strong> NHZ. Fis. 87 shows <strong>the</strong><br />

arTangement.<br />

Step [. Determine <strong>the</strong> NOHD (i.e., <strong>the</strong> distance along<br />

<strong>the</strong> axis <strong>of</strong> <strong>the</strong> focal cone to that point where <strong>the</strong><br />

beam irradiance is equal to <strong>the</strong> MPE). Although this<br />

system will operate almost continuously during a day,<br />

unintentional exposure to <strong>the</strong> direct beam could be<br />

reasonably expected to occur <strong>for</strong> up to lOs. The<br />

l0 s MPE is 100 mW' cm-'. The F-number (//a) <strong>of</strong><br />

<strong>the</strong> lens is<br />

f ta = (12.7) t(2.s4) = s<br />

and <strong>the</strong> divergence (+) <strong>of</strong> lhe unterminated beam<br />

from <strong>the</strong> focal point is<br />

l l<br />

0= _ ===O-2rad<br />

f-numDer f<br />

The NOHD can be found from Eo. 823<br />

I<br />

rpouo = T<br />

, a [',l;m xxTnri#i;:ti:i', *i#]""::"$'l:<br />

protection is mandatorv.<br />

1.27 Q<br />

MPE<br />

, -,ftr.ztx-iii<br />

- --- \ cm<br />

ll)<br />

= 5(l l3) = 563 cm = 5.63 m<br />

This is <strong>the</strong> value <strong>use</strong>d <strong>for</strong> points along <strong>the</strong> beam axis<br />

unless <strong>the</strong> beam is always terminated.<br />

Step 2. Determine <strong>the</strong> diff<strong>use</strong> reflection hazard distafice<br />

\,147. The reflectance p is probably far less<br />

than 209o , and from Eq B lOa and a worst case viewing<br />

angle 0u <strong>of</strong>0",<br />

@ pr cos 0u<br />

(TXMPE)<br />

" t, loooro-zr, l )<br />

= \ cm<br />

*fif]'-<br />

=\bJ/ =lf cm


o<br />

o<br />

APPENDIX<br />

Step 3. Determine <strong>the</strong> NHZ associated with a specular<br />

reflection from <strong>the</strong> workpiece. Assume pr = 0.2<br />

(worst case), rysT <strong>for</strong> a specular reflection is found<br />

ftom:<br />

I<br />

rNHz =<br />

6<br />

l.n Q pL<br />

cm<br />

MPE<br />

= ZJZ Cm = 2.5). m .<br />

The beam diameter at this distance is<br />

DF Q rum<br />

= (0.2)(252)<br />

cm<br />

= 50.4 cm<br />

The NHZ is <strong>the</strong>re<strong>for</strong>e well defined near <strong>the</strong> beam<br />

path.<br />

Step 4. Determine <strong>the</strong> operator exposure, After<br />

defining <strong>the</strong> NHZ, one should consider long-term<br />

unavoidable exposure <strong>of</strong> <strong>the</strong> skin <strong>of</strong> <strong>the</strong> operator.<br />

Since <strong>the</strong> operator is requircd to manually load and<br />

unload <strong>the</strong> parts to be processed, <strong>the</strong>re is a finite pmbabiliry<br />

<strong>of</strong> exposure to scattered energy (fmm diff<strong>use</strong><br />

reflections) to <strong>the</strong> arms and face <strong>for</strong> periods up to<br />

8 hours. The MPE <strong>for</strong> <strong>the</strong> skin must be reduced <strong>for</strong><br />

large-area long-term exposures as described in 8.4.1.<br />

Assuming that <strong>the</strong> unprotected areas (A") <strong>of</strong> both<br />

arms is approximately 400 cm2, <strong>the</strong> corresponding<br />

MPE is:<br />

MpE= -!q@ - 10'000<br />

=25mW.cm-2<br />

As 40O<br />

This value can be <strong>use</strong>d to calculate <strong>the</strong> distance along<br />

<strong>the</strong> beam axis <strong>of</strong> <strong>the</strong> focal cone to <strong>the</strong> point where <strong>the</strong><br />

inadiance and <strong>the</strong> MPE are equal. Hence,<br />

't0<br />

I<br />

0.2<br />

fl.27X 1000x0.2)<br />

-cm<br />

I<br />

I<br />

0.2<br />

ffi"<br />

= -lG"oet tot<br />

0.2<br />

=ll27cm=ll.3m<br />

But, let us assume that <strong>the</strong> beam is blocked by a dil<br />

f<strong>use</strong>ly rcflecting surface located et a distance d<br />

200cm from <strong>the</strong> focal point. At this distance th<br />

beam diameter is Dy=$r = 0.2(200) =,10 cm. On<br />

can approximate <strong>the</strong> diff<strong>use</strong> rcflection from a 100{<br />

diff<strong>use</strong>ly reflecting surface using Eq Bl0a. Thus th<br />

distance (4ys2) from <strong>the</strong> reflecting surface to tlt<br />

point at which <strong>the</strong> inadiance is equal to <strong>the</strong> MPE cal<br />

be determined.<br />

^/ p1


O m*B.'".:frffi:: r# $":;ffi:JT'lT[<br />

,<br />

I<br />

initial beam diameter (d), or<br />

Dr -a<br />

O =<br />

-<br />

<strong>for</strong> small 0<br />

r<br />

Example 27: Determine <strong>the</strong> maximum beam inadiance<br />

and <strong>the</strong> beam irradiance averaged over a 0.7 cm<br />

diameter aperture <strong>for</strong> a Gaussian beam from a 5 mW<br />

laser with a 0.8 cm beam diameter.<br />

Step l. Determine <strong>the</strong> maximum beam irradiance<br />

from<br />

^ l.na ...<br />

E-= =- W'Cm<br />

/l tTvS v ln J\<br />

(0.8)2<br />

=9.9x10-rW.cm-2<br />

-<br />

Step 2. Determine <strong>the</strong><br />

averaged over a 0.7 c;n di<br />

r lD. l<br />

- 4P, -<br />

l. Io.l<br />

8,,= -'-"'- maximum beam irradiance<br />

4meter apedure from<br />

I<br />

" ll-e<br />

ND:, I<br />

L<br />

.l<br />

- r -lorl ln.tl'r<br />

(4X5x l0-r)<br />

= """"""'--- l.<br />

I<br />

t|-e I<br />

n (0.7)' L _l<br />

= l.3o x lo-?<br />

lr-0.+osl<br />

= 6.95 xl0-3 W . cm-2<br />

Example 28: Detemine <strong>the</strong> appropriate beam diameter<br />

to be <strong>use</strong>d in hazard analysis <strong>for</strong> a laser beam<br />

diameter <strong>of</strong> 0.3 cm specified at <strong>the</strong> I tez points. The<br />

laser is fur<strong>the</strong>r specified to be single-mode and Caussian.<br />

Since <strong>the</strong> beam is Gaussian, <strong>the</strong> beam diameter<br />

measured at <strong>the</strong> I le2 points is greaaer by a factor <strong>of</strong><br />

! 2 times. Hence<br />

n1<br />

a =:=. =0.21 cm<br />

12<br />

Example 29: Find <strong>the</strong> approximate beam diameter <strong>of</strong><br />

a Gaussian laser beam having a total output power <strong>of</strong><br />

5 mW and a measured power <strong>of</strong> I mW through a<br />

0,7 cm diameter apelture. The approximate beam<br />

o'uttttt ,a) can be found from Eq 824. Hence,<br />

P<br />

-<br />

---f---T o.72<br />

r"lr-ll<br />

[ ]J<br />

-1,"1'r<br />

_" lD,l I<br />

' l<br />

= 1.48<br />

cm<br />

APPENDIX<br />

Example 30: Find <strong>the</strong> maximum percentage <strong>of</strong> <strong>the</strong><br />

total power P" <strong>of</strong> a 3 mW HeNe laser that will pass<br />

through a 7 mm diameter apefture if <strong>the</strong> beam diameter<br />

specified al <strong>the</strong> I /e2 points is 1.6 cm.<br />

The fraction <strong>of</strong> <strong>the</strong> total power which passes through<br />

an apenure <strong>of</strong>diameter Do is given by<br />

b€am diameter is specified at <strong>the</strong> l/e2<br />

= 1.6 l ,'12 Since <strong>the</strong><br />

points, D.<br />

= l.l cm and<br />

. Int l"<br />

p -<br />

| l-i-il I<br />

t"t<br />

#=lr-" l=a.333<br />

ro L I<br />

and <strong>the</strong> total power passing through <strong>the</strong> apenure will<br />

be<br />

P"=O.333 P" = (0.333) (3 x l0j)<br />

=lxl0-3w


APPENDIX<br />

Table Bl<br />

Typical Diff<strong>use</strong> Reflection Cases <strong>for</strong> Visible Radiation (l' = 0'4 to 0'7 pm)*<br />

Pe.missible Laser Beam Radianl Exposure lncidenr on a Diff<strong>use</strong>ly<br />

Reflecting Surface, MPE x [/p(J 'cm-2]<br />

Exposure<br />

Duration, ,<br />

(r)<br />

MPE at Comeal<br />

(J sar 'cm-2)<br />

Limiting<br />

Angle, a;" + Reflectanc€ (P) = 100% Reflectance (p) = 50% Reflectance (p) = l(,{<br />

(l)<br />

(2)<br />

(3)<br />

l0-4 l.O x l0-? 8.0<br />

l0-8 2.2 x ltJ-? 5.4<br />

10-7 4.6 x l0-'<br />

17<br />

10-{ 1.0 x I0.r 2.5<br />

l0-r 2.2 x l0-'<br />

l0r<br />

t0<br />

4.6 x l(rr 2.2<br />

l I0<br />

10 to loa 22<br />

l 1.0 3.6<br />

f o-'<br />

10-<br />

2.2<br />

5.1<br />

9.2<br />

l5<br />

24<br />

| 4.6<br />

(4)<br />

3.1 x l0-2<br />

6.8x102<br />

1.5 x l0-l<br />

3.1 x l()-<br />

r<br />

6.8 x l0-l<br />

l_f<br />

3.1<br />

6,8<br />

15<br />

1t<br />

68<br />

(5)<br />

6.3 x l0-2<br />

t-4 x l0-l<br />

2.9 x lfr<br />

6.3 x l0-r<br />

1.4<br />

2.9<br />

6.3<br />

l4<br />

29<br />

63<br />

t40<br />

* For wavelengths between 0 7 and t.4 pm, <strong>use</strong> <strong>the</strong> appropriatc correction factors given in 8 5<br />

t Sec Fig. 7 <strong>for</strong> a graphic presentation <strong>of</strong> <strong>the</strong>se values.<br />

+ For extended sources, angular subtense > o min (see 8.1)<br />

72<br />

(6)<br />

3.1 x l0-r<br />

6.8 x l0'l<br />

1.5<br />

6.8<br />

l5<br />

3I<br />

68<br />

r50<br />

310<br />

680<br />

f.


,O<br />

,o<br />

,o<br />

Fig. B1<br />

Intrabceo Viowing - f,iircct (Pdnary) Bc.n.<br />

FLAT SURFACE REFLECTION<br />

CURVED SURFACE REFLECTIOiI<br />

ftOTE '<br />

': ToTIL EEAM DISTANCE FROlii LASER TO EYE<br />

(OIRECT PLUS SgCONOARY )<br />

Fig. 82<br />

Intrabcan vicwing - Spcctlarly Rcficcrxl<br />

(Sccondery) Bcan.<br />

Fig. B:l<br />

Ertcadcd Sourcc Vicwing - Nonaally IXfwc Rctlcctiotr.<br />

APPENDIX<br />

73


I<br />

t<br />

APPENI)IX<br />

l--rxe6e---.1<br />

Fig. B{<br />

Ersmpl6 <strong>of</strong> Ulc <strong>of</strong> kscr Rrngc Equltiol <strong>for</strong><br />

Dctennining Nomind llazard Disteacc.<br />

Fi3' 85<br />

Nominal lfuzard Zott<strong>for</strong> r Ditfulc ReflEctiol.<br />

rnoxo =* (#r;'"-"1<br />

rNoHo=(t)(#J'"<br />

(\| 4 f""<br />

I ma t;gP--, (MuLrliiloDE)<br />

rrom =<br />

1 r.,o f o.lua<br />

[T fu-ueeJ (slNcLEMooE)<br />

/ p tDCosO 1l/2<br />

rNHz =F;ffFE_/


ENERGY BEAM<br />

OUTPUT DIVERGENCE<br />

'oooT 'l<br />

(mJ) (mr)<br />

I I<br />

,.ol ,.1<br />

+ I<br />

I I<br />

"+ "+<br />

f +<br />

'f I *' I<br />

f + I<br />

",1 "* I<br />

POWER<br />

OUTPUT<br />

(mlV)<br />

INTEGRATEO<br />

RADIANT<br />

INTENSITY<br />

(MJ/sr)<br />

o.ol<br />

RADIANT<br />

INTENSITY<br />

(MW,/sr)<br />

RANGE<br />

(km)<br />

LASER RANIGE<br />

EOUATION NOMOGRAM<br />

Fig. 85<br />

hscr Rangc Equstion Nomogrsn,<br />

APPENDIX<br />

RADIANT<br />

EXPOSURE<br />

lpJtcnzl<br />

IRRADIANCE<br />

(yw/cmz1


o<br />

APPENDIX<br />

't6<br />

UJ<br />

(L<br />

d<br />

F<br />

x<br />

9 J<br />

(r<br />

lrJ<br />

CN<br />

J<br />

(\l<br />

o(J<br />

z<br />

o F()<br />

Lrj<br />

- )<br />

E t!ro<br />

uJ<br />

- E<br />

'-*H<br />

,)<br />

r- Lu<br />

l!<br />

o<br />

E<br />

o<br />

E<br />

Eqa<br />

$EE<br />

-E<br />

rE<br />

E.<br />

bl<br />

_=E<br />

o ( D =<br />

9<br />

,-i<br />

x<br />

E o<br />

trJ -<br />

.tE<br />

'i,'<br />


9l<br />

rl<br />

ooo*oo"<br />

In<strong>for</strong>mation and References <strong>for</strong> Sections 3 and 4<br />

Cl. Alternate Labeling<br />

Some laser equipment manufactured outside <strong>of</strong> <strong>the</strong><br />

USA may con<strong>for</strong>m to requiremenls <strong>of</strong> <strong>the</strong> IEC<br />

Publication 825, "Radiation Safety <strong>of</strong> Laser<br />

Products, Equipment Classification, Requircments<br />

and User's Guide." The IEC 825 label style (shown<br />

in Fig. Cl and C2) is different ftom that required by<br />

this standard and those specified in <strong>the</strong> Federal Laser<br />

Product Per<strong>for</strong>mance Standard.<br />

C2. References <strong>for</strong> Sections 3 and 4<br />

Control <strong>of</strong> Hazards to Health from Laser Radiation.<br />

U.S. Depanment <strong>of</strong> <strong>the</strong> Army Technical Bulletin<br />

TB-MED-524, June 1985. Available from National<br />

Technical In<strong>for</strong>mation Service, Springtield, Va.<br />

?.216t.<br />

Electronic Product Radiation and <strong>the</strong> Health<br />

Physicist, Proceedings <strong>of</strong> <strong>the</strong> Fourth Aonual Midyear<br />

Topical symposium; 1970. Washington: U.S.<br />

Depafiment <strong>of</strong> Health, Education, and Welfare;<br />

Bureau <strong>of</strong> Radiological Health, Division <strong>of</strong><br />

Electronic Products; 70-26. Available from National<br />

Technical In<strong>for</strong>mation Sewice, Springfield, Va.<br />

22161.<br />

Evaluation <strong>of</strong> Commercially Available Protective<br />

Eyewear. Washington: U,S. Department <strong>of</strong> Health,<br />

Education, and Welfare; Publicarion (FDA) 79-808G1<br />

1979 May.<br />

Goldman, L., Rockwell, R. J., Jr. Lasers in<br />

Medicine. l97l; chapter ll; New York: Gordon and<br />

Breach Science Publishers, 197 | .<br />

Goldman, L., Rockwell, R. J., Jr., Homby, P. Laser<br />

l,aboratory Design and Personnel Protection from<br />

High Energy Lasers. In: Handbook <strong>of</strong> Laboratory<br />

Safery. N.V. Steere, ed; Znd ed. Clevetand: The<br />

Chemical Rubber Company; l97l: 381-389.<br />

Intemational Electrotechnical Commission Standard<br />

Radiation Safety <strong>of</strong> Laser Products, Equipment<br />

Classification, Requirements and Users Guide. IEC<br />

Publication 825: Geneva Switzerland: 1984-<br />

APPENDIX<br />

Laser Health Hazards Control. U.S. Department <strong>of</strong><br />

ihe Air Force Manual AFM-l6t-32, 1973 (or latest<br />

revision <strong>the</strong>re<strong>of</strong>). Available from National Technical<br />

In<strong>for</strong>mation Service, Springfield, Va. 22161.<br />

Laser Product Per<strong>for</strong>mance Standard. Code <strong>of</strong><br />

Federal Regulations, Title 21, Subchapter J, Part<br />

1040. 1979.<br />

Laser Products: Amendments to Per<strong>for</strong>mance<br />

Standard; Final Rule. Code <strong>of</strong> Federal Regulations,<br />

Title 21, Parts lff)o and 101(), Federal Register, Aug.<br />

20, t985.<br />

Marshall, W. I. Hazard analysis on gaussian shaped<br />

laser beams. Joumal <strong>of</strong> <strong>the</strong> American Industrial<br />

Hygiene Association. 4l (8): 547-551; 1980 Aug.<br />

Rockwell, R. J. and Moss, C. E. Optical radiation<br />

hazards in laser welding processes Pan I:<br />

Neodymium - YAG Laser. The Joumal <strong>of</strong> <strong>the</strong><br />

American Industrial Hygiene Association. 44(8);<br />

572-579; 1983 Aug.<br />

Rockwell, R. J., Jr. Ensuring safety in laser robotics.<br />

Lasers and Applications. 3( I l);65-69; 1984 Nov.<br />

Sliney, D. H. Evaluating health hazards from military<br />

lasers, Journal <strong>of</strong> <strong>the</strong> American Medical Association.<br />

214(6): 1047-1054; 1970 Nov.<br />

Sliney, D. H. Laser Protective Eyewear. In:<br />

M. L. Wolbarsht, ed. Laser Applications in Medicine<br />

and Bi<strong>of</strong>ogy. New York: Plenum Prcss; 1974: v.2,<br />

chapter7,pp.223-240.<br />

Sliney, D. H. Wolbarsht, M. L. Safety with Lasers<br />

and o<strong>the</strong>r Optical Sources. New York: Plenum<br />

Publishing Co; 1980.<br />

Swope, C. H. The eye - protection. Archives <strong>of</strong><br />

Environmental<br />

Health. l8(3): 428-433; 1969 Mar.<br />

Guide <strong>for</strong> <strong>the</strong> Selection <strong>of</strong> l,aser Eye Protection.<br />

Toledo OH: Laser Institute <strong>of</strong> America: 1984 Mav.<br />

77


APPENDIX<br />

7lr<br />

SYMBOL AND BORDER. BLACK<br />

BACKGROUND 'YELLOW<br />

Fig. Cl<br />

IEC-825 (1985) Warning labcl - lhzard S),cbol'<br />

LEGEND AND<br />

BACKGROUND<br />

BORDER'BLACK<br />

,YELLOW<br />

Fig. C2<br />

IEC-E25 (19E5) Warning hbcl - Label <strong>for</strong><br />

Erplanaory Wording,<br />

ffir


; O 4penoi*o<br />

Guide <strong>for</strong> Organization and Implementation<br />

<strong>of</strong> Laser Safety and Training programs<br />

The extent to which <strong>the</strong> various parts <strong>of</strong> <strong>the</strong> following<br />

guide are applicable to a specific organization<br />

depends on <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> potential laser<br />

hazards within that organization. However, it is<br />

essential that each laser safety program include<br />

sufficient education <strong>of</strong> personnel in laser safety.<br />

Dl. Responsibility and Authority <strong>of</strong>Laser Safety<br />

Officer (LSO)<br />

Dl.l General. The Laser Safety Officer (LSO) may<br />

be designated from among such personnel as <strong>the</strong><br />

radiation protection <strong>of</strong>ficer, industrial hygienist,<br />

safety engineer, Iaser specialist, laser operator, etc.<br />

The LSO may be a <strong>use</strong>r if <strong>the</strong>re are very few laser<br />

operations or if <strong>the</strong> class <strong>of</strong> lasers and potential<br />

, o lxffi lli"i'il; *i-',"'"? ,ffi"T,L :H;,'il:<br />

require a full-time ef<strong>for</strong>t. The LSO will effect <strong>the</strong><br />

knowledgeatrle evaluation and control <strong>of</strong> laser<br />

hazards, and have <strong>the</strong> authority to monitor and<br />

en<strong>for</strong>ce <strong>the</strong> control <strong>of</strong> laser hazards. In addition to<br />

<strong>the</strong> responsibilities described in Section 1.3.2, <strong>the</strong><br />

LSO's authority may include, but is not necessarily<br />

limited to, <strong>the</strong> responsibilities <strong>of</strong> operarion specified<br />

in Dl.2 through D1.8. The LSO will be trained in<br />

accordance with D6.<br />

Dl.2 Consultative Services, The LSO will provide<br />

consultative sewices on laser hazard evaluation and<br />

controls and on personnel training programs. Such<br />

eyaluations will include electrical and o<strong>the</strong>r nonradiation<br />

hazards <strong>of</strong> lasers<br />

Dl.3 Regulations. If a Safety Committee does not<br />

exist, <strong>the</strong> LSO may establish and maintain adequate<br />

regulations <strong>for</strong> <strong>the</strong> control <strong>of</strong> laser hazards.<br />

Dl.4 Authority. The LSO will have rhe authority<br />

^<br />

to suspend, resftict, or terminate <strong>the</strong> operation <strong>of</strong> a<br />

I ol*"i."liflTJ#,TJ:,[Hr she deems that<br />

raser<br />

APPENDIX<br />

Dl,5 Records. The LSO will ensure that rhe<br />

necessary rcf,ords required by applicable govemment<br />

regulationsarc<br />

maintained. The LSO will also<br />

submit to <strong>the</strong> appropriate medical <strong>of</strong>ficer <strong>the</strong><br />

individuals' names that are obtained in accordance<br />

with D1.4, D4.5, and D5.3. The LSO will ensure that<br />

<strong>the</strong> appropriate records are maintained indicating that<br />

applicable medical examinations have been scheduled<br />

and per<strong>for</strong>med and that appropriate training has been<br />

provided.<br />

Dl.6 Surveys and Inspections. The LSO will<br />

survey by inspection, as considered necessary, all<br />

areas where laser equipmenr is <strong>use</strong>d. The LSO will<br />

also accompany regulatory agency laser equipment<br />

inspectors, such as those representing OSHA,<br />

FDA/CDRH, state agencies, etc., and document any<br />

discrepancies noted. The LSO will ensure that<br />

correciive action is uken where reouired.<br />

Dl.7 Accidents. On notification <strong>of</strong> a known or<br />

suspected accident resulting tiom operation <strong>of</strong> a laser,<br />

<strong>the</strong> LSO will investigate <strong>the</strong> accident and initiate<br />

appropriate action. This may include rhe preparation<br />

<strong>of</strong> repons to applicable agencies. (See D7[7] <strong>for</strong><br />

federal reporting requirements references.)<br />

Dl.8 Approval <strong>of</strong> Laser Syslem Operation.<br />

Approval <strong>of</strong> a laser or laser system <strong>for</strong> operation will<br />

be given only if <strong>the</strong> LSO is satisfied that laser hazard<br />

control measures are adequate. These include special<br />

operating procedures <strong>for</strong> maintenance and service<br />

operations within enclosed systems, and operation<br />

procedurcs <strong>for</strong> Class 3 and 4 systems. The<br />

procedures will include adequate consideration to<br />

assure safety from electrical hazards.<br />

D2. Deputy Laser Safety Officers<br />

If necessary, a Deputy Laser Safety Officer will be<br />

appointed by management. The Deputy Laser Safety<br />

Officer will per<strong>for</strong>m <strong>the</strong> functions <strong>of</strong> <strong>the</strong> LSO when<br />

<strong>the</strong> latter is not available.


APPENDIX<br />

D3. Safety Committee<br />

D3.l Necessity. If wananted by <strong>the</strong> magnitude <strong>of</strong><br />

<strong>the</strong> potential hazards <strong>of</strong> laser operations within lhe<br />

organization, a Safety Committee may be <strong>for</strong>med.<br />

D3,2 Membership <strong>of</strong> Laser Saf€ty Committee,<br />

The membership may include individuals with<br />

expertise in laser technology or in <strong>the</strong> assessment <strong>of</strong><br />

laser hazards. Management may be included in <strong>the</strong><br />

membership. Examples <strong>of</strong> members include, but are<br />

not limited to: technical manager, LSO (or o<strong>the</strong>r<br />

representatives from <strong>the</strong> safety department),<br />

physician and <strong>use</strong>r representatives.<br />

D33 Policies and Practices. The committee will<br />

establish and maintain adequate policies and<br />

regulations <strong>for</strong> <strong>the</strong> control <strong>of</strong> laser hazards and<br />

recommend <strong>the</strong> appropriate laser safety training<br />

programs and materials.<br />

D3.4 Standards. The committee will maintain an<br />

awareness <strong>of</strong> all applicable new or rcvised laser<br />

safety standards. This may rcquire liaison with<br />

regulatory agencies, ei<strong>the</strong>r directly or through<br />

representatiYes.<br />

D4. Responsibility <strong>of</strong><strong>the</strong> Laser or Las€r System<br />

Supervisor<br />

D4.l Prerequisite. The supervisor will be<br />

knowledgeable <strong>of</strong> education and training<br />

requirements <strong>for</strong> laser safety, <strong>the</strong> potential laser<br />

hazards and associated control measures <strong>for</strong> all lasers<br />

and laser systems, and all procedures pertaining to<br />

laser safety at locations under <strong>the</strong> supervisor's<br />

authority.<br />

D4,Z Indoctrination. The supervisor will be<br />

responsible <strong>for</strong> <strong>the</strong> issuance <strong>of</strong> appropriate<br />

instructions and training materials on laser hazards<br />

und lhcir control to itll pcrso[ncl wh() may work with<br />

lasers that are operated within <strong>the</strong> supervisor's<br />

jurisdiction.<br />

D4.3 Laser Hazard Control. The supervisor will<br />

not permit <strong>the</strong> operation <strong>of</strong> a laser unless <strong>the</strong>re is<br />

adequate control <strong>of</strong> laser hazards to employees,<br />

80<br />

visitors, and <strong>the</strong> general public.<br />

D4.4 Individuals Scheduled to Work with Lasers'<br />

The supervisor will submit <strong>the</strong> names <strong>of</strong> individuals<br />

scheduled to work with laser$ to <strong>the</strong> tSO and, in<br />

addition, will submit in<strong>for</strong>mation as requested by <strong>the</strong><br />

LSO <strong>for</strong> medical surveillance scheduling and training<br />

completion (see Table Dl).<br />

D4.5 Reporting <strong>of</strong> Known or Suspect€d<br />

Accidents. When <strong>the</strong> supervisor knows <strong>of</strong> or<br />

suspects an accident resulting from a lasef operated<br />

under his or her authority, <strong>the</strong> supervisor will<br />

immediately notify <strong>the</strong> LSO or o<strong>the</strong>r designated<br />

authority.<br />

D4.6 Medical Attention. If necessary, <strong>the</strong><br />

supervisor will assist in obtaining aPpropdate<br />

medical attention <strong>for</strong> any employee involved in a<br />

laser accident.<br />

D4.7 Approval <strong>of</strong> Laser System Operation. The<br />

supervisor will not permit op€ration <strong>of</strong> a new or<br />

modified laser under his or her authoritv without <strong>the</strong><br />

approval <strong>of</strong> <strong>the</strong> LSO.<br />

D4.8 Approval <strong>of</strong> Planned Installation,<br />

supervisor will make sure that plans <strong>for</strong><br />

tne<br />

laser<br />

installations or modifications <strong>of</strong> insiallations are<br />

submitted to <strong>the</strong> LSO <strong>for</strong> approval.<br />

D4.9 Operating Procedures. For Class 3a,<br />

Class 3b or Class 4 lasers and laser systems <strong>the</strong><br />

supervisor will be familiar with <strong>the</strong> operating<br />

procedures and ensure that <strong>the</strong>y are provided to <strong>use</strong>rs<br />

<strong>of</strong> such lasers.<br />

D5. Responsibility <strong>of</strong> Employees Working wlth or<br />

near Lasers<br />

D5.l Aufhorizalions. An employe€ will not<br />

energize or work with or near a laser unless<br />

airthorized to do so by <strong>the</strong> supervisor <strong>for</strong> that laser.<br />

D5.2 Compliance. An employee will comply with<br />

<strong>the</strong> safety rules and regulations prescribed by <strong>the</strong><br />

supervisor and <strong>the</strong> LSO. Thi employee will be<br />

familiar with all operating procedures.<br />

rii


D5.3 Accident Reporting. When an employee<br />

,l operating a laser knows or suspects that an accident<br />

has occurred involving that laser, or a laser operated<br />

by any o<strong>the</strong>r employee, and that such accident has<br />

ca<strong>use</strong>d an injury or could potentially have ca<strong>use</strong>d an<br />

injury, he or she will immediately in<strong>for</strong>m <strong>the</strong><br />

supervisor. If <strong>the</strong> supervisor is not available, <strong>the</strong><br />

employee will notify <strong>the</strong> LSO.<br />

,l<br />

D6. Training<br />

D6,l General. Training will be provided to each<br />

employee routinely working with or around lasers<br />

above Class 2. The level <strong>of</strong> naining wi[ be<br />

commensurate with <strong>the</strong> degree <strong>of</strong> potential laser<br />

hazards.<br />

D6.2 Laser Safety Training program Topics,<br />

Topics <strong>for</strong> inclusion in a laser safety rraining program<br />

may include, but are not nesessarily limited io. <strong>the</strong><br />

following:<br />

g].::'personnel<br />

roudnelv working on or around<br />

(a) Fundamentals <strong>of</strong> laser operation (physical<br />

principles, construction, etc.)<br />

(b) Bioeffects <strong>of</strong> laser radiation on <strong>the</strong> eye and<br />

skin<br />

(c) Relations <strong>of</strong> specular and diff<strong>use</strong> reflections<br />

(d) Nonradiation hazards <strong>of</strong> lasers (electrical,<br />

chemical, reaction by-products, etc.)<br />

(e) Laser and laser system classifications<br />

(f) Control measures<br />

(g) Overall management<br />

responsibilities<br />

and employee<br />

(h) Medical surveillance practices (if applicable)<br />

(D CPR <strong>for</strong> personnel servicing or working on<br />

lasers with exposed high voltages and/or <strong>the</strong><br />

capability <strong>of</strong> producing potentially lethal<br />

electrical cunents<br />

(2) For <strong>the</strong> LSO or o<strong>the</strong>r individual responsible <strong>for</strong><br />

<strong>the</strong> laser safety program, evaluation <strong>of</strong> hazards, and<br />

implementation <strong>of</strong> control measures, or any o<strong>the</strong>rs<br />

directed by management to obtain a thotoueh<br />

knowledge <strong>of</strong> laser safety:<br />

(a) The topics in D6.2 (l)<br />

(b) Laser terminology<br />

(c) Types <strong>of</strong> lasers, wavelengths, pulse Ehapes,<br />

modes, power/energy<br />

(d) Basic radiometric units and<br />

devices<br />

APPENDIX<br />

measurcment<br />

(e) MPE levels <strong>for</strong> eye and skin under all<br />

conditions<br />

(fl Laser hazard evaluations, range equations,<br />

and olher calculations<br />

D7. References<br />

lll Smith, J. F., Murphy, J. J., Eberle, W. J.<br />

lndustrial Laser Safely Program Management.<br />

Poughkeepsie, New York: IBM Corp, System<br />

Products Division.<br />

[2] Smith, J. F. Safety Programs and Formal<br />

Training. In: Sliney and Wolbarsht. Safety with<br />

Lasers and O<strong>the</strong>r Optical Sources. New york:<br />

Plenum Press; 1980: chapter 25-<br />

[3] LIA Laser Safety cuide. Laser Institute <strong>of</strong><br />

America, 12424 Research Parkway, Orlando, FL<br />

32826.<br />

[4] American Confcrence <strong>of</strong> Govemment<br />

Industrial Hygienists. A Cuide <strong>for</strong> Control <strong>of</strong> Laser<br />

Hazands. ACGIH, P.O. Box 1937, Cincinnati. Ohio<br />

45201.<br />

[5] L"aser Institute <strong>of</strong> America. Laser Safety<br />

Training Package (8o-slide ser wirh audio-taped<br />

cass€tte on industrial laser safety). Available from<br />

Laser Institute <strong>of</strong> America, 12424 Research Parkwav.<br />

Orlando, FL 32826.<br />

[6] Shon courses and o<strong>the</strong>r haining programs and<br />

materials on laser safery are <strong>of</strong>fered by <strong>the</strong> following:<br />

Engineering Technology, Inc. 601 A Lakeair Drive,<br />

Waco, Texas 76710.<br />

Laser Institute <strong>of</strong> America, 12424 Research Parkway,<br />

Orlando, FL 32826.<br />

Rockwell Associates, lnc. P.O. Box 43010<br />

Cincinnati, Ohio 45243.<br />

[7] Manufacturer's accident reponing<br />

requirements arc detailed in <strong>the</strong> Code <strong>of</strong> Federal<br />

Regulations, 2l CFR Subchapter J Part 1002.20.<br />

8l


APPENDIX<br />

82<br />

Table Dl<br />

Recomrnended Training <strong>for</strong> LSOs and Employees<br />

(Including, but Not Limited to' Operators'<br />

Maintenance Personn€l, tnd S€rvice Technicians)<br />

Routinely Working with or around Lasers<br />

Method <strong>of</strong> Training*<br />

Manufacturers Cuidc<br />

and Operating Manuals<br />

Safety Guide Literature (3)<br />

Film and Slide/Audio<br />

Programs (5)<br />

Laser Safety OrientatjoD$<br />

Shon.Term Course (6)**<br />

Review <strong>of</strong> Applicable<br />

Standards<br />

ry'a not applicable<br />

R recommended<br />

SR strongly recommended<br />

R S R<br />

a +<br />

nla nla<br />

nla n/a<br />

nla nla<br />

Highest-class Laser<br />

2al) 3a 3b 4 LSOsf<br />

SR SR SR n/a<br />

SR SR SR SR<br />

R S R S R S R<br />

nla R SR SR<br />

flla nla R SR<br />

nla nl^ n/a nl^ a SR<br />

The numbe.s in paren<strong>the</strong>ses refer to <strong>the</strong> corresponding numbered items in <strong>the</strong> reference list, D7<br />

where <strong>the</strong> suggested training vehictes <strong>for</strong> <strong>the</strong> L.so a.e deemed inappropriate <strong>for</strong> reasons <strong>of</strong> very low potential<br />

hazards or very limited <strong>use</strong> <strong>of</strong> lasers, substitute training vehicles may be <strong>use</strong>d, Regardless <strong>of</strong> <strong>the</strong> training vehicles<br />

<strong>use</strong>d, <strong>the</strong> LSO'S training musr enable him or her to fulfill <strong>the</strong> requiremenls and responsibilities <strong>of</strong> an LSO as<br />

outlined in Dl.l through D1.8 and Section I 3 <strong>for</strong> all lasers under <strong>the</strong> LSO'S jurisdiction-<br />

Although education is not required <strong>for</strong> class I and 2 lasers, lhe safety cuide Literature provides a low-key basic<br />

guide to <strong>the</strong> general topic <strong>of</strong> laser safety and is suggested herc <strong>for</strong> consideration to <strong>the</strong> <strong>use</strong>m <strong>of</strong> this standard.<br />

A Laser Safety orientation course may include <strong>the</strong> previously mentioned vehicles. Beca<strong>use</strong> <strong>of</strong> <strong>the</strong> greater potential<br />

hazards from Class 3b and 4 lasers, <strong>the</strong> duration <strong>of</strong> <strong>the</strong> course would be from several hours to a day or two. This<br />

raining may be conducted by outside specialists if not available intcmally'<br />

shon-rcrm courses may run from a day or lwo to any length required. Bcca<strong>use</strong> <strong>of</strong> <strong>the</strong> high level <strong>of</strong> potential hazards<br />

to both eye and skin <strong>for</strong> class 4 l.$ers. <strong>the</strong> training should be complete and cover all applicabte topics described in<br />

D6.2.


sl<br />

Appendix E<br />

Medical Surveillance<br />

El.0 Purpose <strong>of</strong> Medical Surveillance<br />

The b;uic reasons <strong>for</strong> pr<strong>for</strong>ming medical surveillance<br />

<strong>of</strong> personnel working in a laser envimnment are<br />

<strong>the</strong> same as <strong>for</strong> o<strong>the</strong>r potenlial health hazards. Medical<br />

surveillance examinations may include asscssment<br />

<strong>of</strong> physical firness to sately perfbrm assigned<br />

duties, biological monitoring <strong>of</strong> exposure to a specilic<br />

agent, and early detection <strong>of</strong> biologic damage or<br />

effect.<br />

Physical fitness assessments<br />

are <strong>use</strong>d to determine<br />

whe<strong>the</strong>r an employee would be at increased or<br />

unusual risk in a panicular environment. For workers<br />

using laser devices, <strong>the</strong> need <strong>for</strong> this type <strong>of</strong> assessment<br />

is most likely to be determined by factors orher<br />

than laser radiarion per se. Specific in<strong>for</strong>mation on<br />

medical surveillance requirements that might exist<br />

beca<strong>use</strong> <strong>of</strong> o<strong>the</strong>r potential exposures, such as toxic<br />

gases, noise, ionizing radiation, etc, are outside <strong>the</strong><br />

scope <strong>of</strong> this appendix.<br />

Direct biological monitoring <strong>of</strong> laser radiation is<br />

impossible, and practical indirect monitoring through<br />

<strong>the</strong> <strong>use</strong> <strong>of</strong> personal dosimeters<br />

is not available.<br />

Early detection <strong>of</strong> biologic change or damage presupposes<br />

that chronic or subacute effects may result from<br />

exposure to a particular agent at levels below that<br />

required to produce acute injury. Active intervention<br />

must <strong>the</strong>n be possible to arrest fur<strong>the</strong>r biological<br />

damage or to allow recovery from biological effects.<br />

Although chronic injury from laser radiation in <strong>the</strong><br />

ultraviolet, near ultraviolet, blue ponion <strong>of</strong> <strong>the</strong> visible,<br />

and near infrared regions appears to be <strong>the</strong>oretically<br />

possible, risks to workers using laser devices are<br />

primarily from accidental acute injuries. Based on<br />

risks involved with current <strong>use</strong>s <strong>of</strong> laser devices.<br />

mcdical surveillance requirements that should be<br />

incorporated into a <strong>for</strong>mal standard appear to be<br />

minimal.<br />

O<strong>the</strong>r arguments<br />

in favor <strong>of</strong> per<strong>for</strong>ming extensive<br />

medical surveillance have been based on <strong>the</strong> fear that<br />

repeated accidents might occur and <strong>the</strong> workers<br />

would not report minimal acute injuries. The low<br />

number <strong>of</strong> laser injuries that have been rep<strong>of</strong>ted in <strong>the</strong><br />

past ?0 years and <strong>the</strong> excellent safety records with<br />

laser devices do not provide supp<strong>of</strong>i to this argument.<br />

E2.0 Medical Examinations<br />

E2.l Rationale <strong>for</strong> Examinations<br />

APPENDIX<br />

E2,l.l Prcassignmcnt Medical llxaminations,<br />

Except fbr examination following suspected injury,<br />

<strong>the</strong>se are <strong>the</strong> only examinations required by this standard.<br />

One purpose is 1o establish a baseline against<br />

which damage (primarily ocular) can be measured in<br />

<strong>the</strong> event <strong>of</strong> an accidental injury. A second purpose<br />

is to identify cenain workers who might be at special<br />

risk from chronic exposure to selected continuouswave<br />

laseni. For incidental workers 1e.g., custodial,<br />

military personnel on maneuvers, clerical and supervisory<br />

personnel not working directly with lasers)<br />

only visual acuity measurement is required, For laser<br />

workers medical histories, visual acuity measurement,<br />

and selected examination Drotocols are<br />

required. The wavelength <strong>of</strong> laser radiation is <strong>the</strong><br />

determinant <strong>of</strong> which specific protocols are required<br />

(see 82.2). Exanrinations should be per<strong>for</strong>med by, or<br />

under <strong>the</strong> supervision oi an ophthalmologist or o<strong>the</strong>r<br />

qualified physician. Cenain <strong>of</strong> <strong>the</strong> examination protocols<br />

may be per<strong>for</strong>med by o<strong>the</strong>r qualilied practitioners<br />

or teshnicians under <strong>the</strong> supewision <strong>of</strong> a physician.<br />

Many ophthalmologists may prefer to per<strong>for</strong>m<br />

more thorough eye examinations to assess total<br />

visurl l'unction as opposed to limiting examinalions<br />

to those areas that might be damaged by laser radiation<br />

at panicular wavelengrhs, Some employers may<br />

find il advantageous to <strong>of</strong>fer <strong>the</strong>se more thorough<br />

examinations to <strong>the</strong>ir workers as a health benefit. For<br />

example, certain <strong>of</strong> <strong>the</strong> additional examinations, such<br />

as lonometry, may be <strong>of</strong> value in detecting unknown<br />

disease conditions, in this case glaucoma. Even<br />

though this type <strong>of</strong> problem is untelated to work with<br />

lasers, appropriat€ medical intervention will promote<br />

a healthier work <strong>for</strong>ce. Although chronic skin damage<br />

f'rom laser radiation has not been reported, and<br />

indeed seems unlikely, this area has not been adequately<br />

studied. Limired skin examinations are suggested<br />

to $erve as a baseline until future epidemiologic<br />

study indicates whe<strong>the</strong>r <strong>the</strong>y are needed or not.<br />

82.1.2 Periodic Medical Examinations.<br />

Periodic examinations are not required by this standard.<br />

At present no chronic health problems have<br />

83


APPENDIX<br />

been linked to working with lasers. Also, most <strong>use</strong>s<br />

<strong>of</strong> lasers do not result in chronic exposure <strong>of</strong> employees<br />

even to low levels <strong>of</strong> radiation. A large number<br />

<strong>of</strong> <strong>the</strong>se examinations have been per<strong>for</strong>med in <strong>the</strong><br />

past, and no indication <strong>of</strong> any detectable biologic<br />

change was noted. Employers may wish to <strong>of</strong>fer <strong>the</strong>ir<br />

employees periodic eye examinations or o<strong>the</strong>r medical<br />

examinations as a health benefit; however, <strong>the</strong>re<br />

does not appear to be any valid reason to rcquire such<br />

examinations as part <strong>of</strong> a medical surveillance program.<br />

E2.1.3 T€rmination Medical Exarninations,<br />

The primary purpose <strong>of</strong> termination examinations is<br />

<strong>for</strong> <strong>the</strong> legal protection <strong>of</strong> <strong>the</strong> employer against<br />

unwarranted claims <strong>for</strong> damage that might occur after<br />

an employee leaves a particular job. The decision on<br />

whe<strong>the</strong>r to <strong>of</strong>fer or require such examinations is left<br />

to individual employers.<br />

E2.2 Examination Proaocols<br />

E2.2.1 Ocular History. The past eye history and<br />

family history are reviewed. Any current complaints<br />

concemed with <strong>the</strong> eyes arc noted. Inquiry should be<br />

made into <strong>the</strong> general health status with a special<br />

emphasis upon systemic diseases which might produce<br />

ocular prcblems in regard to thc per<strong>for</strong>mance<br />

cited in Section 6.1. The current reftaction prescription<br />

and <strong>the</strong> date <strong>of</strong> <strong>the</strong> most recent examination<br />

should be recorded.<br />

Certain medical conditions may ca<strong>use</strong> <strong>the</strong> laser<br />

worker to be at an increased risk <strong>for</strong> chronic exposure.<br />

Use <strong>of</strong> photosensitizing medications, such as<br />

phenothiazines and psoralens, lower <strong>the</strong> threshold <strong>for</strong><br />

biological effects in <strong>the</strong> skin, comea, lens and retina<br />

<strong>of</strong> experimental animals exposed to ultraviolet and<br />

near ultraviolet radiation. Aphakic individuals would<br />

be subject to additional retinal exposure from neaf<br />

ultraviolet and ultraviolet radiation. Unless chronic<br />

viewing <strong>of</strong> <strong>the</strong>se wavelengths is required, <strong>the</strong>re<br />

should be no reason to deny employment to <strong>the</strong>se<br />

individuals.<br />

E2.2.2 Visual Acuity, Visual acuity <strong>for</strong> far and<br />

near vision should bc measured with som{: standardized<br />

and reproducible method. Refraction conections<br />

should be made if required <strong>for</strong> both distant and near<br />

test targets. If refractive corrections are not sufficient<br />

to change acuity to 20/20 (6/6) <strong>for</strong> distance, and<br />

Jaegsr l+ <strong>for</strong> ncu, a more extensive examination is<br />

indicated as defined in 6.3.<br />

84<br />

E2.2.3 Macular Function. An Amsler grid or<br />

similar pattem is <strong>use</strong>d to test macular function <strong>for</strong><br />

distortions and scotomas. The test should be administered<br />

in a fashion to minimize malingering and false<br />

negatives. If any distortions or missing portions <strong>of</strong><br />

<strong>the</strong> grid pattem are present, <strong>the</strong> test is not nomal.<br />

E2.2.4 Contrast Sensitivity Contrast (or glare)<br />

sensitivity should be documented by <strong>the</strong> Arden<br />

sine-wave pattems or similar acuity tests which<br />

include low contrast images.<br />

E2.2.5 Examination <strong>of</strong> <strong>the</strong> Ocular Fundus with<br />

an Ophthalnioscope This portion <strong>of</strong> <strong>the</strong> examination<br />

is to be administered to individuals whose ocular<br />

function in any <strong>of</strong> Sections E.2.2.1 through E.2.2.'l is<br />

not normal. The points to be covered are: <strong>the</strong> prcsence<br />

or absence <strong>of</strong> opacities in <strong>the</strong> media; <strong>the</strong> sharpness<br />

<strong>of</strong> outline <strong>of</strong> <strong>the</strong> optic disc; <strong>the</strong> color <strong>of</strong> <strong>the</strong> optic<br />

disc; <strong>the</strong> depth <strong>of</strong> <strong>the</strong> physiological cup, if present;<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> siz€ <strong>of</strong> <strong>the</strong> retinal veins to that <strong>of</strong> <strong>the</strong><br />

retinal aneries; <strong>the</strong> presence or absence <strong>of</strong> a well'<br />

defined macula and <strong>the</strong> presence or absence <strong>of</strong> a<br />

foveal rcflex; and any retinal pathology that can be<br />

seen with an ophthalmoscope (hyper-Pigmentation,<br />

depigmentation, retinal degeneration, exudate, as well<br />

as any induced pathology associated with changes in<br />

macular funcdon). Even small deviations from normal<br />

should be described and carefully localized.<br />

E2.2.6 Skin Examination. Not rcquired <strong>for</strong> preplacement<br />

examinations <strong>of</strong> laser workers; however,<br />

suggested <strong>for</strong> employees with history <strong>of</strong> photosensi<br />

tivily or working with ultraviolet lasers. Any previous<br />

dermatological abnormalities and family history<br />

are reviewed. Any cunenl complaints concemed<br />

with <strong>the</strong> skin are noted as well as <strong>the</strong> history <strong>of</strong> medication<br />

usage, particularly concentrating on those<br />

drugs which are potentially photosensitizing.<br />

Fur<strong>the</strong>r examination should be based on <strong>the</strong> type <strong>of</strong><br />

laser radiation, above <strong>the</strong> appropriate MPE levels,<br />

present in <strong>the</strong> individual's work environment.<br />

E2.2.7 O<strong>the</strong>r Examinations, Funher examinations<br />

should be done as deemed necessary by <strong>the</strong> examiner.<br />

83.0 Medical Referral Following Suspected or<br />

Known Laser Injury<br />

Any employce with a suspected cye injury should be<br />

referred to an ophthalmotogist. Employees with skin


,l<br />

,O<br />

injuries should be seen by a physician-<br />

E4.0 Records and Record R€tention<br />

Complete and accumte records <strong>of</strong> all medical examinations<br />

(including specific test rcsults) should be<br />

maintained <strong>for</strong> all personnel included in <strong>the</strong> medical<br />

surveillance program. Records should be retained <strong>for</strong><br />

at least 30 yean.<br />

E5.0 Access To Records<br />

The results <strong>of</strong> medical surveillance examinations<br />

should be discussed<br />

wirh <strong>the</strong> employee.<br />

All non-personally identifiable records <strong>of</strong> <strong>the</strong> medical<br />

surveillance examinations acquired in Section E.4 <strong>of</strong><br />

<strong>the</strong>se guidelines should be made available on written<br />

rcquest to authorized physicians and medical consultants<br />

<strong>for</strong> epidemiological purposes. The record <strong>of</strong><br />

individuals will, as is usual, be furnished upon<br />

request to <strong>the</strong> private physician.<br />

E6,0 EpidemiologicStudies<br />

Past <strong>use</strong> <strong>of</strong> lasers has generally been stringently controlled.<br />

Actual exposure <strong>of</strong> laser workers has been<br />

minimal or even nonexistent. It is not surprising that<br />

acute accidental injury has been rare and that <strong>the</strong> few<br />

repons <strong>of</strong> repeated eye examinations have not noted<br />

any chronic eye changes. For <strong>the</strong>se reasons, <strong>the</strong><br />

examination requirements <strong>of</strong> this standard are<br />

minimal. However, animal experiments with both<br />

laser and narrow-band radiation indicate <strong>the</strong> potential<br />

<strong>for</strong> chronic damage from both subacute and chronic<br />

exposure to radiation at certain wavelengths. Lens<br />

opacities have been produced by radiation in <strong>the</strong><br />

0.?95 to 0.45 pm range and are also <strong>the</strong>orerically possible<br />

from 0.75 to 1.4 um.<br />

Photochemical retinitis appears to be inducible by<br />

exposure to 0,35 to 0.5 pm radiation. Iflaser systems<br />

are developed that require chronic exposure <strong>of</strong> laser<br />

workers to even low levels <strong>of</strong> radiation at <strong>the</strong>se<br />

wavelengths, it is recommended that such workers be<br />

included in <strong>the</strong> long-term epidemiologic studies and<br />

have periodic examinations <strong>of</strong> <strong>the</strong> appropriate eye<br />

suucures.<br />

r O ;;::rui'ff J:iff l}",'ffi ;:T,"itffi ;,:';<br />

are suggested.<br />

E7.0 References<br />

APPENDIX<br />

Friedman, A. L The ophthatmic screening <strong>of</strong> laser<br />

workers. Ann Occup Hyg. 2l: 277 -279: 1978.<br />

Hathaway, J. 4., Stem, N., Soles, E. M., teighton, E.<br />

Ocular medical surveillance on microwave and laser<br />

workers. J. Occup Med. 19:683-688; 1977.<br />

Hathaway, J. A. The Needs <strong>for</strong> Medical Surveillance<br />

<strong>of</strong> Laser and Microwave Workers. Current Concepts<br />

in Ergophthalmology. Societas Ergophthalmologica<br />

Intemationalis. Sweden: 139-l60; 1978.<br />

Wolbarsht, M. L., and Landen, M. B. Testing visual<br />

capabilities <strong>for</strong> medical surveillance or to ensure job<br />

fitness. J. Occup Med. 77:897-901: 1985.<br />

Appendix F<br />

Special Considerations<br />

The operation <strong>of</strong> lasers and laser systems, like any<br />

industrial or technological process, involves various<br />

possible related hazards. The following special considerations<br />

apply to such associated hazards <strong>of</strong> laser<br />

or laser system operation.<br />

Fl. Compressed Gases<br />

The potential oxygen deficiency hazard associated<br />

with lhe <strong>use</strong> <strong>of</strong> asphyxiant compressed gases should<br />

'|ol be overlooked,<br />

The following standards, regulations, and guidelines<br />

should be observed while using compressed gases:<br />

American National Standard Method <strong>of</strong> Marking<br />

Portable Compressed Cas Containers to ldentify <strong>the</strong><br />

Material Contained. ANSUCGA C-4-1978.<br />

American National Standard Compressed Gas<br />

Cylinder Valve Outlet and Inlet<br />

ANSVCCA V-r -19??.<br />

Connections,<br />

Handbook <strong>of</strong> Compressed Cases. Compressed Gas<br />

Association, 1966. Available from Compressed Gas<br />

Association, 500 Fifth Avenue, New York, New<br />

York 10036.<br />

Peninent regulations <strong>of</strong> <strong>the</strong> U.S. Department <strong>of</strong> Transportation<br />

(<strong>for</strong> example, Title 49, Code <strong>of</strong> Federal<br />

Regulations, Parts 170-179).


APPENDIX<br />

F2. Cryogenic Liquids<br />

Cryogenic liquids should tre stored and handled in<br />

accordance with <strong>the</strong> instructions listed in <strong>the</strong> Handbook<br />

<strong>of</strong> Compressed Gascs (sec Fl ).<br />

F3. Ventilation<br />

Local exhaust <strong>of</strong> general dilution ventilation systems<br />

must be provided to keep thc lcvels <strong>of</strong> toxic fumes,<br />

vapors, mists, dusts and gases, in occupied areas<br />

below <strong>the</strong> permissible exposure limits as set <strong>for</strong>th in<br />

Title 29, Code <strong>of</strong> Federal Regulations, Pan<br />

1910.1000, Subpart Z, Air Contaminants. Oxygen<br />

levels should be maintained at least 19 58" by<br />

volume. Additional ventilation requirements and<br />

design in<strong>for</strong>mation may be obtained from <strong>the</strong> cunent<br />

issue <strong>of</strong> lndustrial ventilation, published by <strong>the</strong><br />

American Conference <strong>of</strong> Covemmental Industrial<br />

Hygienists ( 14th ed, 1976, Cincinnati, Ohio).<br />

F4, Ionizing Radiation<br />

The source, quality and intensity <strong>of</strong> X-rays emanattng<br />

from laser power supplies and components <strong>the</strong>rein<br />

should be investigated and controlled in accordance<br />

with <strong>the</strong> provisions listed in Anrerican National Standard<br />

"General Safety Standard <strong>for</strong> Installations<br />

Using Non-Medical X-Ray and Sealed Gamma-Ray<br />

Sources, Energies up to t0 MeV," ANSI/l'lBS Handbook<br />

I14, and any applicable federal, state, or local<br />

codes and regulations.<br />

F5. Toxic Materials<br />

F5.l Personnel exposures to toxic or carcinogenic<br />

materials must be maintained within permissible<br />

exposure limits by ventilation. enclosure, isolation.<br />

substitution, shielding, <strong>of</strong> o<strong>the</strong>r aPpropriate engineering<br />

controls, ot by proper utilization <strong>of</strong> personnel<br />

protective equipment. Federal health standards exposure<br />

criteria should be followed. ln absence <strong>of</strong><br />

Federal health standards, exposure criterid containcd<br />

in NIOSH Criteria Documents and ACCIH Threshold<br />

Limit Values should be followed.<br />

F5.2 Polychlorinated biphenyls (PCBs) may also<br />

become a potential problem when working in areas<br />

where trans<strong>for</strong>mers and capacitors are <strong>use</strong>d. Contact<br />

with any trans<strong>for</strong>mer or capacitor oil which may<br />

It6<br />

contain PcB-bearing askarel should be prcvented as<br />

much as possible through <strong>use</strong> <strong>of</strong> Viton or similar type<br />

rubber personal-protective equipment. Respiratory<br />

protective gear should be <strong>use</strong>d as waranted. PCBS<br />

and PCB equipment must be handled' <strong>use</strong>d, stored'<br />

labeled and disposed <strong>of</strong> in accordance with EPA<br />

Regulations (Title 40, Code <strong>of</strong> Federal Regulations,<br />

Pan 761).<br />

F5.3 Special optical materials <strong>use</strong>d <strong>for</strong> far infrared<br />

windows and lenses have been <strong>the</strong> source <strong>of</strong><br />

dangerou$ levels <strong>of</strong> airbome contaminants. For<br />

example, calcium telluride and zinc telluride will<br />

bum in <strong>the</strong> presence <strong>of</strong> oxygen when beam iradiance<br />

limits are exceeded. Cadmium oxide is suspected <strong>of</strong><br />

carcinogenic potential in man; <strong>the</strong>re<strong>for</strong>€ atmospheric<br />

concenFation <strong>of</strong> <strong>the</strong> fume should b€ maintained at oa<br />

trelow <strong>the</strong> 0.05 mg/m3 ceiling level established by<br />

ACGIH. Tellurium and tellurium hexafluoride arc<br />

also quite toxic and <strong>the</strong>re<strong>for</strong>e exPosure to <strong>the</strong>se<br />

materials should be controlled.<br />

F5.4 The <strong>use</strong> <strong>of</strong> dimethylsulfoxide (DMSO) as a<br />

solvent <strong>for</strong> cyanine dyes in dye lasen shoutd be discontinued<br />

if possible. DMSO aids in <strong>the</strong> transPort <strong>of</strong><br />

dyes into <strong>the</strong> skin. If ano<strong>the</strong>r solvent cannot be<br />

found, low permeability gloves (e.g. Neoprene or<br />

nitrile) should be worn by personnel any time a spill<br />

occurs or in situations where contact with <strong>the</strong> solvent<br />

may occur. The dyes <strong>the</strong>mselves are <strong>of</strong>ten very toxic<br />

and in some instances may even be carcinogenic.<br />

F6. References<br />

F6.1 Associat€d Hazards<br />

American National Standard National Electrical<br />

Code. ANSI NFPA 70-1984 (or latest revision<br />

<strong>the</strong>reo0.<br />

Certilied Equipment List as <strong>of</strong> October l, 1987.<br />

DHHS (NIOSH) Publication No 88-107. Superintendent<br />

<strong>of</strong> Docunrents, U.S. Govemement Printing<br />

Office, Washinglon, D.C. 20402, October 1987.<br />

Hygienic Guide Series Detroit: American lndustrial<br />

Hygiene Association.<br />

lndustrial Ventilntion - A Manual <strong>of</strong> Recommended<br />

Practice. l4th ed. Cincinnati: American Conference<br />

<strong>of</strong> covemmcnlal Industrial Hygienists; 1972 (or<br />

latest revision <strong>the</strong>reoo.<br />

Key, M.M.. et al., Occupational Diseases - A Guide<br />

to Their Recognition. DHEW (NIOSH) Publication<br />

No. 77-181. Superintendent <strong>of</strong> Documents, U.S


jJ Gotemment Printing Qffice, Washington, D.C.<br />

, 20402. Revised Edirion June 1977.<br />

Koller, L. R. Ultravioler Radiation. 2nd ed. New<br />

York: John Wiley & Sons; 1965.<br />

Patty, F. A., ed. Industrial Hygiene and Toxicology.<br />

2nd ed. New York: Interscience publishers: l97g_<br />

1982: v.lIA, IIB, IIC and III.<br />

Proctor, N., Hughes, J. and Fischman, M. eds.<br />

Chemical Hazards <strong>of</strong> <strong>the</strong> Workplace. J.p. Lippincott<br />

Co., Philadelphia, Pa. Znd revision, 1988.<br />

Registry <strong>of</strong> Toxic Effects <strong>of</strong> Chemicat Substances,<br />

Vol l-5 and subsequent updates. Sweei, D.V. ed.<br />

DHHS (NIOSH) Publicarion No. 87-t t4, Superinten_<br />

dent <strong>of</strong> Dccuments, U.S. Govemment printing Office,<br />

Washington, D.C. 20402. April 1987.<br />

Sliney, D. H., Freasier, B. C. The evaluation <strong>of</strong> ootical<br />

radiarion hazards. Applied Optics. l2(t); l-?2;<br />

1973 lan.<br />

Sliney, D. H., Wolbarsht,<br />

M. L. Safety with Lasers<br />

and O<strong>the</strong>r Optical Sources. New York: plenum pub_<br />

lishing Co; 1985.<br />

APPENDIX<br />

Middleton, W. E. K. Vision through rhe Atmosphere.<br />

Toronto: University <strong>of</strong>Toronto Press; 1968_<br />

Sliney, D. H. Eyaluating health hazards from military<br />

lasers. Joumal <strong>of</strong> <strong>the</strong> American Medical Association.<br />

214(6): 1047 -1054; 1970 Dec.<br />

Tatarski, V. I. Wave Propagation in a Turbulent<br />

Medium. New York: McGraw-Hill Company; 1960.<br />

Appendix G<br />

,o ;J,<br />

it,t"H::.# ii:11'Jl,:l'f"T#Hi,i,"#;<br />

tl<br />

TLVs - Threshold Limit Values and Bioloeical<br />

Exposure lndices <strong>for</strong> 1988-1989. American Coiference<br />

<strong>of</strong> Govemmental Industrial Hygienists; 1988 (or<br />

current edition).<br />

Title 29, Code <strong>of</strong> Federal Regulations, pan 1910,<br />

Safety and Health Standards. Occupational Safety<br />

and Health Administration, U.S. Dept. <strong>of</strong> Labor.<br />

F6.2 OpticalPropagation<br />

Buck, A. L. Effects <strong>of</strong> ahosphere on laser beam<br />

propagation. Applied Optics. 6(4): 703-708; 1967<br />

Apr.<br />

Burch, D. E., Cryvnak, D. A., Pauy, R. R. Absorption<br />

<strong>of</strong> infrared radiarion by COr and H2O -. absorption<br />

by CO2 between 8000 and t0,000 cm-r. Joumal<br />

<strong>of</strong> <strong>the</strong> Oprical Sociery <strong>of</strong> America. 58(3): 335_341:<br />

1968 Mar.<br />

Deitz, P. H. Twelve eye safety nomographs. Applied<br />

Optics. lt(2): 371-375; 1969 Feb.<br />

Hogg. D. C. Millimetcr wave communicalion<br />

lH?:Jhe atmosPhere' science' r5e(3810): 3e-46:<br />

Biological Effects on <strong>the</strong> Eye end Skin<br />

Gl. Minimal Biological Effects <strong>of</strong> Laser Radiation<br />

on <strong>the</strong> Eye<br />

Gl.l General. Among different laboratories<br />

some differences in standardization and calibration<br />

probabiy exist. This has introduced a certain spread<br />

among <strong>the</strong> data. Tlte majority <strong>of</strong> <strong>the</strong> work in aniving<br />

at <strong>the</strong> MPES in Section 8 <strong>of</strong> <strong>the</strong> standard has been<br />

concemed with how to compare <strong>the</strong> data and which<br />

data should be given more consideration. Where<br />

regression lines were available, <strong>the</strong>y indicate that a<br />

factor <strong>of</strong> 10 below <strong>the</strong> 50% damage level gave a<br />

negligible probability <strong>of</strong> damage. Whenever possible<br />

<strong>the</strong>se regression lines <strong>for</strong>med <strong>the</strong> basis <strong>for</strong> <strong>the</strong> level<br />

selecred <strong>for</strong> any pafticular MPE. Where <strong>the</strong> data<br />

indicated a steeper regression line, a factor less than<br />

10 was <strong>use</strong>d.<br />

Gl.2 Corneal Damage<br />

Gl,2.l Infrared (Spectral Region 1.4 to 1000<br />

pm). Excessive infrared exposure ca<strong>use</strong>s a loss <strong>of</strong><br />

lranspar€ncy or produces a surface irregularity in <strong>the</strong><br />

cornea. The MPE is well below <strong>the</strong> erergy or power<br />

required to produce a minimal lesion, For <strong>the</strong> purposes<br />

<strong>of</strong> this standard, a minimal comeal lesion is a<br />

small white area involving only <strong>the</strong> epi<strong>the</strong>lium and<br />

whose surface is not elevated or swollen. lt appears<br />

within l0 minutes after <strong>the</strong> exposure. Very linle or<br />

no staining results from fluorescein application. A<br />

minimal lesion will heal within 48 hours without visible<br />

scarring. These observations are based on experiments<br />

with COz lasers; extrapolation to wavelengths<br />

o<strong>the</strong>r than 10.6 Jrm must be made with care.<br />

Damage results from <strong>the</strong> heating <strong>of</strong> <strong>the</strong> comea by<br />

absorprion <strong>of</strong> <strong>the</strong> incidenr energy by tears and tissue<br />

watcr in <strong>the</strong> comea, The absorption is diff<strong>use</strong>, and<br />

87


APPENDIX<br />

simple heat flow models aPpear to be valid The<br />

identity <strong>of</strong> <strong>the</strong> sensitive material or protein in <strong>the</strong> cornea<br />

is not knowo. Although <strong>the</strong> critical temperature<br />

threshold is not known, it doe$ not appear to be much<br />

above normal body temperatute, and <strong>the</strong>re are indications<br />

that it is a function <strong>of</strong> exposure time.<br />

G1.2.2 Ultraviolet (Spectral Region 0'2 to 0.4<br />

pm). Excessive utraviolet exposure produces photophobia<br />

accompanied by redness, tearing, conjunctival<br />

discharge, surface exfoliation, and stromal haze The<br />

MPE is well below <strong>the</strong> energy required to produce<br />

(within 24 houn following exposure) any <strong>of</strong> <strong>the</strong><br />

changes named.<br />

Damage to <strong>the</strong> epi<strong>the</strong>lium by absorption <strong>of</strong> ultraviolet<br />

light probably results from photochemical denaturation<br />

<strong>of</strong> proteins or o<strong>the</strong>t molecules in <strong>the</strong> cells Some<br />

<strong>of</strong> <strong>the</strong> most important molecules are <strong>the</strong> deoxyribonucleic<br />

acids (DNA) and ribonucleic acids (RNA). The<br />

absorption is probably by selective sensitive portions<br />

<strong>of</strong> single cells. The action <strong>of</strong> <strong>the</strong> ultraviolet radiation<br />

is photochemical ra<strong>the</strong>r than <strong>the</strong>rmal, since <strong>the</strong> temperature<br />

rise calculated <strong>for</strong> experimental exposure is<br />

negligible.<br />

Gl.3 Retinal Damage (Spectral Region 0.4 to<br />

1.4 pm), The MPE is well below <strong>the</strong> exposure<br />

required to produce a minimal (or threshold) lesion'<br />

For <strong>the</strong> purposes <strong>of</strong> this standard, a minimal retinal<br />

lesion is <strong>the</strong> smallest ophthalmoscopically visible<br />

change in <strong>the</strong> retina. This change is a small white<br />

patch (apparently coagulation) which occurs within<br />

24 hours <strong>of</strong> <strong>the</strong> time <strong>of</strong> exposure. At threshold <strong>the</strong><br />

lesion is probably <strong>the</strong> result <strong>of</strong> local heating <strong>of</strong> <strong>the</strong><br />

retina subsequent to absorption <strong>of</strong> <strong>the</strong> light and its<br />

conversion to heat by <strong>the</strong> melanin granules in <strong>the</strong> pigment<br />

epi<strong>the</strong>lium.<br />

Extended exposure lasting several minutes <strong>for</strong> a rctinal<br />

image that is very small is difficult to accomplish,<br />

except by slabilized image optics. Thus <strong>the</strong>re exist<br />

no experimental data <strong>for</strong> long exposures and small<br />

spot sizes. However, accidental retinal exposures<br />

which combine long periods <strong>of</strong> time and small spot<br />

sizes are very unlikely.<br />

Gl.4 O<strong>the</strong>r Ocular Damage. There are two transition<br />

zones between comeal hazard and retinal<br />

hazard spectral regions, These are located at <strong>the</strong><br />

wavelength bands separating <strong>the</strong> ultraviolet and visible<br />

regions and separating near infrared and infrared.<br />

The exact wavelengths are not known. In <strong>the</strong>se<br />

regions <strong>the</strong>re may be both comeal and retinal damage.<br />

Also. damage to intermediate structures, such as<br />

<strong>the</strong> lens and iris. can occur.<br />

88<br />

Gl.S References. The most important references<br />

are cited in this section. They cover <strong>the</strong> major Portion<br />

<strong>of</strong> <strong>the</strong> data <strong>use</strong>d in deriving this Standard.<br />

Several <strong>of</strong> <strong>the</strong> teferences are review articles; <strong>the</strong>ir<br />

bibliographies should be <strong>use</strong>d as a source <strong>of</strong> additional<br />

references.<br />

Adams. D. O.; Beatrice, E. S.; Bedell' R. B. Retinal<br />

ulrastructural alterations produced by extremely low<br />

levels <strong>of</strong> coherent radiation. Science. 177(4043):58-<br />

60; 197? July 7.<br />

Bresnick, G. H., Frisch, G. D" Powell' J. O"<br />

Landers. M. B.. Holst, G. E., and Dallas, A. C. Ocu'<br />

lar effects <strong>of</strong> argon laser radiation - Part I: Retinal<br />

damage threshold studies' InvestigativeOphthalmology.<br />

9(l t):901-910; 1970 Nov'<br />

Clark, A. M. Ocular hazards from lasers and o<strong>the</strong>r<br />

optical sources. Critical Reviews in Environmental<br />

Control. (3): 307-339; 1970 Nov.<br />

Cogan, D. C. L€sions <strong>of</strong><strong>the</strong> eye from radiant energy.<br />

Joumal <strong>of</strong> <strong>the</strong> American Medical Association.<br />

142(3): 145-l5l; 1950 Mar.<br />

Desvignes, P., Amar, L., Bruma, M., Velge, M. Sur la<br />

generaiion d'ondes ulFasonores et <strong>for</strong>mation de<br />

bulles das le vitre d'un oeil humain par inadiation<br />

d'impulsion laser. Comptes Rendus Hebdomadaircs<br />

des Seances de I'Academie des Sciences. 259:<br />

1588-1591: 1964.<br />

Dunsky, 1.. Lappin, P. Evaluation <strong>of</strong> retinal threshold<br />

<strong>for</strong> cw radiation. Vision Research. ll(7): 733-73E;<br />

l97l July.<br />

Gibbons, W. D. Threshold Damage Evaluation <strong>of</strong><br />

Long-Term Exposures to Argon Laser Radiatiolr,<br />

U.S. Depanment <strong>of</strong> <strong>the</strong> Air Force Report SAM-TR-<br />

'14-29,<br />

1914 Aug. Available from National Technical<br />

In<strong>for</strong>mation Service, Springfeld, Va. 22161.<br />

Ham, W. T., Jr., Clarke, A. M., Geeraets, W' J.'<br />

Cleary, S. F., Mueller, H. A., Williams' R. C. The<br />

eye problem in laser safety. Archives <strong>of</strong> Environ'<br />

mentat Health. 20(2): 156-160; 1975 Feb.<br />

Ham, W. T.. Jr., Geeraets, W. J., Mueller' H. A"<br />

Williams, R. C., Clarke, A. M., Cleary, S. F. Retinal<br />

bum thresholds <strong>for</strong> <strong>the</strong> helium-neon laser in <strong>the</strong><br />

rhesus monkey. Archives <strong>of</strong> Ophthalmology.<br />

84(12): 797-808; 1970 Dec.<br />

Ham. W. T., Jr., Mueller, H' A., Sliney' D. H. Retinal<br />

sdnsitivity to damage from shon wavelength light.<br />

Nature. 260(5547): 153-155; 1976 Mar I I'


Ham, W. T., Jr., Williams, R. C., Mueller, H. A.,<br />

cl Guerry, D., Clarke, A. M., Geeraets, W. J. Effects <strong>of</strong><br />

laser radiation on <strong>the</strong> mammalian eye. Transactions<br />

<strong>of</strong> <strong>the</strong> New York Academy <strong>of</strong> Sciences, ser 2.28:<br />

517-526; 1966 Feb.<br />

Hansen, W. P., Fine, S. Melanin granule models <strong>for</strong><br />

pulsed laser ipduced retinal injury. Applied Optics<br />

7(l): 155-159: 1968 Jan.<br />

Hayes, J. R., Wolbarsht, M. L. Thermal model <strong>for</strong><br />

retinal damage induced by pulsed lasers. Aerospace<br />

Medicine. 39(5): 474480: 1968 May.<br />

Kuwabara, T- Retinal recovery from exposure to<br />

light. American Joumal <strong>of</strong> Ophthalmology. 70(2):<br />

187-198; 1970 Aug.<br />

Laser Health Hazards Conrol. U.S. Department <strong>of</strong><br />

<strong>the</strong> Air Force Manual AFM-l6l-32, 1973 Apr 20.<br />

Available from Nadonal Technical In<strong>for</strong>mation Service,<br />

Springfield, Va. 22161.<br />

Peabody, R. R., Zweng, H. C., Rose, H. W.,<br />

Peppers, N. A., Vassiliadis, A. Threshold damage<br />

from COz lasers. Archives <strong>of</strong> Ophthalmology.<br />

82(?): 105-107; 1969 July.<br />

rO Hn:;.- ^',Jffii:f;.^ "'-'::'l',Ifi<br />

:<br />

Zweng, H. C. Corneal damage threshotds <strong>for</strong> CO2<br />

laser radiation. Applied Optics. 8(2):37't-381; 1969<br />

Feb.<br />

Pitts, D. G., Bruce, W. R., Tredici, T. J. A. Comparative<br />

Study <strong>of</strong> <strong>the</strong> Effecrs <strong>of</strong> Ultraviolet Radiarion on<br />

<strong>the</strong> Eye. U.S. Air Force School <strong>of</strong> Aerospace Medicine<br />

Repon SAM-TR-70-28. Aerospace Medical<br />

Division (AFSC), Brooks Air Force Base, 1970.<br />

Available from National Technical In<strong>for</strong>mation Service,<br />

Springfield, Va, 22 t6t.<br />

Sliney, D. H. The development <strong>of</strong> laser safety criteria.<br />

In: M. L. Wolbarsht, ed. Laser Applications in<br />

Medicine and Biology. New York: Plenum Press;<br />

l97l: v. l, chapter 7, pp 163-238.<br />

Vassiliadis, A. Ocular damage from laser radiation.<br />

In: M. L. Wolbarsht, ed. Laser Applications in Medicine<br />

and Biology. New York: Plenum Press; 1977: v.<br />

l, chapter 6, pp 125-162.<br />

Voss, J. J. A <strong>the</strong>ory <strong>of</strong> rctinal bums. Bulletin <strong>of</strong><br />

Ma<strong>the</strong>matical Biophysics. 24: I l5-128; 1962.<br />

, r r,*** ih":#'T'li,I*"ixll il; :g;<br />

1970 Sepr.<br />

APPENDIX<br />

Wolbarsht, M. L., Sliney, D. H. The <strong>for</strong>mulation <strong>of</strong><br />

protection standards <strong>for</strong> lasers. In: M. L. Wolbarsht,<br />

ed. Laser Applications in Medicine and Biology.<br />

New York: Plenum Pressl 1974l' v. 2, chapter 10, pp<br />

309-360.<br />

G2. Biological Effects <strong>of</strong> Lsser Radiation on <strong>the</strong><br />

Skin<br />

G2,l General. The large $kin surface makes this<br />

body tissue readily available to accidental and<br />

repeated exposures to laser radiation. The biological<br />

significance <strong>of</strong> irradiation <strong>of</strong> <strong>the</strong> skin by lasers operating<br />

in <strong>the</strong> visible and infrared regions is considerably<br />

less than exposurc <strong>of</strong> <strong>the</strong> eye, as skin damage is usually<br />

reparable or revenible. Effecs may vary from a<br />

mild rcddening (ery<strong>the</strong>ma) to blisters and charring.<br />

Depigmentation, ulceration, and scaning <strong>of</strong> <strong>the</strong> skin,<br />

and damage to underlying organs, may occur from<br />

exlremely high-powered laser radiation.<br />

Latcnl and cumulative effects <strong>of</strong> laser radiation are<br />

not known at this time. The possibility <strong>of</strong> such<br />

effects occurring, however, should not be ignored in<br />

planning <strong>for</strong> personnel safety in laser installations.<br />

Little or no data is available describing <strong>the</strong> reaction <strong>of</strong><br />

skin exposed to laser radiation in <strong>the</strong> 0.2 to 0.4 pm<br />

spectral region, but chronic exposure to ultraviolet<br />

wavelengths in this runge can have a carcinogenic<br />

action on skin as well as eliciting an ery<strong>the</strong>matous<br />

response.<br />

On <strong>the</strong> basis <strong>of</strong> studies with noncoherent ulffaviolet<br />

radiation, exposure to wavelengths in <strong>the</strong> 0.25 to<br />

0.32pm spectral region is most injurious to skin.<br />

Exposure to rhe shoner (0.2 to 0.25 pm) and longer<br />

(0.32 to 0.4 pm) ultraviolet wavelengths is considercd<br />

less harmful to normal human skin. The<br />

shoner wavelengths are absorbed in <strong>the</strong> outer dead<br />

layer <strong>of</strong> <strong>the</strong> epidermis (stratum comeum), and exposure<br />

to <strong>the</strong> longer wavelengths has a pigmentdarkening<br />

eflbct. However, <strong>the</strong> sensitivity <strong>of</strong> skin to<br />

<strong>the</strong> longer wavelengths may be increased by known<br />

or inadvertent usage <strong>of</strong> photosensitizers.<br />

G2.2 References<br />

Buchanan, A. R., Heim, H. G., Stilson, D. W.<br />

Biomedical Effects <strong>of</strong> Exposure lo Electromagnetic<br />

Radiation - Pan I: Ultr-dviolet. Air Development<br />

Center Technical Report 60-376, AD 244 786, 1960<br />

May. Available from National Technical In<strong>for</strong>mation<br />

Service, Springfield ,Y a.2216l .<br />

89


o<br />

APPENDIX<br />

Goldman, L., Rockwell, R. 1., Jr. l.asers in Medicine.<br />

New York: Gordon and Breach Science Publishers;<br />

197 t.<br />

Lane, R. J., Linsker, R., Wynne, J. J., Torres, A., and<br />

Geronemus, R. G. Ultraviotet - laser ablation <strong>of</strong><br />

skin. Archives <strong>of</strong> Dermatology. I2l:(609-617) May,<br />

1985.<br />

[,aor, Y., Simpson, C., Klein, 8., Fine, S. Pathology<br />

<strong>of</strong> intemal viscera following laser radiation. American<br />

Joumal <strong>of</strong> <strong>the</strong> Medical Sciences. 257(4): 242-<br />

252; 1969 Apr.<br />

Panish. J. A. and Anderson. R. R.. Considentions <strong>of</strong><br />

selectivity in laser <strong>the</strong>rapy. ln Amdt, K. A., Noe, J.<br />

M. and Rosen, S. (eds.): Cutaneous Laser Therapy -<br />

Principles and Methods. New York: John Wiley and<br />

Sonsl 1983.<br />

Pan, W. H. Skin f€sion Threshold Values <strong>for</strong> Laser<br />

Radiation as Compared with Safety Standards. U.S.<br />

Army Medical Research Inboratory Repon 813, AD<br />

688 871, 1969- Available from National Technical<br />

ln<strong>for</strong>mation Service, Springfield, Va. 22161.<br />

Rockwell, R. J., Jr, Goldman, L. Research on Human<br />

Skin Laser Damage Threshold. Final Repon, University<br />

<strong>of</strong> Cincinnati, Conract F41609-72-C-0007,<br />

School <strong>of</strong> Aerospace Medicine, Brooks Air Force<br />

Base. Texas.<br />

Sliney, D. H., wolbarsht, M. L. Safety with Lasen<br />

and O<strong>the</strong>r Optical Sources. New York: Plenum Puhlishing<br />

Company; 1980.<br />

Threshold Limit Values and Biological Exposure<br />

Indices <strong>for</strong> 1988-1989. Cincinnati: American Conference<br />

<strong>of</strong> Governmental Industrial Hygienists.<br />

Urbach, F., ed. The Biological Effects <strong>of</strong> Ulhaviolet<br />

Radiation (with Emphasis on <strong>the</strong> Skin). Proceedings<br />

<strong>of</strong> <strong>the</strong> First Intemational Conference, 1966. New<br />

York: Pergamon Press; 1969.<br />

Appendix H<br />

M€asuremenls<br />

Hl. Radiometric Measurements<br />

lt is important to note that certain aypes <strong>of</strong> radiometrically<br />

calibrated instruments can exhibit substantial<br />

90<br />

enors when <strong>use</strong>d to measurc cohercnt radiation.<br />

These enors are <strong>of</strong>ten associated with interfercnce<br />

phenomena (constructive and deslructive) or with<br />

spatial inhomogeneities, and instrument readings can<br />

change greatly with small changes in angle <strong>of</strong><br />

incidence, wavelength, or distribution <strong>of</strong> radiation<br />

over <strong>the</strong> surface. It is, <strong>the</strong>re<strong>for</strong>e, imponant to select<br />

instruments that minimize such effects or are<br />

designed specifically <strong>for</strong> <strong>use</strong> with lasers. As an<br />

example, current National Institute <strong>of</strong> Science and<br />

Technology (NIST) laser power and energy standards<br />

are based on calorimehic ra<strong>the</strong>r than radiometric<br />

techniques (see A Reference Calorimeter <strong>for</strong> Laser<br />

Energy Measurements, by E. D. West and o<strong>the</strong>rs<br />

which is listed as a reference in H4)<br />

H2, Radiant Exposure Pr<strong>of</strong>iles and Radiant<br />

Dxposure Estimates <strong>for</strong> Pulsed Lssers<br />

Several rypes <strong>of</strong> photosensitive or <strong>the</strong>rmally sensitive<br />

papers or emulsions may be <strong>use</strong>d as aids in <strong>the</strong> determination<br />

<strong>of</strong> laser beam radiant exposure and <strong>for</strong><br />

estimating beam pr<strong>of</strong>iles <strong>of</strong> high-energy lasers.<br />

H3. Beam Div€rgence<br />

Determination <strong>of</strong> <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> laser beam<br />

may be required when evalualing exposures at fal<br />

distances from <strong>the</strong> laser. It is recommended that<br />

beam divergence be detemined by using ei<strong>the</strong>r maximum<br />

beam irradiance or radiant exposurc at two different<br />

distances from <strong>the</strong> laser and calculating with<br />

Ec B4 in 83.2.3. (See also 3.4.2.)<br />

H4. References<br />

H4.1 General<br />

Case, W. E. Documentation <strong>of</strong> <strong>the</strong> NBS C, K, Laser<br />

Calibration Systems. NBSIR 82-1676, September<br />

1982.<br />

Day, C. w., Hamilton, C. A., Pyatt, K. W. Spectral<br />

reference detector <strong>for</strong> <strong>the</strong> visible to 12 micrometer<br />

region; convenient, spectrally flat. Applied Optics.<br />

l5(7): I865- 1868, July 1976.<br />

Sliney, D. H., Wolbarsht, M. L. Safety with Lasers<br />

and O<strong>the</strong>r Opticai Sources. New York: Plenum Publishinq<br />

Co: 1980.


Sanders, A. A., Rasmussen, A. L. A System <strong>for</strong><br />

Measuring Energy and Peak Power <strong>of</strong> l.ow-Level<br />

1.0@ Micrometer Laser Pulses. National Bureau <strong>of</strong><br />

Standards Technical Note 1058; Washington, D.C.<br />

U.S. Govemment Printing Office. 1982.<br />

Danielson, B, L, Measur€ment Procedures <strong>for</strong> <strong>the</strong><br />

Optical Beam Splitter Attenuation Device A-1.<br />

NBSIR 77-858. Washington, D.C. U.S. Govemment<br />

Printing Office. 1977.<br />

Wolfe, W. L., Zissis, G. J. The Infrared Handbook.<br />

Washington, D.C. U.S. Govemment Printing Office.<br />

1978.<br />

Hamilton, C. A., Day, G. W. A Pyroelectric Power<br />

Meter <strong>for</strong> <strong>the</strong> Measurement <strong>of</strong> Low Level Radiation.<br />

National Bureau <strong>of</strong> Standards Technical Note 665.<br />

Washington, D.C. U.S. Govemment Printing Office.<br />

197 5.<br />

West, E. D., Case, W. E., Rasmussen, A.L., Schmidt,<br />

L. B. A reference calorimeter <strong>for</strong> laser energy measurements.<br />

Joumal <strong>of</strong> Research <strong>of</strong> <strong>the</strong> National<br />

Bureau <strong>of</strong> Standards, Sect. A (Physics and Chemistry).<br />

764( l): l3-26; 1972 Jan-Feb.<br />

Franzen, D. L., Schmidt, L. B. Absolute reference<br />

calorimeter <strong>for</strong> measuring high power laser pulses.<br />

Applied Optics. l 5(12):3 1 1 5 -J 122; 1976 Dec.<br />

APPENDIX<br />

H4.2 Commercially Available Instrumentation.<br />

Periodically updated listings <strong>of</strong> commercially available<br />

laser measuring insfiuments ere included in <strong>the</strong><br />

following publications;<br />

Electro-Optical Master Catalog. Available from Milton<br />

S. Kiyer Publications, htc,, 222 west Adams<br />

Street, Chicago, Itl. 60606.<br />

Instrumeltation <strong>for</strong> Environmental Monitoring -<br />

Radiation. Available from Environmental Instrument<br />

Group, Lawrcnce Bertley Laboratory, University <strong>of</strong><br />

Califomia, Berkeley, Calif. 94720.<br />

Laser Focus Buyers'Guide. Available from Penwell<br />

Publications, Advanced Technology Group, 119<br />

Russell St. Littleton, MA 01640.<br />

The Optical Industry and Systems Purchasing Dircctory.<br />

Available from Laurin Publishing Company,<br />

Berkshire Common, P.O. Box 1146, Pittsfield, MA<br />

o1202.<br />

Lasen and Applications, Technical Handbook and<br />

Industry Directory, 23868 Hawthome BIvd. Torrance.<br />

CA 90505.<br />

9l


Table l0<br />

Control Measures <strong>for</strong> <strong>the</strong> Four Laser Classes<br />

Controls Classification I za 2 3a 3b<br />

ProtectiYe Housing (4.3. 1) X X X X X X<br />

E<br />

without Protective Housing (4.3. l.l )<br />

lnterlocks on Protective Housing (4.3.2)<br />

Service Access Panel (4.3.3)<br />

LSO shall establish Altemate Controls<br />

A A X X x<br />

V v v V v X<br />

N Key Swilch l\4aster (4.3.4) X<br />

G<br />

t<br />

N<br />

E<br />

Viewing Ponals (4.3.5.l)<br />

Collecting Optics (4.3.5.2)<br />

Totally Open Beam Path (4.3.6.1)<br />

Limited Open Beam Path (4.3.6.2)<br />

tr<br />

D<br />

tr<br />

tr<br />

o<br />

D<br />

X<br />

X<br />

o<br />

tr<br />

x<br />

x<br />

E Remote Interlock Connector (4.3.7) X<br />

R Beam Stop or Attenuator (4.3.E)<br />

X<br />

I Activation Waming Systems (4.3.9)<br />

X<br />

N Emission Delay (4.3.9.1)<br />

G Class 3b Laser Controlled Area (4.3.10. | )<br />

X<br />

Class 4 l,aser Controlled Area (4.3.10.2)<br />

X<br />

Laser Outdoor Controls (4.3.1 I )<br />

Temporary Laser Controlled Area* (4.3.12) v v<br />

X X<br />

Remote Firing & Monitoring (4.3.13)<br />

Labels (4.3.14) x X X X X<br />

Area Posting (4.3.15) X X<br />

Administrative & Procedural Controls (4.4) X X x X X<br />

A Standard Operating Procedures (4.4.1) X<br />

M Output Emission Limitations (4.4.2) LSO f Etermination<br />

N R Education and Training (4.4.3) X X x<br />

i<br />

ri<br />

oa<br />

U<br />

c Authorized Personnel (4.4.4) X X<br />

D Alignment Procedures (4.4.5) x X X x<br />

T R Eye Prctection (4.4.6)<br />

I<br />

L Spe€tator Control (4.4.?) X<br />

Service Personnel (4.4.8) v X X<br />

Laser Demonstration (4.5. 1 ) x X X x<br />

Laser Fiber Optics (4.5.2) X x X. x<br />

LEGEND X - Shatl, . - Should, - No requirement, V-Shall if Embedded Cla-ss 3botClass4'<br />

c - Shat t if MpE is exceeded. A - Shall if embedded Class 3a, Class 3b, Class 4, * During Service Only<br />

X


lo<br />

]o<br />

}r LIA'.8G5M<br />

Laser Institute <strong>of</strong> America<br />

The Laser Institute <strong>of</strong> America in 1984 assumed <strong>the</strong> secretariats <strong>of</strong> <strong>the</strong> two major laser<br />

safety standards committees which impact upon both <strong>use</strong>r and manufacturers. These<br />

committees are <strong>the</strong> American National Standards Institute (ANSI) Committee 2-136<br />

on Safe Use <strong>of</strong> Las€rs, and <strong>the</strong> International Electrolechnical Commission (ICE)<br />

Technical Committee TC-76 on Lasers. The first committee plays a leadership role in<br />

establishing occupational exposure limits and standard safety practices in lhis country.<br />

The second committee serves <strong>the</strong> same role worldwide, and most national organizations<br />

look toward this committee <strong>for</strong> guidance.<br />

The Laser Institute <strong>of</strong> America is a nonpr<strong>of</strong>it pr<strong>of</strong>essional society devoted entirely to<br />

<strong>the</strong> advancement and promotion <strong>of</strong> laser technology and applications. The Instilute conducts<br />

continuing education courses, seminars and technical symposia nationwide, and<br />

<strong>of</strong>fers a variety <strong>of</strong> educational materials and publications. Journal <strong>of</strong> Laser Applications<br />

is <strong>the</strong> <strong>of</strong>ficial society magazine published four times a year <strong>for</strong> members.<br />

LASER SAFETY PUBLICATIONS-from Laser Institute <strong>of</strong> America<br />

Standards<br />

o Safe Use <strong>of</strong> lasers, ANSI ZI36.I-1986<br />

. Sale Use <strong>of</strong> Optical Fiber Communication Systems utilizing Inser Diode and<br />

LED Sources, ANSI Z,136.2-1988<br />

o Safe Use <strong>of</strong> Lasers in Health Care Facilities, ANSI 2136.3-1988<br />

General<br />

. Inser SaIetJ Cuide (39p)<br />

c Guide Jor Selection <strong>of</strong> Laser Eye Protection (l8p)<br />

o Safety Reference Notebook (1 I9p)<br />

o lnser Safet!: Bio-Effects, Hazards & Classifications (96p)<br />

. Laser Safety Short Courses Tefi (3-ring, 380p)<br />

t Safery SlidelAudio Educational Package (35mm135 min.)<br />

o Laser SaIeO Video.Training Package<br />

. C onfere nc e P roc e edings<br />

SEND FOR FREE CATALOG OR CALL (407) 380 - 1553 <strong>for</strong> derailed in<strong>for</strong>mation,<br />

(Se@nd Ptinring enh Ctua@ rd Cteificarionc)<br />

Laser Institute <strong>of</strong> Amenca<br />

12424 Research Parkway, Suite 130<br />

Orlando, FL 32826<br />

(407) 380 - | 553<br />

FAX (407) 380 - 5588

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!