01.02.2013 Views

Non-parametric estimation of a time varying GARCH model

Non-parametric estimation of a time varying GARCH model

Non-parametric estimation of a time varying GARCH model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Further, if E|vt| 8 < ∞, then the asymptotic variance <strong>of</strong> the estimator is<br />

V ar(ˆα0(u0),..., ˆαp(u0))<br />

= 1<br />

nh1 e⊤ 1,d+1A −1<br />

1 B1A −1<br />

1 e1,d+1V ar(v 2 t )S −1 ΩS −1 (1 + oP(1)),<br />

Interestingly, the bias expression for ˆαj(u0) depends on the (d+1) th derivative <strong>of</strong> αj(u0)<br />

only due to the structure <strong>of</strong> the <strong>model</strong>. The procedure introduced in Step 1 can be<br />

used for the <strong>estimation</strong> <strong>of</strong> a <strong>time</strong> <strong>varying</strong> ARCH (p) <strong>model</strong>. Now it is clear that the<br />

MSE <strong>of</strong> the estimator ˆαj(u0) is OP(h 2d+2<br />

1<br />

+ (nh1) −1 ). Also, when the optimal bandwidth<br />

h1 = O(n −1/(2d+3) ) is used, then the local polynomial estimator achieves the optimal rate<br />

<strong>of</strong> convergence OP(n −(2d+2)/(2d+3) ) for estimating αj(u0). Notice that for d = 3, the opti-<br />

mal convergence rate is OP(n −8/9 ). Now in the following corollary, we show the asymptotic<br />

normality <strong>of</strong> the estimator as a simple application <strong>of</strong> the martingale central limit theorem.<br />

Corollary 4.1. Under the same assumptions as that <strong>of</strong> Theorem 4.1,<br />

√<br />

nh1 (ˆαtvARCH(u0) − αtvARCH(u0) − b(u0)) D �<br />

→<br />

Np+1 0,e ⊤ 1,d+1A −1<br />

1 B1A −1<br />

1 e1,d+1V ar(v2 t )S−1ΩS −1�<br />

where b(u0) = Bias(ˆαtvARCH(u0)) and D → denotes the convergence in distribution.<br />

Corollary 4.2. Let ˆσ 2 t = ˆαtvARCH(ut) ⊤ [1,ǫ2 t−1,...,ǫ 2 t−p] ⊤ (p+1)×1 . Then under the Assump-<br />

tions 1 and 2,<br />

where 0 < ρ < 1 and pn → ∞ as n → ∞.<br />

Bias(ˆσ 2 t ) = E(ˆσ 2 t − σ 2 t ) = OP(h d+1<br />

1 ) + O(ρ pn )<br />

Corollary 4.2 can be proved using Proposition 2.2, equation (5) and Theorem 4.1. It<br />

shows that the choice <strong>of</strong> pn will contribute towards the bias <strong>of</strong> the conditional variance<br />

in the initial step by a term which decays geometrically. Therefore, this term will have<br />

negligible effect on final estimators as pn → ∞. In Theorem 4.2, we derive the asymp-<br />

totic bias and the variance <strong>of</strong> the estimators <strong>of</strong> tv<strong>GARCH</strong> parameter functions obtained<br />

in Step 2. Towards this, first we introduce few more notations.<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!