01.02.2013 Views

Non-parametric estimation of a time varying GARCH model

Non-parametric estimation of a time varying GARCH model

Non-parametric estimation of a time varying GARCH model

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Lemma A.5. Suppose that the Assumptions 1 and 2 are satisfied. Then<br />

(i) 1<br />

n�<br />

(ut − u0) nh2<br />

t=2<br />

iK( ut−u0)ˆσ<br />

h2<br />

2 P<br />

t−1 → hi 2µiλ1<br />

(ii) 1<br />

n�<br />

(ut − u0) nh2<br />

t=2<br />

iK( ut−u0)ˆσ<br />

h2<br />

2 t−1ǫ2 P<br />

t−1 → hi 2µiλ2<br />

(iii) 1<br />

n�<br />

(ut − u0) nh2<br />

t=2<br />

iK( ut−u0)ˆσ<br />

h2<br />

4 P<br />

t−1 → hi 2µiλ3<br />

Pro<strong>of</strong>. (i) It is evident from (12) (in the pro<strong>of</strong> <strong>of</strong> Theorem 4.1) that for j = 0, 1,...,p<br />

Therefore<br />

ˆαj(u0) = δj(u0) + e ⊤ j(d+1)+1,(p+1)(d+1) (X⊤ 1 W1X1) −1 X ⊤ 1 W1(σ 2 ∗ (v 2 − en−p)).<br />

ˆσ 2 t−1 = δ0(ut−1) + p �<br />

δj(ut−1)ǫ2 t−j−1 + R∗ 1, (13)<br />

where, R ∗ 1 = (e ⊤ 1,(p+1)(d+1) + p �<br />

j=1<br />

e<br />

j=1<br />

⊤ j(d+1)+1,(p+1)(d+1) ǫ2t−j) × (X⊤ 1 W1X1) −1X ⊤ 1 W1(σ2 ∗ (v2 − en−p))<br />

Clearly, E(R ∗ 1) = 0. Here δj(·)’s are continuous functions. Substituting this expression<br />

for ˆσ 2 t−1 (13) in (i), and by using Lemma A.2, the result can be proved. Here,<br />

n� 1 (ut − u0) nh2<br />

t=2<br />

iK( ut−u0)ˆσ<br />

h2<br />

2 t−1<br />

= 1<br />

n�<br />

(ut − u0) nh2<br />

t=2<br />

iK( ut−u0)(δ0(ut−1)<br />

+ h2<br />

p �<br />

δj(ut−1)ǫ<br />

j=1<br />

2 t−j)<br />

+ 1<br />

n�<br />

(ut − u0) nh2<br />

t=2<br />

iK( ut−u0)R<br />

h2<br />

∗ 1.<br />

Now the first term <strong>of</strong> the above expression converges in probability to hi 2µiE(δ0(ut−1) +<br />

p�<br />

δj(ut−1)�ǫ 2 t−j(u0)) = hi 2µiλ1. Now using the similar methodology as in Lemma A.2, it<br />

j=1<br />

can be shown that<br />

n�<br />

(ut − u0) iK( ut−u0)ǫ2l<br />

t−jσ2 t (v2 t − 1) P → hi 2µiE(�ǫ 2l<br />

t−j(u0)�σ 2 t (u0)(v2 t − 1))<br />

1<br />

nh2<br />

t=2<br />

h2<br />

= 0, l ∈ {0, 1}, j = 1, 2,...,p.<br />

This implies that X ⊤ 1 W1σ 2 (v 2 − en−p) P → 0. Therefore, using Lemma A.3, R ∗ 1<br />

the pro<strong>of</strong> follows. Other parts <strong>of</strong> the lemma can be proved similarly.<br />

Lemma A.6. Suppose that the Assumptions 1 and 2 are satisfied.<br />

Pro<strong>of</strong>. Notice that<br />

X ⊤ 2 W2X2 = n�<br />

t=2<br />

1<br />

n X⊤ 2 W2X2<br />

P<br />

→ S2 ⊗ A2<br />

Kh2(ut − u0) �<br />

[1,ǫ2 t−1, ˆσ 2 t−1] ⊤ [1,ǫ2 t−1, ˆσ 2 t−1] ⊗ U ⊤ �<br />

t Ut .<br />

24<br />

P<br />

→ 0. Hence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!