10.07.2015 Views

Compuestos azufrados volátiles en vinos - Fundación para la ...

Compuestos azufrados volátiles en vinos - Fundación para la ...

Compuestos azufrados volátiles en vinos - Fundación para la ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Organizan:Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong>volátiles <strong>en</strong> <strong>vinos</strong>Problemas de reduccióny aromas varietalesTarragona, 23 de abril de 2009Madrid, 24 de abril de 2009Co<strong>la</strong>boran:


01. Re<strong>la</strong>ción <strong>en</strong>treel cont<strong>en</strong>idonitrog<strong>en</strong>ado <strong>en</strong>mosto/uva y <strong>la</strong>síntesis de aromas:efecto sobre <strong>la</strong>producción desulfhídricoProf. Gemma BeltranUniversidad Rovira i VirgiliProf. Jose Manuel Guil<strong>la</strong>mónUniversidad Rovira i VirgiliInstituto de Agroquímica y Tecnología deAlim<strong>en</strong>tos IATA-CSICCont<strong>en</strong>ido6 Resum<strong>en</strong>6 1. Introducción7 2. Efecto de <strong>la</strong> conc<strong>en</strong>tración y tipo d<strong>en</strong>itróg<strong>en</strong>o sobre el crecimi<strong>en</strong>to de <strong>la</strong>slevaduras y su cinética ferm<strong>en</strong>tativa.9 3. Efecto de <strong>la</strong> conc<strong>en</strong>tración y tipo d<strong>en</strong>itróg<strong>en</strong>o sobre <strong>la</strong> cinética ferm<strong>en</strong>tativa10 4. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido <strong>en</strong> nitróg<strong>en</strong>o y<strong>la</strong> síntesis de compuestos aromáticos15 Bibliografía


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>José M. Guil<strong>la</strong>món NavarroRequ<strong>en</strong>a, 6 de julio de 1967.e-mail: guil<strong>la</strong>mon@iata.csic.esInvestigación:Coautor de 50 artículos ci<strong>en</strong>tíficos <strong>en</strong> revistas internacionalesde <strong>la</strong>s áreas de Tecnología de Alim<strong>en</strong>tos, Biotecnologíay Microbiología. Coautor de 20 artículos <strong>en</strong>revistas de divulgación del sector agroalim<strong>en</strong>tario y vitiviníco<strong>la</strong>.80 comunicaciones a Congresos nacionalese internacionales, 24 de el<strong>la</strong>s como pon<strong>en</strong>te invitado ocomunicación oral. Autor de 5 capítulos de libros especializadosy 37 capítulos <strong>en</strong> libros de congresos. Autorde 3 pat<strong>en</strong>tes de levaduras vínicas <strong>en</strong> explotación. Directorde 3 tesis doctorales (2 de el<strong>la</strong>s con formato dedoctorado europeo)Líneas de Investigación• Estudio del metabolismo de <strong>la</strong>s levaduras <strong>en</strong>condiciones de ferm<strong>en</strong>tación vínica. Efecto de <strong>la</strong>sbajas temperaturas de ferm<strong>en</strong>tación y del metabolismodel nitróg<strong>en</strong>o.• Estudio de <strong>la</strong>s pob<strong>la</strong>ciones de levaduras y bacteriasacéticas durante los procesos de e<strong>la</strong>boraciónde vino. Utilización de marcadores molecu<strong>la</strong>res<strong>para</strong> <strong>la</strong> caracterización e id<strong>en</strong>tificación de los microorganismosdel vino.Estancias <strong>en</strong> C<strong>en</strong>tros Extranjeros:• Estancia post-doctoral <strong>en</strong> <strong>la</strong> Universidad de Utrecht(junio del 1998 a mayo del 1999).• Estancia post-doctoral <strong>en</strong> el “Institute for WineBiotechnology (Stell<strong>en</strong>bosch University)” <strong>en</strong>Stell<strong>en</strong>bosch (Sudáfrica) (septiembre del 2004 amarzo del 2005).Gemma Beltran Casel<strong>la</strong>s31 de octubre de 1975Posición actual:• Profesora ayudante doctor del Departam<strong>en</strong>to deBioquímica y Biotecnología de <strong>la</strong> Universidad Rovirai Virgili, Facultad de Enología, desde diciembredel 2007.• Miembro del grupo de investigación de BiotecnologíaEnológica de <strong>la</strong> Facultad de Enología de<strong>la</strong> URV, d<strong>en</strong>tro de <strong>la</strong> línea de estudio de <strong>la</strong>s levadurasvínicas.A lo <strong>la</strong>rgo de su carrera investigadora Gemma Beltranha co<strong>la</strong>borado <strong>en</strong> proyectos sobre el estudio <strong>la</strong>s levadurasy sus requerimi<strong>en</strong>tos nutricionales, analizandolos factores que pued<strong>en</strong> condicionar a una mejora <strong>en</strong><strong>la</strong> ferm<strong>en</strong>tación alcohólica, tanto los que se derivandel mosto (niveles de nitróg<strong>en</strong>o disponible) como devarias prácticas <strong>en</strong>ológicas (ferm<strong>en</strong>taciones a bajastemperaturas, rehidratación). Sus investigaciones predoctoralesse c<strong>en</strong>traron principalm<strong>en</strong>te <strong>en</strong> el estudio<strong>la</strong> represión catabólica por nitróg<strong>en</strong>o a lo <strong>la</strong>rgo de <strong>la</strong>ferm<strong>en</strong>tación (Beltran et. al. 2004, 2005), así cómo <strong>en</strong>el efecto de <strong>la</strong>s bajas temperaturas de ferm<strong>en</strong>taciónsobre los cambios <strong>en</strong> <strong>la</strong> expresión génica global y elmetabolismo de <strong>la</strong> levadura vínica (Beltran et al. 2006,2007, 2008). Además, <strong>en</strong> su estancia post-doctoral realizada<strong>en</strong> el grupo de Biología Molecu<strong>la</strong>r de levadurasdel profesor Stefan Hohmann (Suecia), estuvo involucrada<strong>en</strong> estudios de señalización de nutri<strong>en</strong>tes, <strong>en</strong>concreto estudiando el metabolismo de <strong>la</strong> tiamina y <strong>la</strong>ruta de <strong>la</strong> represión catabólica por glucosa, como partede un proyecto europeo de investigación.Gemma Beltran es autora o co-autora de un total de15 publicaciones internacionales y 9 publicaciones nacionales,ha participado <strong>en</strong> un total de 12 proyectosinvestigación o contratos de transfer<strong>en</strong>cia, asistido a22 congresos ci<strong>en</strong>tíficos, dirigido tesis de master y estáactualm<strong>en</strong>te dirigi<strong>en</strong>do una tesis doctoral.Actualm<strong>en</strong>te es profesora de Bioquímica y MicrobiologiaEnológica <strong>en</strong> <strong>la</strong> Facultad de Enología, y desde sureincorporación al grupo de Biotecnología Enológicade <strong>la</strong> URV <strong>en</strong> diciembre de 2007 ha estado co<strong>la</strong>borado<strong>en</strong> proyectos de investigación y transfer<strong>en</strong>cia conel sector vitiviníco<strong>la</strong>, c<strong>en</strong>trándose nuevam<strong>en</strong>te <strong>en</strong> elestudio de los requerimi<strong>en</strong>tos nitrog<strong>en</strong>ados de <strong>la</strong>s levadurasvínicas de primera y segunda ferm<strong>en</strong>tación.5Pon<strong>en</strong>cias


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>tróg<strong>en</strong>o asimi<strong>la</strong>ble de manera aleatoria, sino que ti<strong>en</strong>eun ord<strong>en</strong> de prefer<strong>en</strong>cia por los distintas fu<strong>en</strong>tesde nitróg<strong>en</strong>o. S. cerevisiae ha desarrol<strong>la</strong>do difer<strong>en</strong>tesmecanismos molecu<strong>la</strong>res que le permit<strong>en</strong> utilizar prefer<strong>en</strong>tem<strong>en</strong>teaquel<strong>la</strong>s fu<strong>en</strong>tes que le permit<strong>en</strong> crecermejor. Este mecanismo de selección de <strong>la</strong> fu<strong>en</strong>te d<strong>en</strong>itróg<strong>en</strong>o se conoce como “Represión Catabólica porNitróg<strong>en</strong>o (NCR). El NCR se caracteriza porque <strong>la</strong> célu<strong>la</strong>es capaz de detectar <strong>la</strong> pres<strong>en</strong>cia de <strong>la</strong>s fu<strong>en</strong>tes d<strong>en</strong>itróg<strong>en</strong>o más ricas. Esto des<strong>en</strong>cad<strong>en</strong>a una cad<strong>en</strong>ade señales, que culmina con <strong>la</strong> activación de los g<strong>en</strong>esimplicados <strong>en</strong> el transporte y metabolismo de estasfu<strong>en</strong>tes ricas y <strong>en</strong> <strong>la</strong> represión de aquellos g<strong>en</strong>es implicados<strong>en</strong> el transporte y utilización de fu<strong>en</strong>tes máspobres. Una vez consumida <strong>la</strong>s fu<strong>en</strong>tes de nitróg<strong>en</strong>omás ricas (amonio, glutamina y as<strong>para</strong>gina), <strong>la</strong> levaduraactiva <strong>la</strong> maquinaria metabólica <strong>para</strong> <strong>la</strong> utilizaciónde <strong>la</strong>s más pobres (arginina, glutamato, a<strong>la</strong>nina, etc.)(Figura 1).Sin embargo, <strong>la</strong> importancia del nitróg<strong>en</strong>o no resideexclusivam<strong>en</strong>te <strong>en</strong> ser necesario <strong>para</strong> <strong>la</strong> formación debiomasa. El cont<strong>en</strong>ido <strong>en</strong> nitróg<strong>en</strong>o también ti<strong>en</strong>euna influ<strong>en</strong>cia c<strong>la</strong>ra sobre <strong>la</strong> velocidad ferm<strong>en</strong>tativa(Tail<strong>la</strong>ndier et al., 2007). La mayor parte de <strong>la</strong> ferm<strong>en</strong>taciónalcohólica se produce <strong>en</strong> una fase de no proliferacióncelu<strong>la</strong>r o estacionaria. En este punto el nitróg<strong>en</strong>odel medio es utilizado <strong>para</strong> el recambio proteicode los difer<strong>en</strong>tes <strong>en</strong>zimas celu<strong>la</strong>res. Por último, estecont<strong>en</strong>ido <strong>en</strong> nitróg<strong>en</strong>o ti<strong>en</strong>e una influ<strong>en</strong>cia manifiesta<strong>en</strong> los difer<strong>en</strong>tes metabolitos producidos durante <strong>la</strong>ferm<strong>en</strong>tación, muchos de ellos con un impacto muyc<strong>la</strong>ro <strong>en</strong> el aroma del vino. A continuación trataremos<strong>en</strong> mayor profundidad los difer<strong>en</strong>tes aspectos de <strong>la</strong>fisiología y metabolismo celu<strong>la</strong>r que se v<strong>en</strong> afectadostanto por <strong>la</strong> cantidad como por <strong>la</strong> calidad del nitróg<strong>en</strong>odel mosto. Especial hincapié dedicaremos a <strong>la</strong>síntesis de aromas de reducción o producción de SH2y otros compuestos derivados del metabolismo de<strong>la</strong>zufre.2. Efecto de <strong>la</strong> conc<strong>en</strong>tración y tipo d<strong>en</strong>itróg<strong>en</strong>o sobre el crecimi<strong>en</strong>to de <strong>la</strong>slevaduras y su cinética ferm<strong>en</strong>tativa.Vare<strong>la</strong> y cols. (2004) propusieron que <strong>la</strong> velocidad deferm<strong>en</strong>tación dep<strong>en</strong>de por un <strong>la</strong>do del estado metabólicode <strong>la</strong>s célu<strong>la</strong>s y por otro del número de célu<strong>la</strong>salcanzados durante <strong>la</strong> ferm<strong>en</strong>tación alcohólica. Dichode otro modo, de <strong>la</strong> viabilidad (número de célu<strong>la</strong>sferm<strong>en</strong>tando) y <strong>la</strong> vitalidad de cada una de estas célu<strong>la</strong>s.Ambos compon<strong>en</strong>tes ti<strong>en</strong><strong>en</strong> una dep<strong>en</strong>d<strong>en</strong>ciaimportante del nitróg<strong>en</strong>o disponible <strong>en</strong> el mosto. Eneste punto nos vamos a c<strong>en</strong>trar <strong>en</strong> como afecta el nitróg<strong>en</strong>oa <strong>la</strong> división celu<strong>la</strong>r o producción de biomasay <strong>en</strong> el sigui<strong>en</strong>te apartado abordaremos como afectaa <strong>la</strong> vitalidad o actividad celu<strong>la</strong>r.En un trabajo reci<strong>en</strong>te de nuestro grupo hemos comprobadocomo el nitróg<strong>en</strong>o es el substrato limitantedel crecimi<strong>en</strong>to celu<strong>la</strong>r hasta alcanzar valores cercanosa los 200 mg/l, aunque esto dep<strong>en</strong>de de <strong>la</strong> fu<strong>en</strong>tede nitróg<strong>en</strong>o utilizada. Para ello hacíamos crecer <strong>la</strong>slevaduras <strong>en</strong> un mosto sintético (simi<strong>la</strong>r al natural)donde iba cambiando únicam<strong>en</strong>te <strong>la</strong> conc<strong>en</strong>traciónde N y el tipo de fu<strong>en</strong>te de N. Como puede verse <strong>en</strong> <strong>la</strong>figura 2, el número de célu<strong>la</strong>s o biomasa (medido por<strong>la</strong> d<strong>en</strong>sidad óptica (O.D.) a 595 nm) iba aum<strong>en</strong>tandoconforme aum<strong>en</strong>taba <strong>la</strong> conc<strong>en</strong>tración de nitróg<strong>en</strong>o,<strong>en</strong> este caso <strong>en</strong> forma de arginina como única fu<strong>en</strong>tede nitróg<strong>en</strong>o. Esto fue así hasta niveles de 180 mg deFigura 1. Repres<strong>en</strong>tación gráfica del mecanismo de“Represión Catabólica por Nitróg<strong>en</strong>o (NCR)” según Cooper (2002)7Pon<strong>en</strong>cias


01. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido nitrog<strong>en</strong>ado <strong>en</strong> mosto/uva y <strong>la</strong> síntesis de aromas: efecto sobre <strong>la</strong> producción de sulfhídricoque <strong>la</strong> mayor parte de <strong>la</strong> ferm<strong>en</strong>tación alcohólica seproduce <strong>en</strong> <strong>la</strong> fase estacionaria o de no proliferacióncelu<strong>la</strong>r. A pesar de que durante este periodo no haymultiplicación celu<strong>la</strong>r, <strong>la</strong>s levaduras necesitan nitróg<strong>en</strong>o<strong>para</strong> mant<strong>en</strong>er su metabolismo activo. El medio deferm<strong>en</strong>tación es un ambi<strong>en</strong>te cambiante y hostil querequiere una readaptación continua <strong>para</strong> <strong>la</strong>s nuevascondiciones. Esta readaptación al medio supone unrecambio proteico continuo <strong>en</strong> <strong>la</strong> maquinaria <strong>en</strong>zimáticacelu<strong>la</strong>r. Para este recambio de proteínas celu<strong>la</strong>res,es necesaria <strong>la</strong> disponibilidad de nitróg<strong>en</strong>o <strong>en</strong>el medio de ferm<strong>en</strong>tación. Tail<strong>la</strong>ndier y col. (2007) establecieron<strong>la</strong> cantidad de nitróg<strong>en</strong>o consumido por<strong>la</strong> levadura por gramo de azúcar consumido (mg N/gde glucosa o fructosa). Como siempre hay que contarcon <strong>la</strong>s difer<strong>en</strong>tes necesidades de <strong>la</strong>s distintas cepas,esta cantidad t<strong>en</strong>ía un rango de 0,61 a 0,91 mg de Npor gramo de azúcar. Es decir, una re<strong>la</strong>ción mg N/gazúcar prácticam<strong>en</strong>te asegura cubiertas <strong>la</strong>s necesidadesnitrog<strong>en</strong>adas y es una re<strong>la</strong>ción muy s<strong>en</strong>cil<strong>la</strong> <strong>para</strong> el<strong>en</strong>ólogo poder calcu<strong>la</strong>r <strong>la</strong>s difer<strong>en</strong>tes necesidades desus mostos. Una re<strong>la</strong>ción simi<strong>la</strong>r establecieron Bissony Butzke (2000), pero <strong>en</strong> este caso, <strong>en</strong>tre necesidad deN asimi<strong>la</strong>ble fr<strong>en</strong>te a grado alcohólico probable (GAP)(figura 7).Figura 7. Re<strong>la</strong>ción <strong>en</strong>tre grado alcohólico probable(GAP) y cantidad necesaria de N asimi<strong>la</strong>ble (mg deN/l) <strong>para</strong> alcanzar dicha cantidad (Bisson y Butzke,2000).Sin embargo, el aum<strong>en</strong>to de <strong>la</strong> cinética ferm<strong>en</strong>tativano debe ser solo <strong>en</strong>t<strong>en</strong>dido por <strong>la</strong> disponibilidad d<strong>en</strong>itróg<strong>en</strong>o <strong>para</strong> facilitar el recambio proteico celu<strong>la</strong>r,sino que se ha demostrado que algunas fu<strong>en</strong>tes d<strong>en</strong>itróg<strong>en</strong>o, <strong>en</strong> concreto el amonio, pued<strong>en</strong> actuarcomo activadores de <strong>la</strong> actividad de <strong>en</strong>zimas glucolíticosc<strong>la</strong>ves. En concreto, se ha visto un increm<strong>en</strong>toimportante del transporte de azúcares por activaciónde <strong>la</strong>s permeasas implicadas (g<strong>en</strong>es HXT) (Bely et al.,1990). Tail<strong>la</strong>ndier y cols (2007) también informaronde una mayor actividad fructofílica (mayor consumode <strong>la</strong> fructosa fr<strong>en</strong>te a <strong>la</strong> glucosa) de <strong>la</strong> levadura<strong>en</strong> pres<strong>en</strong>cia de mayor conc<strong>en</strong>tración de nitróg<strong>en</strong>o,probablem<strong>en</strong>te por un cambio <strong>en</strong> <strong>la</strong> afinidad de lostransportadores de hexosas. Igualm<strong>en</strong>te, Berthels ycols (2004) observaron una activación del <strong>en</strong>zima fosfofructoquinasa,<strong>en</strong>zima c<strong>la</strong>ve de <strong>la</strong> glucolisis, con <strong>la</strong>adición de amonio.4. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido <strong>en</strong>nitróg<strong>en</strong>o y <strong>la</strong> síntesis de compuestosaromáticosAdemás del efecto sobre el crecimi<strong>en</strong>to, <strong>la</strong> disponibilidadde nitróg<strong>en</strong>o también ti<strong>en</strong>e un efecto importantesobre el metabolismo de <strong>la</strong>s levaduras, afectando <strong>la</strong>formación de compuestos volátiles y no volátiles, loscuales son de gran importancia <strong>para</strong> <strong>la</strong>s calidades organolépticasdel vino final (revisado por Alberts y col.1998, Bell y H<strong>en</strong>kschke, 2005). La conc<strong>en</strong>tración decompuestos no volátiles como son el glicerol, el ácidomálico, ácido succínico o ácido alfa-cetoglutárico,puede variar dep<strong>en</strong>di<strong>en</strong>do de <strong>la</strong> cantidad y <strong>la</strong> fu<strong>en</strong>t<strong>en</strong>itrog<strong>en</strong>ada pres<strong>en</strong>te <strong>en</strong> los mostos. Alberts y col.(1996) observaron, por ejemplo, que <strong>la</strong> conc<strong>en</strong>traciónde glicerol es mayor cuando <strong>la</strong> ratio nitróg<strong>en</strong>o amoniacalrespecto al nitróg<strong>en</strong>o orgánico repres<strong>en</strong>tadopor los aminoácidos. En un trabajo de nuestro grupo(Beltran y col. 2005) observamos que <strong>la</strong> conc<strong>en</strong>traciónde glicerol disminuye <strong>en</strong> ferm<strong>en</strong>taciones con limitaciónde nitróg<strong>en</strong>o. Esto demuestra que <strong>la</strong> producciónde glicerol es directam<strong>en</strong>te proporcional a <strong>la</strong> producciónde biomasa.Muchos de los compuestos volátiles, que son los quecontribuirán al aroma final del vino, también están afectadospor el tipo y/o conc<strong>en</strong>tración de nitróg<strong>en</strong>o disponible<strong>para</strong> <strong>la</strong> levadura. Los compuestos mayorm<strong>en</strong>teafectados son el ácido acético, los alcoholes superiores,los ácidos grasos de cad<strong>en</strong>a media y corta y sus ésteresetílicos, y los esteres de acetato. En <strong>la</strong> Figura 8 vemosre<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> acumu<strong>la</strong>ción de algunos compuestosvolátiles y <strong>la</strong> conc<strong>en</strong>tración inicial de nitróg<strong>en</strong>o <strong>en</strong><strong>vinos</strong> producidos a partir de mosto sintético con doscepas Saccharomyces cerevisiae (resultados obt<strong>en</strong>idospor Carrau y col. 2007). De este trabajo se despr<strong>en</strong>deque hay una re<strong>la</strong>ción inversa <strong>en</strong>tre crecimi<strong>en</strong>to (o disponibilidadde nitróg<strong>en</strong>o) y producción de alcoholessuperiores. Mi<strong>en</strong>tras que <strong>la</strong> mayor pres<strong>en</strong>cia de nitróg<strong>en</strong>oparece estimu<strong>la</strong>r una mayor producción de ésteres.Sin embargo, los resultados de este trabajo demuestranque <strong>la</strong> conc<strong>en</strong>tración óptima de nitróg<strong>en</strong>o <strong>para</strong><strong>la</strong> síntesis de ésteres dep<strong>en</strong>de de <strong>la</strong> cepa <strong>en</strong> cuestión.La cepa KU1 producía su máxima conc<strong>en</strong>tración deésteres <strong>para</strong> una conc<strong>en</strong>tración de nitróg<strong>en</strong>o muchom<strong>en</strong>or que <strong>la</strong> cepa M522. Esta última t<strong>en</strong>ía una mayorproducción de estos compuestos.La car<strong>en</strong>cia <strong>en</strong> nitróg<strong>en</strong>o <strong>en</strong> los mostos es g<strong>en</strong>eralm<strong>en</strong>tesubsanada mediante adiciones de sales deamonio. En <strong>la</strong> Tab<strong>la</strong> 1 y Figura 9 observamos cómoafecta también el mom<strong>en</strong>to de <strong>la</strong> suplem<strong>en</strong>tación d<strong>en</strong>itróg<strong>en</strong>o a <strong>la</strong> producción de algunos de estos compuestos.10


El cont<strong>en</strong>ido <strong>en</strong> ácido acético varía según <strong>la</strong> conc<strong>en</strong>traciónde nitróg<strong>en</strong>o <strong>en</strong> el medio, habi<strong>en</strong>do una re<strong>la</strong>cióninversa <strong>en</strong>tre <strong>la</strong> cantidad de ácido acético producido y<strong>la</strong> disponibilidad de nitróg<strong>en</strong>o a conc<strong>en</strong>traciones bajaso moderadas de nitróg<strong>en</strong>o, pero una re<strong>la</strong>ción directaa conc<strong>en</strong>traciones altas (Bely y col. 2003, Hernandez-Orte y col. 2006). De hecho, trabajos de Beltran y col.(2005) y de Vi<strong>la</strong>nova y col. (2007) muestran que a mayordisponibilidad y consumo de nitróg<strong>en</strong>o por parte de<strong>la</strong> levadura, mayor producción de ácido acético (Figura9). Esta mayor producción de acético a mayores conc<strong>en</strong>tracionesde nitróg<strong>en</strong>o puede estar re<strong>la</strong>cionadacon una mayor tasa de crecimi<strong>en</strong>to. El acético es producidopor <strong>la</strong>s levaduras como substrato <strong>para</strong> <strong>la</strong> síntesisde ácidos grasos, un mayor crecimi<strong>en</strong>to podría justificaruna mayor síntesis de acético. Otra posibilidad esque siempre hay una re<strong>la</strong>ción directa <strong>en</strong>tre síntesis deglicerol y de acético. Por tanto, a conc<strong>en</strong>traciones altasde nitróg<strong>en</strong>o se produce más glicerol y, por tanto, másacético. Resultado simi<strong>la</strong>r se observó con <strong>la</strong> producciónde acetaldehído.Los alcoholes superiores pued<strong>en</strong> aportar aromas pesadosy desagradables a los <strong>vinos</strong> si se <strong>en</strong>cu<strong>en</strong>tran <strong>en</strong>Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>conc<strong>en</strong>traciones muy altas (excluy<strong>en</strong>do el 2-f<strong>en</strong>iletanol,que ti<strong>en</strong>e aroma floral). Existe una re<strong>la</strong>ción inversa<strong>en</strong>tre el cont<strong>en</strong>ido <strong>en</strong> alcoholes superiores y <strong>la</strong> conc<strong>en</strong>tracióninicial de nitróg<strong>en</strong>o, excepto por conc<strong>en</strong>tracionesmuy bajas de nitróg<strong>en</strong>o (Beltran y col. 2005,Vi<strong>la</strong>nova y col. 2007, Carrau y col. 2008). Los alcoholessuperiores se pued<strong>en</strong> formar a partir de aminoácidos(via de Ehrlich) o a partir del catabolismo de los azúcares(via anabólica) (Figura 10). Esta última es <strong>la</strong> principalvía de producción de alcoholes superiores durante <strong>la</strong>ferm<strong>en</strong>tación alcohólica. Cuando hay poco nitróg<strong>en</strong>odisponible <strong>en</strong> el medio, hay un aum<strong>en</strong>to <strong>en</strong> <strong>la</strong> síntesisde alpha-cetoácidos a partir de azúcares. Estos alfacetoácidosson los precursores <strong>en</strong> <strong>la</strong> síntesis de aminoácidos,pero <strong>la</strong> escasez de nitróg<strong>en</strong>o alfa-amíniconecesario <strong>en</strong> <strong>la</strong> reacción de transaminación, hace quelos alfa-cetoácidos formados se acab<strong>en</strong> excretando <strong>en</strong>el medio <strong>en</strong> forma de alcoholes superiores, sin llegara formar los aminoácidos necesarios. Sin embargo, <strong>en</strong>un medio con alto cont<strong>en</strong>ido <strong>en</strong> nitróg<strong>en</strong>o, el nitróg<strong>en</strong>odisponible permite <strong>la</strong> biosíntesis de aminoácidos,lo que reduce el exceso de alfa-cetoácidos y por tanto<strong>la</strong> producción de alcoholes superiores (Oshita y col.,1995).Pon<strong>en</strong>ciasFigura 8. Re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> acumu<strong>la</strong>ción dealgunos compuestos volátiles y <strong>la</strong> conc<strong>en</strong>tracióninicial de nitróg<strong>en</strong>o <strong>en</strong> <strong>vinos</strong> producidos a partirde mosto sintético con dos cepas Saccharomycescerevisiae (cepa M522 (•) y cepa KU1 ()).(Carrau y col., 2008)11


01. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido nitrog<strong>en</strong>ado <strong>en</strong> mosto/uva y <strong>la</strong> síntesis de aromas: efecto sobre <strong>la</strong> producción de sulfhídricoTab<strong>la</strong> 1. Re<strong>la</strong>ción <strong>en</strong>tre el mom<strong>en</strong>to de <strong>la</strong> adición de nitróg<strong>en</strong>o y <strong>la</strong> producción de metabolitos secundariospor <strong>la</strong> levadura. Las ferm<strong>en</strong>taciones se realizaron con mosto sintético limitante <strong>en</strong> nitróg<strong>en</strong>o (60 mg/lYAN), al que se añadió 240 mg/l de nitróg<strong>en</strong>o (mezc<strong>la</strong> amonio y aminoácidos) <strong>en</strong> distintos mom<strong>en</strong>tos deferm<strong>en</strong>tación (d<strong>en</strong>sidad 1080 g/l o inicio, 1060, 1040, 1020, 1000 g/l y no suplem<strong>en</strong>tado). (Beltran y col. 2005)Figura 9. Re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> conc<strong>en</strong>tración demetabolitos secundarios (normalizados con elvalor de mayor producción <strong>en</strong> cada caso) y elmom<strong>en</strong>to de <strong>la</strong> suplem<strong>en</strong>tación de nitróg<strong>en</strong>o.Las ferm<strong>en</strong>taciones se realizaron con mostosintético limitante <strong>en</strong> nitróg<strong>en</strong>o (60 mg/l YAN),al que se añadió 240 mg/l de nitróg<strong>en</strong>o (mezc<strong>la</strong>amonio y aminoácidos) <strong>en</strong> distintos mom<strong>en</strong>tosde ferm<strong>en</strong>tación (d<strong>en</strong>sidad 1080 g/l o inicio, 1060,1040, 1020, 1000 g/l y no suplem<strong>en</strong>tado).Figura 10. Ruta de síntesis de alcoholes superioresa partir de aminoácidos (via de Ehrlich) o a partirde los azúcares (via anabólica)GlucosaPiruvatoVíaanabólicaodesíntesisNADHNADCOOHCOOH+HH C NH 2H C OH C OH C OHRNHRRR3 CO 2Aminoácido ‐Aldehido AlcoholsuperiorcetoácidoDesaminación Descarboxi<strong>la</strong>ción ReducciónViadeEhrlich:viacatabólicadeaas 12


Este efecto ha sido observado experim<strong>en</strong>talm<strong>en</strong>tepor distintos trabajos. Carrau y col. (2008) muestranc<strong>la</strong>ram<strong>en</strong>te que <strong>la</strong> cantidad de alcoholes superioresdisminuye con el aum<strong>en</strong>to de nitróg<strong>en</strong>o disponible,aunque se observa el efecto inverso <strong>en</strong> <strong>la</strong> producciónde 1-propanol (Figura 8d, 8e). Estos hechos tambiénfueron observados <strong>en</strong> estudios realizados por nuestrogrupo de investigación (Tab<strong>la</strong> 1, Figura 9). En ellosvimos que <strong>la</strong> síntesis de alcoholes superiores disminuyecuando un mosto limitante <strong>en</strong> nitróg<strong>en</strong>o se suplem<strong>en</strong>tadurante <strong>la</strong> fase expon<strong>en</strong>cial de crecimi<strong>en</strong>tode <strong>la</strong>s levaduras, disminuy<strong>en</strong>do así su periodo de limitación,y lo que lleva también a un mayor consumototal de nitróg<strong>en</strong>o que si se suplem<strong>en</strong>ta <strong>en</strong> fases mástardías de <strong>la</strong> ferm<strong>en</strong>tación. Por otro <strong>la</strong>do, si el nitróg<strong>en</strong>oes adicionado <strong>en</strong> fase estacionaria, después de un<strong>la</strong>rgo periodo de limitación, el cont<strong>en</strong>ido <strong>en</strong> alcoholessuperiores aum<strong>en</strong>ta considerablem<strong>en</strong>te.Los esteres de etilo y de acetato muestran una re<strong>la</strong>ciónmás compleja con <strong>la</strong> disponibilidad de nitróg<strong>en</strong>o,debido a sus distintos oríg<strong>en</strong>es de síntesis, pero,<strong>en</strong> <strong>la</strong> mayoría de los estudios, el acetato de etilo y losesteres de acetato están re<strong>la</strong>cionados positivam<strong>en</strong>tecon <strong>la</strong> conc<strong>en</strong>tración de nitróg<strong>en</strong>o del medio.4.1 Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido <strong>en</strong>nitróg<strong>en</strong>o y <strong>la</strong> síntesis de compuestos<strong>azufrados</strong>Las levaduras vínicas pued<strong>en</strong> formar H2S a partir decompuestos de azufre inorgánicos (sulfato o sulfito), ocompuestos orgánicos <strong>azufrados</strong> (cisteína o glutatión).Normalm<strong>en</strong>te el mosto es defici<strong>en</strong>te <strong>en</strong> compuestosorgánicos <strong>azufrados</strong>, y esto puede llevar a <strong>la</strong> levaduraa sintetizar algunos de estos compuestos a partir defu<strong>en</strong>tes inorgánicas, normalm<strong>en</strong>te abundantes <strong>en</strong> elmosto. En Saccharomyces cerevisiae, <strong>la</strong> producciónde H2S es el producto de <strong>la</strong> ruta de <strong>la</strong> secu<strong>en</strong>cia dereducción del sulfato (SRS), y es un intermediario <strong>en</strong> <strong>la</strong>biosíntesis de los aminoácidos <strong>azufrados</strong> (metionina,y cisteína). (Figura 11).Varios factores ambi<strong>en</strong>tales y nutricionales se han asociadocon <strong>la</strong> producción de H2S <strong>en</strong> condiciones de vinificación:<strong>la</strong> cepa de levadura utilizada, <strong>la</strong> cantidad deazufre pres<strong>en</strong>te <strong>en</strong> los mostos (ya sea <strong>en</strong> forma de sulfitoo de sulfato), <strong>la</strong> car<strong>en</strong>cia de vitaminas, y <strong>la</strong> car<strong>en</strong>ciao disponibilidad de nitróg<strong>en</strong>o. Varios estudios se hanc<strong>en</strong>trado <strong>en</strong> analizar este último punto, el impacto delnitróg<strong>en</strong>o <strong>en</strong> <strong>la</strong> formación de aromas de reducción o<strong>azufrados</strong>.Para <strong>la</strong> biosíntesis de los aminoácidos <strong>azufrados</strong> (cisteínay metionina) se requiere por un <strong>la</strong>do esqueletosde carbono que cont<strong>en</strong>gan nitróg<strong>en</strong>o (O-AH: O-acetilhomoserina, O-AS: O-acetilserina), los cuales derivande un pool intracelu<strong>la</strong>r de nitróg<strong>en</strong>o, y por otro<strong>la</strong>do sulfito, que deriva de <strong>la</strong> ruta de reducción delSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Figura 11. Ruta de síntesis de H2S a través de <strong>la</strong>secu<strong>en</strong>cia de reducción del sulfato (SRS) y <strong>la</strong> rutade biosíntesis de aminoácidos <strong>azufrados</strong> (metioninay cisteína) <strong>en</strong> S. cerevisiae. Ad<strong>en</strong>osyl 5’-fosfosulfato(APS), 3’-fosfoad<strong>en</strong>osil 5’-fosfosulfato (PAPS),O-acetilserina (O-AS), O-acetilhomoserina (O-AH).(Swiegers y Pretorius, 2007)sulfato. En car<strong>en</strong>cia de nitróg<strong>en</strong>o, disminuye el poolde nitróg<strong>en</strong>o intracelu<strong>la</strong>r y por tanto <strong>la</strong> síntesis de losprecursores nitrog<strong>en</strong>ados O-AS y O-AH, con lo que elsulfito producido no podrá utilizarse <strong>para</strong> <strong>la</strong> síntesis deaminoácidos y se excretará <strong>en</strong> forma de ácido sulfhídrico(SH2). Así pues, el ratio de formación del H2S pareceestar regu<strong>la</strong>do por los requerimi<strong>en</strong>tos celu<strong>la</strong>resde aminoácidos <strong>azufrados</strong>, y por el mant<strong>en</strong>imi<strong>en</strong>to delos pools de nitróg<strong>en</strong>o intracelu<strong>la</strong>r.Jiranek y col. (1995) observaron que <strong>en</strong> ferm<strong>en</strong>tacionesvínicas existe una re<strong>la</strong>ción directa <strong>en</strong>tre <strong>la</strong> limitaciónde nitróg<strong>en</strong>o y <strong>la</strong> síntesis de sulfhídrico. Algunosde sus resultados se muestran el <strong>la</strong> Figura 12 y Tab<strong>la</strong>2. En <strong>la</strong> Figura 12 observamos que <strong>la</strong> producción desulfhídrico por parte de <strong>la</strong> levadura aum<strong>en</strong>ta <strong>en</strong> elmom<strong>en</strong>to <strong>en</strong> que el nitróg<strong>en</strong>o del medio se consume(<strong>en</strong> pres<strong>en</strong>cia de sulfito). Este efecto es mucho máspronunciado <strong>en</strong> fase expon<strong>en</strong>cial de crecimi<strong>en</strong>to,cuando <strong>la</strong> levadura ti<strong>en</strong>e más requerimi<strong>en</strong>tos nitrog<strong>en</strong>ados,que <strong>en</strong> fase estacionaria, donde disminuy<strong>en</strong><strong>la</strong>s necesidades nitrog<strong>en</strong>adas, y también <strong>la</strong> producciónde sulfhídrico. Estos autores re<strong>la</strong>cionaron tambiéneste aum<strong>en</strong>to <strong>en</strong> <strong>la</strong> producción con <strong>la</strong> actividadsulfito reductasa, <strong>la</strong> cual es mayor <strong>en</strong> fase expon<strong>en</strong>cialde crecimi<strong>en</strong>to.Por otro <strong>la</strong>do, si un medio limitante <strong>en</strong> nitróg<strong>en</strong>o sesuplem<strong>en</strong>ta con amonio o con <strong>la</strong> mayoría de aminoácidos,<strong>la</strong> producción de sulfhídrico disminuye. Peroeste no es el caso de los aminoácidos <strong>azufrados</strong> (principalm<strong>en</strong>teCisteína, de manera individual o <strong>en</strong> combinacióncon Metionina), <strong>la</strong> adición de los cuales dalugar a un aum<strong>en</strong>to incluso mayor <strong>en</strong> <strong>la</strong> producciónde H2S por parte de <strong>la</strong>s levaduras (Tab<strong>la</strong> 2). Esto es debidoa <strong>la</strong> liberación del sulfhídrico como subproductoPon<strong>en</strong>cias13


01. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido nitrog<strong>en</strong>ado <strong>en</strong> mosto/uva y <strong>la</strong> síntesis de aromas: efecto sobre <strong>la</strong> producción de sulfhídricoFigura 12. Re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> producción de H2Sy el mom<strong>en</strong>to <strong>en</strong> que se produce <strong>la</strong> limitaciónde nitróg<strong>en</strong>o durante <strong>la</strong> ferm<strong>en</strong>tación. Lasferm<strong>en</strong>taciones se realizaron con <strong>la</strong> cepa AWRI77<strong>en</strong> mosto sintético con distintas conc<strong>en</strong>traciones d<strong>en</strong>itróg<strong>en</strong>o inicial: 3.3 (◦), 16.6 () o 24.9 (•) mM.Las flechas indican el mom<strong>en</strong>to <strong>en</strong> que se añadiósulfito (132 μM) a los medios, 1 hora antes delconsumo total de nitróg<strong>en</strong>o. (Jiranek y col. 1995)Tab<strong>la</strong> 2. Producción de H2S por parte de <strong>la</strong>levadura AWRI77, 6 horas después de habersuplem<strong>en</strong>tado un medio limitante <strong>en</strong> nitróg<strong>en</strong>ocon aminoácidos o amonio de manera individual.La suplem<strong>en</strong>tación se realizó una hora antes deque el nitróg<strong>en</strong>o inicial fuera consumido. Los datosestán normalizados al valor obt<strong>en</strong>ido por el cultivosuplem<strong>en</strong>tado con amonio (Jiranek y col. 1995)de <strong>la</strong> degradación / transaminación de estos aminoácidos<strong>para</strong> ser utilizados como fu<strong>en</strong>te de nitróg<strong>en</strong>o.En un trabajo reci<strong>en</strong>te, M<strong>en</strong>des-Ferreira y col. (2009)analizaron <strong>en</strong> varias cepas <strong>la</strong> re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> conc<strong>en</strong>traciónde nitróg<strong>en</strong>o <strong>en</strong> el medio y <strong>la</strong> producción devarios compuestos aromáticos, <strong>en</strong>tre ellos el ácidosulfhídrico. Los resultados obt<strong>en</strong>idos variaban <strong>en</strong>tre<strong>la</strong>s distintas cepas, <strong>la</strong> Figura 13 muestra los resultadosde <strong>la</strong> cepa UCD522, considerada alta productora desulfhídrico. La síntesis de H2S se produce <strong>en</strong> el mom<strong>en</strong>to<strong>en</strong> que se consume el nitróg<strong>en</strong>o del medio,pero curiosam<strong>en</strong>te el medio con una cantidad óptimade nitróg<strong>en</strong>o (267 mg/l), el cual se consume a <strong>la</strong>s48 horas de ferm<strong>en</strong>tación, pres<strong>en</strong>ta valores mayoresque el medio muy limitante <strong>en</strong> nitróg<strong>en</strong>o (66 mg/l).El exceso de nitróg<strong>en</strong>o disminuye <strong>la</strong> producción desulfhídrico, pero este exceso puede provocar por otro<strong>la</strong>do <strong>la</strong> inestabilidad del vino y <strong>la</strong> producción de otroscompuestos indeseados.Pero el ácido sulfhídrico no es el único compuestoazufrado que podemos <strong>en</strong>contrar <strong>en</strong> los <strong>vinos</strong>, a partirde este compuesto se pued<strong>en</strong> formar mercaptanos otioles, algunos de los cuales aportan olores desagradablesa los <strong>vinos</strong>, los temidos caracteres de reducción.H2S es un compuesto altam<strong>en</strong>te reactivo, y seFigura 13. Perfil de ferm<strong>en</strong>tación y de liberaciónde ácido sulfhídrico de <strong>la</strong> cepa UCD522 <strong>en</strong> mediosintético y con distintas conc<strong>en</strong>traciones d<strong>en</strong>itróg<strong>en</strong>o inicial: 66 mg/l (a), 267 mg/l (b) y 402mg/l (c). (M<strong>en</strong>des-Ferreira y col. 2009)14


puede combinar con otros compon<strong>en</strong>tes pres<strong>en</strong>tes<strong>en</strong> el vino <strong>para</strong> formar otros compuestos volátiles<strong>azufrados</strong> (Vermeul<strong>en</strong> y col. 2005). Por ejemplo, <strong>la</strong> reaccióndel sulfhídrico con el etanol o el acetaldehídoda lugar a etil-mercaptano (con olor a cebol<strong>la</strong> o gasnatural), y por otro <strong>la</strong>do <strong>la</strong> formación de polisulfuros(dimetil disulfuro, dimetil trisulfuro y dimetil tetrasulfuro)provi<strong>en</strong>e de <strong>la</strong> oxidación del metantiol, productode <strong>la</strong> degradación de <strong>la</strong> metionina (Swiegers y Pretorius,2007). La levadura puede luego reducir estoscompuestos disulfuro y formar mercaptanos, con <strong>la</strong>sconsecu<strong>en</strong>cias organolépticas que esto supone.Sin embargo, a pesar de <strong>la</strong> ma<strong>la</strong> popu<strong>la</strong>ridad que ti<strong>en</strong><strong>en</strong>los compuestos aromáticos <strong>azufrados</strong>, no todos ellosaportan características negativas a los <strong>vinos</strong>, otros pued<strong>en</strong>llegar a contribuir positivam<strong>en</strong>te, como es el casoSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>de los tioles volátiles 4-mercapto-4-metilp<strong>en</strong>tanona(4MMP), 3-mercaptohexanol (3-MH) y 3-mercaptohexi<strong>la</strong>cetato(3MHA), los cuales forman parte de <strong>la</strong> id<strong>en</strong>tidadvarietal del vino, especialm<strong>en</strong>te <strong>en</strong> los <strong>vinos</strong> de <strong>la</strong>variedad Sauvingon B<strong>la</strong>nc. Estos compuestos <strong>azufrados</strong>varietales, se originan por <strong>la</strong> levadura <strong>en</strong> ferm<strong>en</strong>taciónalcohólica a partir de precursores tiolicos inodoros queconti<strong>en</strong><strong>en</strong> molécu<strong>la</strong>s de cisteína <strong>en</strong> su estructura (Swiegersy col. 2007). Thibon y col. (2008) demostraron que<strong>en</strong> Saccharomyces cerevisiae, <strong>la</strong> represión catabólicapor nitróg<strong>en</strong>o contro<strong>la</strong> también <strong>la</strong> liberación de estostioles volátiles a lo <strong>la</strong>rgo de <strong>la</strong> ferm<strong>en</strong>tación, reprimi<strong>en</strong>doprobablem<strong>en</strong>te <strong>la</strong>s permeasas de aminoácidos quepermit<strong>en</strong> <strong>la</strong> <strong>en</strong>trada de estos precursores a <strong>la</strong> célu<strong>la</strong>,y reprimi<strong>en</strong>do <strong>la</strong> expresión del g<strong>en</strong> IRC7, que codifica<strong>para</strong> el principal <strong>en</strong>zima involucrado <strong>en</strong> <strong>la</strong> bioconversiónde tioles (cistationa-β-liasa).Pon<strong>en</strong>ciasBibliografíaAlberts, E., C. Larsson, G. Lid<strong>en</strong>, C. Nik<strong>la</strong>sson, L.Gustafsson (1996) Influ<strong>en</strong>ce of the nitrog<strong>en</strong> sourceon Saccharomyces cerevisiae anaerobic growth andproduct formation. Appl Environ Microbiol 62: 3187-3195Alberts, E., G. Lidén, C. Larsson, L. Gustafsson(1998) Anaerobic redox ba<strong>la</strong>nce and nitrog<strong>en</strong> metabolismin Saccharomyces cerevisiae. Rec<strong>en</strong>t Res. Dev.Microbiol. 2:253-279.Bell, S.J., P.A. H<strong>en</strong>schke (2005) Implications of nitrog<strong>en</strong>nutrition for grapes, ferm<strong>en</strong>tation and wine. Aust.J. Grape Wine Res. 11:242-295.Beltran, G., B. Esteve-Zarzoso, N. Rozes, A. Mas, y J.M. Guil<strong>la</strong>mon. Influ<strong>en</strong>ce of the timing of nitrog<strong>en</strong>additions during synthetic grape must ferm<strong>en</strong>tationson ferm<strong>en</strong>tation kinetics and nitrog<strong>en</strong>consumption. J Agric. Food Chem, 53: 996-1002,2005.Bely,M., Sab<strong>la</strong>yrolles,J.M., Barre,P. (1990). Automaticdetection of assimi<strong>la</strong>ble nitrog<strong>en</strong> defici<strong>en</strong>cies duringalcoholic ferm<strong>en</strong>tation in o<strong>en</strong>ological conditions.J.Ferm<strong>en</strong>t.Bio<strong>en</strong>g. 70, 246-252.Bely, M., A. Rinaldi, D. Dubourdieu (2003) Influ<strong>en</strong>ceof assimi<strong>la</strong>ble nitrog<strong>en</strong> on vo<strong>la</strong>tile acidity productionby Saccharomyces cerevisiae during high sugar ferm<strong>en</strong>tation.J. Biosci Bio<strong>en</strong>g. 96:507-512Bisson,L.F., Butzke,C.E. (2000). Diagnosis and rectificationsof stuck and sluggish ferm<strong>en</strong>tations. Am.J.Enol.Vitic. 51, 168-177.Carrau, F.M., K. Medina, L. Farina, E. Biodo, P.A.H<strong>en</strong>schke, E. Del<strong>la</strong>cassa (2008) Production of ferm<strong>en</strong>tationaroma compounds by Saccharomycescerevisiae wine yeasts: effects of yeast assimi<strong>la</strong>ble nitrog<strong>en</strong>on two model strains. FEMS Yeast Res. 8:1196-1207.Cooper,T.G. (2002). Transmitting the signal of excessnitrog<strong>en</strong> in Saccharomyces cerevisiae from the Torproteins to the GATA factors: connecting the dots.FEMS Microbiol.Rev. 26, 223-238.Hernández-Orte, P., J.F. Cacho, V. Ferreira (2002)Re<strong>la</strong>tionship betwe<strong>en</strong> varietal aminoacid profile ofgrapes and wine aromatic composition. Experimetnswith model solutions and chemometric study. J. Agric.Food Chem. 50: 2891-2899.Jiranek V, Langridge P y H<strong>en</strong>schke PA (1995a) Regu<strong>la</strong>tionof hydrog<strong>en</strong> sulfide liberation in wine-producingSaccharomyces cerevisiae strains by assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong>. Appl Environ Microbiol 61: 461–467.M<strong>en</strong>des-Ferreira,A., M<strong>en</strong>des-Faia,A., Leao,C.(2004). Growth and ferm<strong>en</strong>tation patterns of Saccharomycescerevisiae under differ<strong>en</strong>t ammonium conc<strong>en</strong>trationsand its implications in winemaking industry.J.Appl.Microbiol. 97, 540-545.15


01. Re<strong>la</strong>ción <strong>en</strong>tre el cont<strong>en</strong>ido nitrog<strong>en</strong>ado <strong>en</strong> mosto/uva y <strong>la</strong> síntesis de aromas: efecto sobre <strong>la</strong> producción de sulfhídricoM<strong>en</strong>des-Ferreira, A., C. Barbosa, V. Falcó, C. Leao,A. M<strong>en</strong>des-Faia (2009) The production of hydrog<strong>en</strong>sulphide and other aroma compounds by wine strainsof Saccharomyces cerevisiae in synthetic media withdiffer<strong>en</strong>t nitrog<strong>en</strong> conc<strong>en</strong>trations. J. Ind. Microbiol.Biotechnol. DOI 10.10007/s10295-009-0527-xOshita, K., M. Kubota, M. Uchida, M. Ono (1995)C<strong>la</strong>rification of the re<strong>la</strong>tionship betwe<strong>en</strong> fusel alcoholformation and amino acid assimi<strong>la</strong>tion by brewing fuse<strong>la</strong>lcohol formation and amino acid assimi<strong>la</strong>tion bybrewing yeast using 13C-<strong>la</strong>beled amino acid. Proceedingsof the European Brewing Conv<strong>en</strong>tion. Bruxelles,387-394.Swiegers J. H. y I. S. Pretorius (2007) Modu<strong>la</strong>tion ofvo<strong>la</strong>tile sulfur compounds by wine yeast Appl MicrobiolBiotechnol 74:954–960Thail<strong>la</strong>ndier, P., Ramon-Portugal, F., Fuster, A. yStrehaiano P. (2007) Effect of ammonium conc<strong>en</strong>trationon alcoholic ferm<strong>en</strong>tation kinetics by wineyeasts for high sugar cont<strong>en</strong>t. Food Microbiology 24:95-100.Thibon, C., P. Marullo, O. C<strong>la</strong>isse, C. Cullin, D. Dubourdieu,T. Tominaga (2008) Nitrog<strong>en</strong> catabolicrepression controls the release of vo<strong>la</strong>tile thiols bySaccharomyces cerevisiae wine ferm<strong>en</strong>tation. FEMSYeast Res. 1-11.Vare<strong>la</strong> C, Pizarro F, Agosin E (2004) Biomass cont<strong>en</strong>tgoverns ferm<strong>en</strong>tation rate in nitrog<strong>en</strong>-defici<strong>en</strong>t winemusts. Appl Env Microbiol 70:3392–3400.Vermeul<strong>en</strong>, C., L. Gijs, S. Collin (2005) S<strong>en</strong>sorial contributionand formation pathways of thiols in foods: areview. Food Rev. Int. 21:69-137.Vi<strong>la</strong>nova, M., M. Ugliano, C. Vare<strong>la</strong>, T. Siebert, I.S.Pretorius, P.A. H<strong>en</strong>schke (2007) Assimi<strong>la</strong>ble nitrog<strong>en</strong>utilisation and production of vo<strong>la</strong>tile and on-vo<strong>la</strong>tilecompounds in chemically defined medium bySaccharomyces cerevisiae wine yeasts. Appl. Microbiol.Biotechnol. 77:145-157.16


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Pon<strong>en</strong>cias17


02. Los nuevos retos<strong>en</strong> microbiología delvino.Levaduras noproductoras de SH 2Isak S. PretoriusThe Australian Wine Research Institute, POBox 197, Gl<strong>en</strong> Osmond, Ade<strong>la</strong>ide, SA 5064,AustraliaCont<strong>en</strong>ido19 Resum<strong>en</strong>19 1. Introducción20 2. Control de <strong>la</strong> dinámica de <strong>la</strong> ferm<strong>en</strong>taciónde <strong>la</strong> levadura <strong>para</strong> mejorar <strong>la</strong> calidad del vino21 3. Optimización de <strong>la</strong> ferm<strong>en</strong>tación22 4. Optimización de <strong>la</strong> calidad del vino: evitar <strong>la</strong>producción de sabores y aromas indeseables23 5. Optimización de <strong>la</strong> calidad del vino: mejoradel aroma deseable, el sabor y el color24 6. Aum<strong>en</strong>to de <strong>la</strong>s opciones de los vinicultoresmediante el desarrollo de cepas de levadurasviníco<strong>la</strong>s mejoradas y novedosas25 7. Conclusiones y previsiones futuras25 8. Agradecimi<strong>en</strong>tos25 9. Lecturas complem<strong>en</strong>tarias


Professor I.S. (Sakkie) PretoriusManaging DirectorThe Australian Wine Research Institute Ltd, PO Box197, Gl<strong>en</strong> Osmond, Ade<strong>la</strong>ide, SA 5064, AustraliaTel.: +61-8-83036610; Fax: +61-8-83036601E-mail: Sakkie.Pretorius@awri.com.auSakkie Pretorius se lic<strong>en</strong>ció <strong>en</strong> <strong>la</strong> University of theOrange Free State (Sudáfrica) y obtuvo su doctorado<strong>en</strong> g<strong>en</strong>ética molecu<strong>la</strong>r de levaduras , bajo <strong>la</strong> direccióndel Profesor Julius Marmur <strong>en</strong> el Albert EinsteinCollege of Medicine de New York <strong>en</strong> 1986. En <strong>la</strong> actualidades director ger<strong>en</strong>te del Australian Wine ResearchInstitute, localizado <strong>en</strong> Ade<strong>la</strong>ida. Es ademásprofesor asociado de <strong>la</strong> Universidad de Ade<strong>la</strong>idaSus investigaciones están c<strong>en</strong>tradas <strong>en</strong> <strong>la</strong> microbiologíay biotecnología del vino. Ha supervisado a 31estudiantes de Doctorado y 56 estudiantes de Master<strong>en</strong> Ci<strong>en</strong>cias. Ha publicado más de 200 artículosde investigación y capítulos de libros, impartido másde 500 lecciones magistrales y confer<strong>en</strong>cias y es autorde 6 pat<strong>en</strong>tes.Defi<strong>en</strong>de como principio que <strong>la</strong> investigación delvino debe perseguir <strong>en</strong> primer lugar el conocimi<strong>en</strong>to,pero también responder a <strong>la</strong>s necesidades deproductores y consumidores, tanto <strong>en</strong> <strong>la</strong> seleccióndel tema de investigación como <strong>en</strong> el diseño experim<strong>en</strong>tal.Cree que <strong>la</strong> investigación inspirada <strong>en</strong> <strong>la</strong>búsqueda de conocimi<strong>en</strong>to de los principios fundam<strong>en</strong>talesy <strong>en</strong> <strong>la</strong>s consideraciones de una aplicaciónfutura es <strong>la</strong> más poderosa dinamo del progresotecnológico y que con una mínima inyección de recursosobti<strong>en</strong>e una sustancial calidad mejorada delproducto, b<strong>en</strong>eficios <strong>en</strong> <strong>la</strong> salud del consumidor yescaso impacto ambi<strong>en</strong>tal.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Resum<strong>en</strong>Un mundo sin levaduras, esos humildes hongos unicelu<strong>la</strong>resque nos ayudan a confeccionar alim<strong>en</strong>tos ybebidas, también nos negaría <strong>la</strong> capacidad de haceravanzar <strong>la</strong>s fronteras de <strong>la</strong> ci<strong>en</strong>cia y de <strong>la</strong> tecnología.La mayor parte de todo el abanico de funciones desempeñadaspor <strong>la</strong>s levaduras es realizada por una so<strong>la</strong>especie, <strong>la</strong> Saccharomyces cerevisiae. De todas sus funciones,esta levadura es bi<strong>en</strong> conocida por su capacidad<strong>para</strong> impulsar <strong>la</strong> transformación del mosto <strong>en</strong>vino. Si bi<strong>en</strong> <strong>la</strong> Saccharomyces cerevisiae es conocidacomo <strong>la</strong> levadura vinica, no se pued<strong>en</strong> considerar todassus cepas iguales, dadas sus difer<strong>en</strong>cias <strong>en</strong> el desarrollode <strong>la</strong> ferm<strong>en</strong>tación y atributos organolépticos.En <strong>la</strong> <strong>en</strong>ología moderna, donde es es<strong>en</strong>cial disponerde ferm<strong>en</strong>taciones rápidas y fiables <strong>para</strong> producir <strong>vinos</strong>estables <strong>en</strong> el tiempo y con estilo predeterminadoy una calidad predecible, se prefiere <strong>la</strong> inocu<strong>la</strong>ción<strong>en</strong> el mosto de cepas seleccionadas de Saccharomycescerevisiae. Actualm<strong>en</strong>te seguimos profundizando<strong>en</strong> el conocimi<strong>en</strong>to de <strong>la</strong>s interacciones asociadas conel vino que se produc<strong>en</strong> <strong>en</strong>tre nutri<strong>en</strong>tes, precursoresde sabores derivados de <strong>la</strong> uva, condiciones de <strong>la</strong>ferm<strong>en</strong>tación y cepas específicas de levaduras. El pres<strong>en</strong>tedocum<strong>en</strong>to aborda cómo los <strong>en</strong>ologos pued<strong>en</strong>gestionar correctam<strong>en</strong>te <strong>la</strong> ferm<strong>en</strong>tación a través de<strong>la</strong> dinámica de <strong>la</strong>s levaduras <strong>en</strong> los mostos con el finde optimizar su r<strong>en</strong>dimi<strong>en</strong>to y evitar el desarrollo desabores y aromas indeseables, y sacar partido de cepasespecializadas de levaduras de nuevo desarrolloy de <strong>la</strong>s estrategias de inocu<strong>la</strong>ción <strong>para</strong> mejorar <strong>la</strong> g<strong>en</strong>eraciónde sabores.1. IntroducciónImagínese, si puede, un mundo sin levaduras. Imagíneseque se <strong>en</strong>cu<strong>en</strong>tra <strong>en</strong>tre <strong>la</strong>s muchas personasque asum<strong>en</strong> <strong>la</strong> comida y <strong>la</strong> bebida que hay <strong>en</strong> susmesas sin preguntarse cómo ha llegado hasta allí, tansana y rica. Imagínese un mundo sin nada <strong>para</strong> subir<strong>la</strong> masa al cocer el pan, sin nada con lo que hacercerveza, vino o bebidas de alta graduación. Imagínesetambién un mundo <strong>en</strong> el que nuestra capacidad<strong>para</strong> hacer avanzar <strong>la</strong>s fronteras de <strong>la</strong> ci<strong>en</strong>cia y de <strong>la</strong>tecnología <strong>en</strong> varios fr<strong>en</strong>tes de manera sana y re<strong>la</strong>tivam<strong>en</strong>tebarata estuviera muy limitada. Y por últimoimagínese un mundo con muy pocas alternativas con<strong>la</strong>s que convertir los residuos agríco<strong>la</strong>s ricos <strong>en</strong> azúcar<strong>en</strong> bioetanol <strong>para</strong> el uso como fu<strong>en</strong>tes de <strong>en</strong>ergía r<strong>en</strong>ovables.Si puede imaginarse todo eso, estará vi<strong>en</strong>doun mundo <strong>en</strong> el que nuestro avance tecnológicoy nuestro patrón de utilización de <strong>en</strong>ergía, nuestragastronomía, jovialidad y bu<strong>en</strong> estilo de vida se veríanafectados considerablem<strong>en</strong>te.Lo que necesitamos y explotamos <strong>para</strong>r evitar talmundo inimaginable es un humilde hongo unicelu<strong>la</strong>rque durante mil<strong>en</strong>ios nos ha ayudado a confeccionarPon<strong>en</strong>cias19


02. Los nuevos retos <strong>en</strong> microbiología del vino. Levaduras no productoras de SH 2alim<strong>en</strong>tos y bebidas, y que <strong>en</strong> los últimos tiempos hasido moldeado por selección artificial <strong>para</strong> realizar unamás vasta, si cabe, variedad de funciones — primerocomo ag<strong>en</strong>te de ferm<strong>en</strong>tación vital <strong>en</strong> panificadoras,fábricas de cerveza, bodegas de vino y destilerías y,<strong>en</strong> los tiempos más reci<strong>en</strong>tes, como herrami<strong>en</strong>taci<strong>en</strong>tífica <strong>en</strong> los <strong>la</strong>boratorios de investigación y comominifábricas <strong>para</strong> <strong>la</strong> producción de productos biotecnológicosde “bajo volum<strong>en</strong> y gran valor” tales como<strong>en</strong>zimas, productos químicos, proteínas terapéuticasy otros productos farmacéuticos importantes comercialm<strong>en</strong>te.Lo que es aún más increíble es que <strong>la</strong> mayoríade esta gama de diversas funciones es realizadapor una única especie de levadura, <strong>la</strong> Saccharomycescerevisiae. No obstante, de todas estas funciones yproductos, esta extraordinaria levadura es probablem<strong>en</strong>temejor conocida por su capacidad <strong>para</strong> transformar<strong>la</strong> dulce, azucarada y poco sabrosa uva <strong>en</strong> elproducto distintivo y rico <strong>en</strong> sabor que conocemoscomo vino.Los términos levadura y ferm<strong>en</strong>tación provi<strong>en</strong><strong>en</strong> etimológicam<strong>en</strong>tede pa<strong>la</strong>bras que se refier<strong>en</strong> al efectode “hervir” o “burbujear” producido cuando el azúcarse convierte bioquímicam<strong>en</strong>te <strong>en</strong> alcohol etílico ydióxido de carbono, pero <strong>la</strong> ferm<strong>en</strong>tación producidapor <strong>la</strong>s levaduras es mucho más que eso. De hecho,es <strong>la</strong> responsable de <strong>la</strong> mayoría de los cambios asociadoscon <strong>la</strong> biotransformación del mosto <strong>en</strong> vino – e<strong>la</strong>roma, el sabor, <strong>la</strong> s<strong>en</strong>sación <strong>en</strong> el pa<strong>la</strong>dar, el color y <strong>la</strong>complejidad química son producidos por <strong>la</strong> levaduraconforme diversifica y amplía su mundo con los productosde su metabolismo.Tradicionalm<strong>en</strong>te el vino se e<strong>la</strong>boraba con <strong>la</strong>s de levadurasambi<strong>en</strong>tales que realizaban una ferm<strong>en</strong>taciónespontánea; <strong>la</strong> inocu<strong>la</strong>ción deliberada de cultivos delevaduras puras es una técnica re<strong>la</strong>tivam<strong>en</strong>te reci<strong>en</strong>te.En <strong>la</strong> ferm<strong>en</strong>tación espontánea, existe una sucesiónde levaduras indíg<strong>en</strong>as provced<strong>en</strong>tes del viñedo y de<strong>la</strong> bodega, pero <strong>la</strong>s etapas finales están dominadas demanera invariable por cepas de Saccharomyces cerevisiaetolerantes al alcohol. Hace mucho tiempo estaimportante especie conocida universalm<strong>en</strong>te como<strong>la</strong> levadura del vino, evolucionó su capacidad <strong>para</strong> fabricar,acumu<strong>la</strong>r, tolerar y, bajo ciertas condiciones decrecimi<strong>en</strong>to, incluso consumir alcohol, mi<strong>en</strong>tras quesimultáneam<strong>en</strong>te produce metabolitos que mejoranel sabor y el aroma, tan importantes <strong>en</strong> nuestra apreciacións<strong>en</strong>sorial del vino. No obstante no todos losmiembros de <strong>la</strong> “tribu” Saccharomyces cerevisiae pued<strong>en</strong>considerarse “iguales”, dado que exist<strong>en</strong> difer<strong>en</strong>cias<strong>en</strong> su robustez, r<strong>en</strong>dimi<strong>en</strong>to de <strong>la</strong> ferm<strong>en</strong>tación y<strong>en</strong> los atributos s<strong>en</strong>soriales que introduc<strong>en</strong> <strong>en</strong> el vinoque <strong>la</strong>s hac<strong>en</strong> únicas.En <strong>la</strong> vinicultura moderna, donde es es<strong>en</strong>cial disponerde ferm<strong>en</strong>taciones rápidas y fiables <strong>para</strong> producirhomogéneam<strong>en</strong>te vino según unas especificacionesdefinibles de sabor, unos estilos predeterminados yuna calidad predecible, se prefiere <strong>la</strong> inocu<strong>la</strong>ción decepas seleccionadas de Saccharomyces cerevisiae <strong>en</strong>el mosto. Las funciones principales de estas cepasseleccionadas son establecer un dominio numéricoy metabólico <strong>en</strong> <strong>la</strong> fase temprana de <strong>la</strong> ferm<strong>en</strong>tacióndel vino y catalizar <strong>la</strong> conversión completa y efici<strong>en</strong>tede los compon<strong>en</strong>tes de <strong>la</strong> uva a alcohol, dióxido decarbono y metabolitos que mejoran su sabor y aromasin desarrol<strong>la</strong>r sabores y aromas indeseables.La elección de <strong>la</strong> cepa de levadura a inocu<strong>la</strong>r <strong>en</strong> el caldoy <strong>la</strong> gestión eficaz de <strong>la</strong>s interacciones <strong>en</strong>tre <strong>la</strong> levadura,el mosto y <strong>la</strong>s condiciones de ferm<strong>en</strong>tación sonfactores importantes que determinan <strong>la</strong> duración de<strong>la</strong> ferm<strong>en</strong>tación y <strong>la</strong> composición química y <strong>la</strong>s propiedadesorganolépticas de un vino. En los apartadossigui<strong>en</strong>tes se aborda brevem<strong>en</strong>te cómo los <strong>en</strong>ólogospued<strong>en</strong> contro<strong>la</strong>r <strong>la</strong> dinámica de <strong>la</strong> levadura <strong>en</strong> los caldos<strong>para</strong> optimizar el desempeño de <strong>la</strong> ferm<strong>en</strong>tacióny por tanto evitar el desarrollo de muchos sabores yaromas indeseables y cómo pued<strong>en</strong> aprovecharse decepas especializadas de reci<strong>en</strong>te desarrol<strong>la</strong>do <strong>para</strong>gestionar correctam<strong>en</strong>te <strong>la</strong> ferm<strong>en</strong>tación del vino.2. Control de <strong>la</strong> dinámica de <strong>la</strong>ferm<strong>en</strong>tación de <strong>la</strong> levadura <strong>para</strong> mejorar<strong>la</strong> calidad del vinoA difer<strong>en</strong>cia de <strong>la</strong>s prácticas microbiológicas <strong>en</strong> otrossectores de <strong>la</strong> industria agroalim<strong>en</strong>taria, <strong>en</strong> <strong>en</strong>ologíalos microorganismos asociados con <strong>la</strong>s uvas, otrasmaterias primas y <strong>la</strong> maquinaria de procesami<strong>en</strong>topued<strong>en</strong> <strong>en</strong>trar <strong>en</strong> el proceso de ferm<strong>en</strong>tación e influir<strong>en</strong> su eficacia y <strong>en</strong> <strong>la</strong> calidad del producto. Las uvasalbergan una gran variedad de levaduras y bacteriasepifíticas y, dep<strong>en</strong>di<strong>en</strong>do de <strong>la</strong> adición de sulfitos,<strong>la</strong> temperatura de <strong>la</strong> uva, el tiempo empleado <strong>en</strong> eltransporte a <strong>la</strong> bodega, el estado higiénico de <strong>la</strong>s maquinariade procesami<strong>en</strong>to de <strong>la</strong> uvas y los procedimi<strong>en</strong>tosde premaceración, pr<strong>en</strong>sado y c<strong>la</strong>rificación,así será <strong>la</strong> proporción de levaduras que sobreviv<strong>en</strong> <strong>en</strong>el zumo o mosto. Estas levaduras pued<strong>en</strong> proliferar <strong>en</strong>el zumo o mosto junto con los microorganismos asociadosal equipo de procesami<strong>en</strong>to dep<strong>en</strong>di<strong>en</strong>do de<strong>la</strong>s condiciones fisicoquímicas y de nutri<strong>en</strong>tes.Las etapas tempranas de <strong>la</strong> ferm<strong>en</strong>tación son dominadashabitualm<strong>en</strong>te por especies poco ferm<strong>en</strong>tativascomo <strong>la</strong> Hans<strong>en</strong>iaspora uvarum (anamorfo de Kloeckeraapicu<strong>la</strong>te), debido a su gran tamaño pob<strong>la</strong>cionalinicial. Con una preval<strong>en</strong>cia numéricam<strong>en</strong>te inferior aestas levaduras exist<strong>en</strong> especies de Candida, Cryptococcus,Debaryomyces, Dekkera (anamorfo de Brettanomyces),Issatch<strong>en</strong>kia, Kluyveromyces, Metschnikowia,Pichia, Rhodotoru<strong>la</strong>, Saccharomycodes, SchizoSaccharomyces,Toru<strong>la</strong>spora y ZygoSaccharomyces. Algunasde <strong>la</strong>s levaduras mejor adaptadas no pert<strong>en</strong>eci<strong>en</strong>tesal género Saccharomyces ti<strong>en</strong>d<strong>en</strong> a reemp<strong>la</strong>zar a <strong>la</strong>sespecies débilm<strong>en</strong>te ferm<strong>en</strong>tativas, pero finalm<strong>en</strong>te20


son también reemp<strong>la</strong>zadas por <strong>la</strong>s Saccharomyces, yaque éstas últimas están mejor adaptadas al elevadocont<strong>en</strong>ido etílico y <strong>la</strong>s condiciones anaeróbicas delmosto o zumo <strong>en</strong> ferm<strong>en</strong>tación. Saccharomyces cerevisiaees habitualm<strong>en</strong>te <strong>la</strong> levadura dominante <strong>en</strong> <strong>la</strong>mayoría de <strong>la</strong>s regiones viníco<strong>la</strong>s del mundo, si bi<strong>en</strong><strong>la</strong> especie criotolerante Saccharomyces bayanus es <strong>la</strong>dominante más frecu<strong>en</strong>te <strong>en</strong> <strong>la</strong>s regiones más frías.Saccharomyces <strong>para</strong>doxus se <strong>en</strong>cu<strong>en</strong>tra <strong>en</strong> varias regionesfrías de Europa del Este.Los tratami<strong>en</strong>tos de c<strong>la</strong>rificación y <strong>la</strong> aplicación de sulfitoshabitualm<strong>en</strong>te reduc<strong>en</strong> el número de levadurasindíg<strong>en</strong>as y, si inocu<strong>la</strong> un cultivo vigoroso activador,éste dominará a <strong>la</strong> microflora indíg<strong>en</strong>a. Sin perjuiciode lo anterior, el uso subóptimo de sulfitos antes de <strong>la</strong>ferm<strong>en</strong>tación puede, por ejemplo, afectar a <strong>la</strong> eficaciade <strong>la</strong> ferm<strong>en</strong>tación y a <strong>la</strong> calidad del vino. Si <strong>la</strong>s condicioneslo permit<strong>en</strong>, <strong>la</strong> Hans<strong>en</strong>iaspora uvarum indíg<strong>en</strong>apuede desarrol<strong>la</strong>rse rápidam<strong>en</strong>te y eliminar nutri<strong>en</strong>tesimportantes del mosto. Por ejemplo, <strong>la</strong> tiamina, <strong>la</strong> cuales es<strong>en</strong>cial <strong>para</strong> que <strong>la</strong>s Saccharomyces produzcanetanol eficazm<strong>en</strong>te, puede consumirse rápidam<strong>en</strong>te.La Hans<strong>en</strong>iaspora uvarum puede también g<strong>en</strong>erarsabores y aromas no deseables, especialm<strong>en</strong>te ácidoacético y acetato de etilo. Los <strong>la</strong>ctobacilos tambiénse pued<strong>en</strong> multiplicar rápidam<strong>en</strong>te y producir ácidoacético junto con otros compuestos antagonistas de<strong>la</strong>s levaduras, de modo que ral<strong>en</strong>tizan o <strong>para</strong>n <strong>la</strong> ferm<strong>en</strong>tación.Con el reci<strong>en</strong>te descubrimi<strong>en</strong>to de que<strong>la</strong> Dekkera bruxell<strong>en</strong>sis puede estar pres<strong>en</strong>te <strong>en</strong> <strong>la</strong>suvas, al m<strong>en</strong>os <strong>en</strong> <strong>la</strong> región de Burdeos, <strong>la</strong> <strong>en</strong>trada deesta levadura contaminante <strong>en</strong> <strong>la</strong> corri<strong>en</strong>te del vinoahora es más obvia. Además, el uso de sulfitos apar<strong>en</strong>tem<strong>en</strong>t<strong>en</strong>o afecta a su establecimi<strong>en</strong>to durante <strong>la</strong>ferm<strong>en</strong>tación dado que posee una tolerancia re<strong>la</strong>tivam<strong>en</strong>tealta a este ag<strong>en</strong>te antimicrobiano.A pesar de que los caldos <strong>en</strong> ferm<strong>en</strong>tación espontáneos(levaduras “naturales”, “salvajes” o “silvestres”) habitualm<strong>en</strong>tetardan más <strong>en</strong> ferm<strong>en</strong>tar que los inocu<strong>la</strong>dos(y habitualm<strong>en</strong>te más de lo que <strong>la</strong> mayoría de losvinicultores están dispuestos a aceptar) y a pesar deque el resultado de un mosto <strong>en</strong> ferm<strong>en</strong>tación espontáneano siempre es predecible, no existe cons<strong>en</strong>so<strong>en</strong>tre los vinicultores del mundo sobre si es mejor usarcultivos iniciales o dejar <strong>la</strong> ferm<strong>en</strong>tación espontánea.En un extremo se <strong>en</strong>cu<strong>en</strong>tran aquellos que continúanutilizando levaduras indíg<strong>en</strong>as exclusivam<strong>en</strong>te, dadoque cre<strong>en</strong> que <strong>la</strong> contribución única de diversas especiesde levaduras confiere una complejidad al vino novista <strong>en</strong> ferm<strong>en</strong>taciones inocu<strong>la</strong>das o guiadas. Otrosprefier<strong>en</strong> empezar con levaduras nativas y posteriorm<strong>en</strong>teinocu<strong>la</strong>r un cultivo activador. Otros inician <strong>la</strong>ferm<strong>en</strong>tación con activadores pero a un nivel de inocu<strong>la</strong>cióninferior al recom<strong>en</strong>dado. En <strong>la</strong> producciónviníco<strong>la</strong> a gran esca<strong>la</strong>, donde es es<strong>en</strong>cial disponer deferm<strong>en</strong>taciones rápidas y fiables <strong>para</strong> conseguir unsabor homogéneo y una calidad predecible, se prefiereutilizar cultivos seleccionados de levaduras purasSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>con una capacidad, un conteo de célu<strong>la</strong>s viables y unavitalidad conocidos. Con el fin de obt<strong>en</strong>er los b<strong>en</strong>eficiosde <strong>la</strong> ferm<strong>en</strong>tación espontánea y guiada, cadavez más vinicultores están co-inocu<strong>la</strong>ndo dos o máscepas difer<strong>en</strong>tes pero compatibles de Saccharomycescerevisiae, o mezc<strong>la</strong>s de cultivos compuestas de unacepa de Saccharomyces cerevisiae y otra especie deSaccharomyces o no pert<strong>en</strong>eci<strong>en</strong>te a este género. Sedebe optimizar <strong>la</strong> proporción de <strong>la</strong>s cepas o especiesseleccionadas <strong>en</strong> los cultivos de siembra con el fin deobt<strong>en</strong>er los mejores resultados previstos.3. Optimización de <strong>la</strong> ferm<strong>en</strong>taciónCuando se pre<strong>para</strong> el mosto a partir de uvas sanas ymaduras, con una pob<strong>la</strong>ción baja de microorganismoindíg<strong>en</strong>as y un bu<strong>en</strong> equilibro de nutri<strong>en</strong>tes, si a estemosto se inocu<strong>la</strong> un cultivo de levaduras vigoroso,<strong>la</strong> ferm<strong>en</strong>tación empieza y finaliza rápidam<strong>en</strong>te, dejandouna pequeña cantidad de azúcar residual. Bajoestas condiciones ideales, <strong>la</strong>s ferm<strong>en</strong>taciones subóptimasson re<strong>la</strong>tivam<strong>en</strong>te infrecu<strong>en</strong>tes. No obstante,cuando se produc<strong>en</strong>, es necesario recuperar recursosconsiderables y pued<strong>en</strong> conducir a <strong>la</strong> pérdida de <strong>la</strong>calidad del vino por un deterioro oxidativo, microbiológicoo autolítico de <strong>la</strong>s levaduras.Se pued<strong>en</strong> producir ferm<strong>en</strong>taciones subóptimas <strong>en</strong>cualquier tipo de vino o producto <strong>en</strong> ferm<strong>en</strong>tación,y éstas pued<strong>en</strong> ocurrir incluso cuando se utilizan <strong>la</strong>scepas más robustas fisiológicam<strong>en</strong>te hab<strong>la</strong>ndo. Sibi<strong>en</strong> <strong>la</strong>s levaduras son <strong>en</strong>ormem<strong>en</strong>te adaptativas a<strong>la</strong>mbi<strong>en</strong>te del mosto, <strong>la</strong>s condiciones fisicoquímicasy nutritivas no siempre son favorables <strong>para</strong> una actividadfisiológica vigorosa y, a m<strong>en</strong>os que <strong>la</strong> levadurase pueda adaptar a condiciones cambiantes durante<strong>la</strong> ferm<strong>en</strong>tación, una reducción del estado fisiológicopuede conducir a una ferm<strong>en</strong>tación incompleta.Habitualm<strong>en</strong>te se observan cuatro tipos de ferm<strong>en</strong>tacionessubóptimas: (i) inicio con retraso; (ii) ferm<strong>en</strong>tacióncontinuam<strong>en</strong>te l<strong>en</strong>ta; (iii) ferm<strong>en</strong>tación ral<strong>en</strong>tizada;y (iv) ferm<strong>en</strong>tación incompleta o interrumpida. Lasferm<strong>en</strong>taciones que comi<strong>en</strong>zan después de un tiempo,pero que a m<strong>en</strong>udo finalizan por el<strong>la</strong>s mismas demanera normal, son habitualm<strong>en</strong>te el resultado de <strong>la</strong>utilización de un cultivo activador con una calidad defici<strong>en</strong>te.Las ferm<strong>en</strong>taciones que constantem<strong>en</strong>te sonl<strong>en</strong>tas, que pued<strong>en</strong> llegar a su finalización, habitualm<strong>en</strong>teson el resultado de una cantidad reducida d<strong>en</strong>itróg<strong>en</strong>o asimi<strong>la</strong>ble. Las ferm<strong>en</strong>taciones ral<strong>en</strong>tizadase interrumpidas, sin embargo, parec<strong>en</strong> ser causadaspor varios factores re<strong>la</strong>cionados con <strong>la</strong>s interacciones<strong>en</strong>tre <strong>la</strong> fisiología de <strong>la</strong>s levaduras, el estado de losnutri<strong>en</strong>tes del mosto, <strong>la</strong> pres<strong>en</strong>cia de inhibidores y <strong>la</strong>scondiciones de ferm<strong>en</strong>tación.Conc<strong>en</strong>traciones elevadas de azúcar <strong>en</strong> el mosto, locual vi<strong>en</strong>e determinado principalm<strong>en</strong>te por <strong>la</strong> ma-Pon<strong>en</strong>cias21


02. Los nuevos retos <strong>en</strong> microbiología del vino. Levaduras no productoras de SH 2durez de <strong>la</strong> uva <strong>en</strong> su v<strong>en</strong>dimia, es probablem<strong>en</strong>te <strong>la</strong>causa principal de ferm<strong>en</strong>taciones ral<strong>en</strong>tizadas e interrumpidas,y esto se debe a su vez primordialm<strong>en</strong>te a<strong>la</strong> re<strong>la</strong>ción <strong>en</strong>tre <strong>la</strong> conc<strong>en</strong>tración inicial de azúcar y <strong>la</strong>producción final de etanol; cuanto más azúcar hay <strong>en</strong><strong>la</strong> uva, más alcohol habrá <strong>en</strong> el vino. Este problema semagnifica por <strong>la</strong> t<strong>en</strong>d<strong>en</strong>cia a utilizar uvas muy maduraso demasiado maduras <strong>en</strong> <strong>la</strong>s bodegas. Por tanto,cada vez es más importante elegir cepas de levadurascon alta tolerancia al etanol.El riesgo de que aparezcan problemas de ferm<strong>en</strong>taciónaum<strong>en</strong>ta cuando el mosto ti<strong>en</strong>e un cont<strong>en</strong>idosubóptimo de nutri<strong>en</strong>tes, especialm<strong>en</strong>te de nitróg<strong>en</strong>oasimi<strong>la</strong>ble y vitaminas. Es importante saber queestas últimas se pued<strong>en</strong> perder durante <strong>la</strong> v<strong>en</strong>dimiay el procesami<strong>en</strong>to del mosto. Un elevado índice deazúcar con respecto a otros nutri<strong>en</strong>tes puede provocaruna reducción de <strong>la</strong> cantidad de biomasa y unabajada de <strong>la</strong> velocidad de ferm<strong>en</strong>tación, así como elinicio precoz de <strong>la</strong> inactivación del transporte de azúcar<strong>en</strong> <strong>la</strong>s levaduras.La c<strong>la</strong>rificación del mosto es un factor importante <strong>en</strong><strong>la</strong> ferm<strong>en</strong>tación de <strong>vinos</strong> b<strong>la</strong>ncos debido al profundoefecto que <strong>la</strong> disminución de los sólidos de <strong>la</strong>s uvasti<strong>en</strong>e sobre <strong>la</strong> definición de <strong>la</strong> variedad de <strong>la</strong> uva, sobreel sabor y aroma del vino y sobre <strong>la</strong> aparición dearomas f<strong>en</strong>ólicos indeseables. No obstante, el excesode c<strong>la</strong>rificación elimina lípidos importantes necesarios<strong>para</strong> que <strong>la</strong>s levaduras puedan tolerar el etanol; <strong>en</strong><strong>la</strong> práctica se adquiere una solución de compromisodeterminada por <strong>la</strong> experim<strong>en</strong>tación <strong>para</strong> establecerel nivel de sólidos de <strong>la</strong> uva que favorec<strong>en</strong> una tasasatisfactoria de ferm<strong>en</strong>tación mant<strong>en</strong>i<strong>en</strong>do <strong>la</strong> calidaddel vino <strong>en</strong> un nivel aceptable. La incapacidad de finalizar<strong>la</strong> ferm<strong>en</strong>tación de mostos demasiado c<strong>la</strong>rificados,con una elevada cantidad de azúcar y una ferm<strong>en</strong>taciónanaeróbica, pued<strong>en</strong> evitarse parcialm<strong>en</strong>teintroduci<strong>en</strong>do un paso de aireación breve durante <strong>la</strong>ferm<strong>en</strong>tación. La aireación, unida a <strong>la</strong> adición de nitróg<strong>en</strong>oasimi<strong>la</strong>ble después de que haya finalizado <strong>la</strong>fase de crecimi<strong>en</strong>to de <strong>la</strong>s levaduras, revigoriza considerablem<strong>en</strong>te<strong>la</strong> ferm<strong>en</strong>tación. Este paso de aireaciónno ti<strong>en</strong>e un impacto detectable sobre el sabordel vino e incluso es b<strong>en</strong>eficioso ya que minimiza elriesgo del desarrollo de sabores y aromas indeseablesque podrían originarse a partir de una ferm<strong>en</strong>taciónincompleta.No obstante, cuando <strong>la</strong> ferm<strong>en</strong>tación se fr<strong>en</strong>a debidoa una cantidad elevada de azúcar, el procedimi<strong>en</strong>tode rescate más exitoso dep<strong>en</strong>de de <strong>la</strong> adaptación secu<strong>en</strong>cialde un cultivo fresco de levaduras a los inhibidoresdel vino <strong>en</strong> ferm<strong>en</strong>tación interrumpida. Esteprocedimi<strong>en</strong>to, que comi<strong>en</strong>za pre<strong>para</strong>ndo un cultivoactivador de una levadura altam<strong>en</strong>te tolerante al etanol,implica multiplicar sucesivam<strong>en</strong>te por dos el volum<strong>en</strong>de cultivo, por adición al vino <strong>en</strong> ferm<strong>en</strong>tacióninterrumpida, a <strong>la</strong> vez que se manti<strong>en</strong><strong>en</strong> <strong>la</strong> aireación yel aporte de nutri<strong>en</strong>tes. Después de dos a cuatro ciclosde adaptación al vino <strong>en</strong> ferm<strong>en</strong>tación interrumpida,el cultivo de rescate altam<strong>en</strong>te adaptado puede finalizar<strong>la</strong> ferm<strong>en</strong>tación <strong>en</strong> pres<strong>en</strong>cia de conc<strong>en</strong>tracionesde etanol y de ácidos grasos volátiles normalm<strong>en</strong>teinhibidoras. Los procedimi<strong>en</strong>tos que manti<strong>en</strong><strong>en</strong> <strong>la</strong> levadura<strong>en</strong> susp<strong>en</strong>sión hasta que vuelve a com<strong>en</strong>zar <strong>la</strong>producción de CO2 mejoran más <strong>la</strong> tasa y <strong>la</strong> probabilidadde que se complete <strong>la</strong> ferm<strong>en</strong>tación.4. Optimización de <strong>la</strong> calidad del vino:evitar <strong>la</strong> producción de sabores y aromasindeseablesEs importante gestionar los nutri<strong>en</strong>tes de <strong>la</strong> ferm<strong>en</strong>tacióncon el fin de mant<strong>en</strong>er una tasa de ferm<strong>en</strong>taciónvigorosa, alcanzar un punto final de bajo cont<strong>en</strong>ido deazúcar residual y disminuir <strong>la</strong> producción de sabores yaromas indeseables. Las uvas cultivadas <strong>en</strong> regionescon suelos de bajo cont<strong>en</strong>ido orgánico y pocas lluvias<strong>en</strong> <strong>la</strong> temporada de crecimi<strong>en</strong>to pued<strong>en</strong> cont<strong>en</strong>er unnivel de nutri<strong>en</strong>tes inferior al óptimo, especialm<strong>en</strong>tede nitróg<strong>en</strong>o asimi<strong>la</strong>ble, el cual es necesario <strong>para</strong> elcrecimi<strong>en</strong>to de <strong>la</strong>s levaduras y su función metabólica.Se conoce bi<strong>en</strong> cómo afecta <strong>la</strong> nutrición del nitróg<strong>en</strong>osobre <strong>la</strong> producción de compuestos volátiles deazufre. Durante <strong>la</strong> ferm<strong>en</strong>tación de mostos con pocosnutri<strong>en</strong>tes, <strong>la</strong> cantidad de nitróg<strong>en</strong>o asimi<strong>la</strong>ble bajaprecozm<strong>en</strong>te e induce <strong>la</strong> producción de sulfuro dehidróg<strong>en</strong>o (H 2S) debido a <strong>la</strong> aus<strong>en</strong>cia de compuestosque capt<strong>en</strong> el sulfuro. En muchos casos se puede contro<strong>la</strong>r<strong>la</strong> producción de H 2S mediante <strong>la</strong> adición de salesnitrog<strong>en</strong>adas como el fosfato de diamonio. Otrosestudios sugier<strong>en</strong> que es necesaria una conc<strong>en</strong>traciónde 200 – 250 mg/L de nitróg<strong>en</strong>o asimi<strong>la</strong>ble <strong>para</strong> minimizarel riesgo de producción de H 2S. No obstante,no todas <strong>la</strong>s cepas comerciales respond<strong>en</strong> a <strong>la</strong> mejoradel mosto por <strong>la</strong> adición de fosfato de diamonio, y elfallo <strong>en</strong> <strong>la</strong> respuesta habitualm<strong>en</strong>te indica una defici<strong>en</strong>cia<strong>en</strong> el mosto de una o más vitaminas, de ácidopantoténico, de piridoxina o biotina, los cuales estánimplicados <strong>en</strong> el metabolismo del H 2S. La persist<strong>en</strong>ciade problemas por producción de H 2S, aún con <strong>la</strong>suplem<strong>en</strong>tación de nutri<strong>en</strong>tes, requiere <strong>la</strong> selecciónde una levadura de baja producción de H 2S <strong>en</strong> talesmostos. La aus<strong>en</strong>cia de respuesta sobre el H 2S tambiénpuede v<strong>en</strong>ir originada por <strong>la</strong> pres<strong>en</strong>cia de azufreelem<strong>en</strong>tal residual que no se ha utilizado <strong>en</strong> <strong>la</strong> viñasegún <strong>la</strong>s recom<strong>en</strong>daciones del fabricante o cuando<strong>la</strong> v<strong>en</strong>dimia se ha realizado prematuram<strong>en</strong>te debido acondiciones meteorológicas adversas.El exceso de algunos nutri<strong>en</strong>tes también puede provocar<strong>la</strong> aparición de sabores y aromas indeseables.La utilización excesiva de ácido nicotínico, pres<strong>en</strong>te<strong>en</strong> algunos suplem<strong>en</strong>tos nutritivos, se asocia con <strong>la</strong>producción de ácido acético. La utilización excesivade fosfato de diamonio también puede provocar <strong>la</strong>aparición de sabores indeseables. El fosfato de dia-22


monio estimu<strong>la</strong> <strong>la</strong> producción de ésteres, los cuales<strong>en</strong> cantidades moderadas pued<strong>en</strong> ser b<strong>en</strong>eficiosos,pero cuando <strong>la</strong> conc<strong>en</strong>tración total de ión amonio seacerca al nitróg<strong>en</strong>o máximo que <strong>la</strong> levadura puedeconsumir (aprox. 400 – 500 mg/L de nitróg<strong>en</strong>o asimi<strong>la</strong>ble),<strong>la</strong> producción de acetato de etilo es excesivaprovocando un sabor indeseable debido a este éstervolátil. Como una posible alternativa, exist<strong>en</strong> algunosdatos sobre productos de levaduras inactivadas queal utilizarse cuando se rehidrata <strong>la</strong> levadura seca activapued<strong>en</strong> reducir el riesgo de producción de H 2S. Dadoque el nitróg<strong>en</strong>o asimi<strong>la</strong>ble afecta tanto sobre <strong>la</strong> producciónde sabores indeseables durante <strong>la</strong> ferm<strong>en</strong>tación,es importante medir el nitróg<strong>en</strong>o asimi<strong>la</strong>ble <strong>en</strong>los zumos o mostos antes de <strong>la</strong> ferm<strong>en</strong>tación con elfin de optimizarlo. En los viñedos con historia de problemasde ferm<strong>en</strong>tación, se deb<strong>en</strong> llevar a cabo análisisde nitróg<strong>en</strong>o <strong>en</strong> varias temporadas.A m<strong>en</strong>os que existan condiciones higiénicas defici<strong>en</strong>tes<strong>en</strong> <strong>la</strong> bodega, normalm<strong>en</strong>te no se puede detectar<strong>la</strong> contaminación por “Brettanomyces” durante <strong>la</strong> ferm<strong>en</strong>tación.Sin embargo, cuando <strong>la</strong> Dekkera bruxell<strong>en</strong>sisestá pres<strong>en</strong>te, incluso <strong>en</strong> un número re<strong>la</strong>tivam<strong>en</strong>tebajo, si el inicio o <strong>la</strong> terminación de <strong>la</strong> ferm<strong>en</strong>taciónmaloláctica tarda mucho, el riesgo de crecimi<strong>en</strong>tode <strong>la</strong> D. bruxell<strong>en</strong>sis y <strong>la</strong> producción de etil f<strong>en</strong>oles aum<strong>en</strong>taconsiderablem<strong>en</strong>te. Las condiciones fisicoquímicasy nutritivas exist<strong>en</strong>tes durante <strong>la</strong> ferm<strong>en</strong>taciónmaloláctica son favorables <strong>para</strong> el desarrollo de estalevadura contaminante, y toda condición que perjudiqueel desarrollo de <strong>la</strong> Dekkera bruxell<strong>en</strong>sis tambiénretrasará el desarrollo de bacterias malolácticas. Portanto, <strong>para</strong> contro<strong>la</strong>r esta levadura contaminante esobligatorio mant<strong>en</strong>er su tamaño pob<strong>la</strong>cional <strong>en</strong> unmínimo inmediatam<strong>en</strong>te después de <strong>la</strong> ferm<strong>en</strong>taciónalcohólica y antes de <strong>la</strong> inducción de <strong>la</strong> ferm<strong>en</strong>taciónmaloláctica. Minimizar los nutri<strong>en</strong>tes residuales, especialm<strong>en</strong>tefructosa y nitróg<strong>en</strong>o asimi<strong>la</strong>ble puede serb<strong>en</strong>eficioso <strong>para</strong> este fin, y <strong>la</strong> compatibilidad <strong>en</strong>tre <strong>la</strong>levadura y <strong>la</strong>s bacterias malolácticas utilizadas <strong>para</strong> <strong>la</strong>sferm<strong>en</strong>taciones primaria y secundaria está resultandoser un factor importante <strong>para</strong> el éxito de <strong>la</strong>s ferm<strong>en</strong>tacionesmalolácticas.5. Optimización de <strong>la</strong> calidad del vino:mejora del aroma deseable, el sabor y elcolorDe lo anterior se despr<strong>en</strong>de c<strong>la</strong>ram<strong>en</strong>te que exist<strong>en</strong>muchas herrami<strong>en</strong>tas <strong>para</strong> minimizar el riesgo de desarrol<strong>la</strong>rsabores y aromas indeseables durante <strong>la</strong> ferm<strong>en</strong>tación,pero debemos considerar qué estrategiaspodemos emplear <strong>para</strong> que <strong>la</strong>s ferm<strong>en</strong>taciones proporcion<strong>en</strong>características positivas al vino.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>La rehidratación de <strong>la</strong> levadura con nutri<strong>en</strong>tes de levadurasinactivas puede estimu<strong>la</strong>r <strong>la</strong> producción dearomas afrutados. De manera simi<strong>la</strong>r, niveles moderadosde nitróg<strong>en</strong>o asimi<strong>la</strong>ble, ca. 200 – 350 mg/L, mejorael equilibrio de los ésteres florales con respectoa los alcoholes de fusel, dotando al <strong>vinos</strong> de saboresmás frescos y limpios. El fosfato de diamonio estimu<strong>la</strong><strong>la</strong> producción de ésteres de acetato especialm<strong>en</strong>te,pero también de etil estéres afrutados, e impide<strong>la</strong> producción de alcoholes superiores, los cualesti<strong>en</strong>d<strong>en</strong> a afectar negativam<strong>en</strong>te al aroma del vino.No obstante, se debe t<strong>en</strong>er cuidado de no sobredim<strong>en</strong>sionar<strong>la</strong> adición de nitróg<strong>en</strong>o a partir de fu<strong>en</strong>tescomo el fosfato de diamonio, ya que, como se haindicado anteriorm<strong>en</strong>te, esto puede conducir a unaproducción excesiva de ésteres de acetato. Es más,investigaciones reci<strong>en</strong>tes indican que <strong>la</strong> adición defosfato de diamonio puede reducir <strong>la</strong> respuesta de losprecursores responsables de los aromas a frutas tropicales<strong>en</strong> Sauvignon B<strong>la</strong>nc y otras variedades simi<strong>la</strong>res;ya que se desfavorece <strong>la</strong> hidrólisis de conjugados de <strong>la</strong>cisteína, por lo que disminuye <strong>la</strong> producción de tiolespolifuncionales de cad<strong>en</strong>a <strong>la</strong>rga.Otra herrami<strong>en</strong>ta importante que puede ayudar a losvinicultores a producir <strong>vinos</strong> con perfiles s<strong>en</strong>sorialesespecíficos y según <strong>la</strong>s especificaciones del mercadoes <strong>la</strong> elección de <strong>la</strong> cepa de levadura y <strong>la</strong> estrategiade inocu<strong>la</strong>ción. Por ejemplo, ahora sabemos que <strong>la</strong> levaduradesempeña un papel es<strong>en</strong>cial <strong>en</strong> <strong>la</strong> evoluciónde molécu<strong>la</strong>s responsables del aroma prov<strong>en</strong>i<strong>en</strong>tesde <strong>la</strong> propia levadura y de <strong>la</strong> uva. Las primeras son <strong>la</strong>sgrandes responsables del carácter del vino, e incluy<strong>en</strong>metabolitos volátiles de <strong>la</strong> levadura como ésteres, alcoholessuperiores, ácidos, carbonilos y compuestosde azufre, mi<strong>en</strong>tras que <strong>la</strong>s últimas contribuy<strong>en</strong> a loscaracteres específicos de <strong>la</strong>s variedades. Exist<strong>en</strong> dosc<strong>la</strong>ses importantes de compuestos derivados de <strong>la</strong>uva que son precursores del sabor y el aroma: los conjugadosde <strong>la</strong> cisteína y los conjugados con grupo de<strong>en</strong><strong>la</strong>ce de azúcar (o grupo gluco-). Los conjugados de<strong>la</strong> cisteína, que están pres<strong>en</strong>tes <strong>en</strong> <strong>la</strong> variedad SauvignonB<strong>la</strong>nc y <strong>en</strong> variedades re<strong>la</strong>cionadas, son hidrolizadosdurante <strong>la</strong> ferm<strong>en</strong>tación por <strong>la</strong> acción de <strong>en</strong>zimascarbono-azufre-<strong>la</strong>sas. Esta hidrólisis libera pot<strong>en</strong>testioles volátiles como 4-mercapto-4-metilp<strong>en</strong>tan-2-ona (4MMP) y 3-mercaptohexanol (3MH), los cualesson responsables de aromas a maracuyá, boje, pomeloy grosel<strong>la</strong> negra. Además, el 3MH es esterificadopor una alcohol acetiltransferasa codificada porel g<strong>en</strong> ATF1 <strong>para</strong> producir el más pot<strong>en</strong>te acetato de3-mercaptohexilo (3MHA). En unos reci<strong>en</strong>tes estudiosde co-ferm<strong>en</strong>tación se inocu<strong>la</strong>ron dos cepas de levadurasviníco<strong>la</strong>s <strong>en</strong> zumo de uva Sauvignon B<strong>la</strong>nc. Unacepa hidrolizó el conjugado y <strong>la</strong> otra esterificó el producto,por lo que <strong>la</strong>s dos se complem<strong>en</strong>taban <strong>en</strong>tresí y mejoraban los sabores y aromas de <strong>la</strong> SauvignonB<strong>la</strong>nc.Los glucoconjugados no volátiles de <strong>la</strong>s uvas son especialm<strong>en</strong>teimportantes <strong>para</strong> el desarrollo del aromade los <strong>vinos</strong> a partir de variedades de uvas muy aromáticascomo <strong>la</strong> Muscat y <strong>la</strong> Riesling, y también de al-Pon<strong>en</strong>cias23


02. Los nuevos retos <strong>en</strong> microbiología del vino. Levaduras no productoras de SH 2gunas variedades no aromáticas como <strong>la</strong> Chardonnay,<strong>la</strong> Semillon y <strong>la</strong> Sauvignon B<strong>la</strong>nc. Entre los ejemplos decompuestos derivados de <strong>la</strong> fruta con sabor y aromapot<strong>en</strong>ciales se <strong>en</strong>cu<strong>en</strong>tran los alcoholes monoterp<strong>en</strong>osflorales linalool y geraniol, así como los norisopr<strong>en</strong>oidestales como <strong>la</strong> β-damasc<strong>en</strong>ona. En variedadesno aromáticas, estos sabores y aromas se desarrol<strong>la</strong>ndurante <strong>la</strong> ferm<strong>en</strong>tación, y <strong>la</strong> acidez del vino, <strong>la</strong> cualpermite una hidrólisis química de los precursores novolátiles de aromas l<strong>en</strong>ta, se ha considerando durantemucho tiempo una ruta importante de <strong>la</strong> formaciónde estos compuestos. No obstante, trabajos reci<strong>en</strong>tesdemuestran <strong>la</strong> exist<strong>en</strong>cia de al m<strong>en</strong>os otras cuatrosrutas (<strong>en</strong> <strong>la</strong>s que están implicadas <strong>la</strong>s levaduras). Deestas, <strong>la</strong> hidrólisis de glucoconjugados por glucósidosextracelu<strong>la</strong>res de <strong>la</strong>s levaduras parece ser <strong>la</strong> más importantecuantitativam<strong>en</strong>te durante <strong>la</strong> ferm<strong>en</strong>tación.El color es otro atributo s<strong>en</strong>sorial del vino muy importantey, <strong>en</strong> el vino tino, éste está ampliam<strong>en</strong>te determinadopor los antocianinos y pigm<strong>en</strong>tos derivadosde <strong>la</strong> antocianina. Exist<strong>en</strong> numerosos factores viticulturalesy viniculturales implicados <strong>en</strong> <strong>la</strong> formación y<strong>en</strong> <strong>la</strong> estabilización del color del vino tinto, no obstanteel papel de <strong>la</strong> levadura so<strong>la</strong>m<strong>en</strong>te se ha estudiadoreci<strong>en</strong>tem<strong>en</strong>te. La elección de <strong>la</strong> cepa de levadurano sólo afecta a <strong>la</strong> profundidad del color, sino quetambién a su matiz; los tonos rojo-morados. Existeun estudio <strong>en</strong> curso <strong>para</strong> compr<strong>en</strong>der el mecanismobioquímico que afecta al desarrollo del color del vino.Los conocimi<strong>en</strong>tos extraídos de este estudió permitirándesarrol<strong>la</strong>r estrategias g<strong>en</strong>éticas <strong>para</strong> personalizarcepas de levadura con el fin de ofrecer a los consumidores<strong>vinos</strong> de un aspecto excepcional.6. Aum<strong>en</strong>to de <strong>la</strong>s opciones de losvinicultores mediante el desarrollo decepas de levaduras viníco<strong>la</strong>s mejoradas ynovedosasActualm<strong>en</strong>te es indudable que <strong>la</strong>s levaduras desempeñanun papel es<strong>en</strong>cial a <strong>la</strong> hora de dotar al vino desus propiedades s<strong>en</strong>soriales. Durante siglos de viniculturase han ais<strong>la</strong>do y utilizado, accid<strong>en</strong>tal o deliberadam<strong>en</strong>te,cepas de Saccharomyces cerevisiae porsu capacidad <strong>para</strong> convertir eficazm<strong>en</strong>te el mosto deuva <strong>en</strong> vino a pesar de su exposición a un esfuerzoosmótico, de nutri<strong>en</strong>tes y etílico. Estas levaduras handesarrol<strong>la</strong>do una serie de características específicas decada cepa, como <strong>la</strong> producción de diversos sabores yaromas y difer<strong>en</strong>tes perfiles de utilización de nutri<strong>en</strong>tes,lo cual es reflejo de su historia y ahora puede emplearse<strong>para</strong> adecuar cepas específicas a <strong>la</strong>s condicionesy estilos concretos de cada vino. Además de estadiversidad de opciones disponibles <strong>en</strong> <strong>la</strong> actualidad,se han mejorado muchas cepas de levadura viníco<strong>la</strong>utilizando métodos g<strong>en</strong>éticos clásicos (mutagénesis,hibridación, evolución adaptativa), y <strong>en</strong> los últimostiempos mediante ADN recombinate (también conocidacomo tecnología de modificación g<strong>en</strong>ética).A este respecto, el desarrollo de cepas de levadurasde vino es una fu<strong>en</strong>te importante de una nueva diversidadg<strong>en</strong>ética <strong>para</strong> mejorar <strong>la</strong>s opciones disponiblesde los vinicultores. Por ejemplo, <strong>la</strong> producción dehíbridos intra- e inter-específicos del género Saccharomycespermite <strong>la</strong> g<strong>en</strong>eración de cepas novedosasde levaduras con <strong>la</strong>s propiedades de ferm<strong>en</strong>taciónrobusta de <strong>la</strong> levadura viníco<strong>la</strong> comercial y <strong>la</strong>s diversaspropiedades s<strong>en</strong>soriales ofrecidas por otras especies.El sector está actualm<strong>en</strong>te evaluando desde un puntode vista viníco<strong>la</strong> los híbridos interespecíficos de Saccharomyceskudriavzevii y Saccharomyces cariocanuscon Saccharomyces cerevisiae. Se espera que estos híbridosaport<strong>en</strong> aromas multicapa difer<strong>en</strong>ciadores <strong>en</strong>ciertos estilos de <strong>vinos</strong>.Otro ejemplo de aplicación satisfactoria de estrategiassin modificación g<strong>en</strong>ética <strong>en</strong> nuestro programa dedesarrollo de cepas es <strong>la</strong> producción y <strong>la</strong> comercializaciónde cepas novedosas de Saccharomyces cerevisiaecon <strong>la</strong> capacidad de ferm<strong>en</strong>tar robustam<strong>en</strong>te y deproducir simultáneam<strong>en</strong>te niveles óptimos de tiolesafrutados deseables y cantidades mínimas de H 2S. Enprimer lugar, <strong>la</strong> investigación de los b<strong>en</strong>eficios de <strong>la</strong>sestrategias de co-inocu<strong>la</strong>ción ha contribuido al desarrollode dos productos comercializados mixtos (unamezc<strong>la</strong> de cepas de un proporción específica) quemejoran los aromas afrutados prov<strong>en</strong>i<strong>en</strong>tes de tioles.En segundo lugar, se han utilizado estrategias sin modificacióng<strong>en</strong>ética <strong>para</strong> desarrol<strong>la</strong>r cepas de vino queferm<strong>en</strong>tan excepcionalm<strong>en</strong>te bi<strong>en</strong> sin producir cantidadesdetectables de H 2S. Estas cepas comercialesque produc<strong>en</strong> m<strong>en</strong>os H 2S obtuvieron resultados excel<strong>en</strong>tesa esca<strong>la</strong> industrial.Con el fin de empezar a investigar <strong>la</strong>s bases g<strong>en</strong>éticasde <strong>la</strong>s difer<strong>en</strong>cias <strong>en</strong>tre cepas de <strong>la</strong> levadura vínica, elAustralian Wine Research Institute (Instituto de InvestigaciónEnológica de Australia) obtuvo el g<strong>en</strong>oma deuna cepa de levadura viníco<strong>la</strong> y lo comparó con el de<strong>la</strong> cepa de Saccharomyces cerevisiae de <strong>la</strong>boratorio. Lacepa de vino resultó ser muy difer<strong>en</strong>te a su homólogade <strong>la</strong>boratorio. La secu<strong>en</strong>ciación del g<strong>en</strong>oma de otrascepas industriales proporcionará una visión más profundade <strong>la</strong>s variaciones pres<strong>en</strong>tes <strong>en</strong> <strong>la</strong>s cepas viníco<strong>la</strong>sy debería resaltar variaciones comunes y específicasde cepas que puedan asociarse con característicasindustriales importantes.Así como <strong>la</strong>s investigaciones fundam<strong>en</strong>tales sobre levaduraspasaron de estrategias clásicas reduccionistaa estudios que implican todo el g<strong>en</strong>oma, estos últimospasarán también al sigui<strong>en</strong>te nivel de investigaciónbiológica conocido como <strong>la</strong> biología de sistemas. Lad<strong>en</strong>ominada revolución -ómica promete, con <strong>la</strong> ayudade modelos matemáticos, <strong>la</strong> consecución de unacompr<strong>en</strong>sión total de <strong>la</strong>s célu<strong>la</strong>s de <strong>la</strong> levadura vínica<strong>en</strong> toda su complejidad. Esta metodología permitirá el24


desarrollo de cepas con una precisión y velocidad sinrival, y facilitará <strong>la</strong> utilización a medida del metabolismode <strong>la</strong> levadura <strong>para</strong> satisfacer <strong>la</strong>s cada vez mayoresdemandas de los vinicultores y <strong>la</strong>s prefer<strong>en</strong>cias siemprecambiantes de los consumidores <strong>en</strong> un mercadomasificado y sobre-abastecido.7. Conclusiones y previsiones futurasSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>En conclusión, el sector <strong>en</strong>ológico y sus organismosde investigación están continuam<strong>en</strong>te profundizando<strong>en</strong> el conocimi<strong>en</strong>to de <strong>la</strong>s interacciones <strong>en</strong>tre nutri<strong>en</strong>tes,los precursores de sabores derivados de <strong>la</strong> uva, <strong>la</strong>scondiciones de ferm<strong>en</strong>tación y <strong>la</strong>s cepas específicasde levaduras <strong>para</strong> <strong>la</strong> producción del vino. Exist<strong>en</strong> muchasoportunidades innovadoras abiertas <strong>para</strong> investigacionesfuturas. El sector del vino se c<strong>en</strong>trará <strong>en</strong> eldesarrollo de <strong>la</strong> evaluación de nutri<strong>en</strong>tes rápidos y elcontrol de <strong>la</strong> ferm<strong>en</strong>tación a través de técnicas anteriorm<strong>en</strong>teinimaginables como <strong>la</strong> tecnología del infrarrojocercano <strong>en</strong> línea. También mejorarán <strong>la</strong>s cepasespecializadas de <strong>la</strong> levadura viníco<strong>la</strong> y <strong>la</strong>s estrategiasde inocu<strong>la</strong>ción que puedan pot<strong>en</strong>ciar los caracteresdeseables – los vinicultores ahora buscan cepas debajo alcohol, tolerantes al etanol y pot<strong>en</strong>ciadoras desabores deseables, con capacidades bioconservantesy biosaludables <strong>para</strong> satisfacer <strong>la</strong>s demandas esperadasdel mercado <strong>en</strong> el futuro — y reducir o eliminarsabores y aromas indeseables.8. Agradecimi<strong>en</strong>tosEl Australian Wine Research Institute Ltd (AWRI, Institutode Investigación Enológica de Australia), unmiembro del Wine Innovation Cluster (Grupo de Innovacióndel Vino) de Ade<strong>la</strong>ida, recibe el apoyo deviticultores y vinicultores australianos a través de suag<strong>en</strong>cia de inversiones, <strong>la</strong> Grape and Wine Researchand Developm<strong>en</strong>t Corporation (Corporación <strong>para</strong> <strong>la</strong>Investigación y el Desarrollo de <strong>la</strong> Uva y el Vino), <strong>la</strong>cual lo financia según una metodología “matchingfunds” con el Gobierno australiano. Me gustaría agradecer<strong>la</strong> contribución investigadora indicada <strong>en</strong> estedocum<strong>en</strong>to a todos los miembros actuales y pasadosdel departam<strong>en</strong>to de bioci<strong>en</strong>cia del AWRI: CarolineAbrahamse, Eveline Bartowsky, J<strong>en</strong>ny Bellon, Etj<strong>en</strong> Bizaj,Paul Chambers, Anthony Borneman, Antonio Cord<strong>en</strong>te,Peter Costello, Chris Curtin, Angus Forgan, PaulH<strong>en</strong>schke, Wanph<strong>en</strong> Jitjaro<strong>en</strong>, Robyn Kievit, Ellie King,Dariusz Kutyna, Jane McCarthy, Jean Macintyre, SimonSchmidt, Tina Tran, H<strong>en</strong>tie Swiegers, Maurizio Ugliano,Cristian Vare<strong>la</strong> y Gal Winter.Pon<strong>en</strong>cias9. Lecturas complem<strong>en</strong>tarias1. Alexandre, H., P.J. Costello, F. Remize, J. Guzzo, &M. Guilloux-B<strong>en</strong>atier. 2004. Saccharomyces cerevisiae–O<strong>en</strong>ococcuso<strong>en</strong>i interactions in wine: curr<strong>en</strong>tknowledge and perspectives. InternationalJournal of Food Microbiology 93:141–154.2. Bartowsky, E.J. & I.S. Pretorius. 2009. Microbial formationand modification of f<strong>la</strong>vour and off-f<strong>la</strong>vourcompounds in wine. In: H. König, G. Und<strong>en</strong>& J. Frölich (eds.), Biology of Microorganisms ongrapes, in must and wine. Springer, Heidelberg,Alemania. Capítulo 11, pp. 209-231.3. Bataillon, M., A. Rico, J.-M. Sab<strong>la</strong>yrolles, J. -M. Salmon& P. Barre. 1996. Early thiamin assimi<strong>la</strong>tionby yeasts under <strong>en</strong>ological conditions: impact ofalcoholic ferm<strong>en</strong>tation kinetics. Journal of Ferm<strong>en</strong>tationand Bio<strong>en</strong>gineering 82:145–150.4. Bauer, F.F. & I.S. Pretorius. 2000. Yeast stress responseand ferm<strong>en</strong>tation effici<strong>en</strong>cy: how to survivethe making of wine – A review. South AfricanJournal of Enology and Viticulture 21:27-51.5. Bell, S.J. & P.A. H<strong>en</strong>schke. 2005. Implications ofnitrog<strong>en</strong> managem<strong>en</strong>t for grapes and wine.Australian Journal of Grape and Wine Research11:242-295.6. Bellon, J., A. Heinrich & P. Chambers. 2006. Yeastresearch increases choice for winemakers andconsumers. Australian & New Zea<strong>la</strong>nd Grapegrower& Winemaker (514):102-103.7. Bellon, J., L. Rose, B. Currie, J. Ottawa, S. Bell, H.Mclean, C. Raym<strong>en</strong>t, C. Treacher & P. H<strong>en</strong>schke.2008 Summary from the winemaking with nonconv<strong>en</strong>tionalyeasts workshops, 13th AWITC.Australian & New Zea<strong>la</strong>nd Grapegrower & Winemaker(528):72-77.8. Berthels, N.J., R.R. Cordero Otero, F.F. Bauer, I.S.Pretorius and J.M. Thevelein. 2008. Corre<strong>la</strong>tionbetwe<strong>en</strong> glucose/fructose discrepancy andhexokinase kinetic properties in differ<strong>en</strong>t Saccharomycescerevisiae wine yeast strains. AppliedMicrobiology and Biotechnology 77:1083-1091.9. Bisson, L.F. & C.E. Butzke. 2000. Diagnosis andrectification of stuck and sluggish ferm<strong>en</strong>tations.American Journal of Enology and Viticulture51:168-177.10. Bisson, L.F. 1999. Stuck and sluggish ferm<strong>en</strong>tations.American Journal of Enology and Viticulture50:107-119.25


02. Los nuevos retos <strong>en</strong> microbiología del vino. Levaduras no productoras de SH 211. Bohlscheid, J.C., J.K. Fellman, X.D. Wand, D. Ans<strong>en</strong>& C.G. Edwards. 2007. The influ<strong>en</strong>ce of nitrog<strong>en</strong>and biotin interactions on the performance ofSaccharomyces in alcoholic ferm<strong>en</strong>tation. Journalof Applied Microbiology 102:390–400.12. Borneman, A.R., P.J. Chambers & I.S. Pretorius.2007. Yeast Systems Biology: modelling thewinemaker’s art. Tr<strong>en</strong>ds in Biotechnology 25:349-355.13. Borneman, A.R, P.J. Chambers & I.S. Pretorius.2009. Systems biology as a p<strong>la</strong>tform for wineyeast strain developm<strong>en</strong>t. In: H. König, G. Und<strong>en</strong>& J. Frölich (eds.), Biology of Microorganisms ongrapes, in must and wine. Springer, Heidelberg,Alemania. Capítulo 22, pp. 395-414.14. Borneman, A.R., A.H. Forgan, P.J. Chambers & I.S.Pretorius. 2008. Unravelling the g<strong>en</strong>etic blueprintof wine yeast. Australian and New Zea<strong>la</strong>nd WineIndustry Journal 23:21-23.15. Borneman, A.R., A. Forgan, P.J. Chambers & I.S.Pretorius. 2008. Com<strong>para</strong>tive g<strong>en</strong>ome analysisof a Saccharomyces cerevisiae wine strain. FEMSYeast Research 8:1185-1195.16. Borneman, A.R, P.J. Chambers & I.S. Pretorius. 2009.The way forward: modelling the winemaker’s artusing yeast systems biology. In: P. Romano & G.H.Fleet (eds.), Yeast in Wine Ferm<strong>en</strong>tation. Springer,Heidelberg, Alemania (<strong>en</strong> pr<strong>en</strong>sa).17. Boulton, R.B., V.L. Singleton, L.F. Bisson & R.E.Kunkee. 1998. Principles and Practices of Winemaking.USA: Asp<strong>en</strong> Publishers, Inc.18. Chambers, P.J., Bellon, J.R., Schmidt, S.A., Vare<strong>la</strong>,C. & Pretorius, I.S. 2008. Non-g<strong>en</strong>etic <strong>en</strong>gineeringapproaches to iso<strong>la</strong>ting and g<strong>en</strong>erating novelyeasts for industrial applications. In: G. Kunze & T.Satyanarayana (eds.), Diversity and Pot<strong>en</strong>tial BiotechnologicalApplications of Yeasts. Elsevier (<strong>en</strong>pr<strong>en</strong>sa).19. Cord<strong>en</strong>te, A.G., A. Heinrich, I.S. Pretorius & J.H.Swiegers. 2009. Iso<strong>la</strong>tion of sulfite reductasevariants of a commercial wine yeast with significantlyreduced hydrog<strong>en</strong> sulfide production.FEMS Yeast Research (<strong>en</strong> pr<strong>en</strong>sa).20. Curtin, C.D., J.R. Bellon, A.D. Coulter, G.D. Cowey,E.M.C. Robinson, M.A. de Barros Lopes, P. W. Godd<strong>en</strong>,P.A. H<strong>en</strong>schke & I.S. Pretorius. 2005. Thesix tribes of ‘Brett’ in Australia: Distribution of g<strong>en</strong>eticallydiverg<strong>en</strong>t Dekkera bruxell<strong>en</strong>sis strainsacross Australian winemaking regions. Australianand New Zea<strong>la</strong>nd Wine Industry Journal 20:28-35.267:159-166.21. De Barros Lopes, M., J.R. Bellon, N.J. Shirley & P.F.Ganter. 2002. Evid<strong>en</strong>ce for multiple interspecifichybridization in Saccharomyces s<strong>en</strong>su strictospecies. FEMS Yeast Research 1:323-331.22. Edwards, C. & J.C. Bohlscheid. 2007. Impact ofpantoth<strong>en</strong>ic acid addition on H 2S productionby Saccharomyces cerevisiae under ferm<strong>en</strong>tativeconditions. Enzyme & Microbial Technology41:1–4.23. Eglinton, J.M. & P.A. H<strong>en</strong>schke. 1993. Can theaddition of vitamins during ferm<strong>en</strong>tation be justified?Australian Grapegrower and Winemaker(352):47–49,51–52.24. Eglinton, J.M. & P.A. H<strong>en</strong>schke. 1999. Restartingincomplete ferm<strong>en</strong>tations: the effect of highconc<strong>en</strong>trations of acetic acid. Australian Journalof Grape and Wine Research. 5:71–78.25. Fleet, G.H. 2003. Yeast interactions and wine f<strong>la</strong>vour.International Journal of Food Microbiology86:11-22.26. Gockowiak, H. & P.A. H<strong>en</strong>schke. 1992. Nitrog<strong>en</strong>composition of grape juice and implications forferm<strong>en</strong>tation: results of a survey made in N-E Victoria.Australian & New Zea<strong>la</strong>nd Grapegrower&Winemaker (340):131, 133–138.27. H<strong>en</strong>schke, P.A. 1997. Stuck ferm<strong>en</strong>tation: causes,prev<strong>en</strong>tion and cure. All<strong>en</strong>, M.; Leske, P.; Baldwin,G., eds. Advances in juice c<strong>la</strong>rification and yeastinocu<strong>la</strong>tion: proceedings of a seminar; 15 August1996; Melbourne, Vic. Ade<strong>la</strong>ide S.A: Australian Societyof Viticulture and O<strong>en</strong>ology; 1997: 30–38,41.28. H<strong>en</strong>schke, P.A. & V. Jiranek. 1991. Hydrog<strong>en</strong> sulfideformation during ferm<strong>en</strong>tation: effect of nitrog<strong>en</strong>composition in model grape must. Rantz,J.M., ed. Proceedings of the international symposiumon nitrog<strong>en</strong> in grapes and wine; 18-19June 1991; Seattle, Washington, USA. Davis, CA:American Society for Enology and Viticulture; pp.172-184.29. Houtman, A.C. & C.S. Du Plessis. 1981. The effectof juice c<strong>la</strong>rity and several conditions promotingyeast growth on ferm<strong>en</strong>tation rate, the productionof aroma compon<strong>en</strong>ts and wine quality.South African Journal of Enology and Viticulture2:71–81.30. Howell, K.S., J.H. Swiegers, G.M. Elsey, T.E. Siebert,E.J. Bartowsky, G.H. Fleet, I.S. Pretorius, & M.A. deBarros Lopes. 2004. Variation in 4-mercapto-4-methyl-p<strong>en</strong>tan-2-one release by Saccharomycescerevisiae commercial wine strains under diffe-26


<strong>en</strong>t wine ferm<strong>en</strong>tation conditions. FEMS MicrobiologyLetters 240: 125-129.31. Jolly, N.P., O.P.H. Augustyn & I.S. Pretorius. 2006.The role and use of non-Saccharomyces yeasts inwine production. South African Journal of Enologyand Viticulture 27:15-39.32. King, E.S., J.H. Swiegers, B. Travis, I.L. Francis, S. Bastian& I.S Pretorius. 2008. Coinocu<strong>la</strong>ted ferm<strong>en</strong>tationsusing Saccharomyces yeasts affect the vo<strong>la</strong>tilearoma composition and s<strong>en</strong>sory propertiesof Vitis vinifera L. cv. Sauvignon B<strong>la</strong>nc wines. Journalof Agricultural and Food Chemistry 56:10829-10837.33. Le Jeune, C., M. Lollier, C. Demuyter, C. Erny, J.L.Legras, M. Aigle & I. Masneuf-Pomarede. 2007.Characterization of natural hybrids of Saccharomycescerevisiae and Saccharomyces bayanusvar. uvarum. FEMS Yeast Research 7:540–54934. Lilly, M., M.G. Lambrechts & I.S. Pretorius. 2000.The effect of increased yeast alcohol acetyltransferaseactivity on the s<strong>en</strong>sorial quality of wineand brandy. Applied and Environm<strong>en</strong>tal Microbiology66: 744-753.35. Lilly, M., G. Styger, F.F. Bauer, M.G. Lambrechts &I.S. Pretorius. 2006. The effect of increased yeastbranched-chain amino acid transaminase activityand the production of higher alcohols on thef<strong>la</strong>vor profiles of wine and distil<strong>la</strong>tes. FEMS YeastResearch 6:726-743.36. Lilly, M., F.F. Bauer, M.G. Lambrechts, J.H. Swiegers,D. Cozzolino & I.S. Pretorius. 2006. The effect ofincreased alcohol acetyl transferase and esteraseactivity on f<strong>la</strong>vor profiles of wine and distil<strong>la</strong>tes.Yeast 23:641-659.37. Molina, A.M, J.H. Swiegers J.H, C. Vare<strong>la</strong>, I.S. Pretorius& E. Agosin. 2007. Influ<strong>en</strong>ce of wine ferm<strong>en</strong>tationtemperature on the synthesis of yeastderivedvo<strong>la</strong>tile aroma compounds. AppliedMicrobiology and Biotechnology38. Monk, P.R. 1986. Rehydration and propagation ofactive dry wine yeast. Australian Wine IndustryJournal 1:3-5.39. Pretorius, I.S. 2000. Tailoring wine yeast for th<strong>en</strong>ew mill<strong>en</strong>nium: novel approaches to the anci<strong>en</strong>tart of winemaking. Yeast 16: 675-729.40. Pretorius, I.S. & F.F. Bauer. 2002. Meeting the consumerchall<strong>en</strong>ge through g<strong>en</strong>etically customisedwine yeast strains. Tr<strong>en</strong>ds in Biotechnology20:426-432.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>41. Pretorius, I.S. & P.B. Høj. 2005. Grape and WineBiotechnology: Chall<strong>en</strong>ges, opportunities andpot<strong>en</strong>tial b<strong>en</strong>efits. Australian Journal of Grapeand Wine Research 11:83-108.42. R<strong>en</strong>ouf, V., A. Lonvaud-Funel & J. Coulon. 2007.The origin of Brettanomyces bruxell<strong>en</strong>sis in wines:A review. Journal International des Sci<strong>en</strong>cesde <strong>la</strong> Vigne et du Vin. 41:161-173.43. Sab<strong>la</strong>yrolles, J.M., C. Dubois, C. Manginot, J.L.Roustan & P. Barre. 1996. Effectiv<strong>en</strong>ess of combinedammoniacal nitrog<strong>en</strong> and oxyg<strong>en</strong> additionsfor completion of sluggish and stuck ferm<strong>en</strong>tations.Journal of Ferm<strong>en</strong>tation and Bio<strong>en</strong>gineering82:377-381.44. Salmon, J.M. 1989. Effect of sugar transport inactivationin on sluggish and stuck o<strong>en</strong>ologicalferm<strong>en</strong>tations. Applied and Environm<strong>en</strong>tal Microbiology55:953-958.45. Schmidt, S.A., T. Tran, P.J. Chambers, M.J. Herderich& I.S. Pretorius. 2006. Developing indicatorsof wine yeast performance: an overview of theimpact of ethanol stress. Australian and NewZea<strong>la</strong>nd Wine Industry Journal 21:24-30.46. Subileau, M., R. Schneider, J.-M. Salmon & E.Degryse. 2008. Nitrog<strong>en</strong> catabolite repressionmodu<strong>la</strong>tes the production of aromatic thiolscharacteristic of Sauvignon B<strong>la</strong>nc at the level ofprecursor transport. FEMS Yeast Research (<strong>en</strong>pr<strong>en</strong>sa).47. Swiegers, J.H., E.J. Bartowsky, P.A. H<strong>en</strong>schke & I.S.Pretorius. 2005. Yeast and bacterial modu<strong>la</strong>tionof wine aroma and f<strong>la</strong>vour. Australian Journal ofGrape and Wine Research 11:139-173.48. Swiegers, J.H., D. Capone, G. Elsey, M.A. Sefton, I.L.Francis, & I.S. Pretorius. 2007. Engineering vo<strong>la</strong>tilethiol release in Saccharomyces cerevisiae for improvedwine aroma. Yeast 24:561-574.49. Swiegers, J.H., I.L. Francis, M.J. Herderich, & I.S.Pretorius. 2006. Meeting consumer expectationsthrough managem<strong>en</strong>t in vineyard and winery:The choice of yeast for ferm<strong>en</strong>tation offers greatpot<strong>en</strong>tial to adjust the aroma of Sauvignon B<strong>la</strong>ncwine. Australian and New Zea<strong>la</strong>nd Wine IndustryJournal 21:34-42.50. Swiegers, J.H. & I.S. Pretorius. 2007. Modu<strong>la</strong>tion ofvo<strong>la</strong>tile sulfur compounds by wine yeast. AppliedMicrobiology and Biotechnology 74:954-960.51. Swiegers, H., M. Ugliano, T. van der Westhuiz<strong>en</strong>& P. Bowyer. 2008. Impact of yeast rehydrationon the aroma of Sauvignon B<strong>la</strong>nc wine. Austra-Pon<strong>en</strong>cias27


02. Los nuevos retos <strong>en</strong> microbiología del vino. Levaduras no productoras de SH 2lian & New Zea<strong>la</strong>nd. Grapegrower Winemaker(528):68–71.52. Swiegers, J.H, S.M.G. Saer<strong>en</strong>s & I.S. Pretorius I.S.2008. The developm<strong>en</strong>t of yeast strains as toolsto adjust the f<strong>la</strong>vour of ferm<strong>en</strong>ted beverages tomarket specifications. In: D.H. Fr<strong>en</strong>kel & F. Be<strong>la</strong>nger(eds.), Biotechnology in F<strong>la</strong>vour Production.B<strong>la</strong>ckwell Publishing, Oxford, Reino Unido. Capítulo1, pp.1-55.53. Swiegers J.H., R.L. Willmott, T.E. Siebert, K. Lattey,B.R. Bramley, I.L. Francis, E.S. King & I.S. Pretorius.2009. The influ<strong>en</strong>ce of yeast on the aroma of SauvignonB<strong>la</strong>nc wine. Food Microbiology 26:204-211.54. Torrea, D., & P.A. H<strong>en</strong>schke. 2004. Ammonium supplem<strong>en</strong>tationof grape juice-effect on the aromaprofile of a Chardonnay wine. Technical Review150:59–63.55. Ugliano, M., P.A. H<strong>en</strong>schke & I.S. Pretorius. 2007.Nitrog<strong>en</strong> managem<strong>en</strong>t is critical for wine f<strong>la</strong>vourand style. Australian and New Zea<strong>la</strong>nd Wine IndustryJournal 22:24-30.56. Vi<strong>la</strong>nova, M., M. Ugliano, C. Vare<strong>la</strong>, T. Siebert, I.S.Pretorius & P.A. H<strong>en</strong>schke. 2007. Assimi<strong>la</strong>ble nitrog<strong>en</strong>utilisation and production of vo<strong>la</strong>tile andnon-vo<strong>la</strong>tile compounds in chemically definedmedium by Saccharomyces cerevisiae wine yeasts.Applied Microbiology and Biotechnology 77:145-157.28


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Pon<strong>en</strong>cias29


03. La microoxig<strong>en</strong>aciónde <strong>vinos</strong> tintos:Control de <strong>la</strong>reducción yestabilizacióndel colorProf. Encarna Gómez P<strong>la</strong>zaUniversidad de MurciaCont<strong>en</strong>ido31 La reactividad del oxíg<strong>en</strong>o <strong>en</strong> los <strong>vinos</strong>32 La técnica de <strong>la</strong> micro-oxig<strong>en</strong>ación35 Bibliografía


Dra. Encarna Gómez P<strong>la</strong>zaDoctora por <strong>la</strong> Universidad de Murcia (1992). Fue becariapredoctoral <strong>en</strong> el Departam<strong>en</strong>to de Viticulturay Enología del CIDA (actual Instituto Murciano deInvestigación y Desarrollo Agroalim<strong>en</strong>tario) si<strong>en</strong>doel tema de <strong>la</strong> tesis doctoral el estudio de los compon<strong>en</strong>tesvolátiles de uvas y <strong>vinos</strong>. Realizó su estanciapost-doctoral <strong>en</strong> Fresno (Califormia, EE.UU.), contratadapor el Agricultural Research Service y <strong>la</strong> CaliforniaRaisin Advisory Board <strong>para</strong> realizar un proyectode investigación sobre <strong>la</strong> pres<strong>en</strong>cia de tricloroanisoles<strong>en</strong> uvas pasas. Volvió a España con un contrato dereincorporación de Doctores y Tecnólogos incorporándosede nuevo al CIDA donde durante tres añoscontinuó trabajando <strong>en</strong> uvas y <strong>vinos</strong>, c<strong>en</strong>trándose <strong>en</strong><strong>la</strong> caracterización polif<strong>en</strong>ólica y cromática de éstos(1994-1996). Se incorporó a <strong>la</strong> Universidad de Murcia<strong>en</strong> 1997, primero como Profesor Ayudante, posteriorm<strong>en</strong>tecomo Profesor Titu<strong>la</strong>r del área de Tecnologíade Alim<strong>en</strong>tos y desde el 2007 como Catedráticade Universidad. Ha dirigido numerosos proyectos deinvestigación con financiación regional y nacional,re<strong>la</strong>cionados con el estudio de uvas y <strong>vinos</strong>. Es autorade un alto número de publicaciones ci<strong>en</strong>tíficas <strong>en</strong>revistas tanto de divulgación como de alto impactoci<strong>en</strong>tífico y revisora de algunas de <strong>la</strong>s mejores revistasci<strong>en</strong>tíficas de tecnología de alim<strong>en</strong>tos.Actualm<strong>en</strong>te, su área de investigación se c<strong>en</strong>tra sobretodo <strong>en</strong> el estudio de <strong>la</strong>s características cromáticasde uvas y <strong>vinos</strong>. Los dos últimos proyectos <strong>en</strong>los que se <strong>en</strong>cu<strong>en</strong>tra trabajando son el estudio delefecto de <strong>la</strong> micro-oxig<strong>en</strong>ación de <strong>vinos</strong> y <strong>la</strong> crianzade estos (barrica y virutas) sobre <strong>la</strong> evolución y estabilidaddel color y <strong>en</strong> el diseño de nuevas estrategias<strong>para</strong> <strong>la</strong> extracción de compuestos f<strong>en</strong>ólicos de <strong>la</strong>suvas durante <strong>la</strong> vinificación.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>La reactividad del oxíg<strong>en</strong>o <strong>en</strong> los <strong>vinos</strong>El oxig<strong>en</strong>o juega un papel importante <strong>en</strong> diversosprocesos bioquímicos <strong>en</strong> los mostos y <strong>en</strong> los <strong>vinos</strong>,tanto durante <strong>la</strong> ferm<strong>en</strong>tación alcohólica como <strong>en</strong>postferm<strong>en</strong>tación, e incluso durante el embotel<strong>la</strong>do.Su pres<strong>en</strong>cia modifica el estado redox de los <strong>vinos</strong>, loque conlleva cambios que pued<strong>en</strong> afectar positiva onegativam<strong>en</strong>te a <strong>la</strong> calidad de los <strong>vinos</strong>. Para una correctagestión del oxíg<strong>en</strong>o es necesario conocer comoéste actúa <strong>en</strong> el vino, particu<strong>la</strong>rm<strong>en</strong>te <strong>en</strong> el control de<strong>la</strong> actividad de <strong>la</strong>s levaduras, manejo de los olores <strong>azufrados</strong>y estabilización del color de los <strong>vinos</strong> tintos.La pres<strong>en</strong>cia de oxíg<strong>en</strong>o <strong>en</strong> el vino provoca una oxidación,un proceso donde hay una transfer<strong>en</strong>cia deelectrones. En el vino, el oxíg<strong>en</strong>o es reducido a ciertosintermedios y finalm<strong>en</strong>te a H 2O2 y a H 2O Considerando<strong>la</strong> cantidad de oxíg<strong>en</strong>o que un vino puede tomar(de 60 a 600 ml/l, de acuerdo con Singleton, 1986),está c<strong>la</strong>ro que no hay otros compuestos oxidables <strong>en</strong>el vino <strong>en</strong> cantidad sufici<strong>en</strong>te que no sean los compuestosf<strong>en</strong>ólicos. Por lo tanto, éstos serán los principalesimplicados <strong>en</strong> los f<strong>en</strong>óm<strong>en</strong>os de oxidación delos <strong>vinos</strong>.El oxig<strong>en</strong>o ti<strong>en</strong>e una limitada reactividad <strong>en</strong> su formamolecu<strong>la</strong>r. El pot<strong>en</strong>cial oxidante del oxig<strong>en</strong>o se debea <strong>la</strong> g<strong>en</strong>eración de especies reactivas del oxíg<strong>en</strong>o. Así,<strong>la</strong> transfer<strong>en</strong>cia inicial de un electrón lleva a <strong>la</strong> formaciónde O 2- que al pH del vino existe como radical hidroxiperóxido.Este paso requiere un catalizador, prefer<strong>en</strong>tem<strong>en</strong>teun metal como Fe. La transfer<strong>en</strong>cia deun segundo electrón producirá un peróxido (<strong>en</strong> vinoH 2O 2). La sigui<strong>en</strong>te reducción crea un ag<strong>en</strong>te oxidanteincluso más reactivo que los anteriores, el radicalhidroxilo. La última reacción produce agua como productofinal de <strong>la</strong> reducción del oxíg<strong>en</strong>oPon<strong>en</strong>ciasAdaptado de Waterhouse y Laurie, 2006Los radicales formados durante este proceso intermediopued<strong>en</strong> ser directam<strong>en</strong>te reducidos por los f<strong>en</strong>olesy son mejores oxidantes que el oxíg<strong>en</strong>o (Waterhousey Laurie, 2006).Los principales productos secundarios de <strong>la</strong> reduccióndel oxíg<strong>en</strong>o <strong>en</strong> el vino serán quinonas y aldehídos, fundam<strong>en</strong>talm<strong>en</strong>teel acetaldehído. Las quinonas pued<strong>en</strong>participar <strong>en</strong> reacciones de polimerización quellevarán a <strong>la</strong> formación de grandes polímeros, normal-31


03. La micro-oxig<strong>en</strong>ación de <strong>vinos</strong> tintos: Control de <strong>la</strong> reducción y estabilización del colorLa técnica de <strong>la</strong> micro-oxig<strong>en</strong>aciónAdaptado de Waterhouse y Laurie, 2006m<strong>en</strong>te de color pardo, responsables del pardeami<strong>en</strong>to.Pero también, <strong>la</strong>s quinonas pued<strong>en</strong> reaccionar yformar aductos con otros compuestos del vino, comolos tioles, contribuy<strong>en</strong>do al control del problema dereducción <strong>en</strong> los <strong>vinos</strong> (Waterhouse y Laurie, 2006; Vidaly Aagaard, 2008). Los aldehídos, <strong>en</strong> el caso del vinotinto sobre todo, pued<strong>en</strong> participar <strong>en</strong> reacciones queserán de interés pues favorec<strong>en</strong> <strong>la</strong> estabilización delcolor de los <strong>vinos</strong> (Timber<strong>la</strong>ke y Bridle, 1976).Ya se había observado desde hace tiempo una difer<strong>en</strong>ciaimportante <strong>en</strong>tre los resultados <strong>en</strong> el vino deuna oxidación l<strong>en</strong>ta fr<strong>en</strong>te a una oxidación rápida,que sugiere <strong>la</strong> exist<strong>en</strong>cia de unas reacciones adicionales,que ocurr<strong>en</strong> de forma l<strong>en</strong>ta y que aum<strong>en</strong>tan elconjunto de sustratos oxidables <strong>en</strong> el vino (Singleton,1986). Así, l<strong>en</strong>tam<strong>en</strong>te, dos semiquinonas radicales sepued<strong>en</strong> unir coval<strong>en</strong>tem<strong>en</strong>te. Este proceso se l<strong>la</strong>mapolimerización reg<strong>en</strong>erativa y lleva a <strong>la</strong> g<strong>en</strong>eración deuna hidroquinona reoxidable. Ti<strong>en</strong>e un pot<strong>en</strong>cial dereducción m<strong>en</strong>or que sus constituy<strong>en</strong>tes originales eincrem<strong>en</strong>tará <strong>la</strong> capacidad de tomar oxíg<strong>en</strong>o del vino.Es decir, <strong>la</strong> polimerización reg<strong>en</strong>erativa l<strong>en</strong>ta lleva aunidades no oxidables (quinonas) a incorporarse <strong>en</strong>hidroquinonas reoxidables lo que increm<strong>en</strong>tará lossustratos oxidables del vino y protegerá a los sustratosoriginales. Si el oxig<strong>en</strong>o se añade rápidam<strong>en</strong>te, estareacción no ocurre, se agotan también rápidam<strong>en</strong>telos f<strong>en</strong>oles <strong>para</strong> reaccionar, con formación de muchasquinonas y, por tanto, el pardeami<strong>en</strong>to de los <strong>vinos</strong>.Estas observaciones pued<strong>en</strong> ser <strong>la</strong> base ci<strong>en</strong>tífica queexplica los resultados de <strong>la</strong> micro-oxig<strong>en</strong>ación, técnicaque nació <strong>en</strong> <strong>la</strong> década de los 90. Está basada <strong>en</strong> e<strong>la</strong>porte contro<strong>la</strong>do de pequeñas cantidades de oxíg<strong>en</strong>oal vino mediante un microdifusor poroso, de formacontinua y l<strong>en</strong>ta, si<strong>en</strong>do <strong>la</strong> velocidad de aporte de oxig<strong>en</strong>oinferior a <strong>la</strong> velocidad de consumo, evitando <strong>la</strong>acumu<strong>la</strong>ción de éste <strong>en</strong> el vino. Los efectos positivosde <strong>la</strong> micro-oxig<strong>en</strong>ación sobre los <strong>vinos</strong> tintos se pued<strong>en</strong>resumir <strong>en</strong>:• Estabilización del color• Reducción de olores a reducción y sabores herbáceos• Suavización del vino por disminución de astring<strong>en</strong>ciaEstos efectos se deb<strong>en</strong> a <strong>la</strong> formación de esos productosfinales de <strong>la</strong> oxidación <strong>en</strong> los <strong>vinos</strong>. Así, <strong>la</strong>s quinonasformadas pued<strong>en</strong> fijar compuestos <strong>azufrados</strong> ycontribuir a <strong>la</strong> disminución de los “olores a reducción”<strong>en</strong> los <strong>vinos</strong>. Además, <strong>la</strong>s quinonas formadas pued<strong>en</strong>com<strong>en</strong>zar un proceso de polimerización de compuestosf<strong>en</strong>ólicos, lo que puede modificar el sabor y<strong>la</strong> astring<strong>en</strong>cia de los <strong>vinos</strong>. De igual forma, otro delos productos que aparec<strong>en</strong>, el acetaldehído, participa<strong>en</strong> <strong>la</strong>s reacciones de estabilización de color de los<strong>vinos</strong> tintos a través de <strong>la</strong> formación de compuestosf<strong>en</strong>ólicos unidos por pu<strong>en</strong>te de etilo (tanino-tanino yantociano-tanino fundam<strong>en</strong>talm<strong>en</strong>te) y favoreci<strong>en</strong>do<strong>la</strong> formación de piranoantocianos, compuestos másestables que los antocianos nativos de los <strong>vinos</strong>.a) Control de <strong>la</strong> reducciónUno de los motivos por los que a este defecto se le l<strong>la</strong>maolor a reducción es por que normalm<strong>en</strong>te aparece<strong>Compuestos</strong> <strong>azufrados</strong> de bajo PmDescripción del olorUmbral olfatorio(ppb)Sulfuro de hidróg<strong>en</strong>o (H 2S) Huevos podridos 1Metanotiol (MeSH) Goma quemada, putrefacción 1,5Etanotiol (EtSH) Cebol<strong>la</strong>, goma, terroso 1,5Sulfuro de dimetilo (DMS) Col cocida, esparragos 25Sulfuro de dietilo (DES) Ajo, goma 1Disulfuro de carbono (CS 2) Dulce, goma, azufrado 5Disulfuro de dimetilo (DMDS)Vegetal, col, cebol<strong>la</strong>(a alta conc<strong>en</strong>tración)Disulfuro de dietilo (DEDS) Olor desagradable, cebol<strong>la</strong> 4Metil tioacetato (MeSAc) Azufrado, huevo, queso 40Etil tioacetato (EtSAc) Azufrado, cebol<strong>la</strong>, ajo 70Metionol Col cocida 12001032Adaptado de Vidal y Aagaard, 2008


cuando el pot<strong>en</strong>cial redox del vino es bajo y se deb<strong>en</strong>ormalm<strong>en</strong>te a <strong>la</strong> aparición de compuestos <strong>azufrados</strong>volátiles, g<strong>en</strong>eralm<strong>en</strong>te descritos como olor a gomaquemada, pútridos, huevos podridos, cebol<strong>la</strong>, col,ajo..... aunque no hay que olvidar que <strong>en</strong>tre los compuestos<strong>azufrados</strong> vo<strong>la</strong>tiles exist<strong>en</strong> algunos como el3-mercaptohexanol o 3-mercaptohexil acetato queimpart<strong>en</strong> aromas afrutado positivos al vino (Zoecklein,2006).El azufre ti<strong>en</strong>e varias formas reducidas <strong>en</strong> el vino:- H 2S, que se produce naturalm<strong>en</strong>te durante <strong>la</strong> ferm<strong>en</strong>taciónalcohólica y cuya formación se debe int<strong>en</strong>tarcontro<strong>la</strong>r, sobre todo al final de <strong>la</strong> ferm<strong>en</strong>taciónalcohólica o formará otros compuestos <strong>azufrados</strong>,- los tioles, que se forman normalm<strong>en</strong>te al final delferm<strong>en</strong>tación alcohólica y <strong>en</strong> postferm<strong>en</strong>tación y pose<strong>en</strong>un umbral de percepción bastante bajo y,- sulfuros y disulfuros, que se forman durante todo elproceso de vinificación y por <strong>la</strong> oxidación de tioles <strong>en</strong><strong>vinos</strong> terminados, ti<strong>en</strong><strong>en</strong> los umbrales de percepciónmas altos por lo que son m<strong>en</strong>os problemáticos peroson más difíciles de eliminar y <strong>en</strong> botel<strong>la</strong> pued<strong>en</strong> revertira tioles.El H 2S es un intermediario <strong>en</strong> <strong>la</strong> biosíntesis de compuestos<strong>azufrados</strong> requeridos por <strong>la</strong>s célu<strong>la</strong>s <strong>para</strong> elcrecimi<strong>en</strong>to celu<strong>la</strong>r y su funcionami<strong>en</strong>to. El azufre <strong>en</strong>forma de SO 42-, S, SO 32- <strong>en</strong>tra <strong>en</strong> <strong>la</strong> célu<strong>la</strong> y se reducea sulfuro a través de dos pasos activados por ATP.En este mom<strong>en</strong>to el sulfuro se combina <strong>en</strong>zimaticam<strong>en</strong>tecon precursores que conti<strong>en</strong><strong>en</strong> nitróg<strong>en</strong>o <strong>para</strong>formar cisteina y metionina. En aus<strong>en</strong>cia de nitróg<strong>en</strong>ointracelu<strong>la</strong>r lo que se forma es un exceso de H2S qu<strong>en</strong>o se incorpora a los aminoácidos sino que se liberaal vino (Zoecklein, 2006). En otros casos, un suministrosufici<strong>en</strong>te de nitróg<strong>en</strong>o también puede llevar a altascantidades de H2S, debido a <strong>la</strong> car<strong>en</strong>cia de otros nutri<strong>en</strong>tesy otros efectos no tan conocidos.Hay una serie de medidas que se pued<strong>en</strong> tomar <strong>para</strong>int<strong>en</strong>tar contro<strong>la</strong>r <strong>la</strong> formación de estos compuestos<strong>azufrados</strong>, tanto antes de <strong>la</strong> ferm<strong>en</strong>tación alcohólica(evitar uvas tratadas con S o Cu <strong>en</strong> fechas cercanasa v<strong>en</strong>dimia, añadir cantidades justas de SO 2), como<strong>en</strong> <strong>la</strong>s primeras etapas de <strong>la</strong> ferm<strong>en</strong>tación alcohólica(utilizar nutri<strong>en</strong>tes <strong>para</strong> <strong>la</strong>s levaduras y cepas seguras,temperaturas moderadas de ferm<strong>en</strong>tación) y <strong>en</strong> <strong>la</strong>súltimas etapas de ferm<strong>en</strong>tación (evitar el uso de SO2,mant<strong>en</strong>er <strong>la</strong> sanidad de <strong>la</strong>s levaduras..).También el oxíg<strong>en</strong>o puede t<strong>en</strong>er un papel importante<strong>en</strong> este control. El oxig<strong>en</strong>o añadido al mosto <strong>en</strong> ferm<strong>en</strong>tación(como macro-oxig<strong>en</strong>ación o micro-oxig<strong>en</strong>ación)limita el impacto de compuestos <strong>azufrados</strong>volátiles de dos formas: a) permiti<strong>en</strong>do que <strong>la</strong> levadurasintetice ácidos grasos y esteroles y así soportaSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>mejor el estrés y b) increm<strong>en</strong>tando el pot<strong>en</strong>cial redoxy reduci<strong>en</strong>do <strong>la</strong> pres<strong>en</strong>cia de <strong>azufrados</strong> volátiles. Otroefecto del oxíg<strong>en</strong>o es que puede reaccionar con elH2S y formar S y agua. El azufre se eliminará despuéspor medio de los trasiegos.En postferm<strong>en</strong>tación también se puede utilizar el oxíg<strong>en</strong>o<strong>para</strong> contro<strong>la</strong>r los problemas de reducción y loscompuestos <strong>azufrados</strong> volátiles. Los compuestos <strong>azufrados</strong>son s<strong>en</strong>sibles al oxíg<strong>en</strong>o y el aporte de oxíg<strong>en</strong>oreducirá su conc<strong>en</strong>tración. Comúnm<strong>en</strong>te se aceptaque <strong>la</strong> reacción que ocurre es (Zoecklein, 2007):O 2CH 3-SH H 3C-S-S-CH 30.2 ppb 12 ppbComo se observa, los compuestos <strong>azufrados</strong> no desaparec<strong>en</strong>sino cambian a otras formas con umbralesde percepción más altos. Pero esta reacción es reversibley <strong>en</strong> ambi<strong>en</strong>te reductor se puede volver a formartioles.Pero no hay que olvidar que otra reacción es posible<strong>en</strong> pres<strong>en</strong>cia de oxíg<strong>en</strong>o y es <strong>la</strong> reacción <strong>en</strong>tre <strong>la</strong>s quinonasformadas por oxidación de f<strong>en</strong>oles con los grupos–SH de los compuestos <strong>azufrados</strong> (Waterhouse yLaurie, 2006).Así, estudios realizados micro-oxig<strong>en</strong>ando <strong>vinos</strong> tintoshan mostrado que los <strong>vinos</strong> con micro-oxig<strong>en</strong>aciónt<strong>en</strong>ían m<strong>en</strong>os niveles de metanotiol y etanotiol quelos <strong>vinos</strong> testigo, disminuy<strong>en</strong>do su conc<strong>en</strong>tración pordebajo de su umbral aromático y además no se detectóacumu<strong>la</strong>ción de disulfuros (McCord, 2003).Es muy importante mant<strong>en</strong>er el sufici<strong>en</strong>te aporte deoxig<strong>en</strong>o <strong>para</strong> producir continuam<strong>en</strong>te quinonas queatrap<strong>en</strong> <strong>la</strong>s nuevas molécu<strong>la</strong>s azufradas que se pued<strong>en</strong>ir formando durante el <strong>en</strong>vejecimi<strong>en</strong>to del vino,tanto por hidrólisis de tioésteres o por condicionesanaerobias.b) Mejora de <strong>la</strong> estabilidad del colorLa importancia del oxíg<strong>en</strong>o <strong>en</strong> <strong>la</strong> evolución del colordel vino tinto ya se conoce desde hace tiempo, tantocon respecto a <strong>la</strong> oxidación de polif<strong>en</strong>oles como<strong>la</strong> <strong>la</strong> formación de nuevos compuestos más establesderivados de los antocianos. Entre <strong>la</strong>s reacciones queocurr<strong>en</strong> como consecu<strong>en</strong>cia de <strong>la</strong> pres<strong>en</strong>cia de oxíg<strong>en</strong>ohay que incluir los cambios <strong>en</strong> <strong>la</strong> longitud de <strong>la</strong>scad<strong>en</strong>as de taninos, que afecta a <strong>la</strong> astring<strong>en</strong>cia, y <strong>la</strong>formación de piranantocianos y compuestos unidospor pu<strong>en</strong>te de etilo (por <strong>la</strong> pres<strong>en</strong>cia de acetaldehído)Pon<strong>en</strong>cias33


03. La micro-oxig<strong>en</strong>ación de <strong>vinos</strong> tintos: Control de <strong>la</strong> reducción y estabilización del colorFigura. Com<strong>para</strong>ción de <strong>la</strong> conc<strong>en</strong>tración deetanotiol, metanotiol y dimetilsulfuro <strong>en</strong> <strong>vinos</strong>control, micro-oxig<strong>en</strong>ados, micro-oxig<strong>en</strong>adosy con aplicación de due<strong>la</strong>s de roble y microoxig<strong>en</strong>adosy con aplicación de segm<strong>en</strong>tos deroble (adaptado de McCord, 2003).que son mas estables que los antocianos originales,dando lugar a una mayor estabilidad e int<strong>en</strong>sidad delcolor de los <strong>vinos</strong> micro-oxig<strong>en</strong>ados (Timber<strong>la</strong>ke y Bridle,1976; Francia-Aricha et al., 1997; Sa<strong>la</strong>s et al., 2004).La correcta aplicación de <strong>la</strong> técnica <strong>para</strong> conseguirlos mayores b<strong>en</strong>eficios va a dep<strong>en</strong>der del periodo deaplicación y el tipo de vino a micro-oxig<strong>en</strong>ar. Fundam<strong>en</strong>talm<strong>en</strong>te,<strong>la</strong>s mayores v<strong>en</strong>tajas <strong>la</strong>s vamos a <strong>en</strong>contrarcuando el vino esté equilibrado, <strong>la</strong> proporción deantocianos-taninos sea correcta y haya una cantidadimportante de antocianos libres. Si no hay sufici<strong>en</strong>tesantocianos libres <strong>en</strong> el vino <strong>para</strong> reaccionar se puedeacumu<strong>la</strong>r acetaldehído y verse favorecida <strong>la</strong> polimerizaciónde taninos, hasta que <strong>la</strong>s molécu<strong>la</strong>s formadassean tan grandes que precipit<strong>en</strong>. Los diversos <strong>en</strong>sayosrealizados han puesto de manifiesto que <strong>la</strong> etapa compr<strong>en</strong>dida<strong>en</strong>tre ferm<strong>en</strong>tación alcohólica y ferm<strong>en</strong>taciónmaloláctica es <strong>la</strong> que mejores resultados suele dar poruna alta pres<strong>en</strong>cia de antocianos libres, ácido pirúvicoy aus<strong>en</strong>cia de SO 2. Esto se observa <strong>en</strong> los trabajos deCano-López et al. (2006), donde se ha puesto de manifiestoque se observa un increm<strong>en</strong>to <strong>en</strong> <strong>la</strong> int<strong>en</strong>sidadde color fundam<strong>en</strong>talm<strong>en</strong>te <strong>en</strong> el primer periodo demicrooxig<strong>en</strong>ación (<strong>en</strong>tre <strong>la</strong> ferm<strong>en</strong>tación alcohólica yel inicio de <strong>la</strong> ferm<strong>en</strong>tación maloláctica) <strong>en</strong> los <strong>vinos</strong>microoxig<strong>en</strong>ados. Al finalizar <strong>la</strong> ferm<strong>en</strong>tación malolácticase observó <strong>en</strong> todos ellos un desc<strong>en</strong>so, probablem<strong>en</strong>teconsecu<strong>en</strong>cia de <strong>la</strong> variación del pH y <strong>la</strong>precipitación de materia coloidal que arrastra materiacolorante. Aunque el aporte de oxig<strong>en</strong>o durante el segundoperiodo (se com<strong>en</strong>zó cuando <strong>la</strong> ferm<strong>en</strong>taciónalcohólica ya esta finalizada) fue m<strong>en</strong>or, se observó d<strong>en</strong>uevo un aum<strong>en</strong>to de int<strong>en</strong>sidad de color <strong>en</strong> los <strong>vinos</strong>microoxig<strong>en</strong>ados, difer<strong>en</strong>ciándose todos los <strong>vinos</strong> <strong>en</strong>color, y observándose también el efecto de <strong>la</strong> dosis deoxíg<strong>en</strong>o aplicada. El increm<strong>en</strong>to de color se adscribió auna mayor conc<strong>en</strong>tración de piranoantocianos y com-Figura. Evolución del grado medio de polimerización de los taninos <strong>en</strong> <strong>vinos</strong> micro-oxig<strong>en</strong>ados y suscorrespondi<strong>en</strong>tes testigos (W1: vino de bajo cont<strong>en</strong>ido polif<strong>en</strong>ólico, W2: vino de cont<strong>en</strong>ido polif<strong>en</strong>ólicomedio, W3: vino de alto cont<strong>en</strong>ido polif<strong>en</strong>ólico). Adaptado de Cano-López et al. 2008Conc<strong>en</strong>tración de <strong>la</strong>s principales familias de antocianos y compuestos derivados <strong>en</strong> <strong>vinos</strong> de Monastrellmicro-oxig<strong>en</strong>ados (Cano-López et al., 2006).<strong>Compuestos</strong> id<strong>en</strong>tificados t0 tfControl Control Dosis 1 Dosis 2Antocianos monoméricos (mg L-1) 277.9±4.2c 185±0.9b 178±7.4b 159±16.1aAductos directos (µg L-1) 1900±87a 2121±51b 1945±84a 1858±110aSuma de Piranoantocianos 14872±374b 9974±225a 14524±99b 14091±16b<strong>Compuestos</strong> unidos por etilo (µg L-1) 5008±46a 5503±14a 5883±18b 6262±145cPico polimérico (mg L-1) 19.7±0.2a 19.2±0.7a 21.6±2ab 23.4±1.1b34


Evolución desde final de ferm<strong>en</strong>tación alcohólicahasta <strong>la</strong> finalización del proceso de microoxig<strong>en</strong>aciónde <strong>la</strong> int<strong>en</strong>sidad de color <strong>en</strong> <strong>vinos</strong>(no se aplicó <strong>la</strong> micro-oxig<strong>en</strong>ación durante <strong>la</strong>ferm<strong>en</strong>tación maloláctica)puestos unidos por pu<strong>en</strong>te de etilo <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados(Cano-López et al., 2006).También los efectos de <strong>la</strong> micro-oxig<strong>en</strong>ación sobrelos taninos del vino han sido estudiados (Cano-Lópezet al., 2008). Se han observado difer<strong>en</strong>tes comportami<strong>en</strong>toscon respecto a <strong>la</strong> evolución del grado mediode polimerización. Este parámetro siempre se increm<strong>en</strong>ta<strong>en</strong> el primer periodo (fin de ferm<strong>en</strong>taciónalcohólica-inicio de ferm<strong>en</strong>tación maloláctica) <strong>para</strong>Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>todos los <strong>vinos</strong> y después cae, excepto <strong>para</strong> el vino decont<strong>en</strong>ido f<strong>en</strong>ólico bajo. Este increm<strong>en</strong>to se correspondea <strong>la</strong> fase estructurante descrita <strong>en</strong> <strong>la</strong>s observacionesempíricas y suele ocurrir incluso cuando no seestá aplicando oxig<strong>en</strong>o al vino. La reducción que seobserva después, principalm<strong>en</strong>te <strong>en</strong> los <strong>vinos</strong> de cont<strong>en</strong>idof<strong>en</strong>ólico medio y alto micro-oxig<strong>en</strong>ados puedeser debido a un rearreglo estructural de los taninosa formas mas cortas, y ésto se asocia a un desc<strong>en</strong>so<strong>en</strong> astring<strong>en</strong>cia. También <strong>la</strong> reacción de estas cad<strong>en</strong>asmas cortas con antocianos reducirá <strong>la</strong> astring<strong>en</strong>cia. Elcomportami<strong>en</strong>to difer<strong>en</strong>te del vino de cont<strong>en</strong>ido f<strong>en</strong>ólicobajo microoxig<strong>en</strong>ado puede estar re<strong>la</strong>cionadocon una sobre-oxig<strong>en</strong>ación del vino, debido a su bajocont<strong>en</strong>ido <strong>en</strong> antocianos libres.El conjunto de observaciones realizadas <strong>en</strong> el trabajode Cano-López et al. (2008) pone de manifiesto como<strong>la</strong> micro-oxig<strong>en</strong>ación mejora <strong>la</strong>s características de los<strong>vinos</strong> de mas alto cont<strong>en</strong>ido f<strong>en</strong>ólico por t<strong>en</strong>er altascantidades de antocianos libres, increm<strong>en</strong>tándose sucolor y mejorando notablem<strong>en</strong>te su estructura.Todas estas observaciones nos llevan a concluir que <strong>la</strong>micro-oxig<strong>en</strong>ación es una técnica de aplicación muyinteresante <strong>en</strong> <strong>vinos</strong> tintos, sobre todo <strong>en</strong> <strong>vinos</strong> conpot<strong>en</strong>cial f<strong>en</strong>ólico. No acelera el <strong>en</strong>vejecimi<strong>en</strong>to perosi lo puede optimizar y ayudar a contro<strong>la</strong>r problemasde reducción <strong>en</strong> los <strong>vinos</strong>.Pon<strong>en</strong>ciasBibliografíaCano-López, M.; Pardo-Mínguez, F.; López-Roca,J.M.; Gómez-P<strong>la</strong>za, E. (2006). Effect of microoxyg<strong>en</strong>ationon anthocyanin and derived pigm<strong>en</strong>t cont<strong>en</strong>tand chromatic characteristics of red wines. AmericanJournal of Enology and Viticulture 57, 325-331.Cano-López, M.; Pardo-Mínguez, F.; Schmauch, G.;Saucier, C.; Teissedre, C.; López-Roca, J.M.; Gómez-P<strong>la</strong>za, E. (2008). Effect of Micro-oxyg<strong>en</strong>ation on Colorand Anthocyanin-Re<strong>la</strong>ted Compounds of Wines withDiffer<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>ts. Journal of Agricultural andFood Chemistry, 56, 5932-5941Francia-Aricha, E.; Guerra, M.T.; Rivas-Gonzalo,J.; Santos-Buelga, C. (1997). New anthocyanin pigm<strong>en</strong>tsformed after cond<strong>en</strong>sation with f<strong>la</strong>vanols. Journalof Agricultural and Food Chemistry, 45, 2262-2266.Rauhut. D (2002). Vo<strong>la</strong>tile sulfur compounds. Impacton reduced sulfur f<strong>la</strong>vor defects and atypical aging inwine. 31st Annual New York Wine Industry Confer<strong>en</strong>ce.Sa<strong>la</strong>s, E.; Atanasova, V.; Poncet-Legrand, E.; Meudec,E.; Mazauriz, J.; Cheynier, V. (2004). Demostrationof occurr<strong>en</strong>ce of f<strong>la</strong>vanol-anthocyanin adducts inwine and model solutions. Analytica Chimica Acta, 213,367-370.Singleton, V. (1987). Oxyg<strong>en</strong> with ph<strong>en</strong>ols and re<strong>la</strong>tedreactions in musts, wines and model systems. Observationsand practical implications. American Journalof Enology and Viticulture, 38, 69-77.Timber<strong>la</strong>ke, C.; Bridle, P. (1976). Interaction betwe<strong>en</strong>anthocyanins, ph<strong>en</strong>olic compounds and acetaldehydeand their significance in red wines. AmericanJournal of Enology and Viticulture, 27, 97-105.Vidal, S., Aagaard, O. (2008). Oxyg<strong>en</strong> managem<strong>en</strong>tduring vinification and storage of Shiraz wine. WineIndustry Journal, 23, www. Winebiz.com.auWaterhousse, A.; Laurie, F. (2006). Oxidation of wineph<strong>en</strong>olics. A critical evaluation and hypothesis. AmericanJournal of Enology and Viticulture, 57, 306-312.Zoecklein, B. (2006). Sulfur compounds: impact onaroma, f<strong>la</strong>vor and texture and practical managem<strong>en</strong>t.Enology notes, 113Zoecklein, B. (2007). Factors impacting sulfur-like offodors in wine and winery options. 8th Annual Enologyand Viticulture British Columbia Wine Grape CouncilConfer<strong>en</strong>ce.35


04. ¡Los compuestosvolátiles no sontodos perjudiciales!Los tioles varietalesy el sulfuro dedimetiloRémi GUERIN-SCHNEIDERInstitut Français de <strong>la</strong> Vigne et du VinENTAV-ITV FranceCont<strong>en</strong>ido38 1. Los tioles varietales39 2. El sulfuro de dimetilo40 Conclusión


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Rémi Guerin-SchneiderIng<strong>en</strong>iero Agrónomo y Enólogo,Schneider, completa su formacióncon una Tesis Doctoral, <strong>en</strong> e<strong>la</strong>ño 2001, sobre el pot<strong>en</strong>cial aromáticode los <strong>vinos</strong> de Muscadet.Ing<strong>en</strong>iero de Investigación y Desarrolloel Instituto francés de <strong>la</strong>Viña y del Vino desde 2001, está<strong>en</strong>cargado del Proyecto “Útiles ymétodos de caracterización de <strong>la</strong>calidad de uvas y <strong>vinos</strong>”Particu<strong>la</strong>rm<strong>en</strong>te especializado<strong>en</strong> el análisis de compuestosaromáticos de <strong>vinos</strong> y de susprecursores, Remi Schneider, esautor de numerosas publicacionesci<strong>en</strong>tíficas c<strong>en</strong>tradas <strong>en</strong> <strong>la</strong>puesta apunto de metodologíasanalíticas s<strong>en</strong>sibles y fiables,particu<strong>la</strong>rm<strong>en</strong>te empleando diluciónisotópica, así como métodosde estimación del pot<strong>en</strong>cia<strong>la</strong>romático de uvas proced<strong>en</strong>tesde viñedos de alta producción.Desde el año 2006, coordina unprograma de investigación (UMT« Qualinnov ») agrupando equiposde el INRA y del IFV.Publicaciones principalesR. SCHNEIDER, A. RAZUNGLES, C. AUGIER, R. BAUMES, 2001. Monoterp<strong>en</strong>icand Norisopr<strong>en</strong>oidic Glycoconjugates of Vitis vinifera L. cv. Melon B. asPrecursors of Odorants in Muscadet Wines. J. Chromatogr., 936, 145-147.R. SCHNEIDER, A. RAZUNGLES, F. CHARRIER, R. BAUMES, 2002. Effet dusite, de <strong>la</strong> maturité, et de l’éc<strong>la</strong>irem<strong>en</strong>t des grappes sur <strong>la</strong> composition aromatiquedes baies de Vitis vinifera L. cv. Melon B. dans le vignoble du Muscadet.Bulletin de l’OIV,855-856, 269-283.A. BELANCIC-MAJCENOVIC, R. SCHNEIDER, J.P. LEPOUTRE, V. LEMPE-REUR, R. BAUMES, 2002. Synthesis and Stable Isotope Dilution Assay ofEthanethiol and Diethyl Sulfide in Wine using Solid Phase Microextraction.Effect of Aging on their Levels in Wine. J. Agric. Food Chem., 50, 6653-6658.R. SCHNEIDER, Y. KOTSERIDIS, J.L. RAY, C. AUGIER, R. BAUMES, 2003.Quantitative Determination of Sulfur-Containing Wine Odorants at sub-ppbLevels. Part II : Developm<strong>en</strong>t and Application of a Stable Isotope DilutionAssay. J. Agric. Food Chem., 51, 3243-3248.R. SCHNEIDER, F. CHARRIER, M. MOUTOUNET, R. BAUMES, 2004. RapidAnalysis of Grape Aroma Glycoconjugates using Fourrier-Transform InfraredSpectrometry and Chemometric Techniques. Analytica Chimica Acta, 513,91-96.C. PROUTEAU, R. SCHNEIDER, Y. LUCCHESE, F. NEPVEU, R. RENARD, C.VACA-GARCIA, 2004. Improving Headspace Solid phase Microextraction of3-Isobutyl-2-methoxypyrazine by Experim<strong>en</strong>tal Design with Regard to StableIsotope Dilution Gas Chromatography- Mass Spectrometry Analysis ofWine. Analytica Chimica Acta, 513, 223-227.DÍAZ-MAROTO M.C., SCHNEIDER R., BAUMES R., 2005. Formation pathwaysof ethyl esters of branched short-chain fatty acids during wine aging.J. Agric. Food Chem., 53, 3503-3509.DAGAN L., SCHNEIDER R., LEPOUTRE J.P., BAUMES R., 2006. Stability ofsotolon in acidic and basic aqueous solutions. Application to the synthesisof a deuterated analogue for its quantitative determination in wine. AnalyticaChimica Acta, 563, 365-374.SCHNEIDER R., CHARRIER F.,RAZUNGLES A., BAUMES R., 2006. Evid<strong>en</strong>cefor an alternative biog<strong>en</strong>etic pathway leading to 3-mercaptohexanol and4-mercapto-4-methylp<strong>en</strong>tan-2-one in wines. Analytica Chimica Acta, 563,58-64.M. SUBILEAU, R. SCHNEIDER, JM. SALMON, E. DEGRYSE, 2008 Nitrog<strong>en</strong>catabolite repression modu<strong>la</strong>tes the production of aromatic thiols characteristicofSauvignonB<strong>la</strong>nc at the level of precursor transport, FEMS Yeast Res,8, 771–780Pon<strong>en</strong>cias37


04. ¡Los compuestos volátiles no son todos perjudiciales! Los tioles varietales y el sulfuro de dimetiloLos compuestos <strong>azufrados</strong> volátiles están pres<strong>en</strong>tes<strong>en</strong> gran número <strong>en</strong> los <strong>vinos</strong>. Se acostumbra a se<strong>para</strong>rlos<strong>en</strong> dos c<strong>la</strong>ses distintas, los compuestos sulfurososligeros, cuyo punto de ebullición es inferior a 90ºC,y los compuestos sulfurosos pesados que pres<strong>en</strong>tanun punto de ebullición más elevado. Esta c<strong>la</strong>sificación,práctica por su simplicidad, aporta sin embargo escasainformación acerca de <strong>la</strong> naturaleza de los compuestosy de su orig<strong>en</strong>.Si nos ad<strong>en</strong>tramos con más detalle <strong>en</strong> el tema, <strong>en</strong>contramostres grandes familias de compuestos <strong>en</strong>términos de estructura química: los tioles, los mono-opolisulfuros y los tiol-éster.De manera g<strong>en</strong>eral, <strong>la</strong>s funciones químicas azufradasconfier<strong>en</strong> a estos compuestos olores desagradables,int<strong>en</strong>sos, que son percibidos negativam<strong>en</strong>te. No obstante,cuando su peso molecu<strong>la</strong>r aum<strong>en</strong>ta, el efectonegativo del grupo funcional sulfuroso se at<strong>en</strong>úa y<strong>la</strong>s percepciones olfativas de los compuestos son másagradables. Así pues, <strong>la</strong> mayor parte de los compuestossulfurosos ligeros, principalm<strong>en</strong>te <strong>en</strong> productos <strong>en</strong> cursode ferm<strong>en</strong>tación son perjudiciales <strong>para</strong> <strong>la</strong> calidad de<strong>la</strong>roma, mi<strong>en</strong>tras que los compuestos sulfurados máspesados, pued<strong>en</strong> contribuir de manera favorable a mejorarel perfil aromático de los <strong>vinos</strong>. Es concretam<strong>en</strong>teel caso de los tioles varietales (Tominaga et al. 1998) ydel sulfuro de dimetilo (Ségurel, 2005).1. Los tioles varietalesLos compuestos sulfurosos varietales se forman durante<strong>la</strong> ferm<strong>en</strong>tación a partir de los S- conjugados a <strong>la</strong>cisteina de <strong>la</strong> uva. Estos S-conjugados a <strong>la</strong> L-cisteina oprecursores cisteinicos han sido evid<strong>en</strong>ciados e id<strong>en</strong>tificadosdirectam<strong>en</strong>te <strong>en</strong> <strong>la</strong> uva reci<strong>en</strong>tem<strong>en</strong>te (Darrietet al., 1993; Tominaga et al., 1995; Tominaga et al.,1998b). Únicam<strong>en</strong>te 3 de estos precursores han sidoid<strong>en</strong>tificados formalm<strong>en</strong>te <strong>en</strong> <strong>la</strong> uva : <strong>la</strong> S-(1-hidroxihex-3-yl)-L-cisteina(P3MH), el S-(4-metil-2-oxop<strong>en</strong>t-4-yl)-L-cisteina (P4MMP) y el S-(4-metill-2-hidroxip<strong>en</strong>t-4-yl)-L-cisteina (P4MMPOH ; (Tominaga et al., 1995;Tominaga et al., 1998b). Este último intervi<strong>en</strong>e raram<strong>en</strong>te<strong>en</strong> el aroma del futuro vino.Debido a <strong>la</strong>s dificultades analíticas han sido publicadospocos datos cuantitativos acerca de los S-conjugadosa <strong>la</strong> cisteina. Sus cont<strong>en</strong>idos son reducidos y no superan<strong>la</strong> c<strong>en</strong>t<strong>en</strong>a de ug/L <strong>en</strong> caso del P3MH, el más abundante,<strong>en</strong> el mosto del Sauvignon B<strong>la</strong>nc, (Peyrot desGachons et al., 2000; Peyrot des Gachons et al., 2002a;Peyrot des Gachons et al., 2005 Dagan, 2006). En cuantoa sus evoluciones durante <strong>la</strong> maduración de <strong>la</strong> uva,se muestran variables <strong>en</strong> función del precursor y de <strong>la</strong>añada (Peyrot des Gachons et al., 2000, Dagan, 2006).En <strong>la</strong> baya de <strong>la</strong> uva, <strong>la</strong> P4MMP se reparte por igual <strong>en</strong><strong>la</strong> piel y <strong>en</strong> <strong>la</strong> pulpa mi<strong>en</strong>tras que el P3MH está mayoritariam<strong>en</strong>tepres<strong>en</strong>te <strong>en</strong> <strong>la</strong> piel (Murat et al., 2001b;Peyrot des Gachons et al., 2002a). Así pues, <strong>la</strong> maceraciónpelicu<strong>la</strong>r afecta principalm<strong>en</strong>te al P3MH, cuyascantidades recuperadas <strong>en</strong> el mosto son más importantes<strong>en</strong> re<strong>la</strong>ción a una vinificación clásica (Murat etal., 2001b; Peyrot des Gachons et al., 2002a).Cabe seña<strong>la</strong>r igualm<strong>en</strong>te <strong>la</strong> pres<strong>en</strong>cia <strong>en</strong> los mostosde Sauvignon B<strong>la</strong>nc de un conjugado del 3 mercaptohexanolo glutathion que será el precursor biog<strong>en</strong>éticodel conjugado a <strong>la</strong> cisteina correspondi<strong>en</strong>te,por hidrólisis de los dos aminoácidos asociados a <strong>la</strong>cisteina del glutation (Peyrot des Gachons et al., 2001).Más reci<strong>en</strong>tem<strong>en</strong>te (Fedrizzi et al, 2009) un conjugadode <strong>la</strong> 4MMP al glutathion, ha sido formalm<strong>en</strong>te id<strong>en</strong>tificado<strong>en</strong> un mosto de Sauvignon.Aún que poco abundantes y poco numerosos, estosprecursores cisteinicos contribuy<strong>en</strong> sin embargo<strong>en</strong> gran manera al aroma del vino. Son <strong>en</strong> efecto elorig<strong>en</strong> de cuatro tioles extremadam<strong>en</strong>te olorosos,aus<strong>en</strong>tes <strong>en</strong> <strong>la</strong> uva, pero responsables <strong>en</strong> el vino d<strong>en</strong>otas olfativas reconocibles cuando sus cont<strong>en</strong>idosson los sufici<strong>en</strong>tes el 3-sulfanilhexan-1-ol (3MH), e<strong>la</strong>cetato de 3-sulfanylhexyle (ac3MH), el 4-metil-4-sulfanilp<strong>en</strong>tan-2-one(4MMP), pres<strong>en</strong>tando umbrales depercepción olfativa muy bajos, respectivam<strong>en</strong>te de 60ng/L, 4,2 ng/L y 0,8 ng/L <strong>en</strong> solución hidroalcohólica(Tominaga et al., 2000). Estos pres<strong>en</strong>tan respectivam<strong>en</strong>teolores de pomelo, de corteza de cítricos y deboj, que participan de manera importante <strong>en</strong> el afrutadode numerosos <strong>vinos</strong> b<strong>la</strong>ncos y rosados.Si <strong>la</strong> 4MMP parece específica de un reducido númerode variedades (Sauvignon, Bacchus, Scheurebe), el3-sulfanyl-hexanol y su acetato han sido observados<strong>en</strong> un gran número de variedades. Estos participanno so<strong>la</strong>m<strong>en</strong>te <strong>en</strong> el aroma de los <strong>vinos</strong> de numerosasvariedades b<strong>la</strong>ncas como pued<strong>en</strong> ser <strong>la</strong> Gewürztraminer,Scheurebe, Colombard, Petit Mans<strong>en</strong>g, MelonB<strong>la</strong>nc sino igualm<strong>en</strong>te <strong>en</strong> tintas, como <strong>en</strong> <strong>la</strong> Garnacha,Merlot, Cabernet franc, Cabernet Sauvignon, Syrah,Mourvèdre, Cinsault (Darriet et al., 1993; Darriet et al.,1995; Güth, 1997a; Tominaga et al., 2000; Tominaga etal., 1996; Güth, 1997a; Bouchilloux et al., 1998; Kotseridiset Baumes, 2000; Lopez et al., 2003; Murat et al.,2003; Schneider et al., 2003; Fretz et al., 2005, Ferreiraet al., 2002, Schneider et Masson, 2009). Estudiosreci<strong>en</strong>tes (Ferreira et al 2002; Masson et Schneider,2009), han demostrado que el mercaptohexanol erapor otra parte un aroma c<strong>la</strong>ve <strong>en</strong> los <strong>vinos</strong> rosados deGarnacha, y más concretam<strong>en</strong>te <strong>en</strong> los Rosados deProv<strong>en</strong>ce (Masson et Schneider, 2009).Esta ubicuidad del 3MH es <strong>en</strong> parte debida a unasegunda vía de formación de este tiol durante <strong>la</strong> ferm<strong>en</strong>tación,no prov<strong>en</strong>i<strong>en</strong>te de S-conjugados a <strong>la</strong> cisteinade <strong>la</strong> uva, sino al añadido de fu<strong>en</strong>tes sulfurosas al(E)-2-hex<strong>en</strong>al <strong>en</strong> un mosto <strong>en</strong> ferm<strong>en</strong>tación (Schneideret al., 2006). Esta vía de formación ha sido por otra38


parte demostrada <strong>en</strong> <strong>la</strong>s mismas condiciones <strong>para</strong> el4-metil-4-sulfanil-p<strong>en</strong>tan-2-one vía oxido de mesitilo,pero este último o su hidrato no ha sido jamás <strong>en</strong>contrado<strong>en</strong> <strong>la</strong> uva. Vías análogas han sido por otra parteevid<strong>en</strong>ciadas <strong>para</strong> el 2-furanmetanetiol (umbral depercepción olfativa de 5ng/l <strong>en</strong> el vino tinto), responsablede <strong>la</strong>s notas de café tostado de los <strong>vinos</strong> e<strong>la</strong>borados<strong>en</strong> barricas de roble (B<strong>la</strong>nchard, 2001), y podríanexplicar <strong>la</strong> formación de otros tioles olorosos del vino,como el 3-mercapto-3-metilbutan-1-ol.Es durante <strong>la</strong> ferm<strong>en</strong>tación cuando <strong>la</strong> levadura, porinterv<strong>en</strong>ción de <strong>la</strong>s <strong>en</strong>zimas de tipo liasa, libera lostioles olorosos por ruptura de <strong>la</strong> asociación C-S de <strong>la</strong>parte cisteina de los precursores cisteinicos de <strong>la</strong> uva(Tominaga et al., 1998b). Los r<strong>en</strong>dimi<strong>en</strong>tos de transformaciónde los precursores cisteinicos al final de <strong>la</strong>ferm<strong>en</strong>tación <strong>en</strong> difer<strong>en</strong>tes cepas de levadura Saccharomycescerevisiae son débiles y variables, indep<strong>en</strong>di<strong>en</strong>tem<strong>en</strong>tede cual sea el precursor estudiado <strong>en</strong> elmedio de muestra o natural, aunque <strong>la</strong> mayor partede los precursores iniciales se hayan degradado : de0,06% a 0,6% <strong>para</strong> <strong>la</strong> P4MMP (Murat et al., 2001a), yde 0,6% a 10,2 % <strong>para</strong> el P3MH ( Murat et al., 2001b).En lo re<strong>la</strong>tivo al ac3MH que no ti<strong>en</strong>e <strong>en</strong> <strong>la</strong> uva ningúnS-conjugado a <strong>la</strong> cisteina, es igualm<strong>en</strong>te <strong>la</strong> levaduraqui<strong>en</strong> lo forma mediante aceti<strong>la</strong>ción del 3MH, al igualque ésta aceti<strong>la</strong> los alcoholes de su metabolismo nitrog<strong>en</strong>ado.Así pues, <strong>la</strong> formación de estos tioles por <strong>la</strong>levadura dep<strong>en</strong>de mucho de <strong>la</strong> cepa de levadura, delmosto y de <strong>la</strong>s condiciones de ferm<strong>en</strong>tación e inclusode algunas cepas salvajes de Saccharomyces bayanusvar. Uvarum eran especialm<strong>en</strong>te activas (Murat et al.,2001a; Masneuf et al., 2002; Howell et al., 2004; Dubourdieuet al., 2006 ; Masneuf-Pomarede et al., 2006,Subileau, 2008).En lo re<strong>la</strong>tivo a <strong>la</strong> evolución de estos tioles olorososdurante <strong>la</strong> conservación del vino, sus cont<strong>en</strong>idosdisminuy<strong>en</strong> g<strong>en</strong>eralm<strong>en</strong>te, pero esta disminucióndep<strong>en</strong>de <strong>en</strong> gran parte de los f<strong>en</strong>óm<strong>en</strong>os de oxidaciónligados a esta conservación. Así los factores queprevi<strong>en</strong><strong>en</strong> <strong>la</strong> alteración del pot<strong>en</strong>cial reductor del vino(contacto limitado con el oxig<strong>en</strong>o, dióxido de azufre,lías, glutathion, antocianos) limitan estas pérdidas <strong>en</strong>tioles olorosos (Murat et al., 2003).2. El sulfuro de dimetiloEl sulfuro de dimetilo (DMS) es un compuesto sulfurosoligero evid<strong>en</strong>ciado por Du Plessis et Loubster (1974)<strong>en</strong> el vino, <strong>en</strong> el que sus umbrales de percepción olfativaeran del ord<strong>en</strong> de 25 µg/l. Sus cont<strong>en</strong>idos <strong>en</strong> los<strong>vinos</strong> jóv<strong>en</strong>es eran más bi<strong>en</strong> inferiores a este umbral,pero podían alcanzar los 900 µg/l <strong>en</strong> <strong>vinos</strong> más evolucionados(Dagan 2006 y refer<strong>en</strong>cia m<strong>en</strong>cionada). ElDMS es uno de los constituy<strong>en</strong>tes importantes de<strong>la</strong>roma de trufas, una nota olfativa a m<strong>en</strong>udo citada<strong>para</strong> el bouquet de reducción de los grandes <strong>vinos</strong>Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>tintos y de los <strong>vinos</strong> de v<strong>en</strong>dimia tardía (Du Plessis et Loubster, 1974; Spedding et Raut, 1982; Anocibar-Beloqui, 1998). En los <strong>vinos</strong> tintos, de débil conc<strong>en</strong>traciónparece amplificar <strong>la</strong>s notas de frutas rojas, mi<strong>en</strong>trasque <strong>en</strong> fuertes conc<strong>en</strong>traciones, contribuye a <strong>la</strong>snotas de garriga, olivas y trufas (Ségurel, 2005; Escudroet al, 2007). Contrariam<strong>en</strong>te sería percibido más bi<strong>en</strong>de manera negativa <strong>en</strong> los <strong>vinos</strong> b<strong>la</strong>ncos (Goniak etNoble, 1987).Durante <strong>la</strong> ferm<strong>en</strong>tación, el DMS es liberado por <strong>la</strong>acción de <strong>la</strong>s levaduras a partir de aminoácidos <strong>azufrados</strong>,<strong>en</strong> especial <strong>la</strong> cisteina, el glutation, <strong>la</strong> S-ad<strong>en</strong>osilmetionina(Schreier et al., 1974; De Mora et al., 1986;Anocibar Beloqui, 1998). Sin embargo, el DMS producidopor <strong>la</strong>s ferm<strong>en</strong>taciones es <strong>en</strong> gran medida eliminadopor arrastre por el CO2, ya que es muy volátil(punto de ebullición 37°C/1 atm). Así pues, sus cont<strong>en</strong>idos<strong>en</strong> los <strong>vinos</strong> <strong>en</strong> proceso de finalizar su ferm<strong>en</strong>taciónson g<strong>en</strong>eralm<strong>en</strong>te muy inferiores a su umbral depercepción, pero pued<strong>en</strong> producirse <strong>en</strong> cantidadeselevadas, asociados a otros compuestos <strong>azufrados</strong>ligeros nauseabundos, <strong>en</strong> los <strong>vinos</strong> que pres<strong>en</strong>tan eldefecto de olor a reducción (Park et al., 1994).No obstante, algunos trabajos han mostrado que loscont<strong>en</strong>idos <strong>en</strong> DMS se increm<strong>en</strong>tan con el tiempo y<strong>la</strong> temperatura durante el proceso de <strong>en</strong>vejecimi<strong>en</strong>to<strong>en</strong> botel<strong>la</strong>, hasta llegar ha alcanzar cont<strong>en</strong>idos delord<strong>en</strong> de mg/L, (Marais, 1979; De Mora et al., 1986; DeMora et al., 1993; Anocibar Beloqui, 1998; Ségurel etal., 2004; Dagan, 2006). El DMS así producido durante<strong>en</strong> el <strong>en</strong>vejecimi<strong>en</strong>to, sería percibido de manera favorable<strong>en</strong> <strong>la</strong> génesis del bouquet de reducción de losgrandes <strong>vinos</strong> tintos y de los <strong>vinos</strong> de v<strong>en</strong>dimia tardía,contrariam<strong>en</strong>te a su percepción <strong>en</strong> los <strong>vinos</strong> b<strong>la</strong>ncosjóv<strong>en</strong>es (ver más arriba). Estas informaciones s<strong>en</strong>sorialesson sin embargo bastante limitadas y deberán sercompletadas <strong>para</strong> el conjunto de <strong>la</strong>s variedades y desus difer<strong>en</strong>tes tipos de vino.Por otra parte, un método de mediad de los precursoresdel DMS <strong>en</strong> el vino ha sido reci<strong>en</strong>tem<strong>en</strong>te desarrol<strong>la</strong>do,(Ségurel et al., 2005), el cual realiza una estimacióncorrecta del DMS susceptible de ser liberado<strong>en</strong> el vino durante el <strong>en</strong>vejecimi<strong>en</strong>to (Ségurel et al.,2005). Además, estos trabajos han demostrado que<strong>la</strong> uva posee igualm<strong>en</strong>te un PDMS. Entre los derivadosdel metil-sulfonium a día de hoy conocido <strong>en</strong><strong>la</strong>s p<strong>la</strong>ntas (Howard et Russell, 1997), únicam<strong>en</strong>te elSMM podría ser el precursor del DMS, pres<strong>en</strong>te <strong>en</strong> <strong>la</strong>uva, <strong>la</strong> SMM sería transmitida al vino, donde liberaríaDMS por medio de una reacción de degradación químicadurante su conservación. La formación de DMSseguiría un proceso químico l<strong>en</strong>to, dep<strong>en</strong>di<strong>en</strong>do de<strong>la</strong> duración y de <strong>la</strong>s condiciones de conservación. Deesta manera, <strong>la</strong>s difer<strong>en</strong>cias <strong>en</strong> <strong>la</strong>s conc<strong>en</strong>traciones deDMS <strong>para</strong> <strong>vinos</strong> de edades equival<strong>en</strong>tes, se explicaríanes<strong>en</strong>cialm<strong>en</strong>te por <strong>la</strong>s difer<strong>en</strong>cias de PDMS inicial<strong>en</strong> el embotel<strong>la</strong>do.Pon<strong>en</strong>cias39


04. ¡Los compuestos volátiles no son todos perjudiciales! Los tioles varietales y el sulfuro de dimetiloLos análisis de uvas efectuados a día de hoy han reve<strong>la</strong>doun pot<strong>en</strong>cial <strong>en</strong> DMS extremadam<strong>en</strong>te heterogéneo,y a veces muy elevado <strong>en</strong> algunas muestras deuva de <strong>la</strong> variedad Petit y Gros Mans<strong>en</strong>g <strong>en</strong> estado desobremaduración, de hasta 4,5 mg/L (Dagan, 2006),mucho más elevado que los cont<strong>en</strong>idos <strong>en</strong>contrados<strong>en</strong> <strong>la</strong> Garnacha y el Syrah <strong>en</strong> maduración tecnológica(Ségurel et al., 2004). Para <strong>la</strong>s muestras de estas cuatrovariedades, <strong>la</strong>s únicas estudiadas a día de hoy, elPDMS es dep<strong>en</strong>di<strong>en</strong>te de <strong>la</strong> variedad, del terr<strong>en</strong>o y de<strong>la</strong> añada, y sus cont<strong>en</strong>idos aum<strong>en</strong>tan de manera muyimportante <strong>en</strong> estado de sobremaduración <strong>en</strong> el casode <strong>la</strong> variedad Mans<strong>en</strong>g, los únicos estudios realizadosa día de hoy <strong>para</strong> este parámetro. Sin embargo, <strong>en</strong>algunas de <strong>la</strong>s muestras de estas cuatro variedades, elPDMS de <strong>la</strong>s uvas, quizás mucho más elevado que <strong>en</strong>los <strong>vinos</strong> correspondi<strong>en</strong>tes, <strong>la</strong> simple degradación químicano puede explicar estas pérdidas a veces considerablesde transmisión de PDMS. Las causas de estaspérdidas son a día de hoy desconocidas, pero exist<strong>en</strong>varias hipótesis que podrían explicar<strong>la</strong>s. La hipótesisde <strong>la</strong> degradación de <strong>la</strong> SMM por <strong>la</strong>s levaduras es muyp<strong>la</strong>usible, ya que ha sido descubierta reci<strong>en</strong>tem<strong>en</strong>teuna nueva permeasa, capaz de transportar de maneraespecífica <strong>la</strong> SMM, que permitiría a <strong>la</strong> Saccharomycescerevisiae utilizar <strong>la</strong> SMM como fu<strong>en</strong>te de azufre(Rouillon et al., 1999), pero <strong>la</strong> evolución de <strong>la</strong> SMM <strong>en</strong><strong>la</strong> levadura no ha sido todavía estudiada. Sea cual sea,el DMS formado sería casi <strong>en</strong>teram<strong>en</strong>te eliminado porarrastre por el gas carbónico durante <strong>la</strong> ferm<strong>en</strong>taciónalcohólica o mediante simple vaporización mi<strong>en</strong>trasel vino no esté <strong>en</strong> un medio cerrado.ConclusiónLos compuestos sulfurados juegan un papel importante<strong>en</strong> el aroma de los <strong>vinos</strong>. Si los compuestos sulfuradosligeros, excepto el DMS, son sistemáticam<strong>en</strong>tevectores de defectos organolépticos cuando superansus umbrales de detección olfativa, los compuestossulfurados más pesados pued<strong>en</strong> conferir notas olfativasmuy interesantes y refinadas. Es especialm<strong>en</strong>te elcaso de los tioles varietales, caracterizados por sus notasde cítricos y de boj de los Sauvignon, que de unamanera g<strong>en</strong>eral aportan frescor y afrutado a los <strong>vinos</strong>.El caso del DMS se muestra mucho más complejo sicabe, por una parte su efecto realzante <strong>en</strong> bajas conc<strong>en</strong>traciones,pero que <strong>en</strong> elevadas conc<strong>en</strong>tracionespuede ser percibido negativam<strong>en</strong>te <strong>en</strong> algunos tiposde <strong>vinos</strong> b<strong>la</strong>ncos.Así pues, disponemos a día de hoy de numerososelem<strong>en</strong>tos tecnológicos <strong>para</strong> contro<strong>la</strong>r y dominar loscont<strong>en</strong>idos de estos compuestos <strong>en</strong> los <strong>vinos</strong>, no hayque olvidar que el aroma de un vino es un conjuntocomplejo, y que al exacerbar uno u otro de sus compon<strong>en</strong>tes,nos arriesgamos a desequilibrar el perfi<strong>la</strong>romático y ofrecer simplem<strong>en</strong>te una caricatura.40


Influ<strong>en</strong>ce of theTiming of Nitrog<strong>en</strong>Additions duringSynthetic GrapeMust Ferm<strong>en</strong>tationson Ferm<strong>en</strong>tationKinetics andNitrog<strong>en</strong>ConsumptionBeltran, G.; Esteve-Zarzoso, B.; Rozès, N.; Mas, A. AndGuil<strong>la</strong>món J.M.Unitat d’Enologia del C<strong>en</strong>tre de Referència deTecnologia d’Alim<strong>en</strong>ts, Departm<strong>en</strong>t Bioquímica iBiotecnologia, Facultat d’Enologia de Tarragona,Universitat Rovira i Virgili, Ramón y Cajal, 70, 43005Tarragona, Spain, and Bodegas Miguel Torres, MiquelTorres i Carbó 6, 08720 Vi<strong>la</strong>franca del P<strong>en</strong>edès,Barcelona, SpainNitrog<strong>en</strong> defici<strong>en</strong>cies in grape musts are one of the maincauses of stuck or sluggish wine ferm<strong>en</strong>tations. In thepres<strong>en</strong>t study, we have supplem<strong>en</strong>ted nitrog<strong>en</strong>-defici<strong>en</strong>tferm<strong>en</strong>tations with a mixture of ammonium and aminoacids at various stages throughout the alcoholic ferm<strong>en</strong>tation.The timing of the nitrog<strong>en</strong> additions influ<strong>en</strong>cedthe biomass yield, the ferm<strong>en</strong>tation performance, thepatterns of ammonium and amino acid consumption,and the production of secondary metabolites. These nitrog<strong>en</strong>additions induced a nitrog<strong>en</strong>-repressed situationin the cells, and this situation determined which nitrog<strong>en</strong>sources were selected. Glutamine and tryptophan werethe main amino acids consumed in all the ferm<strong>en</strong>tations.Ammonium is the preferred nitrog<strong>en</strong> source for biomassproduction but was hardly consumed wh<strong>en</strong> it was addedin the final stages of the ferm<strong>en</strong>tation. The higher ammoniumconsumption in some ferm<strong>en</strong>tations corre<strong>la</strong>tedwith a greater synthesis of glycerol, acetate, and acetaldehydebut with a lower synthesis of higher alcohols.KEYWORDS: Saccharomyces cerevisiae; AlcoholicFerm<strong>en</strong>tation; Amino acids; Ammonium; GAP1;MEP2Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>INTRODUCTIONThe nitrog<strong>en</strong> composition of grape musts affects thegrowth and metabolism of yeast, the ferm<strong>en</strong>tationrate, and the completion of ferm<strong>en</strong>tation (1). Nitrog<strong>en</strong>defici<strong>en</strong>cies are one of the main causes of stuckor sluggish ferm<strong>en</strong>tations. One way of avoiding theseproblems is to add nutritional supplem<strong>en</strong>ts, usuallyinorganic forms of nitrog<strong>en</strong> such as ammonium salts,to grape must prior to ferm<strong>en</strong>tation (2-4). These additionsare g<strong>en</strong>erally made empirically in wine cel<strong>la</strong>rs,and the initial nitrog<strong>en</strong> conc<strong>en</strong>tration in the must orthe nitrog<strong>en</strong> requirem<strong>en</strong>ts of the usual yeast strainused in the cel<strong>la</strong>r are not determined. Yeasts respondmetabolically to differ<strong>en</strong>ces in nitrog<strong>en</strong> avai<strong>la</strong>bility, sothis <strong>la</strong>ck of control of nitrog<strong>en</strong> leads to differ<strong>en</strong>ces inwine composition.Nitrog<strong>en</strong> affects yeast cells in two ways: it increasesbiomass production and stimu<strong>la</strong>tes the rate of sugarutilization. Nitrog<strong>en</strong> additions during the period of cellgrowth have resulted in maximum cell popu<strong>la</strong>tions.Later additions during the stationary phase have hadno effect on the cell popu<strong>la</strong>tion but have increasedthe specific ferm<strong>en</strong>tation rate, thus reducing the l<strong>en</strong>gthof the ferm<strong>en</strong>tation (2, 5, 6).Nitrog<strong>en</strong> supplem<strong>en</strong>tation affects the pattern of nitrog<strong>en</strong>uptake. Ammonium is a preferred yeast nitrog<strong>en</strong>source, and wh<strong>en</strong> pl<strong>en</strong>tiful, it represses the expressionof catabolic pathways by degrading other nitrog<strong>en</strong>ouscompounds (7, 8). This mechanism, called nitrog<strong>en</strong>catabolite repression (NCR), has rec<strong>en</strong>tly be<strong>en</strong> studiedduring wine ferm<strong>en</strong>tations (9). It inhibits the uptake ofarginine and a<strong>la</strong>nine and stimu<strong>la</strong>tes the consumptionof branched-chain and aromatic amino acids. Changesin the nitrog<strong>en</strong> uptake patterns influ<strong>en</strong>ce the productionof aroma and spoi<strong>la</strong>ge compounds (particu<strong>la</strong>rlyhydrog<strong>en</strong> sulfide) and the amount of urea, the majorprecursor of the carcinog<strong>en</strong> ethyl carbamate (10 -1 3).The vo<strong>la</strong>tiles id<strong>en</strong>tified in wines are usually dominatedby ferm<strong>en</strong>tation products. Organic acids, higheralcohols, and esters are the main group of f<strong>la</strong>vor compoundscoming from yeast metabolism (12). Higheralcohols can be produced either by the catabolicconversion of the branched-chain amino acids (viaEhrlich) or by the anabolic formation of these aminoacids de novo from a sugar substrate (14). An excess ofhigher alcohols (above 400 mg L -1 ) can be regarded asa negative influ<strong>en</strong>ce on the quality of wine, but at theconc<strong>en</strong>trations g<strong>en</strong>erally found in wines (below 300mg L -1 ), they usually contribute to the desirable complexityof wine. Furthermore, these alcohols, togetherwith the acids in wine, are substrates for ester formation.Most esters, with the exception of ethyl acetate,impart a pleasant smell of fruits and flower notes inthe wine (15).Textos asociadosJ. Agric. Food Chem. 2005, 53, 996 - 100241


Influ<strong>en</strong>ce of the Timing of Nitrog<strong>en</strong> Additions during Synthetic Grape Must Ferm<strong>en</strong>tations on Ferm<strong>en</strong>tation Kinetics and Nitrog<strong>en</strong> ConsumptionAs m<strong>en</strong>tioned, in winemaking, most of the nitrog<strong>en</strong>additions are made empirically and do not take intoaccount the differ<strong>en</strong>t nitrog<strong>en</strong> needs of the cell duringwine ferm<strong>en</strong>tation, the proper timing of theseadditions, or the nitrog<strong>en</strong> source added. In this study,we supplem<strong>en</strong>ted nitrog<strong>en</strong>-defici<strong>en</strong>t ferm<strong>en</strong>tationswith a mixture of ammonium and amino acidsat differ<strong>en</strong>t stages of the alcoholic ferm<strong>en</strong>tation. Weth<strong>en</strong> studied the effect of these additions on the ferm<strong>en</strong>tationkinetics, the consumption of organic andinorganic nitrog<strong>en</strong> throughout the ferm<strong>en</strong>tation, andthe influ<strong>en</strong>ce of this consumption on the organolepticprofile of the wines. We also monitored the effectof the nitrog<strong>en</strong> supplem<strong>en</strong>tations on the NCR systemand the effect of the nitrog<strong>en</strong>-repressed situation onnitrog<strong>en</strong> uptake.MATERIALS AND METHODSStrain, Ferm<strong>en</strong>tations, and Sampling. A commercialSaccharomyces cereVisiae Var. bayanus wine strainQA23 (Lallemand S. A., Toulouse, France) was used inthis study. Ferm<strong>en</strong>tations were carried out in a syntheticgrape must (pH 3.3) as described by Riou et al. (16)but with 200 g L -1 of reducing sugars (100 g L -1 Glucoseand 100 g L -1 Fructose) and without anaerobic factors.Only the nitrog<strong>en</strong> cont<strong>en</strong>t changed in the differ<strong>en</strong>tferm<strong>en</strong>tations.The yeast assimi<strong>la</strong>ble nitrog<strong>en</strong> (YAN) cont<strong>en</strong>t in thecontrol synthetic grape must was 300 mg N L -1 , ammoniacalnitrog<strong>en</strong> (NH4Cl) 120 mg N L -1 , and aminoacids 180 mg N L -1 (Table 2). This medium also contained426 mg L -1 of Proline, but it should not be consideredas assimi<strong>la</strong>ble nitrog<strong>en</strong> (17). The proportionsof the differ<strong>en</strong>t amino acids and ammonium weremaintained in all the ferm<strong>en</strong>tations. Nitrog<strong>en</strong>limitedferm<strong>en</strong>tations were carried out with 60 mg L -1 of YAN(24 mg L -1 of ammoniacal nitrog<strong>en</strong> and 36 mg L -1 ofamino acid nitrog<strong>en</strong>), and 240 mg L -1 of YAN nitrog<strong>en</strong>was added at differ<strong>en</strong>t ferm<strong>en</strong>tation points (96 mg L -1of ammoniacal nitrog<strong>en</strong> and 144 mg L -1 of amino acidnitrog<strong>en</strong>).The supplem<strong>en</strong>tation points were chos<strong>en</strong> by monitoringthe decrease in d<strong>en</strong>sity of the media. D<strong>en</strong>sity wasmeasured throughout the ferm<strong>en</strong>tation by weighing5 mL, and nitrog<strong>en</strong> was added wh<strong>en</strong> the d<strong>en</strong>sity ofthe must was 1060 g L -1 (30 h after inocu<strong>la</strong>tion), 1040 gL -1 (72 h), 1020 g L -1 (144 h), and 1000 g L -1 (240 h). Ferm<strong>en</strong>tationstook p<strong>la</strong>ce at room temperature (22-28 °C)in <strong>la</strong>boratory-scale ferm<strong>en</strong>ters: 2 L bottles filled with1.8 L of medium and fitted with closures that <strong>en</strong>abledthe carbon dioxide to escape and the samples to beremoved. Ferm<strong>en</strong>tations were in semi-anaerobic conditionssince limited aeration was necessary in orderto harvest samples for the subsequ<strong>en</strong>t analysis. Thepopu<strong>la</strong>tion inocu<strong>la</strong>ted in every f<strong>la</strong>sk was 2 106 cellmL -1 from dry yeast rehydrated in water at 37 °C.In the <strong>la</strong>tter stages of the ferm<strong>en</strong>tation, the sugarconsumption was assayed by <strong>en</strong>zymatic kits (RocheApplied Sci<strong>en</strong>ce, Germany). Ferm<strong>en</strong>tation was consideredto be complete wh<strong>en</strong> the residual sugars werebelow 2 g L -1 . Cell growth was determined by absorbanceat 600 nm. Absorbance values were correctedfor the initial absorbance reading obtained for juice.Cells were harvested at differ<strong>en</strong>t points during theferm<strong>en</strong>tation so that mRNA could be analyzed. F<strong>la</strong>skswere magnetically stirred to resusp<strong>en</strong>d settled biomass,transferred to c<strong>en</strong>trifuge tubes, and c<strong>en</strong>trifugedat 5000 rpm for 5 min at room temperature to prev<strong>en</strong>ttemperature shock. Cell pellets were transferred to 1.5mL Epp<strong>en</strong>dorf tubes and froz<strong>en</strong> immediately in liquidnitrog<strong>en</strong>. They were kept at -80 °C until they wereanalyzed. The supernatant of these samples was storedat -20 °C for extracellu<strong>la</strong>r metabolites and nitrog<strong>en</strong>cont<strong>en</strong>t analysis.Nitrog<strong>en</strong> Cont<strong>en</strong>t Analysis. YAN was analyzed bythe formol index method (18), and the ammoniumcont<strong>en</strong>t was quantified using an <strong>en</strong>zymatic method(Roche Applied Sci<strong>en</strong>ce, Germany). The individua<strong>la</strong>mino and imino acids were analyzed by OPA andFMOC derivatizations, respectively, using the Agil<strong>en</strong>t1100 Series HPLC equipped with a low-pressure gradi<strong>en</strong>tquaternary pump, a thermostated autosampler,a DAD ultraviolet detector, and a fluoresc<strong>en</strong>ce detector(Agil<strong>en</strong>t Technologies, Germany). The sample (2 íL)was injected into a 4.6 mm 250 mm 5 ím HypersilODS column (Agil<strong>en</strong>t Technologies, Germany). Thegradi<strong>en</strong>t solv<strong>en</strong>t system was: solv<strong>en</strong>t A (16 mM sodiumacetate and 0.022% triethy<strong>la</strong>mine, adjusted topH 7.2 with 1-2% acetic acid, and 0.6% tetrahydrofuran)from 100% at t ) 0 to 0% at t ) 18 min, and solv<strong>en</strong>tB (20% of 66 mM sodium acetate, adjusted to pH7.2 with 1-2% acetic acid, 40% acetonitrile and 40%methanol) from 0% at t ) 0 to 100% at t ) 18 min. Theanalysis temperature was 40 °C, and the flow rate was1.5 mL min -1 . Several dilutions of each sample wereanalyzed and averaged using the analysis software.The conc<strong>en</strong>tration of each amino acid was calcu<strong>la</strong>tedusing external and internal standards and expressedas mg L -1 . The software used was Agil<strong>en</strong>t ChemStationPlus (Agil<strong>en</strong>t Technologies, Germany).Ethanol, Glycerol, and Organic Acid Analysis. Ethanol,glycerol, and organic acids were analyzed in allthe samples at the <strong>en</strong>d of the ferm<strong>en</strong>tation process.Analytical HPLC was carried out on a Hewlett- PackardHP 1050 connected to a Hewlett-Packard Integrator3395 equipped with an HP 1047 RI detector (Agil<strong>en</strong>tTechnologies, Wilmington, DE) (19). The wine sample(450 íL) was mixed with 50 íL of formic acid (internalstandard), and 25 íL was injected into a 300 mm 7.8mm AMINEX HPX-87H column (BioRad, Hercules, CA).The solv<strong>en</strong>t used was sulfuric acid 2.5 mM at 0.5 mLmin -1 . The analysis temperature was 60 °C. The con-42


c<strong>en</strong>tration of each metabolite was calcu<strong>la</strong>ted usingexternal and internal standards.Fatty Acid Analysis. Fatty acids were extracted usingthe method published by Lo´pez et al. (20). AnalyticalGC was carried out on a Hewlett-Packard 6890N connectedto a computer with the ChemStation software(Agil<strong>en</strong>t Technologies, Wilmington, DE). The extract(2 íL) was injected (splitless, 0.75 min) into a Tracer TRcolumn of 60 m 250 ím and 0.25 ím phase thicknesswith an HP automatic injector (Agil<strong>en</strong>t). The temperatureprogram was 40 °C for 5 min followed by 2 °Cmin -1 to 240 °C (15 min). Injector and detector temperatureswere 220 and 240 °C, respectively. The carriergas was hydrog<strong>en</strong> at 60 mL min -1 . 2-Ethylph<strong>en</strong>ol (0.2mg L -1 ) was added as internal standard. Internal patternswere used to estimate the quantity of the differ<strong>en</strong>tcompounds.Analysis of Higher Alcohols and Esters. Higheralcohols and esters were extracted by liquid/liquidextraction (wine 10 mL, 200 íL 1,1,2- trichlorotrifluoroethane,0.5 g NaCl), with n-decanol (0.2 mg L -1 ) asinternal standard (21). After agitation for 2 min andc<strong>en</strong>trifugation, the organic phase was extracted and 2íL was injected. The chromatographic program used isthe same as that used for the fatty acid analysis.Quantification was conducted by comparison withknown quantities of differ<strong>en</strong>t products in a hydro alcoholicsolution.RNA Extraction and cDNA Synthesis. Total RNA wasiso<strong>la</strong>ted from yeast samples as described by Sierkstraet al. (22) and resusp<strong>en</strong>ded in 50 íL of DEPC-treatedwater. Total RNA susp<strong>en</strong>sions were purified using theHigh Pure Iso<strong>la</strong>tion kit (Roche Applied Sci<strong>en</strong>ce, Germany)following the protocol provided by the manufacturer.RNA conc<strong>en</strong>trations were determined usinga G<strong>en</strong>Quant spectrophotometer (Pharmacia, Canada),and the quality of RNA was verified electrophoreticallyon 0.8% agarose gels. Solutions and equipm<strong>en</strong>t weretreated so that they were RNase free, as outlined inSambrook et al. (23).Total RNA was reverse-transcripted with SuperscriptII RNase Hreverse transcriptase (Invitrog<strong>en</strong>, Carlsbad,CA) in a G<strong>en</strong>Amp PCR System 2700 (Applied Biosystems,Foster City, CA). Oligo (dT)12 -1 8 primer ( 0.5 íg,Invitrog<strong>en</strong>) was used with 0.8 íg of total RNA as temp<strong>la</strong>tein a reaction volume of 20 íL. Following the protocolprovided by the manufacturer, after d<strong>en</strong>aturationat 70 °C for 10 min, cDNA was synthesized at 42°C for 50 min. Finally, the reaction was inactivated at70 °C for 15 min.Real-Time Quantitative PCR. The PCR primers usedin this study are ACT-F, TGGATTCCGGTGATGGTGTT,and ACT-R, CGGCCAAATCGATTCTCAA (ACT, for actineg<strong>en</strong>e); GAP1-F, CTGTGGATGCTGCTGCTTCA, andSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>GAP1-R, CAACACTTGGCAAACCCTTGA (GAP1, for g<strong>en</strong>era<strong>la</strong>mino acid permease g<strong>en</strong>e); and MEP2- F, GG-TATCATCGCTGGCCTAGTG, and MEP2-R, ACAACGGCT-GACCAGATTGG (MEP2, for ammonium permeaseg<strong>en</strong>e) (9).They were all designed with the avai<strong>la</strong>bleG<strong>en</strong>Bank sequ<strong>en</strong>ce data and the Primer Express software(Applied Biosystems) in accordance with theApplied Biosystems guidelines for designing PCR primersfor quantitative PCR. All amplicons were short,which <strong>en</strong>sured maximal PCR effici<strong>en</strong>cy and, therefore,the most precise quantification.For each g<strong>en</strong>e, a standard curve was made with yeastg<strong>en</strong>omic DNA. DNA extraction was performed as describedby Querol et al. (24), digested by RNase, andiso<strong>la</strong>ted by 2-fold ph<strong>en</strong>ol-chloroform extractions andethanol precipitation. Conc<strong>en</strong>tration was determinedusing a G<strong>en</strong>eQuant spectrophotometer (Pharmacia,Canada). Serial 10-fold dilutions of DNA were carriedout to yield DNA conc<strong>en</strong>trations from 4 to 4 10-5 ngíL -1 . These dilution series were amplified (in duplicate)by SYBR PCR for each g<strong>en</strong>e to obtain standard curves(see above). The standard curve disp<strong>la</strong>ys the Ct valuevs log10 of each standard’s starting quantity. The startingquantity of the unknown samples was calcu<strong>la</strong>tedagainst the standard curve by interpo<strong>la</strong>tion, and g<strong>en</strong>eexpression levels are shown as the conc<strong>en</strong>tration ofthe studied g<strong>en</strong>e normalized with the conc<strong>en</strong>trationof the housekeeping ACT g<strong>en</strong>e.The real-time quantitative PCR reaction was performedusing SYBR Gre<strong>en</strong> I PCR (Applied Biosystems).In SYBR PCR, amplification is monitored by the gainin fluoresc<strong>en</strong>ce of the double-strand-specific DNAbindingdye SYBR gre<strong>en</strong>. The 25 íL SYBR PCR reactionscontained 300 nM of each PCR primer, together with1 íL cDNA (or 5 íL of each DNA serial dilution for standardtubes) and one time SYBR master mix (AppliedBiosystems).All PCR reactions were mixed in 96-well optical p<strong>la</strong>tes(Applied Biosystems) and cycled in a PE AppliedBiosystems 5700 thermal cycler under the followingconditions: 50°C for 2 min, 95°C for 10 min, and 40 cyclesat 95°C for 15 s and at 60 °C for 60 s.The PE5700 cycler provided cycle-by-cycle measurem<strong>en</strong>tof the fluoresc<strong>en</strong>ce emission from each PCRreaction. Analysis resulted in the assignation of athreshold cycle (Ct) value to each PCR reaction.The Ct value is the cycle number at which an increasein reporter fluoresc<strong>en</strong>ce above a baseline signal canfirst be detected. The threshold was positioned to intersectthe expon<strong>en</strong>tial part of the amplification curveof positive reactions, as recomm<strong>en</strong>ded by AppliedBiosystems.The Ct value is inversely proportional to the log of theamount of temp<strong>la</strong>te in the PCR reaction; the lower theTextos asociados43


Influ<strong>en</strong>ce of the Timing of Nitrog<strong>en</strong> Additions during Synthetic Grape Must Ferm<strong>en</strong>tations on Ferm<strong>en</strong>tation Kinetics and Nitrog<strong>en</strong> ConsumptionCt value, the higher the conc<strong>en</strong>tration of temp<strong>la</strong>te inthe PCR reaction. Assuming a 100% effective PCR amplification,a differ<strong>en</strong>ce of one Ct value corresponds toa 21 ) 2-fold differ<strong>en</strong>ce in the amount of temp<strong>la</strong>te. Allsamples were analyzed in duplicate, and the expressionvalues were averaged by the analysis software(Applied Biosystems). The coeffici<strong>en</strong>t of variation in allsamples analyzed was less than 10%.RESULTSEffect of Nitrog<strong>en</strong> Addition on Ferm<strong>en</strong>tation Kineticsand Nitrog<strong>en</strong> Consumption. Five ferm<strong>en</strong>tationsstarted with a nitrog<strong>en</strong> cont<strong>en</strong>t of 60 mg L -1 , whichis low <strong>en</strong>ough for a ferm<strong>en</strong>tation to be sluggish buthigh <strong>en</strong>ough for it to finish.Four of these nitrog<strong>en</strong>-defici<strong>en</strong>t ferm<strong>en</strong>tations weresupplem<strong>en</strong>ted at differ<strong>en</strong>t points with 240 mg L -1 ofYAN; the first one at a d<strong>en</strong>sity of 1060 g L -1 , and thesecond, third, and fourth at 1040, 1020, and 1000 gL -1 , respectively. The remaining ferm<strong>en</strong>tation was notsupplem<strong>en</strong>ted, but subjected to nitrog<strong>en</strong> defici<strong>en</strong>cythroughout the process. As a ferm<strong>en</strong>tation control, weused the same medium with a nondefici<strong>en</strong>t amountof nitrog<strong>en</strong> (300 mgN L -1 ) (9).Figure 1 shows the effect of nitrog<strong>en</strong> additions on O.D. measures throughout the ferm<strong>en</strong>tations studied.The nitrog<strong>en</strong>defici<strong>en</strong>t ferm<strong>en</strong>tations had lower O. D.values than the control ferm<strong>en</strong>tation. Wh<strong>en</strong> nitrog<strong>en</strong>was added in the first half of the ferm<strong>en</strong>tations(d<strong>en</strong>sity of 1060 and 1040), these effects were almostovercome, and the O. D. values were simi<strong>la</strong>r to thoseof the control ferm<strong>en</strong>tation. Additions at d<strong>en</strong>sities of1020 and 1000, however, had minimal effects on O. D.measures.and amino acid nitrog<strong>en</strong>. Unlike their effect on the O.D. values, the nitrog<strong>en</strong> additions clearly stimu<strong>la</strong>ted theferm<strong>en</strong>tation regardless of wh<strong>en</strong> they were made. Inthe nitrog<strong>en</strong>-defici<strong>en</strong>t ferm<strong>en</strong>tation, yeast consumedthe total YAN after the first day (data not shown).However, nitrog<strong>en</strong> was not completely consumed inthe control ferm<strong>en</strong>tation. The nitrog<strong>en</strong> additions wereall carried out wh<strong>en</strong> the initial YAN had already be<strong>en</strong>depleted, and the <strong>la</strong>ter the nitrog<strong>en</strong> was added, thelower the amount of YAN was consumed (Table 2).The ammonium consumed was 54% of the total YANconsumed in the control ferm<strong>en</strong>tation (Table 2), butthis proportion decreased wh<strong>en</strong> nitrog<strong>en</strong> was added<strong>la</strong>ter in the ferm<strong>en</strong>tation. Ammonium was proportionallypreferred as the nitrog<strong>en</strong> source wh<strong>en</strong> the additionswere made in the first half of the ferm<strong>en</strong>tations(N1060 and N1040). In <strong>la</strong>ter additions (N1020 andN1000), the small amount of nitrog<strong>en</strong> consumed wasmostly from amino acids.The consumption of amino acids was monitored atdiffer<strong>en</strong>t points during the ferm<strong>en</strong>tations. The yeast’spattern of amino acid utilization changes with thetime of YAN supplem<strong>en</strong>tation (Table 2). The aminoFigure 1. Effect of nitrog<strong>en</strong> additions on O. D.measures (λ = 600 nm) throughout synthetic grapemust ferm<strong>en</strong>tations. The arrows indicate the timeof addition.Table 1 summarizes the evolution of the ferm<strong>en</strong>tationand nitrog<strong>en</strong> consumption, measured as ammoniumTable 1. Determination of Yeast Assimi<strong>la</strong>ble Nitrog<strong>en</strong> (YAN) in the Ferm<strong>en</strong>tation Media, Repres<strong>en</strong>ted bythe Amino Acid Fraction (YAN aas) and bythe Ammonium fraction (YAN NH 4+)d<strong>en</strong>sity(ρ)time(h)control ferm<strong>en</strong>tation N addition at F) 1060 Naddition at ρ = 1040YAN NH 4+(mg NL - 1 )YAN aas(mg NL - 1 )time(h)YAN NH 4+(mg NL - 1 )YAN aas(mg NL - 1 )time(h)YAN NH 42+(mg NL - 1 )YAN aas(mg NL - 1 )1080 0 120 168 0 25 41 0 25 401060 30 70 98 36 0.5 (90 a ) 4 (145 a ) 36 0.1 41040 56 52 95 62 50 105 78 0.1 (92 a ) 4 (136 a )1020 96 36 98 96 45 104 120 68 1041000 168 35 98 168 42 108 192 65 110990 (<strong>en</strong>d b ) 312 41 102 312 50 110 336 66 114d<strong>en</strong>sity(ρ)time(h)N addition at ρ =1020 N addition at ρ = 1000 no N additionYAN NH 4+(mg NL - 1 )YAN aas(mg NL - 1 )time(h)YAN NH 4+(mg NL - 1 )YAN aas(mg NL - 1 )time(h)YAN NH 4+(mg NL - 1 )YAN aas(mg NL - 1 )1080 0 25 41 0 26 40 0 26 401060 36 0 7 36 0 7 36 0 51040 78 0 7 78 0 4 78 0 21020 150 0 (92 a ) 4 (143 a ) 150 0 4 150 0 11000 240 81 109 264 0 (99 a ) 2 (147 a ) 264 1 1990 (<strong>en</strong>d b ) 408 88 118 456 100 130 504 1 144aNH 4+ and aas YAN cont<strong>en</strong>t just after the nitrog<strong>en</strong> addition. b End of ferm<strong>en</strong>tation.


aminoacidsSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Table 2. Total Consumption of Amino Acids and Ammonia at the End of Each Ferm<strong>en</strong>tationExpressed as mg N L -1acontrolconsumptionN1060consumptionN1040consumptionN1020consumptionN1000consumptionaIn the ferm<strong>en</strong>tations with nitrog<strong>en</strong> additions, post-add repres<strong>en</strong>ts the nitrog<strong>en</strong> tak<strong>en</strong> up after this addition.no Nconsumptionfull Nmediacont<strong>en</strong>t total total post-add total post-add total post-add total post-add totalGln 47.4 25.5 34.9 22.1 24.5 11.8 29.0 16.2 23.1 10.3 12.8Trp 10.3 6.6 6.8 4.2 7.7 4.1 8.1 4.5 7.8 4.1 3.6Thr 9.9 9.4 3.6 1.4 2.6 0.7 2.0 0.2 1.9 0.1 1.8His 3.8 3.7 1.5 1.5 1.2 1.2 0.8 0.8 0.4 0.4 −Leu 4.7 4.2 2.6 1.1 1.8 0.8 1.4 0.4 1.2 0.2 1.0Ile 3.8 3.2 1.8 0.6 1.4 0.7 0.8 0.2 0.7 0.1 0.6Phe 2.8 2.4 1.2 0.4 1.3 0.5 1.2 0.4 0.9 0.1 0.8Val 5.1 3.0 1.6 0.4 1.1 0.1 1.0 − 1.1 − 1.0Ser 7.5 2.8 2.9 0.8 1.7 − 1.7 − 1.9 0.1 1.8Met 1.8 1.8 1.1 0.5 1.0 0.6 0.6 0.3 0.5 0.2 0.3Lys 1.9 1.1 0.7 − 1.0 0.9 1.0 0.9 0.1 − 0.2Arg 47.9 0.6 5.9 − 9.0 0.9 8.8 0.7 8.2 − 8.2Tyr 1.4 0.4 0.2 − 0.3 − 0.3 − 0.3 − 0.3Glu 11.8 0.5 2.3 − 2.0 − 2.7 0.2 2.5 − 2.5Gly 3.1 0.2 − − − − − − 0.3 − 0.4A<strong>la</strong> 12.1 − 1.2 − 1.7 − 2.7 − 3.1 − 3.2Asp 4.2 − − − − − − − − − 0.1YAN aas 179.5 65.5 68.4 34.5 58.2 22.2 62.1 24.6 53.9 15.7 38.6YAN NH+ 4 120.0 79.2 64.9 39.5 51.4 26.0 29.5 4.1 25.4 − 25.4acids can be grouped in differ<strong>en</strong>t sets according tothe prefer<strong>en</strong>ce of the cell in the differ<strong>en</strong>t conditions.The amino acids that are most consumed are glutamineand tryptophan. Together they repres<strong>en</strong>ted 32% ofthe total assimi<strong>la</strong>ble amino acids of the synthetic grapemust (Table 2), and regardless of the ferm<strong>en</strong>tationconditions, their consumption accounted for 50% to65% of the total amino acids consumed.On the other hand, the consumption of arginine, glutamate,glycine, a<strong>la</strong>nine, and aspartate, which wereapproximately 44% of the total assimi<strong>la</strong>ble aminoacids in the medium (Table 2), was together hardly2% of the total amino acids consumed in the controlferm<strong>en</strong>tation. The consumption of these amino acidswas much higher in the ferm<strong>en</strong>tations supplem<strong>en</strong>tedwith nitrog<strong>en</strong>. However, yeast cells only consumedthese amino acids before the nitrog<strong>en</strong> addition: thatis, wh<strong>en</strong> the ferm<strong>en</strong>tations were nitrog<strong>en</strong>-defici<strong>en</strong>t.Last, there is one other set of amino acids, consistingof threonine, histidine, leucine, isoleucine, ph<strong>en</strong>y<strong>la</strong><strong>la</strong>nine,valine, and methionine, which was consumedproportionally more in the control ferm<strong>en</strong>tation thanin the supplem<strong>en</strong>ted ferm<strong>en</strong>tations.GAP1 and MEP2 G<strong>en</strong>e Expression. The expression ofthe nitrog<strong>en</strong> transporters GAP1 and MEP2 was analyzedand quantified re<strong>la</strong>tive to the expression of thehousekeeping actine g<strong>en</strong>e. Time zero was the expressionof yeast before inocu<strong>la</strong>tion (and after rehydration).Both g<strong>en</strong>es were repressed in the first hoursafter inocu<strong>la</strong>tion in the must-like medium (Figure 2).In the nitrog<strong>en</strong>-defici<strong>en</strong>t ferm<strong>en</strong>tation, these g<strong>en</strong>esstarted to be activated/de-repressed after 30 h, wh<strong>en</strong>nitrog<strong>en</strong> was almost depleted. The expression of bothg<strong>en</strong>es increased continuously during the first days offerm<strong>en</strong>tation and peaked after 4 and 6 days for GAP1Figure 2. G<strong>en</strong>e expression of ammonium permease(MEP2) and g<strong>en</strong>eral amino acid permease (GAP1) attime zero (before inocu<strong>la</strong>tion) and at differ<strong>en</strong>t pointsduring the control ferm<strong>en</strong>tation and the nitrog<strong>en</strong>defici<strong>en</strong>tferm<strong>en</strong>tation (without nitrog<strong>en</strong> addition). Thedata were quantified by calcu<strong>la</strong>ting the ratio betwe<strong>en</strong>the conc<strong>en</strong>tration of the studied g<strong>en</strong>es normalized withthe conc<strong>en</strong>tration of the housekeeping ACT g<strong>en</strong>e, andexpressed as a perc<strong>en</strong>tage (the quantity ratio 1 was setas 100%). YAN and ammonia consumption throughoutthe ferm<strong>en</strong>tations are also indicated.and MEP2, respectively. The expression of the g<strong>en</strong>esdecreased in the <strong>la</strong>st days of ferm<strong>en</strong>tation, after severaldays without a nitrog<strong>en</strong> source. On the other hand,the pres<strong>en</strong>ce of residual nitrog<strong>en</strong> in the control ferm<strong>en</strong>tationrepressed these g<strong>en</strong>es throughout.Textos asociados45


Influ<strong>en</strong>ce of the Timing of Nitrog<strong>en</strong> Additions during Synthetic Grape Must Ferm<strong>en</strong>tations on Ferm<strong>en</strong>tation Kinetics and Nitrog<strong>en</strong> ConsumptionFigure 3. Re<strong>la</strong>tive g<strong>en</strong>e expression of GAP1 andMEP2 at differ<strong>en</strong>t points in the first 24 h after th<strong>en</strong>itrog<strong>en</strong> addition. Time zero repres<strong>en</strong>ts the pointjust before this addition. The data were calcu<strong>la</strong>tedas in Figure 2.Figure 3 shows the g<strong>en</strong>e expression of GAP1 andMEP2 in the first 24 h after the nitrog<strong>en</strong> addition. Theywere both repressed in all the ferm<strong>en</strong>tations. However,the <strong>la</strong>ter the addition took p<strong>la</strong>ce in the ferm<strong>en</strong>tationprocess, the longer it took for the g<strong>en</strong>es to be repressed.Wh<strong>en</strong> nitrog<strong>en</strong> was added at the <strong>en</strong>d of theferm<strong>en</strong>tation (d<strong>en</strong>sity 1000), the effect was negligiblebecause of the low expression at this point.Analytical Profile. We analyzed the residual sugars,ethanol, glycerol, and acids in the wines obtainedfrom the differ<strong>en</strong>t ferm<strong>en</strong>tations and such f<strong>la</strong>vor compoundsas higher alcohols, vo<strong>la</strong>tile fatty acids, and esters,which arose from yeast metabolism (Table 3). The<strong>la</strong>ter the nitrog<strong>en</strong> addition was, the lower the conc<strong>en</strong>trationof glycerol, acetic acid, and acetaldehyde was.The higher alcohol cont<strong>en</strong>t was lower wh<strong>en</strong> excessnitrog<strong>en</strong> was avai<strong>la</strong>ble at the beginning of the ferm<strong>en</strong>tation(control ferm<strong>en</strong>tation and N1060). Thesediffer<strong>en</strong>t conc<strong>en</strong>trations were accounted for by theincrease in isoamyl alcohol and 2-ph<strong>en</strong>ylethanol.The conc<strong>en</strong>tration of these compounds increasedconsiderably in the ferm<strong>en</strong>tations with nitrog<strong>en</strong> additionsin the <strong>la</strong>ter phases (or no addition), and wereapproximately 2 and 5 times higher than in the controlferm<strong>en</strong>tation. The increase in isoamyl alcohol didnot lead to a corresponding clear increase in its ester(isoamyl acetate) in these ferm<strong>en</strong>tations, and theph<strong>en</strong>yl-2-ethanol acetate ester only increased slightly.In fact, the differ<strong>en</strong>ces in the conc<strong>en</strong>tration of thetotal acetate esters betwe<strong>en</strong> the ferm<strong>en</strong>tations weredue to the conc<strong>en</strong>tration of ethyl acetate, which wasmore than 95% of the total acetate esters.Table 3. Secondary Metabolites Produced by Yeastsduring the Differ<strong>en</strong>t Ferm<strong>en</strong>tations aIts conc<strong>en</strong>tration was higher in the control ferm<strong>en</strong>tationand the N1060 and 1040 ferm<strong>en</strong>tations, whichcorre<strong>la</strong>ted with a higher acetate conc<strong>en</strong>tration. Thediffer<strong>en</strong>ces in the conc<strong>en</strong>tration of fatty acids andtheir esters were smaller in the final products of theferm<strong>en</strong>tations.DISCUSSIONcontrolferm. N1060 N1040 N1020 N1000no NadditionAlcohols and Acids (gL 1)ethanol 98.7 97.2 98.0 98.0 98.7 101.1glycerol 6.56 6.57 6.32 6.11 5.78 6.12acetate 1.17 1.22 0.98 0.80 0.89 0.81acetaldehyde 0.33 0.28 0.26 0.25 0.24 0.22citrate 0.41 0.41 0.38 0.41 0.39 0.41succinate 0.13 0.21 0.27 0.26 0.23 0.23<strong>la</strong>ctate 0.04 0.05 0.04 0.03 0.02 0.02Higher Alcohols (mg L 1)n-propanol 37 33 28 20 13 12isobutanol 11 13 16 16 16 16isoamylic alcohol 50 48 81 97 94 94ph<strong>en</strong>yl-2-ethanol 11 21 42 46 53 43109 115 167 179 176 165Fatty Acids (mg L 1)isobutyric acid 0.39 0.40 0.43 0.39 0.50 0.41butyric acid 0.63 0.73 0.67 0.72 0.59 0.60isovaleric acid 0.63 0.37 0.30 0.44 0.80 0.60valeric acid 0.12 0.09 0.09 0.10 0.18 0.15hexanoic acid 2.06 1.58 1.40 1.53 1.90 1.85octanoic acid 2.30 1.95 1.84 2.34 2.43 2.49decanoic acid 0.39 0.37 0.21 0.19 0.14 0.46dodecanoic acid 0.16 0.14 0.09 0.16 0.32 0.286.70 5.63 5.02 5.87 6.86 6.83Acetate Esters (mg L 1 )ethyl acetate 35 35 32 25 19 28isobutyl acetate 0.023 0.024 0.012 0.016 0.011 0.011isoamyl acetate 0.49 0.46 0.39 0.69 0.39 0.29hexyl acetate 0.006 0.005 − − − −ph<strong>en</strong>yl-2-ethanol acetate 0.21 0.37 0.41 0.47 0.41 0.2935.73 35.86 32.81 26.18 19.81 28.59Fatty Acid Esters (mg L 1)ethyl butyrate 0.224 0.220 0.163 0.232 0.164 0.124ethyl isobutyrate 0.006 0.005 0.006 0.005 0.004 0.007ethyl hexanoate 0.089 0.071 0.23 0.31 0.23 0.085ethyl octanoate 0.022 0.022 0.060 0.081 0.059 0.020ethyl decanoate 0.002 0.004 0.019 0.024 0.019 0.0040.343 0.322 0.478 0.652 0.446 0.240aValues are the average of two determinations and thecoeffici<strong>en</strong>t of variation in all the compounds analyzedwas less than 10% with the exception of decanoic acid(18%), dodecanoic acid (38%), ethyl octanoate (16%),and ethyl decanoate (29%).The addition of nitrog<strong>en</strong> to grape musts, especiallyin the form of ammoniacal nitrog<strong>en</strong>, is a commonwinemaking practice that prev<strong>en</strong>ts nitrog<strong>en</strong>-re<strong>la</strong>tedferm<strong>en</strong>tation problems. Several studies, in whichgrape musts were supplem<strong>en</strong>ted with diammoniumphosphate, have proved that nitrog<strong>en</strong> supplem<strong>en</strong>tscan optimize ferm<strong>en</strong>tation performance (2-4). In thepres<strong>en</strong>t study, we supplem<strong>en</strong>ted a nitrog<strong>en</strong>-defici<strong>en</strong>tsynthetic must with a mixture of ammonium and aminoacids at differ<strong>en</strong>t stages of the alcoholic ferm<strong>en</strong>tation.Th<strong>en</strong> we studied the effect of these additions on46


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>the ferm<strong>en</strong>tation kinetics, the consumption of organicand inorganic nitrog<strong>en</strong> throughout the ferm<strong>en</strong>tation,and the influ<strong>en</strong>ce of this consumption on the aromacompound profile of the wines.We observed a reduction in the ferm<strong>en</strong>tation l<strong>en</strong>gthregardless of the time of addition and, consequ<strong>en</strong>tly, areduction in the total ferm<strong>en</strong>tation time. However, theferm<strong>en</strong>tation l<strong>en</strong>gth decreased ev<strong>en</strong> further wh<strong>en</strong> nitrog<strong>en</strong>was added during the expon<strong>en</strong>tial phase andyeast cells probably used this nitrog<strong>en</strong> for biomassproduction. These results <strong>la</strong>rgely agree with thosepreviously reported (2-4). However, the yeast strainQA23 used in this study seems to have low nitrog<strong>en</strong>requirem<strong>en</strong>ts. It used only 147 mg N L -1 in the controlferm<strong>en</strong>tation and finished it with only 60 mg N L -1 .Ag<strong>en</strong>bach (25) established that ferm<strong>en</strong>tations requirea minimal amount of 140 mg N L -1 to avoid gettingstuck. In fact, nitrog<strong>en</strong> demands and prefer<strong>en</strong>ces arestrain dep<strong>en</strong>d<strong>en</strong>t (26-28) and, therefore, it should betak<strong>en</strong> into account that we only used one strain.As in previous experim<strong>en</strong>tal studies (2, 6), we observedthat nitrog<strong>en</strong> additions during the period of cellgrowth resulted in an increase in cell biomass. Duringthe cell growth phase of the ferm<strong>en</strong>tation, most carbon-and nitrog<strong>en</strong>-containing compounds are divertedto biomass production. Wh<strong>en</strong> growth stops,however, only small amounts of these nutri<strong>en</strong>ts arerequired, primarily for cell maint<strong>en</strong>ance (3).The metabolism of nitrog<strong>en</strong> dep<strong>en</strong>ds heavily on itsuptake through the differ<strong>en</strong>t nitrog<strong>en</strong> transporters. Inthis study, we monitored the activity of the g<strong>en</strong>es <strong>en</strong>codingtwo important permeases in the transport ofamino acids (GAP1) and ammonium (MEP2) throughoutferm<strong>en</strong>tation. In a previous study (5), we observedthat both permeases were repressed in a nitrog<strong>en</strong>-richmedium by the mechanism called nitrog<strong>en</strong>catabolite repression (NCR). The pres<strong>en</strong>t study confirmsthis repression because in the control ferm<strong>en</strong>tationtheir expressions were almost negligible andin the limiting nitrog<strong>en</strong> condition their expressionsdropped sharply at the beginning, wh<strong>en</strong> nitrog<strong>en</strong> wasstill avai<strong>la</strong>ble, and increased continuously wh<strong>en</strong> it wasnot. The NCR of both transporters was fast and effective,as se<strong>en</strong> with the nitrog<strong>en</strong> additions, although thecell response to the excess of nitrog<strong>en</strong> in the mediumwas quicker wh<strong>en</strong> the nitrog<strong>en</strong> addition was in thefirst half of ferm<strong>en</strong>tation. During the <strong>la</strong>st stages of ferm<strong>en</strong>tation,ethanol cont<strong>en</strong>t is high and it is well establishedthat the first target of ethanol toxicity is thep<strong>la</strong>sma membrane (29, 30), which can be impaired fora long period of anaerobic growth. Therefore, the s<strong>en</strong>singsystem of the cell, mainly located in the p<strong>la</strong>smamembrane, may be affected by both effects (31).The mom<strong>en</strong>t of the ferm<strong>en</strong>tation process at whichthe NCR was established (by the nitrog<strong>en</strong> addition)determined the pattern of amino acid consumption.As previously reported (9), arginine, a<strong>la</strong>nine, aspartate,glutamate, and glycine were the amino acids that weremost affected by the NCR because they were hardlyconsumed wh<strong>en</strong> there was an excess of nitrog<strong>en</strong>. Infact, they were not tak<strong>en</strong> up until the medium was depletedof good nitrog<strong>en</strong> sources. These amino acidsmust be transported mainly by the g<strong>en</strong>eral amino acidpermease (Gap1p) or by other specific permeases alsosubjected to NCR. A simi<strong>la</strong>r uptake pattern for theseamino acids was previously reported in both syntheticand natural grape juices (1, 26). On the other hand, inbrewing conditions (32) arginine and glutamine wererapidly consumed whereas ammonium uptake wasde<strong>la</strong>yed. Branched-chain and aromatic amino acidsbehaved in a completely differ<strong>en</strong>t way.Except for tryptophan, they were mostly consumedin the first stages of the control ferm<strong>en</strong>tation: that is,wh<strong>en</strong> the cells were subjected to NCR from the beginningof the ferm<strong>en</strong>tation process. A common featureof the g<strong>en</strong>es that <strong>en</strong>code the permeases of thebranched-chain amino acids (BAP1 and BAP2) andaromatic amino acids (TAT1 and TAT2) is that they areinduced in a nitrog<strong>en</strong>-rich medium (33, 34).Regardless of the time of addition, glutamine andtryptophan were the main amino acids consumed afterthe nitrog<strong>en</strong> additions, and therefore, they may bevery important for the yeast cell metabolism throughoutthe process.Ammonium accounted for 40% of the total YAN ofthe ferm<strong>en</strong>tation media. However, its consumptiondep<strong>en</strong>ded on the timing of the addition. Ammoniumis the preferred nitrog<strong>en</strong> source for biomass productionbut was hardly consumed wh<strong>en</strong> it was added inthe final stages of the ferm<strong>en</strong>tation. These differ<strong>en</strong>cesin ammonium uptake are difficult to exp<strong>la</strong>in in termsof permease regu<strong>la</strong>tion. In the pres<strong>en</strong>t study and inour previous one (9), we detected that, the more nitrog<strong>en</strong>there was in the ferm<strong>en</strong>tation media, the morerepressed the three MEP g<strong>en</strong>es were. Marini et al. (35)have proposed two possible hypotheses to exp<strong>la</strong>inthis <strong>para</strong>dox: either the yeast possesses additiona<strong>la</strong>mmonium transport systems unre<strong>la</strong>ted to the Mepproteins, or highly conc<strong>en</strong>trated ammonium is tak<strong>en</strong>up into the cells by simple diffusion.The timing of the nitrog<strong>en</strong> additions directly determinedthe likely aroma characteristics of the wines.Glycerol increased in the ferm<strong>en</strong>tations with higherbiomass production and higher ammonium consumption.The re<strong>la</strong>tionship betwe<strong>en</strong> biomass formationand glycerol synthesis has already be<strong>en</strong> reported(36- 38). Likewise, a higher glycerol yield was also observedon a synthetic glucose-rich medium wh<strong>en</strong> ammoniumwas used as the sole nitrog<strong>en</strong> source insteadof a mixture of ammonium and amino acids (39). Michnicket al. (40) also re<strong>la</strong>ted the production of glycerolto the accumu<strong>la</strong>tion of acetate and acetaldehyde.Textos asociados47


Influ<strong>en</strong>ce of the Timing of Nitrog<strong>en</strong> Additions during Synthetic Grape Must Ferm<strong>en</strong>tations on Ferm<strong>en</strong>tation Kinetics and Nitrog<strong>en</strong> ConsumptionHigher alcohols were also affected by the changes innitrog<strong>en</strong> utilization. These compounds can be producedeither by the catabolic conversion of the branched-chainamino acids (via Ehrlich) or by the anabolicformation of these amino acids de novo froma sugar substrate (14, 15). Our results show that theanabolic route is of greater importance because theincrease in isoamyl alcohol and 2-ph<strong>en</strong>yl ethanol wasinversely proportional to the consumption of leucineand ph<strong>en</strong>y<strong>la</strong><strong>la</strong>nine, respectively.Furthermore, the closer the nitrog<strong>en</strong> conc<strong>en</strong>trationis to the growth-limiting level, the higher the yield offusel alcohols is.There is also an inverse corre<strong>la</strong>tion betwe<strong>en</strong> ammoniumconsumption and the production of fusel alcohols(12). A greater conc<strong>en</strong>tration of higher alcoholsdid not seem to determine an increase in esters. Incontrast, the acetate conc<strong>en</strong>tration seemed to determinea greater conc<strong>en</strong>tration of acetate esters, especiallyethyl acetate.In conclusion, our study shows the quantity and qualityof the nitrog<strong>en</strong> demands of the wine strain QA23.Although further studies should be carried out withother wine strains, our data show that cell growthand ferm<strong>en</strong>tation have differ<strong>en</strong>t preferred nitrog<strong>en</strong>sources. Nitrog<strong>en</strong> additions always improved ferm<strong>en</strong>tationperformance but had a minimal effect on biomassproduction wh<strong>en</strong> added in the second half ofthe ferm<strong>en</strong>tation. These nitrog<strong>en</strong> additions subjectedthe cells to NCR and changed the profile of nitrog<strong>en</strong>consumption. The differ<strong>en</strong>ces in the pattern of nitrog<strong>en</strong>consumption were re<strong>la</strong>ted to differ<strong>en</strong>t aromacompound compositions in the wines. In our opinion,this study is a starting point for further investigationinto using an ammonium/amino acid mixture as nitrog<strong>en</strong>supplem<strong>en</strong>tation in the wine industry and theeffect that these additions have on yeast physiology,ferm<strong>en</strong>tation performance, and wine quality.ACKNOWLEDGMENTThis work was supported by grant AGL2000-0205-P4-03 from the Comisión Interministerial deCi<strong>en</strong>cia y Tecnología, Spain.The authors wish to thank the <strong>la</strong>nguage service of theRovira i Virgili University for revising the manuscript.LITERATURE CITED(1) Bisson, L. F. Influ<strong>en</strong>ce of nitrog<strong>en</strong> on yeast and ferm<strong>en</strong>tationof grapes. In Proceedings of the InternationalSymposium on Nitrog<strong>en</strong> in Grapes andWine; Ranz, J. M., Ed.; American Society of Enologyand Viticology: Davis, CA, 1991.(2) Bely, M.; Sab<strong>la</strong>yrolles, J. M.; Barre, P. Automatic detectionof assimi<strong>la</strong>ble nitrog<strong>en</strong> defici<strong>en</strong>cies duringalcoholic ferm<strong>en</strong>tation in o<strong>en</strong>ological conditions.J. Ferm<strong>en</strong>t. Bio<strong>en</strong>g. 1990, 70, 246- 252.(3) Jiranek, V.; Langridge, P.; H<strong>en</strong>schke, P. A. Yeast nitrog<strong>en</strong>demand: selection criterion for wine yeastsfor ferm<strong>en</strong>ting low nitrog<strong>en</strong> musts. In Proceedingsof the International Symposium on Nitrog<strong>en</strong>in Grapes and Wine; Ranz, J. M., Ed.; AmericanSociety of Enology and Viticology: Davis, CA,1991. (4) Monteiro, F. F.; Bisson, L. F. Nitrog<strong>en</strong> supplem<strong>en</strong>tationof grape juice. I. Effect on aminoacid utilization during ferm<strong>en</strong>tation. Am. J. Enol.Vitic. 1992, 43, 1 -1 0.(5) Bely, M.; Sab<strong>la</strong>yrolles, J. M.; Barre, P. Description ofalcoholic ferm<strong>en</strong>tation kinetics: its variability andsignificance. Am. J. Enol. Vitic. 1990, 41, 319-324.(6) M<strong>en</strong>des-Ferreira, A.; M<strong>en</strong>des-Faia, A.; Leao, C.Growth and ferm<strong>en</strong>tation patterns of SaccharomycescereVisiae under differ<strong>en</strong>t ammoniumconc<strong>en</strong>trations and its implications in winemakingindustry. J. Appl. Microbiol. 2004, 97, 540-545.(7) Cooper, T. G. Nitrog<strong>en</strong> metabolism in SaccharomycescereVisiae. In The molecu<strong>la</strong>r Biology of theYeast Saccharomyces; Stratherm, J. N., Jones, E.W., Broach, J. R., Eds.; Cold Spring Harbor Laboratory:Cold Spring Harbor, New York, 1982.(8) ter Schure, E. G.; van Riel, N. A.; Verrips, C. T. The roleof ammonia metabolism in nitrog<strong>en</strong> cataboliterepression in Saccharomyces cereVisiae. FEMSMicrobiol. ReV. 2000, 24, 67- 83.(9) Beltran, G.; Novo, M.; Rozes, N.; Mas, A.; Guil<strong>la</strong>mon,J. M. Nitrog<strong>en</strong> catabolite repression in SaccharomycescereVisiae during wine ferm<strong>en</strong>tations.FEMS Yeast Res. 2004, 4, 625-632.(10) Jiranek, V.; Langridge, P.; H<strong>en</strong>schke, P. A. Regu<strong>la</strong>tionof hydrog<strong>en</strong> sulfide liberation in wine-producingSaccharomyces cereVisiae strains by assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong>. Appl. EnViron. Microbiol. 1995, 61, 461-467.48


(11) Ough, C. S. Influ<strong>en</strong>ce of nitrog<strong>en</strong> compounds ingrapes in ethyl carbamate formation in wines.In Proceedings of the International Symposiumon Nitrog<strong>en</strong> in Grapes and Wine; Ranz, J. M., Ed.;American Society of Enology and Viticology: Davis,CA, 1991.(12) Rapp, A.; Versini, G. Influ<strong>en</strong>ce of nitrog<strong>en</strong> compoundsin grapes on aroma compounds of wines.In Proceedings of the International Symposiumon Nitrog<strong>en</strong> in Grapes and Wine; Ranz, J. M.,Ed.; American Society of Enology and Viticology:Davis, CA, 1991.(13) Marks, V. D.; van der Merwe, G. K.; van Vuur<strong>en</strong>, H.J. Transcriptional profiling of wine yeast in ferm<strong>en</strong>tinggrape juice: regu<strong>la</strong>tory effect of diammoniumphosphate. FEMS Yeast Res. 2003, 3,269-287.(14) Äyräpää, T. Biosynthetic formation of higher alcoholsby yeast. Dep<strong>en</strong>d<strong>en</strong>ce on the nitrog<strong>en</strong>ousnutri<strong>en</strong>t level of the medium. J. Inst. Brew. 1971,77, 276.(15) Lambrechts, M. G.; Pretorius, I. S. Yeast and its importanceto wine aroma. S. Afr. J. Enol. Vitic 2000,21, 97 -1 29.(16) Riou, C.; Nicaud, J. M.; Barre, P.; Gail<strong>la</strong>rdin, C. Stationaryphaseg<strong>en</strong>e expression in SaccharomycescereVisiae during wine ferm<strong>en</strong>tation. Yeast 1997,13, 903-915.(17) Salmon, J. M.; Barre, P. Improvem<strong>en</strong>t of nitrog<strong>en</strong>assimi<strong>la</strong>tion and ferm<strong>en</strong>tation kinetics under<strong>en</strong>ological conditions by derepression of alternativ<strong>en</strong>itrog<strong>en</strong>-assimi<strong>la</strong>tory pathways in an industrialSaccharomyces cereVisiae strain. Appl.EnViron. Microbiol. 1998, 64, 3831-3837.(18) Aerny, J. Compose´s azote´s des mouˆts et vins.ReV. Suisse Vitic. Arboric. Hortic. 1996, 28, 161 -165.(19) Torija, M. J.; Beltran, G.; Novo, M.; Poblet, M.; Rozes,N.; Mas, A.; Guil<strong>la</strong>mon, J. M. Effect of organic acidsand nitrog<strong>en</strong> source on alcoholic ferm<strong>en</strong>tation:study of their buffering capacity. J. Agric. FoodChem. 2003, 51, 916-922.(20) Lopez, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determinationof minor and trace vo<strong>la</strong>tile compounds inwine by solid-phase extraction and gas chromatographywith mass spectrometric detection. J.Chromatogr. A 2002, 966, 167 -1 77.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>(21) Ferreira, V.; Sharman, M.; Cacho, J.; D<strong>en</strong>nis, J. Newand effici<strong>en</strong>t microextraction/solid-phase extractionmethod for the gas chromatographic analysisof wine vo<strong>la</strong>tiles. J. Chromatogr. A 1996, 731,247-259.(22) Sierkstra, L. N.; Verbakel, J. M.; Verrips, C. T. Analysisof transcription and trans<strong>la</strong>tion of glycolytic<strong>en</strong>zymes in glucoselimited continuous culturesof Saccharomyces cereVisiae. J. G<strong>en</strong>. Microbiol.1992, 138, 2559-2566.(23) Sambrook, J.; Fritsch, E. F.; Maniatis, T. Methods inYeast G<strong>en</strong>etics: A Laboratory Manual, 2 ed.; ColdSpring Harbor Laboratory: Cold Spring Harbor,New York, 1989.(24) Querol, A.; Barrio, E.; Ramon, D. A com<strong>para</strong>tive studyof differ<strong>en</strong>t methods of yeast strain characterization.Syst. Appl. Microbiol. 1992, 21, 315-323.(25) Ag<strong>en</strong>bach, W. A. A study of must nitrog<strong>en</strong> cont<strong>en</strong>tin re<strong>la</strong>tion to incomplete ferm<strong>en</strong>tations, yeastproduction and ferm<strong>en</strong>tation. Proc. South Afr.Soc. Enol. Vitic. 1977, 87.(26) Jiranek, V.; Langridge, P.; H<strong>en</strong>schke, P. A. Aminoacid and ammonium utilization by SaccharomycescereVisiae wine yeasts from a chemical definedmedium. Am. J. Enol. Vitic. 1995, 46, 75-83.(27) Manginot, C.; Roustan, J. L.; Sab<strong>la</strong>yrolles, J. M. Nitrog<strong>en</strong>demand of differ<strong>en</strong>t yeast strains duringalcoholic ferm<strong>en</strong>tation. Importance of the stationaryphase. Enzyme Microb. Technol. 1998, 23,511-517.(28) Ough, C. S.; Huang, D. A.; Stev<strong>en</strong>s, D. Amino aciduptake by four commercial yeasts at two differ<strong>en</strong>ttemperatures of growth and ferm<strong>en</strong>tation:Effects on urea excretion and readsorption. Am.J. Enol. Vitic. 1991, 41, 26-40.(29) Alexandre, H.; Rousseaux, I.; Charp<strong>en</strong>tier, C. Re<strong>la</strong>tionshipbetwe<strong>en</strong> ethanol tolerance, lipid compositionand p<strong>la</strong>sma membrane fluidity in SaccharomycescereVisiae and Kloeckera apicu<strong>la</strong>ta.FEMS Microbiol. Lett. 1994, 124, 17-22.(30) Alexandre, H.; Rousseaux, I.; Charp<strong>en</strong>tier, C. Ethano<strong>la</strong>daptation mechanisms in SaccharomycescereVisiae. Biotechnol. Appl. Biochem. 1994, 20,173 -1 83.(31) Gagiano, M.; Bauer, F. F.; Pretorius, I. S. The s<strong>en</strong>singof nutritional status and the re<strong>la</strong>tionship to fi<strong>la</strong>m<strong>en</strong>tousgrowth in Saccharomyces cereVisiae.FEMS Yeast Res. 2002, 2, 433-470.Textos asociados49


Influ<strong>en</strong>ce of the Timing of Nitrog<strong>en</strong> Additions during Synthetic Grape Must Ferm<strong>en</strong>tations on Ferm<strong>en</strong>tation Kinetics and Nitrog<strong>en</strong> Consumption(32) Pierce, J. S. The Margaret Jones Memorial Lecture:Amino acids in malting and brewing. J. Inst. Brew.1982, 88, 228-233.(33) Forsberg, H.; Ljungdahl, P. O. S<strong>en</strong>sors of extracellu<strong>la</strong>rnutri<strong>en</strong>ts in Saccharomyces cereVisiae. Curr.G<strong>en</strong>et. 2001, 40, 91 -1 09.(34) Reg<strong>en</strong>berg, B.; During-Ols<strong>en</strong>, L.; Kiel<strong>la</strong>nd-Brandt,M. C.; Holmberg, S. Substrate specificity and g<strong>en</strong>eexpression of the amino acid permeases in SaccharomycescereVisiae. Curr. G<strong>en</strong>et. 1999, 36,317-328.(35) Marini, A. M.; Soussi-Boudekou, S.; Vissers, S.; Andre,B. A family of ammonium transporters in SaccharomycescereVisiae. Mol. Cell Biol. 1997, 17,4282-4293.(36) Bakker, B. M.; Overkamp, K. M.; van Maris, A. J.;Kotter, P.; Luttik, M. A.; van Dijk<strong>en</strong>, J. P.; Pronk, J. T.Stoichiometry and compartm<strong>en</strong>tation of NADHmetabolism in Saccharomyces cereVisiae. FEMSMicrobiol. ReV. 2001, 25, 15-37.(37) Radler, F.; Schu¨tz, H. Glycerol production of variousstrains of Saccharomyces. Am. J. Enol. Vitic.1982, 33, 36-40.(38) Watanabe, M.; Uehara, M.; Shinohara, T. Effect ofcell number on the formation of glycerol andsome vo<strong>la</strong>tile compon<strong>en</strong>ts by yeast. J. Brew. Soc.Jpn. 1982, 77, 346.(39) Albers, E.; Larsson, C.; Lid<strong>en</strong>, G.; Nik<strong>la</strong>sson, C.; Gustafsson,L. Influ<strong>en</strong>ce of the nitrog<strong>en</strong> source onSaccharomyces cereVisiae anaerobic growthand product formation. Appl. EnViron. Microbiol.1996, 62, 3187-3195.(40) Michnick, S.; Roustan, J. L.; Remize, F.; Barre, P.; Dequin,S. Modu<strong>la</strong>tion of glycerol and ethanol yieldsduring alcoholic ferm<strong>en</strong>tation in SaccharomycescereVisiae strains overexpressed or disrupted forGPD1 <strong>en</strong>coding glycerol 3-phosphate dehydrog<strong>en</strong>ase.Yeast 1997, 13, 783-793.Received for review August 2, 2004. Revisedmanuscript received November 12, 2004. AcceptedNovember 17, 2004.50


Formación decompuestos volátiles<strong>azufrados</strong> porlevaduras vinicas.Swigers, J. H.; Pretorius, I.S.Australian Wine Research Institute AWRI.El artículo íntegram<strong>en</strong>te reproducido a continuación sepublico on line <strong>en</strong> Applied Microbiol Biotechnol <strong>en</strong> Enerode 2007.Resum<strong>en</strong>Los compuestos de azufre <strong>en</strong> el vino constituy<strong>en</strong>una espada de doble filo. Por una parte, ciertos compuestosvolátiles que conti<strong>en</strong><strong>en</strong> azufre como el sulfurode hidróg<strong>en</strong>o ofrec<strong>en</strong> un aroma simi<strong>la</strong>r a huevospodridos, por lo que pued<strong>en</strong> afectar negativam<strong>en</strong>tea <strong>la</strong> calidad s<strong>en</strong>sorial del vino pero, por otra parte,algunos compuestos de azufre como el 3-mercaptohexanol,que proporciona notas afrutadas, puedet<strong>en</strong>er un impacto positivo sobre el sabor y el aromadel vino. Además, estos compuestos se pued<strong>en</strong> volvermás o m<strong>en</strong>os atractivos o repulsivos dep<strong>en</strong>di<strong>en</strong>do desus conc<strong>en</strong>traciones absolutas y re<strong>la</strong>tivas. Por consigui<strong>en</strong>tees un desafío interesante que los vinicultoresmodul<strong>en</strong> <strong>la</strong>s conc<strong>en</strong>traciones de tales compuestosdeterminantes de <strong>la</strong> calidad del vino según <strong>la</strong>s prefer<strong>en</strong>ciasde los consumidores. La levadura del vino,Saccharomyces cerevisiae, desempeña un papel c<strong>la</strong>ve<strong>en</strong> <strong>la</strong> producción de compuestos volátiles de azufre.A través de <strong>la</strong> ruta de <strong>la</strong> secu<strong>en</strong>cia de reducción delsulfato se forma HS-, el cual puede conducir a <strong>la</strong> formaciónde sulfuro de hidróg<strong>en</strong>o y diversos mercaptanos.Por tanto, limitar <strong>la</strong> formación del ión HS es unobjetivo importante <strong>en</strong> <strong>la</strong> ing<strong>en</strong>iería metabólica deesta levadura. La levadura del vino también es responsablede <strong>la</strong> transformación de precursores de azufr<strong>en</strong>o volátiles pres<strong>en</strong>tes <strong>en</strong> <strong>la</strong> uva, <strong>en</strong> tioles volátiles conpropiedades aromatizantes. En particu<strong>la</strong>r, 4-mercapto-4-metilp<strong>en</strong>tan-2-ona,3-mercaptohexanol y acetatode 3-mercaptohexilo son los tioles volátiles másimportantes que añad<strong>en</strong> aromas afrutados al vino. Elpres<strong>en</strong>te docum<strong>en</strong>to revisa brevem<strong>en</strong>te el procesometabólico implicado <strong>en</strong> <strong>la</strong> producción de importantescompuestos volátiles de azufre y <strong>la</strong>s principalesestrategias a <strong>la</strong> hora de conseguir desarrol<strong>la</strong>r cepas delevaduras como herrami<strong>en</strong>ta <strong>para</strong> ajustar el aroma delvino a <strong>la</strong>s especificaciones del mercado.Pa<strong>la</strong>bras c<strong>la</strong>ve: Aroma . Sabor . Bebidas ferm<strong>en</strong>tadas. Tioles . Vino . LevaduraSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>1- IntroducciónEl azufre es un elem<strong>en</strong>to abundante <strong>en</strong> <strong>la</strong> naturaleza ypres<strong>en</strong>te <strong>en</strong> muchos compuestos. Puede pres<strong>en</strong>tarse<strong>en</strong> forma oxidada (sulfato) o reducida (sulfuro). El azufrees uno de los elem<strong>en</strong>tos más importantes necesarios<strong>para</strong> <strong>la</strong> vida, particu<strong>la</strong>rm<strong>en</strong>te como compon<strong>en</strong>tede los aminoácidos cisteína y metionina, y también esun compon<strong>en</strong>te de cofactores es<strong>en</strong>ciales. Los microorganismospued<strong>en</strong> metabolizar los compuestos deazufre a través de dos rutas. En <strong>la</strong> ruta de reducciónasimi<strong>la</strong>tiva del azufre se toma sulfato y se utiliza <strong>para</strong> <strong>la</strong>biosíntesis de compuestos orgánicos como <strong>la</strong> cisteínay <strong>la</strong> metionina. En <strong>la</strong> ruta de reducción disimi<strong>la</strong>tiva delsulfato, <strong>la</strong> molécu<strong>la</strong> de sulfato se reduce como partede una ruta respiratoria a sulfito o sulfuro. Ninguno deestos metabolitos se vuelve a metabolizar y <strong>la</strong> mayoríase excreta (Kappler y Dahl 2001). La ruta anterior esrealizada por bacterias reductoras de sulfato que estánampliam<strong>en</strong>te distribuidas <strong>en</strong> ambi<strong>en</strong>tes anaeróbicoscomo el suelo, los sedim<strong>en</strong>tos, agua de mar y aguadulce y <strong>en</strong> <strong>la</strong> boca e intestino de muchos animales(Purdy et al. 2002). Los microorganismos también soncapaces de descomponer los aminoácidos con azufrecisteína y metionina <strong>para</strong> formar sulfuros y posteriorm<strong>en</strong>teotros compuestos volátiles de azufre y tioles(Dainty et al. 1989; Russell et al. 1995; Bonnarme et al.2000; Seefeldt y Weimer 2000; Morales et al. 2005).La levadura de vino Saccharomyces cerevisiae esresponsable de <strong>la</strong> producción de varios compuestosvolátiles de azufre que afectan a <strong>la</strong> calidad s<strong>en</strong>sorialdel vino. Estos importantes compuestos volátiles deazufre son: (1) sulfuro de hidróg<strong>en</strong>o (aroma a huevospodridos); (2) metanotiol (metilmercaptano; aroma acol cocida); (3) dimetilsulfuro, dimetildisulfuro y dimetiltrisulfuro(aromas a col, coliflor y ajo); (4) metiltioesteres(tioacetato de S-metilo, tiopropanato de S-metiloy tiobutanato de S-metilo; aromas a coliflor cocida,queso y cebolleta); y (5) los “tioles volátiles afrutados”del vino (aromas a maracuyá, pomelo, grosel<strong>la</strong> espinosa,guayaba y aromas a boje; Swiegers y Pretorius2005; Swiegers et al. 2006). Durante <strong>la</strong> ferm<strong>en</strong>tacióndel vino, <strong>la</strong> reducción asimi<strong>la</strong>tiva de sulfato por <strong>la</strong> levadura(<strong>para</strong> biosintetizar cisteína y metionina) puedeproducir un exceso de iones HS-, lo que g<strong>en</strong>era <strong>la</strong> formaciónH 2S <strong>en</strong> el vino (Jiranek et al. 1995; Spiropouloset al. 2000; M<strong>en</strong>des- Ferreira et al. 2002; Swiegers et al.2005a). Esto es probablem<strong>en</strong>te uno de los problemasmás comunes <strong>en</strong> una bodega y, si no se trata, el vinoresultante estará contaminado provocando una pérdidade calidad y <strong>la</strong> posibilidad de que sea rechazadopor los consumidores (Vos y Gray 1979; H<strong>en</strong>schke y Jiranek1991; Rauhut 1993). Los <strong>vinos</strong> ferm<strong>en</strong>tados finalizadosa m<strong>en</strong>udo se tratan con sulfato de cobre conel fin de que reaccione con los compuestos de azufre<strong>para</strong> formar complejos estables y, por tanto, eliminarlos efectos negativos del H 2S y de los mercaptanos.No obstante no es deseable utilizar sulfato de cobre<strong>en</strong> el vino. La conc<strong>en</strong>tración de H S producido duranteApplied Microbiol Biotechnol, Enero de 2007 (on line)Textos asociados51


Formación de compuestos volátiles <strong>azufrados</strong> por levaduras vinicas<strong>la</strong> ferm<strong>en</strong>tación del vino dep<strong>en</strong>de de varios factorescomo <strong>la</strong> pres<strong>en</strong>cia de compuestos de azufre, <strong>la</strong> cepade <strong>la</strong> levadura, <strong>la</strong>s condiciones de ferm<strong>en</strong>tación y losnutri<strong>en</strong>tes del zumo de uva (H<strong>en</strong>schke y Jiranek 1991;Rauhut 1993; Spiropoulos et al. 2000). No obstante,algunas cepas parec<strong>en</strong> producir H 2S intrínsecam<strong>en</strong>tesin que les afect<strong>en</strong> <strong>la</strong>s condiciones ambi<strong>en</strong>tales,lo que posiblem<strong>en</strong>te indica un defecto metabólico(Jiranek et al. 1995; Spiropoulos et al. 2000; M<strong>en</strong>des-Ferreira et al. 2002).Por otra parte, <strong>la</strong>s levaduras de vino pued<strong>en</strong> producircompuestos volátiles de azufre b<strong>en</strong>eficiosos <strong>para</strong><strong>la</strong> calidad del vino. Algunos de estos son el furfuriltiol,un compuesto id<strong>en</strong>tificado <strong>en</strong> el aroma del PinotMans<strong>en</strong>g b<strong>la</strong>nco, tintos de Burdeos, y <strong>en</strong> <strong>la</strong>s due<strong>la</strong>stostadas (Tominaga et al. 2000). El furfuriltiol es unaromatizante extremadam<strong>en</strong>te pot<strong>en</strong>te (umbral depercepción de 0,4 ng/l) y también se ha id<strong>en</strong>tificado<strong>en</strong> el café tostado, <strong>la</strong> carne, el pan de trigo y <strong>en</strong> <strong>la</strong>spalomitas de maíz. Se cree que <strong>la</strong> levadura forma elfurfuriltiol mediante <strong>la</strong> transformación del furfural liberadodurante <strong>la</strong> ferm<strong>en</strong>tación a partir de <strong>la</strong>s due<strong>la</strong>sde roble tostadas (Tominaga et al. 2000).Otros tioles volátiles que mejoran el aroma producidospor <strong>la</strong> levadura a partir de los precursores de<strong>la</strong> uva son el 4-mercapto-4-metilp<strong>en</strong>tano- 2-ona(4MMP), el 3-mercaptohexan-1-ol (3MH) y el acetatode 3-mercaptohexilo (3MHA). Los tioles volátiles sonextremadam<strong>en</strong>te pot<strong>en</strong>tes y ti<strong>en</strong><strong>en</strong> umbrales de percepciónbajos: 0,8 ng/l (4MMP), 60 ng/l (3MH) y 4 ng/l(3MHA). En los Sauvignon B<strong>la</strong>nc, estos compuestosson de particu<strong>la</strong>r importancia <strong>para</strong> diversos caracteresdado que ofrec<strong>en</strong> aromas a “boje” (4MMP), “maracuyá”,“pomelo”, “grosel<strong>la</strong> espinosa” y guayaba (3MH y 3MHA;Tominaga et al. 1995, 1998a,b; Dubourdieu et al. 2006).No obstante, también se han id<strong>en</strong>tificado 4MMP, 3MHy 3MHA <strong>en</strong> distintas conc<strong>en</strong>traciones <strong>en</strong> <strong>vinos</strong> e<strong>la</strong>boradosa partir de uvas Colombard, Riesling, Semillon,Merlot y Cabernet Sauvignon, por lo que también podríanafectar al aroma y <strong>la</strong> calidad de tales <strong>vinos</strong> (Tominagaet al. 1995, 1998a,b; Murat et al. 2001b).levadura del vino que resultan <strong>en</strong> <strong>la</strong> producción decompuestos volátiles de azufre. Además, se discut<strong>en</strong>los últimos avances <strong>en</strong> <strong>la</strong> modificación del metabolismodel azufre de <strong>la</strong> levadura del vino <strong>para</strong> mejorar elsabor y el aroma del vino.2.- Mecanismo de formación de azufrevolátil2.1 Formación de sulfuro de hidróg<strong>en</strong>oa través de <strong>la</strong> ruta de secu<strong>en</strong>cia dereducción de sulfato.La levadura del vino puede formar metabólicam<strong>en</strong>teH 2S a partir de compuestos inorgánicos de azufrecomo los sulfatos y sulfitos, así como de compuestosorgánicos como <strong>la</strong> cisteína y el glutatión (H<strong>en</strong>schkey Jiranek 1993; Rauhut 1993; Hallinan et al. 1999; Spiropouloset al. 2000). En g<strong>en</strong>eral, <strong>la</strong> uva debe ser defici<strong>en</strong>te<strong>en</strong> compuestos orgánicos de azufre, ya queéstos pued<strong>en</strong> activar <strong>la</strong> síntesis de tales compuestosde azufre a partir de fu<strong>en</strong>tes inorgánicas habitualm<strong>en</strong>teabundantes <strong>en</strong> el mosto (H<strong>en</strong>schke y Jiranek1993; Park et al. 2000; Moreira et al. 2002). En <strong>la</strong> S. cerevisiae,H 2S es el producto de <strong>la</strong> ruta de <strong>la</strong> secu<strong>en</strong>ciade reducción de sulfato (SRS) (Fig. 1; Yamagata 1989;Rauhut 1993). En <strong>la</strong> ruta SRS, el H 2S procede del iónHS-, un intermedio metabólico de <strong>la</strong> reducción delsulfato o sulfito necesario <strong>para</strong> <strong>la</strong> síntesis de compuestosorgánicos de azufre. Si durante <strong>la</strong> ferm<strong>en</strong>taciónestas reacciones se produc<strong>en</strong> <strong>en</strong> pres<strong>en</strong>cia de unFig. 1 Un diagrama que repres<strong>en</strong>ta <strong>la</strong> ruta SRSy <strong>la</strong> biosíntesis de aminoácidos <strong>en</strong> S. cerevisiae.Ad<strong>en</strong>osil 5′-fosfosulfato (APS); 3′-fosfoad<strong>en</strong>osil5′-fosfosulfato (PAPS); O-acetilserina (O-AS);O-acetlilhomoserina (O-AH)El desafío de <strong>la</strong> <strong>en</strong>ología moderna es limitar (o eliminar)<strong>la</strong> producción de H 2S y mercaptanos indeseablesy, al mismo tiempo, mejorar <strong>la</strong> producción de tiolesvolátiles b<strong>en</strong>eficiosos. El uso de sulfato de cobre introduceun interesante dilema <strong>para</strong> el vinicultor, yaque es utilizado <strong>para</strong> tratar <strong>vinos</strong> contaminados conH 2S y mercaptanos, pero al mismo tiempo reduce <strong>la</strong>conc<strong>en</strong>tración de tioles volátiles deseables ya que elión Cu2+ no discrimina <strong>en</strong>tre los dos tipos de compuestosde azufre. Por tanto, <strong>la</strong> mejor solución yace<strong>en</strong> el desarrollo de levaduras que produzcan durante<strong>la</strong> ferm<strong>en</strong>tación conc<strong>en</strong>traciones absolutas y re<strong>la</strong>tivasde tioles volátiles que mejor<strong>en</strong> el aroma sin <strong>la</strong> formaciónde H 2S ni mercaptanos (Pretorius 2000; Pretoriusy Bauer 2002). En el sigui<strong>en</strong>te apartado de este docum<strong>en</strong>tose detal<strong>la</strong>n los elem<strong>en</strong>tos metabólicos de <strong>la</strong>52


aporte adecuado de nitróg<strong>en</strong>o, el ión HS- es captadopor <strong>la</strong> O-acetilserina y <strong>la</strong> O-acetilhomoserina, que sonproductos derivados del metabolismo del nitróg<strong>en</strong>o,<strong>para</strong> formar compuestos orgánicos de azufre comometionina y cisteína (H<strong>en</strong>schke y Jiranek 1993; Park etal. 2000; Moreira et al. 2002). Sin embargo cuando <strong>la</strong>sfu<strong>en</strong>tes de nitróg<strong>en</strong>o son insufici<strong>en</strong>te o inadecuadas,el H 2S puede acumu<strong>la</strong>rse <strong>en</strong> <strong>la</strong> célu<strong>la</strong> y pasar al mosto<strong>en</strong> ferm<strong>en</strong>tación por difusión (Vos y Gray 1979; H<strong>en</strong>schkey Jiranek 1991; Giudici y Kunkee 1994; Jiranek etal. 1995, 1996).Parece que, al m<strong>en</strong>os parcialm<strong>en</strong>te, <strong>la</strong> capacidad deproducción de H 2S de una cepa determinada es g<strong>en</strong>ética,ya que <strong>la</strong> producción de H 2S de difer<strong>en</strong>tes cepasvaría <strong>en</strong> <strong>la</strong>s mismas condiciones (Thornton y Bunker1989; H<strong>en</strong>schke y Jiranek 1993; Jiranek et al. 1995; Spiropouloset al. 2000). El primer paso de <strong>la</strong> ruta metabólicaSRS implica el transporte del sulfato desde elmedio hasta <strong>la</strong> célu<strong>la</strong> de levadura mediante <strong>la</strong> sulfatopermeasa. El sulfato se reduce a continuación a sulfuroa través de una serie de pasos que implican el usode <strong>la</strong> <strong>en</strong>zima ATP-sulfuri<strong>la</strong>sa (que emplea dos molécu<strong>la</strong>sde ATP) y de <strong>la</strong> sulfito reductasa. El sigui<strong>en</strong>te pasoconduce <strong>la</strong> captación del sulfuro: <strong>la</strong> O-acetilserina (de<strong>la</strong>minoácido serina) se combina con el sulfuro <strong>para</strong> formarcisteína, y <strong>la</strong> O-acetilhomoserina (del aminoácidoaspartato) se combina con el sulfuro <strong>para</strong> formar homocisteína,<strong>la</strong> cual se puede convertir <strong>en</strong> metionina(Thornton y Bunker 1989; Yamagata 1989; H<strong>en</strong>schkey Jiranek 1993; Rauhut 1993; Jiranek et al. 1995; Spiropouloset al. 2000).Dado que <strong>la</strong>s conc<strong>en</strong>traciones de cisteína y metionina<strong>en</strong> los zumos de uva habitualm<strong>en</strong>te no son sufici<strong>en</strong>tes<strong>para</strong> cubrir <strong>la</strong>s necesidades metabólicas de <strong>la</strong>s célu<strong>la</strong>s<strong>en</strong> crecimi<strong>en</strong>to, se activa <strong>la</strong> ruta metabólica SRS <strong>para</strong>cubrir esta demanda (H<strong>en</strong>schke y Jiranek 1993). Cuandoexiste una cantidad adecuada de nitróg<strong>en</strong>o <strong>en</strong> elmedio, existirán sufici<strong>en</strong>tes precursores de estos aminoácidos(O-acetilserina y O-acetilhomoserina) <strong>para</strong>captar el sulfuro. Si <strong>la</strong> cantidad de nitróg<strong>en</strong>o es limitada,no habrá sufici<strong>en</strong>tes precursores; <strong>la</strong> ruta SRS seactivará y el sulfuro se acumu<strong>la</strong>rá debido a <strong>la</strong> aus<strong>en</strong>ciade precursores. El exceso de sulfuro se libera de <strong>la</strong>s célu<strong>la</strong>s<strong>en</strong> forma de H 2S (H<strong>en</strong>schke y Jiranek 1993; Rauhut1993; Jiranek et al. 1995; Spiropoulos et al. 2000).Algunas veces, se produc<strong>en</strong> cantidades importantesde H 2S cuando <strong>en</strong> el producto <strong>en</strong> ferm<strong>en</strong>tación haysulfito, el cual se difunde hacia <strong>la</strong>s célu<strong>la</strong>s. Por tanto,<strong>en</strong> condiciones de poco nitróg<strong>en</strong>o, se observa unaproducción elevada y continua de H 2S <strong>en</strong> pres<strong>en</strong>ciade sulfito (Jiranek et al. 1995; Hallinan et al. 1999).Otros factores ambi<strong>en</strong>tales que pued<strong>en</strong> afectar a <strong>la</strong> producciónde H 2S son (1) niveles elevados de azufre elem<strong>en</strong>tal,(2) pres<strong>en</strong>cia de dióxido de azufre, (3) pres<strong>en</strong>ciade compuestos orgánicos con azufre, (4) defici<strong>en</strong>ciade pantot<strong>en</strong>ato, (5) alto cont<strong>en</strong>ido re<strong>la</strong>tivo de treoninacon respecto a otros aminoácido y (6) de metioninaSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>con respecto a <strong>la</strong> conc<strong>en</strong>tración de amonio (H<strong>en</strong>schkey Jiranek 1991; Rauhut 1993; Spiropoulos et al. 2000).En un estudio se ha investigado reci<strong>en</strong>tem<strong>en</strong>te elpapel de <strong>la</strong> <strong>en</strong>zima bifuncional O-acetilserina/Oacetilhomoserinatio<strong>la</strong>sa como medio <strong>para</strong> modu<strong>la</strong>r<strong>la</strong> producción de H 2S por <strong>la</strong> levadura industrial (Spiropoulosy Bisson 2000). El estudio demostró que <strong>la</strong>sobreexpresión del g<strong>en</strong> MET17, que codifica <strong>la</strong> O-acetilserina/O-acetilhomoserina tio<strong>la</strong>sa, <strong>en</strong> una cepade S. cerevisiae originó que se formara mucho m<strong>en</strong>osH 2S <strong>en</strong> un vino <strong>en</strong> ferm<strong>en</strong>tación. Sin embargo esto nosucedió <strong>en</strong> otra cepa de S. cerevisiae con sobreexpresiónde MET17, lo que indica que <strong>la</strong> actividad de <strong>la</strong>O-acetilserina/O-acetilhomoserina tio<strong>la</strong>sa no está directam<strong>en</strong>tere<strong>la</strong>cionada con <strong>la</strong> formación de H 2S (Spiropoulosy Bisson 2000).Se ha demostrado que <strong>la</strong> sobreexpresión de dos g<strong>en</strong>es,el MET14, que codifica una ad<strong>en</strong>osilfosfosulfatocinasa, y SSU1, que codifica un portador de sulfito, aum<strong>en</strong>ta<strong>la</strong> formación de sulfito (Donalies y Stahl 2002).Por tanto, se ha postu<strong>la</strong>do que <strong>la</strong> aus<strong>en</strong>cia del g<strong>en</strong>MET14 o del g<strong>en</strong> MRX1, que codifican una metioninasulfoxido reductasa, podría ser <strong>la</strong> manera más eficazde impedir que <strong>la</strong> levadura del vino produzca H 2Sdurante <strong>la</strong> ferm<strong>en</strong>tación (Pretorius 2000, 2003, 2004;Pretorius y Høj 2005).Otro método <strong>para</strong> evitar <strong>la</strong> formación de H 2S fue <strong>la</strong>modificación de <strong>la</strong> actividad de <strong>la</strong> <strong>en</strong>zima sulfito reductasamediante <strong>la</strong> alteración de una de <strong>la</strong>s subunidadesde <strong>la</strong> <strong>en</strong>zima (Suther<strong>la</strong>nd et al. 2003). La sulfitoreductasa es un heterotetrámero compuesto de dossubunidades α y dos subunidades β, <strong>la</strong>s cuales soncodificadas por los g<strong>en</strong>es MET10 y MET5 respectivam<strong>en</strong>te(Suther<strong>la</strong>nd et al. 2003). La <strong>en</strong>zima, una hemof<strong>la</strong>voproteína,<strong>en</strong><strong>la</strong>za los cofactores f<strong>la</strong>vín ad<strong>en</strong>inadinucleótido, f<strong>la</strong>vín mononucleótido y sirohemo. Seintrodujeron mutaciones <strong>en</strong> el g<strong>en</strong> MET10 de modoque <strong>la</strong> subunidad α no se pudiera <strong>en</strong><strong>la</strong>zar a los cofactorespero pudiera formar aun un complejo proteínicoheterotetrámetro con <strong>la</strong> subunidad β. De este modo,<strong>la</strong> sobreexpresión del g<strong>en</strong> MET10 mutante produciríauna subunidad no funcional que podría reducir <strong>la</strong> proporciónde sulfito reductasa funcional <strong>en</strong> <strong>la</strong> célu<strong>la</strong>, ypor tanto reducir <strong>la</strong> formación de sulfuro. Sin embargo,es necesario investigar más <strong>para</strong> confirmar si estaestrategia es capaz de evitar <strong>la</strong> formación de H 2S <strong>en</strong> elvino <strong>en</strong> ferm<strong>en</strong>tación.El H 2S es muy reactivo y se puede combinar con otroscompon<strong>en</strong>tes del vino <strong>para</strong> formar compuestos volátilesde azufre re<strong>la</strong>cionados (Vermeul<strong>en</strong> et al. 2005).Por ejemplo, el etanotiol se puede formar por reacciónde H 2S con etanol o acetaldehído (Amerine et al.1980; Rauhut 1993). En el vino, se pi<strong>en</strong>sa que <strong>la</strong> formaciónde disulfuro de dimetilo, trisulfuro de dimetiloy tetrasulfuro de dimetilo se produce mediante <strong>la</strong>oxidación del metanotiol, un compuesto que se con-Textos asociados53


Formación de compuestos volátiles <strong>azufrados</strong> por levaduras vinicassidera proced<strong>en</strong>te de <strong>la</strong> descomposición de <strong>la</strong> metionina(Rauhut 1993). La conc<strong>en</strong>tración de disulfuro dedimetilo <strong>en</strong>contrada <strong>en</strong> algunos <strong>vinos</strong> está muy por<strong>en</strong>cima del umbral s<strong>en</strong>sorial de 25 μg/l (vino b<strong>la</strong>nco)y 60 μg/l (vino tinto; Rauhut 1993). En bajas conc<strong>en</strong>traciones,se considera que el disulfuro de dimetilo esun compuesto b<strong>en</strong>eficioso que contribuye al aromaasociado al tiempo de maduración <strong>en</strong> botel<strong>la</strong> (Rauhut1993; Ribéreau-Gayon et al. 2000).2.2. Formación de tioles volátilesmediante <strong>la</strong> levadura a través de carbonotio<strong>la</strong>sasSe ha propuesto que <strong>la</strong> formación de furfuriltiol a partirde furfural por <strong>la</strong> S. cerevisiae es catalizada por <strong>la</strong> <strong>en</strong>zimacisteína desulfidrasa, <strong>la</strong> cual es necesaria <strong>para</strong> <strong>la</strong> producciónde cisteína (Tominaga et al. 2000). Por tanto el aniónHS- se produce a través de esta <strong>en</strong>zima, originando <strong>la</strong>formación de H 2S. La formación de H 2S mejora a su vez<strong>la</strong> formación de furfuriltiol a partir de furfural. Esto se haconfirmado al observar que el vino <strong>en</strong> ferm<strong>en</strong>tación conuna fu<strong>en</strong>te añadida de nitróg<strong>en</strong>o (por tanto se inhibe <strong>la</strong>formación de H 2S) no produce tanto furfuriltiol. Por consigui<strong>en</strong>te,<strong>la</strong> producción de furfuriltiol se vincu<strong>la</strong> a <strong>la</strong> produccióndel anión HS-, el cual no se produce cuando elsulfato de amonio se añade a un caldo <strong>en</strong> ferm<strong>en</strong>tación<strong>en</strong> cantidades sufici<strong>en</strong>tes (Tominaga et al. 2000).Los tioles volátiles 4MMP, 3MH y 3MHA son prácticam<strong>en</strong>teinexist<strong>en</strong>tes <strong>en</strong> el zumo de uva y so<strong>la</strong>m<strong>en</strong>te sedesarrol<strong>la</strong>n durante <strong>la</strong> ferm<strong>en</strong>tación (Fig. 2). No obstante,se ha demostrado que 4MMP y 3MH exist<strong>en</strong> <strong>en</strong><strong>la</strong> uva <strong>en</strong> forma de conjugados <strong>en</strong><strong>la</strong>zados a <strong>la</strong> cisteínano volátiles y que <strong>la</strong> levadura del vino es responsablede extraer el tiol del precursor (Darriet et al. 1995).Ciertos experim<strong>en</strong>tos demuestran que una célu<strong>la</strong> deun extracto de <strong>en</strong>zima libre de célu<strong>la</strong> de <strong>la</strong> Eubacteriumlimosum (que conti<strong>en</strong>e <strong>en</strong>zimas carbono–tio<strong>la</strong>sa)podría liberar 4MMP de su precursor S-4-(4-metilp<strong>en</strong>tan-2-ona)-Lcisteína(Cis-4MMP) lo que indica que<strong>la</strong> pres<strong>en</strong>cia de un mecanismo simi<strong>la</strong>r de liberación através de <strong>la</strong>s carbono-tio-<strong>la</strong>sas de <strong>la</strong> levadura es másprobable durante <strong>la</strong> ferm<strong>en</strong>tación del vino (Tominagaet al. 1995). La hipótesis de Tominaga et al. (1995) secomprobó investigando <strong>la</strong> capacidad de <strong>la</strong> levadurade liberar 4MMP a partir de Cis-4MMP cuando se eliminanlos g<strong>en</strong>es que codifican <strong>la</strong>s posibles carbonotio-<strong>la</strong>sas<strong>en</strong> una cepa de <strong>la</strong>boratorio de S. cerevisiae(Howell et al. 2005). Cuatro g<strong>en</strong>es, id<strong>en</strong>tificados comoresponsables de <strong>la</strong>s posibles <strong>en</strong>zimas carbono–tio<strong>la</strong>sas,influyeron <strong>en</strong> <strong>la</strong> liberación del tiol volátil 4MMP,lo que indica que el mecanismo de liberación implicaprobablem<strong>en</strong>te varios g<strong>en</strong>es. Se eliminaron tambiénlos g<strong>en</strong>es id<strong>en</strong>tificados <strong>en</strong> una variación homocigosade <strong>la</strong> levadura comercial VL3, y el resultado mostró que<strong>la</strong> eliminación de los cuatro g<strong>en</strong>es asociados a <strong>la</strong> carbono–tio-<strong>la</strong>saconducía a una disminución de <strong>la</strong> cantidadde 4MMP liberado (Howell et al. 2005). En esteúltimo estudio no se observó que <strong>la</strong> sobreexpresiónde estos g<strong>en</strong>es produjera un aum<strong>en</strong>to de <strong>la</strong> liberaciónde 4MMP. No obstante, reci<strong>en</strong>tem<strong>en</strong>te, nuestro gruposobreexpresó un g<strong>en</strong> heterolocigoso que codificauna <strong>en</strong>zima carbono-tio-<strong>la</strong>sa <strong>en</strong> una levadura comercia<strong>la</strong>mpliam<strong>en</strong>te utilizada (VIN13) y demostró comoconclusión que, <strong>en</strong> <strong>vinos</strong> <strong>en</strong> ferm<strong>en</strong>tación modelos, <strong>la</strong>cepa VIN13 modificada liberaba diez veces más 4MMPy 3MH de sus precursores sintetizados químicam<strong>en</strong>teque <strong>la</strong> cepa control VIN13. Además, el vino SauvignonB<strong>la</strong>nc producido por <strong>la</strong> levadura modificada tuvo unmuy pot<strong>en</strong>te aroma no detectado <strong>en</strong> el vino control.Por tanto, es posible modificar levaduras <strong>para</strong> utilizarmás precursores de tioles derivados de <strong>la</strong> uva y portanto mejorar el aroma del vino (Swiegers et al. sinpublicar).Se ha demostrado anteriorm<strong>en</strong>te que <strong>la</strong> cantidadliberada de 4MMP <strong>en</strong> el vino dep<strong>en</strong>de de qué cepade levadura se utilice <strong>para</strong> llevar a cabo <strong>la</strong> ferm<strong>en</strong>tación(Dubourdieu et al. 2006). Por tanto, <strong>la</strong> g<strong>en</strong>ética y<strong>la</strong> fisiología de <strong>la</strong> cepa determinan su capacidad <strong>para</strong>liberar tioles volátiles. Algunos estudios del primer trabajoindicaron que <strong>la</strong>s cepas comercialm<strong>en</strong>te disponiblesde S. cerevisiae VL3 y EG8 liberan más tioles que<strong>la</strong>s cepas VL1 y 522d. Además, <strong>la</strong>s cepas de Saccharomycesbayanus liberan más 4MMP que <strong>la</strong>s cepas deS.cerevisiae VL3 y EG8. Los <strong>vinos</strong> confeccionados concepas híbridas de S.bayanus/S. cerevisiae muestranun cont<strong>en</strong>ido superior de tioles volátiles (Murat et al.2001b). Estos hal<strong>la</strong>zgos se han confirmado al observarque difer<strong>en</strong>tes cepas comerciales ti<strong>en</strong><strong>en</strong> capacidadesdifer<strong>en</strong>tes de liberación de 4MMP a partir del precursorCis-4MMP <strong>en</strong> <strong>vinos</strong> modelo <strong>en</strong> ferm<strong>en</strong>tación (Howellet al. 2004). Howell et al. (2004) han id<strong>en</strong>tificado cepascomerciales de levaduras que liberan aún más tiolesque VL3. En un estudio de seguimi<strong>en</strong>to, el SauvignonB<strong>la</strong>nc producido por siete cepas difer<strong>en</strong>tes de levaduradel vino (VL3 <strong>en</strong>tre el<strong>la</strong>s) mostró perfiles únicosde tioles volátiles, si<strong>en</strong>do <strong>la</strong> cepa VIN7 <strong>la</strong> que produjomayor conc<strong>en</strong>tración de 4MMP y 3MHA, mi<strong>en</strong>trasque VIN13 produjo mayores conc<strong>en</strong>traciones de 3MH(Swiegers et al. 2006). Se ha demostrado que durante<strong>la</strong> ferm<strong>en</strong>tación, el 3MHA se forma a partir del 3MH por<strong>la</strong> acción de <strong>la</strong> alcohol acetiltransferasa que forma ésteresy que es codificada por el g<strong>en</strong> ATF1 (Swiegers etal. 2005b). La sobreexpresión del g<strong>en</strong> ATF1 <strong>en</strong> <strong>la</strong> cepade levadura VIN13 produjo un aum<strong>en</strong>to significativode <strong>la</strong> cantidad de 3MHA producido. Por otra parte, <strong>la</strong>sobreexpresión del g<strong>en</strong> IAH1, el cual codifica un <strong>en</strong>zimaque descompone ésteres, produjo una reducción<strong>en</strong> <strong>la</strong> conc<strong>en</strong>tración de 3MHA. También se investigó<strong>la</strong> capacidad de difer<strong>en</strong>tes levaduras comerciales <strong>para</strong>convertir 3MH <strong>en</strong> 3MHA durante <strong>la</strong> ferm<strong>en</strong>tación. Seobservaron grandes variaciones <strong>en</strong> <strong>la</strong> conc<strong>en</strong>traciónde 3MHA y, <strong>en</strong> <strong>la</strong> mayoría de los casos, no correspondíancon <strong>la</strong> capacidad de liberación de 4MMP de <strong>la</strong>slevaduras (Swiegers et al. 2005b). Por tanto, quedapuesto de manifiesto que <strong>la</strong> selección de <strong>la</strong> cepa delevadura es de máxima importancia <strong>en</strong> <strong>la</strong> modu<strong>la</strong>ción54


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>de <strong>la</strong>s conc<strong>en</strong>traciones de tioles <strong>en</strong> el vino.Se ha demostrado que cuando disminuye <strong>la</strong> conc<strong>en</strong>tracióndel precursor de tioles S-3- (hexan-1-ol)-L-cisteina (Cis-3MH), aum<strong>en</strong>ta <strong>la</strong> cantidad de 3MHdurante <strong>la</strong> ferm<strong>en</strong>tación. No obstante, so<strong>la</strong>m<strong>en</strong>te unapequeña fracción (1,6%) del precursor <strong>en</strong><strong>la</strong>zado a <strong>la</strong>cisteína pres<strong>en</strong>te originalm<strong>en</strong>te se libera como 3MH(Dubourdieu et al. 2006). Además <strong>en</strong> mostos CabernetSauvignon y Merlot, se ha observado que <strong>la</strong> cantidadde 3MH liberada era proporcional a <strong>la</strong> conc<strong>en</strong>traciónde Cis-3MH pres<strong>en</strong>te al inicio de <strong>la</strong> ferm<strong>en</strong>tación. Portanto, cuanto mayor es <strong>la</strong> conc<strong>en</strong>tración de precursoresde tioles conjugados a <strong>la</strong> cisteína <strong>en</strong> el mosto,mayor es <strong>la</strong> conc<strong>en</strong>tración de tioles volátiles <strong>en</strong> el vinoresultante (Murat et al. 2001a). No obstante, <strong>en</strong> el estudioanterior, so<strong>la</strong>m<strong>en</strong>te el 3,2% del precursor pres<strong>en</strong>teoriginalm<strong>en</strong>te <strong>en</strong> el mosto se liberó <strong>en</strong> forma de tiolesvolátiles durante <strong>la</strong> ferm<strong>en</strong>tación.Reci<strong>en</strong>tem<strong>en</strong>te se ha determinado el impacto de <strong>la</strong>temperatura de ferm<strong>en</strong>tación sobre <strong>la</strong> conc<strong>en</strong>traciónde tioles volátiles <strong>en</strong> un medio modelo y <strong>en</strong> zumo deuva. Se demostró que <strong>la</strong>s conc<strong>en</strong>traciones de 4MMP,3MH y 3MHA fueron mayores cuando se produjo <strong>la</strong>ferm<strong>en</strong>tación alcohólica a 20 °C con respecto a 13°C,indep<strong>en</strong>di<strong>en</strong>tem<strong>en</strong>te de <strong>la</strong> cepa utilizada (MasneufPomarède et al. 2006). Por el contrario, Swiegers et al.(2006) ha demostrado que <strong>en</strong> <strong>vinos</strong> <strong>en</strong> ferm<strong>en</strong>taciónmodelos, se libera más 4MMP y más 3MH se convierte<strong>en</strong> 3MHA a bajas temperaturas (18°C) <strong>en</strong> com<strong>para</strong>cióncon altas temperaturas (23 y 28 °C) al final de <strong>la</strong>ferm<strong>en</strong>tación. No obstante, al principio de <strong>la</strong> ferm<strong>en</strong>tación,hay más tioles volátiles <strong>en</strong> los caldos <strong>en</strong> ferm<strong>en</strong>taciónmás cali<strong>en</strong>tes (Swiegers et al. 2006).3. ConclusiónEl objetivo final de todo vinicultor es conseguir unvino con unas características óptimas de calidad, precioy apari<strong>en</strong>cia al consumidor (Pretorius 2006). Paralograr este objetivo, es necesario un control exhaustivodel método de producción, de <strong>la</strong>s condiciones deferm<strong>en</strong>tación, de <strong>la</strong> elección de <strong>la</strong> cepa de levadura yde <strong>la</strong> producción de compon<strong>en</strong>tes que afectan favorablem<strong>en</strong>tea <strong>la</strong> calidad organoléptica del vino.Los compuestos volátiles de azufre son aromatizantesy saborizantes pot<strong>en</strong>tes que pued<strong>en</strong> t<strong>en</strong>er un efectoTextos asociadosFig. 2 El vino es una mezc<strong>la</strong> muy compleja de compuestos derivados de <strong>la</strong> uva, de los microorganismo y, <strong>en</strong> algunos casos, delroble, que defin<strong>en</strong> <strong>en</strong> gran medida su apari<strong>en</strong>cia, aroma, sabor y s<strong>en</strong>saciones <strong>en</strong> el pa<strong>la</strong>dar (Swiegers et al. 2005ª). Los compuestosderivados de <strong>la</strong> uva distingu<strong>en</strong> al vino por su variedad y lo dotan de su estructura básica. La ferm<strong>en</strong>tación de los azúcares porparte de <strong>la</strong>s levaduras no sólo produce etanol y dióxido de carbono, sino que también una gama de metabolitos m<strong>en</strong>ores peroimportantes organolépticam<strong>en</strong>te que proporcionan el carácter del vino. Estos metabolitos volátiles que son ésteres, alcoholessuperiores, carbonilos, ácidos grasos volátiles y compuestos de azufre, son derivados del metabolismo de los azúcares y de losaminoácidos. Los tioles volátiles, particu<strong>la</strong>rm<strong>en</strong>te 4MMP, 3MH y 3MHA, contribuy<strong>en</strong> de manera importante al aroma de los <strong>vinos</strong>,particu<strong>la</strong>rm<strong>en</strong>te <strong>en</strong> variedades como <strong>la</strong> Sauvignon B<strong>la</strong>nc. Durante <strong>la</strong> ferm<strong>en</strong>tación del vino, <strong>la</strong> S. cerevisiae favorece <strong>la</strong> división deprecursores no volátiles con cisteína (Cis-4MMP y Cis-3MH) exist<strong>en</strong>te el zumo de uva <strong>para</strong> liberar 4MMP y 3MH. La aus<strong>en</strong>cia detioles volátiles <strong>en</strong> <strong>la</strong> uva indica <strong>la</strong> importancia de <strong>la</strong> ferm<strong>en</strong>tación de <strong>la</strong> levadura <strong>para</strong> su formación (Swiegers et al. 2006)55


Formación de compuestos volátiles <strong>azufrados</strong> por levaduras vinicasconsiderable sobre <strong>la</strong> calidad del vino. Las levadurasde vino son <strong>la</strong>s principales g<strong>en</strong>eradoras de compuestosvolátiles de azufre, los cuales son producidos a partirde fu<strong>en</strong>tes de azufre y precursores derivados de <strong>la</strong>suvas (y <strong>en</strong> algunos casos por productos añadidos porel vinicultor, e.g., SO2). A día de hoy se han conseguidoavances significativos <strong>para</strong> dilucidar <strong>la</strong>s rutas metabólicasresponsables de <strong>la</strong> formación de compuestos volátilesde azufre. Este conocimi<strong>en</strong>to se está utilizandoactualm<strong>en</strong>te <strong>para</strong> desarrol<strong>la</strong>r cepas de levaduras devino que: (1) produzcan nada o mucho m<strong>en</strong>os sulfurode hidróg<strong>en</strong>o y mercaptanos asociados y (2) t<strong>en</strong>ganuna mayor capacidad de producir compuestos volátilesde azufre deseables que aport<strong>en</strong> aromas afrutadosal vino. En algunos casos, se ha aplicado ing<strong>en</strong>ieríag<strong>en</strong>ética con el objetivo de evaluar <strong>la</strong> viabilidad deldiseño de tales cepas <strong>para</strong> lograr los resultados deseados.Si bi<strong>en</strong> los consumidores actuales son aún muyresist<strong>en</strong>tes a consumir bebidas producidas por microorganismosmodificados g<strong>en</strong>éticam<strong>en</strong>te, <strong>la</strong> reci<strong>en</strong>tecomercialización de una levadura g<strong>en</strong>éticam<strong>en</strong>temodificada <strong>en</strong> <strong>la</strong> industria vitiviníco<strong>la</strong> norteamericanapodría indicar <strong>la</strong> aceptación gradual de esta tecnología(Husnik et al.2006). No obstante, aunque <strong>en</strong>el futuro cercano no se utilice <strong>para</strong> producir vino comercialninguna de estas levaduras g<strong>en</strong>éticam<strong>en</strong>temodificadas con metabolismos del azufre alterados,sirv<strong>en</strong> como modelos y prototipos útiles <strong>para</strong> aportarmás información que podría aplicarse <strong>para</strong> desarrol<strong>la</strong>rcepas no modificadas g<strong>en</strong>éticam<strong>en</strong>te utilizando técnicasmás conv<strong>en</strong>cionales (por ejemplo, mutagénesis,hibridación y evolución adaptativa). Por tanto, existeun gran cons<strong>en</strong>so sobre <strong>la</strong> posibilidad de confeccionara medida levaduras de vino sin acudir a ing<strong>en</strong>ieríag<strong>en</strong>ética. Sin embargo, <strong>para</strong> personalizar levaduras nomodificadas g<strong>en</strong>éticam<strong>en</strong>te con el fin de que los vinicultoresajust<strong>en</strong> <strong>la</strong>s conc<strong>en</strong>traciones de compuestosque determinan <strong>la</strong> calidad del vino, el conocimi<strong>en</strong>tofundam<strong>en</strong>tal requerido continuará g<strong>en</strong>erándose ampliam<strong>en</strong>tea partir de información obt<strong>en</strong>ida mediantecepas prototipo modificadas g<strong>en</strong>éticam<strong>en</strong>te.Agradecimi<strong>en</strong>tos: <strong>la</strong> investigación <strong>en</strong> el AustralianWine Research Institute (Instituto de InvestigaciónEnológica de Australia) es posible gracias al apoyo deviticultores y vinicultores australianos a través de suorganismo inversor, <strong>la</strong> Grape y Wine Research Developm<strong>en</strong>tCorporation, <strong>la</strong> cual financia según una metodología“matching funds” junto al Gobierno australiano.Refer<strong>en</strong>ciasAmerine MA, Berg HV, Kunkee RE, Ough CS, SingletonVL, Webb AD (1980) The technology of winemaking,4th edn. AVI Technical Books, Westport, CTBonnarme P, Psoni L, Spinnler HE (2000) Diversityof L-methionine catabolism pathways in cheese-rip<strong>en</strong>ingbacteria. Appl Environ Microbiol 66:5514–5517Dainty RH, Edwards RA, Hibbard CM, MarnewickJJ (1989) Vo<strong>la</strong>tile compounds associated with microbialgrowth on normal and high pH beef stored at chilltemperatures. J Appl Bacteriol 66:281–289Darriet P, Tominaga T, Lavigne V, Boidron J, DubourdieuD (1995) Id<strong>en</strong>tification of a powerful aromaticcompound of Vitis vinifera L. var. Sauvignon wines:4-mercapto-4-methylp<strong>en</strong>tan-2-one. F<strong>la</strong>vour Fragr J10:385–392Donalies UEB, Stahl U (2002) Increasing sulfite formationin Saccharomyces cerevisiae by overexpressionof MET14 and SSU1. Yeast 19:475–484Dubourdieu D, Tominaga T, Masneuf I, Peyrot desGachons C, Murat ML (2006) The role of yeasts ingrape f<strong>la</strong>vor developm<strong>en</strong>t during ferm<strong>en</strong>tation: theexample of Sauvignon B<strong>la</strong>nc. Am J Enol Vitic 57:81–88Giudici P, Kunkee RE (1994) The effect of nitrog<strong>en</strong>defici<strong>en</strong>cy and sulfur-containing amino acids onthe reduction of sulfate to hydrog<strong>en</strong> sulfide by wineyeasts. Am J Enol Vitic 45:107–112Hallinan CP, Saul DJ, Jiranek V (1999) Differ<strong>en</strong>tialutilization of sulfur compounds for H2S liberation bynitrog<strong>en</strong>-starved wine yeast. Austral J Grape Wine Res5:82–90H<strong>en</strong>schke PA, Jiranek V (1991) Hydrog<strong>en</strong> sulfideformation during ferm<strong>en</strong>tation: effect of nitrog<strong>en</strong>composition in model grape must. Proceedings of theinternational symposium on nitrog<strong>en</strong> in grapes andwine, Seattle, USA. American Society for Enology andViticulture, Davis, CA, pp 172–184H<strong>en</strong>schke PA, Jiranek V (1993) Yeast−growth duringferm<strong>en</strong>tation. In: Fleet GH (ed) Wine microbiology andbiotechnology. Harwood Academic, Chur, Switzer<strong>la</strong>nd,pp 27–54Howell KS, Swiegers JH, Elsey GM, Siebert TE, BartowskyEJ, Fleet GH, Pretorius IS, de Barros LopesMA (2004) Variation in 4-mercapto-4-methyl-p<strong>en</strong>tan-2-one release by Saccharomyces cerevisiae commercialwine strains. FEMS Microbiol Lett 240:125–12956


Howell KS, Klein M, Swiegers JH, Hayasaka Y, ElseyGM, Fleet GH, Høj PB, Pretorius IS, de Barros LopesMA (2005) G<strong>en</strong>etic determinants of vo<strong>la</strong>tile thiolrelease by Saccharomyces cerevisiae during wine ferm<strong>en</strong>tation.Appl Environ Microbiol 71:5420–5426Husnik JI, Volsch<strong>en</strong>k H, Bauer J, Co<strong>la</strong>vizza D, LuoZ, van Vuur<strong>en</strong> HJ (2006) Metabolic <strong>en</strong>gineering ofmalo<strong>la</strong>ctic wine yeast. Metab Eng 8(4):315–323Jiranek V, Langridge P, H<strong>en</strong>schke PA (1995) Validationof bismuthcontaining indicator media for predictingH2S producing pot<strong>en</strong>tial of Saccharomyces cerevisiaewine yeasts under <strong>en</strong>ological conditions. Am JEnol Vitic 46:269–273Jiranek V, Langridge P, H<strong>en</strong>schke PA (1996) Determinationof sulphite reductase activity and its responseto assimi<strong>la</strong>ble nitrog<strong>en</strong> status in a commercialSaccharomyces cerevisiae wine yeast. J Appl Bacteriol81:329–336Kappler U, Dahl C (2001) Enzymology and molecu<strong>la</strong>rbiology of prokaryotic sulfite oxidation. FEMS MicrobiolLett 203:1–9Masneuf-Pomarède I, Le Jeune C, Durr<strong>en</strong>s P, LollierM, Aigle M, Dubourdieu D (2006) Influ<strong>en</strong>ce offerm<strong>en</strong>tation temperature on vo<strong>la</strong>tile thiols conc<strong>en</strong>trationsin Sauvignon b<strong>la</strong>nc wines. Int J Food Microbiol108:385–390M<strong>en</strong>des-Ferreira A, M<strong>en</strong>des-Faia A, Leao C (2002)Survey of hydrog<strong>en</strong> sulphide production by wineyeasts. J Food Prot 65:1033–1037Morales P, Fernandez-Garcia E, Nunez M (2005)Vo<strong>la</strong>tile compounds produced in cheese by Pseudomonasstrains of dairy origin belonging to six differ<strong>en</strong>tspecies. J Agric Food Chem 53:6835–6843Moreira N, M<strong>en</strong>des F, Pereira O, Guedes de PinhoP, Hogg T, Vasconcelos I (2002) Vo<strong>la</strong>tile sulphurcompounds in wines re<strong>la</strong>ted to yeast metabolism andnitrog<strong>en</strong> composition of grape musts. Anal Chim Acta458:157–167Murat ML, Masneuf I, Darriet P, Lavigne V, TominagaT, Dubourdieu D (2001a) Effect of Saccharomycescerevisiae yeast strains on the liberation ofvo<strong>la</strong>tile thiols in Sauvignon B<strong>la</strong>nc wine. Am J Enol Vitic52:136–139Murat ML, Tominaga T, Dubourdieu D (2001b) Assessingthe aromatic pot<strong>en</strong>tial of Cabernet Sauvignonand Merlot musts used to produce rose wine by assayingthe cysteiny<strong>la</strong>ted precursor of 3-mercaptohexan-1-ol. J Agric Food Chem 49:5412–5417Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Park SK, Boulton RB, Noble AC (2000) Formation ofhydrog<strong>en</strong> sulfide and glutathione during ferm<strong>en</strong>tationof white grape musts. Am J Enol Vitic 51:91–97Pretorius IS (2000) Tailoring wine yeast for the newmill<strong>en</strong>nium: novel approaches to the anci<strong>en</strong>t art ofwinemaking. Yeast 16:675–729Pretorius IS (2003) The g<strong>en</strong>etic analysis and tailoringof wine yeasts. In: de Winde JH (ed) G<strong>en</strong>etics and g<strong>en</strong>omicsof industrial yeasts. Springer, Berlin HeidelbergNew York, pp 99–134Pretorius IS (2004) The g<strong>en</strong>etic improvem<strong>en</strong>t ofwine yeasts. In: Arora DK, Bridge PD, Bhatnagar (eds)Handbook of fungal biotechnology. Marcel Dekker,New York, USA, pp 183–223Pretorius IS (2006) Grape and wine biotechnology:setting new goals for the design of improved grapevines,wine yeast and malo<strong>la</strong>ctic bacteria. In: Hui HY,Barta J, Cano MP, Gusek T, Sidhu JS, Sinha N (eds) Handbookof fruits processing sci<strong>en</strong>ce and technology.B<strong>la</strong>ckwell, Ames, IA, USA, pp 453–489Pretorius IS, Bauer FF (2002) Meeting the consumerchall<strong>en</strong>ge through g<strong>en</strong>etically customized wine-yeaststrains. Tr<strong>en</strong>ds Biotechnol 20:426–432Pretorius IS, Høj PB (2005) Grape and wine biotechnology:chall<strong>en</strong>ges, opportunities and pot<strong>en</strong>tial b<strong>en</strong>efits.Austral J Grape Wine Res 11:83–108Purdy KJ, Embley TM, Nedwell DB (2002) The distributionand activity of sulphate reducing bacteria inestuarine and coastal marine sedim<strong>en</strong>ts. Antonie VanLeeuw<strong>en</strong>hoek 81:181–187Rauhut D (1993) Yeasts−production of sulfur compounds.In: Fleet GH (ed) Wine microbiology and biotechnology.Harwood Academic, Chur, Switzer<strong>la</strong>nd, pp183–223Ribéreau-Gayon P, Dubourdieu D, Donéche B,Lonvaud A (2000) Handbook of Enology, vol 1: themicrobiology of wines and vinification. Wiley, Chichester,UK, p 454Russell SM, Fletcher DL, Cox NA (1995) Spoi<strong>la</strong>gebacteria of freshbroiler chick<strong>en</strong> carcasses. Poult Sci74:2041–2047 Seefeldt KE, Weimer BC (2000) Diversityof sulfur compound production in <strong>la</strong>ctic acid bacteria.J Dairy Sci 83:2740–2746Spiropoulos A, Bisson LF (2000) MET17 and hydrog<strong>en</strong>sulfide formation in Saccharomycescerevisiae.Appl Environ Microbiol 66:4421–4426Textos asociados57


CapítuloSpiropoulos A, Tanaka J, Flerianos I, Bisson LF(2000) Characterization of hydrog<strong>en</strong> sulfide formationin commercial and natural wine iso<strong>la</strong>tes of Saccharomyces.Am J Enol Vitic 51:233–248Swiegers JH, Pretorius IS (2005) Yeast modu<strong>la</strong>tionof wine f<strong>la</strong>vour. Adv Appl Microbiol 57:131–175Swiegers JH, Bartowsky EJ, H<strong>en</strong>schke PA, PretoriusIS (2005a) Yeast and bacterial modu<strong>la</strong>tion ofwine aroma and f<strong>la</strong>vour. Austral J Grape Wine Res11:139–173Swiegers JH, Willmott R, Hill-Ling A, Capone DL,Pardon KH, Elsey GM, Howell KS, de Barros LopesMA, Sefton MA, Lilly M,Pretorius IS (2005b) Modu<strong>la</strong>tion of vo<strong>la</strong>tile thiol andester aromas in wine by modified wine yeast. Proceedingsof the Weurman f<strong>la</strong>vour research symposium,Roskilde, D<strong>en</strong>mark, 21– 24 June 2005, Developm<strong>en</strong>tsin Food Sci<strong>en</strong>ce, Elsevier, Amsterdam, The Nether<strong>la</strong>ndsSwiegers JH, Francis IL, Herderich MJ, PretoriusIS (2006) Meeting consumer expectations throughmanagem<strong>en</strong>t in vineyard and winery: the choice ofyeast for ferm<strong>en</strong>tation offers great pot<strong>en</strong>tial to adjustthe aroma of Sauvignon B<strong>la</strong>nc wine. Austral NZ WineInd J 21:34–42Suther<strong>la</strong>nd CM, H<strong>en</strong>schke PA, Langridge P, de BarrosLopes M (2003) Subunit and cofactor binding ofSaccharomyces cerevisiae sulfite reductase−towardsdeveloping wine yeast with lowered ability to producehydrog<strong>en</strong> sulfide. Austral J Grape Wine Res 9:186–193Thornton RJ, Bunker A (1989) Characterisation ofwine yeasts for g<strong>en</strong>etically modifiable properties. JInst Brew 95:181–184Tominaga T, Masneuf I, Dubourdieu D (1995) A S-cysteine conjugate, precursor of aroma of white sauvignon.J Int Sci Vigne Vin 29:227–232Tominaga T, Peyrot des Gachons C, DubourdieuD (1998a) A new type of f<strong>la</strong>vour precursors in Vitisvinifera L. cv. Sauvignon B<strong>la</strong>nc: S-cysteine conjugates. JAgric Food Chem 46:5215–5219Tominaga T, Furrer A, H<strong>en</strong>ry R, Dubourdieu D(1998b) Id<strong>en</strong>tification of new vo<strong>la</strong>tile thiols in thearoma of Vitis vinifera L. var. Sauvignon B<strong>la</strong>nc wines.F<strong>la</strong>vour Fragr J 13:159–162Tominaga T, B<strong>la</strong>nchard L, Darriet P, DubourdieuD (2000). A powerful aromatic vo<strong>la</strong>tile thiol, 2-furanmethanethiol,exhibiting roast coffee aroma in winesmade from several Vitis vinifera grape varieties. J AgricFood Chem 48:1799–1802Vermeul<strong>en</strong> C, Gijs L, Collin S (2005) S<strong>en</strong>sorial contributionand formation pathways of thiols in foods: areview. Food Rev Int 21:69–137Vos PJA, Gray RS (1979) The origin and control ofhydrog<strong>en</strong> sulphide during ferm<strong>en</strong>tation of grapemust. Am J Enol Vitic 30:187–197Yamagata S (1989) Roles of O-acetyl-L-homoserinesulfhydry<strong>la</strong>ses in micro-organisms. Biochimie71:1125–114358


Una revolución <strong>en</strong> elsector <strong>en</strong>ólogico:Levaduras devinificación que noproduc<strong>en</strong> Sulfuro dehidróg<strong>en</strong>o (H 2S)Cord<strong>en</strong>te, T.; Swiegers, H.; (Australian Wine ResearchInstitute AWRI), Heinrich, A.; (Mauri Yeast Australia)El artículo íntegram<strong>en</strong>te reproducido a continuación sepublico por primera vez <strong>en</strong> <strong>la</strong> revista The Australian andNew Zea<strong>la</strong>nd Grapegrover ans Winemaker Magazine <strong>en</strong>noviembre de 2007. Publicado con el permiso de <strong>la</strong> citadarevista .Las cepas de levadura descritas <strong>en</strong> este artículo como sucorrespondi<strong>en</strong>te proceso de desarrollo están p<strong>en</strong>di<strong>en</strong>tesde pat<strong>en</strong>te.IntroducciónLa producción excesiva de Sulfuro de Hidróg<strong>en</strong>o (H 2S)que ti<strong>en</strong>e lugar <strong>en</strong> el transcurso del proceso de ferm<strong>en</strong>tacióndel mosto constituye un problema bastantecomún <strong>en</strong> lo que a vinificación se refiere (Monk1986; H<strong>en</strong>schke and Jiranek 1991). El principal motivode ello radica <strong>en</strong> <strong>la</strong> baja conc<strong>en</strong>tración de elem<strong>en</strong>tosnitrog<strong>en</strong>ados <strong>en</strong> el medio. Con el objeto de paliareste problema, los <strong>en</strong>ologos pued<strong>en</strong>, <strong>en</strong> el transcursodel proceso de ferm<strong>en</strong>tación, aum<strong>en</strong>tar el gradode nitróg<strong>en</strong>o <strong>en</strong> el mosto, añadiéndole fosfato diamónico(DAP) o utilizando sulfato de cobre despuésde <strong>la</strong> ferm<strong>en</strong>tación con el fin de suprimir el H 2S delvino. Pero a pesar del aporte <strong>en</strong> DAP, <strong>la</strong> levadura sigueproduci<strong>en</strong>do H 2S <strong>en</strong> algunos medios y todo ello sinhab<strong>la</strong>r del hecho de que <strong>la</strong> mayoría de los <strong>en</strong>ólogospreferiría no t<strong>en</strong>er que recurrir al uso del sulfato decobre. Los <strong>vinos</strong> que conti<strong>en</strong><strong>en</strong> H 2S despr<strong>en</strong>d<strong>en</strong> unolor desagradable (a huevo podrido), pero además,debido a su olor, el H 2S, no solo reduce <strong>la</strong>s cualidadesorganolépticas del vino sino también oculta <strong>la</strong>s notasaromáticas favorables de éste.¿Cabría imaginar que <strong>en</strong> el futuro podamos llevar acabo una ferm<strong>en</strong>tación con levaduras de vinificaciónque no produzcan H 2S detectable sea cual sea el cont<strong>en</strong>ido<strong>en</strong> nitróg<strong>en</strong>o asimi<strong>la</strong>ble del medio y sin ningúnaporte <strong>en</strong> DAP? Por otro <strong>la</strong>do, ¿Estas cepas de levaduraserían capaces de realzar aromas favorecedoresSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>mant<strong>en</strong>i<strong>en</strong>do a <strong>la</strong> vez una excel<strong>en</strong>te capacidad deferm<strong>en</strong>tación? El Instituto de Investigación Vitiviníco<strong>la</strong>de Australia (AWRI) ha desarrol<strong>la</strong>do, <strong>en</strong> co<strong>la</strong>boracióncon <strong>la</strong> Sociedad Mauri Yeast Australia, nuevas cepasde levadura que produc<strong>en</strong> cantidades indetectablesde H 2S. Estas levaduras son Advantage, P<strong>la</strong>tinum yDistinction.¿Cómo han sido desarrol<strong>la</strong>das estáslevaduras de baja producción de H2S?Para el desarrollo de estas cepas, el AWRI ha utilizadométodos biológicos clásicos (no OGM). La cepa MaurivinPDM era <strong>la</strong> cepa par<strong>en</strong>tal ideal, dada <strong>la</strong> popu<strong>la</strong>ridadde <strong>la</strong> que goza <strong>en</strong>tre los e<strong>la</strong>boradores a nivel internacional.El objetivo radicaba <strong>en</strong> adaptar <strong>la</strong> cepa demanera que ésta realzara sus propiedades favorables,es decir su capacidad <strong>en</strong> no producir cantidades detectablesde H 2S y a partir de el<strong>la</strong> se han obt<strong>en</strong>ido <strong>la</strong>scepas cuyos <strong>en</strong>sayos se expon<strong>en</strong> a continuación.Estas cepas, p<strong>en</strong>di<strong>en</strong>tes de pat<strong>en</strong>te, están c<strong>la</strong>sificadascomo “no OGM” <strong>en</strong> todos los países vitiviníco<strong>la</strong>s delmundo.Probar <strong>la</strong>s cepas <strong>en</strong> mostosempobrecidos <strong>en</strong> nitróg<strong>en</strong>o asimi<strong>la</strong>bleLas cepas seleccionadas se probaron <strong>en</strong> mostos quecont<strong>en</strong>ían bajas cantidades de nitróg<strong>en</strong>o asimi<strong>la</strong>ble(100 mg. N/L). No se añadió ningún aporte <strong>en</strong> DAPdurante el proceso de ferm<strong>en</strong>tación. Las ferm<strong>en</strong>tacionesde <strong>la</strong>boratorio se realizaron a 18º C, por triplicado,con una conc<strong>en</strong>tración inicial <strong>en</strong> azúcar de240 gr./lt. (aproximadam<strong>en</strong>te 13.5 B). Unas cintasreactivas (tipo Fluka) extremadam<strong>en</strong>te s<strong>en</strong>sibles alH 2S fueron insertadas <strong>en</strong> cada frasco con el fin deponer <strong>en</strong> evid<strong>en</strong>cia <strong>la</strong> producción de H 2S; <strong>la</strong>s cintasb<strong>la</strong>ncas, indicaban <strong>la</strong> aus<strong>en</strong>cia de liberación de H 2S.Las cintas de color marrón indicaban, por otra parte,una pres<strong>en</strong>cia de H 2S <strong>en</strong> cantidades indetectables<strong>para</strong> el olfato humano. Las cintas negras indicaban<strong>en</strong> cambio una pres<strong>en</strong>cia de H 2S más allá del límiteperceptible por el olfato humano aún que <strong>en</strong> un nivelde conc<strong>en</strong>tración no perjudicial <strong>para</strong> <strong>la</strong> calidaddel vino.Al finalizar <strong>la</strong> ferm<strong>en</strong>tación, <strong>la</strong>s cintas reactivas sumergidas<strong>en</strong> <strong>la</strong>s muestras que cont<strong>en</strong>ían Advantagey Distinction se quedaron b<strong>la</strong>ncas o de color muyc<strong>la</strong>ro P<strong>la</strong>tinum (Figura 1) Este resultado confirmó queestas cepas no producían cantidades detectables deH 2S, incluso <strong>en</strong> pres<strong>en</strong>cia de cantidades muy bajas d<strong>en</strong>itróg<strong>en</strong>o asimi<strong>la</strong>ble. El patrón , Maurivin PDM, quedoc<strong>la</strong>ram<strong>en</strong>te coloreado. Convi<strong>en</strong>e destacar que <strong>en</strong>los mostos que cont<strong>en</strong>ían cantidades sufici<strong>en</strong>tes d<strong>en</strong>itróg<strong>en</strong>o asimi<strong>la</strong>ble, Maurivin PDM no produjo nadade H 2S.The Australian and New Zea<strong>la</strong>nd Grapegroverans Winemaker Magazine, noviembre de 2007Textos asociados59


Una revolución <strong>en</strong> el sector <strong>en</strong>ólogico: Levaduras de vinificación que no produc<strong>en</strong> Sulfuro de hidróg<strong>en</strong>oEstos resultados demuestran que estas tres cepas Advantage,P<strong>la</strong>tinum y Distinction, ferm<strong>en</strong>tan mostosempobrecidos <strong>en</strong> nitróg<strong>en</strong>o asimi<strong>la</strong>ble sin producircantidades de H 2S detectables por <strong>la</strong> nariz humana.Asimismo, estas tres cepas de levadura pres<strong>en</strong>tancinéticas de ferm<strong>en</strong>tación com<strong>para</strong>bles con <strong>la</strong>s de<strong>la</strong> cepa de levadura PDM, conocida por su robustez(Tab<strong>la</strong> 1, Figura 2).cantidad de H 2S que sobrepasaba el límite de <strong>la</strong> percepcións<strong>en</strong>sorial.Las catas llevadas a cabo al finalizar el análisis demostraronque los <strong>vinos</strong> pres<strong>en</strong>taban características s<strong>en</strong>sorialespositivas. Además, <strong>la</strong>s cepas reve<strong>la</strong>ron unascinéticas de ferm<strong>en</strong>tación com<strong>para</strong>bles a <strong>la</strong> obt<strong>en</strong>idacon <strong>la</strong> cepa Maurivin PDM .Y <strong>en</strong> condiciones reales de vinificaciónLas cepas han sido probadas <strong>en</strong> condiciones reales devinificación con el fin de reflejar su aptitud <strong>en</strong> <strong>la</strong>s condicionesambi<strong>en</strong>tales propias al vino. Se sometió aprueba un mosto de Chardonnay con una conc<strong>en</strong>traciónde azúcar de 190 gr./lt. Y, al igual que <strong>en</strong> <strong>la</strong> pruebaanterior, no se añadió DAP <strong>en</strong> todo el transcurso delproceso de ferm<strong>en</strong>tación. Utilizando condiciones deferm<strong>en</strong>tación simi<strong>la</strong>res a <strong>la</strong>s anteriorm<strong>en</strong>te descritas,<strong>la</strong> ferm<strong>en</strong>tación se llevó a cabo a una temperatura de15º C y, de <strong>la</strong> misma manera, los grados de ferm<strong>en</strong>taciónobt<strong>en</strong>idos fueron simi<strong>la</strong>res a los obt<strong>en</strong>idos con<strong>la</strong> cepa testigo de refer<strong>en</strong>cia (Maurivin PDM). Lascintas reactivas de todos los mostos de Chardonnayferm<strong>en</strong>tados con <strong>la</strong>s tres nuevas cepas se quedaronb<strong>la</strong>ncas. Hecho que confirma que, sin ningún aporte<strong>en</strong> DAP estas cepas no produc<strong>en</strong> H 2S con <strong>la</strong> variedadChardonnay.Las catas tampoco reve<strong>la</strong>ron pres<strong>en</strong>cia alguna de H 2S.Los catadores indicaron <strong>la</strong> pres<strong>en</strong>cia de notas afrutadas,dada <strong>la</strong> aus<strong>en</strong>cia de notas azufradas. Estas cepasde levadura pres<strong>en</strong>tan pues con <strong>la</strong> variedad Chardonnay,unas capacidades de ferm<strong>en</strong>tación indudables;y por este motivo fueron sometidas a prueba otrasvariedades con el fin de confirmar dicha aptitud ferm<strong>en</strong>taría.Resultados obt<strong>en</strong>idos con <strong>la</strong> variedadSauvignon B<strong>la</strong>ncA lo <strong>la</strong>rgo de este estudio, se uso un mosto de SauvignonB<strong>la</strong>nc <strong>para</strong> llevar a cabo <strong>la</strong> ferm<strong>en</strong>tación, conel objetivo de marcar más <strong>la</strong>s difer<strong>en</strong>cias s<strong>en</strong>sorialesusando una variedad aromática. El mosto pres<strong>en</strong>taba<strong>la</strong>s características analíticas sigui<strong>en</strong>tes: 190 gr./lt. deazúcar, pH 3.3, acidez total de 5.1 gr./lt. Las ferm<strong>en</strong>tacionesse realizaron a una temperatura 18°C. Lascintas reactivas confirmaron de nuevo que <strong>en</strong> aus<strong>en</strong>ciade cualquier aporte de DAP <strong>la</strong>s cepas Advantage,Distinction y P<strong>la</strong>tinum no producían H 2S mi<strong>en</strong>trasque <strong>en</strong> el mismo tiempo, <strong>la</strong> cepa testigo producía unaEn resum<strong>en</strong>La producción de H 2S es perjudicial <strong>para</strong> <strong>la</strong> producciónde <strong>vinos</strong> de calidad. Felizm<strong>en</strong>te, hoy <strong>en</strong> día, exist<strong>en</strong>cepas de levaduras l<strong>la</strong>madas Advantage, P<strong>la</strong>tinumDistinction.. Estas cepas se adaptan especialm<strong>en</strong>tea los mostos que, empobrecidos <strong>en</strong> nitróg<strong>en</strong>o, evitan<strong>la</strong> producción de H 2S. Por lo g<strong>en</strong>eral se trata decepas polival<strong>en</strong>tes que permit<strong>en</strong> <strong>la</strong> ferm<strong>en</strong>tación deuna amplia gama de variedades a <strong>la</strong> vez que una producciónde <strong>vinos</strong> de calidad con características s<strong>en</strong>sorialesconsiderablem<strong>en</strong>te mejoradas. Además, al not<strong>en</strong>er que recurrir al DAP (o emplearlo <strong>en</strong> cantidadesinferiores) se facilita así el procesos de vinificación.Agradecimi<strong>en</strong>tosLos autores dan <strong>la</strong>s gracias al Dr. Nick Yap, al Dr. DanJohnson y al Profesor Sakkie Pretorius por su valiosaco<strong>la</strong>boración a lo <strong>la</strong>rgo de todo este proyecto asícomo por <strong>la</strong> crítica constructiva que hicieron de esteartículo. El Dr. Toni Cord<strong>en</strong>te se ha b<strong>en</strong>eficiado de<strong>la</strong>poyo económico del grupo AB Mauri. El Dr.H<strong>en</strong>tieSwiegers es investigador <strong>en</strong> el Instituto de InvestigaciónVitiviníco<strong>la</strong> de Autralia, subv<strong>en</strong>cionado por <strong>la</strong>asociación de los vinificadores y viticultores Australianosa través de su organismo de inversión: <strong>la</strong> sociedadde Desarrollo de <strong>la</strong> Investigación sobre Uva y Vino asícomo por los fondos del gobierno de Australia.Refer<strong>en</strong>ciasMonk, P.R. Formation, utilization and excretion ofhydrog<strong>en</strong> sulfide by wine yeast. (1986) Wine IndustryJournal, Noviembre 10-16.H<strong>en</strong>schke PA, Jiranek V (1991) Hydrog<strong>en</strong> sulfideformation during ferm<strong>en</strong>tation: effect of nitrog<strong>en</strong>composition in model grape must. Proceedings of theinternational symposium on nitrog<strong>en</strong> in grapes andwine, Seattle, USA. American Society for Enology andViticulture, Davis, CA, Pág.172–18460


Tab<strong>la</strong> 1. Análisis químicos de los <strong>vinos</strong>Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>PDM Advantage P<strong>la</strong>tinum DistinctionAzúcar residual (Fructosa) gr./lt. 1.7 1.2 0.2 0Glicerol gr./lt. 4.8 5.8 5.2 5.3Ácido acético gr./lt. 0.28 0.35 0.06 0.20Etanol % 11.4 11.3 11.3 11.5Días de ferm<strong>en</strong>tación (


Nitrog<strong>en</strong>managem<strong>en</strong>t iscritical for wineManaging Director,f<strong>la</strong>vour and styleUgliano, M.; H<strong>en</strong>schke, P.A.; Herderich, M.J.; Pretorius,I.S.The Australian Wine Research Institute, PO Box 197, Gl<strong>en</strong>Osmond (Ade<strong>la</strong>ide), South Australia 5064, Australia“Winemaking begins in the vineyard” is a mantrathat has widespread support amongst winemakers.It conveys the concept of vineyard or, in Fr<strong>en</strong>ch jargon,terroir as an intrinsic property of grape, andconsequ<strong>en</strong>tly the corresponding wine. There is nodoubt that many great wines are associated withgreat vineyards. So, where do yeast fi t in?The perception that ferm<strong>en</strong>tation yeast faithfullytransform grape must into wine has be<strong>en</strong> changingin the detail over the past decades. This is a result ofsci<strong>en</strong>ce uncovering the many roles that yeast perform,and the wider selection of strains avai<strong>la</strong>ble thatpromote these various attributes. For example, whereasmost strains produce a re<strong>la</strong>tively simi<strong>la</strong>r, g<strong>en</strong>eric,ferm<strong>en</strong>tation bouquet only some strains possess astrong ability to hydrolyse cysteine conjugates responsiblefor Sauvignon B<strong>la</strong>nc character, meaning thatonly selected strains can <strong>en</strong>hance varietal expression(Swiegers et al. 2006).Winemakers today have many options through ferm<strong>en</strong>tationmanagem<strong>en</strong>t to <strong>en</strong>hance the varietal characteristicsof their wine, or to express further regiona<strong>la</strong>ttributes. Furthermore, yeast strongly respond totheir <strong>en</strong>vironm<strong>en</strong>t. It is well known that temperatureaff ects the rate of ferm<strong>en</strong>tation, that grape solids<strong>en</strong>hance survival and that high osmotic stress, asimposed by a Botrytis-aff ected must, leads not onlyto increased glycerol production but also to highervo<strong>la</strong>tile acidity. The <strong>la</strong>tter example highlights the remarkableability of yeast to adapt to stressful (i.e. highsugar) <strong>en</strong>vironm<strong>en</strong>ts. However, there is an accompanyingmetabolic adaptation which can have positive ornegative fl avour implications.At the time of inocu<strong>la</strong>tion, yeast are subjected to arange of stresses to which the cell must adapt in orderto exploit its new <strong>en</strong>vironm<strong>en</strong>t. Some of the knownstresses are osmotic pressure, oxidative conditions,Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>sulphite toxicity and temperature shock (Bauer andPretorius 2000). Nutri<strong>en</strong>ts, whether pres<strong>en</strong>t in sub- orsuper-optimal conc<strong>en</strong>tration, can also induce stressand metabolic responses. The primary response isaimed at protecting the cell from committing to reproductionwh<strong>en</strong> key nutri<strong>en</strong>ts are <strong>la</strong>cking or dealingwith pot<strong>en</strong>tial toxicity wh<strong>en</strong> the conc<strong>en</strong>tration is outsidethe normal range. The metabolic response oft<strong>en</strong>involves a cascade of biochemical reactions, some ofwhich can lead to altered metabolism of nutri<strong>en</strong>tssuch that the yeast will secrete <strong>en</strong>d-products in differ<strong>en</strong>t amounts (Albers et al. 1998). Some of the <strong>en</strong>dproducts that have s<strong>en</strong>sory properties can lead tochanges in the fl avour profi le of the wine. H 2S formationis an all-too-well known example re<strong>la</strong>ting tonitrog<strong>en</strong> depletion stress.Clearly, the vineyard <strong>en</strong>vironm<strong>en</strong>t and interv<strong>en</strong>tionby the viticulturist shape the developm<strong>en</strong>t of the vineand especially the composition of the grape. Becausethe viticulturist attempts to ba<strong>la</strong>nce a long list of prioritiesin order to produce fruit to specifi cation, mostatt<strong>en</strong>tion will focus on those factors that cannot bemodifi ed once the fruit has be<strong>en</strong> harvested.Therefore, yeast nutri<strong>en</strong>ts, especially nitrog<strong>en</strong>, mightnot be optimised for ferm<strong>en</strong>tation, <strong>la</strong>rgely in the beliefthat nutri<strong>en</strong>ts can be easily corrected in the winery. Giv<strong>en</strong>that we estimate that up to 500t of diammoniumphosphate (DAP) could be used each year to produceAustralian wine, is this winemaking input being usedeff ectively? Our curr<strong>en</strong>t state of knowledge on theimplications of controlling vineyard nitrog<strong>en</strong> as opposedto ferm<strong>en</strong>tation nitrog<strong>en</strong> on ferm<strong>en</strong>tation performanceand wine composition has be<strong>en</strong> rec<strong>en</strong>tly reviewedby Bell and H<strong>en</strong>schke (2005). In this article, wewill focus on the role that ferm<strong>en</strong>tation nitrog<strong>en</strong> hasin modu<strong>la</strong>ting metabolism and some of the changesthat this can have on wine fl avour. We will fi rst summarisecurr<strong>en</strong>t best practice for managing ferm<strong>en</strong>tationnitrog<strong>en</strong> and th<strong>en</strong> describe the main fl avourchanges that are aff ected by nitrog<strong>en</strong>.Finally, we will consider the fl avour implications of nitrog<strong>en</strong>for white and red wine ferm<strong>en</strong>tations.CURRENT BEST PRACTICE FORMANAGING FERMENTATION NITROGENA common practice amongst winemakers is to makea standard addition of DAP to the juice or must (100-300mg/L) at inocu<strong>la</strong>tion without measuring the nitrog<strong>en</strong>conc<strong>en</strong>tration. This article will show that DAPaddition has signifi cant fl avour consequ<strong>en</strong>ces andthat measuring the initial nitrog<strong>en</strong> conc<strong>en</strong>tration providesthe opportunity to adjust DAP addition not onlyto achieve an adequate ferm<strong>en</strong>tation rate, but also tomore reliably guide the fl avour profi le and style ofwine required. This work is still in a conceptual stageTextos asociadosWine Industry Journal > Vol 22 No 6 > November / December 200763


Nitrog<strong>en</strong> managem<strong>en</strong>t is critical for wine Managing Director, f<strong>la</strong>vour and stylebased on studies with Chardonnay and Shiraz; however,it should stimu<strong>la</strong>te winemakers to experim<strong>en</strong>twith these and other varieties.1.1 Measuring YANGrapes contain a variety of nitrog<strong>en</strong>ous compoundsof which the most important are the primary or alphaamino acids, ammonium ion and small peptides. Proline,a dominant secondary amino acid in many grapevarieties, cannot be assimi<strong>la</strong>ted under anaerobicconditions (Ingledew et al. 1987). These nitrog<strong>en</strong>ouscompounds, excluding proline, constitute what iscommonly referred to as yeast assimi<strong>la</strong>ble nitrog<strong>en</strong>(YAN).Figure 1. Summation of free amino nitrog<strong>en</strong>and ammonia nitrog<strong>en</strong> levels provides a usefulestimate of the yeast assimi<strong>la</strong>ble nitrog<strong>en</strong> level.Because amino acids are chemicallydiverse molecules,the most conv<strong>en</strong>i<strong>en</strong>t measure of assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong> re<strong>la</strong>tes to assaying the free or alpha-aminogroup of the primary amino acids, which is commonlyreferred to as free amino nitrog<strong>en</strong> (FAN). Proline, a secondaryamino acid, and protein are excluded in FANassay methods. Of the several chemical, <strong>en</strong>zymaticand physical methods avai<strong>la</strong>ble (Shively and H<strong>en</strong>ick-Kling 2001; Bell and H<strong>en</strong>schke 2005; Filipe-Ribereiroand M<strong>en</strong>des-Faia 2007) the method of choice is theo-phthaldialdehyde/N-acetyl-L-cysteine (NOPA) method(Dukes and Butzke 1998). An additional <strong>en</strong>zymaticmethod is needed to determine ammonia, ofwhich 82% is nitrog<strong>en</strong>. Summation of these two nitrog<strong>en</strong>measurem<strong>en</strong>ts yields YAN (Figure 1). This procedureis used by NATA-accredited <strong>la</strong>boratories such asAWRI’s Analytical Service <strong>la</strong>boratory (http://www.awri.com.au/analytical_ service/analyses/yeast_assimi<strong>la</strong>ble_nitrog<strong>en</strong>/), which can provide a timely service duringvintage.The so-called Formol Titration is a simpler, rapid methodfor measuring YAN (Shively and H<strong>en</strong>ick-Kling2001; Gump et al. 2002; Filipe-Ribereiro and M<strong>en</strong>des-Faia 2005), although the use of formaldehyde, a toxicvo<strong>la</strong>tile reag<strong>en</strong>t, requires a well-trained analyst andsuitable <strong>la</strong>boratory. YAN determination with midinfrared(MIR) spectrometry, which is most rapid, hasrec<strong>en</strong>tly be<strong>en</strong> developed by the AWRI (Dambergs etal. 2005).YAN measurem<strong>en</strong>ts, ideally, should be performed directlyon juice or must samples at the point of inocu<strong>la</strong>tionto avoid over-estimation due to processinglosses which inevitably occur betwe<strong>en</strong> vineyard andthe ferm<strong>en</strong>tor. Furthermore, juice samples tak<strong>en</strong> fromgrape musts can under-estimate total berry YAN dueto an important proportion of amino acid containedin the grape skin. Refer to the review by Bell and H<strong>en</strong>schke(2005) for a detailed discussion of these points.Nevertheless, an early warning for low YAN can beachieved by sampling in the vineyard one to two weeksprior to harvest, such as during maturity sampling.1.2 Supplem<strong>en</strong>ting must YANThe YAN cont<strong>en</strong>t of Australian grape juices varies widelyfrom approximately 50-350mg/L, with a meanvalue of around 200mg/L. As a b<strong>en</strong>chmark, it is g<strong>en</strong>erallyagreed that maximum yeast biomass yield andferm<strong>en</strong>tation rate results wh<strong>en</strong> YAN exceeds 400mg/L,whereas 150mg/L YAN marks a transition zone, belowwhich the risk of slow or stuck ferm<strong>en</strong>tation notablyincreases (H<strong>en</strong>schke and Jiranek 1993; B<strong>la</strong>teyron et al.2003). Since much of the background research workto establish these b<strong>en</strong>chmarks has be<strong>en</strong> carried outin synthetic and fi ltered grape juices, this risk valueis technically only valid for highly c<strong>la</strong>rifi ed, anaerobic,juice ferm<strong>en</strong>tations. Nonetheless, it repres<strong>en</strong>ts aworst-case sc<strong>en</strong>ario and is a useful guide for other typesof ferm<strong>en</strong>tation.In g<strong>en</strong>eral, in order to achieve an adequate rate offerm<strong>en</strong>tation to dryness, a cel<strong>la</strong>r bright juice containing


article, wh<strong>en</strong> we consider the fl avour consequ<strong>en</strong>cesof juice YAN cont<strong>en</strong>t, some winemakers might chooseto supplem<strong>en</strong>t low YAN juices up to a fi nal conc<strong>en</strong>trationof 250-300mg/L YAN so as to produce a cleaner,fruitier style.DAP is widely used as a YAN supplem<strong>en</strong>t for this purpose.DAP contains 21% N, therefore, for conv<strong>en</strong>i<strong>en</strong>cewe can consider 100mg DAP to contain 20mg YAN. Byway of an example, it will be necessary to add 500mg/LDAP to a juice to increase its YAN conc<strong>en</strong>tration from100mg/L to 200mg/L. While this fi gure seems a <strong>la</strong>rgeaddition of DAP, the YAN equival<strong>en</strong>t of 1.5g DAPwould be needed to reach the point at which maximumferm<strong>en</strong>tation rate would be achieved. Australianwinemakers can visit the AWRI website to accessthe calcu<strong>la</strong>tor to estimate DAP additions: http://www.awri.com.au/ practical_solutions/calcu<strong>la</strong>tors/.One disadvantage of DAP as a supplem<strong>en</strong>t is the acidification that can result in some juices, leading toa lowerthan- expected wine pH. Utilisation of theammonium cation by yeast leaves a notable proportionof the phosphate anion, which can lower pH,dep<strong>en</strong>ding on initial pH and must titratable acidity(TA). Furthermore, <strong>la</strong>rge additions of DAP can lead toexcessive wine phosphate cont<strong>en</strong>t. In practice, themaximum addition of DAP is limited by the concomitantconc<strong>en</strong>tration of soluble phosphate remaining inthe wine, which is set at 400mg P/L (Australian andNew Zea<strong>la</strong>nd Food Standard 4.5.1). This conc<strong>en</strong>trationof phosphate-P would correspond to a maximum of1.7g/LDAP (equival<strong>en</strong>t to 360mg/L YAN) if we assume thatthe juice/must contained no phosphate; in practice alesser amount of DAP can only, therefore, be added.Overuse of DAP can also stimu<strong>la</strong>te overproduction ofacetate esters, especially ethyl acetate, resulting in theperception of vo<strong>la</strong>tile acidity (VA) and suppression ofvarietal character. As discussed in the following sections,high YAN (exceeding 450-500mg/L YAN) canstimu<strong>la</strong>te ethyl acetate production by many yeaststrains.Wh<strong>en</strong> working with very low YAN juices, we have observedthat other nutri<strong>en</strong>ts can simi<strong>la</strong>rly be low. Thus,wh<strong>en</strong> YAN is low and other nutri<strong>en</strong>t defi ci<strong>en</strong>cies aresuspected, it can be useful to add a proprietary yeastfood that contains more complex forms of N, as wel<strong>la</strong>s vitamins, lipids and minerals. Indeed, continuedH2S production after DAP addition suggests a g<strong>en</strong>eralvitamin defi ci<strong>en</strong>cy (H<strong>en</strong>schke 1996; Wang et al. 2003),though other causes are also possible.Most yeast suppliers can advise on the use of yeastfoods, which are g<strong>en</strong>erally produced from inactivatedyeast.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>GENERAL METABOLIC RESPONSES OFYEAST TO YANThe principal role of sugar metabolism in yeast is tog<strong>en</strong>erate <strong>en</strong>ergy and carbon skeletons for building allthe compon<strong>en</strong>ts of the cell. These metabolic activitiesresult in the accumu<strong>la</strong>tion of several by-products, includingesters, higher alcohols and polyols, carbonyls,acids and thiols which contribute to the aroma and f<strong>la</strong>vour of wine. Nitrog<strong>en</strong> metabolism, which is involvedin the assimi<strong>la</strong>tion of nitrog<strong>en</strong> for the synthesis ofprotein and nucleic acids, also contributes to the poolof aroma and fl avour compounds. Because nitrog<strong>en</strong>metabolism is c<strong>en</strong>tral to cell growth, it regu<strong>la</strong>tes otherpathways, including sugar and sulphur metabolism.Consequ<strong>en</strong>tly, nitrog<strong>en</strong> avai<strong>la</strong>bility can signifi cantlyimpact on the production of many fl avouractive metabolites.The nitrog<strong>en</strong> status of a juice or must, therefore,contributes to wine fl avour as well as aff ectingyeast growth and the ferm<strong>en</strong>tation of sugars.2.1 Major ferm<strong>en</strong>tation productsIn addition to ethanol and CO 2, other major productsof sugar metabolism are the polyols, such as glycero<strong>la</strong>nd butanediol and the organic acids, especially aceticand succinic acids and, to a lesser ext<strong>en</strong>t, the ketoacids,such as pyruvic acid and -ketoglutaric acid.The production of many of these primary metabolitesof sugar metabolism is modu<strong>la</strong>ted by YAN, althoughthe magnitude of changes has be<strong>en</strong> observed todep<strong>en</strong>d on the yeast strain under consideration. Furthermore,the type of nitrog<strong>en</strong> source used, DAP oramino acids, aff ects metabolite production (Albers etal. 1996). Because low YAN juices are typically supplem<strong>en</strong>tedwith DAP, only the impact of ammonium ionconc<strong>en</strong>tration on the production of yeast metaboliteswill be discussed in this article.Conc<strong>en</strong>trationGlycerolMalicacidSuccinicacidAceticacidSO2100 200 300 400YANFigure 2. Effect of yeast assimi<strong>la</strong>ble nitrog<strong>en</strong>on production or utilisation of major metabolicproducts of sugar ferm<strong>en</strong>tation and sulphurassimi<strong>la</strong>tion.Textos asociados65


Nitrog<strong>en</strong> managem<strong>en</strong>t is critical for wine Managing Director, f<strong>la</strong>vour and styleEthanol is the major product of sugar ferm<strong>en</strong>tation.However, while DAP addition increases yeast growthand the rate of ferm<strong>en</strong>tation, it has little to no practicaleff ect on fi nal ethanol yield.Theoretically, DAP-grown yeast are forced to synthesiseamino acids for cell growth wh<strong>en</strong> compared withamino acid grown yeast. This decreases the proportionof sugar avai<strong>la</strong>ble for ethanol production (Alberset al. 1996), but in our experim<strong>en</strong>ts this has a minor affect on ethanol yield.Glycerol and acetic acid, which are important to winecomposition and fl avour, respond re<strong>la</strong>tively stronglyto juice YAN conc<strong>en</strong>tration (Albers et al. 1998; Torrea etal. 2005; Vi<strong>la</strong>nova et al. 2007).Figure 2 summarises g<strong>en</strong>eral tr<strong>en</strong>ds observed in syntheticjuice and white wine ferm<strong>en</strong>tations. Both glycero<strong>la</strong>nd acetic acid production dep<strong>en</strong>ds stronglyon the yeast strain used. For example, wh<strong>en</strong> usingyeast Vitilevure M05 DAP addition increases glycerolproduction whereas the reverse is the case for AWRI796 (Vi<strong>la</strong>nova et al. 2007). Both yeast, however, producethe lowest conc<strong>en</strong>trations of acetic acid at moderateYAN conc<strong>en</strong>trations (range of 200-250mg/L)while higher conc<strong>en</strong>trations are produced at bothlower and higher conc<strong>en</strong>trations of YAN. Malic acidconsumption does, however, increase with increasingDAP conc<strong>en</strong>tration, irrespective of yeast strain. On thecontrary and dep<strong>en</strong>ding on the strain, succinic acidconc<strong>en</strong>tration can increase with increasing DAP addition(Coulter et al. 2004). In g<strong>en</strong>eral, YAN can aff ect TAand the ba<strong>la</strong>nce of organic acids which can aff ect f<strong>la</strong>vour (Sowalsky and Noble 1998).Sulphur dioxide production during ferm<strong>en</strong>tation canalso be stimu<strong>la</strong>ted by initial YAN conc<strong>en</strong>tration, butthe response seems to be yeast strain dep<strong>en</strong>d<strong>en</strong>t.Experim<strong>en</strong>tal work in synthetic media and wort suggeststhat low SO2 is produced in low YAN mediabut increases wh<strong>en</strong> initial YAN avai<strong>la</strong>bility is higher(Duan et al. 2004; Osborne and Edwards 2006). SO 2production contrasts with H2S production, which isg<strong>en</strong>erally lowered by increasing YAN. Increased riskof MLF inhibition has also be<strong>en</strong> associated with highYAN addition but this inhibition has not be<strong>en</strong> conclusivelycorre<strong>la</strong>ted with SO 2production (Osborne andEdwards 2006). Nevertheless, until better informationis avai<strong>la</strong>ble, consideration should be giv<strong>en</strong> to limitinghigh YAN conditions wh<strong>en</strong> malo<strong>la</strong>ctic ferm<strong>en</strong>tation(MLF) is required.2.2 Vo<strong>la</strong>tile aroma compoundsAmong the various yeast metabolic pathways that areinfl u<strong>en</strong>ced by the nitrog<strong>en</strong> composition of the juice,those leading to vo<strong>la</strong>tile compounds are of particu<strong>la</strong>rimportance due to the primary role p<strong>la</strong>yed by ferm<strong>en</strong>tation-derivedvo<strong>la</strong>tiles in the aroma character of wine(Smyth et al. 2005). Several studies have indicated thatboth the total avai<strong>la</strong>ble nitrog<strong>en</strong> and the ba<strong>la</strong>nce ofamino acids and ammonia can signifi cantly aff ectthe production of differ<strong>en</strong>t groups of ferm<strong>en</strong>tationderivedvo<strong>la</strong>tile compounds.From a practical point of view, the problem of juice nitrog<strong>en</strong>composition is primarily linked to the frequ<strong>en</strong>toccurr<strong>en</strong>ce of juices with suboptimal conc<strong>en</strong>trationsof nitrog<strong>en</strong>, and higher risk of slow or stuck ferm<strong>en</strong>tation.As this problem is frequ<strong>en</strong>tly corrected in thewinery through the addition of DAP, several studieshave investigated the implications of this commonwinery practice on the vo<strong>la</strong>tile composition of wine(Ayrapaa 1971, Rapp and Versini 1991; Carrau 2003; Torreaand H<strong>en</strong>schke 2004; Hernandez-Orte et al. 2005,2006; Vi<strong>la</strong>nova et al. 2007). Due to the variety of yeaststrains and ferm<strong>en</strong>tation conditions employed, it issomewhat diffi cult to extrapo<strong>la</strong>te from the literaturedefi nitive conclusions concerning the eff ect of DAPaddition on wine aroma. Nevertheless, some g<strong>en</strong>eraltr<strong>en</strong>ds re<strong>la</strong>ting to DAP supplem<strong>en</strong>tation and wine vo<strong>la</strong>tilecomposition are summarised in Figure 3.Higher alcohols, which are directly re<strong>la</strong>ted to aminoacid metabolism in the cell, exhibit a characteristicbehaviour. Therefore, wh<strong>en</strong> total nitrog<strong>en</strong> is increasedby adding ammonium to a medium containing verylow levels of YAN, the production of higher alcoholsis initially increased, but th<strong>en</strong> t<strong>en</strong>ds to decrease aftera peak betwe<strong>en</strong> 200-300mg/L YAN. This activity dep<strong>en</strong>dson various factors, including yeast strain andferm<strong>en</strong>tation conditions.Higher alcohols are characterisedby fusel-like odours, and are g<strong>en</strong>erally thoughtto contribute to the complexity of wine ferm<strong>en</strong>tationbouquet. However, wh<strong>en</strong> pres<strong>en</strong>t in very highconc<strong>en</strong>trations they can have a negative impact onwine aroma, mainly because they mask fruity characters.Several authors have reported that ammoniumsupplem<strong>en</strong>tation can improve wine s<strong>en</strong>sory qualityConc<strong>en</strong>tration of yeast aroma compoundsHigher alcoholsEthyl acetateAcetate estersFatty acidsethyl estersBranched chainesters100 200 300 400 500YANFigure 3. Re<strong>la</strong>tionship betwe<strong>en</strong> initial YANconc<strong>en</strong>tration and fi nal conc<strong>en</strong>tration of vo<strong>la</strong>tilecompounds after ferm<strong>en</strong>tation.66


y lowering higher alcohols production (Rapp andVersini 1991). However, based on the tr<strong>en</strong>d shown inFigure 3, this advice has to be tak<strong>en</strong> cautiously as itmight apply only to ferm<strong>en</strong>tations with initial YAN inthe range included in the desc<strong>en</strong>ding part of higheralcohols production pattern, i.e. YAN >200mg N/L.The production of fatty acids ethyl esters, as well as ofacetate esters, including ethyl acetate, is g<strong>en</strong>erally increasedwh<strong>en</strong> DAP is added to the juice prior to alcoholicferm<strong>en</strong>tation (Figure 3). This can have interestingimplications for wine fl avour as fatty acids ethyl estersand acetates are g<strong>en</strong>erally responsible for the fruitycharacter of wine (Guth and Sies 2002). However,ethyl acetate, one of the dominant yeast-derived vo<strong>la</strong>tilemetabolites, wh<strong>en</strong> pres<strong>en</strong>t at very high conc<strong>en</strong>trations,can give unwanted s<strong>en</strong>sory characteristics,oft<strong>en</strong> described with terms like nail <strong>la</strong>cquer/solv<strong>en</strong>tand vo<strong>la</strong>tile acidity. Branched chain esters are, from aquantitative point of view, the less abundant vo<strong>la</strong>tilesproduced during ferm<strong>en</strong>tation. Although their contributionto wine fl avour has still to be c<strong>la</strong>rifi ed, t<strong>en</strong>tativeevid<strong>en</strong>ce is avai<strong>la</strong>ble in the literature for thesecompounds to be important contributors to the redberry fruit character of some red wines (Diaz- Marotoet al. 2005). Their conc<strong>en</strong>tration appears to decreasewith increased DAP additions, however.The exist<strong>en</strong>ce of a variety of diff er<strong>en</strong>t responses forthe various groups of yeastderived vo<strong>la</strong>tile compoundsto DAP supplem<strong>en</strong>tation arises from the factthat each group of vo<strong>la</strong>tiles is derived from a diff er<strong>en</strong>tmetabolic pathway, each of which respond differ<strong>en</strong>tlyto DAP supplem<strong>en</strong>tation. However, from a practicalpoint of view, understanding the pot<strong>en</strong>tial of DAPsupplem<strong>en</strong>tation as a tool to modu<strong>la</strong>te wine s<strong>en</strong>sorycharacteristics cannot be based simply on compositionaldata. The various vo<strong>la</strong>tiles or groups of vo<strong>la</strong>tilesillustrated in Figure 3 occur in wine over an extremelybroad range of conc<strong>en</strong>trations. However, this fi guredoes not repres<strong>en</strong>t the actual quantitative re<strong>la</strong>tionshipbetwe<strong>en</strong> diff er<strong>en</strong>t chemical species. For example,higher alcohols, characterised by herbaceous, fusellikeodours, typically occur in conc<strong>en</strong>trations that canbe up to 400 times higher than ethyl fatty acid esters,Odour Activity Value120100806040200Isoamyl alcoholEthyl octanoateIsoamyl acetateEthyl 3-methylbutanoateEthyl acetate100 200 300 400 500YANFigure 4. Theoretical re<strong>la</strong>tionship betwe<strong>en</strong> initialYAN conc<strong>en</strong>tration and Odour Activity Values ofselected yeast-derived aroma compounds.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>characterised by fruit-like odours. Nevertheless, re<strong>la</strong>tivelysmall variations in the conc<strong>en</strong>tration of ethyl fattyacid esters, such as those introduced by variations inYAN cont<strong>en</strong>t, are more likely to aff ect the aroma ofwine than if proportionally simi<strong>la</strong>r variations wouldoccur for higher alcohols. This is due to the fact thatsome of the possible s<strong>en</strong>sory modifi cations associatedwith changes in the conc<strong>en</strong>tration of specifi caroma compounds dep<strong>en</strong>d, among other factors, onthe ability of that aroma compound to g<strong>en</strong>erate anolfactory stimulus at a giv<strong>en</strong> conc<strong>en</strong>tration.This complex re<strong>la</strong>tionship is oft<strong>en</strong> simplifi ed bymeans of the concept of odour threshold, defi ned asthe minimum conc<strong>en</strong>tration at which a giv<strong>en</strong> compoundcan be detected by the s<strong>en</strong>se of smell (Guth1997). This is referred to as the odour activity value(OAV). Some of the ferm<strong>en</strong>tation-derived vo<strong>la</strong>tilecompounds, such as esters, that are g<strong>en</strong>erally associatedwith the fruity character of wine, are extremelypowerful odourants (i.e. have a very low odour threshold)and can, therefore, impart specifi c s<strong>en</strong>sory attributesev<strong>en</strong> wh<strong>en</strong> pres<strong>en</strong>t in low conc<strong>en</strong>trations. Onthe contrary, compounds like higher alcohols possessa much higher odour threshold and, therefore, arelikely to g<strong>en</strong>erate variations in the aroma profi le ofa wine only wh<strong>en</strong> their conc<strong>en</strong>tration varies to a very<strong>la</strong>rge ext<strong>en</strong>t. In Figure 4, a theoretical re<strong>la</strong>tionship betwe<strong>en</strong>the OAV of selected vo<strong>la</strong>tile compounds, belongingto the chemical c<strong>la</strong>sses of Figure 3, and DAP supplem<strong>en</strong>tationis illustrated. It appears clear th<strong>en</strong> thatthe range of variations pot<strong>en</strong>tially introduced by DAPin the conc<strong>en</strong>tration of acetates and fatty acid ethylesters (isoamyl acetate and ethyl octanoate are usedas refer<strong>en</strong>ce compounds for these two c<strong>la</strong>sses) canhave a dramatic impact on the vo<strong>la</strong>tile character ofwine, whereas variations in compounds such as higheralcohols (isoamyl alcohol), although quantitativelyextremely <strong>la</strong>rge, are likely to have a limited impact.Although it has to be stressed that OAVs only give aprojection of the pot<strong>en</strong>tial of a giv<strong>en</strong> compound tocontribute to the overall aroma of a wine, the tr<strong>en</strong>dsshown in Figure 4 provide a good indication of whichone of the compositional changes associated withDAP supplem<strong>en</strong>tation is likely to have a greater impacton wine aroma.IMPLICATIONS OF NITROGEN FOR WINEFERMENTATIONS3.1 Implications of nitrog<strong>en</strong> for white wineferm<strong>en</strong>tationsInterestingly, the results obtained in various winemakingtrials conducted at the AWRI with sub-optimalYAN juices have indicated that, under typical winemakingconditions, DAP supplem<strong>en</strong>tation is an extremelypowerful tool for modu<strong>la</strong>ting the production of esterswhich, based on the previous discussion, are probablyTextos asociados67


Nitrog<strong>en</strong> managem<strong>en</strong>t is critical for wine Managing Director, f<strong>la</strong>vour and stylethe most s<strong>en</strong>sorially-interesting group of compoundsg<strong>en</strong>erated during ferm<strong>en</strong>tation. Figures 5 and 6 showthe variations in vo<strong>la</strong>tile compounds and the s<strong>en</strong>soryprofi le of Chardonnay wines made at diff er<strong>en</strong>t DAPconc<strong>en</strong>trations. In good agreem<strong>en</strong>t with the tr<strong>en</strong>dsshown in Figure 3, DAP had a positive eff ect on esterproduction, while it lowered the formation of higheralcohols. However, the wines obtained with moderat<strong>en</strong>itrog<strong>en</strong> supplem<strong>en</strong>tation of the juice were preferredby panellists compared with those obtained withoutor with high DAP addition. This prefer<strong>en</strong>ce might bedue to a combination of higher acetates, ethyl fattyacid ester conc<strong>en</strong>trations and moderate levels of ethy<strong>la</strong>cetate, the <strong>la</strong>tter being associated with unwanted,solv<strong>en</strong>t-like characteristics wh<strong>en</strong> pres<strong>en</strong>t at very highconc<strong>en</strong>trations. DAP addition to low YAN juices alsosuppresses the production of H2S and mercaptans bymany wine yeasts, which although not quantifi ed inthis study, no doubt contributed to the prefer<strong>en</strong>ce ofthe moderate YAN wines. The impact of DAP additionon the production of fruity thiols, such as 4MMP, 3MHand 3MHA, still needs to be determined.These results highlight the complexity of predictingwine aroma from compositional data. They also underlinethe importance of measuring YAN and addingthe appropriate amount of DAP, if necessary, before orduring ferm<strong>en</strong>tation in order to reduce the pot<strong>en</strong>tiallynegative eff ects that inadequate or excessive DAP supplem<strong>en</strong>tationcan have on wine aroma. Particu<strong>la</strong>rly,the risk of excessive formation of ethyl acetate has tobe considered as this ester is re<strong>la</strong>tively stable duringwine ageing, compared with other acetate and ethylfatty acid esters, which t<strong>en</strong>d to decrease signifi cantlyafter several months of bottle storage.3.2 Implications of nitrog<strong>en</strong> for red wineferm<strong>en</strong>tationsMore rec<strong>en</strong>tly, researchers at the AWRI have investigatedthe eff ect of DAP supplem<strong>en</strong>tation on the vo<strong>la</strong>tilecomposition of Shiraz wine (Ugliano et al. 2007). It is g<strong>en</strong>erallybelieved that the conditions normally adoptedfor the production of red wine (i.e. higher temperatures,aeration of the ferm<strong>en</strong>ting must during cap managem<strong>en</strong>toperations, extraction of YAN and other nutri<strong>en</strong>tsfrom skin during maceration) r<strong>en</strong>der ferm<strong>en</strong>tations lesssusceptible to slow or stuck ferm<strong>en</strong>tations, ev<strong>en</strong> wh<strong>en</strong>YAN conc<strong>en</strong>trations approach the sub-optimal range.Nevertheless, several surveys have shown that YANlevels in red grapes can be well below optimal (Gockowiakand H<strong>en</strong>schke 1992; Butzke 1998; Nicolini et al.2004; Ugliano and H<strong>en</strong>schke, unpublished data).Although during red wine ferm<strong>en</strong>tations YAN defici<strong>en</strong>cies are likely to have a more moderate eff ect onferm<strong>en</strong>tation kinetics, they can still negatively aff ectthe formation of important aroma compounds. Fromthe results of a trial which was carried out on a lowYAN Shiraz must (YAN 100mg/L) with S. cerevisiaeAWRI 796, it is again clearly evid<strong>en</strong>t that DAP supplem<strong>en</strong>tationis a powerful tool for modu<strong>la</strong>ting the vo<strong>la</strong>tilecomposition of red wine. This confi rms some ofthe tr<strong>en</strong>ds observed during experim<strong>en</strong>ts with modelsubstrates and white grape juices. As can be se<strong>en</strong> inFigure 7, DAP supplem<strong>en</strong>tation resulted in higher productionof ethyl fatty acid esters and acetate esters,while higher alcohols were scarcely affected.Preliminary results also indicated that YAN supplem<strong>en</strong>tationof must can have an impact on red wineConc<strong>en</strong>tration µg/L12,00010,000800060004000160mg/L YAN 320mg/L YAN 480mg/L YANLess preferred aromasWet cardboardSweatyCheesyAceticBanana43.532.521.510.50Fruit esterArtificial grapeMuskFloralMore preferred aromas2000Nail <strong>la</strong>cquerStewed fruit0Fatty acids ethyl esters Acetates Ethyl acetate/10 Higher alcohols/100Stale beerHoneyBruised appleCitrusTropicalFigure 5. Vo<strong>la</strong>tile compounds of wines obtainedfrom a low YAN (160mg/L) Chardonnay juicesupplem<strong>en</strong>ted with two increasing conc<strong>en</strong>trationsof DAP, to a fi nal YAN of 320mg/L and 480mg/L,respectively. Ferm<strong>en</strong>tations were carried out at18ºC using S. cerevisiae AWRI 796.Figure 6. S<strong>en</strong>sory characteristics of wines obtainedfrom a low YAN (160mg/L) Chardonnay juice(gre<strong>en</strong> line) supplem<strong>en</strong>ted with two increasingconc<strong>en</strong>trations of DAP, to a fi nal YAN of 320mg/L(red line) and 480mg/L (blue line), respectively.Ferm<strong>en</strong>tations were carried out at 18ºC using S.cerevisiae AWRI 796.68


colour composition. Analytical <strong>para</strong>meters re<strong>la</strong>ted tocolour int<strong>en</strong>sity and hue were indeed found to varywith DAP supplem<strong>en</strong>tation (Ugliano et al. 2007). Thefactors responsible for this eff ect are curr<strong>en</strong>tly beinginvestigated at the AWRI. The eff ect might be ascribableto various aspects of yeast metabolism thatare known to modu<strong>la</strong>te wine colour and ph<strong>en</strong>olicscomposition. Factors include variations in the rate ofethanol production, absorption of anthocyanins onyeast cell walls (Morata et al. 2003) or reactions withyeast-derived metabolites such as pyruvic acid andacetaldehyde to form pigm<strong>en</strong>ted polymers (Romeroand Bakker 1999).CONCLUSIONThis work shows that the conc<strong>en</strong>tration of yeast assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong> is not only important for <strong>en</strong>suringthat adequate yeast growth and ferm<strong>en</strong>tation kineticsare achieved, but also can aff ect the production ofthe major metabolites arising from sugar ferm<strong>en</strong>tation.Whereas ethanol conc<strong>en</strong>tration is little aff ected,that of glycerol and various carboxylic acids can bemarkedly modu<strong>la</strong>ted. These changes are likely to affect wine fl avour. Most importantly, however, is the finding that YAN can strongly infl u<strong>en</strong>ce production ofsome of the vo<strong>la</strong>tile metabolites, especially the acetateand ethyl esters, which are known to be positiveto wine aroma wh<strong>en</strong> in ba<strong>la</strong>nce. The impact of higheralcohols, which can be negative wh<strong>en</strong> pres<strong>en</strong>t in highconc<strong>en</strong>tration, can also be modu<strong>la</strong>ted by YAN. Thesevarious yeast metabolites were also found to vary inConc<strong>en</strong>tration µg/L10,0009000800070006000500040003000200010000100mg/L YAN 250mg/L YAN 400mg/L YANFatty acids ethyl estersAcetatesEthyl acetateHigher alcohols/100Figure 7. Vo<strong>la</strong>tile compounds of wines obtainedfrom low YAN (100mg/L YAN) Shiraz grapessupplem<strong>en</strong>ted with two increasing conc<strong>en</strong>trationsof DAP, to a fi nal YAN of 250mg/L and 400mg/Lrespectively. Ferm<strong>en</strong>tations were carried outat 22ºC using S. cerevisiae AWRI 796, with capplunging three times per day.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>red wine ferm<strong>en</strong>tations, suggesting that, as in whitewines, must YAN can aff ect the developm<strong>en</strong>t of winefl avour. Our preliminary data suggest that wine colourand ph<strong>en</strong>olics composition can also be infl u<strong>en</strong>cedby YAN.Overall, these results suggest that, at least for Chardonnay,the fl avour and style of wine is dramaticallymodu<strong>la</strong>ted by the initial YAN conc<strong>en</strong>tration of the grapejuice. Low YAN level juices favour the production ofmore complex wines with less fruity aromas, whereasmoderate YAN levels produce cleaner and fruitier wines.However, high YAN levels can lead to excessivelyestery wines. Simi<strong>la</strong>r eff ects can be expected in othervarieties, excepting for those varieties that dep<strong>en</strong>d onthiols, for which no information is pres<strong>en</strong>tly avai<strong>la</strong>ble.Clearly, more wine s<strong>en</strong>sory studies need to be undertak<strong>en</strong>to better understand the eff ects of must YANand amino acid profi le on wine fl avour.A red wine trial is curr<strong>en</strong>tly in progress to understandbetter the impacts of managing nitrog<strong>en</strong> in the vineyardcompared with that in the winery on wine f<strong>la</strong>vour and quality. This research can be expected toprovide grapegrowers and winemakers with betterinformation for optimising wine style and quality accordingto consumer prefer<strong>en</strong>ces and other desiredoutcomes.ACKNOWLEDGEMENTSWe thank our many colleagues for supporting thisproject, especially Tracey Siebert and Dimitra Caponefor help with analysis of ferm<strong>en</strong>tation vo<strong>la</strong>tiles; Mario<strong>la</strong>Kwiatkowski and Meagan Mercurio for analysisof ph<strong>en</strong>olic compounds; Kate Lattey, Belinda Bramleyand Dr Leigh Francis for carrying out the s<strong>en</strong>soryanalyses; Industry Developm<strong>en</strong>t and Supportand Analytical Service team members for help withchemical analyses; and Dr Paul Chambers, Dr CristianVare<strong>la</strong> and Biosci<strong>en</strong>ces team members for manyhelpful discussions. Professor Francisco Carrau, ofUruguay, and visiting sci<strong>en</strong>tists Drs Diego Torrea andMar Vi<strong>la</strong>nova, from Spain, have made important contributionsto this project. We are especially grateful toMike Farmilo, of Boar’s Rock winery, for supplying a<strong>la</strong>rge number of juice samples and donating must forthe Shiraz ferm<strong>en</strong>tation trials, and Russell Johnstoneand Inca Pearce, of Or<strong>la</strong>ndo Wines, and Louisa Roseand Simon Dillon of The Yalumba Wine Company, forsupplying white wine juices. Curr<strong>en</strong>t work on nitrog<strong>en</strong>managem<strong>en</strong>t also involves col<strong>la</strong>boration with DrSally-Jean Bell and Marcel Essling. Rae B<strong>la</strong>ir is thankedfor her editorial assistance. This project is supportedby Australia’s grapegrowers and winemakers throughtheir investm<strong>en</strong>t ag<strong>en</strong>cy, the Grape and Wine Researchand Developm<strong>en</strong>t Corporation, with matchingfunds from the Australian Governm<strong>en</strong>t. The AWRI is amember of the Wine Innovation Cluster.Textos asociados69


Nitrog<strong>en</strong> managem<strong>en</strong>t is critical for wine Managing Director, f<strong>la</strong>vour and styleREFERENCES1 Albers, E.; Larsson, C.; Lid<strong>en</strong>, G.; Nik<strong>la</strong>sson, C. &Gustafsson, L. (1996) Infl u<strong>en</strong>ce of the nitrog<strong>en</strong>source on Saccharomyces cerevisiae anaerobicgrowth and product formation. Appl. Env. Microbiol.62: 3187-3195.2 Albers, E.; Lidén, G.; Larsson, C.; Gustafsson, L.(1998) Anaerobic redox ba<strong>la</strong>nce and nitrog<strong>en</strong> metabolismin Saccharomyces cerevisiae. Rec<strong>en</strong>t Res.Develop. Microbiol. 2: 253-279; 1998.3 Äyräpää, T. (1971) Biosynthetic formation of higheralcohols by yeast.Dep<strong>en</strong>d<strong>en</strong>ce on the nitrog<strong>en</strong>ous nutri<strong>en</strong>t level ofthe medium. J. Inst.Brew. 77: 266-276.4 Bauer, F.F.; Pretorius, I.S. (2000). Yeast stress responseand ferm<strong>en</strong>tation effi ci<strong>en</strong>cy: how to survivethe making of wine – A review. S. Afr. J. Enol. Vitic.21: 27-51.5 Bell, S.-J.; H<strong>en</strong>schke, P.A. (2005) Implications of nitrog<strong>en</strong>nutrition for grapes, ferm<strong>en</strong>tation and wine.Aust. J. Grape Wine Res. 11: 242-295.6 B<strong>la</strong>teyron, L.; Ortiz-Juli<strong>en</strong>, A; Sab<strong>la</strong>yrolles, J.M.(2003) Stuck ferm<strong>en</strong>tations: oxyg<strong>en</strong> and nitrog<strong>en</strong>requirem<strong>en</strong>ts – importance of optimising their addition.Aust. N.Z. Grapegrower Winemaker 478: 73-79.7 Butzke, C. (1998). Survey of Yeast Assimi<strong>la</strong>ble Nitrog<strong>en</strong>status in musts from California, Oregon, andWashington. Am. J. Enol. Vitic. 49: 220-224.8 Carrau, F.M. (2003) Characterization of yeast in re<strong>la</strong>tionto the ability to utilize nitrog<strong>en</strong> – Studies ofaroma compounds. PhD thesis, Universidad de <strong>la</strong>Republica, Uruguay.9 Coulter, A.D.; Godd<strong>en</strong>, P.W.; Pretorius, I.S. (2004)Succinic acid-how is it formed, what is its eff ect ontitratable acidity, and what factors infl u<strong>en</strong>ce its conc<strong>en</strong>trationin wine? Aust. N.Z. Wine Ind. J. 19: 16-20,22-25.10 Dambergs, R.G.; Kambouris, B.; Cynkar, W.; Janik,L.J.; Cozzolino, D.; H<strong>en</strong>schke, P.A.; Gish<strong>en</strong>,M. (2005) A comparison of near infrared and midinfraredspectroscopy for the analysis of yeast-assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong> in grape juice. B<strong>la</strong>ir, R.J.; Williams,P.J.; Pretorius, I.S. (eds.) Proceedings of the twelfthAustralian wine industry technical confer<strong>en</strong>ce; 24-29 July 2004; Melbourne, Vic. Australian Wine IndustryTechnical Confer<strong>en</strong>ce Inc., Ade<strong>la</strong>ide SA: 334.11 Diaz-Maroto, M.C.; Schneider, R.; Baumes, R.(2005) Formation pathways of ethyl esters of branchedshort-chain fatty acids during wine aging. J.Agric Food Chem., 53, 3503-3509.12 Duan, W.; Roddick, F.A.; Higgins, V.J.; Rogers, P.J.(2004) A <strong>para</strong>llel analysis of H2S and SO2 formationby brewing yeast in response to sulphur-containingamino acids and ammonium ions. J. Am. Soc. Brew.Chem. 62: 35-41.13 Dukes, B.C.; Butzke, C.E. (1998) Rapid determinationof primary amino acids in grape juice using ano-phthaldialdehyde/N-acetyl-L-cysteine spectrophotometricassay. Am. J. Enol. Vitic. 49: 125-134.14 Eglinton, J.; Siebert, T.; Kwaitkowski, M.; Francis,L.; H<strong>en</strong>schke P. (2005) Compositional and s<strong>en</strong>soryimplications of practical strategies for <strong>en</strong>suringcomplete ferm<strong>en</strong>tation with non-conv<strong>en</strong>tionalyeast. B<strong>la</strong>ir, R.J.; Williams, P.J.; Pretorius, I.S.(eds.) Proceedingsof the twelfth Australian wine industry technicalconfer<strong>en</strong>ce; 24-29 July 2004; Melbourne, Vic.Australian Wine Industry Technical Confer<strong>en</strong>ce Inc.,Ade<strong>la</strong>ide SA: 288.15 Filipe-Ribeiro, L.; M<strong>en</strong>des-Faia, A. (2007) Validationand comparison of analytical methods usedto evaluate the nitrog<strong>en</strong> status of grape juice. FoodChem. 100: 1272-1277.16 Gockowiak, H.; H<strong>en</strong>schke, P.A. (1992) Nitrog<strong>en</strong>composition of grape juice and implications for ferm<strong>en</strong>tation:results of a survey made in N-E Victoria.Aust Grapegrower Winemaker 340: 131, 133-138.17 Gump, B.H.; Zoecklein, B.W.; Fugelsang, K.C.;Whiton, R.S. (2002) Comparison of analytical methodsfor prediction of preferm<strong>en</strong>tation nutritionalstatus of grape juice. Am. J. Enol. Vitic. 53: 325-329.18 Guth, H. (1997) Quantitation and s<strong>en</strong>sory studiesof character impact odorants of diff er<strong>en</strong>t white winesvarieties. J. Agric. Food Chem., 45: 3027-3032.19 Guth, H.; Sies, A. (2002) F<strong>la</strong>vour of wines: Towardsan understanding by reconstitution experim<strong>en</strong>tsand an analysis of ethanol’s eff ect on odour activityof key compounds. B<strong>la</strong>ir, R.J.; Williams, P.J.; Høj, P.B.(eds.). Proceedings of the elev<strong>en</strong>th Australian WineIndustry Technical Confer<strong>en</strong>ce, 7-11 October 2001,Ade<strong>la</strong>ide SA. Australian Wine Industry TechnicalConfer<strong>en</strong>ce Inc., Ade<strong>la</strong>ide SA 128-139.20 H<strong>en</strong>schke, P.A. (1996) Hydrog<strong>en</strong> sulphide productionby yeast during ferm<strong>en</strong>tation. ProceedingsElev<strong>en</strong>th international o<strong>en</strong>ological symposium, Sopron,Hungary (International Association for WineryTechnology and Managem<strong>en</strong>t: Breisach, Germany)pp. 83-102.70


21 H<strong>en</strong>schke, P.A.; Jiranek, V. (1993) Yeasts – metabolismof nitrog<strong>en</strong> compounds. In: Wine Microbiologyand Biotechnology. Fleet, G.H. (ed.) (HarwoodAcademic Publishers: Chur, Switzer<strong>la</strong>nd) pp. 77-164.22 Hernández-Orte, P.; Ibarz, M.J.; Cacho, J.; FerreiraV. (2005) Eff ect of the addition of ammoniumand amino acids to must of Air<strong>en</strong> variety on aromaticcomposition and s<strong>en</strong>sory properties of the obtainedwines. Food Chem. 89: 163-174.23 Hernández-Orte, P.; Bely, M.; Cacho, J.; Ferreira,V. (2006) Impact of ammonium additions onvo<strong>la</strong>tile acidity, ethanol, and aromatic compoundsproduction by diff er<strong>en</strong>t Saccharomyces cerevisiaestrains during ferm<strong>en</strong>tation in controlled syntheticmedia. Aust. J. Grape. Wine Res. 12: 150-160.24 Ingledew, W.M.; Magnus, C.A.; Sosulski, F.W.(1987) Infl u<strong>en</strong>ce of oxyg<strong>en</strong> on proline utilizationduring wine ferm<strong>en</strong>tation. Am. J. Enol. Vitic. 38: 246-248.25 Morata, A.; Gomez-Cordoves, M.C.; Subervio<strong>la</strong>,J.; Bartolomé, B.; Colomo, B.; Suárez, J.A. (2003)Adsorption of anthocyanins by cell walls during theferm<strong>en</strong>tation of red wines. J. Agric. Food. Chem. 51,4084-4088.26 Nicolini, G.; Larcher, R.; Versini, G. (2004) Statusof yeast assimi<strong>la</strong>ble nitrog<strong>en</strong> in Italian grape mustsand eff ect of variety, rip<strong>en</strong>ing and vintage. Vitis, 43:89-96.27 Osborne, J.P.; Edwards, C.G. (2006) Inhibition ofmalo<strong>la</strong>ctic ferm<strong>en</strong>tation by Saccharomyces duringalcoholic ferm<strong>en</strong>tation under low- and highnitrog<strong>en</strong>conditions: a study in synthetic media. Aust. J.Grape Wine Res. 12: 69-78.28 Rapp, A.; Versini, G. (1991). Infl u<strong>en</strong>ce of nitrog<strong>en</strong>compounds in grapes on aroma compoundsof wine. Proceedings of the International Symposiumon Nitrog<strong>en</strong> in Grapes and Wine. Davis USA: AmericanSociety for Enology and Viticulture, 156-164.29 Ribéreau-Gayon, J.; Dubourdieu, D.; Donéche,B.; Lonvaud, A. (2000) Handbook of Enology, Volume1: The microbiology of wines and vinifi cation.John Wiley & Sons Ltd: Chichester, UK.: 454.30 Romero C.; Bakker, J. (1999) Interactions betwe<strong>en</strong>grape anthocyanins and pyruvic acid, with effect of pH and acid conc<strong>en</strong>tration on anthocyanincomposition and color in model systems. J. Agric.Food Chem. 47, 3130-3139.31 Shively, C.E.; H<strong>en</strong>ick-Kling, T. (2001) Comparisonof two procedures for assay of free amino nitrog<strong>en</strong>.Am. J. Enol. Vitic. 52: 400-401.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>32 Smyth, H., Cozzolino, D., Herderich, M.J., Sefton,M.A.; Francis, I.L. (2005) Re<strong>la</strong>ting vo<strong>la</strong>tilecomposition to wine aroma: id<strong>en</strong>tifi cation of keyaroma compounds in Australian white wines. B<strong>la</strong>ir,R.J.; Williams, P.J.; Pretorius, I.S. (eds.) Proceedings ofthe Twelfth Australian Wine Industry Technical Confer<strong>en</strong>ce,Melbourne, Vic, 24-29 July 2004. AustralianWine Industry Technical Confer<strong>en</strong>ce Inc., Ade<strong>la</strong>ideSA: 31-33.33 Sowalsky, R.A.; Noble, A.C. (1998) Comparisonof the eff ects of conc<strong>en</strong>tration, pH and anion specieson astring<strong>en</strong>cy and sourness of organic acids.Chem. S<strong>en</strong>ses 23: 343-349.34 Swiegers, J.H.; Francis, I.L.; Herderich, M.J.; Pretorius,I.S. (2006) Meeting consumer expectationsthrough managem<strong>en</strong>t in the vineyard and winery:the choice of yeast for ferm<strong>en</strong>tation off ers great pot<strong>en</strong>tialto adjust the aroma of Sauvignon B<strong>la</strong>nc wine.Aust. N.Z. Wine Ind. J. 21: 34-42.35 Torrea, D.; H<strong>en</strong>schke P.A. (2004) Ammonium supplem<strong>en</strong>tationof grape juice – eff ect on the aromaprofi le of a Chardonnay wine. Tech. Rev. 150, 59-63.36 Torrea, D.; Siebert, T.; Liebich, B.; Ancin, C.; Francis,L.; H<strong>en</strong>schke, P.A. (2005) Eff ect of ammoniumsupplem<strong>en</strong>tation of a Chardonnay must on winearoma. B<strong>la</strong>ir, R.J.; Williams, P.J.; Pretorius, I.S. (eds.)Proceedings of the Twelfth Australian Wine IndustryTechnical Confer<strong>en</strong>ce, Melbourne, Vic,, 24-29 July2004. Australian Wine Industry Technical Confer<strong>en</strong>ceInc., Ade<strong>la</strong>ide, SA: 293.37 Ugliano, M.; Siebert, T.; Capone, D.; Mercurio,M.; H<strong>en</strong>schke, P.A. (2007) Colour, aroma and f<strong>la</strong>vour compounds in Shiraz wine as aff ected by DAPaddition before ferm<strong>en</strong>tation. B<strong>la</strong>ir, R.J.; Williams, P.J.;Pretorius, I. S. (eds.) Proceedings of the thirte<strong>en</strong>thAustralian Wine Industry Technical Confer<strong>en</strong>ce,Ade<strong>la</strong>ide, SA, 28 July-2 August 2007. Australian WineIndustry Technical Confer<strong>en</strong>ce Inc. Ade<strong>la</strong>ide, SA: inpress.38 Vi<strong>la</strong>nova, M.; Ugliano, M.; Siebert, T.; Pretorius,I.J.; H<strong>en</strong>schke, P.A. (2007) Assimi<strong>la</strong>ble nitrog<strong>en</strong> utilizationand production of vo<strong>la</strong>tile and nonvo<strong>la</strong>tilecompounds in chemically defi ned medium by Saccharomycescerevisiae wine strains. App. Microbiol.Biotechnol. 77: 145-157.39 Wang, X.D.; Bohlscheid, J.C.; Edwards, C.G.(2003) Ferm<strong>en</strong>tative activity and production ofvo<strong>la</strong>tile compounds by Saccharomyces grown insynthetic grape juice media defi ci<strong>en</strong>t in assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong> and/or pantoth<strong>en</strong>ic acid. J. Appl. Microbiol.94: 349-359.Textos asociados71


Unravelling theg<strong>en</strong>etic blueprint ofwine yeastBorneman, A.R.; Forgan, A.H.; Chambers, P.J.; and Pretorius,I.S.The Australian Wine Research Institute, PO Box 197, Gl<strong>en</strong>Osmond (Ade<strong>la</strong>ide), South Australia 5064, AustraliaIn a world first, sci<strong>en</strong>tists at the Australian Wine ResearchInstitute have sequ<strong>en</strong>ced the wine yeast g<strong>en</strong>ome,characterising the ‘recipes of life’ that shapethis winemaker’s ‘fri<strong>en</strong>d’.Unlocking the secret to what makes wine yeast tickwill put winemakers in a stronger position to usesci<strong>en</strong>ce to their advantage. This work paves the wayfor the developm<strong>en</strong>t of new yeast strains, pot<strong>en</strong>tiallyleading to innovative solutions to tackle stuckferm<strong>en</strong>tation and to create wines with desired alcohollevels and f<strong>la</strong>vour profiles.Every four years, the Olympic Games inspire the worldwith spectacu<strong>la</strong>r performances and feats of <strong>en</strong>durance,speed and grace. We marvel at the athletic performanceof the competitors; most of us can only wonderhow these champions reach the standards theydo. What makes world record-breakers so profoundlydiffer<strong>en</strong>t to the rest of us? Are we not the same species,and therefore shouldn’t we all have the samepot<strong>en</strong>tial? Couldn’t we also win gold in swimming orrunning if we had the same training regimes, diet, lifestyle,etc.? The answer is no. Elite athletes are bornwith a pot<strong>en</strong>tial that has ‘gold’ stamped all over it. Theyhave muscle-types, physique, physiology and aptitudethat, with training, can be honed for internationalsuccess. Unfortunately, most of us would require agreat deal more than honing to reach this elite level;until bionics is able to rebuild what we are born with,wh<strong>en</strong> it comes to athletics, most humans will have tosettle for amateur league or less (Figure 1(a)).Differ<strong>en</strong>ces in performance of individuals of the samespecies are not peculiar to humans; in fact we see iteverywhere in nature. Take, for example, the humbleyeast that winemakers use to craft complex, deliciouswine from sweet, syrupy grape juice. Most wine yeastare the same species, Saccharomyces cere visiae, butnot all members of this group are able to producewine, and, among those that do, there is considerablevariation in how reliably and effici<strong>en</strong>tly they work, andin the quality of the wine they produce.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>This begs the question: What makes a wine yeast tick?What, in the inner workings of this elite athlete, <strong>en</strong>ablesit to grow in such an inhospitable <strong>en</strong>vironm<strong>en</strong>t and delivergold medal wines wh<strong>en</strong> other S. cerevisiae strainsdon’t ev<strong>en</strong> leave the starting blocks? Research at theAustralian Wine Research Institute (AWRI) is beginningto unravel the mysteries of the variation across the S.cerevisiae species, and early results on what they tellus about wine yeast are tantalising.The variation in performance that we see across strainsof S. cerevisiae is inheritable; this means that it isg<strong>en</strong>etically determined. The starting point for characterisingthis variation, therefore, should focus on yeastg<strong>en</strong>etics.Fortunately, S. cerevisiae was the first organism of itstype to have its g<strong>en</strong>etic make-up (its g<strong>en</strong>ome) sequ<strong>en</strong>ced,and this was done over t<strong>en</strong> years ago on a strain,known as S288c, chos<strong>en</strong> for its ‘<strong>la</strong>boratory fri<strong>en</strong>dly’characteristics (for more information on what g<strong>en</strong>esand g<strong>en</strong>omes are, see the breakout box). Sci<strong>en</strong>tistslove this yeast because it is very easy to work with, butit would not win any medals in the winemaking ar<strong>en</strong>a;in fact, it is probably not ev<strong>en</strong> up to amateur status.Nevertheless, if you want to find out what makes wineyeast so differ<strong>en</strong>t from other S. cerevisiae strains, youhave to have something to compare it with, and S288cis a good starting point.Another strain of S. cerevisiae, YJM789, rec<strong>en</strong>tly hadits g<strong>en</strong>ome sequ<strong>en</strong>ced. The g<strong>en</strong>ome of this yeast, anopportunistic pathog<strong>en</strong> iso<strong>la</strong>ted from the lungs of anAIDS pati<strong>en</strong>t, turned out to be quite differ<strong>en</strong>t to thatS288c. Thus we had two differ<strong>en</strong>t versions of S. cerevisiaeto compare a wine yeast against, and this is whatwe found.It turns out that our wine yeast is a little more differ<strong>en</strong>tto the two previously sequ<strong>en</strong>ced strains than they areto each other (Figure 2). About 0.6% of the letters ofthe wine yeast sequ<strong>en</strong>ce are differ<strong>en</strong>t to what is foundin the <strong>la</strong>boratory strain. This might seem like a smalldiffer<strong>en</strong>ce, but if you consider that g<strong>en</strong>etic differ<strong>en</strong>cesbetwe<strong>en</strong> humans and chimpanzees amount to onlyabout 1-2%, it is really quite <strong>la</strong>rge.Perhaps of greater interest, however, is that thereare extra DNA sequ<strong>en</strong>ces in the wine yeast; <strong>en</strong>oughto carry at least 27 g<strong>en</strong>es that are not pres<strong>en</strong>t in thetwo yeasts it was compared against. In fact, some ofthe sequ<strong>en</strong>ces in this extra DNA do not resemble anythingfound in other species of Saccharomyces; theyappear to be more like g<strong>en</strong>es found in very distantfungal re<strong>la</strong>tives. We do not yet know how they gotinto the wine yeast g<strong>en</strong>ome, but we are curious tofind out whether or not they p<strong>la</strong>y a part in distinguishingwine yeast from other S. cerevisiae, particu<strong>la</strong>rly inthe winemaking stakes.Some of the wine yeast-specific g<strong>en</strong>es <strong>en</strong>code proteinsthat are probably associated with the cell wall,Textos asociadosWine Industry Journal > Vol 23 No 5 > September /October 200873


Unravelling the g<strong>en</strong>etic blueprint of wine yeasta feature of yeast that is undoubtedly important forresili<strong>en</strong>ce in inhospitable <strong>en</strong>vironm<strong>en</strong>ts.We are curious to find out whether these g<strong>en</strong>es impacton robustness of wine yeast, a feature that is crucialfor completing ferm<strong>en</strong>tations. Do these g<strong>en</strong>es, forexample, make the yeast more or less vulnerable tobecoming stuck or sluggish in a ferm<strong>en</strong>t? We have alsoid<strong>en</strong>tified g<strong>en</strong>es that probably <strong>en</strong>code proteins associatedwith amino acid uptake (a neutral amino acidtransporter) and metabolism (an aspartate transaminase).Because amino acid metabolism is associatedwith f<strong>la</strong>vour developm<strong>en</strong>t, it is tempting to suggestthat these g<strong>en</strong>es will impact on s<strong>en</strong>sory attributes inwine, but, of course, this will have to be tested.Th<strong>en</strong> there are lots of g<strong>en</strong>es that we cannot guess thefunction(s) of yet, and these might turn out to be themost exciting of all; time and experim<strong>en</strong>tal work will tell.Interestingly, we also found some sizeable rearrangem<strong>en</strong>tsin the g<strong>en</strong>ome that we are also curious about,but cannot ev<strong>en</strong> guess what their significance will be.What does the future hold now that we have this richsource of information on a wine yeast? We will, ofcourse, ascertain as far as possible, which of the uniquefeatures of a wine yeast g<strong>en</strong>ome are important ina winemaking context.However, we also p<strong>la</strong>n to build on data gatheredfrom this project by sequ<strong>en</strong>cing and comparing theg<strong>en</strong>omes of several other wine yeast strains that areknown to have differ<strong>en</strong>t winemaking properties Thiswill <strong>en</strong>able us to work out what is common to all wineyeasts (i.e. what constitutes the core requirem<strong>en</strong>ts ofa wine yeast) and what differ<strong>en</strong>ces betwe<strong>en</strong> themdrive production of wines with differing qualities (e.g.differ<strong>en</strong>t prop<strong>en</strong>sities to deliver fruity f<strong>la</strong>vours andaromas).Once we understand what makes a wine yeast tick,and the significance of variation among wine yeasts,we will be much better p<strong>la</strong>ced to develop strains of1(a)1(b)Figure 1. No two humans have the same g<strong>en</strong>etic make-up. An elite athlete, for example, is born witha g<strong>en</strong>ome that has ‘gold medal’ stamped all over it (Figure 1(a)). Simi<strong>la</strong>rly, not all wine yeasts are thesame; differ<strong>en</strong>t wine yeasts have differ<strong>en</strong>t g<strong>en</strong>etic make-up (Figure 1(b)). This is why some wine yeaststrains are more robust that others and differ<strong>en</strong>t strains impart differ<strong>en</strong>t s<strong>en</strong>sory properties to wines.Understanding what, in the g<strong>en</strong>ome of a wine yeast, determines its robustness and its ability to producedesirable (and undesirable) s<strong>en</strong>sory attributes will <strong>en</strong>able the developm<strong>en</strong>t of improved strains that wil<strong>la</strong>ssist winemakers to craft wines for an increasingly demanding and constantly changing market.74


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>ACKNOWLEDGEMENTSFigure 2. The g<strong>en</strong>ome sequ<strong>en</strong>ces of three strainsof Saccharomyces cerevisiae has revealed howsimi<strong>la</strong>r they are to each other. The numbers incircles on the arrows se<strong>para</strong>ting the differ<strong>en</strong>tstrains repres<strong>en</strong>t the number of ‘letters’ in theg<strong>en</strong>ome that differ betwe<strong>en</strong> the strains. The 60,399differ<strong>en</strong>ces betwe<strong>en</strong> a wine yeast and a <strong>la</strong>boratoryyeast is equival<strong>en</strong>t to about 0.6% of the g<strong>en</strong>ome.this microorganism that can complete the marathonof ferm<strong>en</strong>tation without becoming stuck or sluggish<strong>en</strong> route, while producing gold medal wines; and allof this should be possible without the need of performance<strong>en</strong>hancing additives.Just like our Olympians at the Australian Institute ofSport, the wine sector has gold-medal aspirations.Backed by sound sci<strong>en</strong>ce and robust research it shouldbe gold all of the way for Australian winemakers.The AWRI, a member of the Wine Innovation Clusterin Ade<strong>la</strong>ide, is supported by Australia’s grapegrowersand winemakers through their investm<strong>en</strong>t body, theGrape and Wine Research and Developm<strong>en</strong>t Corporation,with matching funds from the Australian Governm<strong>en</strong>t.Systems biology research at the AWRI isperformed using resources provided as part of the NationalCol<strong>la</strong>borative Research Infrastructure Strategy,an initiative of the Australian Governm<strong>en</strong>t, in additionto funds from the South Australian State Governm<strong>en</strong>t.We gratefully acknowledge the contribution of theAustralian G<strong>en</strong>ome Research Facility, a member ofBiop<strong>la</strong>tforms Australia, where the actual sequ<strong>en</strong>cingof the wine yeast g<strong>en</strong>ome was carried out. We alsothank Sharon Mascall and Rae B<strong>la</strong>ir for editorial assistance,and JeffEglinton for the pre<strong>para</strong>tion of the illustrations.The detailed results of this work are publishedin the peer-reviewed journal FEMS Yeast Research.FURTHER READINGBorneman, A.R, Forgan; A., Chambers, P.J. and Pretorius,I.S. (2008) Com<strong>para</strong>tive g<strong>en</strong>ome analysis of aSaccharomyces cerevisiae wine strain.FEMS Yeast Research 8:1185-1195.Borneman, A.R.; Chambers, P.J. and Pretorius,I.S. (2007) Yeast Systems Biology: modelling thewinemaker’s art. Tr<strong>en</strong>ds in Biotechnology 25:349-355.Goffeau A.; Barrell B.G.; Bussey H.; Davis R.W.; DujonB.; Feldmann H.; Galibert F.; Hoheisel J.D.; JacqC.; Johnston M,; Louis E.J.; Mewes H.W.; MurakamiY.; Philipps<strong>en</strong> P.; Tettelin H. and Oliver S.G. (1996)Life with 6000 g<strong>en</strong>es. Sci<strong>en</strong>ce 274: 546, 563-567.Cracking the Code: G<strong>en</strong>es and G<strong>en</strong>omesG<strong>en</strong>es are recipes for making proteins. For example, your cells carry a g<strong>en</strong>e/recipe for making the protein insulin, which is a hormonethat regu<strong>la</strong>tes blood sugar level. You also have g<strong>en</strong>es/recipes that instruct your cells how to make proteins that control how tall youcan grow, the colour of your eyes, the g<strong>en</strong>eral shape of your body, etc. It is these recipes of life that dictate whether you will haveathletic pot<strong>en</strong>tial or not, and, because you inherited them from your par<strong>en</strong>ts you <strong>en</strong>d up looking like them.If g<strong>en</strong>es are recipes th<strong>en</strong> g<strong>en</strong>omes are recipe books. The human g<strong>en</strong>ome carries all of the recipes required for making proteins to build ahuman body from conception to adulthood, and repair and def<strong>en</strong>d that body during its life. All of our physiology and anatomy is shaped by acollection of 20,000-25,000 g<strong>en</strong>es that comprise the human g<strong>en</strong>ome. And, unless you have an id<strong>en</strong>tical twin, your recipe book diff ers a littlefrom everyone else’s.The <strong>la</strong>nguage of the g<strong>en</strong>es is very diff er<strong>en</strong>t the <strong>la</strong>nguages we use to communicate with each other. It is based on an alphabet of only fourletters (A, T, G and C) and its lexicon is limited to three letter words, which means there are only 64 words in the g<strong>en</strong>etic dictionary. Howeverthis is more than <strong>en</strong>ough to string together sets of instructions for building all of the proteins (<strong>en</strong>zymes, hormones, muscles, antibodies,carti<strong>la</strong>ge etc.) we require for life.The ‘paper’ on which the words that make up the recipes of life is writt<strong>en</strong> is known as DNA, and wh<strong>en</strong> we read an <strong>en</strong>tire recipe book of anorganism, decoding what is recorded in its DNA, we say we are sequ<strong>en</strong>cing its g<strong>en</strong>ome. What we <strong>en</strong>d up with in this process is a long sequ<strong>en</strong>ceof millions of A, T, G, and Cs, with no spaces or obvious punctuation marks, that we have to decipher. Thankfully, sophisticated computationa<strong>la</strong>ids can do most of this for us.Textos asociados75


Wh<strong>en</strong> the heat is on,yeast ferm<strong>en</strong>tationruns out of puffCoulter, A.D.; H<strong>en</strong>schke, P.A.; Simos, C.A. and Pretorius,I.S.The Australian Wine Research Institute, PO Box 197, Gl<strong>en</strong>Osmond (Ade<strong>la</strong>ide), South Australia 5064, AustraliaSouth Australia was sweltering. For more than twoweeks in March this year, Ade<strong>la</strong>ide sweated in unrel<strong>en</strong>tingheat. Thermometers g<strong>la</strong>red red as daytimetemperatures refused to drop below 35°C. Sci<strong>en</strong>tistscalled it a record-breaking heatwave: a once in threemill<strong>en</strong>nia ev<strong>en</strong>t. On the vines, sugar levels also soaredto record-breaking heights. Varieties that normallymature weeks apart rip<strong>en</strong>ed together. Winemakersscrambled to harvest their fruit and crammed theirferm<strong>en</strong>tors full. Everyone hoped for the best.Ferm<strong>en</strong>ting a must through to dryness with such highsugar conc<strong>en</strong>trations would have be<strong>en</strong> chall<strong>en</strong>gingev<strong>en</strong> for the toughest yeast due to the high levels ofethanol produced. Ferm<strong>en</strong>ts kicked-offwell but <strong>la</strong>termany started to run out of puffand required robust ferm<strong>en</strong>tationrescue procedures. Some were still tickingover months <strong>la</strong>ter. In the past, the number of querieswe receive about stuck ferm<strong>en</strong>tations has be<strong>en</strong> fairlyconstant. This year they doubled.The Australian Wine Research Institute (AWRI) regu<strong>la</strong>rlyhandles calls from winemakers looking for helpand advice. But, although the chemistry behind stuckferm<strong>en</strong>tation is simple, the causes are invariably complexmaking them frustratingly difficult to predict.There is evid<strong>en</strong>ce that most of the ‘stuck ferm<strong>en</strong>t’ querieswe received were re<strong>la</strong>ted to the heatwave that hitmuch of South Australia and Victoria in the first halfof March 2008. But stuck ferm<strong>en</strong>tation is a complex% Ethanol128400 100 200 300 400Time (hr)Figure 1. Optimal and sub-optimal ferm<strong>en</strong>tationprofi les. Four types of sub-optimal ferm<strong>en</strong>tationare commonly observed: de<strong>la</strong>yed on-set;continuously slow ferm<strong>en</strong>ts; sluggish ferm<strong>en</strong>ts;and incomplete or stuck ferm<strong>en</strong>ts.24201612840°BrixAlcoholBiomassStuckSluggishSlowDe<strong>la</strong>yedonsetOptimalSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>problem and research has id<strong>en</strong>tified a multitude ofpot<strong>en</strong>tial causes, any combination of which can beinvolved. Our inability to measure or assess many ofthese factors in real time further exacerbates the problem.As a result, it can be difficult to work out why ithapp<strong>en</strong>s.The definition is straightforward. At some point duringferm<strong>en</strong>tation, the process slows or stops too soon,prev<strong>en</strong>ting the remaining sugar in the wine from beingconverted to alcohol and carbon dioxide (Figure1). Yeast activity – or a <strong>la</strong>ck of it – is usually the culprit.The yeast might be feeling quite stressed due to its<strong>en</strong>vironm<strong>en</strong>t, or there might be something wrongwith the yeast itself, prev<strong>en</strong>ting it from doing its job.Wine yeast works best wh<strong>en</strong> the temperature is nottoo hot, or not too cold and there are pl<strong>en</strong>ty of nutritiousside-dishes to go with the main carbohydraterichcourse. Like any selfrespecting organism, it <strong>en</strong>joyssanitary conditions and re<strong>la</strong>tive freedom from the irritatingexcesses of unwanted dinner guests (Figure 2)that can spoil the best parties. Coming up for air turnsout to be surprisingly important for ferm<strong>en</strong>ting yeast– a sniffof oxyg<strong>en</strong> will repay the winemaker manyfold with r<strong>en</strong>ewed <strong>en</strong>thusiasm to get back to the jobat hand. Inebriating ‘ag<strong>en</strong>ts’ r<strong>en</strong>der it incompet<strong>en</strong>t.Too much ethanol, for example, can stop yeast fromgrowing by starving it of nutri<strong>en</strong>ts and increasing thetoxicity of other compounds.The advice from the AWRI is that stuck ferm<strong>en</strong>tation isusually avoidable if winemakers keep the basics in ba<strong>la</strong>nce:moderation of sugar levels, adequate supply ofkey nutri<strong>en</strong>ts including nitrog<strong>en</strong> and oxyg<strong>en</strong>, effectivesulfur dioxide, pH control, avoiding over-c<strong>la</strong>rification,vigi<strong>la</strong>nt barrel managem<strong>en</strong>t and clean conditionsfrom harvester to ferm<strong>en</strong>tor. But this year, the heatcreated a new set of problems.During March’s heatwave, winemakers reported fruitarriving at the crusher with temperatures in the mid tohigh 30s. On one particu<strong>la</strong>r day, fruit arrived at one winerywhere temperatures topped 40°C. Some coolingsystems could not cope. The scramble to harvest anddeliver the rapidly rip<strong>en</strong>ing fruit made matters worse.Inside the wineries, in the ferm<strong>en</strong>tors, dehydrated andshrivelled fruit was hard to process, causing blockagesin heat exchangers. The first week of the heatwavewas bad <strong>en</strong>ough with rapidly rising sugar levels, ashas be<strong>en</strong> se<strong>en</strong> in previous hot vintages. But, the secondweek stressed the already drought stressed vinesbeyond their limit producing heavily dehydratedfruit, perhaps as the parched vines deprived sunburntberries of moisture. Outside, in the trucks queued upwith their precious loads, the microbes took hold.Micro-organisms had a field day in the mountains ofwarm berries. De<strong>la</strong>ys, <strong>la</strong>ck of refrigeration and the un-Textos asociadosWine Industry Journal > Vol 23 No 5 > September /October 200877


Wh<strong>en</strong> the heat is on, yeast ferm<strong>en</strong>tation runs out of puffrel<strong>en</strong>ting heat offered an opportunity for growth. Thecombination of heat stress, dehydration and mechanicalharvesting had left more fruit damaged than usual.‘Enemy’ microbes had the perfect breeding ground.Left to grow unchecked, some ‘bugs’ can wreak havoc.The grape apicu<strong>la</strong>te yeast Hans<strong>en</strong>iaspora uvarum candevelop quickly, for example, robbing grape must ofimportant nutri<strong>en</strong>ts. One of its targets is thiamine, forwhich it has an insatiable appetite. Thiamine is ess<strong>en</strong>tialfor the effici<strong>en</strong>t production of ethanol by Saccharomycesyeast. There is no easy procedure to detectvitamin defici<strong>en</strong>cies until the ferm<strong>en</strong>t becomes sluggishand responds to supplem<strong>en</strong>ts. Wh<strong>en</strong> excessivegrowth of wild yeast (Figure 2) is observed betwe<strong>en</strong>the harvester and ferm<strong>en</strong>tor it is important to addthiamine and other vitamins to the starter culture.For musts from vineyards with a history of ferm<strong>en</strong>tationproblems, the addition of complex inactivatedyeast nutri<strong>en</strong>ts can also be b<strong>en</strong>eficial.Hans<strong>en</strong>iaspora uvarum can also produce off-f<strong>la</strong>voursincluding the vinegary taste of acetic acid. Researchhas shown that hot conditions can dramatically increasethe production of acetic acid and, this year, winemakershave reported high levels of vo<strong>la</strong>tile acidity(VA) to the AWRI.Lactic acid bacteria also thrive in warm conditions,producing acetic acid as well as other unwanted compoundsfrom the grape sugars and acids. Growth ofcertain <strong>la</strong>ctic acid bacterial strains is <strong>en</strong>ough to leavethe pluckiest wine yeast running for cover. Spoi<strong>la</strong>gein addition to stuck ferm<strong>en</strong>tation is oft<strong>en</strong> the result.CandidaMetschnikowiaDebaryomycesKluyveromycesCryptococcusSaccharomycesHans<strong>en</strong>iasporaSchizosaccharomycesSaccharomycodesDekkeraLactic acidbacteriaKloeckeraPichiaZygosaccharomycesAcetic acidbacteriaWild yeastSpoi<strong>la</strong>ge bacteriaFigure 2. Grapes harbour a variety of yeasts andbacteria, and dep<strong>en</strong>ding on the addition of sulfi tes,grape temperature and time tak<strong>en</strong> for transport tothe winery, the hygi<strong>en</strong>ic status of grape processingmachinery, pre-maceration, pressing and c<strong>la</strong>rification procedures, a variable proportion of grapeyeasts survive in the juice or must. Together withmicroorganisms associated with processingequipm<strong>en</strong>t, these yeasts can proliferate in juice ormust, dep<strong>en</strong>ding on physicochemical and nutri<strong>en</strong>tconditions.Accumu<strong>la</strong>tion of acetic acid beyond a gram per litrestarts to affect yeast growth and becomes more toxicas the alcohol level builds.Wh<strong>en</strong> this year’s stuck ferm<strong>en</strong>ts were tested at theAWRI, s<strong>en</strong>sory analysis revealed that a number ofthem were affected by a mousy off-f<strong>la</strong>vour. They hadhigh conc<strong>en</strong>trations of acetic acid, low conc<strong>en</strong>trationsof malic acid – many ferm<strong>en</strong>ts underw<strong>en</strong>t malo<strong>la</strong>cticferm<strong>en</strong>tation – and they contained various unwelcomemicro-organisms. The results after analysing onered wine with stuck ferm<strong>en</strong>tation were typical of thosetested (Table 1, see page 27). Lactic acid bacteriaare also known to produce mousy off- f<strong>la</strong>vour in grapebins wh<strong>en</strong> giv<strong>en</strong> a long journey under warm conditionswithout suffici<strong>en</strong>t protective sulfites.The winemakers’ usual weapons against <strong>en</strong>emy microbesare sulfites, and c<strong>la</strong>rification treatm<strong>en</strong>ts for whites.But a review of research into stuck ferm<strong>en</strong>tationpublished by the AWRI shows that in extreme conditions,adding sulfur dioxide to grape bins might notbe <strong>en</strong>ough. Sulfur dioxide has a t<strong>en</strong>d<strong>en</strong>cy to ‘hook up’with sugar, sapping its effectiv<strong>en</strong>ess. The high levels ofsugar caused by this year’s heatwave would have hadsuch an effect. The higher levels of spoi<strong>la</strong>ge noted thisyear signals that the levels of sulfites normally used tocontrol wild yeast and bacteria was oft<strong>en</strong> inadequateunder these exceptional conditions.As a result, winemakers needed to increase their useof sulfites and clean their harvester bins regu<strong>la</strong>rly tokeep the bugs at bay. Without these kinds of controlmeasures, the developm<strong>en</strong>t of <strong>la</strong>rge popu<strong>la</strong>tions ofindig<strong>en</strong>ous microorganisms could have depleted nutri<strong>en</strong>ts.This would have made it very hard for the wineyeast to complete the ferm<strong>en</strong>tation, which with thehigher sugar levels would have be<strong>en</strong> an ev<strong>en</strong> hardertask.Table 1. Results of analysis of a typical ‘high VA’2008 red ferm<strong>en</strong>t.Analysis ResultAlcoholAcetic acidGlucose + fructoseMalic acid12.0% v/v1.94g/L47.0g/L


Ev<strong>en</strong> wh<strong>en</strong> microbes were kept in check, the heatwavestill took its toll. Yeast is particu<strong>la</strong>rly s<strong>en</strong>sitiveto heat in its growth phase and wh<strong>en</strong> temperaturestop well over 30°C, in combination with high ethanol,it becomes stressed. Wh<strong>en</strong> the heat is on, researchhas shown that the viability and vitality of yeast areaffected; it produces more vo<strong>la</strong>tile acidity and stuckferm<strong>en</strong>tation is more likely.High temperatures also increase yeast consumptionof nitrog<strong>en</strong>. If yeast assimi<strong>la</strong>ble nitrog<strong>en</strong> (YAN; Figure3) is low – due to growth of wild micro-organisms orprevailing drought conditions – th<strong>en</strong> stuck ferm<strong>en</strong>tationis also more likely.The AWRI’s analysis of YAN levels in several hundredjuice samples – tak<strong>en</strong> from tanks in two South Australianwine regions after crushing – show a drop inYAN levels for the 2008 vintage, compared with theprevious year (Figure 4(a)).There were also greater variations betwe<strong>en</strong> YAN levelsin samples tak<strong>en</strong> from the 2008 vintage (Figure 4(b)).This means that some juices would have had re<strong>la</strong>tivelylow conc<strong>en</strong>trations and the risk of stuck ferm<strong>en</strong>tationwas more likely.Glucose (g/L)20016012080400Optimal400250Initial YAN (mg/L)Figure 3. The risk of ferm<strong>en</strong>tation problemsis increased wh<strong>en</strong> grape must is sub-optimalin nutri<strong>en</strong>t cont<strong>en</strong>t, especially for assimi<strong>la</strong>bl<strong>en</strong>itrog<strong>en</strong>, and vitamins, the <strong>la</strong>tter of which can belost during grape harvest and must processing.A high ratio of sugar to other nutri<strong>en</strong>ts can leadto low biomass and ferm<strong>en</strong>tation rate, and theearly onset of sugar transport inactivation in yeast.The g<strong>en</strong>eral rule of thumb is that musts with YANlevels of


Wh<strong>en</strong> the heat is on, yeast ferm<strong>en</strong>tation runs out of puff4(a)2007 20084(b)250120200100YAN conc<strong>en</strong>tration (mg/L)15010050YAN conc<strong>en</strong>tration SD (mg/L)806040200Region ARegion B0Region ARegion BFigure 4(a). The average YAN conc<strong>en</strong>tration in juices from two regions in South Australia for the 2007vintage and the 2008 vintage. For region A, n = 855 in 2007 and 1272 in 2008; for region B, n = 414 in 2007and 788 in 2008. Figure 4(b). Standard deviation in average YAN conc<strong>en</strong>tration from wine regions A and Bwas greater in 2008 than in 2007.conc<strong>en</strong>trations of inhibitors in the stuck wine, especiallyethanol. It is, however, critically important thatthe yeast not be starved of sugar or nitrog<strong>en</strong> duringthe stepwise acclimatisation procedure. The cultureshould also be briefly aerated at each step.Fresh yeast lees from successfully completed ferm<strong>en</strong>tscan also be useful for reinvigorating or restarting ferm<strong>en</strong>tswh<strong>en</strong> a re<strong>la</strong>tively small amount of residual sugarremains. A small addition of DAP and limited aeration,once the yeast is actively ferm<strong>en</strong>ting, promotesgood activity. This procedure provides a more conv<strong>en</strong>i<strong>en</strong>trescue option wh<strong>en</strong> yeast lees are avai<strong>la</strong>ble.Looking ahead, the AWRI is also alerting winemakersto the longer term effects of the 2008 heatwave. If redwines contain higher than usual amounts of residualsugar, and other nutri<strong>en</strong>ts added as ferm<strong>en</strong>tationstimu<strong>la</strong>nts, for example, the Brettanomyces/Dekkerayeast, can strike <strong>la</strong>ter in the maturation cycle or ev<strong>en</strong>after bottling of unfiltered wines. The higher alcoholconc<strong>en</strong>trations of 2008 wines might slow the growthof this spoiler meaning that greater vigi<strong>la</strong>nce shouldbe maintained further on down the process chain.Malo<strong>la</strong>ctic ferm<strong>en</strong>tation is also adversely affected byhigh alcohol levels such that Brettanomyces/Dekkerayeast can have a greater opportunity while the wineis unprotected by sulfites. The more alcohol tolerant<strong>la</strong>ctobacilli, which are capable of forming biog<strong>en</strong>icamines, will also thrive if the pH is not maintained below3.5, which is more favourable to O<strong>en</strong>ococcus. Theimpact of March 2008 might continue if not managedwith greater care due to the perturbed nature of thisyear’s wine chemistry.Stuck ferm<strong>en</strong>tations – what you can do• Increase the conc<strong>en</strong>tration of sulfur dioxideadded to grape bins. Th is will keep microbial‘bugs’ at bay and slow oxidation whichcan speed up at higher temperatures.• Sanitise bins betwe<strong>en</strong> loads. Cover binsduring transport to keep the sun off fruit.Clean all equipm<strong>en</strong>t to stop bacteria.• Choose yeast known to have high toleranceto alcohol and prepare it properly. Rehydrationof dried yeast with complex inactivatedyeast nutri<strong>en</strong>ts can be b<strong>en</strong>efi cial forstressful ferm<strong>en</strong>ts.• Dilute very high sugar musts with lowstr<strong>en</strong>gth juice (LSJ) before ferm<strong>en</strong>tation toimprove wine ba<strong>la</strong>nce, in accordance withwine statutory regu<strong>la</strong>tions.• Add tartaric acid as soon as must tanks aremixed and acidity levels are known. Checkagain after thorough mixing to <strong>en</strong>sure levelsare correct.• Take steps to reduce pH to improve the efficacy of sulfur dioxide. Lower pH increasesits antimicrobial and antioxidant properties.It controls the growth of unwantedmicroorganisms including <strong>la</strong>ctobacilli,some species of which are known to inhibityeast developm<strong>en</strong>t.• Monitor pH during ferm<strong>en</strong>tation and maintainit betwe<strong>en</strong> 3.4-3.5.• Measure YAN, preferably on the <strong>la</strong>st vineyardmaturity sample before harvest, sothat DAP can be added accordingly. If thisis not possible, add DAP as a precautionagainst low YAN, especially in dry years andwh<strong>en</strong> sugar conc<strong>en</strong>trations are high, sincemore YAN is needed by yeast to achieve lowresidual sugars.• Aeration of ferm<strong>en</strong>ts around the mid pointof ferm<strong>en</strong>tation can be highly b<strong>en</strong>efi cial byrestoring <strong>la</strong>gging rates and has no knownadverse impact on wine fl avour, rather itcan prev<strong>en</strong>t quality losses which sometimesresult from stuck ferm<strong>en</strong>tations.• Increasing juice turbidity consist<strong>en</strong>t withtarget wine style can considerably improvegrowth and ferm<strong>en</strong>tation activity.• Consider adding lysozyme to must of ferm<strong>en</strong>tsto control bacterial developm<strong>en</strong>t.80


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>ACKNOWLEDGEMENTSThe Australian Wine Research Institute, a member ofthe Wine Innovation Cluster in Ade<strong>la</strong>ide, is supportedby Australia’s grapegrowers and winemakers throughtheir investm<strong>en</strong>t body, the Grape and Wine Researchand Developm<strong>en</strong>t Corporation, with matching fundsfrom the Australian Governm<strong>en</strong>t. We thank SharonMascall and Rae B<strong>la</strong>ir for editorial assistance, and JeffEglintonfor the pre<strong>para</strong>tion of illustrations.FURTHER READINGBell, S.J. and H<strong>en</strong>schke, P.A. (2005) Implications ofnitrog<strong>en</strong> managem<strong>en</strong>t for grapes and wine. AustralianJournal of Grape and Wine Research 11:242-295.Bisson, L.F. and Butzke, C.E. (2000) Diagnosis andrectification of stuck and sluggish ferm<strong>en</strong>tations.American Journal of Enology and Viticulture 51:168-177.Bisson, L.F. (1999) Stuck and sluggish ferm<strong>en</strong>tations.American Journal of Enology and Viticulture 50:107-119.Eglinton, J.M. and H<strong>en</strong>schke, P.A. (1999) Restartingincomplete ferm<strong>en</strong>tations: the effect of high conc<strong>en</strong>trationsof acetic acid. Australian Journal of Grape andWine Research. 5:71-78.H<strong>en</strong>schke, P.A. (1997) Stuck ferm<strong>en</strong>tation: causes,prev<strong>en</strong>tion and cure. All<strong>en</strong>, M.; Leske, P.; Baldwin, G.,eds. Advances in juice c<strong>la</strong>rification and yeast inocu<strong>la</strong>tion:proceedings of a seminar; 15 August 1996; Melbourne,Victoria. Ade<strong>la</strong>ide, South Australia: AustralianSociety of Viticulture and O<strong>en</strong>ology; 1997: 30-38, 41.Sab<strong>la</strong>yrolles, J.M.; Dubois, C.; Manginot, C.; Roustan,J.L. and Barre, P. (1996) Effectiv<strong>en</strong>ess of combinedammoniacal nitrog<strong>en</strong> and oxyg<strong>en</strong> additions forcompletion of sluggish and stuck ferm<strong>en</strong>tations. Journalof Ferm<strong>en</strong>tation and Bio<strong>en</strong>gineering 82:377-381.Schmidt, S.A.; Tran, T.; Chambers, P.J.; Herderich,M.J. and Pretorius, I.S. (2006) Developing indicatorsof wine yeast performance: an overview of the impactof ethanol stress. Australian and New Zea<strong>la</strong>nd WineIndustry Journal 21:24-30.Ugliano, M.; H<strong>en</strong>schke, P.A.; Herderich, M.J. andPretorius, I.S. (2007) Nitrog<strong>en</strong> managem<strong>en</strong>t is criticalfor wine f<strong>la</strong>vour and style. Australian and New Zea<strong>la</strong>ndWine Industry Journal 22:24-30.These articles can be obtained by contacting the AWRI’sJohn Fornachon Memorial Library.Email library@awri.com.au, telephone (08) 8303 6600.Further information is also avai<strong>la</strong>ble on the AWRI’s websitewww.awri.com.au A summary of factors affectingsub-optimal ferm<strong>en</strong>tation is pres<strong>en</strong>ted by Dr Paul H<strong>en</strong>schkein a webcast at www.awri.com.au.This site is accessible to all Australian grape and wine levypayers.Summary• The 2008 vintage in southern Australia experi<strong>en</strong>ced an increase incases of stuck ferm<strong>en</strong>tation.• The March heatwave was a key factor. Yeast does not thrive in extremeheat or cold, or indeed wh<strong>en</strong> subjected to rapid changes intemperature.• Heat stress, transport de<strong>la</strong>ys and refrigeration problems gaveunwanted microbes a head start, further compromising yeast activity.• High sugar levels led to high amounts of ethanol, which can be toxicto yeast, leading to higher residual sugar levels in wine. Highernutri<strong>en</strong>ts can stimu<strong>la</strong>te Brettanomyces/Dekkera yeast during maturation.• Low YAN levels after persist<strong>en</strong>t drought also had an impact.• Simple strategies such as keeping bins and equipm<strong>en</strong>t clean, monitoringpH and using the right yeast and nutri<strong>en</strong>ts, can give winemakersthe upper hand.Textos asociados81


Taking control ofalcoholVare<strong>la</strong>, C.; Kutyna, D.; H<strong>en</strong>schke, P.A.; Chambers, P.J.;Herderich, M.J.; Pretorius, I.S.The Australian Wine Research Institute, PO Box 197, Gl<strong>en</strong>Osmond (Ade<strong>la</strong>ide), South Australia 5064, AustraliaAlcohol is the backbone of wine, yet too much canput a wine off-ba<strong>la</strong>nce. Taking control of alcohol levelsin wine is, therefore, critical to the winemaker’sart; can winemakers bottle the sunshine f<strong>la</strong>vours weexpect of Australian wine but leave out some of thealcohol? One of the keys is wine yeast. Previouslychos<strong>en</strong> for their effici<strong>en</strong>cy in converting sunshineinto alcohol, we are now g<strong>en</strong>erating new strains ofyeast that make reduced levels of alcohol; still lotsof sunshine in the bottle but with less risk of ‘sunburn’.Getting the alcohol level right in winemaking can besurprisingly difficult. This is particu<strong>la</strong>rly evid<strong>en</strong>t wh<strong>en</strong>grapes are grown where the weather is warm and fruitis giv<strong>en</strong> lots of time on the vine for f<strong>la</strong>vour developm<strong>en</strong>t;in these conditions ‘high alcohol’ can becomea problem.Over the past 20 years, the Australian Wine ResearchInstitute has charted an increase in average alcohol levelsin Australian wine. In 1984, levels were 12.4% v/v;in 2004, they had ris<strong>en</strong> to 14.2% v/v, and simi<strong>la</strong>r storiesare heard from around the grapegrowing regions ofthe world. The 2008 vintage hit another ‘sugar high’as the heatwave across southern Australia midwaythrough harvest took its toll.Hot weather accelerates rip<strong>en</strong>ing, which leads to higherlevels of sugar. Higher amounts of sugar lead tohigher levels of alcohol. In countries like ours, wherethe sun shines for long hours and some grapes are lefton the vine to create rich, full-bodied f<strong>la</strong>vours, highalcohol is becoming an issue.Wine with high alcohol levels can mean higher costs.In countries where taxes are levied according to ethanolcont<strong>en</strong>t, high alcohol wines can be taxed out ofthe market. High alcohol can also compromise f<strong>la</strong>vour,and today’s society is seeking a healthier approach tohigh alcohol consumption.To tackle the problem, the Australian wine sector isinvestigating new ways to lower the conc<strong>en</strong>tration ofethanol in wine. One strategy is to harvest grapes beforethey reach full maturity, wh<strong>en</strong> the conc<strong>en</strong>trationof sugar in the berries is lower. To a degree, this approachis already being used by some winemakers. But,until we understand viticultural factors that advanceSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>f<strong>la</strong>vour developm<strong>en</strong>t in re<strong>la</strong>tion to sugar rip<strong>en</strong>ess,this approach can undermine the full-bodied characterand ripe fruit f<strong>la</strong>vours for which some Australianwines are known. Removing sugar from grape mustbefore ferm<strong>en</strong>tation is another way to lower ethanolbut is re<strong>la</strong>tively exp<strong>en</strong>sive to carry out. A third strategyused successfully at a number of wineries around theworld is to remove alcohol from wine after ferm<strong>en</strong>tation.Ev<strong>en</strong> this has its drawbacks: it adds to productioncosts; might impact wine f<strong>la</strong>vour under certain conditions,and not all international markets might acceptAustralian wine that has undergone this procedure.Another strategy is to target wine yeast. The hunt is onfor strains of wine yeast that convert less of the sugarthey consume into ethanol (see, for example, Figure1). Commercially avai<strong>la</strong>ble Saccharomyces cerevisiaestrains have be<strong>en</strong> categorised by some yeast manufacturersaccording to the conc<strong>en</strong>trations of ethanolthey produce.But how differ<strong>en</strong>t are these yeasts? Do strains really differin terms of the ethanol they produce? To find out,sci<strong>en</strong>tists at the AWRI checked how much ethanol isproduced by six commercial wine yeasts described bymanufacturers as low- or high-ethanol strains.We also investigated two of our own novel wineyeasts – produced at the AWRI – to see how effici<strong>en</strong>tthey were at ferm<strong>en</strong>tation and how much ethanolthey produced. The two strains came from early stageexperim<strong>en</strong>tal work at the AWRI aimed at g<strong>en</strong>eratingyeast that produce reduced amounts of ethanol.AGrape sugars:GlucoseFructoseBGrape sugars:GlucoseFructoseGlycerolEthanolC0 2EthanolFigure 1. Sugar metabolism of wine yeast. A:Consumption of sugars leads mainly to theproduction of ethanol and carbon dioxide and,to a lesser ext<strong>en</strong>t, glycerol. B: Modifying yeastmetabolism so more glycerol is synthesisedreduces the amount of ethanol produced.Textos asociadosWine Industry Journal > Vol 23 No 6 > September /October 200883


Taking control of alcoholEthanol [% v/v]Ethanol [% v/v]12.0 –11.5 –11.0 –10.5 –CDGJ10.0 –AWRI 796 Maurivin B A WRI R2 PDM UCD522 N96 AWRI 1689 AWRI 169013.5 –13.0 –12.5 –12.0 –11.5 –11.0 –Chardonnay10.5 –AWRI 796 Maurivin B A WRI R2 PDM UCD522 N96 AWRI 1689 AWRI 1690Figure 2. Ethanol cont<strong>en</strong>t of wine producedfrom chemically defined grape juice (CDGJ)and Chardonnay juice, ferm<strong>en</strong>ted with differ<strong>en</strong>tcommercial wine yeast strains.We tested the eight differ<strong>en</strong>t yeasts using chemicallydefined grape juice (CDGJ), containing specified levelsof sugar and yeast assimi<strong>la</strong>ble nitrog<strong>en</strong>, and Chardonnayjuice. Ferm<strong>en</strong>tation took p<strong>la</strong>ce in controlled<strong>la</strong>boratory conditions and, once complete, sampleswere collected for analysis. The researchers measuredresidual sugar, ethanol, glycerol, malic acid and aceticacid as well as alcohol in the synthetic wine (CDGJ)and Chardonnay using advanced analysis techniques.The conc<strong>en</strong>trations of ethanol produced by the sixcommercial wine strains are shown in Figure 2. In syntheticwine, ethanol conc<strong>en</strong>trations varied betwe<strong>en</strong>11.3% v/v and 11.6% v/v with a maximum differ<strong>en</strong>ceof 0.3% v/v. In Chardonnay, ethanol cont<strong>en</strong>t variedbetwe<strong>en</strong> 12.4% v/v and 12.9% v/v, with a maximumdiffer<strong>en</strong>ce of 0.5% v/v. The differ<strong>en</strong>ces look small butare statistically significant. They are also supported bya previous research study that tested 113 strains ofwine yeast grown in synthetic grape juice.Although there are no published data on final ethanolconc<strong>en</strong>trations in red varieties, our research shows itis very likely that 0.5% v/v is the maximum differ<strong>en</strong>cepossible by choosing a curr<strong>en</strong>tly avai<strong>la</strong>ble, commercialwine yeast strain. Commercial strains do not giverise to <strong>la</strong>rge differ<strong>en</strong>ces in ethanol conc<strong>en</strong>trations.As a result, we are trying to g<strong>en</strong>erate novel strains ofwine yeast that metabolise sugar in such a way thatless ethanol is produced while maintaining high winequality.Using a non-g<strong>en</strong>etically modified (non-GM) approach,known as adaptive evolution, we are workingto create the right conditions to ‘persuade’ yeast toproduce less ethanol. Ev<strong>en</strong> though the sci<strong>en</strong>ce is notstraightforward, early results have be<strong>en</strong> promising.So far, two prototype yeast strains have be<strong>en</strong> produced– AWRI 1689 and AWRI 1690. Both g<strong>en</strong>erate lessethanol than their par<strong>en</strong>t strain – N96 (simi<strong>la</strong>r to stra-Table 1. Product conc<strong>en</strong>trations in wine made from Chardonnay juice using N96 and wine yeast variantsobtained by adaptive evolution.Strain Ethanol [% v/v] Glycerol [g/L] Acetic acid [g/L]Ferm<strong>en</strong>tationeffici<strong>en</strong>cy* [g sugarper 1% ethanol]N96 12.9 ± 0.1 5.8 ± 0.1 0.1 ± 0.0 16.1 ± 0.1AWRI 1689 12.7 ± 0.1 7.0 ± 0.0 0.1 ± 0.0 16.4 ± 0.1AWRI 1690 12.6 ± 0.1 7.1 ± 0.0 0.0 ± 0.0 16.5 ± 0.1* Initial and residual sugar conc<strong>en</strong>trations were used to calcu<strong>la</strong>te ferm<strong>en</strong>tation effici<strong>en</strong>cy.Table 2. Product conc<strong>en</strong>trations in wine made from Chardonnay juice using a range of differ<strong>en</strong>tcommercial wine yeast strains.Strain Ethanol [% v/v] Glycerol [g/L] Acetic acid [g/L]Ferm<strong>en</strong>tationeffici<strong>en</strong>cy* [g sugarper 1% ethanol]AWRI 796 12.4 ± 0.1 7.7 ± 0.2 0.1 ± 0.0 16.8 ± 0.2Maurivin B 12.7 ± 0.1 6.4 ± 0.0 0.5 ± 0.0 16.5 ± 0.1AWRI R2 12.7 ± 0.1 6.4 ± 0.0 0.1 ± 0.0 16.4 ± 0.1PDM 12.8 ± 0.1 5.9 ± 0.1 0.2 ± 0.0 16.3 ± 0.1UCD 522 12.8 ± 0.0 6.3 ± 0.1 0.1 ± 0.0 16.2 ± 0.0N96 12.9 ± 0.1 5.8 ± 0.1 0.1 ± 0.0 16.1 ± 0.1* initial and residual sugar conc<strong>en</strong>trations were used to calcu<strong>la</strong>te ferm<strong>en</strong>tation effici<strong>en</strong>cy.84


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>ins known in the industry as EC1118, Pris de Mousseand PDM) – but were still fast at ferm<strong>en</strong>tation. The twonew strains metabolised a small portion of sugar insuch a way that it did not turn into ethanol (Table 1).It was also important to investigate other metabolites,since major distortions in their conc<strong>en</strong>trations mightaffect aroma or f<strong>la</strong>vour. Table 2 shows glycerol andacetic acid conc<strong>en</strong>trations in Chardonnay wines, ferm<strong>en</strong>tedusing commercial wine yeast strains. For allstrains, there was clearly a link betwe<strong>en</strong> ethanol andglycerol conc<strong>en</strong>trations. Higher glycerol was associatedwith lower ethanol. The major compon<strong>en</strong>t of vo<strong>la</strong>tileacidity, acetic acid, was not affected.The decrease in ethanol conc<strong>en</strong>tration might be smallcompared with the two ‘lowered ethanol’ prototypeyeast strains produced by the AWRI, but we are confid<strong>en</strong>tour ‘non-GM’ strategy is working.The AWRI’s technology should be capable of g<strong>en</strong>eratingstrains that are ev<strong>en</strong> lower in ethanol thanthose curr<strong>en</strong>tly avai<strong>la</strong>ble. For winemakers wanting totake control of high alcohol, innovation is driving theevolution of wine yeast in the right direction. Naturetook some 20 million years to evolve highly effici<strong>en</strong>tferm<strong>en</strong>tation yeast, we hope to reverse some of thisevolution in a re<strong>la</strong>tive blink of the eye!Acknowledgem<strong>en</strong>tsThe Australian Wine Research Institute, a member ofthe Wine Innovation Cluster in Ade<strong>la</strong>ide, is supportedby Australia’s grapegrowers and winemakers throughtheir investm<strong>en</strong>t body, the Grape and Wine Researchand Developm<strong>en</strong>t Corporation, with matching fundsfrom the Australian Governm<strong>en</strong>t.The authors wish to thank Rae B<strong>la</strong>ir and Sharon Mascallfor editorial assistance.Further readingDe Barros Lopes, M.; Eglinton, J.M.; H<strong>en</strong>schke, P.A.;Høj, P.B. and Pretorius, I.S. (2003) The connectionbetwe<strong>en</strong> yeast and alcohol production in wine: Managingthe double edged sword of bottled sunshine.Australian and New Zea<strong>la</strong>nd Wine Industry Journal18:27-31.Godd<strong>en</strong>, P.W. and Gish<strong>en</strong>, M. (2005) Tr<strong>en</strong>ds in thecomposition of Australian wine 1984-2004. In: B<strong>la</strong>ir,R.J.; Francis, M.E. and Pretorius, I.S. (ed) Advances inwine sci<strong>en</strong>ce – commemorating 50 years of The AustralianWine Research Institute, The Australian WineResearch Institute, pp115-139.Guth, H. and Seis, A. (2002) F<strong>la</strong>vour of wines: towardsan understanding by reconstitution experim<strong>en</strong>ts andan analysis of ethanol’s effect on odour activity of keycompounds. B<strong>la</strong>ir, R.J.; Williams, P.J. and Høj, P.B., (eds).In: Proceedings of the elev<strong>en</strong>th Australian Wine IndustryTechnical Confer<strong>en</strong>ce; 7-10 October 2001. Ade<strong>la</strong>ide,SA Australian, Australian Wine Industry TechnicalConfer<strong>en</strong>ce Inc.; pp128-139.J<strong>en</strong>son, I. (1997) Differ<strong>en</strong>ces in alcohol productionby various yeast strains: myth or fact? All<strong>en</strong>, M.; Leske,P. and Baldwin, G. (eds.) Advances in juice c<strong>la</strong>rificationand yeast inocu<strong>la</strong>tion: Proceedings of a seminar; 15August 1996; Melbourne, Vic. Ade<strong>la</strong>ide, SA: AustralianSociety of Viticulture and O<strong>en</strong>ology; pp24-25.Pa<strong>la</strong>cios, A.; Raginel, F. and Ortiz-Juli<strong>en</strong>, A. (2007)Can the selection of Saccharomyces cerevisiae yeastlead to variations in the final alcohol degree of wines?Australian and New Zea<strong>la</strong>nd Grapegrower and Winemaker527, 71-75.Piskur, J.; Rozpedowska, E.; Po<strong>la</strong>kova, S.; Merico, A.and Compagno, C. (2006) How did Saccharomycesevolve to become a good brewer? Tr<strong>en</strong>ds in G<strong>en</strong>etics22, 183-186.Textos asociadosSummary• Hot weather and mature fruit make high alcohol levels in wine more likely.• The 2008 vintage is set to hit a ‘sugar high’, with high levels of ethanol.• Winemakers want to keep alcohol under control for cost, taste and health reasons.• Sci<strong>en</strong>tists at the AWRI have pioneered a new, GM-free approach to ‘persuade’ yeast to produce less ethanol during ferm<strong>en</strong>tation.• Studies have shown that the maximum variation in ethanol levels from curr<strong>en</strong>t, commercial yeast strains is 0.5% v/v.• Innovation at the AWRI is driving the evolution of new, ‘low ethanol’ yeast in the right direction.85


A <strong>la</strong> recerca del codidigital dels llevatsdel viBorneman, A.R.; Forgan, A.H.; Chambers, P.J. i Pretorius,I.S.The Australian Wine Research Institute, Gl<strong>en</strong> Osmond(Ade<strong>la</strong>ida), Australia.Per primera vegada, ci<strong>en</strong>tífics del Australian WineResearch Institute han seqü<strong>en</strong>ciat el g<strong>en</strong>oma d’unllevat del vi, caracteritzant <strong>la</strong> «recepta de <strong>la</strong> vida»d’aquest microorganisme amic de l’<strong>en</strong>òleg. Un camíobert al des<strong>en</strong>volupam<strong>en</strong>t de noves soques que puguincontribuir amb solucions innovadores al problemade les <strong>para</strong>des ferm<strong>en</strong>tatives i a augm<strong>en</strong>tarles opcions de l’<strong>en</strong>òleg.Cada quatre anys, els Jocs Olímpicsinspir<strong>en</strong> al món amb actuacionsespectacu<strong>la</strong>rs i proeses deresistència, velocitat i elegància.Ens sorpr<strong>en</strong>em davant les fitesatlètiques dels competidors i <strong>la</strong>majoria de nosaltres només podempreguntar-nos com aconsegueix<strong>en</strong>aquests campions arribara aquests estàndards de somni.Què fa a aquests guanyadors tandifer<strong>en</strong>ts de <strong>la</strong> resta de persones?No som <strong>la</strong> mateixa espècie, i pertant, no hauríem de t<strong>en</strong>ir tots el mateix pot<strong>en</strong>cial? Nopodríem, també nosaltres, guanyar una medal<strong>la</strong> d’or<strong>en</strong> natació o atletisme si comptéssim amb el mateix<strong>en</strong>tr<strong>en</strong>am<strong>en</strong>t, dieta i estil de vida?La resposta és negativa. Els atletes d’elit neix<strong>en</strong> ambun pot<strong>en</strong>cial que porta el segell de l’«or» ja estampat.T<strong>en</strong><strong>en</strong> el tipus de fibres muscu<strong>la</strong>rs, el físic, <strong>la</strong> fisiologiai les aptituds que, amb <strong>en</strong>tr<strong>en</strong>am<strong>en</strong>t adequat, pod<strong>en</strong>arribar a ser perfeccionats per a l’èxit internacional. Lam<strong>en</strong>tablem<strong>en</strong>t,<strong>la</strong> majoria de nosaltres requeriríem demolt més que aquest afinam<strong>en</strong>t per assolir aquest nivell;fins que <strong>la</strong> biònica <strong>en</strong>s permeti substituir allò ambel que vam néixer, quan parlem d’atletisme, <strong>la</strong> majoriade nosaltres <strong>en</strong>s haurem de conformar amb participar<strong>en</strong> una lliga amateur o, fins i tot, m<strong>en</strong>ys.La variació individualAlgunes de lesseqüències de DNAaddicional trobades<strong>en</strong> el llevat del vi,no s’assembl<strong>en</strong>a res trobat <strong>en</strong>d’altres espècies deSaccharomycesSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Aquestes diferències <strong>en</strong> el r<strong>en</strong>dim<strong>en</strong>t dels individusd’una mateixa espècie no són tan sols exclusives del’ésser humà. De fet, podem apreciar- les contínuam<strong>en</strong>ta <strong>la</strong> natura. Pr<strong>en</strong>em, per exemple, l’humil llevatque els <strong>en</strong>òlegs utilitz<strong>en</strong> per produir el complex i irresistiblevi a partir del most del raïm. La majoria dels llevatsdel vi són de <strong>la</strong> mateixa espècie, Saccharomycescerevisiae, però no tots els membres d’aquest grupsón capaços de produir vi i, <strong>en</strong>tre aquelles soquesque ho són, hi ha una considerable variació de comd’efici<strong>en</strong>ts són i com fidedignam<strong>en</strong>t fan <strong>la</strong> seva feina icom pod<strong>en</strong> produir vins de qualitat.Això <strong>en</strong>s porta a <strong>la</strong> segü<strong>en</strong>t pregunta: Què marca a unllevat del vi? Què existeix <strong>en</strong> el funcionam<strong>en</strong>t internd’aquest atleta d’elit, que li permet créixer <strong>en</strong> un ambi<strong>en</strong>ttan hostil i aconseguir vins amb medalles d’orm<strong>en</strong>tre altres soques de S. cerevisiae no pass<strong>en</strong> de <strong>la</strong>línia de sortida? Estudis portats a terme a l’AustralianWine Research Institute (AWRI) com<strong>en</strong>c<strong>en</strong> a desvetl<strong>la</strong>rmisteris de les variacions <strong>en</strong>tre soques de S. cerevisiae,ess<strong>en</strong>t els primers resultats obtinguts realm<strong>en</strong>tprometedors.La variació <strong>en</strong> el r<strong>en</strong>dim<strong>en</strong>t que observem <strong>en</strong>tre soquesde S. cerevisiae és un atribut heretable; aixòsignifica que està g<strong>en</strong>èticam<strong>en</strong>tdeterminat. Per tant, el punt departida per caracteritzar aquestavariació s’hauria d’<strong>en</strong>focar prioritàriam<strong>en</strong>t<strong>en</strong> <strong>la</strong> g<strong>en</strong>ètica dels llevats.Sortosam<strong>en</strong>t, S. cerevisiae vaser el primer organisme del seutipus <strong>en</strong> t<strong>en</strong>ir el seu g<strong>en</strong>oma seqü<strong>en</strong>ciat.Això va assolirse fa unsdeu anys <strong>en</strong> una soca conegudacom S288c, escollida per <strong>la</strong> sevaidoneïtat a les condicions del <strong>la</strong>boratori(per una informació mésdetal<strong>la</strong>da sobre què són els g<strong>en</strong>si els g<strong>en</strong>omes, consulteu requadre). Als ci<strong>en</strong>tífics els<strong>en</strong>canta aquest llevat ja que és molt fàcil trebal<strong>la</strong>r ambell, però d’altra banda, no seria una soca capaç deguanyar cap medal<strong>la</strong> <strong>en</strong> el camp de <strong>la</strong> producció devi, de fet, és possible que ni tan sols arribi a nivells delsque <strong>en</strong> diríem «amateurs ». No obstant, per discernirquè és el que fa un llevat del vi tan difer<strong>en</strong>t d’altressoques de S. cerevisiae és necessari disposar d’algunacosa amb qui com<strong>para</strong>r-<strong>la</strong>, i S288c és un bon punt departida.El g<strong>en</strong>oma d’una altra soca de S. cerevisiae, YJM789,s’ha seqü<strong>en</strong>ciat rec<strong>en</strong>tm<strong>en</strong>t. El g<strong>en</strong>oma d’aquest llevat,un patog<strong>en</strong> oportunista aïl<strong>la</strong>t dels pulmons d’unpaci<strong>en</strong>t amb SIDA, va resultar força difer<strong>en</strong>t al d’S288c.Així, ara disposem de dues versions difer<strong>en</strong>ts de S. cerevisiaeamb les que poder com<strong>para</strong>r el llevat del vi, iaixò va ser el que vam trobar.Textos asociadosL’especificitat g<strong>en</strong>ètica del llevat del viEl nostre llevat del vi pres<strong>en</strong>ta més diferències ambles dues soques prèviam<strong>en</strong>t seqü<strong>en</strong>ciades, que lesque pres<strong>en</strong>t<strong>en</strong> aquelles dues <strong>en</strong>tre elles. Prop del 0,6ACE Revista d’Enologia 4rt Trimestre 200887


A <strong>la</strong> recerca del codi digital dels llevats del vi% de les lletres g<strong>en</strong>ètiques de <strong>la</strong> seqüència del llevatdel vi són difer<strong>en</strong>ts de les de <strong>la</strong> soca de <strong>la</strong>boratori. Aixòpot semb<strong>la</strong>r una molt petita diferència, però si consideremque <strong>la</strong> distància g<strong>en</strong>ètica <strong>en</strong>tre dues espèciescom els humans i els ximpanzés és únicam<strong>en</strong>t d’un1-2 %, el 0,6 % seria una xifra força considerable per adues soques d’una mateixa espècie.D’altra banda, potser el que sigui més interessantd’aquests resultats, és que s’han trobat seqüènciesaddicionals al llevat del vi, que són sufici<strong>en</strong>ts per afegircom a mínim 27 g<strong>en</strong>s que no estan pres<strong>en</strong>ts <strong>en</strong> lessoques de Saccharomyces amb que va ser com<strong>para</strong>da.De fet, algunes de les seqüències<strong>en</strong> aquest DNA addicional nos’assembl<strong>en</strong> a res trobat <strong>en</strong> d’altresespècies de Saccharomyces. Defet, aquestes seqüències són méssimi<strong>la</strong>rs a g<strong>en</strong>s trobats <strong>en</strong> fongsforça llunyans filog<strong>en</strong>èticam<strong>en</strong>t.Encara no sabem com van arribaral g<strong>en</strong>oma del llevat del vi, peròt<strong>en</strong>im una certa curiositat per avaluarsi aquestes seqüències estaninvolucrades <strong>en</strong> <strong>la</strong> difer<strong>en</strong>ciació<strong>en</strong>tre llevats del vi i altres S. cerevisiae,especialm<strong>en</strong>t <strong>en</strong> allò refer<strong>en</strong>ta les característiques necessàries per produir vi.Alguns dels g<strong>en</strong>s específics <strong>en</strong> el llevat del vi codifiqu<strong>en</strong>,probablem<strong>en</strong>t, proteïnes associades amb<strong>la</strong> paret cel·lu<strong>la</strong>r, un tret del llevat que és, s<strong>en</strong>se capm<strong>en</strong>a de dubte, important per a <strong>la</strong> seva resistència <strong>en</strong>ambi<strong>en</strong>ts inhòspits. Ens agradaria descobrir si aquestsg<strong>en</strong>s t<strong>en</strong><strong>en</strong> alguna m<strong>en</strong>a d’impacte <strong>en</strong> <strong>la</strong> robustesa delEn el futur, seremcapaços d’esbrinarquins d’aquests tretsúnics del g<strong>en</strong>omad’un llevat del vi sóndeterminants <strong>en</strong>l’àmbit de <strong>la</strong> produccióviníco<strong>la</strong>llevat del vi, una característica que és de gran importànciaper completar <strong>la</strong> ferm<strong>en</strong>tació. Ens preguntem,per exemple, si aquests g<strong>en</strong>s fan al llevat del vi, més om<strong>en</strong>ys vulnerable a ferm<strong>en</strong>tacions l<strong>en</strong>tes o a <strong>para</strong>desferm<strong>en</strong>tatives. També hem id<strong>en</strong>tificat g<strong>en</strong>s que probablem<strong>en</strong>tcodifiqu<strong>en</strong> proteïnes associades amb <strong>la</strong>captura d’aminoàcids (un transportador d’aminoàcidsneutre) i el seu metabolisme (una aspartat transaminasa).Pel fet que el metabolisme d’aminoàcids estàdirectam<strong>en</strong>t re<strong>la</strong>cionat amb el des<strong>en</strong>volupam<strong>en</strong>t decompostos associats a sabor i aroma, és temptador suggerirque aquests g<strong>en</strong>s podri<strong>en</strong> t<strong>en</strong>ir un impacte <strong>en</strong>els atributs s<strong>en</strong>sorials del vi, <strong>en</strong>cara que això s’hauriad’investigar i confirmar.A més a més, existeix<strong>en</strong> multitudg<strong>en</strong>s dels quals <strong>en</strong>cara no podeminferir les seves funcions. Aquestspodri<strong>en</strong> resultar ser els més interessantsde tots; el temps i el treballexperim<strong>en</strong>tal <strong>en</strong>s ho diran.De manera molt interessant,també hem trobat alguns reord<strong>en</strong>am<strong>en</strong>tscromosòmics <strong>en</strong> elg<strong>en</strong>oma d’aquest llevat i sobreels quals també estem intrigats,<strong>en</strong>cara que de mom<strong>en</strong>t no podem fer-nos una ideade quina serà <strong>la</strong> seva veritable importància i abast.El que fa a un llevat del viQuè <strong>en</strong>s portarà el futur a partir d’ara que ja disposemd’aquesta <strong>en</strong>orme font d’informació sobre un lle-Desxifrant el codi: g<strong>en</strong>s i g<strong>en</strong>omesEls g<strong>en</strong>s són receptes per fabricar proteïnes. Per exemple, les cèl·lules del lector posseeix<strong>en</strong> un g<strong>en</strong> o recepta per fer <strong>la</strong> proteïna insulina,que és una hormona que regu<strong>la</strong> els nivells de sucre <strong>en</strong> sang. També t<strong>en</strong>im g<strong>en</strong>s o receptes que instrueix<strong>en</strong> a les nostres cèl·lules sobrecom fer proteïnes que control<strong>en</strong> l’estatura fins <strong>la</strong> que creixerem, el color dels nostres ulls, <strong>la</strong> forma g<strong>en</strong>eral del nostre cos, etc. Sónaquestes mateixes receptes de <strong>la</strong> vida les que dict<strong>en</strong> si disposarem de pot<strong>en</strong>cial atlètic o no i, degut a que les heretem dels nostrespares, acabarem semb<strong>la</strong>nt-nos a ells. Si els g<strong>en</strong>s són receptes, l<strong>la</strong>vors els g<strong>en</strong>omes són llibres de receptes. El g<strong>en</strong>oma humà disposa de totes lesreceptes necessàries per fabricar les proteïnes que es requereix<strong>en</strong> per construir un cos humà, des del mom<strong>en</strong>t de <strong>la</strong> concepció fins <strong>la</strong> maduresa,i per re<strong>para</strong>r i def<strong>en</strong>sar aquest cos durant tota <strong>la</strong> vida. Tota aquesta fisiologia i anatomia estan mode<strong>la</strong>des per una col·lecció de 20 000 – 25000 g<strong>en</strong>s que s’est<strong>en</strong><strong>en</strong> pel g<strong>en</strong>oma humà. Excepte <strong>en</strong> el cas de t<strong>en</strong>ir un bessó idèntic, el nostre llibre de receptes és difer<strong>en</strong>tdel que t<strong>en</strong><strong>en</strong> <strong>la</strong> resta dels nostres congèneres.El ll<strong>en</strong>guatge dels g<strong>en</strong>s és molt difer<strong>en</strong>t dels ll<strong>en</strong>- guatges que fem servir habitualm<strong>en</strong>t per comunicar-nos els unsamb els altres. Està basat <strong>en</strong> un alfabet de tan sòls quatre lletres (A, T, G i C), i el seu lèxic està limitat a <strong>para</strong>ulesamb tres lletres, fet que significa que només existeix<strong>en</strong> 64 <strong>para</strong>ules <strong>en</strong> el diccionari g<strong>en</strong>ètic. Tot i el que semb<strong>la</strong>riaa primer cop d’ull, això és més que sufici<strong>en</strong>t per e<strong>la</strong>borar tot el conjunt d’instruccions que permet<strong>en</strong> construirtotes les proteïnes (<strong>en</strong>zims, hormones, anticossos, cartí<strong>la</strong>gs, etc.) que requerim per a <strong>la</strong> vida.El paper <strong>en</strong> que les <strong>para</strong>ules que configures les receptes de <strong>la</strong> vida esta escrites es coneix com DNA, iquan nosaltres llegim el llibre de receptes complet d’un organisme, desxifrant el que està gravatal DNA, diem que estem seqü<strong>en</strong>ciant el seu g<strong>en</strong>oma. El que acabem t<strong>en</strong>int <strong>en</strong> aquest procésés una l<strong>la</strong>rga seqüència de milions de lletres A, T, C i G, s<strong>en</strong>se espais o signes de puntuació evid<strong>en</strong>ts,i que hem de desxifrar. Afortunadam<strong>en</strong>t, disposem de programes informàtics que pod<strong>en</strong>fer <strong>la</strong> major part d’aquesta feina per nosaltres.88


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Els membres de l’equip investigador australià. D’esquerra a dreta: Paul Chambers, Angus Forgan,Sakkie Pretorius i Anthony Borneman.vat del vi? Per suposat, serem capaços de determinarquins d’aquests trets únics del g<strong>en</strong>oma d’un llevat delvi són determinants <strong>en</strong> l’àmbit de <strong>la</strong> producció de vi.Tot i això, també <strong>en</strong>s p<strong>la</strong>ntegem acumu<strong>la</strong>r més dadesa partir d’aquest projecte mitjançant <strong>la</strong> seqü<strong>en</strong>ciació icom<strong>para</strong>ció dels g<strong>en</strong>omes d’altres llevats del vi, aquellesque posseeix<strong>en</strong> difer<strong>en</strong>ts propietats per <strong>la</strong> sevacapacitat per produir vi. Això <strong>en</strong>s permetrà determinarquè és comú a tots els llevats del vi (per exemple,quins són els requerim<strong>en</strong>ts fonam<strong>en</strong>tals d’un llevatdel vi) i quines diferències <strong>en</strong>tre elles condueix<strong>en</strong> a <strong>la</strong>producció de vins amb difer<strong>en</strong>ts qualitats (per exemple,<strong>la</strong> predisposició a produir uns determinats aromesi matisos frutals).Un cop puguem <strong>en</strong>t<strong>en</strong>dre que és allò que determinael destí d’un llevat del vi, i el significat profundd’aquestes variacions <strong>en</strong>tre soques de llevats del vi,estarem <strong>en</strong> una millor posició per des<strong>en</strong>volupar variantsd’aquest microorganisme que puguin completar<strong>la</strong> marató de <strong>la</strong> ferm<strong>en</strong>tació s<strong>en</strong>se al<strong>en</strong>tir-<strong>la</strong> oevitant quedar <strong>para</strong>des durant el seu curs, produint almateix temps vins mereixedors d’una medal<strong>la</strong> d’or; itot això seria possible s<strong>en</strong>se afegir additius que increm<strong>en</strong>tinel r<strong>en</strong>dim<strong>en</strong>t.De manera simi<strong>la</strong>r als nostres esportistes olímpics, elsector del vi també ha de t<strong>en</strong>ir aspiracions a medallesd’or. Amb el suport d’una ciència de qualitat i una recercarobusta, hauri<strong>en</strong> de ser tot ors per als productorsde vi.Agraïm<strong>en</strong>tsEls membres de l’equip del AWRI responsables de discernirel mapa g<strong>en</strong>ètic del llevat del vi són els doctorsAnthony Borneman, Angus Forgan, Paul Chambers iSakkie Pretorius.L’Australian Wine Research Institute, un dels membresdel Wine Innovation Cluster a Ade<strong>la</strong>ida, disposa delsuport econòmic dels productors de raïm i de vi a travésdel seu organisme d’inversió, el Grape and WineResearch and Developm<strong>en</strong>t Corporation, a més d’unasubv<strong>en</strong>ció equival<strong>en</strong>t del Govern australià.La recerca <strong>en</strong> l’àrea de <strong>la</strong> biologia de sistemes al AWRIes realitza amb recursos provin<strong>en</strong>ts <strong>en</strong> part del NationalCol<strong>la</strong>borative Research Infrastructure Strategy, unainiciativa del Govern australià, amb fons addicionalsdel Govern de l’Estat de South Australia. Agraïm també<strong>la</strong> contribució de <strong>la</strong> Australian G<strong>en</strong>ome ResearchFacility, membre de Biop<strong>la</strong>tforms Australia, on es vaportar a terme <strong>la</strong> seqü<strong>en</strong>ciació del g<strong>en</strong>oma del llevatdel vi. També volem agrair a Sharon Mascall i Rae B<strong>la</strong>irper l’ajut <strong>en</strong> <strong>la</strong> redacció, i a Jeff Eglinton per <strong>la</strong> pre<strong>para</strong>cióde les il·lustracions. Els resultats ci<strong>en</strong>tífics detal<strong>la</strong>tsd’aquest treball han estat publicats a <strong>la</strong> revista FEMSYeast Research.BibliografiaBorneman, A.R.; Forgan, A.H.; Chambers, P.J.; Pretorius,I.S.: «Com<strong>para</strong>tive g<strong>en</strong>ome analysis of a Saccharomycescerevisiae wine strain», FEMS Yeast Research 2008;8: 1185-1195.Borneman, A.R.; Forgan, A.H.; Chambers, P.J.; Pretorius,I.S.: «Unravelling the g<strong>en</strong>etic blueprint of wine yeast»,Australian and New Zea<strong>la</strong>nd Wine Industry Journal2008; 23: 21-23.Borneman, A.R.; Forgan, A.H.; Chambers, P.J.; Pretorius,I.S.: «Cracking the g<strong>en</strong>etic code of wine yeast», WineBusiness Monthly 2008, octubre: 41-43.Borneman, A.R.; Chambers, P.J.; Pretorius, I.S.: «YeastSystems Biology: modelling the winemaker’s art»,Tr<strong>en</strong>ds in Biotechnology 2007; 25: 349-355.Goffeau, A.; Barrell, B.G.; Bussey, H.; Davis, R.W.; Dujon,B.; Feldmann, H.; Galibert, F.; Hoheisel, J.D.; Jacq,C.; Johnston, M.; Louis, E.J.; Mewes, H.W.; Murakami, Y.;Philipps<strong>en</strong>, P.; Tettelin, H.; Oliver, S.G.: «Life with 6000g<strong>en</strong>es»,Textos asociados89


Effect of Microoxyg<strong>en</strong>ationon Colorand Anthocyanin-Re<strong>la</strong>ted Compoundsof Wines withDiffer<strong>en</strong>t Ph<strong>en</strong>olicCont<strong>en</strong>tsCano-López, M.; Pardo-Mínguez, F.; Schmauch,G.; Saucier, C.; Teissedre, P.L.; López-Roca, J.M.; andGómez-P<strong>la</strong>za, E.Departam<strong>en</strong>to de Tecnología de Alim<strong>en</strong>tos, Nutricióny Bromatología, Facultad de Veterinaria, Universidadde Murcia, Spain, Bodegas San Isidro, Jumil<strong>la</strong>, Murcia,Spain, and Faculté d’O<strong>en</strong>ologie, Université VictorSegal<strong>en</strong>, Bordeaux 2, FranceSeveral factors may affect the results obtained wh<strong>en</strong>micro-oxyg<strong>en</strong>ation is applied to red wines, the mostimportant being the mom<strong>en</strong>t of application, the dosesof oxyg<strong>en</strong>, and the wine ph<strong>en</strong>olic characteristics.In this study, three red wines, made from Vitis viniferavar. Monastrell (2005 vintage) and with differ<strong>en</strong>t ph<strong>en</strong>oliccharacteristics, were micro-oxyg<strong>en</strong>ated to determineas to how this technique affected the formationof new pigm<strong>en</strong>ts in the wines and their chromaticcharacteristics. The results indicated that the differ<strong>en</strong>twines were differ<strong>en</strong>tly affected by micro-oxyg<strong>en</strong>ation.In g<strong>en</strong>eral, the micro-oxyg<strong>en</strong>ated wines had a higherperc<strong>en</strong>tage of new anthocyanin-derived pigm<strong>en</strong>ts,being that this formation is more favored in the wineswith the highest total ph<strong>en</strong>ol cont<strong>en</strong>t. These compounds,in turn, significantly increased the wine colorint<strong>en</strong>sity. The wine with the lowest ph<strong>en</strong>olic cont<strong>en</strong>twas less influ<strong>en</strong>ced by micro-oxyg<strong>en</strong>ation, and theobserved evolution in the degree of polymerizationof tannins suggested that it might have suffered overoxyg<strong>en</strong>ation.KEYWORDS: Wine; color; anthocyanins; anthocyanin-derivedcompounds; micro-oxyg<strong>en</strong>ation.INTRODUCTIONPh<strong>en</strong>olic compounds are responsible for many of theorganoleptic characteristics of wines. Among them,anthocyanins are responsible for the color of red wine,Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>while their interactions with other compounds <strong>la</strong>rgelydetermine the color changes observed in maturingwines. The wine ph<strong>en</strong>olic cont<strong>en</strong>t dep<strong>en</strong>ds on thegrape characteristics and on the winemaking process.Factors such as ph<strong>en</strong>olic maturity of the grapes, l<strong>en</strong>gthof maceration, frequ<strong>en</strong>cy of pumping over, etc. determinethe final wine ph<strong>en</strong>olic cont<strong>en</strong>t (1–3).The importance of oxyg<strong>en</strong> in the evolution of winecolor has be<strong>en</strong> studied for many years, both as regardsits role in polyph<strong>en</strong>ol oxidation (4–7) and as a promoterof the formation on new anthocyanin-derivedcompounds (5, 8–11). Indeed, one way of manipu<strong>la</strong>tingthe ph<strong>en</strong>olic structure of a wine is to use themicro-oxyg<strong>en</strong>ation (MO) technique, which relies onthe formation of microbubbles through the injectionof gaseous oxyg<strong>en</strong> into the wine using a microdiffuser(12). These bubbles rise through the wine, dissolvingas they travel to the surface.Empirical results have indicated that MO b<strong>en</strong>efits includethe stabilization of wine color, the soft<strong>en</strong>ing oftannins, and the less<strong>en</strong>ing of vegetative aromas (13,14). Reactions involving wine polyph<strong>en</strong>ols are the keyto these processes, which include changes in proanthocyaninchain l<strong>en</strong>gth and the consequ<strong>en</strong>t effect onwine astring<strong>en</strong>cy and the linking of anthocyanins andtannins to form more stably colored forms. Dissolvedoxyg<strong>en</strong> leads to the formation of acetaldehyde that, inturn, reacts with f<strong>la</strong>vanols and anthocyanins to inducethe formation of a very reactive carbocation that quicklyreacts with another f<strong>la</strong>vanol molecule or with anthocyanin,producing ethyl bridge-linked compounds(15, 16). They are unstable (17) and undergo reactionsthat lead to the formation of new compounds suchas f<strong>la</strong>vanyl pyranoanthocyanins. These <strong>en</strong>d productsare more stable and colored than the original compounds(11). Moreover, incorporation of anthocyanininto tannin structures also may lead to a decrease inastring<strong>en</strong>cy (18).Since its commercial adoption, MO has become commonpractice and is now used worldwide, althoughmost of the avai<strong>la</strong>ble information is from empirical results.Only a few sci<strong>en</strong>tific publications can be foundthat are re<strong>la</strong>ted to the effects of MO (8, 19–23). Severalfactors may affect the final results obtained by MO,the most important being the mom<strong>en</strong>t of application,doses of oxyg<strong>en</strong>, and wine characteristics. Wines havemarked differ<strong>en</strong>ces in their respective abilities to consumeoxyg<strong>en</strong>. As a g<strong>en</strong>eral rule, this facility is directlyre<strong>la</strong>ted to their re<strong>la</strong>tive conc<strong>en</strong>tration of polyph<strong>en</strong>olssince ph<strong>en</strong>olic compounds are the main consumersof oxyg<strong>en</strong> (60%) together with ethanol (20%) and SO 2(12%) (22). In our first studies, we tested the use of differ<strong>en</strong>tdoses of oxyg<strong>en</strong> and the effect of the mom<strong>en</strong>tof application on wine chromatic characteristics (23,24). Here, we report the results of a commercial scaleMO experim<strong>en</strong>t where the influ<strong>en</strong>ce of applying oxyg<strong>en</strong>to three wines made from Monastrell grapes ofJ. Agric. Food Chem. 2008, 56, 5932–5941Textos asociados91


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tsTable 1. Evolution of Some PhysicochemicalParameters during MO of Monastrell Wines apHtitratable acidity bvo<strong>la</strong>tile acidity cfree SO 2(mg/L)total SO 2(mg/L)acetaldehyde (mg/L)pHtitratable acidity bvo<strong>la</strong>tile acidity cfree SO 2(mg/L)total SO 2(mg/L)acetaldehyde (mg/L)pHtitratable acidity bvo<strong>la</strong>tile acidity cfree SO 2(mg/L)total SO 2(mg/L)acetaldehyde (mg/L)t 0t 1t 2t 3W13.725.870.39253922.2W23.666.310.33254129.1W33.636.450.40274832.3W1(C)3.785.760.40263213.5W2(C)3.715.830.33313523.0W3(C)3.665.700.37324425.6W1(MO)3.765.35*0.4122*28*12.8W2(MO)3.675.960.3422*3324.7W3(MO)3.665.560.3825*3523.2differ<strong>en</strong>t ph<strong>en</strong>olic cont<strong>en</strong>ts was investigated.MATERIALS AND METHODSW1(C)3.855.380.43375015.1W2(C)4.005.600.29386132.2W3(C)4.015.660.33266428.7W1(MO)3.835.17*0.47374916.6W2(MO)4.005.73*0.32336123.4*W3(MO)4.025.27*0.37296428.4W1(C)3.835.060.42224821.3W2(C)3.835.080.37165141.4W3(C)3.775.090.37166122.3W1(MO)3.79*4.90*0.3414*4632.6*W2(MO)3.804.900.3311*35*45.2W3(MO)3.784.89*0.39*11*38*35.0*aAn asterisk indicates significant differ<strong>en</strong>ces betwe<strong>en</strong>control and microoxyg<strong>en</strong>ated wines for each time considered.b Expressed as g/L of tartaric acid.cExpressed as g/L of acetic acid.Wine Samples. Three differ<strong>en</strong>t red wines, made fromVitis Vinifera var. Monastrell (2005 vintage), differingin their total ph<strong>en</strong>ol cont<strong>en</strong>t, were used for the experim<strong>en</strong>t(W1, W2, and W3). Each wine was distributedinto four 17 500 L tanks, and the MO experim<strong>en</strong>twas carried out in triplicate, with a control (C) andthree MO tanks for each type of wine. The heightof each tank was 4.5 m, <strong>en</strong>ough for the completedissolution of oxyg<strong>en</strong> microbubbles into the wine.MO began just after alcoholic ferm<strong>en</strong>tation had finished(November 7, 2005), applying a oxyg<strong>en</strong> doseof 10 mL/L/month. Malo<strong>la</strong>ctic ferm<strong>en</strong>tation (MLF)occurred spontaneously. Wh<strong>en</strong> MLF started (detectedby the decrease in malic acid), the MO systemwas stopped (November 30 for W1 and December20 for W2 and W3). During MLF, the bacteria consumethe acetaldehyde produced. They are capable ofmetabolizing acetaldehyde, ev<strong>en</strong> the acetaldehydebound to sulfur dioxide (25); therefore, any excess ofacetaldehyde produced during the MO process willdisappear.Wh<strong>en</strong> MLF was complete for all wines, SO 2was addedto leave the wines with a free SO 2cont<strong>en</strong>t close to 30mg/L, and MO was resumed (January 19, 2006). At thismom<strong>en</strong>t, the oxyg<strong>en</strong> supply was reduced to avoidaccumu<strong>la</strong>tion of acetaldehyde (3 mL/L/month). After2 months, the oxyg<strong>en</strong> supply was reduced again (1.5mL/L/month) before it was completely stopped. Thewine was analyzed immediately before the MO systembegan (t0), at the beginning of MLF (t1), wh<strong>en</strong> MO beganagain after MLF (t2), and 15 days after the MO systemwas stopped (t3) since wines take 8-10 days to absorbthe oxyg<strong>en</strong>, dep<strong>en</strong>ding on temperature and ph<strong>en</strong>oliccomposition of the wines (26). The MO system (AgrovinS.A., Alcazar de San Juan, Spain) was comprised of anoxyg<strong>en</strong> cylinder (food grade) and a dosing chamberthat allowed the doses of oxyg<strong>en</strong> flowing through ninediffer<strong>en</strong>t microdiffusers to be programmed.G<strong>en</strong>eral Determinations. pH and titratable aciditywere measured using an automatic titrator (Metrohm,Herisau, Switzer<strong>la</strong>nd). Vo<strong>la</strong>tile acidity was determinedaccording to the OIV Official Methods (27). Acetaldehydeand malic acid conc<strong>en</strong>tration were determinedusing <strong>en</strong>zymatic test kits from Roche Boehringer,Mannheim, Germany. The SO 2conc<strong>en</strong>tration (freeand total) was measured iodometrically by the Ripperprocedure (28) modified to detect the <strong>en</strong>d point pot<strong>en</strong>tiometricallywith an automatic titrator (Metrohm,Herisau, Switzer<strong>la</strong>nd).Id<strong>en</strong>tification and Quantification of Anthocyanins.Wines were analyzed by direct injection of thesamples previously filtered through a 45 μm nylon filter(Teknokroma, Barcelona, Spain). The HPLC analyseswere performed on a Waters 2690 liquid chromatograph(Waters, Milford, MA), equipped with aWaters996 diode array detector and a 250 mm × 4 mm i.d.,5 μm particle size Lichrocart RP-18 column (Merck,Darmstadt, Germany), using as solv<strong>en</strong>ts 4.5% aqueousformic acid (solv<strong>en</strong>t A) and acetonitrile (solv<strong>en</strong>t B) at aflow rate of 0.8 mL/ min. Elution was performed witha gradi<strong>en</strong>t starting with 10% B to reach 14.5% B at 30min, 15.2% B at 45 min, 18% B at 60 min, 25% B at 100min, and 25-100% B in 30 min. Chromatograms wererecorded at 520 nm.Compounds were id<strong>en</strong>tified by comparing their UVspectra recorded with the diode array detector andthose reported in the literature (11, 29). In addition,an HPLC-MS analysis was conducted to confirmeach peak id<strong>en</strong>tity. An LC-MSD-Trap VL-01036 liquidchromatograph-ion trap mass detector (Agil<strong>en</strong>t Technologies,Waldbronn, Germany) equipped with anelectrospray ionization (ESI) system was used. Elutionwas performed with the HPLC analysis conditionsdetailed previously. The heated capil<strong>la</strong>ry and voltagewere maintained at 350 °C and 4 kV, respectively.Mass scans (MS) were measured from m/z 300-1100.Mass spectrometry data were acquired in the positiveionization mode. Anthocyanins and anthocyanin-92


derived compounds were quantified at 520 nm asmalvidin- 3-glucoside, using malvidin-3-glucosidechloride as an external standard (Extrasynthe`se, G<strong>en</strong>ay,France).Color Determinations in Wines. Absorbance measurem<strong>en</strong>tswere made in a Helios Alpha spectrophotometer(Thermo Electron Corp., Waltham, MA) with 0.1,0.2, or 1 cm path l<strong>en</strong>gth g<strong>la</strong>ss cells. Samples were previouslyc<strong>en</strong>trifuged, and the pH was adjusted to 3.6.CIELab <strong>para</strong>meters were determined by measuringthe transmittance of the wine every 10 nm from 380to 770 nm, using a D65 illuminant and a 10° observer.The L* (measure of lightness), C* (measure of chroma),and H* (hue angle) <strong>para</strong>meters were determined. Colorint<strong>en</strong>sity (CI), calcu<strong>la</strong>ted as the sum of absorbanceat 620, 520, and 420 nm, and perc<strong>en</strong>tages of red (%R),yellow (%Y), and blue (%B) color were determined accordingto Glories (30); the hue was calcu<strong>la</strong>ted as theratio betwe<strong>en</strong> absorbance at 420 nm and absorbanceat 520 nm (31).Total ph<strong>en</strong>ols (abs280) were calcu<strong>la</strong>ted according toRibe´reau Gayon et al. (32). Wine color (WC), total colorof pigm<strong>en</strong>ts (WCP), and color due to derivatives resistantto SO 2bleaching (CDRSO 2) were determined usinga method adapted from that described by Lev<strong>en</strong>goodand Boulton (33), with all measurem<strong>en</strong>ts made at 520nm. These <strong>para</strong>meters were calcu<strong>la</strong>ted as follows.WC. Tw<strong>en</strong>ty microliters of 10% acetaldehyde solutionwas added to 2 mL of a wine sample in a 10 mm p<strong>la</strong>sticcuvette to release any anthocyanins involved in bisulfiteadducts. After 45 min, the sample was p<strong>la</strong>ced ina 1 mm cuvette. The reading was corrected to 10 mmpath l<strong>en</strong>gth by multiplying by 10.WCP. A total of 0.5 mL of wine was diluted in 20 mLof 0.1 N HCl. Absorbance was measured in a 10 mmcuvette after 30 min to <strong>en</strong>sure complete conversionof anthocyanins into the f<strong>la</strong>vylium form. The readingwas corrected for dilution.CDR SO2 . A total of 160 μL of a 5% SO 2solution (10%potassium metabisulfite solution) was added to 2 mLof the wine sample. After 1 min, the sample was p<strong>la</strong>cedin a 2 mm cuvette. The reading was corrected to10 mm path l<strong>en</strong>gth by multiplying by 5.Determination of Total Tannins. The wine tanninconc<strong>en</strong>tration was evaluated using a protein precipitationassay, with bovine serum albumin (BSA).Sample pre<strong>para</strong>tion and a protein precipitation assaywere conducted according to methods described byHarbertson et al. (34). For quantification, results werecompared with a (+)-catechin standard and reportedas mg/L (+)-catechin equival<strong>en</strong>ts.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Analysis of Proanthocyanidins. Proanthocyanidincomposition was determinated by HPLC-DAD-MS afterpurification and conc<strong>en</strong>tration of the wine extractand acid catalysis in the pres<strong>en</strong>ce of excess phloroglucinol.The results of phloroglucinolysis providedinformation on the proanthocyanidin subunit composition(terminal and ext<strong>en</strong>sion unit conc<strong>en</strong>trations)and the mean degree of polymerization (mDP). Theanalyses were carried out in triplicate.The phloroglucinolysis protocol, described by Drinkineet al. (35), included a purification step using C18solid-phase extraction (SPE). Water (15 mL) was addedto 5 mL of wine, and the sample was passed througha preconditioned cartridge. The retained compoundswere eluted with 50 mL of methanol with a flow rateof 2 mL/min. This fraction was dried under reducedpressure and th<strong>en</strong> dissolved in 2 mL of methanol.The second step was the phloroglucinolysis reaction.A solution of 0.2 N HCl in methanol, containing 100g/L phloroglucinol and 20 g/L ascorbic acid, was prepared.A total of 100 μL of the wine sample was reactedwith 100 μL of the phloroglucinol reag<strong>en</strong>t at 50 °Cfor 20 min, and th<strong>en</strong> 1 mL of 80 mM aqueous sodiumacetate was added to stop the reaction.The ext<strong>en</strong>sion and terminal units resulting fromphloroglucinolysis (catechin, epicatechin, (epi)catechingal<strong>la</strong>te, and (epi)gallocatechin) were determinedby LC-MS. LC-MS analyses were performedon a Micromass P<strong>la</strong>tform II simple quadruple massspectrometer (Micromass- Beckman, Roissy Charlesde-Gaulle,France) equipped with an electrosprayion source. The mass spectrometer was operated innegative-ion mode. The source temperature was 120°C, the capil<strong>la</strong>ry voltage was set at 3.5 kV, and thecone voltage was -30 V. HPLC se<strong>para</strong>tions were performedon a Hewlett-Packard 1100 series (Agil<strong>en</strong>t,Massy, France) instrum<strong>en</strong>t including a pump moduleand a UV detector. Both systems were operatedusing Masslynx 3.4 software. The absorbance was recordedat 280 nm, and mass spectra were recordedfrom 200 to 1200 amu.The elution conditions were wateras follows: aceticacid (99:1; v/v) as solv<strong>en</strong>t A, methyl alcohol as solv<strong>en</strong>tB, and the following elution gradi<strong>en</strong>t: from 5 to 15% Bin 5 min, 15% B for 2 min, from 15 to 20% B in 3 min,from 20 to 50% B in 10 min, from 50 to 100% B in 2min, and from 100 to 5% B in 2 min, with a flow of 1mL/min. The column used was a reversed-phase 4.6mm × 100 mm i.d., 3.5 μm packing C18 Waters Xterraprotected with a guard column of the same material(Agil<strong>en</strong>t, Saint Qu<strong>en</strong>tin-<strong>en</strong>-Yvelines, France).Statistical Analysis. Significant differ<strong>en</strong>ces betwe<strong>en</strong>wines and for each variable were assessed with analysisof variance (ANOVA). This statistical analysis, togetherwith a cluster analysis and a principal compon<strong>en</strong>tsanalysis, was performed using Statgraphics 5.1(Statistical Graphics Corporation, Rockville, MD).Textos asociados93


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tsFigure 1. Developm<strong>en</strong>t of monomeric anthocyanins and ethyl-linked compounds in W1, W2, and W3wines (±SD). Each point corresponds to t 0, t 1, t 2, and t 3.RESULTS AND DISCUSSIONWh<strong>en</strong> comparing the initial composition of the studiedwines (Table S1 in the Supporting Information and initialpoint in all figures), W1 and W2 showed a very simi<strong>la</strong>rph<strong>en</strong>olic cont<strong>en</strong>t (abs280 of 52 and 58, respectively),while the highest ph<strong>en</strong>olic cont<strong>en</strong>t was found in W3(abs280 of 76), mainly due to its high tannin cont<strong>en</strong>t.Although tannins and color d<strong>en</strong>sity were higher in W3,monomeric anthocyanins and WCP showed higher valuesin W2, a wine that showed a low degree of anthocyaninpolymerization (CRDSO2). Color perc<strong>en</strong>tages alsodiffered betwe<strong>en</strong> the wines. W1 pres<strong>en</strong>ted a higher yellowperc<strong>en</strong>tage and lower red perc<strong>en</strong>tage. W3 was thedarkest wine, with the highest blue perc<strong>en</strong>tage. Thetannin characterization showed that the perc<strong>en</strong>tagesof the differ<strong>en</strong>t f<strong>la</strong>vanol units also differed. The profileof W1, with the highest perc<strong>en</strong>tage of epicatechinand epigallocatechin, indicated a high perc<strong>en</strong>tage ofskin tannins (18, 36), whereas the lowest perc<strong>en</strong>tageof epigallocatechin and re<strong>la</strong>tively high perc<strong>en</strong>tage ofepicatechin gal<strong>la</strong>te in W3 were according to the longermaceration period used during the e<strong>la</strong>borationof W3, with seed tannins contributing significantly tothe tannin fraction. The profile found in W2 indicatesan intermediate situation, the maceration time beingintermediate betwe<strong>en</strong> W1 and W3.As se<strong>en</strong> in Table 1, there was little effect of MO on pH,and small differ<strong>en</strong>ces were observed in titratable acidityafter MLF (t2) and at the <strong>en</strong>d of the experim<strong>en</strong>t(t3). With regard to concerns about pot<strong>en</strong>tial microbialspoi<strong>la</strong>ge, the vo<strong>la</strong>tile acidity did not increase duringthe studied period. Wh<strong>en</strong> the MO application wasfinished, a higher conc<strong>en</strong>tration of acetaldehyde wasdetected in the W1 and W3 MO wines, as comparedto their control counterparts, and simi<strong>la</strong>r quantitiesof acetaldehyde were found in W2 (C) and W2 (MO).Excessive oxidation may result in increased levels ofacetaldehyde, a compound that at s<strong>en</strong>sory thresholdlevels adversely affects wine f<strong>la</strong>vor and aroma. S<strong>en</strong>sorydetection limits for red wines are typically in the rangeof 40-100 ppm (37, 38). Our results showed that, ev<strong>en</strong>in wines containing the highest cont<strong>en</strong>t of acetaldehyde,its s<strong>en</strong>sory detection limit barely was reached.MO promoted a slightly lower cont<strong>en</strong>t of free SO 2in the wines, but differ<strong>en</strong>ces were small. Total SO 2was also lower in W2 and W3 MO wines. Boulet andMoutounet (12) reported no effect of MO on SO 294


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Figure2. Developm<strong>en</strong>t of carboxypyranoanthocyanins and sum off <strong>la</strong>vanyl- and vinylpyranoanthocyaninsin W1, W2, and W3 wines (±SD).Each point corresponds to t 0, t 1, t 2, and t 3.cont<strong>en</strong>t, whereas Pérez-Magariño et al. (39) reportedsmall decreases due to MO, results that are simi<strong>la</strong>r toour findings. The results of Tao et al. (21) showed thatSO 2had a moderating effect on the interaction of oxyg<strong>en</strong>with wine polyph<strong>en</strong>ols since it has the ability toreduce oxidized polyph<strong>en</strong>ols and to remove peroxide.The levels of SO 2in MO wine affect the rate of developm<strong>en</strong>tof wine polyph<strong>en</strong>ol chemistry, including theformation of polymeric pigm<strong>en</strong>ts and changes in tanninstructure, affecting wine astring<strong>en</strong>cy.Anthocyanins and Derived Compounds. The predominantcompounds detected in HPLC analyses werethe monoglucosides of malvidin, petunidin, delphinidin,peonidin, and cyanidin and their respective acetyl andcoumaryl derivatives. The combined conc<strong>en</strong>tration of allthese compounds diminished with time (Figure 1) thedecrease being <strong>la</strong>rger in the MO wines, as also found byAtanasova et al. (8), a decrease that might be exp<strong>la</strong>inedby the various reactions where anthocyanins are involved,including degradation or polymerization reactions.The most significant decrease was detected betwe<strong>en</strong> t0and t2, except in W1, whose conc<strong>en</strong>trations barely changedduring this period. This was probably due to the factthat W1 wines were MO for 17 days before MLF started,whereas W2 and W3 were MO for 44 days since the startingof MLF was de<strong>la</strong>yed in these wines.Acetaldehyde-mediated cond<strong>en</strong>sation betwe<strong>en</strong> anthocyanin-3-glucoside and (epi)catechin leads toethyl bridge-linked compounds. Three possible isomerswere elucidated as well as another compound inwhich the f<strong>la</strong>vanyl moiety is a dimer. Throughout theexperim<strong>en</strong>t, the conc<strong>en</strong>tration of ethyl-linked compoundswas higher in the MO wines (Figure 1). Theseare compounds with a purple color, less s<strong>en</strong>sitive tobleaching by SO 2and pH than monomeric anthocyanins,and their formation is favored by oxyg<strong>en</strong> (8, 40).A very <strong>la</strong>rge increase was observed in W2 (MO) fromt0 to t1, after which it fell sharply. These compoundsare unstable and have a t<strong>en</strong>d<strong>en</strong>cy to increase in size inthe pres<strong>en</strong>ce of avai<strong>la</strong>ble acetaldehyde. The behavioris in accordance with their reactivity; they are rapidlyformed, but also, they can be rapidly brok<strong>en</strong> down,releasing ethyl-f<strong>la</strong>vanol units that, in turn, may reactagain with anthocyanins or dimers, giving more cond<strong>en</strong>sedproducts or ev<strong>en</strong> polymers (11).Pyroanthocyanins are compounds formed wh<strong>en</strong>a pyran ring is introduced betwe<strong>en</strong> the C4 and theTextos asociados95


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tsFigure 3. Developm<strong>en</strong>t of direct anthocyanin-f<strong>la</strong>vanol adducts and polymeric compounds in W1, W2, andW3 wines (±SD). Each point corresponds to t 0, t 1, t 2, and t 3.hydroxyl group attached to C5 in the anthocyaninmolecule. Some compounds result from the additionof anthocyanin and pyruvic acid (carboxypyranoanthocyanins).Several of these compounds weredetected in our samples: petunidin 3-glucoside pyruvate,vitisin A (malvidin 3-(glucoside)pyruvate), acetylvitisin A (malvidin 3-(acetylglucoside) pyruvate), andcoumaryl vitisin A (malvidin 3-(coumarylglucoside)pyruvate). Another pyranoanthocyanin resulting fromthe cycloaddition of acetaldehyde to malvidin 3-glucoside,and referred to as vitisin B, also was found, andits quantification was included with the carboxypyranoanthocyanins.Pyranoanthocyanins are consideredto be important compounds concerning the color ofred wine since the cycloaddition process seems tostrongly increase the stability of the products, and, inthis way, vitisin A has be<strong>en</strong> reported as being morestable than malvidin 3-glucoside or ethyl-linked compoundsand more resistant to oxidation (41). The sumof carboxypyranoanthocyanins and vitisin B increasedfrom t0 to t1 (Figure 2), with MO wines increasingmore (except for W1). At the <strong>en</strong>d of the experim<strong>en</strong>t,carboxypyranoanthocyanins showed lower conc<strong>en</strong>trationsin the control wines than in the MO wines,the greatest increases being detected in W2. Otherauthors found a strong decrease in vitisin A and re-<strong>la</strong>ted compounds during the first year of wine storage,after which the conc<strong>en</strong>tration remained re<strong>la</strong>tivelyconstant (42–44). Such a decrease, observed mainly inour study betwe<strong>en</strong> t1 and t2, was ascribed to their incorporationinto polymeric compounds (42). The conc<strong>en</strong>trationof carboxypyranoanthocyanins in wines isa result of a ba<strong>la</strong>nce betwe<strong>en</strong> the formation reactionsand their incorporation in the polymeric compounds.The formation of vitisin A and re<strong>la</strong>ted compoundsrequires the pres<strong>en</strong>ce of free monoglucosides andpyruvic acid. Oxyg<strong>en</strong> or reactive oxyg<strong>en</strong> species arealso necessary for the reaction to proceed since allcycloaddition pathways require an oxidation step torecover the f<strong>la</strong>vylium moiety within the final structures(45–47). Therefore, the MO process seemed to<strong>en</strong>hance the formation of vitisin-type compounds byproviding oxyg<strong>en</strong>. This result is contrary to that of Atasanovaet al. (8), who stated that the addition of pyruvicacid to anthocyanins is not influ<strong>en</strong>ced by oxyg<strong>en</strong>.W2, with a higher anthocyanin monoglucoside cont<strong>en</strong>t(as quantified by HPLC), was the wine showingthe highest final conc<strong>en</strong>tration of carboxypyranoanthocyanins.Another group of anthocyanins, constituted byhydroxyph<strong>en</strong>yl- pyranoanthocyanins, results from96


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>Figure 4. Developm<strong>en</strong>t of color int<strong>en</strong>sity and hue in W1, W2, and W3 wines (±SD). Each point correspondsto t 0, t 1, t 2, and t 3.the reactions of anthocyanins and vinyl derivatives(48, 49). Malvidin 3-glucoside- 4-vinylph<strong>en</strong>ol, pinotinA (malvidin 3-glucoside-4-vinylcatechol), and malvidin3-glucoside-4-vinylguaiacol were detected in oursamples. The pres<strong>en</strong>ce of vinyl derivatives in wine wasattributed to <strong>en</strong>zymatic decarboxy<strong>la</strong>tion of ph<strong>en</strong>olicacids by yeast <strong>en</strong>zymes (48). However, Schwarz andWinterhalter (50) demonstrated that pinotin A alsocould be formed as a result of the direct addition ofcaffeic acid to malvidin-3-glucoside, without the needfor prior decarboxy<strong>la</strong>tion of cinnamic acid derivativesby wine yeasts (51). Also, f<strong>la</strong>vanylpyranoanthocyaninwas detected in our samples. We found that the conc<strong>en</strong>trationof vinyl and f<strong>la</strong>vanylpyranoanthocyaninsincreased with time (Figure 2), the increases being <strong>la</strong>rgerin the MO wines, especially from t2 to t3.We also detected compounds formed by direct reactionsbetwe<strong>en</strong> anthocyanins and f<strong>la</strong>vanols (Figure 3).These may result from the addition of f<strong>la</strong>vanols to anthocyanins(47, 52). Little differ<strong>en</strong>ces were detected inthe direct adducts betwe<strong>en</strong> control and MO wines.A broad peak at the <strong>en</strong>d of the chromatogram wasobserved (polymeric peak). It absorbed at around 540,indicating that it contained f<strong>la</strong>vylium units. Its conc<strong>en</strong>trationincreased with time while its λmax valuedecreased, perhaps because anthocyaninethyl- f<strong>la</strong>vano<strong>la</strong>dducts would first have be<strong>en</strong> formed duringwinemaking and th<strong>en</strong> transformed into f<strong>la</strong>vanyl-pyranoanthocyaninsduring wine aging, compounds thatpres<strong>en</strong>t lower λmax values. The contribution of thesepolymeric pigm<strong>en</strong>ts to the overall color of aged redwines may be superior to the contribution of eitherg<strong>en</strong>uine monomeric anthocyanins or pyranoanthocyanins(50). The area of this peak, as shown in Figure 3,is <strong>la</strong>rger, in g<strong>en</strong>eral, in MO wines, although no significantdiffer<strong>en</strong>ces were observed betwe<strong>en</strong> W3 (C) andW3 (MO) at the <strong>en</strong>d of the experim<strong>en</strong>t.Chromatic Characteristics of Wine. Figure 4 reflectsthe evolution of color int<strong>en</strong>sity and hue. The winesbehaved in a simi<strong>la</strong>r way, indep<strong>en</strong>d<strong>en</strong>tly of their ph<strong>en</strong>oliccont<strong>en</strong>t. An increase from t0 to t1 was observedin all wines and was higher in MO wines, thesewines also being darker in color (see Table S2 in theSupporting Information). A decrease during MLF wasth<strong>en</strong> detected, probably due to an increase in pH andthe degradation of pigm<strong>en</strong>ted compounds by <strong>la</strong>cticbacteria. After MLF, CI increased, although MO winesmaintained a statistically higher CI value. The higher CIin MO wines was probably due to the contribution ofTextos asociados97


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tsFigure 5. Developm<strong>en</strong>t of WC, WCP, and CRDSO2 in W1, W2, and W3 wines (±SD). Each point correspondsto t 0, t 1, t 2, and t 3.the newly formed pigm<strong>en</strong>ts, for example, ethyllinkedpigm<strong>en</strong>ts, since the absorbance of these molecules at620 nm is higher than that of g<strong>en</strong>uine anthocyanins(the perc<strong>en</strong>tage of blue color in MO wines was higherthan in control wines).Pyranoanthocyanins also may have participated inthe higher CI as they show both higher absorbanceat 420 nm and contribute to the redness of wines. Thehue evolved in a very simi<strong>la</strong>r way in all the wines, witha t<strong>en</strong>d<strong>en</strong>cy to increase, but more so in control wine,demonstrating that no detectable browning occurredin the MO wines.Figure 5 reflects the evolution of WC, WCP, and CRD-SO 2. A very small decrease in WC was observed in allwines with no differ<strong>en</strong>ces due to MO. WCP decreasedwith time, and the decreases were concomitant withthe loss of free anthocyanins usually observed duringwine evolution, meaning that the formation of anthocyanin-derivedpigm<strong>en</strong>ts did not comp<strong>en</strong>sate for freeanthocyanin degradation.Figure 6. Developm<strong>en</strong>t of abs280 and tannins indiffer<strong>en</strong>t wines (±SD). Each point corresponds to t 0,t 1, t 2, and t 3.A continuous increase in pigm<strong>en</strong>ts resistant to SO 2bleaching was observed. The formation of pyranoanthocyanins,which are very stable compounds toward98


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>With regard to optical d<strong>en</strong>sity and tannin cont<strong>en</strong>t (Figure6) and mean degree of polymerization (mDP) (Figure7), no changes in abs280 were detected in any ofthe wines, indicating the abs<strong>en</strong>ce of significant winepigm<strong>en</strong>t precipitation. As regards tannins, their levelsdecreased during MLF in W2 and W3, but since nodecrease in abs280 was detected, this ph<strong>en</strong>om<strong>en</strong>onwas probably due to tannins breaking down to givesmall structures that were not detected by the BSAmethod. Simi<strong>la</strong>r values for the control and MO wineswere observed at t2. From t2 to t3, the conc<strong>en</strong>trationbarely changed, although MO wines showed a slightlyhigher tannin cont<strong>en</strong>t.Figure 7. Developm<strong>en</strong>t of mean degree ofpolymerization of tannins in W1, W2, and W3 wines(±SD). Each point corresponds to t 0, t 1, t 2, and t 3.Figure 8. Graphical plot repres<strong>en</strong>ting thedistribution of the wine samples in the p<strong>la</strong>nedefined by principal compon<strong>en</strong>ts 1 and 2 asregards their chromatic characteristics (MO wines:solid symbols; control wines: op<strong>en</strong> symbols; W1:circles; W2: squares; and W3: triangles). Thevariance exp<strong>la</strong>ined by each principal compon<strong>en</strong>t isshown in par<strong>en</strong>theses.SO 2and pH due to the substitution of C4 (47), wasprobably associated with this evolution. Ethyl-linkedcompounds also should be resistant to sulfite additionand may have contributed to the observed changes,exp<strong>la</strong>ining as to why the values were higher inMO wines.Differ<strong>en</strong>t behavior with regard to mDP was observedfor the differ<strong>en</strong>t wines. This <strong>para</strong>meter always increasedin the first period (from t0 to t1) for all wines and th<strong>en</strong>fell, except for W1. According to Nikfardjam and Dykes(53), this increase corresponds to the wine structuringphase described in empirical observations (13), and thisphase appears to occur irrespective of whether oxyg<strong>en</strong>is being dosed into the wine. The reduction of mDP observedafterward, mainly in W2 (MO) and W3 (MO), maybe due to a possible structural rearrangem<strong>en</strong>t of thetannins to shorter forms, which would corre<strong>la</strong>te withthe small decreases observed in the tannins measuredby the BSA method. This reduction in mDP may be responsiblefor a reduction in wine astring<strong>en</strong>cy (54, 55).The interaction of these newly formed intermediateswith anthocyanins also may reduce astring<strong>en</strong>cy sincethey can form terminal units of these shorter forms,prev<strong>en</strong>ting further polymerization (56). The differ<strong>en</strong>tbehavior of W1 (MO) was simi<strong>la</strong>r to that described byDu Toit et al. (57) wh<strong>en</strong> MO was applied to a wine fortoo long a period of time. It seems that W1 could havesuffered overoxyg<strong>en</strong>ation in the MO wine, and therefore,an increase of mDP was observed.Multivariate statistical analysis was used in this studyto check as to whether the wines could be groupedaccording to the variables studied. First, a clusteranalysis was conducted using all the studied variablessince this is a powerful visualization tool that <strong>en</strong>ablesgroupings to be observed within the data. This is anunsupervised method for pattern recognition, wherethe samples were clustered without prior knowledgeof their belonging to any wine type. The distance matrixwas calcu<strong>la</strong>ted using square Euclidean distancesand an average linkage method algorithm. Distancemeasures the simi<strong>la</strong>rity or dissimi<strong>la</strong>rity betwe<strong>en</strong> thediffer<strong>en</strong>t samples. Two clearly differ<strong>en</strong>tiated clusterswere found (data shown in Supporting Information).In one of them we found W1, both control and MO wines,and W2 (C), showing that W1 (C) and W2 (C) werequite close. W2 (MO) was c<strong>la</strong>ssified as closer to the W3wines. In the case of W2, it seems that MO originatedthe maximum differ<strong>en</strong>ces in the wine characteristics.MO promoted changes in its ph<strong>en</strong>olic structure, leadingto a wine with chromatic characteristics closer toa wine with a higher ph<strong>en</strong>olic cont<strong>en</strong>t.Textos asociados99


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tsHaving obtained this grouping, a principal compon<strong>en</strong>tsanalysis was conducted with the same dataand using the same variables to find as to whichvariables were mainly responsible for the groupingfound (Figure 8). The first two principal compon<strong>en</strong>tsexp<strong>la</strong>ined 83% of the variance. The repres<strong>en</strong>tation ofthese two principal compon<strong>en</strong>ts showed that all MOwines had lower values in compon<strong>en</strong>t 1 than theircorresponding control wines mainly due to lower valuesof L*, H*, and hue and higher values of CI andanthocyanin-derived compounds, among others. Thewines with the highest ph<strong>en</strong>olic cont<strong>en</strong>t showed negativevalues of PC1, while W2 differed from the otherwines especially in the highest values of PC2, due tothe high WC and anthocyanin monoglucoside values.W2 (MO) and W3 (C) were again very close. MO favoredreactions that led to the greater formation of newpigm<strong>en</strong>ts, which, in turn, increased CI and CRDSO 2inall the wines, regardless of their ph<strong>en</strong>olic cont<strong>en</strong>t. W1wine was less influ<strong>en</strong>ced by MO and the observedincreases in mDP for W1 (MO) suggested overoxyg<strong>en</strong>ation.This wine pres<strong>en</strong>ted an anthocyanin cont<strong>en</strong>tthat was too low to promote any great level of cond<strong>en</strong>sationreactions. W3 was favored by MO, but themost evid<strong>en</strong>t results were found in W2 (MO), with itshigh anthocyanin cont<strong>en</strong>t that favored the formationof more stable derived pigm<strong>en</strong>ts and led to a wineclose to W3 (C).Supporting Information Avai<strong>la</strong>ble: Figure of differ<strong>en</strong>tiatedclusters and tables of wine characteristicsat the <strong>en</strong>d of alcoholic ferm<strong>en</strong>tation and evolution ofCIELab and color. This material is avai<strong>la</strong>ble free of chargevia the Internet at http://pubs.acs.org.LITERATURE CITED(1) Pérez-Magariño, S.; González-San José, M. L. Evolutionof f<strong>la</strong>vanols, anthocyanins, and their derivativesduring the aging of red wines, e<strong>la</strong>boratedfrom grapes harvested at differ<strong>en</strong>t stages of rip<strong>en</strong>ing.J. Agric. Food Chem. 2004, 52, 1181–1189.(2) Bautista-Ortı´n, A. B.; Fernández-Fernández, J. I.;López-Roca, J. M.; Gómez-P<strong>la</strong>za, E. The effect ofgrape rip<strong>en</strong>ing stage on red wine color. J. Int. Sci.Vigne Vin 2006, 40, 14–24.(3) Bautista-Ortı´n, A. B.; Fernández-Fernández, J. I.; López-Roca,J. M.; Gómez-P<strong>la</strong>za, E. Wine-making ofhighly colored wines: Ext<strong>en</strong>ded pomace contactand run-off of juice prior to ferm<strong>en</strong>tation. FoodSci. Technol. Int. 2004, 10, 287–295.(4) Ribéreau-Gayon, P.; Glories, Y. Ph<strong>en</strong>olics in grapesand wines. In The Sixth Australian Wine IndustryTechnical Confer<strong>en</strong>ce; Lee, T. H., Ed.; Australian IndustrialPublishers: Ade<strong>la</strong>ide, Australia, 1986; pp247-256.(5) Singleton, V. A survey of wine aging reactions, especiallywith oxyg<strong>en</strong>. In Proceedings of the 50thAnniVersary Annual Meeting; Rantz, J. M., Ed.;American Society for Enology and Viticulture:Davis, CA, 2000; pp 323-336.(6) Singleton, V. Oxyg<strong>en</strong> with ph<strong>en</strong>ols and re<strong>la</strong>tedreactions in must, wines, and model systems:Observations and practical implications. Am. J.Enol. Vitic. 1987, 38, 69–77.(7) Danilewicz, J. Review of reaction mechanism ofoxyg<strong>en</strong> and proposed intermediate reductionproducts in wine: C<strong>en</strong>tral role of iron and copper.Am. J. Enol. Vitic. 2003, 54, 73–85.(8) Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet,M. Effect of oxyg<strong>en</strong>ation on polyph<strong>en</strong>ol changesoccurring in the course of wine-making. Anal.Chim. Acta 2002, 458, 15–27.(9) Jordao, A. M.; Ricardo-da-Silva, J. M.; Laureano, O.Effect of oak constitu<strong>en</strong>ts and oxyg<strong>en</strong> on theevolution of malvidin-3- glucoside and (+)-catechinin model wine. Am. J. Enol. Vitic. 2006, 57,377–381.(10) Salmon, J. M. Interactions betwe<strong>en</strong> yeast, oxyg<strong>en</strong>,and polyph<strong>en</strong>ols during alcoholic ferm<strong>en</strong>tations:Practical implications. Food Sci. Technol. 2006,39, 959–965.(11) Alcalde-Eon, C.; Escribano-Bailon, M. T.; Santos-Buelga, C.; Rivas-Gonzalo, C. Changes in the detailedpigm<strong>en</strong>t conposition of red wine duringmaturity and ageing. A compreh<strong>en</strong>sive study.Anal. Chim. Acta 2005, 563, 238–254.(12) Boulet, J.; Moutounet, M. Micro-oxig<strong>en</strong>ación delos <strong>vinos</strong>. In Enologı´a: Fundam<strong>en</strong>tos Ci<strong>en</strong>tı´ficosy Tecnológicos; F<strong>la</strong>nzy, C., Ed.; MundiPr<strong>en</strong>sa Ediciones:Madrid, 2000; pp 638-642.(13) Parish, M.; Wol<strong>la</strong>n, D.; Paul, R. Micro-oxyg<strong>en</strong>ation.A review. Aust. Grapegrower Winemaker 2000,438, 47–50.(14) Kamio, I.; Kamio, X.; Roig, G.; Otero, B.; Yerle, S.Microoxyg<strong>en</strong>ation dans <strong>la</strong> Péninsule Ibérique:Rep<strong>en</strong>ser l’elevage des vins du sud. ReV. O<strong>en</strong>ol.2008, 126, 22–27.(15) Dal<strong>la</strong>s, C.; Ricardo da Silva, J. M.; Laureano, O. Productsformed in model wine solutions involvinganthocyanins, procyanidin B2, and acetaldehyde.J. Agric. Food Chem. 1996, 44, 2402–2407.(16) Es-Safi, N.; Fulcrand, H.; Cheynier, V.; Moutounet, M.Studies on the acetaldehyde-induced cond<strong>en</strong>sationof (-)-epicatechin and malvidin-3-glucoside100


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>in model solution systems. J. Agric. Food Chem.1999, 47, 2096–2102.(17) Escribano-Bailon, T.; Alvarez-Garcia, M.; Rivas-Gonzalo, J. C.; Heredia, F. J.; Santos-Buelga, C.Color and stability of pigm<strong>en</strong>ts derived from theacetaldehyde-mediated cond<strong>en</strong>sation betwe<strong>en</strong>malvidin 3-O-glucoside and (+)-catechin. J. Agric.Food Chem. 2001, 49, 1213–1217.(18) Cheynier, V.; Dueñas, M.; Sa<strong>la</strong>s, E.; Maury, C.;Souquet, J.; Sarni- Manchado, P.; Fulcrand, H.Structure and properties of wine pigm<strong>en</strong>ts andtannins. Am. J. Enol. Vitic. 2006, 57, 298–305.(19) L<strong>la</strong>udy, M.; Canals, R.; Gonzalez-Manzano, S.; Canals,J. M.; Santos-Buelga, C.; Zamora, F. Influ<strong>en</strong>ceof micro-oxyg<strong>en</strong>ation treatm<strong>en</strong>t before oakaging on ph<strong>en</strong>olic compound composition, astring<strong>en</strong>cy,and color of red wine. J. Agric. FoodChem. 2006, 54, 4246–4252.(20) Pérez-Magariño, S.; Sánchez-Iglesias, M.; Ortega-Heras, M.; González-Huerta, C.; González-Sanjose,M. L. Color stabilization of red wines by microoxyg<strong>en</strong>ationtreatm<strong>en</strong>t before malo<strong>la</strong>ctic ferm<strong>en</strong>tation.Food Chem. 2007, 101, 881–893.(21) Tao, J.; Dykes, S. I.; Kilmartin, P. A. Effect of SO 2conc<strong>en</strong>tration on polyph<strong>en</strong>ol developm<strong>en</strong>t duringred wine micro-oxyg<strong>en</strong>ation. J. Agric. FoodChem. 2007, 55, 6104–6109.(22) Devatine, A.; Chiciuc, I.; Poupot, C.; Mietton-Peuchot,M. Microoxyg<strong>en</strong>ation of wine in pres<strong>en</strong>ceof dissolved carbon dioxide. Chem. Eng. Sci.2007, 62, 4579–4588.(23) Cano-Lopez, M.; Pardo, F.; Lopez-Roca, J. M.; Gómez-P<strong>la</strong>za,E. Effect of the micro-oxyg<strong>en</strong>ation onanthocyann and derived pigm<strong>en</strong>t cont<strong>en</strong>t andchromatic characteristics of red wines. Am. J.Enol. Vitic. 2006, 57, 325–331.(24) Cano-López, M.; López-Roca, J. M.; Gómez-P<strong>la</strong>za,E.; Pardo- Minguez, F. Efecto de <strong>la</strong> microoxig<strong>en</strong>ación<strong>en</strong> <strong>vinos</strong> tintos con difer<strong>en</strong>te cont<strong>en</strong>ido polif<strong>en</strong>ólico.Tecnol. Vino 2006, Julio-Agosto, 45–50.(25) Osborne, J.; Mira de Orduña, R.; Pilone, G.; Liu, S.Acetaldehyde metabolism by wine <strong>la</strong>ctic acidbacteria. FEMS Microbiol. Lett. 2000, 191, 51–55.(26) Vivas, N.; Glories, Y. Racking of red wine matured inbarrels. A t<strong>en</strong>tative c<strong>la</strong>ssification of racking techniques.Aust. NZ Wine Ind. J. 1995, 10, 241–243.(27) O.I.V. Recueil des Méthodes Internationalesd’Analyse des Vins et des Mouts; Office Internationalde <strong>la</strong> Vigne et du Vin: Paris, 1990.(28) Ough, C. S.; Amerine, M. A. Methods for Analysis ofMusts and Wine; Wiley Intersci<strong>en</strong>ce Publications:Νew York, 1974.(29) Boido, E.; Alcalde-Eon, C.; Carrau, F.; Del<strong>la</strong>cassa, E.;Rivas- Gonzalo, C. Aging effect of the pigm<strong>en</strong>tcomposition and color of Vitis Vinifera L. c.v. Tannatwines. Contribution of the main pigm<strong>en</strong>t familiesto wine color. J. Agric. Food Chem. 2006,54, 6692–6704.(30) Glories, Y. La coleur des vins rouges: 1° partie. Lesequilibres des anthocyanes et des tanins. Con.Vigne Vin 1984, 18, 195– 217.(31) Sudraud, P. Interpretation des courbes d’absortiondes vins rouges. Ann. Technol. Agric. 1958, 7,203–208.(32) Ribéreau Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu,D. Traité d’O<strong>en</strong>ologie. 2. Chimie du Vin.Stabilisation et Traitem<strong>en</strong>ts; Dunod: Paris, 1998.(33) Lev<strong>en</strong>good, J.; Boulton, R. The variation in colordue to copigm<strong>en</strong>tation in young Cabernet Sauvignonwines. In Red Wine Color. ReVealing theMysteries; Waterhouse, A., K<strong>en</strong>nedy, J., Eds.; AmericanChemical Society: Washington, DC, 2004;pp 35- 52.(34) Harbertson, J. F.; K<strong>en</strong>nedy, J. A.; Adams, D. O. Tanninin skins and seeds of Cabernet Sauvignon,Syrah, and Pinot Noir berries during rip<strong>en</strong>ing.Am. J. Enol. Vitic. 2002, 53, 54–59.(35) Drinkine, J.; Lopes, P.; K<strong>en</strong>nedy, J. A.; Teissedre, P.L.; Saucier, C. Analysis of ethylid<strong>en</strong>e-bridged f<strong>la</strong>van-3-olsin wine. J. Agric. Food Chem. 2007, 55,1109–1116.(36) Fernandez, K.; K<strong>en</strong>nedy, J. A.; Agosin, E. Characterizationof Vitis Vinifera L. Cv. Carmanere grape andwine proanthocyanidins. J. Agric. Food Chem.2007, 55, 3675–3680.(37) Peynaud, E. The Taste of Wine; Wiley: New York,1996.(38) Amerine, M.; Roessler, E. Wines, Their S<strong>en</strong>sory EValuation;W. H. Freeman: New York, 1982.(39) Perez-Magariño, S.; Sánchez-Iglesias, M.; Ortega-Heras, M.; González-Huerta, C.; González-Sanjosé,M. L. Color stabilization of red wines by microoxyg<strong>en</strong>ationtreatm<strong>en</strong>t before malo<strong>la</strong>ctic ferm<strong>en</strong>tation.Food Chem. 2007, 101, 881–893.(40) Rivas-Gonzalo, J.; Bravo-Haro, S.; Santos-Buelga,C. Detection of compounds formed through thereaction of malvidin-3- monoglucoside and ca-Textos asociados101


Effect of Micro-oxyg<strong>en</strong>ation on Color and Anthocyanin-Re<strong>la</strong>ted Compounds of Wines with Differ<strong>en</strong>t Ph<strong>en</strong>olic Cont<strong>en</strong>tstechin in the pres<strong>en</strong>ce of acetaldehyde. J. Agric.Food Chem. 1995, 43, 1444–1449.(41) Morata, A.; Gomez-Cordoves, C.; Colomo, B.; Suarez,J. A. Pyruvic acid and acetaldehyde by differ<strong>en</strong>tstrains of Saccharomyces cereVisiae: Re<strong>la</strong>tionshipwith vitisin A and B formation in redwines. J. Agric. Food Chem. 2003, 51, 7402–7409.(42) Schwartz, M.; Quast, P.; von Baer, D.; Winterhalter,P. Vitisin A cont<strong>en</strong>t in Chilean wines from Vitis Viniferacv. Cabernet Sauvignon: A contribution tothe color of aged red wines. J. Agric. Food Chem.2003, 51, 6261–6267.(43) Revil<strong>la</strong>, I.; González-San José, M. L. Evolution duringthe storage of red wines treated with pectolytic<strong>en</strong>zymes: New anthocyanin pigm<strong>en</strong>t formation.J. Wine Res. 2001, 12, 183–197.(44) Asestorfer, R.; Markides, A.; I<strong>la</strong>nd, P.; Jones, G. Formationof vitisin A during red wine ferm<strong>en</strong>tationand maturation. Aust. J. Grape Wine Res. 2003, 9,40–46.(45) Lee, D.; Swinny, E.; As<strong>en</strong>storfer, R.; Jones, G. Factorsaffecting the formation of red wine pigm<strong>en</strong>ts.In Red Wine Color. ReVealing the Mysteries. ACSSymposium Series 886; Waterhouse, A., K<strong>en</strong>nedy,J. A., Eds.; American Chemical Society: Washington,DC, 2004; pp 125-142.(46) Pozo-Bayon, M. A.; Monagas, M.; Polo, M. C.; Gomez-Cordoves,C. Occurr<strong>en</strong>ce of pyroanthocyaninsin sparkling wines manufactured with redgrape varieties. J. Agric. Food Chem. 2004, 52,1300–1306.(47) Fulcrand, H.; Atanasova, V.; Sa<strong>la</strong>s, E.; Cheynier, V.The fate of anthocyanins in wine. Are they determiningfactors? In Red Wine Color. ReVealingthe Mysteries. ACS Symposium Series 886; Waterhouse,A., K<strong>en</strong>nedy, J. A., Eds.; American ChemicalSociety: Washington, DC, 2004; pp 68-88.(48) Monagas, M.; Nuñez, V.; Bartolomé, B.; Gomez-Cordobes, C. Anthocyanin-derived pigm<strong>en</strong>ts inGraciano, Tempranillo, and Cabernet Sauvignonwines produced in Spain. Am. J. Enol. Vitic. 2003,54, 163–169.(49) Schwartz, M.; Winterhalter, P. A novel syntheticroute to substituted pyranoanthocyanins withunique color properties. Tetrahedron Lett. 2003,44, 7583–7587.(50) Schwartz, M.; Winterhalter, P. Novel aged anthocyaninsfrom Pinotage wines: Iso<strong>la</strong>tion, characterization,and pathway of formation. In Red WineColor. ReVealing the Mysteries. ACS SymposiumSeries 886; Waterhouse, A., K<strong>en</strong>nedy, J. A., Eds.;American Chemical Society: Washington, DC,2004; pp 179- 197.(51) Schwarz, M.; Hofmann, G.; Winterhalter, P. Investigationson anthocyanins in wines from VitisVinifera cv. Pinotage: Factors influ<strong>en</strong>cing the formationof Pinotin A and its corre<strong>la</strong>tion with wineage. J. Agric. Food Chem. 2004, 52, 498–504.(52) Sa<strong>la</strong>s, E.; Atanasova, V.; Poncet-Legrand, C.; Meudec,E.; Mazauric, J. P.; Cheynier, V. Demostrationof the occur<strong>en</strong>ce of f<strong>la</strong>vonol-anthocyaninadducts in wine and in model disolutions. Anal.Chim. Acta 2004, 513, 325–332.(53) Nikfardjam, M.; Dykes, S. I. Micro-oxyg<strong>en</strong>ation researchat Lincoln University. Part 3: Polyph<strong>en</strong>olicanalysis of Cabernet Sauvignon wines under theapplication of micro-oxyg<strong>en</strong>ation. Aust. NZ GrapegrowerWinemaker 2003, 467, 41–44.(54) Vidal, S.; Carta<strong>la</strong>de, D.; Souquet, J. M.; Fulcrand, H.;Cheynier, V. Changes in proanthocyanidin chainl<strong>en</strong>gth in winelike model solutions. J. Agric. FoodChem. 2002, 50, 2261–2266.(55) Cheynier, V.; Remy, S.; Fulcrand, H. Mechanisms ofanthocyanin and tannin changes during winemakingand aging. In The ASEV 50th AnniVersaryAnnual Meeting; Rautz, J., Ed.; ASEV: Davis, CA,2000; pp 337-344.(56) Du Toit, W.; Marais, J.; Pretorius, I. S.; du Toit, M.Oxyg<strong>en</strong> in must and wine: A review. S. Afr. J. Enol.Vitic. 2006, 57, 76–94.(57) Du Toit, W.; Lisjak, K.; Marais, J.; du Toit, M. The effectof micro-oxyg<strong>en</strong>ation on the ph<strong>en</strong>olic composition,quality, and aerobic wine-spoi<strong>la</strong>ge microorganismsof differ<strong>en</strong>t South African red wines. S.Afr. J. Enol. Vitic. 2006, 27, 57–67.Received for review February 28, 2008. Revised manuscriptreceived May 9, 2008. Accepted May 9, 2008. Thiswork was made possible by financial assistance from theFundación Séneca (PB/31/FS/02).102


Efectos de <strong>la</strong>microoxig<strong>en</strong>ación <strong>en</strong>vino tintoCano Lopez, M,; Fu<strong>en</strong>tes Peralta, S.; Pardo Minguez,F. (1) ; López-Roca, J.M.; Gómez-P<strong>la</strong>za, EDepartam<strong>en</strong>to de Tecnología de Alim<strong>en</strong>tos, Nutricióny Bromatología. Facultad de Veterinaria, Universidadde Murcia. Campus de Espinardo, 30071 Murcia(1)Bodegas B.S.I. Ctra. Murcia, Jumil<strong>la</strong>, MurciaAutor de contacto: e-mail: <strong>en</strong>carnag@um.es, tel. 968367323RESUMENLa microoxig<strong>en</strong>ación está basada <strong>en</strong> el aporte contro<strong>la</strong>dode pequeñas cantidades de oxig<strong>en</strong>o de formacontinua y l<strong>en</strong>ta; si<strong>en</strong>do <strong>la</strong> velocidad del aporte deoxig<strong>en</strong>o inferior a <strong>la</strong> velocidad de su consumo, evitando<strong>la</strong> acumu<strong>la</strong>ción de oxig<strong>en</strong>o. El objetivo de estatécnica es favorecer <strong>la</strong> cond<strong>en</strong>sación <strong>en</strong>tre taninos yantocianos y <strong>la</strong> formación de nuevos pigm<strong>en</strong>tos; proporcionandoasí un increm<strong>en</strong>to y estabilización delcolor del vino. Se ha estudiado el efecto de <strong>la</strong> técnicaaplicando distintas dosis de oxig<strong>en</strong>o (dosis baja, mediay alta), a <strong>vinos</strong> de Monastrell. Los resultados obt<strong>en</strong>idosmuestran que <strong>la</strong> aplicación de oxig<strong>en</strong>o no afectaa <strong>la</strong> sanidad del vino. Los <strong>vinos</strong> microoxig<strong>en</strong>adospres<strong>en</strong>tan mayor int<strong>en</strong>sidad colorante que el testigo.La tonalidad es simi<strong>la</strong>r <strong>en</strong> todos ellos, manifestando <strong>la</strong>mínima oxidación de polif<strong>en</strong>oles producida. Se destacael increm<strong>en</strong>to de <strong>la</strong> fracción de color debido apigm<strong>en</strong>tos poliméricos, el índice de ionización y dePVPP <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados, pres<strong>en</strong>tando susSeminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>valores máximos <strong>en</strong> el vino microoxig<strong>en</strong>ado con dosismedia. Estos parámetros muestran que se ha favorecido<strong>la</strong> formación de nuevos pigm<strong>en</strong>tos <strong>en</strong> los <strong>vinos</strong>.Por otro <strong>la</strong>do, el cont<strong>en</strong>ido de acetaldehído libre <strong>en</strong>los <strong>vinos</strong> microoxig<strong>en</strong>ados es m<strong>en</strong>or que <strong>en</strong> el testigo,manifestando que el acetaldehído g<strong>en</strong>erado formaparte de nuevos pigm<strong>en</strong>tos, no interfiri<strong>en</strong>do <strong>en</strong> <strong>la</strong>scaracterísticas organolépticas de los <strong>vinos</strong> microoxig<strong>en</strong>ados.Al final del tratami<strong>en</strong>to se realizó un análisisorganoléptico de los <strong>vinos</strong>, que junto a los resultadosobt<strong>en</strong>idos se concluye que <strong>la</strong> dosis media resultó ser<strong>la</strong> mas adecuada al finalizar <strong>la</strong> microoxig<strong>en</strong>ación.INTRODUCCIÓNLos compuestos f<strong>en</strong>ólicos <strong>en</strong> un vino tinto determinansus características s<strong>en</strong>soriales, principalm<strong>en</strong>te elcolor y <strong>la</strong> astring<strong>en</strong>cia. La composición f<strong>en</strong>ólica dep<strong>en</strong>dede <strong>la</strong> composición de <strong>la</strong> uva, factores edafoclimáticos,procesos de vinificación y difer<strong>en</strong>tes prácticas<strong>en</strong>ológicas.El oxig<strong>en</strong>o juega un papel importante <strong>en</strong> diversosprocesos bioquímicos <strong>en</strong> los mostos y <strong>en</strong> los <strong>vinos</strong>,tanto durante <strong>la</strong> ferm<strong>en</strong>tación alcohólica como <strong>en</strong> <strong>la</strong>sreacciones de oxidación y/o polimerización de compuestospolif<strong>en</strong>ólicos que se produc<strong>en</strong> durante el<strong>en</strong>vejecimi<strong>en</strong>to del vino. Por ello, tradicionalm<strong>en</strong>te sehan efectuado aportes de oxig<strong>en</strong>o, bi<strong>en</strong> mediante remontadosal inicio de <strong>la</strong> ferm<strong>en</strong>tación alcohólica; bi<strong>en</strong>mediante trasiegos tras <strong>la</strong> ferm<strong>en</strong>tación alcohólica yferm<strong>en</strong>tación maloláctica cuyo objetivo es eliminary/o evitar <strong>la</strong> formación de compuestos sulfhídricos yretirar <strong>la</strong>s lías gruesas (1).Durante el <strong>en</strong>vejecimi<strong>en</strong>to del vino <strong>en</strong> barrica de roblese produce <strong>la</strong> cesión de compuestos f<strong>en</strong>ólicos yaromas propios de <strong>la</strong> madera al vino, además de unamicrooxig<strong>en</strong>ación natural, al difundirse pequeñas cantidadesde oxíg<strong>en</strong>o a través del esquive de <strong>la</strong> barrica,Textos asociadosFigura 1.- Estructura del polímero por cond<strong>en</strong>sación directa, A) tanino-antociano y B) compuesto bicíclicoformado por <strong>la</strong> reacción <strong>en</strong>tre el f<strong>la</strong>vano y Mv-3Glu. (Remy et al. 2000).Enólogos Efecto de <strong>la</strong> microoxig<strong>en</strong>ación <strong>en</strong> <strong>vinos</strong> tintos. Enologos 34,46-50, 2005103


Capítulo<strong>en</strong>tre <strong>la</strong>s uniones de <strong>la</strong>s due<strong>la</strong>s y los poros de <strong>la</strong> madera.Este oxig<strong>en</strong>o se ha demostrado que influye notablem<strong>en</strong>te<strong>en</strong> <strong>la</strong> composición f<strong>en</strong>ólica del vino, ya queintervi<strong>en</strong>e <strong>en</strong> reacciones de oxidación y/o polimerización,g<strong>en</strong>erando nuevos pigm<strong>en</strong>tos que increm<strong>en</strong>tany estabilizan el color del vino (7,8,9,10,11,12,13,14, 15).La g<strong>en</strong>eración de estos pigm<strong>en</strong>tos sigue los sigui<strong>en</strong>tesmecanismos:a) Reacciones de cond<strong>en</strong>sación directa <strong>en</strong>tre antocianos(A) y taninos (T):Los nuevos compuestos se forman mediante procesosde adición nucleofílica dando lugar a estructurasA+-T y T-A+. Han sido <strong>en</strong>contradas <strong>en</strong> <strong>vinos</strong> <strong>en</strong>vejecidos(10, 16), ya que es una reacción l<strong>en</strong>ta (17). Ambasestructuras son mas complejas que los antocianosmonómeros, de color simi<strong>la</strong>r a los antocianos peroresist<strong>en</strong>tes a <strong>la</strong> decoloración por SO 2, especialm<strong>en</strong>te<strong>la</strong> estuctura A+-T. La formación de estos compuestosg<strong>en</strong>era una disminución de <strong>la</strong> astring<strong>en</strong>cia de los <strong>vinos</strong>durante el <strong>en</strong>vejecimi<strong>en</strong>to (Figura 1).b) Reacción de cond<strong>en</strong>sación mediante pu<strong>en</strong>tesde etilo.En estas reacciones está involurado el acetaldehído,producto que aparece <strong>en</strong> el vino producido <strong>en</strong> pequeñascantidades por <strong>la</strong>s levaduras durante el metabolismode azúcares (18) y por <strong>la</strong> oxidación de etanol. Elresultado son productos <strong>en</strong><strong>la</strong>zados por pu<strong>en</strong>te de etilo,incluy<strong>en</strong>do taninos (T-etil-T), aductos de taninos-antocianos(T-etil-A) y oligómeros de antocianos (A-etil-A).La reacción de polimerización finaliza cuando <strong>en</strong> elotro extremo del polímero se <strong>en</strong>cu<strong>en</strong>tra unido un antociano(20, 21). Su formación es más rápida que <strong>la</strong> de lospigm<strong>en</strong>tos poliméricos por cond<strong>en</strong>sación directa (17).La pres<strong>en</strong>cia de estos pigm<strong>en</strong>tos produce increm<strong>en</strong>toy estabilización del color del vino; su color es malva,son resist<strong>en</strong>tes a <strong>la</strong>s variaciones de pH, a <strong>la</strong> decoloracióndel sulfuroso y a <strong>la</strong>s oxidaciones (19, 24), aunquese ha demostrado que su estabilidad <strong>en</strong> el tiempoes pequeña y evolucionan hacia otros tipos de compuestospoliméricos (Figura 2).Figura 2.- <strong>Compuestos</strong> formados <strong>en</strong> pres<strong>en</strong>cia de acetaldehído y de otros metabolitos de <strong>la</strong>s levaduras.(Cheynier 2005).104


Figura 3.- Estructura química Vitisina 1) A y 2) B.(Cheynier 2005).c) Nuevos pigm<strong>en</strong>tos de bajo peso molecu<strong>la</strong>r.Estos pigm<strong>en</strong>tos se forman mediante <strong>la</strong> cicloadicónde metabolitos producidos por <strong>la</strong>s levaduras, como e<strong>la</strong>cetaldehído, ácido pirúvico o vinilf<strong>en</strong>oles, con el antociano,g<strong>en</strong>erando pigm<strong>en</strong>tos como <strong>la</strong> Vitisina A y By los antocianovinilf<strong>en</strong>oles. Han sido id<strong>en</strong>tificados <strong>en</strong><strong>vinos</strong> <strong>en</strong>vejecidos (8,9,12,13,15,22) <strong>en</strong> botel<strong>la</strong> y <strong>en</strong> barricay <strong>en</strong> <strong>vinos</strong> microoxig<strong>en</strong>ados (7). Son pigm<strong>en</strong>tosligeram<strong>en</strong>te anaranjados, más resist<strong>en</strong>tes a <strong>la</strong>s variacionesde pH, al sulfuroso (9) y a <strong>la</strong>s oxidaciones quelos antocianos; estabilizando así el color del vino (12,23) (Figura 3).Debido a <strong>la</strong> importancia de <strong>la</strong> pres<strong>en</strong>cia de pequeñascantidades de oxíg<strong>en</strong>o y de acetaldehído <strong>en</strong> <strong>la</strong>formación de estos pigm<strong>en</strong>tos, nació <strong>en</strong> <strong>la</strong> décadade los 90 <strong>la</strong> técnica de <strong>la</strong> microoxig<strong>en</strong>ación, basada<strong>en</strong> el aporte contro<strong>la</strong>do de pequeñas cantidades deoxig<strong>en</strong>o al vino mediante un microdifusor poroso, deforma continua y l<strong>en</strong>ta, si<strong>en</strong>do <strong>la</strong> velocidad de aportede oxig<strong>en</strong>o inferior a <strong>la</strong> velocidad de consumo, evitando<strong>la</strong> acumu<strong>la</strong>ción <strong>en</strong> vino y g<strong>en</strong>erando <strong>la</strong> máximacantidad posible de este aldehído.Determinadas experi<strong>en</strong>cias han observado que tanto<strong>la</strong> crianza <strong>en</strong> barrica como <strong>la</strong> microoxig<strong>en</strong>ación produc<strong>en</strong>resultados simi<strong>la</strong>res <strong>en</strong> cuanto al increm<strong>en</strong>tode color y disminución de astring<strong>en</strong>cia, pudi<strong>en</strong>docon esta técnica reproducir, e incluso acelerar, partede <strong>la</strong>s transformaciones que sufr<strong>en</strong> los compuestosf<strong>en</strong>ólicos durante <strong>la</strong> crianza <strong>en</strong> barrica (3, 4). En esteestudio se pret<strong>en</strong>de conocer el efecto de esta técnica,aplicando distintas dosis de oxig<strong>en</strong>o, sobre el color deun vino tinto de <strong>la</strong> variedad Monastrell.Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>MATERIALES Y MÉTODOSa) Condiciones de microoxig<strong>en</strong>ación de los <strong>vinos</strong>Para <strong>la</strong> experi<strong>en</strong>cia de microoxig<strong>en</strong>ación se ha utilizadoun vino tinto de <strong>la</strong> variedad Monastrell, e<strong>la</strong>boradopor Bodegas BSI de Jumil<strong>la</strong> (Murcia), que pres<strong>en</strong>taba<strong>la</strong>s sigui<strong>en</strong>tes características cromáticas iniciales: int<strong>en</strong>sidadcolorante (IC): 14.7, tono: 0.51, índice depolif<strong>en</strong>óles totales (IPT): 67.40 y antocianos totales:443.63 mg/LTras <strong>la</strong> ferm<strong>en</strong>tación alcohólica el vino se dispuso <strong>en</strong>depósitos de 17.500L., uno de ello se utiliza como testigo,<strong>en</strong> los otros se aplicó tres dosis difer<strong>en</strong>tes de oxíg<strong>en</strong>oy <strong>en</strong> tres periodos distintos de <strong>la</strong> e<strong>la</strong>boración.La adición de oxig<strong>en</strong>o se ha realizado durante tres periodos:- Durante dos semanas, <strong>en</strong>tre el final de <strong>la</strong> ferm<strong>en</strong>taciónalcohólica y el inicio de maloláctica, con dosisaplicadas de 5, 10 y 15 mL/L/mes. La cantidad deoxig<strong>en</strong>o aplicada <strong>en</strong> este periodo, es <strong>la</strong> mas alta, <strong>para</strong>favorecer <strong>la</strong> g<strong>en</strong>eración de acetaldehído.- Después de <strong>la</strong> ferm<strong>en</strong>tación maloláctica, durante unperiodo de 45 días, <strong>la</strong>s dosis aplicadas fueron 3, 5 y 7mL/L/mes.- Tras un análisis organoléptico de los <strong>vinos</strong>, se continuómicroxig<strong>en</strong>ando 15 días más, suavizando los <strong>vinos</strong>microxig<strong>en</strong>ados, aunque <strong>en</strong> este periodo <strong>la</strong>s dosis<strong>en</strong> los tres casos se reduce a <strong>la</strong> mitad, puesto que elcont<strong>en</strong>ido de antocianos había desc<strong>en</strong>dido <strong>en</strong> todoslos <strong>vinos</strong>.La Figura 4 muestra un esquema del sistema de microoxig<strong>en</strong>ación.Cada salida de oxig<strong>en</strong>o esta conectada aun microdifusor poroso que se <strong>en</strong>cu<strong>en</strong>tra susp<strong>en</strong>dido<strong>en</strong> el interior del depósito sin llegar a tocar el fondo,de tal manera que <strong>la</strong>s microburbujas se disuelvan <strong>en</strong>el vino antes de que llegu<strong>en</strong> a <strong>la</strong> superficie.b) Determinaciones fisico-químicas y espectrofotométricasEl pH, <strong>la</strong> acidez total (g/L de ácido tartárico) y <strong>la</strong> acidezvolátil se determinaron según los métodos oficiales.Las medidas de absorbancia se realizan <strong>en</strong> un espectrofotómetroHelios Alpha (Thermospectronic). Lasmuestras son c<strong>en</strong>trifugadas y se ajustó el pH a 3.6. Laint<strong>en</strong>sidad de color (IC) se calculó como <strong>la</strong> suma deabsorbancias a 620 nm, 520 nm y 420 nm; otras variablescalcu<strong>la</strong>das son los porc<strong>en</strong>tajes de rojo, amarilloy azul del color del vino (30). El tono como el coefici<strong>en</strong>te<strong>en</strong>tre <strong>la</strong> absorbancia a 420 nm y 520 nm (25).El análisis del índice de polif<strong>en</strong>oles totales (IPT), antocianostotales y taninos totales (g/L), y los índicesTextos asociados105


CapítuloSISTEMADEALIMENTACIÓNBOMBONADEOXÍGENOMANÓMETROMICRODIFUSORFigura 4.- Esquema de <strong>la</strong> disposición del sistema de microoxig<strong>en</strong>ación <strong>en</strong> el depósito.de PVPP, ionización y HCl se efectuó sigui<strong>en</strong>do losmétodos descritos por Ribereau-Gayon et al. (29). Lafracción de color debida a los pigm<strong>en</strong>tos poliméricosse calculó de acuerdo con los métodos descritos porBoulton (27).RESULTADOS Y DISCUSIÓNEl Gráfico 1 muestra <strong>la</strong> evolución de pH, acidez total yacidez volátil durante <strong>la</strong> microoxig<strong>en</strong>ación. Dichos parámetrosson simi<strong>la</strong>res <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados yel testigo, manifestando que el aporte de oxig<strong>en</strong>o noaltera <strong>la</strong> sanidad del vino.Se observa un increm<strong>en</strong>to <strong>en</strong> <strong>la</strong> IC (Gráfico 2a) <strong>en</strong> elprimer periodo de microoxig<strong>en</strong>ación (Octubre-Diciembre/03)<strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados. Tras <strong>la</strong> ferm<strong>en</strong>taciónmaloláctica (Enero/04) se observó <strong>en</strong> todosellos un desc<strong>en</strong>so, probablem<strong>en</strong>te consecu<strong>en</strong>ciade <strong>la</strong> variación del pH y <strong>la</strong> precipitación de materia coloidalque arrastra materia colorante. Aunque el aportede oxig<strong>en</strong>o durante el segundo periodo fue m<strong>en</strong>or,se observó de nuevo un aum<strong>en</strong>to de IC <strong>en</strong> los <strong>vinos</strong>microoxig<strong>en</strong>ados, difer<strong>en</strong>ciándose todos los <strong>vinos</strong> <strong>en</strong>color. Este increm<strong>en</strong>to de color <strong>en</strong> pres<strong>en</strong>cia de pequeñascantidades de oxig<strong>en</strong>o durante los primerosmeses de <strong>la</strong> e<strong>la</strong>boración también ha sido <strong>en</strong>contradopor otros autores (3,5,6, ). Por otra parte, <strong>la</strong> evolucióndel tono, repres<strong>en</strong>tado por el Gráfico 2b; es simi<strong>la</strong>r <strong>en</strong>los distintos <strong>vinos</strong>, indicando que los compuestos f<strong>en</strong>ólicossufr<strong>en</strong> una mínima oxidación durante el tratami<strong>en</strong>to.Mi<strong>en</strong>tras que <strong>la</strong> IC varió <strong>para</strong> los difer<strong>en</strong>ces <strong>vinos</strong>, el %rojo tras <strong>la</strong> microoxig<strong>en</strong>ación (Gráfico 3) se mantuvoconstante <strong>en</strong> todos los <strong>vinos</strong>; sugiri<strong>en</strong>do que ambosparámetros no están re<strong>la</strong>cionados directam<strong>en</strong>te, taly como se ha indicado <strong>en</strong> otros trabajos (31,32), sinoque <strong>la</strong> IC dep<strong>en</strong>de también de <strong>la</strong> absorbancia de loscompuestos que aportan tonos amarillos y azules. ElGráfico 1.- Evolución durante <strong>la</strong> microoxig<strong>en</strong>aciónde a) pH, b) acidez total y c) acidez volátil de los<strong>vinos</strong> durante <strong>la</strong> microoxig<strong>en</strong>ación.106


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>El cont<strong>en</strong>ido de antocianos totales (Gráfico 4) desci<strong>en</strong>depor igual <strong>en</strong> todos los <strong>vinos</strong> durante <strong>la</strong> experi<strong>en</strong>cia.El increm<strong>en</strong>to de color y <strong>la</strong> disminución de antocianostotales <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados son datos apar<strong>en</strong>tem<strong>en</strong>tecontradictorios, pero ti<strong>en</strong>e su explicacióncuando se analiza <strong>la</strong> evolución de <strong>la</strong> fracción de colordebido a pigm<strong>en</strong>tos poliméricos, como muestra elGráfico 5. El color debido a los pigm<strong>en</strong>tos poliméricosincrem<strong>en</strong>ta durante <strong>la</strong> aplicación de oxig<strong>en</strong>o, aligual que los resultados recogidos por Atanasova etal. (7). Su evolución es simi<strong>la</strong>r a <strong>la</strong> variación del color(Gráfico 2a), dicha re<strong>la</strong>ción también fue observada porCastel<strong>la</strong>ri et al. (6), pres<strong>en</strong>tando al finalizar <strong>la</strong> microoxig<strong>en</strong>aciónsu valor máximo <strong>en</strong> el vino con dosis media.El increm<strong>en</strong>to de color <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>adospuede explicarse también mediante el análisis delíndice de ionización y PVPP, como muestra el Gráfico6. El índice de ionización indica el porc<strong>en</strong>taje deantocianos que pres<strong>en</strong>tan color <strong>en</strong> el vino. Los <strong>vinos</strong>microoxig<strong>en</strong>ados pres<strong>en</strong>tan mayor valor que el testigo,de forma simi<strong>la</strong>r a los resultados <strong>en</strong>contrados porCabanil<strong>la</strong>s et al.(3). Finalizada <strong>la</strong> microoxig<strong>en</strong>ación, elvino testigo sufre una disminución de este índice ysu valor se increm<strong>en</strong>ta <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ado,poniéndose de manifiesto de esta forma <strong>la</strong> pres<strong>en</strong>ciade pigm<strong>en</strong>tos coloreados formados mediante pu<strong>en</strong>tede acetaldehído y por cicloadición del aldehído a losantocianos. Si<strong>en</strong>do el índice de ionización máximo <strong>en</strong>el vino con dosis media de oxig<strong>en</strong>o.Por otro <strong>la</strong>do, el índice de PVPP, que repres<strong>en</strong>ta el porc<strong>en</strong>tajede antocianos combinados con taninos, nosda una idea del increm<strong>en</strong>to y estabilidad del color,ya que estos compuestos pres<strong>en</strong>tan un color malvay son m<strong>en</strong>os s<strong>en</strong>sibles a <strong>la</strong>s oxidaciones, a <strong>la</strong>s variacionespH y al sulfuroso que los antocianos libres. Sucomportami<strong>en</strong>to es simi<strong>la</strong>r al índice de ionización, suvalor es mayor <strong>en</strong> los <strong>vinos</strong> microxig<strong>en</strong>ados, pero <strong>en</strong>el testigo disminuye tras el periodo de <strong>la</strong> microoxig<strong>en</strong>ación,de forma opuesta a lo que ocurre <strong>en</strong> los <strong>vinos</strong>microoxig<strong>en</strong>ados, si<strong>en</strong>do máximo su valor <strong>en</strong> el vinocon dosis media.Gráfico 2.- Evolución de a) int<strong>en</strong>sidad colorante(I.C.) y b) tono durante <strong>la</strong> microoxig<strong>en</strong>ación.Gráfico 3 muestra <strong>la</strong> variación de <strong>la</strong> compon<strong>en</strong>te amaril<strong>la</strong>y azul <strong>en</strong> los <strong>vinos</strong> tras <strong>la</strong> microoxig<strong>en</strong>ación. Seobserva un increm<strong>en</strong>to de <strong>la</strong> compon<strong>en</strong>te azul <strong>en</strong> los<strong>vinos</strong> microoxig<strong>en</strong>ados, si<strong>en</strong>do máxima <strong>para</strong> el vinodonde se aplicó <strong>la</strong> dosis media de oxíg<strong>en</strong>o; mi<strong>en</strong>trasque <strong>la</strong> compon<strong>en</strong>te amaril<strong>la</strong> se manti<strong>en</strong>e constante<strong>en</strong> todos ellos excepto <strong>en</strong> el testigo. Estos resultadosseña<strong>la</strong>n <strong>la</strong> pres<strong>en</strong>cia de pigm<strong>en</strong>tos poliméricos unidosmediante acetaldehído <strong>en</strong> los <strong>vinos</strong> microoxig<strong>en</strong>ados,ya que como propone Gómez-Cordovés et al.(23) existe una corre<strong>la</strong>ción directa con <strong>la</strong> compon<strong>en</strong>teazul y <strong>la</strong> polimerización de polif<strong>en</strong>óles.Gráfico 3.- Variación al inicio y al final de <strong>la</strong>microoxig<strong>en</strong>ación de los distintos <strong>vinos</strong>, % rojo, %amarillo y % azul.Textos asociados107


CapítuloGráfico 4.- Evolución de antocianos totales (mg/L)de los <strong>vinos</strong> durante <strong>la</strong> microoxig<strong>en</strong>ación.Gráfico 5.- Evolución de <strong>la</strong> fracción de color debidoa pigm<strong>en</strong>tos poliméricos.Gráfico 7.- Evolución de A) IPT y B) taninos totales(g/L) de los <strong>vinos</strong> durante <strong>la</strong> microoxig<strong>en</strong>ación.Gráfico 6.- Índice de ionización y de PVPP<strong>en</strong> el vino inicial y <strong>en</strong> todos los vino tras <strong>la</strong>microoxig<strong>en</strong>ación.Gráfico 8.- Índice de HCl finalizada <strong>la</strong>microoxig<strong>en</strong>aciónLos Gráficos 7a y 7b muestran <strong>la</strong> evolución de IPT ytaninos totales. Ambos parámetros son simi<strong>la</strong>res <strong>en</strong>todos los <strong>vinos</strong>; lo que indica que no se produce ningunaprecipitación de taninos durante <strong>la</strong> aplicaciónde esta técnica.El análisis del cont<strong>en</strong>ido <strong>en</strong> taninos (procianidinas),repres<strong>en</strong>tado por el Gráfico 7b, muestra que los nivelesse manti<strong>en</strong>e durante <strong>la</strong> microoxig<strong>en</strong>ación y essemejante <strong>en</strong> todos los <strong>vinos</strong>. No obstante, el índicede HCl, indicador del porc<strong>en</strong>taje de <strong>la</strong> polimerizaciónde taninos pres<strong>en</strong>tes <strong>en</strong> vino; es superior <strong>en</strong> los <strong>vinos</strong>microoxig<strong>en</strong>ados que <strong>en</strong> el testigo tras el periodo demicrooxig<strong>en</strong>ación (Gráfico 8), al igual que a Cabanil<strong>la</strong>set al.(2001), pres<strong>en</strong>tando el máximo <strong>en</strong> el vino microoxig<strong>en</strong>adocon <strong>la</strong> dosis media. Confirmando que <strong>la</strong>pres<strong>en</strong>cia de oxig<strong>en</strong>o favorece <strong>la</strong> polimerización detaninos, traduciéndose <strong>en</strong> una disminución de astring<strong>en</strong>cia.Tras <strong>la</strong> microoxig<strong>en</strong>ación se realizó el análisis organolépticode los <strong>vinos</strong>, concluy<strong>en</strong>do que:- El vino testigo era ligeram<strong>en</strong>te áspero <strong>en</strong> boca contaninos agresivos.- Los <strong>vinos</strong> microoxig<strong>en</strong>ados con dosis baja y media<strong>en</strong> boca eran redondos y con gusto agradable a mitad108


Seminario Técnico<strong>Compuestos</strong> <strong>azufrados</strong> volátiles <strong>en</strong> <strong>vinos</strong>de boca. En nariz aparecía aroma afrutado y sin notasa reducción.- El vino microoxig<strong>en</strong>ado con dosis más altas <strong>en</strong> bocaera simi<strong>la</strong>r a los otros dos <strong>vinos</strong> microoxig<strong>en</strong>ados,aunque se apreciaban aromas a fruta madura y algomás evolucionado.Concluy<strong>en</strong>do que organolépticam<strong>en</strong>te <strong>la</strong>s dosis másadecuadas son <strong>la</strong>s dosis baja y media.T<strong>en</strong>i<strong>en</strong>do <strong>en</strong> cu<strong>en</strong>ta los resultados expuestos y el análisisorganoléptico de los difer<strong>en</strong>tes <strong>vinos</strong> se concluyeque <strong>la</strong> dosis adecuada durante <strong>la</strong> microoxig<strong>en</strong>aciónes <strong>la</strong> dosis media. Cabe esperar que estas difer<strong>en</strong>ciassean mayores con el tiempo, haci<strong>en</strong>do interesante elseguimi<strong>en</strong>to durante el <strong>en</strong>vejecimi<strong>en</strong>to <strong>en</strong> barrica ybotel<strong>la</strong>.BIBLIOGRAFÍA(1) Delteil D.(2000). Los difer<strong>en</strong>tes roles del oxig<strong>en</strong>o.Viticultura/ Enología Profesional, 74, 35-45.(2) Pérez- Magariño y Gozález San-José Mª L. (2003).Efectos de <strong>la</strong> aplicación de <strong>la</strong> microoxig<strong>en</strong>acióndurante <strong>la</strong> ferm<strong>en</strong>tación de los <strong>vinos</strong> tintos. Tecnologíadel vino, 47, 107-112.(3) Cabanil<strong>la</strong>s P, Canals J.M., Rozés N., Aro<strong>la</strong> L. Y ZamoraF.(2001) “ Influ<strong>en</strong>cia de <strong>la</strong> microoxig<strong>en</strong>ación<strong>en</strong> el color y <strong>la</strong>s características organolépticas delos <strong>vinos</strong> tintos” Tecnología del vino, Sept/Octubre2001,51-55.(4) L<strong>la</strong>udy C., Canals R., Cabanil<strong>la</strong>s P., Rozés N., CanalsJ.M. y Zamora F. (2004) Logroño “ Influ<strong>en</strong>cia de <strong>la</strong>microoxig<strong>en</strong>ación <strong>en</strong> pres<strong>en</strong>cia y aus<strong>en</strong>cia de líassobre <strong>la</strong> composición <strong>en</strong> polif<strong>en</strong>oles y el color delvino; com<strong>para</strong>ción con <strong>la</strong> crianza <strong>en</strong> barricas” IVForo Mundial del vino 13-14 mayo 2004.(5) González D.C., Herrera P., Fernández J.A., SánchezM.,Pérez S., Ortega M., González M.L.(2003) Memoriade Actividades de Investigación 2002/2003.Instituto Tecnológico Agrario de Castil<strong>la</strong> y León.Estación Enologíca 03.(6) Castel<strong>la</strong>ri M., Matricardi l., Arfelli G., Ga<strong>la</strong>ssi S.,Amati A. (2000) “ Level of single bioactives ph<strong>en</strong>olicsin red wine as a function of the oxyg<strong>en</strong>supplied during storage”, Food Chemistry 69,61-67.(7) Atanasova V., Fulcrand H., Cheynier V., MoutonetM. (2002) “Effect of the oxig<strong>en</strong>ation on polyph<strong>en</strong>olchanges occurring in the course of wine-making”Analitica Chimica Acta 458, 15-27.(8) Wang H., Edward J.R., Shrikhande J. (2003). Anthocyanintransformation in Cabernet SauvignonWine during Aging. J. Agric. Food Chem.,51,7989-7994.(9) Bakker J. and Timber<strong>la</strong>ke C.F. (1997). Iso<strong>la</strong>tion,Id<strong>en</strong>tification and Characterization of New Color-StableAnthocyanins Occuring in Some RedWine. J. Agric. Food Chem.,45,35-47.(10) Vivar- Quintana A.M., Santos-Buelga C., Rivas-Gonzalo J.C. (2002). Analytica Chimica Acta,458,147-155.(11) Mateus N. and Freitas V. (2001). Evolution and Stabilityof Anthocyanin-Derived Pigm<strong>en</strong>ts duringPort Wine Aging. J. Agric. Food Chem.,49,5217-5322.(12) Mateus N, Silva A.M.S., Vercauter<strong>en</strong> J., FreitasV.(2001). Occurr<strong>en</strong>ce of Anthocyanin- DerivedPigm<strong>en</strong>ts in Red Wines. J. Agric. FoodChem.,49,4936-4840.(13) Mateus N., Pascual-Teresa S., Rivas-Gonzalo J.C.,Santos Buelga C. (2002). Stuctural diversity of anthocyanin-derivedpigm<strong>en</strong>ts in port wines. FoodChemistry,76, 335-342.(14) Cameira-dos-Santos P.J., Brillouet J.M., Cheynier V,Moutounet M. (1996) Detection and Partial Characterisationof New Anthocyanin- Derived Pigm<strong>en</strong>tsin Wine. J. Agric. Food Chem.,70,204-208.(15) Revil<strong>la</strong> I., Pérez-Magariño S., González-SanJoséM.L., Beltran S. (1999) Id<strong>en</strong>tification of anthocyaninderivatives in grape skin extracts and redwine by liquid chromatography with diode arrayand mass spectrometric detection. J. Chromatogr.A, 847, 83-90.(16) Remy S., Fulcrand H., Labarbe B., Cheynier V.(2000). First confirmation in red Wine of productsresulting from direct anthocyanin-tannin reactions.J. Sci. Food Agric. 80, 745-751.(17) Dal<strong>la</strong>s C., Ricardo-da-Silva J., Laureano O. (1996).Products Formed in Model Wine Solutions involvingAnthocyanins, Procyanindin B2 , and Acetaldhyde.J. Agric. Food Chem.,44, 2402-2407.(18) Morata A., Gómez-Cordovés M.C., Colomo B.,Suárez J.A.(2003). Pyryvic Acid(19) Sims C.A. and Morris J.R. (1986) “Effects of acetaldehydeand tannins on the color and chemica<strong>la</strong>ge of red Muscadine (Vitis Rotundifolia) Wine”Research Note JEV 37(2), 163-165.Textos asociados109


Capítulo(20) Es-Safin.E, Fulcrand H., Cheynier V., MountounetM.(1999). Studies on the Acetaldhyde-Inducedconc<strong>en</strong>sacion of (-)- epicatequina and Malvini-3– Glucoside in a Model Solution system. J. Agric.Food Chem.,47,2096-2102.(21) Es-Safin.E, Cheynier V., Mountounet M.(2002).Role of Aldehydic Derivates in the Cond<strong>en</strong>sationof Ph<strong>en</strong>olic Compounds with emphasis onthe s<strong>en</strong>sorial Propieties of fruit-derived foods. J.Agric. Food Chem.,50,5571-5585.(22) Fancia- Aricha E.M., Guerra M.T., Rivas- GonzaloJ.C., Santos-Buelga C. (1997) ”New anthocyaninPigm<strong>en</strong>ts formed after cond<strong>en</strong>sation with f<strong>la</strong>vanols”J.Agric. Food Chem.,45,2262-2266.(23) Sarni-Manchado P., Fulcrand H., Souquet JM.,Cheynier V., Moutounet M.(1996). Stability andColor of unreported wine anthocyanin-derivedPigm<strong>en</strong>ts. J.Food Sci<strong>en</strong>ce,61,938-941.(24) Escribano-Bailon T., Álvarez-García M., Rivas-Gonzalo J., Heredia F.J., Santos-Buelga C.(2001).Color and Stabity of Pigm<strong>en</strong>ts-Derived fromAcethaldehido medianted cond<strong>en</strong>sation betwe<strong>en</strong>Mv-3-O-Glu and (+)-catequin. J.Agric. FoodChem.,49,1213-1217.(25) Sudraud P.(1958). Interpretationdes courbesd´absortion des vins rouges. An TechnolAgric.,7,203-208.(26) OIV (1990).Récueil des Méthodes Internationalesd´Analyse des vins et moûts. Office Internationalde <strong>la</strong> Vigne et du Vin, Paris, Francia.(27) Boulton R.B. (2001). The copigm<strong>en</strong>tationof anthocyaninsand its role in the color in red wine: acritical review. Am. J. Enol. Vitic. 52, 67-87.(28) Ribéreau-Gayon J, Peynaud E., Sudraud P., Ribéreau-GayonP. (1982) Traité dÓ<strong>en</strong>ologie. Sci<strong>en</strong>ceset Thechniques et du Vin.Tome I. Analise et contrôledes Vins.Ed.Dunod. Paris. Francia.(29) Ribéreau-Gayon P., Gories Y., Maujean A., DubourdieuD.(1998). Traité d´O<strong>en</strong>ologie.2. Chimie duVin. Stabilisation et traitam<strong>en</strong>ts. Editorial Dunod.(30) Glories Y. (1978). Recherches sur <strong>la</strong> materie colorantdes vins rouges. Thesis de <strong>la</strong> Universite deBourdeaux, Université de Bourdeaux.(31) Revil<strong>la</strong> I., González-SanJosé M.L. and Gómez Cordovés(1999). Modificaciones cromáticas del vinotimto de crianza según el tipo de varrica <strong>en</strong> que<strong>en</strong>vejece. Food Sci. Tech. Int., 5(2): 177-181.(32) Pérez-Prieto L.J., De <strong>la</strong> Hera-Orts M.L., López RocaJ.M., Fermandez-fernández J.I. y Gómez P<strong>la</strong>za E.(2003). Oak-matured wines: Influ<strong>en</strong>ce of the caracteristicsof the barrel on wine colour and s<strong>en</strong>sorycharacteristics. J. Sci. Food Agric., 83: 1445-1450.(33) Gómez- Cordovés C and González-SanJosé M.L(1995). Interpretation of color Varibles during theaging of red wines: Re<strong>la</strong>thionship with Familiesof ph<strong>en</strong>olic compounds. J.Agric. Food Chem.,43(3): 557-561.(34) Cheynier V. (2005). Polyph<strong>en</strong>ols in foods are morecomplex than oft<strong>en</strong> thought. Am. J. Clin. Nutr., 81(suppl): 223S-229S.110


Avd. de los Vinos s/n. Pol. Alces13600 Alcázar de San Juan (Ciudad Real)Tel.: +34 926 55 02 00Fax.: +34 926 54 62 54c<strong>en</strong>tral@agrovin.comwww.agrovin.comModesto Lafu<strong>en</strong>te 41-2º D28003 Madridfundacion@culturadelvino.orgwww.culturadelvino.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!