18.01.2013 Aufrufe

Hier können Sie sich das Abstractbuch zum ... - Hypertonie 2011

Hier können Sie sich das Abstractbuch zum ... - Hypertonie 2011

Hier können Sie sich das Abstractbuch zum ... - Hypertonie 2011

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

162 <strong>Hypertonie</strong> <strong>2011</strong> - Poster <strong>Hypertonie</strong> <strong>2011</strong> - Poster 163<br />

short period of HFD causes vascular inflamma-<br />

tion mediated by TNF-α/TNFR1 and increases<br />

vasoconstriction through the upregulation of<br />

the Rho kinase pathway.<br />

Methods and Results: C57BL/6 (WT), tumor<br />

necrosis factor receptor 1 knockout (TNFR1-/- )<br />

and severe combined immune deficiency (SCID)<br />

mice (6-8/group) were fed either a normal diet<br />

or HFD for 2 weeks. All groups on HFD were<br />

characterized by elevated cholesterol, increase<br />

in body weight, visceral fat and adipocyte size,<br />

without systemic inflammation. In myograph<br />

experiments small mesenteric arteries from<br />

WT on HFD presented increased constriction<br />

responses induced by noradrenaline and extracellular<br />

calcium. They had a significant decrease<br />

in constriction after incubation with Rho kinase<br />

inhibiton. TNF-α expression and Rho kinase<br />

activity were increased in mesenteric arteries<br />

of WT on HFD. Increase in vasoconstriction was<br />

prevented by pravastatin, anti-TNF-α antibody<br />

and deficiency of TNFR1, independently of cholesterol<br />

and adiposity. Furthermore, TNFR1-/ mice on HFD had less Rho kinase activity compared<br />

to WT on HFD. SCID mice did not show<br />

protection against the effect of HFD.<br />

Conclusion: Brief high fat intake for 2 weeks<br />

increases constriction through vascular TNF-α/<br />

TNFR1/Rho kinase pathway. This mechanism<br />

is independent of systemic inflammation, high<br />

cholesterol, adiposity and lymphocytes. These<br />

findings provide innovative insights into mechanisms<br />

involved in the development of cardiovascular<br />

diseases related to high fat intake.<br />

PS 31<br />

HMGA1 and PPARgamma SUMOylation<br />

Are Required for PPARgamma-Mediated<br />

Transrepression in the Vasculature<br />

Bloch M. 1 , Prock A. 2 , Paonessa F. 3 , Benz V. 1 ,<br />

Bähr I. 1 , Herbst L. 1 , Witt H. 1 , Kappert K. 1 ,<br />

Spranger J. 4 , Stawowy P. 5 , Unger T. 1 , Fusco A. 6 ,<br />

Sedding D. 2 , Brunetti A. 3 , Foryst-Ludwig A. 1 ,<br />

Kintscher U. 1<br />

1Center for Cardiovascular Research, Berlin,<br />

Germany, 2Department of Cardiology, Gießen,<br />

Germany, 3Instituto di Endocrinologia ed Oncologia<br />

Sperimentale del CNR ‘Gaetano Salvatore’,<br />

Napoli, Italy, 4Department of Endocrinology,<br />

Berlin, Germany, 5German Heart Institute<br />

Berlin, Berlin, Germany, 6Department of Clinical<br />

and Experimental Medicine ‘G. Salvatore’,<br />

Catanzaro, Germany<br />

We focused on the mechanism by which<br />

ligand-activated Peroxisome proliferator activated<br />

receptor gamma (PPARgamma) transrepresses<br />

transcriptional activation of the matrix<br />

metalloprotease-9 (MMP-9) gene - a crucial<br />

mediator for vascular injury - in human aortic<br />

smooth muscle cells (hVSMCs); in order to develop<br />

new therapeutic interventions based on<br />

PPARgamma´s vascular protective actions.<br />

PPARgamma-mediated transrepression of<br />

MMP-9 in hVSMCs dependent on the presence<br />

of the high mobility group A1 (HMGA1) protein,<br />

identified by OligoArray expression analysis.<br />

Using siRNA directed against HMGA1 in VSMCs<br />

completely prevented MMP-9 inhibition by<br />

glitazone-activated PPARgamma and HMGA1<br />

overexpression resulted in strongly pioglitazone-induced<br />

MMP-9 repression surporting<br />

the importance of HMGA1.<br />

The Role of PPARgamma SUMOylation was<br />

determined by transactivation assays. Transrepression<br />

of MMP-9 by PPARgamma, and the<br />

regulation by HMGA1 required PPARgamma SU-<br />

MOylation at K367. Furthermore the involvement<br />

of SUMOylation was studied by co-immunoprecipitation<br />

of HMGA1 and the SUMO E2-ligase<br />

(Ubc9). We show that after ligand stimulation<br />

PPARgamma forms a complex with HMGA1-<br />

Ubc9 which likely facilitates its SUMOylation.<br />

ChIP experiments demonstrate that after<br />

PPARgamma-ligand stimulation, HMGA1 and<br />

PPARgamma were recruited to the MMP-9<br />

promoter. ChIP assays using siRNA directed<br />

against HMGA1 show a complete loss of PPARgamma<br />

binding to the MMP-9 promoter.<br />

Consistent with these findings, HMGA1´s relevance<br />

for vascular PPARgamma signalling was<br />

underlined by the complete absence of vascular<br />

protection through PPARgamma-ligand<br />

stimulation (pioglitazone) in HMGA1-/- mice after<br />

arterial wire-injury.<br />

To summarize, our data suggest that liganddependent<br />

formation of HMGA1-Ubc9-PPARgamma<br />

complexes facilitates PPARgamma<br />

SUMOylation which mediate MMP-9 transrepression<br />

by ligand-activated PPARgamma.<br />

PS 32<br />

Heparin Strongly Induces Soluble Fms-Like<br />

Tyrosine Kinase 1 (sFlt1) Release in vivo and<br />

in vitro<br />

Searle J. 1 , Möckel M. 1 , Gwosc S. 1 , Datwyler<br />

S.A. 2 , Qadri F. 3 , Holert F. 4 , Muller R. 5 , Vollert<br />

J.O. 1 , Slagman A. 1 , Mueller C. 4 , Müller D.N. 3 ,<br />

Dechend R. 3 , Herse F. 3<br />

1Department of Cardiology, Campus Virchow<br />

Klinikum, Charité – Universitätsmedizin, Berlin,<br />

Germany, 2Abbott Laboratories, Abbott Park,<br />

United States, 3Experimental and Clinical Research<br />

Center, a joint cooperation between the<br />

Charité Medical Faculty and the Max-Delbrueck<br />

Center for Molecular Medicine, Berlin, Germany,<br />

4Department of Laboratory Medicine and Pathobiochemistry,<br />

Berlin, Germany, 5James Cook<br />

University, School of Public Health and Tropical<br />

Medicine, Townsville, Australia<br />

Background: Soluble fms-like tyrosine kinase<br />

1 (sFlt1) is involved in preeclampsia and coronary<br />

artery disease, which share endothelial<br />

dysfunction in common. Since sFlt1 has a major<br />

heparin-binding site, we aimed to prove that<br />

sFlt1, which is “stored” by heparan sulphate<br />

proteoglycans on the cell surface and/or in the<br />

extracellular matrix, is released upon heparin<br />

administration due to a competitive mechanism.<br />

Methods: We measured sFlt1 in serial plasma<br />

samples taken at 4 time points, before and after<br />

heparin administration from 135 patients<br />

undergoing elective coronary angiography<br />

(CA). We also tested our hypothesis in umbilical<br />

veins, villous explants, cell culture (HUVEC),<br />

and an animal model.<br />

Results: sFlt1 levels in patients (253.6 pg/ml at<br />

admission) increased significantly after heparin<br />

administration (13,440 pg/ml) by a factor of<br />

53-fold (p< 0.001) and returned to baseline<br />

within 6-10 h. Levels further increased after<br />

additional doses of heparin. Not only sFlt1,<br />

but also sFlt1/PLGF- and sFlt1/VEGF-ratios<br />

were significantly elevated (43-fold, 85-fold respectively,<br />

compared to admission, p< 0.0001).<br />

Patients’ plasma sFlt1 were processed for<br />

Western blot that revealed a ~100 kDa isoform.<br />

Heparin also significantly induced the release<br />

of sFlt1 into media by cultured HUVEC (1.4<br />

fold), umbilical veins (2.4 fold) and villous explants<br />

(1.7 fold) compared to vehicle treatment

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!