25.03.2013 Views

Solving Differential Equations in Terms of Bessel Functions

Solving Differential Equations in Terms of Bessel Functions

Solving Differential Equations in Terms of Bessel Functions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

16 CHAPTER 1. PRELIMINARIES<br />

The solutions <strong>in</strong> the case 0F1 can also be expressed <strong>in</strong> terms <strong>of</strong> Kummer functions<br />

with the Kummer formula:<br />

<br />

exp − x<br />

<br />

α <br />

<br />

1F1<br />

2 2α x<br />

<br />

− <br />

= <br />

x<br />

0F1 1<br />

2 + α <br />

2 <br />

.<br />

16<br />

Conclud<strong>in</strong>g, we can separate the hypergeometric functions that satisfy a second<br />

order differential equation, <strong>in</strong>to two classes. The 2F1 functions with three<br />

regular s<strong>in</strong>gularities and the Kummer functions with one regular and one irregular<br />

s<strong>in</strong>gularity.<br />

The 0F1-functions are a special case <strong>of</strong> the Kummer functions. They are close<br />

to the <strong>Bessel</strong> functions, which we will deal with <strong>in</strong> the follow<strong>in</strong>g section.<br />

1.3.2 <strong>Bessel</strong> <strong>Functions</strong><br />

Def<strong>in</strong>ition 1.19 The solutions V (LB1) <strong>of</strong> the operator<br />

LB1 := x 2 ∂ 2 + x∂ + (x 2 − ν 2 ) (1.11)<br />

with the constant parameter ν ∈ C are called <strong>Bessel</strong> functions. The two l<strong>in</strong>early<br />

<strong>in</strong>dependent solutions<br />

Jν(x) :=<br />

<br />

x<br />

ν ∞<br />

2 ∑<br />

k=0<br />

(−1) k<br />

k!Γ (ν + k + 1)<br />

and Yν(x) := Jν(x)cos(νπ) − J−ν(x)<br />

s<strong>in</strong>(νπ)<br />

<br />

x<br />

2k 2<br />

(1.12)<br />

(1.13)<br />

generate V (LB1) and they are called <strong>Bessel</strong> functions <strong>of</strong> first and second k<strong>in</strong>d<br />

respectively.<br />

Similarly the solutions <strong>of</strong><br />

LB2 := x 2 ∂ 2 + x∂ − (x 2 + ν 2 ) (1.14)<br />

are called the modified <strong>Bessel</strong> functions <strong>of</strong> first and second k<strong>in</strong>d and they are<br />

generated by<br />

<br />

x<br />

ν ∞ 1<br />

<br />

x<br />

2k Iν(x) :=<br />

2 ∑<br />

k=0 k!Γ (ν + k + 1) 2<br />

<br />

−νπi<br />

πi<br />

=exp Jν exp x<br />

2<br />

2<br />

and Kν(x) := π(I−ν(x) − Iν(x))<br />

2s<strong>in</strong>(νπ)<br />

(1.15)<br />

(1.16)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!