24.04.2013 Views

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2. Correlations and entanglement<br />

the spatial two-photon state is<br />

ˆρq = T rΩ[ρ]<br />

<br />

=<br />

<br />

=<br />

dΩ ′′<br />

s dΩ ′′<br />

i 〈Ω ′′<br />

s , Ω ′′<br />

i |ˆρ|Ω ′′<br />

s , Ω ′′<br />

i 〉<br />

dqsdΩsdqidΩidq ′ sdq ′ i<br />

Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)|qs, qi〉〈q ′ s, q ′ i|, (2.10)<br />

while the purity of this state, defined as T r[ˆρ 2 q], is given by<br />

T r[ˆρ 2 <br />

q] =<br />

dqsdΩsdqidΩidq ′ sdΩ ′ sdq ′ idΩ ′ i<br />

× Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)<br />

× Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i). (2.11)<br />

It is possible to solve these integrals analytically by using the exponential<br />

character of the mode function given by equation (1.35). The purity becomes<br />

T r[ˆρ 2 q] = det(2A)<br />

det(B) . (2.12)<br />

As seen in appendix A, B is a positive-definite real 12 × 12 matrix<br />

B = 1<br />

⎛<br />

⎜<br />

2 ⎜<br />

⎝<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

l<br />

0<br />

0<br />

0<br />

0<br />

k<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

r<br />

0<br />

0<br />

0<br />

0<br />

p<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

u<br />

0<br />

0<br />

0<br />

0<br />

t<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

w<br />

0<br />

0<br />

0<br />

0<br />

v<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

2z<br />

k<br />

p<br />

t<br />

v<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

2g<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

0<br />

0<br />

0<br />

k<br />

l<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

0<br />

0<br />

0<br />

0<br />

p<br />

r<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

0<br />

0<br />

0<br />

0<br />

t<br />

u<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

0<br />

0<br />

0<br />

0<br />

v<br />

w<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

k<br />

p<br />

t<br />

v<br />

0<br />

0<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

l r u w 0 0 l r u w 2z 2g<br />

defined by the equation<br />

N 4 <br />

exp − 1<br />

2 Xt <br />

BX = Φ(qs, Ωs, qi, Ωi)<br />

⎞<br />

⎟ ,<br />

⎟<br />

⎠<br />

(2.13)<br />

× Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i), (2.14)<br />

where vector X is the result of concatenation of x and x ′ .<br />

In order to see the effect of each of the spdc parameters on the spatiofrequency<br />

correlations, some typical values are used in next subsection to calculate<br />

T r[ˆρ 2 q] numerically.<br />

2.2.3 Numerical calculations<br />

As first example, consider a degenerate type-i spdc process characterized by the<br />

parameters in the second column of table 2.1. A pump beam, with wavelength<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!