24.04.2013 Views

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

Spatial Characterization Of Two-Photon States - GAP-Optique

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A. The matrix form of the mode function<br />

writes<br />

T r[ρ 2 <br />

q] =<br />

dqsdΩsdqidΩidq ′ sdΩ ′ sdq ′ idΩ ′ i<br />

× Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)<br />

× Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i). (A.7)<br />

where the dimension increases as new primed variables appear. Using the<br />

matrix notation the integrand becomes<br />

Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ωs, q ′ i, Ωi)Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ω ′ s, qi, Ω ′ i)<br />

= N 4 <br />

exp − 1<br />

2 Xt <br />

BX , (A.8)<br />

where the vector X is the result of concatenation of x and x ′ , such that<br />

⎛<br />

⎜<br />

X = ⎜<br />

⎝<br />

↑<br />

x<br />

↓<br />

↑<br />

x ′<br />

↓<br />

⎞<br />

⎟ ,<br />

⎟<br />

⎠<br />

(A.9)<br />

and the new matrix B is given by<br />

B = 1<br />

⎛<br />

⎜<br />

2 ⎜<br />

⎝<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

l<br />

0<br />

0<br />

0<br />

0<br />

k<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

r<br />

0<br />

0<br />

0<br />

0<br />

p<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

u<br />

0<br />

0<br />

0<br />

0<br />

t<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

w<br />

0<br />

0<br />

0<br />

0<br />

v<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

2z<br />

k<br />

p<br />

t<br />

v<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

2g<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

0<br />

0<br />

0<br />

k<br />

l<br />

2a<br />

2h<br />

2i<br />

2j<br />

k<br />

0<br />

0<br />

0<br />

0<br />

p<br />

r<br />

2h<br />

2b<br />

2m<br />

2n<br />

p<br />

0<br />

0<br />

0<br />

0<br />

t<br />

u<br />

2i<br />

2m<br />

2c<br />

2s<br />

t<br />

0<br />

0<br />

0<br />

0<br />

v<br />

w<br />

2j<br />

2n<br />

2s<br />

2d<br />

v<br />

k<br />

p<br />

t<br />

v<br />

0<br />

0<br />

k<br />

p<br />

t<br />

v<br />

2f<br />

l<br />

r<br />

u<br />

w<br />

0<br />

0<br />

l<br />

r<br />

u<br />

w<br />

2z<br />

⎞<br />

⎟ .<br />

⎟<br />

⎠<br />

l r u w 0 0 l r u w 2z 2g<br />

(A.10)<br />

In an analogous way, the integrand on the expression for the signal photon<br />

purity<br />

<br />

T r[ρ 2 signal] =<br />

is written in a matrix notation as<br />

66<br />

dqsdΩsdqidΩidq ′ sdΩ ′ sdq ′ idΩ ′ i<br />

× Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ω ′ s, qi, Ωi)<br />

× Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ωs, q ′ i, Ω ′ i). (A.11)<br />

Φ(qs, Ωs, qi, Ωi)Φ ∗ (q ′ s, Ω ′ s, qi, Ωi)Φ(q ′ s, Ω ′ s, q ′ i, Ω ′ i)Φ ∗ (qs, Ωs, q ′ i, Ω ′ i)<br />

= N 4 exp<br />

<br />

− 1<br />

2 Xt <br />

CX . (A.12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!