22.06.2013 Views

Chapter 5: Carrier Transport Phenomena - FKE

Chapter 5: Carrier Transport Phenomena - FKE

Chapter 5: Carrier Transport Phenomena - FKE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Microelectronics I<br />

<strong>Chapter</strong> 5: <strong>Carrier</strong> <strong>Transport</strong><br />

<strong>Phenomena</strong><br />

<strong>Transport</strong>; the process by which charged particles (electrons<br />

and holes) move


Microelectronics I<br />

Understanding of electrical properties ( I-V characteristics)<br />

Basic current equation;<br />

I ∝ e⋅µ<br />

⋅n⋅<br />

E<br />

e; electronic charged (constant, 1.6 x 10-19 C)<br />

u; mobility ( figure of merit that reflect the speed)<br />

n; carrier concentration<br />

E; Electric field<br />

<strong>Carrier</strong> concentration (electron, n o and hole, p o)<br />

<strong>Chapter</strong> 4<br />

<strong>Carrier</strong> transport (current)<br />

This chapter


Microelectronics I<br />

+<br />

“Drift”<br />

The movement of carrier due<br />

to electric field (E)<br />

E<br />

V<br />

electron<br />

-<br />

<strong>Carrier</strong> <strong>Transport</strong><br />

“Diffusion”<br />

The flow of carrier due to density<br />

gradients (dn/dx)<br />

electron<br />

divider


Microelectronics I<br />

5.1 <strong>Carrier</strong> Drift<br />

Drift current density<br />

Consider a positively charged hole,<br />

When electric field, E, is applied, the hole accelerates<br />

F = mp<br />

a =<br />

*<br />

m*p; effective mass of hole, a; acceleration, e; electronic charge<br />

However, hole collides with ionized impurity atoms and with thermally vibrating<br />

lattice atom<br />

Lattice atom<br />

hole<br />

Ionized impurity atom<br />

eE<br />

E


Microelectronics I<br />

hole<br />

Ionized impurity atom<br />

Holes accelerates<br />

due to E<br />

Involves in collision<br />

(“Scattering Process”)<br />

Loses most of energy<br />

Lattice atom<br />

Gain average drift velocity, v dp<br />

vdp p<br />

= µ E<br />

µ p; Hole mobility (unit; cm 2 /Vs)<br />

Describes how well a carrier move due to E<br />

E


Microelectronics I<br />

Drift current density, J drf (unit; A/cm 2 ) due to hole<br />

J =<br />

p|<br />

drf<br />

epv<br />

J p | drf = p<br />

dp<br />

eµ<br />

pE<br />

Drift current density due to electron<br />

Total drift current;<br />

J n | drf = n<br />

eµ<br />

nE<br />

J drf = n p<br />

e(<br />

µ n + µ p)<br />

E<br />

The sum of the individual electron and hole drift current densities


Microelectronics I<br />

Mobility is important parameter to determine the conductivity of material<br />

Mobility effects<br />

eτ<br />

cp<br />

p *<br />

mp<br />

µ =<br />

µ =<br />

n<br />

eτ<br />

m<br />

τ; mean time between collisions<br />

If τ=10 -15 s, in average, every 10 -15 s, carrier involves in collision @ scattering<br />

Two dominant scattering mechanism<br />

1. Phonon or lattice scattering<br />

2. Ionized scattering<br />

cn<br />

*<br />

n


Microelectronics I<br />

1. Lattice scattering or phonon scattering<br />

At temperature, T > 0 K, atoms randomly vibrate. This thermal vibrations cause a<br />

disruption of the periodic potential function. This resulting in an interaction<br />

between carrier and the vibrating lattice atoms.<br />

Mobility due to lattice scattering, µ L<br />

µ µ<br />

L<br />

∝ T<br />

− 3 / 2<br />

As temperature decreases, the probability of a scattering event decreases. Thus,<br />

mobility increases


Microelectronics I<br />

electron hole


Microelectronics I<br />

2. Ionized Ion scattering<br />

Coulomb interaction between carriers and ionized impurities produces scattering<br />

or collusion. This alter the velocity characteristics of the carriers.<br />

Mobility due to ionized ion scattering, µ I<br />

µ<br />

L<br />

∝<br />

T 2 / 3<br />

N Total ionized impurity concentration<br />

I<br />

If temperature increases, the random thermal velocity of a carrier increases,<br />

reducing the time the carrier spends in the vicinity of the ionized impurity center.<br />

This causes the scattering effect decreases and mobility increases.<br />

If the number of ionized impurity centers increases, then the probability of a<br />

carrier encountering an ionized impurity centers increases, thus reducing<br />

mobility


Microelectronics I


Microelectronics I<br />

The net mobility is given by<br />

1 1<br />

=<br />

µ µ<br />

L<br />

+<br />

1<br />

µ<br />

Due to phonon scattering Due to ionized ion scattering<br />

I


Microelectronics I<br />

Conductivity<br />

Drift current<br />

electron<br />

J drf n p<br />

σ; conductivity [(Ω.cm) -1 ]<br />

= e(<br />

µ n + µ p)<br />

E = σE<br />

hole<br />

σ = ( µ n + µ p)<br />

e n p<br />

Function of electron and hole concentrations and mobolities<br />

Ρ; resistivity [Ω.cm]<br />

1<br />

ρ =<br />

=<br />

σ<br />

1<br />

( µ n + µ p)<br />

e n p


Microelectronics I


Microelectronics I<br />

Current density,<br />

J<br />

I<br />

A<br />

V<br />

Area, A<br />

Bar of semiconductor<br />

L<br />

+<br />

- V<br />

I<br />

V<br />

J = Electric field, E =<br />

A<br />

L<br />

= σE<br />

V<br />

= σ<br />

L<br />

⎛ L ⎞<br />

= ⎜ ⎟I<br />

⎝σA<br />

⎠<br />

⎛ ρL<br />

⎞<br />

= ⎜ ⎟I<br />

⎝ A ⎠<br />

Resistance, R is a function of resistivity, or<br />

conductivity, as well as the geometry of the<br />

semiconductor<br />

=<br />

IR<br />

I


Microelectronics I<br />

Consider p-type semiconductor with an acceptor doping N a (N d=0) in which N a>>n i<br />

Assume complete ionization<br />

σ = ( µ n + µ p)<br />

≈ eµ<br />

p<br />

e n p<br />

n<br />

σ ≈ eµ<br />

nN a<br />

1<br />

≈<br />

ρ<br />

Function of the majority carrier


Microelectronics I<br />

ex.;<br />

Consider compensated n-type Silicon at T=300 K with a conductivity of σ=16<br />

(Ωcm) -1 and an acceptor doping concentration of 10 17 cm -3 . Determine the donor<br />

concentration and the electron mobility.<br />

Solution;<br />

At T=300 K, we can assume complete ionization. (N d-N a >>n i)<br />

σ ≈ eµ<br />

n = eµ<br />

( N<br />

16<br />

=<br />

n<br />

( 1.<br />

6<br />

× 10<br />

n<br />

−19<br />

d<br />

− N<br />

) µ ( N<br />

n<br />

d<br />

a<br />

)<br />

−10<br />

To determine µn and Nd, we can use figure mobility vs. impurity concentration with<br />

trial and error<br />

10<br />

20<br />

= µ<br />

n( Nd<br />

−10<br />

17<br />

)<br />

17<br />

)


Microelectronics I<br />

If N d=2 x 10 17 cm -3 , impurity<br />

concentration, N I= N d + +Na - =3 x 10 17<br />

cm -3 . from the figure, µn= 510<br />

cm 2 /Vs. so σ=8.16 (Ωcm) -1 .<br />

If Nd=5 x 1017 cm-3 , impurity<br />

concentration, NI= N +<br />

d +Na - =6x 1017 cm-3 . from the figure, µn= 325<br />

cm2 /Vs. so σ=20.8 (Ωcm) -1 cm .<br />

2 /Vs. so σ=20.8 (Ωcm) -1 .<br />

N d should be between 2 x 10 17 and 5 x<br />

10 17 cm -3 . after trial and error.<br />

Nd= 3.5 x 10 17 cm -3<br />

µn=400 cm 2 /Vs<br />

σ= 16 (Ωcm) -1


Microelectronics I<br />

Ex 2.; designing a semiconductor resistor with a specified resistance to<br />

handle a given current density<br />

A Si semiconductor at T=300 K is initially doped with donors at a concentration of<br />

N d=5 x 10 15 cm -3 . Acceptors are to be added to form a compensated p-type<br />

material. The resistor is to have a resistance of 10 kΩ and handle a current<br />

density of 50 A/cm 2 when 5 V is applied.<br />

Solution;<br />

When 5 V is applied to 10 kΩ resistor, the current, I<br />

V 5<br />

I = = = 0.<br />

5mA<br />

4<br />

R 10<br />

If the current density, J is limited to 50 A/cm 2 , the cross-sectional area, A is<br />

A =<br />

I<br />

J<br />

=<br />

0.<br />

5×<br />

10<br />

50<br />

−3<br />

= 10<br />

−5<br />

cm<br />

2


Microelectronics I<br />

Consider that electric field, E is limited to 100 V/cm. Then the length of the<br />

resistor, L is<br />

L<br />

V<br />

E<br />

5 −2<br />

= = 5×<br />

10<br />

100<br />

The conductivity, σ of the semiconductor is<br />

=<br />

cm<br />

L<br />

σ = =<br />

cm<br />

RA 10 × 10<br />

−2<br />

5× 10<br />

−1<br />

= 0.<br />

5(<br />

Ω )<br />

4 −5<br />

The conductivity of the compensated p-type semiconductor is<br />

σ ≈ eµ p = eµ<br />

−<br />

p<br />

p ( Na<br />

Nd<br />

Here, the mobility is function of total ionized impurity concentration Na+Nd<br />

)


Microelectronics I<br />

Using trial and error, if Na=1.25x10 16 cm -3 , then Na+Nd=1.75x10 16 cm -3 , and the<br />

hole mobility, from figure mobility versus impurity concentration, is approximately<br />

µp=410 cm 2 /Vs. The conductivity is then,<br />

σ = eµ ( N<br />

p<br />

a<br />

− N<br />

d<br />

)<br />

=<br />

1.<br />

6<br />

× 10<br />

−19<br />

× 410×<br />

(( 12.<br />

5<br />

−<br />

5)<br />

× 10<br />

This is very close to the value we need. From the calculation<br />

L=5x10 -2 cm<br />

A=10 -5 cm 2<br />

Na=1.25x10 16 cm -3<br />

15<br />

)<br />

=<br />

0.<br />

492


Microelectronics I<br />

Velocity Saturation<br />

v d<br />

= µ E<br />

Drift velocity increase linearly with applied electric field.<br />

At low electric field,<br />

vd increase linearly<br />

with applied E.<br />

slope=mobility<br />

At high electric field,<br />

vd saturates<br />

Constant value


Microelectronics I<br />

<strong>Carrier</strong> diffusion<br />

Diffusion; process whereby particles from a region of high concentration toward<br />

a region of low concentration.<br />

Electron concentration, n<br />

<strong>Carrier</strong><br />

Electron flux<br />

divider<br />

Electron diffusion<br />

current density<br />

Position x<br />

J<br />

J<br />

nx|<br />

dif<br />

nx|<br />

dif<br />

⎛ dn ⎞<br />

= ( −e)<br />

Dn⎜<br />

− ⎟<br />

⎝ dx ⎠<br />

dn<br />

= eDn<br />

dx<br />

D n; electron diffusion coefficient


Microelectronics I<br />

Hole centration, p<br />

Hole flux<br />

Hole diffusion<br />

current density<br />

Position x<br />

J<br />

J<br />

px|<br />

dif<br />

px|<br />

dif<br />

=<br />

eD<br />

p<br />

= −eD<br />

⎛<br />

⎜−<br />

⎝<br />

p<br />

dp<br />

dx<br />

dp<br />

dx<br />

D p; hole diffusion coefficient<br />

Diffusion coefficient; indicates how well carrier move as a result of<br />

density gradient.<br />

⎞<br />

⎟<br />


Microelectronics I<br />

Total Current Density<br />

Electron drift<br />

current<br />

1-D<br />

3-D<br />

Total Current<br />

Density<br />

hole drift<br />

current<br />

Electron diffusion<br />

current<br />

J = J n|<br />

drf + J nx|<br />

dif + J p|<br />

drf + J px|<br />

dif<br />

dn<br />

J = enµ<br />

nE<br />

x + epµ<br />

pE<br />

x + eDn<br />

− eDp<br />

dx<br />

dp<br />

dx<br />

J = enµ<br />

nE<br />

+ epµ<br />

pE<br />

+ eDn∇n<br />

− eDp∇p<br />

hole diffusion<br />

current


Microelectronics I<br />

Mobility,µ; indicates how well carrier moves due to electrical field<br />

Diffusion coefficient, D; how well carrier moves due to density gradient<br />

Here, we derive relationship between mobility and diffusion<br />

coefficient using nonuniformly doped semiconductor model<br />

Graded impurity distribution<br />

electron<br />

“Einstein relation”<br />

x<br />

nonuniformly doped semiconductor<br />

Energy-band diagram<br />

x<br />

E C<br />

E F<br />

E v


Microelectronics I<br />

x<br />

E C<br />

E F<br />

E v<br />

Doping concentration decreases as x increases<br />

Electron diffuse in +x direction<br />

The flow of electron leaves behind positively<br />

charged donor<br />

Induce electrical field, E x, given by<br />

⎛ kT ⎞ 1 dN d ( x )<br />

E Ex<br />

= − ⎜ ⎟<br />

⎝ e ⎠ N ( x)<br />

dx<br />

Since there are no electrical connections, there is no current(J=0)<br />

Electron current<br />

J<br />

=<br />

eµ<br />

N<br />

n<br />

d<br />

dNd<br />

( x)<br />

( x)<br />

Ex<br />

+ eDn<br />

=<br />

dx<br />

0<br />

d<br />

…eq.2<br />

…eq.1


Microelectronics I<br />

From eq.1 and 2,<br />

D<br />

µ<br />

n =<br />

n<br />

kT<br />

e<br />

Hole current must also be zero. We can show that<br />

D<br />

µ<br />

n<br />

Dp kT<br />

=<br />

µ µ e<br />

p<br />

Dp<br />

=<br />

µ<br />

n =<br />

p<br />

kT<br />

e<br />

Diffusion coefficient and mobility are not independent parameters.<br />

The relationship between this 2 parameter “Einstein relation”


Microelectronics I<br />

The Hall effect<br />

Using the effect, we can determine<br />

The type of semiconductor<br />

<strong>Carrier</strong> concentration<br />

mobility<br />

Applied electrical field<br />

Magnetic field<br />

Force on charged particle<br />

in magnetic field (“Lorentz<br />

force”)<br />

F =<br />

qv×<br />

B


Microelectronics I<br />

the Lorentz force on electron<br />

and hole is in –y direction<br />

There will be buildup of negative<br />

charge (n-type) or positive charge<br />

(p-type) at y=0<br />

As a results, an electrical field<br />

called “Hall field, E EH” H” is induced.<br />

Hall field produces “Hall voltage,<br />

V H”<br />

Polarity of V H is used to determine the type of semiconductor<br />

In y-direction, Lorentz force will be balanced by force due to Hall field<br />

qv<br />

V<br />

H<br />

V<br />

B q<br />

W<br />

= v WB<br />

H<br />

x × z = (p-type)<br />

x<br />

z


Microelectronics I<br />

For p-type<br />

For n-type<br />

V<br />

p<br />

H<br />

v<br />

=<br />

x =<br />

I xB<br />

epd<br />

eV H<br />

I x<br />

( ep)(<br />

Wd)<br />

z<br />

I xBz<br />

=<br />

eV d<br />

I xBz<br />

VH<br />

= −<br />

end<br />

I xBz<br />

n = −<br />

eV d<br />

H<br />

Can calculate the hole concentration in p-type<br />

Note that V H is negative for n-type


Microelectronics I<br />

When we know the carrier concentration, we can calculate carrier mobility<br />

J = epµ<br />

E<br />

x<br />

p<br />

x<br />

Similar with n-type, mobility is determined from<br />

n = µ<br />

I xL<br />

enV Wd<br />

x<br />

I epµ<br />

E<br />

x<br />

p<br />

=<br />

Wd L<br />

I xL<br />

µ p =<br />

epV Wd<br />

x<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!