13.07.2013 Views

USNO Circular 179 - U.S. Naval Observatory

USNO Circular 179 - U.S. Naval Observatory

USNO Circular 179 - U.S. Naval Observatory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

46 PRECESSION & NUTATION<br />

∆ɛ =<br />

N<br />

i=1<br />

<br />

(Ci + ˙ CiT ) cos Φi + S ′ <br />

i sin Φi<br />

where, in each term, Φi =<br />

(5.15)<br />

K<br />

Mi,j φj(T ) (5.16)<br />

For the IAU 2000A model, N=1365 and K=14. The 14 φj(T ) are the fundamental arguments,<br />

which are, except for one, orbital angles. The main time dependence of the nutation series enters<br />

through these arguments. The expressions given below are all taken from Simon et al. (1994) and<br />

all coefficients are in arcseconds.<br />

The first eight fundamental arguments are the mean heliocentric ecliptic longitudes of the<br />

planets Mercury through Neptune:<br />

j=1<br />

φ1 = 908103.259872 + 538101628.688982 T<br />

φ2 = 655127.283060 + 210664136.433548 T<br />

φ3 = 361679.244588 + 129597742.283429 T<br />

φ4 = 1279558.798488 + 68905077.493988 T (5.17)<br />

φ5 = 123665.467464 + 10925660.377991 T<br />

φ6 = 180278.799480 + 4399609.855732 T<br />

φ7 = 1130598.018396 + 1542481.193933 T<br />

φ8 = 1095655.195728 + 786550.320744 T<br />

In all of these expressions, T is the number of Julian centuries of TDB since 2000 Jan 1, 12 h TDB (or,<br />

with negligible error, the number of Julian centuries of TT since J2000.0). In some implementations<br />

it may be necessary to reduce the resulting angles, which are expressed in arcseconds, to radians<br />

in the range 0–2π. The ninth argument is an approximation to the general precession in longitude:<br />

φ9 = 5028.8200 T + 1.112022 T 2<br />

(5.18)<br />

The last five arguments are the same fundamental luni-solar arguments used in previous nutation<br />

theories, but with updated expresssions. They are, respectively, l, the mean anomaly of the Moon;<br />

l ′ , the mean anomaly of the Sun; F , the mean argument of latitude of the Moon; D, the mean<br />

elongation of the Moon from the Sun, and Ω, the mean longitude of the Moon’s mean ascending<br />

node:<br />

φ10 = l = 485868.249036 + 17<strong>179</strong>15923.2178 T + 31.8792 T 2 + 0.051635 T 3 − 0.00024470 T 4<br />

φ11 = l ′ = 1287104.79305 + 129596581.0481 T − 0.5532 T 2 + 0.000136 T 3 − 0.00001149 T 4<br />

φ12 = F = 335779.526232 + 1739527262.8478 T − 12.7512 T 2 − 0.001037 T 3 + 0.00000417 T 4<br />

φ13 = D = 1072260.70369 + 1602961601.2090 T − 6.3706 T 2 + 0.006593 T 3 − 0.00003169 T 4<br />

φ14 = Ω = 450160.398036 − 6962890.5431 T + 7.4722 T 2 + 0.007702 T 3 − 0.00005939 T 4<br />

The first step in evaluating the series for nutation for a given date is to compute the values of<br />

all 14 fundamental arguments for the date of interest. This is done only once. Then the nutation<br />

terms are evaluated one by one. For each term i, first compute Φi according to eq. 5.16, using the<br />

14 integer multipliers, Mi,j, listed for the term; i.e., sum over Mi,j × φj (where j=1–14). Then the<br />

cosine and sine components for the term can be evaluated, as per eq. 5.15, using the listed values<br />

(5.19)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!