14.07.2013 Views

iter structural design criteria for in-vessel components (sdc-ic)

iter structural design criteria for in-vessel components (sdc-ic)

iter structural design criteria for in-vessel components (sdc-ic)

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ITER G 74 MA 8 01-05-28 W0.2<br />

from all sources should be limited to satisfy the de<strong>for</strong>mation limits <strong>for</strong> functional adequacy<br />

(IC 3040).<br />

S<strong>in</strong>ce irradiation-<strong>in</strong>duced swell<strong>in</strong>g and creep are time-dependent phenomena, de<strong>for</strong>mations<br />

and stress <strong>in</strong>tensities are necessarily time-dependent. Generally, irradiation-<strong>in</strong>duced creep<br />

changes the <strong>in</strong>itial elast<strong>ic</strong> stress distribution by relax<strong>in</strong>g secondary (e.g., thermal or<br />

constra<strong>in</strong>ed swell<strong>in</strong>g stress) or peak stresses with accumulat<strong>in</strong>g neutron fluence. The relaxed<br />

part of the secondary and peak stresses will reappear with reversed sign when the reactor is<br />

shut down and the <strong>in</strong>cremental load<strong>in</strong>g is applied <strong>in</strong> reverse. These changes <strong>in</strong> stress<br />

distribution should be accounted <strong>for</strong> <strong>in</strong> satisfy<strong>in</strong>g fatigue, ratchet, and buckl<strong>in</strong>g limits.<br />

Constitutive equations <strong>for</strong> irradiation-<strong>in</strong>duced creep and swell<strong>in</strong>g <strong>for</strong> the ITER <strong>structural</strong><br />

materials are given <strong>in</strong> the ITER MPH-IV 2 . These equations should be used <strong>in</strong> a f<strong>in</strong>iteelement<br />

elast<strong>ic</strong>-creep analysis of the component. In some cases, simplified constitutive<br />

equations <strong>for</strong> irradiation-<strong>in</strong>duced swell<strong>in</strong>g and creep may be used, provided they can be<br />

shown to give conservative results. Two such cases where stresses evolve with time are<br />

discussed - one <strong>for</strong> swell<strong>in</strong>g-<strong>in</strong>duced stress (B 3024.1.1.1) and the other <strong>for</strong> relaxation of<br />

thermal stress by irradiation-<strong>in</strong>duced creep (B 3024.1.1.2).<br />

B 3024.1.1.1 Swell<strong>in</strong>g <strong>in</strong>duced stress value<br />

If the negligible swell<strong>in</strong>g test of B 3022 is not satisfied, then stresses due to constra<strong>in</strong>ed<br />

irradiation-<strong>in</strong>duced swell<strong>in</strong>g (B 2513) have to be considered. For comput<strong>in</strong>g stresses due to<br />

fluence-dependent swell<strong>in</strong>g, the relax<strong>in</strong>g effects of irradiation-<strong>in</strong>duced creep has to be taken<br />

<strong>in</strong>to account irrespective of whether the negligible irradiation-<strong>in</strong>duced creep test of B 3101 is<br />

satisfied or not, because otherwise the elast<strong>ic</strong>ally calculated swell<strong>in</strong>g stresses could become<br />

unrealist<strong>ic</strong>ally large. Swell<strong>in</strong>g stra<strong>in</strong>s, when constra<strong>in</strong>ed, give rise to stresses that, <strong>in</strong> general,<br />

<strong>in</strong>crease with fluence and ultimately reach steady-state values that are the results of a<br />

dynam<strong>ic</strong> equilibrium between the elast<strong>ic</strong>ally driven constra<strong>in</strong>ed swell<strong>in</strong>g stresses and the<br />

relaxation effects of irradiation-<strong>in</strong>duced creep. Such constra<strong>in</strong>ed swell<strong>in</strong>g stresses are<br />

classified as secondary stresses (ICÊ2525). In general, solv<strong>in</strong>g <strong>for</strong> constra<strong>in</strong>ed swell<strong>in</strong>g<br />

stresses would require an <strong>in</strong>cremental thermal-elast<strong>ic</strong>-creep analysis of the component. For<br />

some isotrop<strong>ic</strong> materials, such as type 316 austenit<strong>ic</strong> sta<strong>in</strong>less steel, the constitutive equations<br />

<strong>for</strong> the fluence driven creep and swell<strong>in</strong>g stra<strong>in</strong>s can be approximated by<br />

and<br />

e<br />

ij creep<br />

( ft)<br />

= BT ( , f)<br />

S<br />

3<br />

2<br />

eij<br />

swell<strong>in</strong>g 1 1 V 1<br />

= d = AT ( , f) d<br />

( ft)<br />

3 V ( ft) 3<br />

where<br />

V = the volume,<br />

ij<br />

ij ij<br />

A(T, f) and B(T, f) are coeff<strong>ic</strong>ients <strong>for</strong> irradiation-<strong>in</strong>duced swell<strong>in</strong>g and<br />

creep equations (see A.MAT.4.2 and A.MAT.4.3 of appendix<br />

A), with T as temperature and f as neutron flux,<br />

SDC-IC, Appendix B. Guidel<strong>in</strong>es <strong>for</strong> Analysis page 24<br />

(1)<br />

(2)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!